xref: /linux/fs/f2fs/node.c (revision cb0de0e220d2233a84a2ff1afb8ffba7597d02fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
clear_node_folio_dirty(struct folio * folio)123 static void clear_node_folio_dirty(struct folio *folio)
124 {
125 	if (folio_test_dirty(folio)) {
126 		f2fs_clear_page_cache_dirty_tag(folio);
127 		folio_clear_dirty_for_io(folio);
128 		dec_page_count(F2FS_F_SB(folio), F2FS_DIRTY_NODES);
129 	}
130 	folio_clear_uptodate(folio);
131 }
132 
get_current_nat_folio(struct f2fs_sb_info * sbi,nid_t nid)133 static struct folio *get_current_nat_folio(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_folio_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct folio *src_folio;
141 	struct folio *dst_folio;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_folio = get_current_nat_folio(sbi, nid);
151 	if (IS_ERR(src_folio))
152 		return &src_folio->page;
153 	dst_folio = f2fs_grab_meta_folio(sbi, dst_off);
154 	f2fs_bug_on(sbi, folio_test_dirty(src_folio));
155 
156 	src_addr = folio_address(src_folio);
157 	dst_addr = folio_address(dst_folio);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	folio_mark_dirty(dst_folio);
160 	f2fs_folio_put(src_folio, true);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return &dst_folio->page;
165 }
166 
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct folio * folio)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio)
314 {
315 	return is_node_folio(folio) && IS_DNODE(&folio->page) &&
316 					is_cold_node(&folio->page);
317 }
318 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct folio * folio)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 		struct folio *folio)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	folio_get(folio);
338 	fn->folio = folio;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct folio * folio)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->folio == folio) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			folio_put(folio);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct folio *folio = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->flag = 0;
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594 	up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	folio = f2fs_get_meta_folio(sbi, index);
605 	if (IS_ERR(folio))
606 		return PTR_ERR(folio);
607 
608 	nat_blk = folio_address(folio);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_folio_put(folio, true);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
f2fs_ra_node_pages(struct folio * parent,int start,int n)626 static void f2fs_ra_node_pages(struct folio *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, (int)NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(&parent->page, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start);
758 
759 /*
760  * Caller should call f2fs_put_dnode(dn).
761  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
762  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
763  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)764 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
765 {
766 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
767 	struct folio *nfolio[4];
768 	struct folio *parent = NULL;
769 	int offset[4];
770 	unsigned int noffset[4];
771 	nid_t nids[4];
772 	int level, i = 0;
773 	int err = 0;
774 
775 	level = get_node_path(dn->inode, index, offset, noffset);
776 	if (level < 0)
777 		return level;
778 
779 	nids[0] = dn->inode->i_ino;
780 
781 	if (!dn->inode_folio) {
782 		nfolio[0] = f2fs_get_inode_folio(sbi, nids[0]);
783 		if (IS_ERR(nfolio[0]))
784 			return PTR_ERR(nfolio[0]);
785 	} else {
786 		nfolio[0] = dn->inode_folio;
787 	}
788 
789 	/* if inline_data is set, should not report any block indices */
790 	if (f2fs_has_inline_data(dn->inode) && index) {
791 		err = -ENOENT;
792 		f2fs_folio_put(nfolio[0], true);
793 		goto release_out;
794 	}
795 
796 	parent = nfolio[0];
797 	if (level != 0)
798 		nids[1] = get_nid(&parent->page, offset[0], true);
799 	dn->inode_folio = nfolio[0];
800 	dn->inode_folio_locked = true;
801 
802 	/* get indirect or direct nodes */
803 	for (i = 1; i <= level; i++) {
804 		bool done = false;
805 
806 		if (!nids[i] && mode == ALLOC_NODE) {
807 			/* alloc new node */
808 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
809 				err = -ENOSPC;
810 				goto release_pages;
811 			}
812 
813 			dn->nid = nids[i];
814 			nfolio[i] = f2fs_new_node_folio(dn, noffset[i]);
815 			if (IS_ERR(nfolio[i])) {
816 				f2fs_alloc_nid_failed(sbi, nids[i]);
817 				err = PTR_ERR(nfolio[i]);
818 				goto release_pages;
819 			}
820 
821 			set_nid(parent, offset[i - 1], nids[i], i == 1);
822 			f2fs_alloc_nid_done(sbi, nids[i]);
823 			done = true;
824 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
825 			nfolio[i] = f2fs_get_node_folio_ra(parent, offset[i - 1]);
826 			if (IS_ERR(nfolio[i])) {
827 				err = PTR_ERR(nfolio[i]);
828 				goto release_pages;
829 			}
830 			done = true;
831 		}
832 		if (i == 1) {
833 			dn->inode_folio_locked = false;
834 			folio_unlock(parent);
835 		} else {
836 			f2fs_folio_put(parent, true);
837 		}
838 
839 		if (!done) {
840 			nfolio[i] = f2fs_get_node_folio(sbi, nids[i]);
841 			if (IS_ERR(nfolio[i])) {
842 				err = PTR_ERR(nfolio[i]);
843 				f2fs_folio_put(nfolio[0], false);
844 				goto release_out;
845 			}
846 		}
847 		if (i < level) {
848 			parent = nfolio[i];
849 			nids[i + 1] = get_nid(&parent->page, offset[i], false);
850 		}
851 	}
852 	dn->nid = nids[level];
853 	dn->ofs_in_node = offset[level];
854 	dn->node_folio = nfolio[level];
855 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
856 
857 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
858 					f2fs_sb_has_readonly(sbi)) {
859 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
860 		unsigned int ofs_in_node = dn->ofs_in_node;
861 		pgoff_t fofs = index;
862 		unsigned int c_len;
863 		block_t blkaddr;
864 
865 		/* should align fofs and ofs_in_node to cluster_size */
866 		if (fofs % cluster_size) {
867 			fofs = round_down(fofs, cluster_size);
868 			ofs_in_node = round_down(ofs_in_node, cluster_size);
869 		}
870 
871 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
872 		if (!c_len)
873 			goto out;
874 
875 		blkaddr = data_blkaddr(dn->inode, dn->node_folio, ofs_in_node);
876 		if (blkaddr == COMPRESS_ADDR)
877 			blkaddr = data_blkaddr(dn->inode, dn->node_folio,
878 						ofs_in_node + 1);
879 
880 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
881 					fofs, blkaddr, cluster_size, c_len);
882 	}
883 out:
884 	return 0;
885 
886 release_pages:
887 	f2fs_folio_put(parent, true);
888 	if (i > 1)
889 		f2fs_folio_put(nfolio[0], false);
890 release_out:
891 	dn->inode_folio = NULL;
892 	dn->node_folio = NULL;
893 	if (err == -ENOENT) {
894 		dn->cur_level = i;
895 		dn->max_level = level;
896 		dn->ofs_in_node = offset[level];
897 	}
898 	return err;
899 }
900 
truncate_node(struct dnode_of_data * dn)901 static int truncate_node(struct dnode_of_data *dn)
902 {
903 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
904 	struct node_info ni;
905 	int err;
906 	pgoff_t index;
907 
908 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
909 	if (err)
910 		return err;
911 
912 	if (ni.blk_addr != NEW_ADDR &&
913 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
914 		f2fs_err_ratelimited(sbi,
915 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
916 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
917 		set_sbi_flag(sbi, SBI_NEED_FSCK);
918 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
919 		return -EFSCORRUPTED;
920 	}
921 
922 	/* Deallocate node address */
923 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
924 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
925 	set_node_addr(sbi, &ni, NULL_ADDR, false);
926 
927 	if (dn->nid == dn->inode->i_ino) {
928 		f2fs_remove_orphan_inode(sbi, dn->nid);
929 		dec_valid_inode_count(sbi);
930 		f2fs_inode_synced(dn->inode);
931 	}
932 
933 	clear_node_folio_dirty(dn->node_folio);
934 	set_sbi_flag(sbi, SBI_IS_DIRTY);
935 
936 	index = dn->node_folio->index;
937 	f2fs_folio_put(dn->node_folio, true);
938 
939 	invalidate_mapping_pages(NODE_MAPPING(sbi),
940 			index, index);
941 
942 	dn->node_folio = NULL;
943 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
944 
945 	return 0;
946 }
947 
truncate_dnode(struct dnode_of_data * dn)948 static int truncate_dnode(struct dnode_of_data *dn)
949 {
950 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
951 	struct folio *folio;
952 	int err;
953 
954 	if (dn->nid == 0)
955 		return 1;
956 
957 	/* get direct node */
958 	folio = f2fs_get_node_folio(sbi, dn->nid);
959 	if (PTR_ERR(folio) == -ENOENT)
960 		return 1;
961 	else if (IS_ERR(folio))
962 		return PTR_ERR(folio);
963 
964 	if (IS_INODE(&folio->page) || ino_of_node(&folio->page) != dn->inode->i_ino) {
965 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
966 				dn->inode->i_ino, dn->nid, ino_of_node(&folio->page));
967 		set_sbi_flag(sbi, SBI_NEED_FSCK);
968 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
969 		f2fs_folio_put(folio, true);
970 		return -EFSCORRUPTED;
971 	}
972 
973 	/* Make dnode_of_data for parameter */
974 	dn->node_folio = folio;
975 	dn->ofs_in_node = 0;
976 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
977 	err = truncate_node(dn);
978 	if (err) {
979 		f2fs_folio_put(folio, true);
980 		return err;
981 	}
982 
983 	return 1;
984 }
985 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)986 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
987 						int ofs, int depth)
988 {
989 	struct dnode_of_data rdn = *dn;
990 	struct folio *folio;
991 	struct f2fs_node *rn;
992 	nid_t child_nid;
993 	unsigned int child_nofs;
994 	int freed = 0;
995 	int i, ret;
996 
997 	if (dn->nid == 0)
998 		return NIDS_PER_BLOCK + 1;
999 
1000 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
1001 
1002 	folio = f2fs_get_node_folio(F2FS_I_SB(dn->inode), dn->nid);
1003 	if (IS_ERR(folio)) {
1004 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(folio));
1005 		return PTR_ERR(folio);
1006 	}
1007 
1008 	f2fs_ra_node_pages(folio, ofs, NIDS_PER_BLOCK);
1009 
1010 	rn = F2FS_NODE(&folio->page);
1011 	if (depth < 3) {
1012 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1013 			child_nid = le32_to_cpu(rn->in.nid[i]);
1014 			if (child_nid == 0)
1015 				continue;
1016 			rdn.nid = child_nid;
1017 			ret = truncate_dnode(&rdn);
1018 			if (ret < 0)
1019 				goto out_err;
1020 			if (set_nid(folio, i, 0, false))
1021 				dn->node_changed = true;
1022 		}
1023 	} else {
1024 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1025 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1026 			child_nid = le32_to_cpu(rn->in.nid[i]);
