xref: /linux/fs/bcachefs/btree_cache.c (revision dd83757f6e686a2188997cb58b5975f744bb7786)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "bbpos.h"
5 #include "bkey_buf.h"
6 #include "btree_cache.h"
7 #include "btree_io.h"
8 #include "btree_iter.h"
9 #include "btree_locking.h"
10 #include "debug.h"
11 #include "errcode.h"
12 #include "error.h"
13 #include "journal.h"
14 #include "trace.h"
15 
16 #include <linux/prefetch.h>
17 #include <linux/sched/mm.h>
18 #include <linux/swap.h>
19 
20 #define BTREE_CACHE_NOT_FREED_INCREMENT(counter) \
21 do {						 \
22 	if (shrinker_counter)			 \
23 		bc->not_freed[BCH_BTREE_CACHE_NOT_FREED_##counter]++;	 \
24 } while (0)
25 
26 const char * const bch2_btree_node_flags[] = {
27 	"typebit",
28 	"typebit",
29 	"typebit",
30 #define x(f)	[BTREE_NODE_##f] = #f,
31 	BTREE_FLAGS()
32 #undef x
33 	NULL
34 };
35 
bch2_recalc_btree_reserve(struct bch_fs * c)36 void bch2_recalc_btree_reserve(struct bch_fs *c)
37 {
38 	unsigned reserve = 16;
39 
40 	if (!c->btree_roots_known[0].b)
41 		reserve += 8;
42 
43 	for (unsigned i = 0; i < btree_id_nr_alive(c); i++) {
44 		struct btree_root *r = bch2_btree_id_root(c, i);
45 
46 		if (r->b)
47 			reserve += min_t(unsigned, 1, r->b->c.level) * 8;
48 	}
49 
50 	c->btree_cache.nr_reserve = reserve;
51 }
52 
btree_cache_can_free(struct btree_cache_list * list)53 static inline size_t btree_cache_can_free(struct btree_cache_list *list)
54 {
55 	struct btree_cache *bc = container_of(list, struct btree_cache, live[list->idx]);
56 
57 	size_t can_free = list->nr;
58 	if (!list->idx)
59 		can_free = max_t(ssize_t, 0, can_free - bc->nr_reserve);
60 	return can_free;
61 }
62 
btree_node_to_freedlist(struct btree_cache * bc,struct btree * b)63 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
64 {
65 	BUG_ON(!list_empty(&b->list));
66 
67 	if (b->c.lock.readers)
68 		list_add(&b->list, &bc->freed_pcpu);
69 	else
70 		list_add(&b->list, &bc->freed_nonpcpu);
71 }
72 
__bch2_btree_node_to_freelist(struct btree_cache * bc,struct btree * b)73 static void __bch2_btree_node_to_freelist(struct btree_cache *bc, struct btree *b)
74 {
75 	BUG_ON(!list_empty(&b->list));
76 	BUG_ON(!b->data);
77 
78 	bc->nr_freeable++;
79 	list_add(&b->list, &bc->freeable);
80 }
81 
bch2_btree_node_to_freelist(struct bch_fs * c,struct btree * b)82 void bch2_btree_node_to_freelist(struct bch_fs *c, struct btree *b)
83 {
84 	struct btree_cache *bc = &c->btree_cache;
85 
86 	mutex_lock(&bc->lock);
87 	__bch2_btree_node_to_freelist(bc, b);
88 	mutex_unlock(&bc->lock);
89 
90 	six_unlock_write(&b->c.lock);
91 	six_unlock_intent(&b->c.lock);
92 }
93 
__btree_node_data_free(struct btree_cache * bc,struct btree * b)94 static void __btree_node_data_free(struct btree_cache *bc, struct btree *b)
95 {
96 	BUG_ON(!list_empty(&b->list));
97 	BUG_ON(btree_node_hashed(b));
98 
99 	/*
100 	 * This should really be done in slub/vmalloc, but we're using the
101 	 * kmalloc_large() path, so we're working around a slub bug by doing
102 	 * this here:
103 	 */
104 	if (b->data)
105 		mm_account_reclaimed_pages(btree_buf_bytes(b) / PAGE_SIZE);
106 	if (b->aux_data)
107 		mm_account_reclaimed_pages(btree_aux_data_bytes(b) / PAGE_SIZE);
108 
109 	EBUG_ON(btree_node_write_in_flight(b));
110 
111 	clear_btree_node_just_written(b);
112 
113 	kvfree(b->data);
114 	b->data = NULL;
115 #ifdef __KERNEL__
116 	kvfree(b->aux_data);
117 #else
118 	munmap(b->aux_data, btree_aux_data_bytes(b));
119 #endif
120 	b->aux_data = NULL;
121 
122 	btree_node_to_freedlist(bc, b);
123 }
124 
btree_node_data_free(struct btree_cache * bc,struct btree * b)125 static void btree_node_data_free(struct btree_cache *bc, struct btree *b)
126 {
127 	BUG_ON(list_empty(&b->list));
128 	list_del_init(&b->list);
129 	--bc->nr_freeable;
130 	__btree_node_data_free(bc, b);
131 }
132 
bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg * arg,const void * obj)133 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
134 				   const void *obj)
135 {
136 	const struct btree *b = obj;
137 	const u64 *v = arg->key;
138 
139 	return b->hash_val == *v ? 0 : 1;
140 }
141 
142 static const struct rhashtable_params bch_btree_cache_params = {
143 	.head_offset		= offsetof(struct btree, hash),
144 	.key_offset		= offsetof(struct btree, hash_val),
145 	.key_len		= sizeof(u64),
146 	.obj_cmpfn		= bch2_btree_cache_cmp_fn,
147 	.automatic_shrinking	= true,
148 };
149 
btree_node_data_alloc(struct bch_fs * c,struct btree * b,gfp_t gfp)150 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
151 {
152 	BUG_ON(b->data || b->aux_data);
153 
154 	gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
155 
156 	b->data = kvmalloc(btree_buf_bytes(b), gfp);
157 	if (!b->data)
158 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
159 #ifdef __KERNEL__
160 	b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
161 #else
162 	b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
163 			   PROT_READ|PROT_WRITE|PROT_EXEC,
164 			   MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
165 	if (b->aux_data == MAP_FAILED)
166 		b->aux_data = NULL;
167 #endif
168 	if (!b->aux_data) {
169 		kvfree(b->data);
170 		b->data = NULL;
171 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
172 	}
173 
174 	return 0;
175 }
176 
__btree_node_mem_alloc(struct bch_fs * c,gfp_t gfp)177 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
178 {
179 	struct btree *b;
180 
181 	b = kzalloc(sizeof(struct btree), gfp);
182 	if (!b)
183 		return NULL;
184 
185 	bkey_btree_ptr_init(&b->key);
186 	INIT_LIST_HEAD(&b->list);
187 	INIT_LIST_HEAD(&b->write_blocked);
188 	b->byte_order = ilog2(c->opts.btree_node_size);
189 	return b;
190 }
191 
__bch2_btree_node_mem_alloc(struct bch_fs * c)192 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
193 {
194 	struct btree_cache *bc = &c->btree_cache;
195 	struct btree *b;
196 
197 	b = __btree_node_mem_alloc(c, GFP_KERNEL);
198 	if (!b)
199 		return NULL;
200 
201 	if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
