1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/kstrtox.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/hash.h>
12 #include <linux/sort.h>
13 #include <linux/io.h>
14 #include <linux/nd.h>
15 #include "nd-core.h"
16 #include "nd.h"
17
18 /*
19 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
20 * irrelevant.
21 */
22 #include <linux/io-64-nonatomic-hi-lo.h>
23
24 static DEFINE_PER_CPU(int, flush_idx);
25
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)26 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
27 struct nd_region_data *ndrd)
28 {
29 int i, j;
30
31 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
32 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
33 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
34 struct resource *res = &nvdimm->flush_wpq[i];
35 unsigned long pfn = PHYS_PFN(res->start);
36 void __iomem *flush_page;
37
38 /* check if flush hints share a page */
39 for (j = 0; j < i; j++) {
40 struct resource *res_j = &nvdimm->flush_wpq[j];
41 unsigned long pfn_j = PHYS_PFN(res_j->start);
42
43 if (pfn == pfn_j)
44 break;
45 }
46
47 if (j < i)
48 flush_page = (void __iomem *) ((unsigned long)
49 ndrd_get_flush_wpq(ndrd, dimm, j)
50 & PAGE_MASK);
51 else
52 flush_page = devm_nvdimm_ioremap(dev,
53 PFN_PHYS(pfn), PAGE_SIZE);
54 if (!flush_page)
55 return -ENXIO;
56 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
57 + (res->start & ~PAGE_MASK));
58 }
59
60 return 0;
61 }
62
nd_region_invalidate_memregion(struct nd_region * nd_region)63 static int nd_region_invalidate_memregion(struct nd_region *nd_region)
64 {
65 int i, incoherent = 0;
66
67 for (i = 0; i < nd_region->ndr_mappings; i++) {
68 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
69 struct nvdimm *nvdimm = nd_mapping->nvdimm;
70
71 if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
72 incoherent++;
73 break;
74 }
75 }
76
77 if (!incoherent)
78 return 0;
79
80 if (!cpu_cache_has_invalidate_memregion()) {
81 if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
82 dev_warn(
83 &nd_region->dev,
84 "Bypassing cpu_cache_invalidate_memergion() for testing!\n");
85 goto out;
86 } else {
87 dev_err(&nd_region->dev,
88 "Failed to synchronize CPU cache state\n");
89 return -ENXIO;
90 }
91 }
92
93 cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
94 out:
95 for (i = 0; i < nd_region->ndr_mappings; i++) {
96 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
97 struct nvdimm *nvdimm = nd_mapping->nvdimm;
98
99 clear_bit(NDD_INCOHERENT, &nvdimm->flags);
100 }
101
102 return 0;
103 }
104
get_flush_data(struct nd_region * nd_region,size_t * size,int * num_flush)105 static int get_flush_data(struct nd_region *nd_region, size_t *size, int *num_flush)
106 {
107 size_t flush_data_size = sizeof(void *);
108 int _num_flush = 0;
109 int i;
110
111 guard(nvdimm_bus)(&nd_region->dev);
112 for (i = 0; i < nd_region->ndr_mappings; i++) {
113 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
114 struct nvdimm *nvdimm = nd_mapping->nvdimm;
115
116 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags))
117 return -EBUSY;
118
119 /* at least one null hint slot per-dimm for the "no-hint" case */
120 flush_data_size += sizeof(void *);
121 _num_flush = min_not_zero(_num_flush, nvdimm->num_flush);
122 if (!nvdimm->num_flush)
123 continue;
124 flush_data_size += nvdimm->num_flush * sizeof(void *);
125 }
126
127 *size = flush_data_size;
128 *num_flush = _num_flush;
129
130 return 0;
131 }
132
nd_region_activate(struct nd_region * nd_region)133 int nd_region_activate(struct nd_region *nd_region)
134 {
135 int i, j, rc, num_flush;
136 struct nd_region_data *ndrd;
137 struct device *dev = &nd_region->dev;
138 size_t flush_data_size;
139
140 rc = get_flush_data(nd_region, &flush_data_size, &num_flush);
141 if (rc)
142 return rc;
143
144 rc = nd_region_invalidate_memregion(nd_region);
145 if (rc)
146 return rc;
147
148 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
149 if (!ndrd)
150 return -ENOMEM;
151 dev_set_drvdata(dev, ndrd);
152
153 if (!num_flush)
154 return 0;
155
156 ndrd->hints_shift = ilog2(num_flush);
157 for (i = 0; i < nd_region->ndr_mappings; i++) {
158 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
159 struct nvdimm *nvdimm = nd_mapping->nvdimm;
160 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
161
162 if (rc)
163 return rc;
164 }
165
166 /*
167 * Clear out entries that are duplicates. This should prevent the
168 * extra flushings.