1027 			if (child_nid == 0) {
1028 				child_nofs += NIDS_PER_BLOCK + 1;
1029 				continue;
1030 			}
1031 			rdn.nid = child_nid;
1032 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1033 			if (ret == (NIDS_PER_BLOCK + 1)) {
1034 				if (set_nid(folio, i, 0, false))
1035 					dn->node_changed = true;
1036 				child_nofs += ret;
1037 			} else if (ret < 0 && ret != -ENOENT) {
1038 				goto out_err;
1039 			}
1040 		}
1041 		freed = child_nofs;
1042 	}
1043 
1044 	if (!ofs) {
1045 		/* remove current indirect node */
1046 		dn->node_folio = folio;
1047 		ret = truncate_node(dn);
1048 		if (ret)
1049 			goto out_err;
1050 		freed++;
1051 	} else {
1052 		f2fs_folio_put(folio, true);
1053 	}
1054 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1055 	return freed;
1056 
1057 out_err:
1058 	f2fs_folio_put(folio, true);
1059 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1060 	return ret;
1061 }
1062 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1063 static int truncate_partial_nodes(struct dnode_of_data *dn,
1064 			struct f2fs_inode *ri, int *offset, int depth)
1065 {
1066 	struct folio *folios[2];
1067 	nid_t nid[3];
1068 	nid_t child_nid;
1069 	int err = 0;
1070 	int i;
1071 	int idx = depth - 2;
1072 
1073 	nid[0] = get_nid(&dn->inode_folio->page, offset[0], true);
1074 	if (!nid[0])
1075 		return 0;
1076 
1077 	/* get indirect nodes in the path */
1078 	for (i = 0; i < idx + 1; i++) {
1079 		/* reference count'll be increased */
1080 		folios[i] = f2fs_get_node_folio(F2FS_I_SB(dn->inode), nid[i]);
1081 		if (IS_ERR(folios[i])) {
1082 			err = PTR_ERR(folios[i]);
1083 			idx = i - 1;
1084 			goto fail;
1085 		}
1086 		nid[i + 1] = get_nid(&folios[i]->page, offset[i + 1], false);
1087 	}
1088 
1089 	f2fs_ra_node_pages(folios[idx], offset[idx + 1], NIDS_PER_BLOCK);
1090 
1091 	/* free direct nodes linked to a partial indirect node */
1092 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1093 		child_nid = get_nid(&folios[idx]->page, i, false);
1094 		if (!child_nid)
1095 			continue;
1096 		dn->nid = child_nid;
1097 		err = truncate_dnode(dn);
1098 		if (err < 0)
1099 			goto fail;
1100 		if (set_nid(folios[idx], i, 0, false))
1101 			dn->node_changed = true;
1102 	}
1103 
1104 	if (offset[idx + 1] == 0) {
1105 		dn->node_folio = folios[idx];
1106 		dn->nid = nid[idx];
1107 		err = truncate_node(dn);
1108 		if (err)
1109 			goto fail;
1110 	} else {
1111 		f2fs_folio_put(folios[idx], true);
1112 	}
1113 	offset[idx]++;
1114 	offset[idx + 1] = 0;
1115 	idx--;
1116 fail:
1117 	for (i = idx; i >= 0; i--)
1118 		f2fs_folio_put(folios[i], true);
1119 
1120 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1121 
1122 	return err;
1123 }
1124 
1125 /*
1126  * All the block addresses of data and nodes should be nullified.
1127  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1128 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1129 {
1130 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1131 	int err = 0, cont = 1;
1132 	int level, offset[4], noffset[4];
1133 	unsigned int nofs = 0;
1134 	struct f2fs_inode *ri;
1135 	struct dnode_of_data dn;
1136 	struct folio *folio;
1137 
1138 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1139 
1140 	level = get_node_path(inode, from, offset, noffset);
1141 	if (level <= 0) {
1142 		if (!level) {
1143 			level = -EFSCORRUPTED;
1144 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1145 					__func__, inode->i_ino,
1146 					from, ADDRS_PER_INODE(inode));
1147 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1148 		}
1149 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1150 		return level;
1151 	}
1152 
1153 	folio = f2fs_get_inode_folio(sbi, inode->i_ino);
1154 	if (IS_ERR(folio)) {
1155 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1156 		return PTR_ERR(folio);
1157 	}
1158 
1159 	set_new_dnode(&dn, inode, folio, NULL, 0);
1160 	folio_unlock(folio);
1161 
1162 	ri = F2FS_INODE(&folio->page);
1163 	switch (level) {
1164 	case 0:
1165 	case 1:
1166 		nofs = noffset[1];
1167 		break;
1168 	case 2:
1169 		nofs = noffset[1];
1170 		if (!offset[level - 1])
1171 			goto skip_partial;
1172 		err = truncate_partial_nodes(&dn, ri, offset, level);
1173 		if (err < 0 && err != -ENOENT)
1174 			goto fail;
1175 		nofs += 1 + NIDS_PER_BLOCK;
1176 		break;
1177 	case 3:
1178 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1179 		if (!offset[level - 1])
1180 			goto skip_partial;
1181 		err = truncate_partial_nodes(&dn, ri, offset, level);
1182 		if (err < 0 && err != -ENOENT)
1183 			goto fail;
1184 		break;
1185 	default:
1186 		BUG();
1187 	}
1188 
1189 skip_partial:
1190 	while (cont) {
1191 		dn.nid = get_nid(&folio->page, offset[0], true);
1192 		switch (offset[0]) {
1193 		case NODE_DIR1_BLOCK:
1194 		case NODE_DIR2_BLOCK:
1195 			err = truncate_dnode(&dn);
1196 			break;
1197 
1198 		case NODE_IND1_BLOCK:
1199 		case NODE_IND2_BLOCK:
1200 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1201 			break;
1202 
1203 		case NODE_DIND_BLOCK:
1204 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1205 			cont = 0;
1206 			break;
1207 
1208 		default:
1209 			BUG();
1210 		}
1211 		if (err == -ENOENT) {
1212 			set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1213 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1214 			f2fs_err_ratelimited(sbi,
1215 				"truncate node fail, ino:%lu, nid:%u, "
1216 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1217 				inode->i_ino, dn.nid, offset[0],
1218 				offset[1], nofs);
1219 			err = 0;
1220 		}
1221 		if (err < 0)
1222 			goto fail;
1223 		if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) {
1224 			folio_lock(folio);
1225 			BUG_ON(!is_node_folio(folio));
1226 			set_nid(folio, offset[0], 0, true);
1227 			folio_unlock(folio);
1228 		}
1229 		offset[1] = 0;
1230 		offset[0]++;
1231 		nofs += err;
1232 	}
1233 fail:
1234 	f2fs_folio_put(folio, false);
1235 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1236 	return err > 0 ? 0 : err;
1237 }
1238 
1239 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1240 int f2fs_truncate_xattr_node(struct inode *inode)
1241 {
1242 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1243 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1244 	struct dnode_of_data dn;
1245 	struct folio *nfolio;
1246 	int err;
1247 
1248 	if (!nid)
1249 		return 0;
1250 
1251 	nfolio = f2fs_get_xnode_folio(sbi, nid);
1252 	if (IS_ERR(nfolio))
1253 		return PTR_ERR(nfolio);
1254 
1255 	set_new_dnode(&dn, inode, NULL, nfolio, nid);
1256 	err = truncate_node(&dn);
1257 	if (err) {
1258 		f2fs_folio_put(nfolio, true);
1259 		return err;
1260 	}
1261 
1262 	f2fs_i_xnid_write(inode, 0);
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1269  * f2fs_unlock_op().
1270  */
f2fs_remove_inode_page(struct inode * inode)1271 int f2fs_remove_inode_page(struct inode *inode)
1272 {
1273 	struct dnode_of_data dn;
1274 	int err;
1275 
1276 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1277 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1278 	if (err)
1279 		return err;
1280 
1281 	err = f2fs_truncate_xattr_node(inode);
1282 	if (err) {
1283 		f2fs_put_dnode(&dn);
1284 		return err;
1285 	}
1286 
1287 	/* remove potential inline_data blocks */
1288 	if (!IS_DEVICE_ALIASING(inode) &&
1289 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1290 	     S_ISLNK(inode->i_mode)))
1291 		f2fs_truncate_data_blocks_range(&dn, 1);
1292 
1293 	/* 0 is possible, after f2fs_new_inode() has failed */
1294 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1295 		f2fs_put_dnode(&dn);
1296 		return -EIO;
1297 	}
1298 
1299 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1300 		f2fs_warn(F2FS_I_SB(inode),
1301 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1302 			inode->i_ino, (unsigned long long)inode->i_blocks);
1303 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1304 	}
1305 
1306 	/* will put inode & node pages */
1307 	err = truncate_node(&dn);
1308 	if (err) {
1309 		f2fs_put_dnode(&dn);
1310 		return err;
1311 	}
1312 	return 0;
1313 }
1314 
f2fs_new_inode_folio(struct inode * inode)1315 struct folio *f2fs_new_inode_folio(struct inode *inode)
1316 {
1317 	struct dnode_of_data dn;
1318 
1319 	/* allocate inode page for new inode */
1320 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1321 
1322 	/* caller should f2fs_folio_put(folio, true); */
1323 	return f2fs_new_node_folio(&dn, 0);
1324 }
1325 
f2fs_new_node_folio(struct dnode_of_data * dn,unsigned int ofs)1326 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs)
1327 {
1328 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1329 	struct node_info new_ni;
1330 	struct folio *folio;
1331 	int err;
1332 
1333 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1334 		return ERR_PTR(-EPERM);
1335 
1336 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), dn->nid, false);
1337 	if (IS_ERR(folio))
1338 		return folio;
1339 
1340 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1341 		goto fail;
1342 
1343 #ifdef CONFIG_F2FS_CHECK_FS
1344 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1345 	if (err) {
1346 		dec_valid_node_count(sbi, dn->inode, !ofs);
1347 		goto fail;
1348 	}
1349 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1350 		err = -EFSCORRUPTED;
1351 		dec_valid_node_count(sbi, dn->inode, !ofs);
1352 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1353 		f2fs_warn_ratelimited(sbi,
1354 			"f2fs_new_node_folio: inconsistent nat entry, "
1355 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1356 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1357 			new_ni.version, new_ni.flag);
1358 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1359 		goto fail;
1360 	}
1361 #endif
1362 	new_ni.nid = dn->nid;
1363 	new_ni.ino = dn->inode->i_ino;
1364 	new_ni.blk_addr = NULL_ADDR;
1365 	new_ni.flag = 0;
1366 	new_ni.version = 0;
1367 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1368 
1369 	f2fs_folio_wait_writeback(folio, NODE, true, true);
1370 	fill_node_footer(&folio->page, dn->nid, dn->inode->i_ino, ofs, true);
1371 	set_cold_node(&folio->page, S_ISDIR(dn->inode->i_mode));
1372 	if (!folio_test_uptodate(folio))
1373 		folio_mark_uptodate(folio);
1374 	if (folio_mark_dirty(folio))
1375 		dn->node_changed = true;
1376 
1377 	if (f2fs_has_xattr_block(ofs))
1378 		f2fs_i_xnid_write(dn->inode, dn->nid);
1379 
1380 	if (ofs == 0)
1381 		inc_valid_inode_count(sbi);
1382 	return folio;
1383 fail:
1384 	clear_node_folio_dirty(folio);
1385 	f2fs_folio_put(folio, true);
1386 	return ERR_PTR(err);
1387 }
1388 
1389 /*
1390  * Caller should do after getting the following values.