202 		kfree(b);
203 		return NULL;
204 	}
205 
206 	bch2_btree_lock_init(&b->c, 0, GFP_KERNEL);
207 
208 	__bch2_btree_node_to_freelist(bc, b);
209 	return b;
210 }
211 
__btree_node_pinned(struct btree_cache * bc,struct btree * b)212 static inline bool __btree_node_pinned(struct btree_cache *bc, struct btree *b)
213 {
214 	struct bbpos pos = BBPOS(b->c.btree_id, b->key.k.p);
215 
216 	u64 mask = bc->pinned_nodes_mask[!!b->c.level];
217 
218 	return ((mask & BIT_ULL(b->c.btree_id)) &&
219 		bbpos_cmp(bc->pinned_nodes_start, pos) < 0 &&
220 		bbpos_cmp(bc->pinned_nodes_end, pos) >= 0);
221 }
222 
bch2_node_pin(struct bch_fs * c,struct btree * b)223 void bch2_node_pin(struct bch_fs *c, struct btree *b)
224 {
225 	struct btree_cache *bc = &c->btree_cache;
226 
227 	mutex_lock(&bc->lock);
228 	if (b != btree_node_root(c, b) && !btree_node_pinned(b)) {
229 		set_btree_node_pinned(b);
230 		list_move(&b->list, &bc->live[1].list);
231 		bc->live[0].nr--;
232 		bc->live[1].nr++;
233 	}
234 	mutex_unlock(&bc->lock);
235 }
236 
bch2_btree_cache_unpin(struct bch_fs * c)237 void bch2_btree_cache_unpin(struct bch_fs *c)
238 {
239 	struct btree_cache *bc = &c->btree_cache;
240 	struct btree *b, *n;
241 
242 	mutex_lock(&bc->lock);
243 	c->btree_cache.pinned_nodes_mask[0] = 0;
244 	c->btree_cache.pinned_nodes_mask[1] = 0;
245 
246 	list_for_each_entry_safe(b, n, &bc->live[1].list, list) {
247 		clear_btree_node_pinned(b);
248 		list_move(&b->list, &bc->live[0].list);
249 		bc->live[0].nr++;
250 		bc->live[1].nr--;
251 	}
252 
253 	mutex_unlock(&bc->lock);
254 }
255 
256 /* Btree in memory cache - hash table */
257 
__bch2_btree_node_hash_remove(struct btree_cache * bc,struct btree * b)258 void __bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
259 {
260 	lockdep_assert_held(&bc->lock);
261 
262 	int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
263 	BUG_ON(ret);
264 
265 	/* Cause future lookups for this node to fail: */
266 	b->hash_val = 0;
267 
268 	if (b->c.btree_id < BTREE_ID_NR)
269 		--bc->nr_by_btree[b->c.btree_id];
270 	--bc->live[btree_node_pinned(b)].nr;
271 	list_del_init(&b->list);
272 }
273 
bch2_btree_node_hash_remove(struct btree_cache * bc,struct btree * b)274 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
275 {
276 	__bch2_btree_node_hash_remove(bc, b);
277 	__bch2_btree_node_to_freelist(bc, b);
278 }
279 
__bch2_btree_node_hash_insert(struct btree_cache * bc,struct btree * b)280 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
281 {
282 	BUG_ON(!list_empty(&b->list));
283 	BUG_ON(b->hash_val);
284 
285 	b->hash_val = btree_ptr_hash_val(&b->key);
286 	int ret = rhashtable_lookup_insert_fast(&bc->table, &b->hash,
287 						bch_btree_cache_params);
288 	if (ret)
289 		return ret;
290 
291 	if (b->c.btree_id < BTREE_ID_NR)
292 		bc->nr_by_btree[b->c.btree_id]++;
293 
294 	bool p = __btree_node_pinned(bc, b);
295 	mod_bit(BTREE_NODE_pinned, &b->flags, p);
296 
297 	list_add_tail(&b->list, &bc->live[p].list);
298 	bc->live[p].nr++;
299 	return 0;
300 }
301 
bch2_btree_node_hash_insert(struct btree_cache * bc,struct btree * b,unsigned level,enum btree_id id)302 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
303 				unsigned level, enum btree_id id)
304 {
305 	b->c.level	= level;
306 	b->c.btree_id	= id;
307 
308 	mutex_lock(&bc->lock);
309 	int ret = __bch2_btree_node_hash_insert(bc, b);
310 	mutex_unlock(&bc->lock);
311 
312 	return ret;
313 }
314 
bch2_btree_node_update_key_early(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_s_c old,struct bkey_i * new)315 void bch2_btree_node_update_key_early(struct btree_trans *trans,
316 				      enum btree_id btree, unsigned level,
317 				      struct bkey_s_c old, struct bkey_i *new)
318 {
319 	struct bch_fs *c = trans->c;
320 	struct btree *b;
321 	struct bkey_buf tmp;
322 	int ret;
323 
324 	bch2_bkey_buf_init(&tmp);
325 	bch2_bkey_buf_reassemble(&tmp, c, old);
326 
327 	b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true);
328 	if (!IS_ERR_OR_NULL(b)) {
329 		mutex_lock(&c->btree_cache.lock);
330 
331 		__bch2_btree_node_hash_remove(&c->btree_cache, b);
332 
333 		bkey_copy(&b->key, new);
334 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
335 		BUG_ON(ret);
336 
337 		mutex_unlock(&c->btree_cache.lock);
338 		six_unlock_read(&b->c.lock);
339 	}
340 
341 	bch2_bkey_buf_exit(&tmp, c);
342 }
343 
344 __flatten
btree_cache_find(struct btree_cache * bc,const struct bkey_i * k)345 static inline struct btree *btree_cache_find(struct btree_cache *bc,
346 				     const struct bkey_i *k)
347 {
348 	u64 v = btree_ptr_hash_val(k);
349 
350 	return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
351 }
352 
353 /*
354  * this version is for btree nodes that have already been freed (we're not
355  * reaping a real btree node)
356  */
__btree_node_reclaim(struct bch_fs * c,struct btree * b,bool flush,bool shrinker_counter)357 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush, bool shrinker_counter)
358 {
359 	struct btree_cache *bc = &c->btree_cache;
360 	int ret = 0;
361 
362 	lockdep_assert_held(&bc->lock);
363 wait_on_io:
364 	if (b->flags & ((1U << BTREE_NODE_dirty)|
365 			(1U << BTREE_NODE_read_in_flight)|
366 			(1U << BTREE_NODE_write_in_flight))) {
367 		if (!flush) {
368 			if (btree_node_dirty(b))
369 				BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
370 			else if (btree_node_read_in_flight(b))
371 				BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
372 			else if (btree_node_write_in_flight(b))
373 				BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
374 			return -BCH_ERR_ENOMEM_btree_node_reclaim;
375 		}
376 
377 		/* XXX: waiting on IO with btree cache lock held */
378 		bch2_btree_node_wait_on_read(b);
379 		bch2_btree_node_wait_on_write(b);
380 	}
381 
382 	if (!six_trylock_intent(&b->c.lock)) {
383 		BTREE_CACHE_NOT_FREED_INCREMENT(lock_intent);
384 		return -BCH_ERR_ENOMEM_btree_node_reclaim;
385 	}
386 
387 	if (!six_trylock_write(&b->c.lock)) {