169 */
170 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
171 /* ignore if NULL already */
172 if (!ndrd_get_flush_wpq(ndrd, i, 0))
173 continue;
174
175 for (j = i + 1; j < nd_region->ndr_mappings; j++)
176 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
177 ndrd_get_flush_wpq(ndrd, j, 0))
178 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
179 }
180
181 return 0;
182 }
183
nd_region_release(struct device * dev)184 static void nd_region_release(struct device *dev)
185 {
186 struct nd_region *nd_region = to_nd_region(dev);
187 u16 i;
188
189 for (i = 0; i < nd_region->ndr_mappings; i++) {
190 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
191 struct nvdimm *nvdimm = nd_mapping->nvdimm;
192
193 put_device(&nvdimm->dev);
194 }
195 free_percpu(nd_region->lane);
196 if (!test_bit(ND_REGION_CXL, &nd_region->flags))
197 memregion_free(nd_region->id);
198 kfree(nd_region);
199 }
200
to_nd_region(struct device * dev)201 struct nd_region *to_nd_region(struct device *dev)
202 {
203 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
204
205 WARN_ON(dev->type->release != nd_region_release);
206 return nd_region;
207 }
208 EXPORT_SYMBOL_GPL(to_nd_region);
209
nd_region_dev(struct nd_region * nd_region)210 struct device *nd_region_dev(struct nd_region *nd_region)
211 {
212 if (!nd_region)
213 return NULL;
214 return &nd_region->dev;
215 }
216 EXPORT_SYMBOL_GPL(nd_region_dev);
217
nd_region_provider_data(struct nd_region * nd_region)218 void *nd_region_provider_data(struct nd_region *nd_region)
219 {
220 return nd_region->provider_data;
221 }
222 EXPORT_SYMBOL_GPL(nd_region_provider_data);
223
224 /**
225 * nd_region_to_nstype() - region to an integer namespace type
226 * @nd_region: region-device to interrogate
227 *
228 * This is the 'nstype' attribute of a region as well, an input to the
229 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
230 * namespace devices with namespace drivers.
231 */
nd_region_to_nstype(struct nd_region * nd_region)232 int nd_region_to_nstype(struct nd_region *nd_region)
233 {
234 if (is_memory(&nd_region->dev)) {
235 u16 i, label;
236
237 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
238 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
239 struct nvdimm *nvdimm = nd_mapping->nvdimm;
240
241 if (test_bit(NDD_LABELING, &nvdimm->flags))
242 label++;
243 }
244 if (label)
245 return ND_DEVICE_NAMESPACE_PMEM;
246 else
247 return ND_DEVICE_NAMESPACE_IO;
248 }
249
250 return 0;
251 }
252 EXPORT_SYMBOL(nd_region_to_nstype);
253
region_size(struct nd_region * nd_region)254 static unsigned long long region_size(struct nd_region *nd_region)
255 {
256 if (is_memory(&nd_region->dev)) {
257 return nd_region->ndr_size;
258 } else if (nd_region->ndr_mappings == 1) {
259 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
260
261 return nd_mapping->size;
262 }
263
264 return 0;
265 }
266
size_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t size_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 struct nd_region *nd_region = to_nd_region(dev);
271
272 return sprintf(buf, "%llu\n", region_size(nd_region));
273 }
274 static DEVICE_ATTR_RO(size);
275
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t deep_flush_show(struct device *dev,
277 struct device_attribute *attr, char *buf)
278 {
279 struct nd_region *nd_region = to_nd_region(dev);
280
281 /*
282 * NOTE: in the nvdimm_has_flush() error case this attribute is
283 * not visible.
284 */
285 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
286 }
287
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)288 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
289 const char *buf, size_t len)
290 {
291 bool flush;
292 int rc = kstrtobool(buf, &flush);
293 struct nd_region *nd_region = to_nd_region(dev);
294
295 if (rc)
296 return rc;
297 if (!flush)
298 return -EINVAL;
299 rc = nvdimm_flush(nd_region, NULL);
300 if (rc)
301 return rc;
302
303 return len;
304 }
305 static DEVICE_ATTR_RW(deep_flush);
306
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)307 static ssize_t mappings_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309 {
310 struct nd_region *nd_region = to_nd_region(dev);
311
312 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
313 }
314 static DEVICE_ATTR_RO(mappings);
315
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t nstype_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 struct nd_region *nd_region = to_nd_region(dev);
320
321 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
322 }
323 static DEVICE_ATTR_RO(nstype);
324
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t set_cookie_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct nd_region *nd_region = to_nd_region(dev);
329 struct nd_interleave_set *nd_set = nd_region->nd_set;
330 ssize_t rc = 0;
331
332 if (is_memory(dev) && nd_set)
333 /* pass, should be precluded by region_visible */;
334 else
335 return -ENXIO;
336
337 /*
338 * The cookie to show depends on which specification of the
339 * labels we are using. If there are not labels then default to
340 * the v1.1 namespace label cookie definition. To read all this
341 * data we need to wait for probing to settle.