1391  * 0: f2fs_folio_put(folio, false)
1392  * LOCKED_PAGE or error: f2fs_folio_put(folio, true)
1393  */
read_node_folio(struct folio * folio,blk_opf_t op_flags)1394 static int read_node_folio(struct folio *folio, blk_opf_t op_flags)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1397 	struct node_info ni;
1398 	struct f2fs_io_info fio = {
1399 		.sbi = sbi,
1400 		.type = NODE,
1401 		.op = REQ_OP_READ,
1402 		.op_flags = op_flags,
1403 		.page = &folio->page,
1404 		.encrypted_page = NULL,
1405 	};
1406 	int err;
1407 
1408 	if (folio_test_uptodate(folio)) {
1409 		if (!f2fs_inode_chksum_verify(sbi, folio)) {
1410 			folio_clear_uptodate(folio);
1411 			return -EFSBADCRC;
1412 		}
1413 		return LOCKED_PAGE;
1414 	}
1415 
1416 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1417 	if (err)
1418 		return err;
1419 
1420 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1421 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1422 		folio_clear_uptodate(folio);
1423 		return -ENOENT;
1424 	}
1425 
1426 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1427 
1428 	err = f2fs_submit_page_bio(&fio);
1429 
1430 	if (!err)
1431 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1432 
1433 	return err;
1434 }
1435 
1436 /*
1437  * Readahead a node page
1438  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1439 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1440 {
1441 	struct folio *afolio;
1442 	int err;
1443 
1444 	if (!nid)
1445 		return;
1446 	if (f2fs_check_nid_range(sbi, nid))
1447 		return;
1448 
1449 	afolio = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1450 	if (afolio)
1451 		return;
1452 
1453 	afolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1454 	if (IS_ERR(afolio))
1455 		return;
1456 
1457 	err = read_node_folio(afolio, REQ_RAHEAD);
1458 	f2fs_folio_put(afolio, err ? true : false);
1459 }
1460 
sanity_check_node_footer(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t nid,enum node_type ntype)1461 static int sanity_check_node_footer(struct f2fs_sb_info *sbi,
1462 					struct folio *folio, pgoff_t nid,
1463 					enum node_type ntype)
1464 {
1465 	struct page *page = &folio->page;
1466 
1467 	if (unlikely(nid != nid_of_node(page) ||
1468 		(ntype == NODE_TYPE_INODE && !IS_INODE(page)) ||
1469 		(ntype == NODE_TYPE_XATTR &&
1470 		!f2fs_has_xattr_block(ofs_of_node(page))) ||
1471 		time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) {
1472 		f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, "
1473 			  "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474 			  ntype, nid, nid_of_node(page), ino_of_node(page),
1475 			  ofs_of_node(page), cpver_of_node(page),
1476 			  next_blkaddr_of_node(folio));
1477 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1478 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479 		return -EFSCORRUPTED;
1480 	}
1481 	return 0;
1482 }
1483 
__get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid,struct folio * parent,int start,enum node_type ntype)1484 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1485 		struct folio *parent, int start, enum node_type ntype)
1486 {
1487 	struct folio *folio;
1488 	int err;
1489 
1490 	if (!nid)
1491 		return ERR_PTR(-ENOENT);
1492 	if (f2fs_check_nid_range(sbi, nid))
1493 		return ERR_PTR(-EINVAL);
1494 repeat:
1495 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1496 	if (IS_ERR(folio))
1497 		return folio;
1498 
1499 	err = read_node_folio(folio, 0);
1500 	if (err < 0)
1501 		goto out_put_err;
1502 	if (err == LOCKED_PAGE)
1503 		goto page_hit;
1504 
1505 	if (parent)
1506 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1507 
1508 	folio_lock(folio);
1509 
1510 	if (unlikely(!is_node_folio(folio))) {
1511 		f2fs_folio_put(folio, true);
1512 		goto repeat;
1513 	}
1514 
1515 	if (unlikely(!folio_test_uptodate(folio))) {
1516 		err = -EIO;
1517 		goto out_err;
1518 	}
1519 
1520 	if (!f2fs_inode_chksum_verify(sbi, folio)) {
1521 		err = -EFSBADCRC;
1522 		goto out_err;
1523 	}
1524 page_hit:
1525 	err = sanity_check_node_footer(sbi, folio, nid, ntype);
1526 	if (!err)
1527 		return folio;
1528 out_err:
1529 	folio_clear_uptodate(folio);
1530 out_put_err:
1531 	/* ENOENT comes from read_node_folio which is not an error. */
1532 	if (err != -ENOENT)
1533 		f2fs_handle_page_eio(sbi, folio, NODE);
1534 	f2fs_folio_put(folio, true);
1535 	return ERR_PTR(err);
1536 }
1537 
f2fs_get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid)1538 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid)
1539 {
1540 	return __get_node_folio(sbi, nid, NULL, 0, NODE_TYPE_REGULAR);
1541 }
1542 
f2fs_get_inode_folio(struct f2fs_sb_info * sbi,pgoff_t ino)1543 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino)
1544 {
1545 	return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE);
1546 }
1547 
f2fs_get_xnode_folio(struct f2fs_sb_info * sbi,pgoff_t xnid)1548 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid)
1549 {
1550 	return __get_node_folio(sbi, xnid, NULL, 0, NODE_TYPE_XATTR);
1551 }
1552 
f2fs_get_node_folio_ra(struct folio * parent,int start)1553 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start)
1554 {
1555 	struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
1556 	nid_t nid = get_nid(&parent->page, start, false);
1557 
1558 	return __get_node_folio(sbi, nid, parent, start, NODE_TYPE_REGULAR);
1559 }
1560 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1561 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1562 {
1563 	struct inode *inode;
1564 	struct folio *folio;
1565 	int ret;
1566 
1567 	/* should flush inline_data before evict_inode */
1568 	inode = ilookup(sbi->sb, ino);
1569 	if (!inode)
1570 		return;
1571 
1572 	folio = f2fs_filemap_get_folio(inode->i_mapping, 0,
1573 					FGP_LOCK|FGP_NOWAIT, 0);
1574 	if (IS_ERR(folio))
1575 		goto iput_out;
1576 
1577 	if (!folio_test_uptodate(folio))
1578 		goto folio_out;
1579 
1580 	if (!folio_test_dirty(folio))
1581 		goto folio_out;
1582 
1583 	if (!folio_clear_dirty_for_io(folio))
1584 		goto folio_out;
1585 
1586 	ret = f2fs_write_inline_data(inode, folio);
1587 	inode_dec_dirty_pages(inode);
1588 	f2fs_remove_dirty_inode(inode);
1589 	if (ret)
1590 		folio_mark_dirty(folio);
1591 folio_out:
1592 	f2fs_folio_put(folio, true);
1593 iput_out:
1594 	iput(inode);
1595 }
1596 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1597 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1598 {
1599 	pgoff_t index;
1600 	struct folio_batch fbatch;
1601 	struct folio *last_folio = NULL;
1602 	int nr_folios;
1603 
1604 	folio_batch_init(&fbatch);
1605 	index = 0;
1606 
1607 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1608 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1609 					&fbatch))) {
1610 		int i;
1611 
1612 		for (i = 0; i < nr_folios; i++) {
1613 			struct folio *folio = fbatch.folios[i];
1614 
1615 			if (unlikely(f2fs_cp_error(sbi))) {
1616 				f2fs_folio_put(last_folio, false);
1617 				folio_batch_release(&fbatch);
1618 				return ERR_PTR(-EIO);
1619 			}
1620 
1621 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1622 				continue;
1623 			if (ino_of_node(&folio->page) != ino)
1624 				continue;
1625 
1626 			folio_lock(folio);
1627 
1628 			if (unlikely(!is_node_folio(folio))) {
1629 continue_unlock:
1630 				folio_unlock(folio);
1631 				continue;
1632 			}
1633 			if (ino_of_node(&folio->page) != ino)
1634 				goto continue_unlock;
1635 
1636 			if (!folio_test_dirty(folio)) {
1637 				/* someone wrote it for us */
1638 				goto continue_unlock;
1639 			}
1640 
1641 			if (last_folio)
1642 				f2fs_folio_put(last_folio, false);
1643 
1644 			folio_get(folio);
1645 			last_folio = folio;
1646 			folio_unlock(folio);
1647 		}
1648 		folio_batch_release(&fbatch);
1649 		cond_resched();
1650 	}
1651 	return last_folio;
1652 }
1653 
__write_node_folio(struct folio * folio,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1654 static bool __write_node_folio(struct folio *folio, bool atomic, bool *submitted,
1655 				struct writeback_control *wbc, bool do_balance,
1656 				enum iostat_type io_type, unsigned int *seq_id)
1657 {
1658 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1659 	nid_t nid;
1660 	struct node_info ni;
1661 	struct f2fs_io_info fio = {
1662 		.sbi = sbi,
1663 		.ino = ino_of_node(&folio->page),
1664 		.type = NODE,
1665 		.op = REQ_OP_WRITE,
1666 		.op_flags = wbc_to_write_flags(wbc),
1667 		.page = &folio->page,
1668 		.encrypted_page = NULL,
1669 		.submitted = 0,
1670 		.io_type = io_type,
1671 		.io_wbc = wbc,
1672 	};
1673 	unsigned int seq;
1674 
1675 	trace_f2fs_writepage(folio, NODE);
1676 
1677 	if (unlikely(f2fs_cp_error(sbi))) {
1678 		/* keep node pages in remount-ro mode */
1679 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1680 			goto redirty_out;
1681 		folio_clear_uptodate(folio);
1682 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1683 		folio_unlock(folio);
1684 		return true;
1685 	}
1686 
1687 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1688 		goto redirty_out;
1689 
1690 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1691 			wbc->sync_mode == WB_SYNC_NONE &&
1692 			IS_DNODE(&folio->page) && is_cold_node(&folio->page))
1693 		goto redirty_out;
1694 
1695 	/* get old block addr of this node page */
1696 	nid = nid_of_node(&folio->page);
1697 	f2fs_bug_on(sbi, folio->index != nid);
1698 
1699 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1700 		goto redirty_out;
1701 
1702 	f2fs_down_read(&sbi->node_write);
1703 
1704 	/* This page is already truncated */
1705 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1706 		folio_clear_uptodate(folio);
1707 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1708 		f2fs_up_read(&sbi->node_write);
1709 		folio_unlock(folio);
1710 		return true;
1711 	}
1712 
1713 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1714 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1715 					DATA_GENERIC_ENHANCE)) {
1716 		f2fs_up_read(&sbi->node_write);
1717 		goto redirty_out;
1718 	}
1719 
1720 	if (atomic && !test_opt(sbi, NOBARRIER))
1721 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1722 
1723 	/* should add to global list before clearing PAGECACHE status */
1724 	if (f2fs_in_warm_node_list(sbi, folio)) {
1725 		seq = f2fs_add_fsync_node_entry(sbi, folio);
1726 		if (seq_id)
1727 			*seq_id = seq;
1728 	}
1729 
1730 	folio_start_writeback(folio);
1731 