388 		BTREE_CACHE_NOT_FREED_INCREMENT(lock_write);
389 		goto out_unlock_intent;
390 	}
391 
392 	/* recheck under lock */
393 	if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
394 			(1U << BTREE_NODE_write_in_flight))) {
395 		if (!flush) {
396 			if (btree_node_read_in_flight(b))
397 				BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
398 			else if (btree_node_write_in_flight(b))
399 				BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
400 			goto out_unlock;
401 		}
402 		six_unlock_write(&b->c.lock);
403 		six_unlock_intent(&b->c.lock);
404 		goto wait_on_io;
405 	}
406 
407 	if (btree_node_noevict(b)) {
408 		BTREE_CACHE_NOT_FREED_INCREMENT(noevict);
409 		goto out_unlock;
410 	}
411 	if (btree_node_write_blocked(b)) {
412 		BTREE_CACHE_NOT_FREED_INCREMENT(write_blocked);
413 		goto out_unlock;
414 	}
415 	if (btree_node_will_make_reachable(b)) {
416 		BTREE_CACHE_NOT_FREED_INCREMENT(will_make_reachable);
417 		goto out_unlock;
418 	}
419 
420 	if (btree_node_dirty(b)) {
421 		if (!flush) {
422 			BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
423 			goto out_unlock;
424 		}
425 		/*
426 		 * Using the underscore version because we don't want to compact
427 		 * bsets after the write, since this node is about to be evicted
428 		 * - unless btree verify mode is enabled, since it runs out of
429 		 * the post write cleanup:
430 		 */
431 		if (bch2_verify_btree_ondisk)
432 			bch2_btree_node_write(c, b, SIX_LOCK_intent,
433 					      BTREE_WRITE_cache_reclaim);
434 		else
435 			__bch2_btree_node_write(c, b,
436 						BTREE_WRITE_cache_reclaim);
437 
438 		six_unlock_write(&b->c.lock);
439 		six_unlock_intent(&b->c.lock);
440 		goto wait_on_io;
441 	}
442 out:
443 	if (b->hash_val && !ret)
444 		trace_and_count(c, btree_cache_reap, c, b);
445 	return ret;
446 out_unlock:
447 	six_unlock_write(&b->c.lock);
448 out_unlock_intent:
449 	six_unlock_intent(&b->c.lock);
450 	ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
451 	goto out;
452 }
453 
btree_node_reclaim(struct bch_fs * c,struct btree * b,bool shrinker_counter)454 static int btree_node_reclaim(struct bch_fs *c, struct btree *b, bool shrinker_counter)
455 {
456 	return __btree_node_reclaim(c, b, false, shrinker_counter);
457 }
458 
btree_node_write_and_reclaim(struct bch_fs * c,struct btree * b)459 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
460 {
461 	return __btree_node_reclaim(c, b, true, false);
462 }
463 
bch2_btree_cache_scan(struct shrinker * shrink,struct shrink_control * sc)464 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
465 					   struct shrink_control *sc)
466 {
467 	struct btree_cache_list *list = shrink->private_data;
468 	struct btree_cache *bc = container_of(list, struct btree_cache, live[list->idx]);
469 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_cache);
470 	struct btree *b, *t;
471 	unsigned long nr = sc->nr_to_scan;
472 	unsigned long can_free = 0;
473 	unsigned long freed = 0;
474 	unsigned long touched = 0;
475 	unsigned i, flags;
476 	unsigned long ret = SHRINK_STOP;
477 	bool trigger_writes = atomic_long_read(&bc->nr_dirty) + nr >= list->nr * 3 / 4;
478 
479 	if (bch2_btree_shrinker_disabled)
480 		return SHRINK_STOP;
481 
482 	mutex_lock(&bc->lock);
483 	flags = memalloc_nofs_save();
484 
485 	/*
486 	 * It's _really_ critical that we don't free too many btree nodes - we
487 	 * have to always leave ourselves a reserve. The reserve is how we
488 	 * guarantee that allocating memory for a new btree node can always
489 	 * succeed, so that inserting keys into the btree can always succeed and
490 	 * IO can always make forward progress:
491 	 */
492 	can_free = btree_cache_can_free(list);
493 	nr = min_t(unsigned long, nr, can_free);
494 
495 	i = 0;
496 	list_for_each_entry_safe(b, t, &bc->freeable, list) {
497 		/*
498 		 * Leave a few nodes on the freeable list, so that a btree split
499 		 * won't have to hit the system allocator:
500 		 */
501 		if (++i <= 3)
502 			continue;
503 
504 		touched++;
505 
506 		if (touched >= nr)
507 			goto out;
508 
509 		if (!btree_node_reclaim(c, b, true)) {
510 			btree_node_data_free(bc, b);
511 			six_unlock_write(&b->c.lock);
512 			six_unlock_intent(&b->c.lock);
513 			freed++;
514 			bc->nr_freed++;
515 		}
516 	}
517 restart:
518 	list_for_each_entry_safe(b, t, &list->list, list) {
519 		touched++;
520 
521 		if (btree_node_accessed(b)) {
522 			clear_btree_node_accessed(b);
523 			bc->not_freed[BCH_BTREE_CACHE_NOT_FREED_access_bit]++;
524 			--touched;;
525 		} else if (!btree_node_reclaim(c, b, true)) {
526 			__bch2_btree_node_hash_remove(bc, b);
527 			__btree_node_data_free(bc, b);
528 
529 			freed++;
530 			bc->nr_freed++;
531 
532 			six_unlock_write(&b->c.lock);
533 			six_unlock_intent(&b->c.lock);
534 
535 			if (freed == nr)
536 				goto out_rotate;
537 		} else if (trigger_writes &&
538 			   btree_node_dirty(b) &&
539 			   !btree_node_will_make_reachable(b) &&
540 			   !btree_node_write_blocked(b) &&
541 			   six_trylock_read(&b->c.lock)) {
542 			list_move(&list->list, &b->list);
543 			mutex_unlock(&bc->lock);
544 			__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
545 			six_unlock_read(&b->c.lock);
546 			if (touched >= nr)
547 				goto out_nounlock;
548 			mutex_lock(&bc->lock);
549 			goto restart;
550 		}
551 
552 		if (touched >= nr)
553 			break;
554 	}
555 out_rotate:
556 	if (&t->list != &list->list)
557 		list_move_tail(&list->list, &t->list);
558 out:
559 	mutex_unlock(&bc->lock);
560 out_nounlock:
561 	ret = freed;
562 	memalloc_nofs_restore(flags);
563 	trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
564 	return ret;
565 }
566 
bch2_btree_cache_count(struct shrinker * shrink,struct shrink_control * sc)567 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
568 					    struct shrink_control *sc)
569 {
570 	struct btree_cache_list *list = shrink->private_data;
571 
572 	if (bch2_btree_shrinker_disabled)
573 		return 0;
574 
575 	return btree_cache_can_free(list);
576 }
577 