342 */
343 guard(device)(dev);
344 guard(nvdimm_bus)(dev);
345 wait_nvdimm_bus_probe_idle(dev);
346 if (nd_region->ndr_mappings) {
347 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
348 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
349
350 if (ndd) {
351 struct nd_namespace_index *nsindex;
352
353 nsindex = to_namespace_index(ndd, ndd->ns_current);
354 rc = sprintf(buf, "%#llx\n",
355 nd_region_interleave_set_cookie(nd_region,
356 nsindex));
357 }
358 }
359
360 if (rc)
361 return rc;
362 return sprintf(buf, "%#llx\n", nd_set->cookie1);
363 }
364 static DEVICE_ATTR_RO(set_cookie);
365
nd_region_available_dpa(struct nd_region * nd_region)366 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
367 {
368 resource_size_t available;
369 int i;
370
371 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
372
373 available = 0;
374 for (i = 0; i < nd_region->ndr_mappings; i++) {
375 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
377
378 /* if a dimm is disabled the available capacity is zero */
379 if (!ndd)
380 return 0;
381
382 available += nd_pmem_available_dpa(nd_region, nd_mapping);
383 }
384
385 return available;
386 }
387
nd_region_allocatable_dpa(struct nd_region * nd_region)388 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
389 {
390 resource_size_t avail = 0;
391 int i;
392
393 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
394 for (i = 0; i < nd_region->ndr_mappings; i++) {
395 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
396
397 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
398 nd_region, nd_mapping));
399 }
400 return avail * nd_region->ndr_mappings;
401 }
402
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)403 static ssize_t available_size_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
405 {
406 struct nd_region *nd_region = to_nd_region(dev);
407
408 /*
409 * Flush in-flight updates and grab a snapshot of the available
410 * size. Of course, this value is potentially invalidated the
411 * memory nvdimm_bus_lock() is dropped, but that's userspace's
412 * problem to not race itself.
413 */
414 guard(device)(dev);
415 guard(nvdimm_bus)(dev);
416 wait_nvdimm_bus_probe_idle(dev);
417
418 return sprintf(buf, "%llu\n", nd_region_available_dpa(nd_region));
419 }
420 static DEVICE_ATTR_RO(available_size);
421
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)422 static ssize_t max_available_extent_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
424 {
425 struct nd_region *nd_region = to_nd_region(dev);
426
427 guard(device)(dev);
428 guard(nvdimm_bus)(dev);
429 wait_nvdimm_bus_probe_idle(dev);
430
431 return sprintf(buf, "%llu\n", nd_region_allocatable_dpa(nd_region));
432 }
433 static DEVICE_ATTR_RO(max_available_extent);
434
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)435 static ssize_t init_namespaces_show(struct device *dev,
436 struct device_attribute *attr, char *buf)
437 {
438 struct nd_region_data *ndrd = dev_get_drvdata(dev);
439
440 guard(nvdimm_bus)(dev);
441 if (!ndrd)
442 return -ENXIO;
443
444 return sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
445 }
446 static DEVICE_ATTR_RO(init_namespaces);
447
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t namespace_seed_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct nd_region *nd_region = to_nd_region(dev);
452
453 guard(nvdimm_bus)(dev);
454 if (nd_region->ns_seed)
455 return sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
456
457 return sprintf(buf, "\n");
458 }
459 static DEVICE_ATTR_RO(namespace_seed);
460
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)461 static ssize_t btt_seed_show(struct device *dev,
462 struct device_attribute *attr, char *buf)
463 {
464 struct nd_region *nd_region = to_nd_region(dev);
465
466 guard(nvdimm_bus)(dev);
467 if (nd_region->btt_seed)
468 return sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
469
470 return sprintf(buf, "\n");
471 }
472 static DEVICE_ATTR_RO(btt_seed);
473
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t pfn_seed_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct nd_region *nd_region = to_nd_region(dev);
478
479 guard(nvdimm_bus)(dev);
480 if (nd_region->pfn_seed)
481 return sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
482
483 return sprintf(buf, "\n");
484 }
485 static DEVICE_ATTR_RO(pfn_seed);
486
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)487 static ssize_t dax_seed_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
489 {
490 struct nd_region *nd_region = to_nd_region(dev);
491
492 guard(nvdimm_bus)(dev);
493 if (nd_region->dax_seed)
494 return sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
495
496 return sprintf(buf, "\n");
497 }
498 static DEVICE_ATTR_RO(dax_seed);
499
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)500 static ssize_t read_only_show(struct device *dev,
501 struct device_attribute *attr, char *buf)