1732 	fio.old_blkaddr = ni.blk_addr;
1733 	f2fs_do_write_node_page(nid, &fio);
1734 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(&folio->page));
1735 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1736 	f2fs_up_read(&sbi->node_write);
1737 
1738 	folio_unlock(folio);
1739 
1740 	if (unlikely(f2fs_cp_error(sbi))) {
1741 		f2fs_submit_merged_write(sbi, NODE);
1742 		submitted = NULL;
1743 	}
1744 	if (submitted)
1745 		*submitted = fio.submitted;
1746 
1747 	if (do_balance)
1748 		f2fs_balance_fs(sbi, false);
1749 	return true;
1750 
1751 redirty_out:
1752 	folio_redirty_for_writepage(wbc, folio);
1753 	folio_unlock(folio);
1754 	return false;
1755 }
1756 
f2fs_move_node_folio(struct folio * node_folio,int gc_type)1757 int f2fs_move_node_folio(struct folio *node_folio, int gc_type)
1758 {
1759 	int err = 0;
1760 
1761 	if (gc_type == FG_GC) {
1762 		struct writeback_control wbc = {
1763 			.sync_mode = WB_SYNC_ALL,
1764 			.nr_to_write = 1,
1765 		};
1766 
1767 		f2fs_folio_wait_writeback(node_folio, NODE, true, true);
1768 
1769 		folio_mark_dirty(node_folio);
1770 
1771 		if (!folio_clear_dirty_for_io(node_folio)) {
1772 			err = -EAGAIN;
1773 			goto out_page;
1774 		}
1775 
1776 		if (!__write_node_folio(node_folio, false, NULL,
1777 					&wbc, false, FS_GC_NODE_IO, NULL))
1778 			err = -EAGAIN;
1779 		goto release_page;
1780 	} else {
1781 		/* set page dirty and write it */
1782 		if (!folio_test_writeback(node_folio))
1783 			folio_mark_dirty(node_folio);
1784 	}
1785 out_page:
1786 	folio_unlock(node_folio);
1787 release_page:
1788 	f2fs_folio_put(node_folio, false);
1789 	return err;
1790 }
1791 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1792 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1793 			struct writeback_control *wbc, bool atomic,
1794 			unsigned int *seq_id)
1795 {
1796 	pgoff_t index;
1797 	struct folio_batch fbatch;
1798 	int ret = 0;
1799 	struct folio *last_folio = NULL;
1800 	bool marked = false;
1801 	nid_t ino = inode->i_ino;
1802 	int nr_folios;
1803 	int nwritten = 0;
1804 
1805 	if (atomic) {
1806 		last_folio = last_fsync_dnode(sbi, ino);
1807 		if (IS_ERR_OR_NULL(last_folio))
1808 			return PTR_ERR_OR_ZERO(last_folio);
1809 	}
1810 retry:
1811 	folio_batch_init(&fbatch);
1812 	index = 0;
1813 
1814 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1815 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1816 					&fbatch))) {
1817 		int i;
1818 
1819 		for (i = 0; i < nr_folios; i++) {
1820 			struct folio *folio = fbatch.folios[i];
1821 			bool submitted = false;
1822 
1823 			if (unlikely(f2fs_cp_error(sbi))) {
1824 				f2fs_folio_put(last_folio, false);
1825 				folio_batch_release(&fbatch);
1826 				ret = -EIO;
1827 				goto out;
1828 			}
1829 
1830 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1831 				continue;
1832 			if (ino_of_node(&folio->page) != ino)
1833 				continue;
1834 
1835 			folio_lock(folio);
1836 
1837 			if (unlikely(!is_node_folio(folio))) {
1838 continue_unlock:
1839 				folio_unlock(folio);
1840 				continue;
1841 			}
1842 			if (ino_of_node(&folio->page) != ino)
1843 				goto continue_unlock;
1844 
1845 			if (!folio_test_dirty(folio) && folio != last_folio) {
1846 				/* someone wrote it for us */
1847 				goto continue_unlock;
1848 			}
1849 
1850 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1851 
1852 			set_fsync_mark(&folio->page, 0);
1853 			set_dentry_mark(&folio->page, 0);
1854 
1855 			if (!atomic || folio == last_folio) {
1856 				set_fsync_mark(&folio->page, 1);
1857 				percpu_counter_inc(&sbi->rf_node_block_count);
1858 				if (IS_INODE(&folio->page)) {
1859 					if (is_inode_flag_set(inode,
1860 								FI_DIRTY_INODE))
1861 						f2fs_update_inode(inode, folio);
1862 					set_dentry_mark(&folio->page,
1863 						f2fs_need_dentry_mark(sbi, ino));
1864 				}
1865 				/* may be written by other thread */
1866 				if (!folio_test_dirty(folio))
1867 					folio_mark_dirty(folio);
1868 			}
1869 
1870 			if (!folio_clear_dirty_for_io(folio))
1871 				goto continue_unlock;
1872 
1873 			if (!__write_node_folio(folio, atomic &&
1874 						folio == last_folio,
1875 						&submitted, wbc, true,
1876 						FS_NODE_IO, seq_id)) {
1877 				f2fs_folio_put(last_folio, false);
1878 				folio_batch_release(&fbatch);
1879 				ret = -EIO;
1880 				goto out;
1881 			}
1882 			if (submitted)
1883 				nwritten++;
1884 
1885 			if (folio == last_folio) {
1886 				f2fs_folio_put(folio, false);
1887 				folio_batch_release(&fbatch);
1888 				marked = true;
1889 				goto out;
1890 			}
1891 		}
1892 		folio_batch_release(&fbatch);
1893 		cond_resched();
1894 	}
1895 	if (atomic && !marked) {
1896 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1897 			   ino, last_folio->index);
1898 		folio_lock(last_folio);
1899 		f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1900 		folio_mark_dirty(last_folio);
1901 		folio_unlock(last_folio);
1902 		goto retry;
1903 	}
1904 out:
1905 	if (nwritten)
1906 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1907 	return ret;
1908 }
1909 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1910 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1911 {
1912 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1913 	bool clean;
1914 
1915 	if (inode->i_ino != ino)
1916 		return 0;
1917 
1918 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1919 		return 0;
1920 
1921 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1922 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1923 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1924 
1925 	if (clean)
1926 		return 0;
1927 
1928 	inode = igrab(inode);
1929 	if (!inode)
1930 		return 0;
1931 	return 1;
1932 }
1933 
flush_dirty_inode(struct folio * folio)1934 static bool flush_dirty_inode(struct folio *folio)
1935 {
1936 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1937 	struct inode *inode;
1938 	nid_t ino = ino_of_node(&folio->page);
1939 
1940 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1941 	if (!inode)
1942 		return false;
1943 
1944 	f2fs_update_inode(inode, folio);
1945 	folio_unlock(folio);
1946 
1947 	iput(inode);
1948 	return true;
1949 }
1950 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1951 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1952 {
1953 	pgoff_t index = 0;
1954 	struct folio_batch fbatch;
1955 	int nr_folios;
1956 
1957 	folio_batch_init(&fbatch);
1958 
1959 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1960 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1961 					&fbatch))) {
1962 		int i;
1963 
1964 		for (i = 0; i < nr_folios; i++) {
1965 			struct folio *folio = fbatch.folios[i];
1966 
1967 			if (!IS_INODE(&folio->page))
1968 				continue;
1969 
1970 			folio_lock(folio);
1971 
1972 			if (unlikely(!is_node_folio(folio)))
1973 				goto unlock;
1974 			if (!folio_test_dirty(folio))
1975 				goto unlock;
1976 
1977 			/* flush inline_data, if it's async context. */
1978 			if (page_private_inline(&folio->page)) {
1979 				clear_page_private_inline(&folio->page);
1980 				folio_unlock(folio);
1981 				flush_inline_data(sbi, ino_of_node(&folio->page));
1982 				continue;
1983 			}
1984 unlock:
1985 			folio_unlock(folio);
1986 		}
1987 		folio_batch_release(&fbatch);
1988 		cond_resched();
1989 	}
1990 }
1991 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1992 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1993 				struct writeback_control *wbc,
1994 				bool do_balance, enum iostat_type io_type)
1995 {
1996 	pgoff_t index;
1997 	struct folio_batch fbatch;
1998 	int step = 0;
1999 	int nwritten = 0;
2000 	int ret = 0;
2001 	int nr_folios, done = 0;
2002 
2003 	folio_batch_init(&fbatch);
2004 
2005 next_step:
2006 	index = 0;
2007 
2008 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2009 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2010 				&fbatch))) {
2011 		int i;
2012 
2013 		for (i = 0; i < nr_folios; i++) {
2014 			struct folio *folio = fbatch.folios[i];
2015 			bool submitted = false;
2016 
2017 			/* give a priority to WB_SYNC threads */
2018 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2019 					wbc->sync_mode == WB_SYNC_NONE) {
2020 				done = 1;
2021 				break;
2022 			}
2023 
2024 			/*
2025 			 * flushing sequence with step:
2026 			 * 0. indirect nodes
2027 			 * 1. dentry dnodes
2028 			 * 2. file dnodes
2029 			 */
2030 			if (step == 0 && IS_DNODE(&folio->page))
2031 				continue;
2032 			if (step == 1 && (!IS_DNODE(&folio->page) ||
2033 						is_cold_node(&folio->page)))
2034 				continue;
2035 			if (step == 2 && (!IS_DNODE(&folio->page) ||
2036 						!is_cold_node(&folio->page)))
2037 				continue;
2038 lock_node:
2039 			if (wbc->sync_mode == WB_SYNC_ALL)
2040 				folio_lock(folio);
2041 			else if (!folio_trylock(folio))
2042 				continue;
2043 
2044 			if (unlikely(!is_node_folio(folio))) {
2045 continue_unlock:
2046 				folio_unlock(folio);
2047 				continue;
2048 			}
2049 
2050 			if (!folio_test_dirty(folio)) {
2051 				/* someone wrote it for us */
2052 				goto continue_unlock;
2053 			}
2054 
2055 			/* flush inline_data/inode, if it's async context. */
2056 			if (!do_balance)
2057 				goto write_node;
2058 
2059 			/* flush inline_data */
2060 			if (page_private_inline(&folio->page)) {
2061 				clear_page_private_inline(&folio->page);
2062 				folio_unlock(folio);
2063 				flush_inline_data(sbi, ino_of_node(&folio->page));
2064 				goto lock_node;
2065 			}
2066 
2067 			/* flush dirty inode */
2068 			if (IS_INODE(&folio->page) && flush_dirty_inode(folio))
2069 				goto lock_node;
2070 write_node:
2071 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2072 
2073 			if (!folio_clear_dirty_for_io(folio))
2074 				goto continue_unlock;
2075 
2076 			set_fsync_mark(&folio->page, 0);
2077 			set_dentry_mark(&folio->page, 0);
2078 
2079 			if (!__write_node_folio(folio, false, &submitted,
2080 					wbc, do_balance, io_type, NULL)) {
2081 				folio_batch_release(&fbatch);
2082 				ret = -EIO;
2083 				goto out;
2084 			}
2085 			if (submitted)
2086 				nwritten++;
2087 
2088 			if (--wbc->nr_to_write == 0)
2089 				break;
2090 		}
2091 		folio_batch_release(&fbatch);
2092 		cond_resched();
2093 
2094 		if (wbc->nr_to_write == 0) {
2095 			step = 2;
2096 			break;
2097 		}
2098 	}
2099 
2100 	if (step < 2) {
2101 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2102 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2103 			goto out;