bch2_fs_btree_cache_exit(struct bch_fs * c)578 void bch2_fs_btree_cache_exit(struct bch_fs *c)
579 {
580 	struct btree_cache *bc = &c->btree_cache;
581 	struct btree *b, *t;
582 	unsigned long flags;
583 
584 	shrinker_free(bc->live[1].shrink);
585 	shrinker_free(bc->live[0].shrink);
586 
587 	/* vfree() can allocate memory: */
588 	flags = memalloc_nofs_save();
589 	mutex_lock(&bc->lock);
590 
591 	if (c->verify_data)
592 		list_move(&c->verify_data->list, &bc->live[0].list);
593 
594 	kvfree(c->verify_ondisk);
595 
596 	for (unsigned i = 0; i < btree_id_nr_alive(c); i++) {
597 		struct btree_root *r = bch2_btree_id_root(c, i);
598 
599 		if (r->b)
600 			list_add(&r->b->list, &bc->live[0].list);
601 	}
602 
603 	list_for_each_entry_safe(b, t, &bc->live[1].list, list)
604 		bch2_btree_node_hash_remove(bc, b);
605 	list_for_each_entry_safe(b, t, &bc->live[0].list, list)
606 		bch2_btree_node_hash_remove(bc, b);
607 
608 	list_for_each_entry_safe(b, t, &bc->freeable, list) {
609 		BUG_ON(btree_node_read_in_flight(b) ||
610 		       btree_node_write_in_flight(b));
611 
612 		btree_node_data_free(bc, b);
613 	}
614 
615 	BUG_ON(!bch2_journal_error(&c->journal) &&
616 	       atomic_long_read(&c->btree_cache.nr_dirty));
617 
618 	list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
619 
620 	list_for_each_entry_safe(b, t, &bc->freed_nonpcpu, list) {
621 		list_del(&b->list);
622 		six_lock_exit(&b->c.lock);
623 		kfree(b);
624 	}
625 
626 	mutex_unlock(&bc->lock);
627 	memalloc_nofs_restore(flags);
628 
629 	for (unsigned i = 0; i < ARRAY_SIZE(bc->nr_by_btree); i++)
630 		BUG_ON(bc->nr_by_btree[i]);
631 	BUG_ON(bc->live[0].nr);
632 	BUG_ON(bc->live[1].nr);
633 	BUG_ON(bc->nr_freeable);
634 
635 	if (bc->table_init_done)
636 		rhashtable_destroy(&bc->table);
637 }
638 
bch2_fs_btree_cache_init(struct bch_fs * c)639 int bch2_fs_btree_cache_init(struct bch_fs *c)
640 {
641 	struct btree_cache *bc = &c->btree_cache;
642 	struct shrinker *shrink;
643 	unsigned i;
644 	int ret = 0;
645 
646 	ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
647 	if (ret)
648 		goto err;
649 
650 	bc->table_init_done = true;
651 
652 	bch2_recalc_btree_reserve(c);
653 
654 	for (i = 0; i < bc->nr_reserve; i++)
655 		if (!__bch2_btree_node_mem_alloc(c))
656 			goto err;
657 
658 	list_splice_init(&bc->live[0].list, &bc->freeable);
659 
660 	mutex_init(&c->verify_lock);
661 
662 	shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
663 	if (!shrink)
664 		goto err;
665 	bc->live[0].shrink	= shrink;
666 	shrink->count_objects	= bch2_btree_cache_count;
667 	shrink->scan_objects	= bch2_btree_cache_scan;
668 	shrink->seeks		= 2;
669 	shrink->private_data	= &bc->live[0];
670 	shrinker_register(shrink);
671 
672 	shrink = shrinker_alloc(0, "%s-btree_cache-pinned", c->name);
673 	if (!shrink)
674 		goto err;
675 	bc->live[1].shrink	= shrink;
676 	shrink->count_objects	= bch2_btree_cache_count;
677 	shrink->scan_objects	= bch2_btree_cache_scan;
678 	shrink->seeks		= 8;
679 	shrink->private_data	= &bc->live[1];
680 	shrinker_register(shrink);
681 
682 	return 0;
683 err:
684 	return -BCH_ERR_ENOMEM_fs_btree_cache_init;
685 }
686 
bch2_fs_btree_cache_init_early(struct btree_cache * bc)687 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
688 {
689 	mutex_init(&bc->lock);
690 	for (unsigned i = 0; i < ARRAY_SIZE(bc->live); i++) {
691 		bc->live[i].idx = i;
692 		INIT_LIST_HEAD(&bc->live[i].list);
693 	}
694 	INIT_LIST_HEAD(&bc->freeable);
695 	INIT_LIST_HEAD(&bc->freed_pcpu);
696 	INIT_LIST_HEAD(&bc->freed_nonpcpu);
697 }
698 
699 /*
700  * We can only have one thread cannibalizing other cached btree nodes at a time,
701  * or we'll deadlock. We use an open coded mutex to ensure that, which a
702  * cannibalize_bucket() will take. This means every time we unlock the root of
703  * the btree, we need to release this lock if we have it held.
704  */
bch2_btree_cache_cannibalize_unlock(struct btree_trans * trans)705 void bch2_btree_cache_cannibalize_unlock(struct btree_trans *trans)
706 {
707 	struct bch_fs *c = trans->c;
708 	struct btree_cache *bc = &c->btree_cache;
709 
710 	if (bc->alloc_lock == current) {
711 		trace_and_count(c, btree_cache_cannibalize_unlock, trans);
712 		bc->alloc_lock = NULL;
713 		closure_wake_up(&bc->alloc_wait);
714 	}
715 }
716 
bch2_btree_cache_cannibalize_lock(struct btree_trans * trans,struct closure * cl)717 int bch2_btree_cache_cannibalize_lock(struct btree_trans *trans, struct closure *cl)
718 {
719 	struct bch_fs *c = trans->c;
720 	struct btree_cache *bc = &c->btree_cache;
721 	struct task_struct *old;
722 
723 	old = NULL;
724 	if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current)
725 		goto success;
726 
727 	if (!cl) {
728 		trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
729 		return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
730 	}
731 
732 	closure_wait(&bc->alloc_wait, cl);
733 
734 	/* Try again, after adding ourselves to waitlist */
735 	old = NULL;
736 	if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current) {
737 		/* We raced */
738 		closure_wake_up(&bc->alloc_wait);
739 		goto success;
740 	}
741 
742 	trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
743 	return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
744 
745 success:
746 	trace_and_count(c, btree_cache_cannibalize_lock, trans);
747 	return 0;
748 }
749 
btree_node_cannibalize(struct bch_fs * c)750 static struct btree *btree_node_cannibalize(struct bch_fs *c)
751 {
752 	struct btree_cache *bc = &c->btree_cache;
753 	struct btree *b;
754 
755 	for (unsigned i = 0; i < ARRAY_SIZE(bc->live); i++)
756 		list_for_each_entry_reverse(b, &bc->live[i].list, list)
757 			if (!btree_node_reclaim(c, b, false))
758 				return b;
759 
760 	while (1) {
761 		for (unsigned i = 0; i < ARRAY_SIZE(bc->live); i++)
762 			list_for_each_entry_reverse(b, &bc->live[i].list, list)
763 				if (!btree_node_write_and_reclaim(c, b))
764 					return b;
765 
766 		/*
767 		 * Rare case: all nodes were intent-locked.