2104 		step++;
2105 		goto next_step;
2106 	}
2107 out:
2108 	if (nwritten)
2109 		f2fs_submit_merged_write(sbi, NODE);
2110 
2111 	if (unlikely(f2fs_cp_error(sbi)))
2112 		return -EIO;
2113 	return ret;
2114 }
2115 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2116 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2117 						unsigned int seq_id)
2118 {
2119 	struct fsync_node_entry *fn;
2120 	struct list_head *head = &sbi->fsync_node_list;
2121 	unsigned long flags;
2122 	unsigned int cur_seq_id = 0;
2123 
2124 	while (seq_id && cur_seq_id < seq_id) {
2125 		struct folio *folio;
2126 
2127 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2128 		if (list_empty(head)) {
2129 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2130 			break;
2131 		}
2132 		fn = list_first_entry(head, struct fsync_node_entry, list);
2133 		if (fn->seq_id > seq_id) {
2134 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2135 			break;
2136 		}
2137 		cur_seq_id = fn->seq_id;
2138 		folio = fn->folio;
2139 		folio_get(folio);
2140 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2141 
2142 		f2fs_folio_wait_writeback(folio, NODE, true, false);
2143 
2144 		folio_put(folio);
2145 	}
2146 
2147 	return filemap_check_errors(NODE_MAPPING(sbi));
2148 }
2149 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2150 static int f2fs_write_node_pages(struct address_space *mapping,
2151 			    struct writeback_control *wbc)
2152 {
2153 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2154 	struct blk_plug plug;
2155 	long diff;
2156 
2157 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2158 		goto skip_write;
2159 
2160 	/* balancing f2fs's metadata in background */
2161 	f2fs_balance_fs_bg(sbi, true);
2162 
2163 	/* collect a number of dirty node pages and write together */
2164 	if (wbc->sync_mode != WB_SYNC_ALL &&
2165 			get_pages(sbi, F2FS_DIRTY_NODES) <
2166 					nr_pages_to_skip(sbi, NODE))
2167 		goto skip_write;
2168 
2169 	if (wbc->sync_mode == WB_SYNC_ALL)
2170 		atomic_inc(&sbi->wb_sync_req[NODE]);
2171 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2172 		/* to avoid potential deadlock */
2173 		if (current->plug)
2174 			blk_finish_plug(current->plug);
2175 		goto skip_write;
2176 	}
2177 
2178 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2179 
2180 	diff = nr_pages_to_write(sbi, NODE, wbc);
2181 	blk_start_plug(&plug);
2182 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2183 	blk_finish_plug(&plug);
2184 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2185 
2186 	if (wbc->sync_mode == WB_SYNC_ALL)
2187 		atomic_dec(&sbi->wb_sync_req[NODE]);
2188 	return 0;
2189 
2190 skip_write:
2191 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2192 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2193 	return 0;
2194 }
2195 
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2196 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2197 		struct folio *folio)
2198 {
2199 	trace_f2fs_set_page_dirty(folio, NODE);
2200 
2201 	if (!folio_test_uptodate(folio))
2202 		folio_mark_uptodate(folio);
2203 #ifdef CONFIG_F2FS_CHECK_FS
2204 	if (IS_INODE(&folio->page))
2205 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2206 #endif
2207 	if (filemap_dirty_folio(mapping, folio)) {
2208 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2209 		set_page_private_reference(&folio->page);
2210 		return true;
2211 	}
2212 	return false;
2213 }
2214 
2215 /*
2216  * Structure of the f2fs node operations
2217  */
2218 const struct address_space_operations f2fs_node_aops = {
2219 	.writepages	= f2fs_write_node_pages,
2220 	.dirty_folio	= f2fs_dirty_node_folio,
2221 	.invalidate_folio = f2fs_invalidate_folio,
2222 	.release_folio	= f2fs_release_folio,
2223 	.migrate_folio	= filemap_migrate_folio,
2224 };
2225 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2226 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2227 						nid_t n)
2228 {
2229 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2230 }
2231 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2232 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2233 				struct free_nid *i)
2234 {
2235 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2236 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2237 
2238 	if (err)
2239 		return err;
2240 
2241 	nm_i->nid_cnt[FREE_NID]++;
2242 	list_add_tail(&i->list, &nm_i->free_nid_list);
2243 	return 0;
2244 }
2245 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2246 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2247 			struct free_nid *i, enum nid_state state)
2248 {
2249 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2250 
2251 	f2fs_bug_on(sbi, state != i->state);
2252 	nm_i->nid_cnt[state]--;
2253 	if (state == FREE_NID)
2254 		list_del(&i->list);
2255 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2256 }
2257 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2258 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2259 			enum nid_state org_state, enum nid_state dst_state)
2260 {
2261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2262 
2263 	f2fs_bug_on(sbi, org_state != i->state);
2264 	i->state = dst_state;
2265 	nm_i->nid_cnt[org_state]--;
2266 	nm_i->nid_cnt[dst_state]++;
2267 
2268 	switch (dst_state) {
2269 	case PREALLOC_NID:
2270 		list_del(&i->list);
2271 		break;
2272 	case FREE_NID:
2273 		list_add_tail(&i->list, &nm_i->free_nid_list);
2274 		break;
2275 	default:
2276 		BUG_ON(1);
2277 	}
2278 }
2279 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2280 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2281 							bool set, bool build)
2282 {
2283 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2284 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2285 	unsigned int nid_ofs = nid - START_NID(nid);
2286 
2287 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2288 		return;
2289 
2290 	if (set) {
2291 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2292 			return;
2293 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2294 		nm_i->free_nid_count[nat_ofs]++;
2295 	} else {
2296 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2297 			return;
2298 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2299 		if (!build)
2300 			nm_i->free_nid_count[nat_ofs]--;
2301 	}
2302 }
2303 
2304 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2305 static bool add_free_nid(struct f2fs_sb_info *sbi,
2306 				nid_t nid, bool build, bool update)
2307 {
2308 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2309 	struct free_nid *i, *e;
2310 	struct nat_entry *ne;
2311 	int err;
2312 	bool ret = false;
2313 
2314 	/* 0 nid should not be used */
2315 	if (unlikely(nid == 0))
2316 		return false;
2317 
2318 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2319 		return false;
2320 
2321 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2322 	i->nid = nid;
2323 	i->state = FREE_NID;
2324 
2325 	err = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2326 	f2fs_bug_on(sbi, err);
2327 
2328 	err = -EINVAL;
2329 
2330 	spin_lock(&nm_i->nid_list_lock);
2331 
2332 	if (build) {
2333 		/*
2334 		 *   Thread A             Thread B
2335 		 *  - f2fs_create
2336 		 *   - f2fs_new_inode
2337 		 *    - f2fs_alloc_nid
2338 		 *     - __insert_nid_to_list(PREALLOC_NID)
2339 		 *                     - f2fs_balance_fs_bg
2340 		 *                      - f2fs_build_free_nids
2341 		 *                       - __f2fs_build_free_nids
2342 		 *                        - scan_nat_page
2343 		 *                         - add_free_nid
2344 		 *                          - __lookup_nat_cache
2345 		 *  - f2fs_add_link
2346 		 *   - f2fs_init_inode_metadata
2347 		 *    - f2fs_new_inode_folio
2348 		 *     - f2fs_new_node_folio
2349 		 *      - set_node_addr
2350 		 *  - f2fs_alloc_nid_done
2351 		 *   - __remove_nid_from_list(PREALLOC_NID)
2352 		 *                         - __insert_nid_to_list(FREE_NID)
2353 		 */
2354 		ne = __lookup_nat_cache(nm_i, nid);
2355 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2356 				nat_get_blkaddr(ne) != NULL_ADDR))
2357 			goto err_out;
2358 
2359 		e = __lookup_free_nid_list(nm_i, nid);
2360 		if (e) {
2361 			if (e->state == FREE_NID)
2362 				ret = true;
2363 			goto err_out;
2364 		}
2365 	}
2366 	ret = true;
2367 	err = __insert_free_nid(sbi, i);
2368 err_out:
2369 	if (update) {
2370 		update_free_nid_bitmap(sbi, nid, ret, build);
2371 		if (!build)
2372 			nm_i->available_nids++;
2373 	}
2374 	spin_unlock(&nm_i->nid_list_lock);
2375 	radix_tree_preload_end();
2376 
2377 	if (err)
2378 		kmem_cache_free(free_nid_slab, i);
2379 	return ret;
2380 }
2381 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2382 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2383 {
2384 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 	struct free_nid *i;
2386 	bool need_free = false;
2387 
2388 	spin_lock(&nm_i->nid_list_lock);
2389 	i = __lookup_free_nid_list(nm_i, nid);
2390 	if (i && i->state == FREE_NID) {
2391 		__remove_free_nid(sbi, i, FREE_NID);
2392 		need_free = true;
2393 	}
2394 	spin_unlock(&nm_i->nid_list_lock);
2395 
2396 	if (need_free)
2397 		kmem_cache_free(free_nid_slab, i);
2398 }
2399 
scan_nat_page(struct f2fs_sb_info * sbi,struct f2fs_nat_block * nat_blk,nid_t start_nid)2400 static int scan_nat_page(struct f2fs_sb_info *sbi,
2401 			struct f2fs_nat_block *nat_blk, nid_t start_nid)
2402 {
2403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2404 	block_t blk_addr;
2405 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2406 	int i;
2407 
2408 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2409 
2410 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2411 
2412 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2413 		if (unlikely(start_nid >= nm_i->max_nid))
2414 			break;
2415 
2416 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2417 
2418 		if (blk_addr == NEW_ADDR)
2419 			return -EFSCORRUPTED;
2420 
2421 		if (blk_addr == NULL_ADDR) {
2422 			add_free_nid(sbi, start_nid, true, true);
2423 		} else {
2424 			spin_lock(&NM_I(sbi)->nid_list_lock);
2425 			update_free_nid_bitmap(sbi, start_nid, false, true);
2426 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2427 		}
2428 	}
2429 
2430 	return 0;
2431 }
2432 
scan_curseg_cache(struct f2fs_sb_info * sbi)2433 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2434 {