768 		 * Just busy-wait.
769 		 */
770 		WARN_ONCE(1, "btree cache cannibalize failed\n");
771 		cond_resched();
772 	}
773 }
774 
bch2_btree_node_mem_alloc(struct btree_trans * trans,bool pcpu_read_locks)775 struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
776 {
777 	struct bch_fs *c = trans->c;
778 	struct btree_cache *bc = &c->btree_cache;
779 	struct list_head *freed = pcpu_read_locks
780 		? &bc->freed_pcpu
781 		: &bc->freed_nonpcpu;
782 	struct btree *b, *b2;
783 	u64 start_time = local_clock();
784 
785 	mutex_lock(&bc->lock);
786 
787 	/*
788 	 * We never free struct btree itself, just the memory that holds the on
789 	 * disk node. Check the freed list before allocating a new one:
790 	 */
791 	list_for_each_entry(b, freed, list)
792 		if (!btree_node_reclaim(c, b, false)) {
793 			list_del_init(&b->list);
794 			goto got_node;
795 		}
796 
797 	b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
798 	if (b) {
799 		bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0, GFP_NOWAIT);
800 	} else {
801 		mutex_unlock(&bc->lock);
802 		bch2_trans_unlock(trans);
803 		b = __btree_node_mem_alloc(c, GFP_KERNEL);
804 		if (!b)
805 			goto err;
806 		bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0, GFP_KERNEL);
807 		mutex_lock(&bc->lock);
808 	}
809 
810 	BUG_ON(!six_trylock_intent(&b->c.lock));
811 	BUG_ON(!six_trylock_write(&b->c.lock));
812 
813 got_node:
814 	/*
815 	 * btree_free() doesn't free memory; it sticks the node on the end of
816 	 * the list. Check if there's any freed nodes there:
817 	 */
818 	list_for_each_entry(b2, &bc->freeable, list)
819 		if (!btree_node_reclaim(c, b2, false)) {
820 			swap(b->data, b2->data);
821 			swap(b->aux_data, b2->aux_data);
822 
823 			list_del_init(&b2->list);
824 			--bc->nr_freeable;
825 			btree_node_to_freedlist(bc, b2);
826 			mutex_unlock(&bc->lock);
827 
828 			six_unlock_write(&b2->c.lock);
829 			six_unlock_intent(&b2->c.lock);
830 			goto got_mem;
831 		}
832 
833 	mutex_unlock(&bc->lock);
834 
835 	if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
836 		bch2_trans_unlock(trans);
837 		if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
838 			goto err;
839 	}
840 
841 got_mem:
842 	BUG_ON(!list_empty(&b->list));
843 	BUG_ON(btree_node_hashed(b));
844 	BUG_ON(btree_node_dirty(b));
845 	BUG_ON(btree_node_write_in_flight(b));
846 out:
847 	b->flags		= 0;
848 	b->written		= 0;
849 	b->nsets		= 0;
850 	b->sib_u64s[0]		= 0;
851 	b->sib_u64s[1]		= 0;
852 	b->whiteout_u64s	= 0;
853 	bch2_btree_keys_init(b);
854 	set_btree_node_accessed(b);
855 
856 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
857 			       start_time);
858 
859 	int ret = bch2_trans_relock(trans);
860 	if (unlikely(ret)) {
861 		bch2_btree_node_to_freelist(c, b);
862 		return ERR_PTR(ret);
863 	}
864 
865 	return b;
866 err:
867 	mutex_lock(&bc->lock);
868 
869 	/* Try to cannibalize another cached btree node: */
870 	if (bc->alloc_lock == current) {
871 		b2 = btree_node_cannibalize(c);
872 		clear_btree_node_just_written(b2);
873 		__bch2_btree_node_hash_remove(bc, b2);
874 
875 		if (b) {
876 			swap(b->data, b2->data);
877 			swap(b->aux_data, b2->aux_data);
878 			btree_node_to_freedlist(bc, b2);
879 			six_unlock_write(&b2->c.lock);
880 			six_unlock_intent(&b2->c.lock);
881 		} else {
882 			b = b2;
883 		}
884 
885 		BUG_ON(!list_empty(&b->list));
886 		mutex_unlock(&bc->lock);
887 
888 		trace_and_count(c, btree_cache_cannibalize, trans);
889 		goto out;
890 	}
891 
892 	mutex_unlock(&bc->lock);
893 	return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
894 }
895 
896 /* Slowpath, don't want it inlined into btree_iter_traverse() */
bch2_btree_node_fill(struct btree_trans * trans,struct btree_path * path,const struct bkey_i * k,enum btree_id btree_id,unsigned level,enum six_lock_type lock_type,bool sync)897 static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
898 				struct btree_path *path,
899 				const struct bkey_i *k,
900 				enum btree_id btree_id,
901 				unsigned level,
902 				enum six_lock_type lock_type,
903 				bool sync)
904 {
905 	struct bch_fs *c = trans->c;
906 	struct btree_cache *bc = &c->btree_cache;
907 	struct btree *b;
908 
909 	if (unlikely(level >= BTREE_MAX_DEPTH)) {
910 		int ret = bch2_fs_topology_error(c, "attempting to get btree node at level %u, >= max depth %u",
911 						 level, BTREE_MAX_DEPTH);
912 		return ERR_PTR(ret);
913 	}
914 
915 	if (unlikely(!bkey_is_btree_ptr(&k->k))) {
916 		struct printbuf buf = PRINTBUF;
917 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
918 
919 		int ret = bch2_fs_topology_error(c, "attempting to get btree node with non-btree key %s", buf.buf);
920 		printbuf_exit(&buf);
921 		return ERR_PTR(ret);
922 	}
923 
924 	if (unlikely(k->k.u64s > BKEY_BTREE_PTR_U64s_MAX)) {
925 		struct printbuf buf = PRINTBUF;
926 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
927 
928 		int ret = bch2_fs_topology_error(c, "attempting to get btree node with too big key %s", buf.buf);
929 		printbuf_exit(&buf);
930 		return ERR_PTR(ret);
931 	}
932 
933 	/*
934 	 * Parent node must be locked, else we could read in a btree node that's
935 	 * been freed:
936 	 */
937 	if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
938 		trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
939 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
940 	}
941 
942 	b = bch2_btree_node_mem_alloc(trans, level != 0);
943 
944 	if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
945 		if (!path)
946 			return b;
947 
948 		trans->memory_allocation_failure = true;
949 		trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
950 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
951 	}
952 
953 	if (IS_ERR(b))
954 		return b;
955 
956 	bkey_copy(&b->key, k);
957 	if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
958 		/* raced with another fill: */
959 
960 		/* mark as unhashed... */
961 		b->hash_val = 0;
962 
963 		mutex_lock(&bc->lock);
964 		__bch2_btree_node_to_freelist(bc, b);
965 		mutex_unlock(&bc->lock);
966 
967 		six_unlock_write(&b->c.lock);
968 		six_unlock_intent(&b->c.lock);
969 		return NULL;
970 	}
971 
972 	set_btree_node_read_in_flight(b);
973 	six_unlock_write(&b->c.lock);
974 
975 	if (path) {
976 		u32 seq = six_lock_seq(&b->c.lock);
977 
978 		/* Unlock before doing IO: */
979 		six_unlock_intent(&b->c.lock);
980 		bch2_trans_unlock_noassert(trans);
981 
982 		bch2_btree_node_read(trans, b, sync);
983 
984 		int ret = bch2_trans_relock(trans);
985 		if (ret)
986 			return ERR_PTR(ret);
987 
988 		if (!sync)
989 			return NULL;
990 
991 		if (!six_relock_type(&b->c.lock, lock_type, seq))
992 			b = NULL;
993 	} else {
994 		bch2_btree_node_read(trans, b, sync);
995 		if (lock_type == SIX_LOCK_read)
996 			six_lock_downgrade(&b->c.lock);
997 	}
998 
999 	return b;
1000 }
1001 
btree_bad_header(struct bch_fs * c,struct btree * b)1002 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
1003 {
1004 	struct printbuf buf = PRINTBUF;
1005 
1006 	if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
1007 		return;
1008 
1009 	prt_printf(&buf,
1010 		   "btree node header doesn't match ptr: ");
1011 	bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
1012 	prt_str(&buf, "\nptr: ");
1013 	bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
1014 
1015 	prt_str(&buf, "\nheader: ");
1016 	bch2_btree_id_level_to_text(&buf, BTREE_NODE_ID(b->data), BTREE_NODE_LEVEL(b->data));
1017 	prt_str(&buf, "\nmin ");
1018 	bch2_bpos_to_text(&buf, b->data->min_key);
1019 
1020 	prt_printf(&buf, "\nmax ");
1021 	bch2_bpos_to_text(&buf, b->data->max_key);
1022 
1023 	bch2_fs_topology_error(c, "%s", buf.buf);
1024 
1025 	printbuf_exit(&buf);
1026 }
1027 
btree_check_header(struct bch_fs * c,struct btree * b)1028 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
1029 {
1030 	if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
1031 	    b->c.level != BTREE_NODE_LEVEL(b->data) ||
1032 	    !bpos_eq(b->data->max_key, b->key.k.p) ||
1033 	    (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
1034 	     !bpos_eq(b->data->min_key,
1035 		      bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
1036 		btree_bad_header(c, b);
1037 }
1038 
__bch2_btree_node_get(struct btree_trans * trans,struct btree_path * path,const struct bkey_i * k,unsigned level,enum six_lock_type lock_type,unsigned long trace_ip)1039 static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
1040 					   const struct bkey_i *k, unsigned level,
1041 					   enum six_lock_type lock_type,
1042 					   unsigned long trace_ip)
1043 {
1044 	struct bch_fs *c = trans->c;
1045 	struct btree_cache *bc = &c->btree_cache;
1046 	struct btree *b;
1047 	bool need_relock = false;
1048 	int ret;
1049 
1050 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1051 retry:
1052 	b = btree_cache_find(bc, k);
1053 	if (unlikely(!b)) {
1054 		/*
1055 		 * We must have the parent locked to call bch2_btree_node_fill(),
1056 		 * else we could read in a btree node from disk that's been
1057 		 * freed:
1058 		 */
1059 		b = bch2_btree_node_fill(trans, path, k, path->btree_id,
1060 					 level, lock_type, true);
1061 		need_relock = true;
1062 
1063 		/* We raced and found the btree node in the cache */
1064 		if (!b)
1065 			goto retry;
1066 
1067 		if (IS_ERR(b))
1068 			return b;
1069 	} else {
1070 		if (btree_node_read_locked(path, level + 1))
1071 			btree_node_unlock(trans, path, level + 1);
1072 
1073 		ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
1074 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1075 			return ERR_PTR(ret);
1076 
1077 		BUG_ON(ret);
1078 
1079 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1080 			     b->c.level != level ||
1081 			     race_fault())) {
1082 			six_unlock_type(&b->c.lock, lock_type);
1083 			if (bch2_btree_node_relock(trans, path, level + 1))
1084 				goto retry;
1085 
1086 			trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
1087 			return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
1088 		}
1089 
1090 		/* avoid atomic set bit if it's not needed: */
1091 		if (!btree_node_accessed(b))
1092 			set_btree_node_accessed(b);
1093 	}
1094 
1095 	if (unlikely(btree_node_read_in_flight(b))) {
1096 		u32 seq = six_lock_seq(&b->c.lock);
1097 
1098 		six_unlock_type(&b->c.lock, lock_type);
1099 		bch2_trans_unlock(trans);
1100 		need_relock = true;
1101 
1102 		bch2_btree_node_wait_on_read(b);
1103 
1104 		ret = bch2_trans_relock(trans);
1105 		if (ret)
1106 			return ERR_PTR(ret);
1107 
1108 		/*
1109 		 * should_be_locked is not set on this path yet, so we need to
1110 		 * relock it specifically:
1111 		 */
1112 		if (!six_relock_type(&b->c.lock, lock_type, seq))
1113 			goto retry;
1114 	}
1115 
1116 	if (unlikely(need_relock)) {
1117 		ret = bch2_trans_relock(trans) ?:
1118 			bch2_btree_path_relock_intent(trans, path);
1119 		if (ret) {
1120 			six_unlock_type(&b->c.lock, lock_type);
1121 			return ERR_PTR(ret);
1122 		}
1123 	}
1124 
1125 	prefetch(b->aux_data);
1126 
1127 	for_each_bset(b, t) {
1128 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1129 
1130 		prefetch(p + L1_CACHE_BYTES * 0);
1131 		prefetch(p + L1_CACHE_BYTES * 1);
1132 		prefetch(p + L1_CACHE_BYTES * 2);
1133 	}
1134 
1135 	if (unlikely(btree_node_read_error(b))) {
1136 		six_unlock_type(&b->c.lock, lock_type);
1137 		return ERR_PTR(-BCH_ERR_btree_node_read_err_cached);
1138 	}
1139 
1140 	EBUG_ON(b->c.btree_id != path->btree_id);
1141 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1142 	btree_check_header(c, b);
1143 
1144 	return b;
1145 }
1146 
1147 /**
1148  * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
1149  * in from disk if necessary.
1150  *
1151  * @trans:	btree transaction object
1152  * @path:	btree_path being traversed
1153  * @k:		pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
1154  * @level:	level of btree node being looked up (0 == leaf node)
1155  * @lock_type:	SIX_LOCK_read or SIX_LOCK_intent
1156  * @trace_ip:	ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
1157  *
1158  * The btree node will have either a read or a write lock held, depending on
1159  * the @write parameter.