2435 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2436 	struct f2fs_journal *journal = curseg->journal;
2437 	int i;
2438 
2439 	down_read(&curseg->journal_rwsem);
2440 	for (i = 0; i < nats_in_cursum(journal); i++) {
2441 		block_t addr;
2442 		nid_t nid;
2443 
2444 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2445 		nid = le32_to_cpu(nid_in_journal(journal, i));
2446 		if (addr == NULL_ADDR)
2447 			add_free_nid(sbi, nid, true, false);
2448 		else
2449 			remove_free_nid(sbi, nid);
2450 	}
2451 	up_read(&curseg->journal_rwsem);
2452 }
2453 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2454 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2455 {
2456 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2457 	unsigned int i, idx;
2458 	nid_t nid;
2459 
2460 	f2fs_down_read(&nm_i->nat_tree_lock);
2461 
2462 	for (i = 0; i < nm_i->nat_blocks; i++) {
2463 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2464 			continue;
2465 		if (!nm_i->free_nid_count[i])
2466 			continue;
2467 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2468 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2469 						NAT_ENTRY_PER_BLOCK, idx);
2470 			if (idx >= NAT_ENTRY_PER_BLOCK)
2471 				break;
2472 
2473 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2474 			add_free_nid(sbi, nid, true, false);
2475 
2476 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2477 				goto out;
2478 		}
2479 	}
2480 out:
2481 	scan_curseg_cache(sbi);
2482 
2483 	f2fs_up_read(&nm_i->nat_tree_lock);
2484 }
2485 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2486 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2487 						bool sync, bool mount)
2488 {
2489 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2490 	int i = 0, ret;
2491 	nid_t nid = nm_i->next_scan_nid;
2492 
2493 	if (unlikely(nid >= nm_i->max_nid))
2494 		nid = 0;
2495 
2496 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2497 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2498 
2499 	/* Enough entries */
2500 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2501 		return 0;
2502 
2503 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2504 		return 0;
2505 
2506 	if (!mount) {
2507 		/* try to find free nids in free_nid_bitmap */
2508 		scan_free_nid_bits(sbi);
2509 
2510 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2511 			return 0;
2512 	}
2513 
2514 	/* readahead nat pages to be scanned */
2515 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2516 							META_NAT, true);
2517 
2518 	f2fs_down_read(&nm_i->nat_tree_lock);
2519 
2520 	while (1) {
2521 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2522 						nm_i->nat_block_bitmap)) {
2523 			struct folio *folio = get_current_nat_folio(sbi, nid);
2524 
2525 			if (IS_ERR(folio)) {
2526 				ret = PTR_ERR(folio);
2527 			} else {
2528 				ret = scan_nat_page(sbi, folio_address(folio),
2529 						nid);
2530 				f2fs_folio_put(folio, true);
2531 			}
2532 
2533 			if (ret) {
2534 				f2fs_up_read(&nm_i->nat_tree_lock);
2535 
2536 				if (ret == -EFSCORRUPTED) {
2537 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2538 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2539 					f2fs_handle_error(sbi,
2540 						ERROR_INCONSISTENT_NAT);
2541 				}
2542 
2543 				return ret;
2544 			}
2545 		}
2546 
2547 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2548 		if (unlikely(nid >= nm_i->max_nid))
2549 			nid = 0;
2550 
2551 		if (++i >= FREE_NID_PAGES)
2552 			break;
2553 	}
2554 
2555 	/* go to the next free nat pages to find free nids abundantly */
2556 	nm_i->next_scan_nid = nid;
2557 
2558 	/* find free nids from current sum_pages */
2559 	scan_curseg_cache(sbi);
2560 
2561 	f2fs_up_read(&nm_i->nat_tree_lock);
2562 
2563 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2564 					nm_i->ra_nid_pages, META_NAT, false);
2565 
2566 	return 0;
2567 }
2568 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2569 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2570 {
2571 	int ret;
2572 
2573 	mutex_lock(&NM_I(sbi)->build_lock);
2574 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2575 	mutex_unlock(&NM_I(sbi)->build_lock);
2576 
2577 	return ret;
2578 }
2579 
2580 /*
2581  * If this function returns success, caller can obtain a new nid
2582  * from second parameter of this function.
2583  * The returned nid could be used ino as well as nid when inode is created.
2584  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2585 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2586 {
2587 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2588 	struct free_nid *i = NULL;
2589 retry:
2590 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2591 		return false;
2592 
2593 	spin_lock(&nm_i->nid_list_lock);
2594 
2595 	if (unlikely(nm_i->available_nids == 0)) {
2596 		spin_unlock(&nm_i->nid_list_lock);
2597 		return false;
2598 	}
2599 
2600 	/* We should not use stale free nids created by f2fs_build_free_nids */
2601 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2602 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2603 		i = list_first_entry(&nm_i->free_nid_list,
2604 					struct free_nid, list);
2605 		*nid = i->nid;
2606 
2607 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2608 		nm_i->available_nids--;
2609 
2610 		update_free_nid_bitmap(sbi, *nid, false, false);
2611 
2612 		spin_unlock(&nm_i->nid_list_lock);
2613 		return true;
2614 	}
2615 	spin_unlock(&nm_i->nid_list_lock);
2616 
2617 	/* Let's scan nat pages and its caches to get free nids */
2618 	if (!f2fs_build_free_nids(sbi, true, false))
2619 		goto retry;
2620 	return false;
2621 }
2622 
2623 /*
2624  * f2fs_alloc_nid() should be called prior to this function.
2625  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2626 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2627 {
2628 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2629 	struct free_nid *i;
2630 
2631 	spin_lock(&nm_i->nid_list_lock);
2632 	i = __lookup_free_nid_list(nm_i, nid);
2633 	f2fs_bug_on(sbi, !i);
2634 	__remove_free_nid(sbi, i, PREALLOC_NID);
2635 	spin_unlock(&nm_i->nid_list_lock);
2636 
2637 	kmem_cache_free(free_nid_slab, i);
2638 }
2639 
2640 /*
2641  * f2fs_alloc_nid() should be called prior to this function.
2642  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2643 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2644 {
2645 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2646 	struct free_nid *i;
2647 	bool need_free = false;
2648 
2649 	if (!nid)
2650 		return;
2651 
2652 	spin_lock(&nm_i->nid_list_lock);
2653 	i = __lookup_free_nid_list(nm_i, nid);
2654 	f2fs_bug_on(sbi, !i);
2655 
2656 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2657 		__remove_free_nid(sbi, i, PREALLOC_NID);
2658 		need_free = true;
2659 	} else {
2660 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2661 	}
2662 
2663 	nm_i->available_nids++;
2664 
2665 	update_free_nid_bitmap(sbi, nid, true, false);
2666 
2667 	spin_unlock(&nm_i->nid_list_lock);
2668 
2669 	if (need_free)
2670 		kmem_cache_free(free_nid_slab, i);
2671 }
2672 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2673 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2674 {
2675 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2676 	int nr = nr_shrink;
2677 
2678 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2679 		return 0;
2680 
2681 	if (!mutex_trylock(&nm_i->build_lock))
2682 		return 0;
2683 
2684 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2685 		struct free_nid *i, *next;
2686 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2687 
2688 		spin_lock(&nm_i->nid_list_lock);
2689 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2690 			if (!nr_shrink || !batch ||
2691 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2692 				break;
2693 			__remove_free_nid(sbi, i, FREE_NID);
2694 			kmem_cache_free(free_nid_slab, i);
2695 			nr_shrink--;
2696 			batch--;
2697 		}
2698 		spin_unlock(&nm_i->nid_list_lock);
2699 	}
2700 
2701 	mutex_unlock(&nm_i->build_lock);
2702 
2703 	return nr - nr_shrink;
2704 }
2705 
f2fs_recover_inline_xattr(struct inode * inode,struct folio * folio)2706 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio)
2707 {
2708 	void *src_addr, *dst_addr;
2709 	size_t inline_size;
2710 	struct folio *ifolio;
2711 	struct f2fs_inode *ri;
2712 
2713 	ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
2714 	if (IS_ERR(ifolio))
2715 		return PTR_ERR(ifolio);
2716 
2717 	ri = F2FS_INODE(&folio->page);
2718 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2719 		if (!f2fs_has_inline_xattr(inode)) {
2720 			set_inode_flag(inode, FI_INLINE_XATTR);
2721 			stat_inc_inline_xattr(inode);
2722 		}
2723 	} else {
2724 		if (f2fs_has_inline_xattr(inode)) {
2725 			stat_dec_inline_xattr(inode);
2726 			clear_inode_flag(inode, FI_INLINE_XATTR);
2727 		}
2728 		goto update_inode;
2729 	}
2730 
2731 	dst_addr = inline_xattr_addr(inode, ifolio);
2732 	src_addr = inline_xattr_addr(inode, folio);
2733 	inline_size = inline_xattr_size(inode);
2734 
2735 	f2fs_folio_wait_writeback(ifolio, NODE, true, true);
2736 	memcpy(dst_addr, src_addr, inline_size);
2737 update_inode:
2738 	f2fs_update_inode(inode, ifolio);
2739 	f2fs_folio_put(ifolio, true);
2740 	return 0;
2741 }
2742 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2743 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2744 {
2745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2746 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2747 	nid_t new_xnid;
2748 	struct dnode_of_data dn;
2749 	struct node_info ni;
2750 	struct folio *xfolio;
2751 	int err;
2752 
2753 	if (!prev_xnid)
2754 		goto recover_xnid;
2755 
2756 	/* 1: invalidate the previous xattr nid */
2757 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2758 	if (err)
2759 		return err;
2760 
2761 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2762 	dec_valid_node_count(sbi, inode, false);
2763 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2764 
2765 recover_xnid:
2766 	/* 2: update xattr nid in inode */
2767 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2768 		return -ENOSPC;
2769 
2770 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2771 	xfolio = f2fs_new_node_folio(&dn, XATTR_NODE_OFFSET);
2772 	if (IS_ERR(xfolio)) {
2773 		f2fs_alloc_nid_failed(sbi, new_xnid);
2774 		return PTR_ERR(xfolio);
2775 	}
2776 
2777 	f2fs_alloc_nid_done(sbi, new_xnid);
2778 	f2fs_update_inode_page(inode);
2779 
2780 	/* 3: update and set xattr node page dirty */
2781 	if (page) {
2782 		memcpy(F2FS_NODE(&xfolio->page), F2FS_NODE(page),
2783 				VALID_XATTR_BLOCK_SIZE);
2784 		folio_mark_dirty(xfolio);
2785 	}
2786 	f2fs_folio_put(xfolio, true);
2787 
2788 	return 0;
2789 }
2790 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2791 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2792 {
2793 	struct f2fs_inode *src, *dst;
2794 	nid_t ino = ino_of_node(page);
2795 	struct node_info old_ni, new_ni;
2796 	struct folio *ifolio;
2797 	int err;
2798 
2799 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2800 	if (err)
2801 		return err;
2802 
2803 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2804 		return -EINVAL;
2805 retry:
2806 	ifolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), ino, false);
2807 	if (IS_ERR(ifolio)) {
2808 		memalloc_retry_wait(GFP_NOFS);
2809 		goto retry;
2810 	}
2811 
2812 	/* Should not use this inode from free nid list */
2813 	remove_free_nid(sbi, ino);
2814 
2815 	if (!folio_test_uptodate(ifolio))
2816 		folio_mark_uptodate(ifolio);
2817 	fill_node_footer(&ifolio->page, ino, ino, 0, true);
2818 	set_cold_node(&ifolio->page, false);
2819 
2820 	src = F2FS_INODE(page);
2821 	dst = F2FS_INODE(&ifolio->page);
2822 
2823 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2824 	dst->i_size = 0;
2825 	dst->i_blocks = cpu_to_le64(1);
2826 	dst->i_links = cpu_to_le32(1);
2827 	dst->i_xattr_nid = 0;
2828 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2829 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2830 		dst->i_extra_isize = src->i_extra_isize;
2831 
2832 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2833 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2834 							i_inline_xattr_size))
2835 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2836 
2837 		if (f2fs_sb_has_project_quota(sbi) &&
2838 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839 								i_projid))
2840 			dst->i_projid = src->i_projid;
2841 
2842 		if (f2fs_sb_has_inode_crtime(sbi) &&
2843 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844 							i_crtime_nsec)) {
2845 			dst->i_crtime = src->i_crtime;
2846 			dst->i_crtime_nsec = src->i_crtime_nsec;
2847 		}
2848 	}
2849 
2850 	new_ni = old_ni;
2851 	new_ni.ino = ino;
2852 
2853 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2854 		WARN_ON(1);
2855 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2856 	inc_valid_inode_count(sbi);
2857 	folio_mark_dirty(ifolio);
2858 	f2fs_folio_put(ifolio, true);
2859 	return 0;
2860 }
2861 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2862 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2863 			unsigned int segno, struct f2fs_summary_block *sum)
2864 {
2865 	struct f2fs_node *rn;
2866 	struct f2fs_summary *sum_entry;
2867 	block_t addr;
2868 	int i, idx, last_offset, nrpages;
2869 
2870 	/* scan the node segment */
2871 	last_offset = BLKS_PER_SEG(sbi);
2872 	addr = START_BLOCK(sbi, segno);
2873 	sum_entry = &sum->entries[0];
2874 
2875 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2876 		nrpages = bio_max_segs(last_offset - i);
2877 
2878 		/* readahead node pages */
2879 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2880 
2881 		for (idx = addr; idx < addr + nrpages; idx++) {
2882 			struct folio *folio = f2fs_get_tmp_folio(sbi, idx);
2883 
2884 			if (IS_ERR(folio))
2885 				return PTR_ERR(folio);
2886 
2887 			rn = F2FS_NODE(&folio->page);
2888 			sum_entry->nid = rn->footer.nid;
2889 			sum_entry->version = 0;
2890 			sum_entry->ofs_in_node = 0;
2891 			sum_entry++;
2892 			f2fs_folio_put(folio, true);
2893 		}
2894 
2895 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2896 							addr + nrpages);
2897 	}
2898 	return 0;
2899 }
2900 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2901 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2902 {
2903 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2904 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2905 	struct f2fs_journal *journal = curseg->journal;
2906 	int i;
2907 
2908 	down_write(&curseg->journal_rwsem);
2909 	for (i = 0; i < nats_in_cursum(journal); i++) {
2910 		struct nat_entry *ne;
2911 		struct f2fs_nat_entry raw_ne;
2912 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2913 
2914 		if (f2fs_check_nid_range(sbi, nid))
2915 			continue;
2916 
2917 		raw_ne = nat_in_journal(journal, i);
2918 
2919 		ne = __lookup_nat_cache(nm_i, nid);
2920 		if (!ne) {
2921 			ne = __alloc_nat_entry(sbi, nid, true);
2922 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2923 		}
2924 
2925 		/*
2926 		 * if a free nat in journal has not been used after last
2927 		 * checkpoint, we should remove it from available nids,
2928 		 * since later we will add it again.
2929 		 */
2930 		if (!get_nat_flag(ne, IS_DIRTY) &&
2931 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2932 			spin_lock(&nm_i->nid_list_lock);
2933 			nm_i->available_nids--;
2934 			spin_unlock(&nm_i->nid_list_lock);
2935 		}
2936 
2937 		__set_nat_cache_dirty(nm_i, ne);
2938 	}
2939 	update_nats_in_cursum(journal, -i);
2940 	up_write(&curseg->journal_rwsem);
2941 }
2942 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2943 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2944 						struct list_head *head, int max)
2945 {
2946 	struct nat_entry_set *cur;
2947 
2948 	if (nes->entry_cnt >= max)
2949 		goto add_out;
2950 
2951 	list_for_each_entry(cur, head, set_list) {
2952 		if (cur->entry_cnt >= nes->entry_cnt) {
2953 			list_add(&nes->set_list, cur->set_list.prev);
2954 			return;
2955 		}
2956 	}
2957 add_out:
2958 	list_add_tail(&nes->set_list, head);
2959 }
2960 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2961 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2962 						struct page *page)
2963 {
2964 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2965 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2966 	struct f2fs_nat_block *nat_blk = page_address(page);
2967 	int valid = 0;
2968 	int i = 0;
2969 
2970 	if (!enabled_nat_bits(sbi, NULL))
2971 		return;
2972 
2973 	if (nat_index == 0) {
2974 		valid = 1;
2975 		i = 1;
2976 	}
2977 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2978 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2979 			valid++;
2980 	}
2981 	if (valid == 0) {
2982 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2983 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2984 		return;
2985 	}
2986 
2987 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2988 	if (valid == NAT_ENTRY_PER_BLOCK)
2989 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2990 	else
2991 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2992 }
2993 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2994 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2995 		struct nat_entry_set *set, struct cp_control *cpc)
2996 {
2997 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2998 	struct f2fs_journal *journal = curseg->journal;
2999 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3000 	bool to_journal = true;
3001 	struct f2fs_nat_block *nat_blk;
3002 	struct nat_entry *ne, *cur;
3003 	struct page *page = NULL;
3004 
3005 	/*
3006 	 * there are two steps to flush nat entries:
3007 	 * #1, flush nat entries to journal in current hot data summary block.
3008 	 * #2, flush nat entries to nat page.
3009 	 */
3010 	if (enabled_nat_bits(sbi, cpc) ||
3011 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3012 		to_journal = false;
3013 
3014 	if (to_journal) {
3015 		down_write(&curseg->journal_rwsem);
3016 	} else {
3017 		page = get_next_nat_page(sbi, start_nid);
3018 		if (IS_ERR(page))
3019 			return PTR_ERR(page);
3020 
3021 		nat_blk = page_address(page);
3022 		f2fs_bug_on(sbi, !nat_blk);
3023 	}
3024 
3025 	/* flush dirty nats in nat entry set */
3026 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3027 		struct f2fs_nat_entry *raw_ne;
3028 		nid_t nid = nat_get_nid(ne);
3029 		int offset;
3030 
3031 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3032 
3033 		if (to_journal) {
3034 			offset = f2fs_lookup_journal_in_cursum(journal,
3035 							NAT_JOURNAL, nid, 1);
3036 			f2fs_bug_on(sbi, offset < 0);
3037 			raw_ne = &nat_in_journal(journal, offset);
3038 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3039 		} else {
3040 			raw_ne = &nat_blk->entries[nid - start_nid];
3041 		}
3042 		raw_nat_from_node_info(raw_ne, &ne->ni);
3043 		nat_reset_flag(ne);
3044 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3045 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3046 			add_free_nid(sbi, nid, false, true);
3047 		} else {
3048 			spin_lock(&NM_I(sbi)->nid_list_lock);
3049 			update_free_nid_bitmap(sbi, nid, false, false);
3050 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3051 		}
3052 	}
3053 
3054 	if (to_journal) {
3055 		up_write(&curseg->journal_rwsem);
3056 	} else {
3057 		__update_nat_bits(sbi, start_nid, page);
3058 		f2fs_put_page(page, 1);
3059 	}
3060 
3061 	/* Allow dirty nats by node block allocation in write_begin */
3062 	if (!set->entry_cnt) {
3063 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3064 		kmem_cache_free(nat_entry_set_slab, set);
3065 	}
3066 	return 0;
3067 }
3068 
3069 /*
3070  * This function is called during the checkpointing process.
3071  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3072 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3073 {
3074 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3075 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3076 	struct f2fs_journal *journal = curseg->journal;
3077 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3078 	struct nat_entry_set *set, *tmp;
3079 	unsigned int found;
3080 	nid_t set_idx = 0;
3081 	LIST_HEAD(sets);
3082 	int err = 0;
3083 
3084 	/*
3085 	 * during unmount, let's flush nat_bits before checking
3086 	 * nat_cnt[DIRTY_NAT].
3087 	 */
3088 	if (enabled_nat_bits(sbi, cpc)) {
3089 		f2fs_down_write(&nm_i->nat_tree_lock);
3090 		remove_nats_in_journal(sbi);
3091 		f2fs_up_write(&nm_i->nat_tree_lock);
3092 	}
3093 
3094 	if (!nm_i->nat_cnt[DIRTY_NAT])
3095 		return 0;
3096 
3097 	f2fs_down_write(&nm_i->nat_tree_lock);
3098 
3099 	/*
3100 	 * if there are no enough space in journal to store dirty nat
3101 	 * entries, remove all entries from journal and merge them
3102 	 * into nat entry set.