1160  *
1161  * Returns: btree node or ERR_PTR()
1162  */
bch2_btree_node_get(struct btree_trans * trans,struct btree_path * path,const struct bkey_i * k,unsigned level,enum six_lock_type lock_type,unsigned long trace_ip)1163 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
1164 				  const struct bkey_i *k, unsigned level,
1165 				  enum six_lock_type lock_type,
1166 				  unsigned long trace_ip)
1167 {
1168 	struct bch_fs *c = trans->c;
1169 	struct btree *b;
1170 	int ret;
1171 
1172 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1173 
1174 	b = btree_node_mem_ptr(k);
1175 
1176 	/*
1177 	 * Check b->hash_val _before_ calling btree_node_lock() - this might not
1178 	 * be the node we want anymore, and trying to lock the wrong node could
1179 	 * cause an unneccessary transaction restart:
1180 	 */
1181 	if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
1182 		     !b ||
1183 		     b->hash_val != btree_ptr_hash_val(k)))
1184 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1185 
1186 	if (btree_node_read_locked(path, level + 1))
1187 		btree_node_unlock(trans, path, level + 1);
1188 
1189 	ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
1190 	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1191 		return ERR_PTR(ret);
1192 
1193 	BUG_ON(ret);
1194 
1195 	if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1196 		     b->c.level != level ||
1197 		     race_fault())) {
1198 		six_unlock_type(&b->c.lock, lock_type);
1199 		if (bch2_btree_node_relock(trans, path, level + 1))
1200 			return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1201 
1202 		trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
1203 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
1204 	}
1205 
1206 	if (unlikely(btree_node_read_in_flight(b))) {
1207 		six_unlock_type(&b->c.lock, lock_type);
1208 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1209 	}
1210 
1211 	prefetch(b->aux_data);
1212 
1213 	for_each_bset(b, t) {
1214 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1215 
1216 		prefetch(p + L1_CACHE_BYTES * 0);
1217 		prefetch(p + L1_CACHE_BYTES * 1);
1218 		prefetch(p + L1_CACHE_BYTES * 2);
1219 	}
1220 
1221 	/* avoid atomic set bit if it's not needed: */
1222 	if (!btree_node_accessed(b))
1223 		set_btree_node_accessed(b);
1224 
1225 	if (unlikely(btree_node_read_error(b))) {
1226 		six_unlock_type(&b->c.lock, lock_type);
1227 		return ERR_PTR(-BCH_ERR_btree_node_read_err_cached);
1228 	}
1229 
1230 	EBUG_ON(b->c.btree_id != path->btree_id);
1231 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1232 	btree_check_header(c, b);
1233 
1234 	return b;
1235 }
1236 
bch2_btree_node_get_noiter(struct btree_trans * trans,const struct bkey_i * k,enum btree_id btree_id,unsigned level,bool nofill)1237 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1238 					 const struct bkey_i *k,
1239 					 enum btree_id btree_id,
1240 					 unsigned level,
1241 					 bool nofill)
1242 {
1243 	struct bch_fs *c = trans->c;
1244 	struct btree_cache *bc = &c->btree_cache;
1245 	struct btree *b;
1246 	int ret;
1247 
1248 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1249 
1250 	if (c->opts.btree_node_mem_ptr_optimization) {
1251 		b = btree_node_mem_ptr(k);
1252 		if (b)
1253 			goto lock_node;
1254 	}
1255 retry:
1256 	b = btree_cache_find(bc, k);
1257 	if (unlikely(!b)) {
1258 		if (nofill)
1259 			goto out;
1260 
1261 		b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1262 					 level, SIX_LOCK_read, true);
1263 
1264 		/* We raced and found the btree node in the cache */
1265 		if (!b)
1266 			goto retry;
1267 
1268 		if (IS_ERR(b) &&
1269 		    !bch2_btree_cache_cannibalize_lock(trans, NULL))
1270 			goto retry;
1271 
1272 		if (IS_ERR(b))
1273 			goto out;
1274 	} else {
1275 lock_node:
1276 		ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1277 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1278 			return ERR_PTR(ret);
1279 
1280 		BUG_ON(ret);
1281 
1282 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1283 			     b->c.btree_id != btree_id ||
1284 			     b->c.level != level)) {
1285 			six_unlock_read(&b->c.lock);
1286 			goto retry;
1287 		}
1288 	}
1289 
1290 	/* XXX: waiting on IO with btree locks held: */
1291 	__bch2_btree_node_wait_on_read(b);
1292 
1293 	prefetch(b->aux_data);
1294 
1295 	for_each_bset(b, t) {
1296 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1297 
1298 		prefetch(p + L1_CACHE_BYTES * 0);
1299 		prefetch(p + L1_CACHE_BYTES * 1);
1300 		prefetch(p + L1_CACHE_BYTES * 2);
1301 	}
1302 
1303 	/* avoid atomic set bit if it's not needed: */
1304 	if (!btree_node_accessed(b))
1305 		set_btree_node_accessed(b);
1306 
1307 	if (unlikely(btree_node_read_error(b))) {
1308 		six_unlock_read(&b->c.lock);
1309 		b = ERR_PTR(-BCH_ERR_btree_node_read_err_cached);
1310 		goto out;
1311 	}
1312 
1313 	EBUG_ON(b->c.btree_id != btree_id);
1314 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1315 	btree_check_header(c, b);
1316 out:
1317 	bch2_btree_cache_cannibalize_unlock(trans);
1318 	return b;
1319 }
1320 
bch2_btree_node_prefetch(struct btree_trans * trans,struct btree_path * path,const struct bkey_i * k,enum btree_id btree_id,unsigned level)1321 int bch2_btree_node_prefetch(struct btree_trans *trans,
1322 			     struct btree_path *path,
1323 			     const struct bkey_i *k,
1324 			     enum btree_id btree_id, unsigned level)
1325 {
1326 	struct bch_fs *c = trans->c;
1327 	struct btree_cache *bc = &c->btree_cache;
1328 
1329 	BUG_ON(path && !btree_node_locked(path, level + 1));
1330 	BUG_ON(level >= BTREE_MAX_DEPTH);
1331 
1332 	struct btree *b = btree_cache_find(bc, k);
1333 	if (b)
1334 		return 0;
1335 
1336 	b = bch2_btree_node_fill(trans, path, k, btree_id,
1337 				 level, SIX_LOCK_read, false);
1338 	int ret = PTR_ERR_OR_ZERO(b);
1339 	if (ret)
1340 		return ret;
1341 	if (b)
1342 		six_unlock_read(&b->c.lock);
1343 	return 0;
1344 }
1345 
bch2_btree_node_evict(struct btree_trans * trans,const struct bkey_i * k)1346 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1347 {
1348 	struct bch_fs *c = trans->c;