3103 	 */
3104 	if (enabled_nat_bits(sbi, cpc) ||
3105 		!__has_cursum_space(journal,
3106 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3107 		remove_nats_in_journal(sbi);
3108 
3109 	while ((found = __gang_lookup_nat_set(nm_i,
3110 					set_idx, NAT_VEC_SIZE, setvec))) {
3111 		unsigned idx;
3112 
3113 		set_idx = setvec[found - 1]->set + 1;
3114 		for (idx = 0; idx < found; idx++)
3115 			__adjust_nat_entry_set(setvec[idx], &sets,
3116 						MAX_NAT_JENTRIES(journal));
3117 	}
3118 
3119 	/* flush dirty nats in nat entry set */
3120 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3121 		err = __flush_nat_entry_set(sbi, set, cpc);
3122 		if (err)
3123 			break;
3124 	}
3125 
3126 	f2fs_up_write(&nm_i->nat_tree_lock);
3127 	/* Allow dirty nats by node block allocation in write_begin */
3128 
3129 	return err;
3130 }
3131 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3132 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3133 {
3134 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3135 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3136 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3137 	unsigned int i;
3138 	__u64 cp_ver = cur_cp_version(ckpt);
3139 	block_t nat_bits_addr;
3140 
3141 	if (!enabled_nat_bits(sbi, NULL))
3142 		return 0;
3143 
3144 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3145 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3146 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3147 	if (!nm_i->nat_bits)
3148 		return -ENOMEM;
3149 
3150 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3151 						nm_i->nat_bits_blocks;
3152 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3153 		struct folio *folio;
3154 
3155 		folio = f2fs_get_meta_folio(sbi, nat_bits_addr++);
3156 		if (IS_ERR(folio))
3157 			return PTR_ERR(folio);
3158 
3159 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3160 					folio_address(folio), F2FS_BLKSIZE);
3161 		f2fs_folio_put(folio, true);
3162 	}
3163 
3164 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3165 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3166 		disable_nat_bits(sbi, true);
3167 		return 0;
3168 	}
3169 
3170 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3171 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3172 
3173 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3174 	return 0;
3175 }
3176 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3177 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3178 {
3179 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3180 	unsigned int i = 0;
3181 	nid_t nid, last_nid;
3182 
3183 	if (!enabled_nat_bits(sbi, NULL))
3184 		return;
3185 
3186 	for (i = 0; i < nm_i->nat_blocks; i++) {
3187 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3188 		if (i >= nm_i->nat_blocks)
3189 			break;
3190 
3191 		__set_bit_le(i, nm_i->nat_block_bitmap);
3192 
3193 		nid = i * NAT_ENTRY_PER_BLOCK;
3194 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3195 
3196 		spin_lock(&NM_I(sbi)->nid_list_lock);
3197 		for (; nid < last_nid; nid++)
3198 			update_free_nid_bitmap(sbi, nid, true, true);
3199 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3200 	}
3201 
3202 	for (i = 0; i < nm_i->nat_blocks; i++) {
3203 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3204 		if (i >= nm_i->nat_blocks)
3205 			break;
3206 
3207 		__set_bit_le(i, nm_i->nat_block_bitmap);
3208 	}
3209 }
3210 
init_node_manager(struct f2fs_sb_info * sbi)3211 static int init_node_manager(struct f2fs_sb_info *sbi)
3212 {
3213 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3214 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3215 	unsigned char *version_bitmap;
3216 	unsigned int nat_segs;
3217 	int err;
3218 
3219 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3220 
3221 	/* segment_count_nat includes pair segment so divide to 2. */
3222 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3223 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3224 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3225 
3226 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3227 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3228 						F2FS_RESERVED_NODE_NUM;
3229 	nm_i->nid_cnt[FREE_NID] = 0;
3230 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3231 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3232 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3233 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3234 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3235 
3236 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3237 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3238 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3239 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3240 	INIT_LIST_HEAD(&nm_i->nat_entries);
3241 	spin_lock_init(&nm_i->nat_list_lock);
3242 
3243 	mutex_init(&nm_i->build_lock);
3244 	spin_lock_init(&nm_i->nid_list_lock);
3245 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3246 
3247 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3248 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3249 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3250 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3251 					GFP_KERNEL);
3252 	if (!nm_i->nat_bitmap)
3253 		return -ENOMEM;
3254 
3255 	if (!test_opt(sbi, NAT_BITS))
3256 		disable_nat_bits(sbi, true);
3257 
3258 	err = __get_nat_bitmaps(sbi);
3259 	if (err)
3260 		return err;
3261 
3262 #ifdef CONFIG_F2FS_CHECK_FS
3263 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3264 					GFP_KERNEL);
3265 	if (!nm_i->nat_bitmap_mir)
3266 		return -ENOMEM;
3267 #endif
3268 
3269 	return 0;
3270 }
3271 
init_free_nid_cache(struct f2fs_sb_info * sbi)3272 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3273 {
3274 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3275 	int i;
3276 
3277 	nm_i->free_nid_bitmap =
3278 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3279 					      nm_i->nat_blocks),
3280 			      GFP_KERNEL);
3281 	if (!nm_i->free_nid_bitmap)
3282 		return -ENOMEM;
3283 
3284 	for (i = 0; i < nm_i->nat_blocks; i++) {
3285 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3286 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3287 		if (!nm_i->free_nid_bitmap[i])
3288 			return -ENOMEM;
3289 	}
3290 
3291 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3292 								GFP_KERNEL);
3293 	if (!nm_i->nat_block_bitmap)
3294 		return -ENOMEM;
3295 
3296 	nm_i->free_nid_count =
3297 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3298 					      nm_i->nat_blocks),
3299 			      GFP_KERNEL);
3300 	if (!nm_i->free_nid_count)
3301 		return -ENOMEM;
3302 	return 0;
3303 }
3304 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3305 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3306 {
3307 	int err;
3308 
3309 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3310 							GFP_KERNEL);
3311 	if (!sbi->nm_info)
3312 		return -ENOMEM;
3313 
3314 	err = init_node_manager(sbi);
3315 	if (err)
3316 		return err;
3317 
3318 	err = init_free_nid_cache(sbi);
3319 	if (err)
3320 		return err;
3321 
3322 	/* load free nid status from nat_bits table */
3323 	load_free_nid_bitmap(sbi);
3324 
3325 	return f2fs_build_free_nids(sbi, true, true);
3326 }
3327 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3328 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3329 {
3330 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3331 	struct free_nid *i, *next_i;
3332 	void *vec[NAT_VEC_SIZE];
3333 	struct nat_entry **natvec = (struct nat_entry **)vec;
3334 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3335 	nid_t nid = 0;
3336 	unsigned int found;
3337 
3338 	if (!nm_i)
3339 		return;
3340 
3341 	/* destroy free nid list */
3342 	spin_lock(&nm_i->nid_list_lock);
3343 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3344 		__remove_free_nid(sbi, i, FREE_NID);
3345 		spin_unlock(&nm_i->nid_list_lock);
3346 		kmem_cache_free(free_nid_slab, i);
3347 		spin_lock(&nm_i->nid_list_lock);
3348 	}
3349 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3350 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3351 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3352 	spin_unlock(&nm_i->nid_list_lock);
3353 
3354 	/* destroy nat cache */
3355 	f2fs_down_write(&nm_i->nat_tree_lock);
3356 	while ((found = __gang_lookup_nat_cache(nm_i,
3357 					nid, NAT_VEC_SIZE, natvec))) {
3358 		unsigned idx;
3359 
3360 		nid = nat_get_nid(natvec[found - 1]) + 1;
3361 		for (idx = 0; idx < found; idx++) {
3362 			spin_lock(&nm_i->nat_list_lock);
3363 			list_del(&natvec[idx]->list);
3364 			spin_unlock(&nm_i->nat_list_lock);
3365 
3366 			__del_from_nat_cache(nm_i, natvec[idx]);
3367 		}
3368 	}
3369 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3370 
3371 	/* destroy nat set cache */
3372 	nid = 0;
3373 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3374 	while ((found = __gang_lookup_nat_set(nm_i,
3375 					nid, NAT_VEC_SIZE, setvec))) {
3376 		unsigned idx;
3377 
3378 		nid = setvec[found - 1]->set + 1;
3379 		for (idx = 0; idx < found; idx++) {
3380 			/* entry_cnt is not zero, when cp_error was occurred */
3381 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3382 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3383 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3384 		}
3385 	}
3386 	f2fs_up_write(&nm_i->nat_tree_lock);
3387 
3388 	kvfree(nm_i->nat_block_bitmap);
3389 	if (nm_i->free_nid_bitmap) {
3390 		int i;
3391 
3392 		for (i = 0; i < nm_i->nat_blocks; i++)
3393 			kvfree(nm_i->free_nid_bitmap[i]);
3394 		kvfree(nm_i->free_nid_bitmap);
3395 	}
3396 	kvfree(nm_i->free_nid_count);
3397 
3398 	kvfree(nm_i->nat_bitmap);
3399 	kvfree(nm_i->nat_bits);
3400 #ifdef CONFIG_F2FS_CHECK_FS
3401 	kvfree(nm_i->nat_bitmap_mir);
3402 #endif
3403 	sbi->nm_info = NULL;
3404 	kfree(nm_i);
3405 }
3406 
f2fs_create_node_manager_caches(void)3407 int __init f2fs_create_node_manager_caches(void)
3408 {
3409 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3410 			sizeof(struct nat_entry));
3411 	if (!nat_entry_slab)
3412 		goto fail;
3413 
3414 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3415 			sizeof(struct free_nid));
3416 	if (!free_nid_slab)
3417 		goto destroy_nat_entry;
3418 
3419 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3420 			sizeof(struct nat_entry_set));
3421 	if (!nat_entry_set_slab)
3422 		goto destroy_free_nid;
3423 
3424 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3425 			sizeof(struct fsync_node_entry));
3426 	if (!fsync_node_entry_slab)
3427 		goto destroy_nat_entry_set;
3428 	return 0;
3429 
3430 destroy_nat_entry_set:
3431 	kmem_cache_destroy(nat_entry_set_slab);
3432 destroy_free_nid:
3433 	kmem_cache_destroy(free_nid_slab);
3434 destroy_nat_entry:
3435 	kmem_cache_destroy(nat_entry_slab);
3436 fail:
3437 	return -ENOMEM;
3438 }
3439 
f2fs_destroy_node_manager_caches(void)3440 void f2fs_destroy_node_manager_caches(void)
3441 {
3442 	kmem_cache_destroy(fsync_node_entry_slab);
3443 	kmem_cache_destroy(nat_entry_set_slab);
3444 	kmem_cache_destroy(free_nid_slab);
3445 	kmem_cache_destroy(nat_entry_slab);
3446 }
3447