1349 	struct btree_cache *bc = &c->btree_cache;
1350 	struct btree *b;
1351 
1352 	b = btree_cache_find(bc, k);
1353 	if (!b)
1354 		return;
1355 
1356 	BUG_ON(b == btree_node_root(trans->c, b));
1357 wait_on_io:
1358 	/* not allowed to wait on io with btree locks held: */
1359 
1360 	/* XXX we're called from btree_gc which will be holding other btree
1361 	 * nodes locked
1362 	 */
1363 	__bch2_btree_node_wait_on_read(b);
1364 	__bch2_btree_node_wait_on_write(b);
1365 
1366 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1367 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1368 	if (unlikely(b->hash_val != btree_ptr_hash_val(k)))
1369 		goto out;
1370 
1371 	if (btree_node_dirty(b)) {
1372 		__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1373 		six_unlock_write(&b->c.lock);
1374 		six_unlock_intent(&b->c.lock);
1375 		goto wait_on_io;
1376 	}
1377 
1378 	BUG_ON(btree_node_dirty(b));
1379 
1380 	mutex_lock(&bc->lock);
1381 	bch2_btree_node_hash_remove(bc, b);
1382 	btree_node_data_free(bc, b);
1383 	mutex_unlock(&bc->lock);
1384 out:
1385 	six_unlock_write(&b->c.lock);
1386 	six_unlock_intent(&b->c.lock);
1387 }
1388 
bch2_btree_id_str(enum btree_id btree)1389 const char *bch2_btree_id_str(enum btree_id btree)
1390 {
1391 	return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1392 }
1393 
bch2_btree_id_to_text(struct printbuf * out,enum btree_id btree)1394 void bch2_btree_id_to_text(struct printbuf *out, enum btree_id btree)
1395 {
1396 	if (btree < BTREE_ID_NR)
1397 		prt_str(out, __bch2_btree_ids[btree]);
1398 	else
1399 		prt_printf(out, "(unknown btree %u)", btree);
1400 }
1401 
bch2_btree_id_level_to_text(struct printbuf * out,enum btree_id btree,unsigned level)1402 void bch2_btree_id_level_to_text(struct printbuf *out, enum btree_id btree, unsigned level)
1403 {
1404 	prt_str(out, "btree=");
1405 	bch2_btree_id_to_text(out, btree);
1406 	prt_printf(out, " level=%u", level);
1407 }
1408 
__bch2_btree_pos_to_text(struct printbuf * out,struct bch_fs * c,enum btree_id btree,unsigned level,struct bkey_s_c k)1409 void __bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c,
1410 			      enum btree_id btree, unsigned level, struct bkey_s_c k)
1411 {
1412 	bch2_btree_id_to_text(out, btree);
1413 	prt_printf(out, " level %u/", level);
1414 	struct btree_root *r = bch2_btree_id_root(c, btree);
1415 	if (r)
1416 		prt_printf(out, "%u", r->level);
1417 	else
1418 		prt_printf(out, "(unknown)");
1419 	prt_printf(out, "\n  ");
1420 
1421 	bch2_bkey_val_to_text(out, c, k);
1422 }
1423 
bch2_btree_pos_to_text(struct printbuf * out,struct bch_fs * c,const struct btree * b)1424 void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1425 {
1426 	__bch2_btree_pos_to_text(out, c, b->c.btree_id, b->c.level, bkey_i_to_s_c(&b->key));
1427 }
1428 
bch2_btree_node_to_text(struct printbuf * out,struct bch_fs * c,const struct btree * b)1429 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1430 {
1431 	struct bset_stats stats;
1432 
1433 	memset(&stats, 0, sizeof(stats));
1434 
1435 	bch2_btree_keys_stats(b, &stats);
1436 
1437 	prt_printf(out, "l %u ", b->c.level);
1438 	bch2_bpos_to_text(out, b->data->min_key);
1439 	prt_printf(out, " - ");
1440 	bch2_bpos_to_text(out, b->data->max_key);
1441 	prt_printf(out, ":\n"
1442 	       "    ptrs: ");
1443 	bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1444 	prt_newline(out);
1445 
1446 	prt_printf(out,
1447 	       "    format: ");
1448 	bch2_bkey_format_to_text(out, &b->format);
1449 
1450 	prt_printf(out,
1451 	       "    unpack fn len: %u\n"
1452 	       "    bytes used %zu/%zu (%zu%% full)\n"
1453 	       "    sib u64s: %u, %u (merge threshold %u)\n"
1454 	       "    nr packed keys %u\n"
1455 	       "    nr unpacked keys %u\n"
1456 	       "    floats %zu\n"
1457 	       "    failed unpacked %zu\n",
1458 	       b->unpack_fn_len,
1459 	       b->nr.live_u64s * sizeof(u64),
1460 	       btree_buf_bytes(b) - sizeof(struct btree_node),
1461 	       b->nr.live_u64s * 100 / btree_max_u64s(c),
1462 	       b->sib_u64s[0],
1463 	       b->sib_u64s[1],
1464 	       c->btree_foreground_merge_threshold,
1465 	       b->nr.packed_keys,
1466 	       b->nr.unpacked_keys,
1467 	       stats.floats,
1468 	       stats.failed);
1469 }
1470 
prt_btree_cache_line(struct printbuf * out,const struct bch_fs * c,const char * label,size_t nr)1471 static void prt_btree_cache_line(struct printbuf *out, const struct bch_fs *c,
1472 				 const char *label, size_t nr)
1473 {
1474 	prt_printf(out, "%s\t", label);
1475 	prt_human_readable_u64(out, nr * c->opts.btree_node_size);
1476 	prt_printf(out, " (%zu)\n", nr);
1477 }
1478 
1479 static const char * const bch2_btree_cache_not_freed_reasons_strs[] = {
1480 #define x(n) #n,
1481 	BCH_BTREE_CACHE_NOT_FREED_REASONS()
1482 #undef x
1483 	NULL
1484 };
1485 
bch2_btree_cache_to_text(struct printbuf * out,const struct btree_cache * bc)1486 void bch2_btree_cache_to_text(struct printbuf *out, const struct btree_cache *bc)
1487 {
1488 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_cache);
1489 
1490 	if (!out->nr_tabstops)
1491 		printbuf_tabstop_push(out, 32);
1492 
1493 	prt_btree_cache_line(out, c, "live:",		bc->live[0].nr);
1494 	prt_btree_cache_line(out, c, "pinned:",		bc->live[1].nr);
1495 	prt_btree_cache_line(out, c, "freeable:",	bc->nr_freeable);
1496 	prt_btree_cache_line(out, c, "dirty:",		atomic_long_read(&bc->nr_dirty));
1497 	prt_printf(out, "cannibalize lock:\t%p\n",	bc->alloc_lock);
1498 	prt_newline(out);
1499 
1500 	for (unsigned i = 0; i < ARRAY_SIZE(bc->nr_by_btree); i++) {
1501 		bch2_btree_id_to_text(out, i);
1502 		prt_printf(out, "\t");
1503 		prt_human_readable_u64(out, bc->nr_by_btree[i] * c->opts.btree_node_size);
1504 		prt_printf(out, " (%zu)\n", bc->nr_by_btree[i]);
1505 	}
1506 
1507 	prt_newline(out);
1508 	prt_printf(out, "freed:\t%zu\n", bc->nr_freed);
1509 	prt_printf(out, "not freed:\n");
1510 
1511 	for (unsigned i = 0; i < ARRAY_SIZE(bc->not_freed); i++)
1512 		prt_printf(out, "  %s\t%llu\n",
1513 			   bch2_btree_cache_not_freed_reasons_strs[i], bc->not_freed[i]);
1514 }
1515