502 {
503 struct nd_region *nd_region = to_nd_region(dev);
504
505 return sprintf(buf, "%d\n", nd_region->ro);
506 }
507
revalidate_read_only(struct device * dev,void * data)508 static int revalidate_read_only(struct device *dev, void *data)
509 {
510 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
511 return 0;
512 }
513
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)514 static ssize_t read_only_store(struct device *dev,
515 struct device_attribute *attr, const char *buf, size_t len)
516 {
517 bool ro;
518 int rc = kstrtobool(buf, &ro);
519 struct nd_region *nd_region = to_nd_region(dev);
520
521 if (rc)
522 return rc;
523
524 nd_region->ro = ro;
525 device_for_each_child(dev, NULL, revalidate_read_only);
526 return len;
527 }
528 static DEVICE_ATTR_RW(read_only);
529
align_show(struct device * dev,struct device_attribute * attr,char * buf)530 static ssize_t align_show(struct device *dev,
531 struct device_attribute *attr, char *buf)
532 {
533 struct nd_region *nd_region = to_nd_region(dev);
534
535 return sprintf(buf, "%#lx\n", nd_region->align);
536 }
537
align_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)538 static ssize_t align_store(struct device *dev,
539 struct device_attribute *attr, const char *buf, size_t len)
540 {
541 struct nd_region *nd_region = to_nd_region(dev);
542 unsigned long val, dpa;
543 u32 mappings, remainder;
544 int rc;
545
546 rc = kstrtoul(buf, 0, &val);
547 if (rc)
548 return rc;
549
550 /*
551 * Ensure space-align is evenly divisible by the region
552 * interleave-width because the kernel typically has no facility
553 * to determine which DIMM(s), dimm-physical-addresses, would
554 * contribute to the tail capacity in system-physical-address
555 * space for the namespace.
556 */
557 mappings = max_t(u32, 1, nd_region->ndr_mappings);
558 dpa = div_u64_rem(val, mappings, &remainder);
559 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
560 || val > region_size(nd_region) || remainder)
561 return -EINVAL;
562
563 /*
564 * Given that space allocation consults this value multiple
565 * times ensure it does not change for the duration of the
566 * allocation.
567 */
568 guard(nvdimm_bus)(dev);
569 nd_region->align = val;
570
571 return len;
572 }
573 static DEVICE_ATTR_RW(align);
574
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)575 static ssize_t region_badblocks_show(struct device *dev,
576 struct device_attribute *attr, char *buf)
577 {
578 struct nd_region *nd_region = to_nd_region(dev);
579 ssize_t rc;
580
581 device_lock(dev);
582 if (dev->driver)
583 rc = badblocks_show(&nd_region->bb, buf, 0);
584 else
585 rc = -ENXIO;
586 device_unlock(dev);
587
588 return rc;
589 }
590 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
591
resource_show(struct device * dev,struct device_attribute * attr,char * buf)592 static ssize_t resource_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct nd_region *nd_region = to_nd_region(dev);
596
597 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
598 }
599 static DEVICE_ATTR_ADMIN_RO(resource);
600
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)601 static ssize_t persistence_domain_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603 {
604 struct nd_region *nd_region = to_nd_region(dev);
605
606 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
607 return sprintf(buf, "cpu_cache\n");
608 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
609 return sprintf(buf, "memory_controller\n");
610 else
611 return sprintf(buf, "\n");
612 }
613 static DEVICE_ATTR_RO(persistence_domain);
614
615 static struct attribute *nd_region_attributes[] = {
616 &dev_attr_size.attr,
617 &dev_attr_align.attr,
618 &dev_attr_nstype.attr,
619 &dev_attr_mappings.attr,
620 &dev_attr_btt_seed.attr,
621 &dev_attr_pfn_seed.attr,
622 &dev_attr_dax_seed.attr,
623 &dev_attr_deep_flush.attr,
624 &dev_attr_read_only.attr,
625 &dev_attr_set_cookie.attr,
626 &dev_attr_available_size.attr,
627 &dev_attr_max_available_extent.attr,
628 &dev_attr_namespace_seed.attr,
629 &dev_attr_init_namespaces.attr,
630 &dev_attr_badblocks.attr,
631 &dev_attr_resource.attr,
632 &dev_attr_persistence_domain.attr,
633 NULL,
634 };
635
region_visible(struct kobject * kobj,struct attribute * a,int n)636 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
637 {
638 struct device *dev = container_of(kobj, typeof(*dev), kobj);
639 struct nd_region *nd_region = to_nd_region(dev);
640 struct nd_interleave_set *nd_set = nd_region->nd_set;
641 int type = nd_region_to_nstype(nd_region);
642
643 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
644 return 0;
645
646 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
647 return 0;
648
649 if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
650 return 0;
651
652 if (a == &dev_attr_resource.attr && !is_memory(dev))
653 return 0;
654
655 if (a == &dev_attr_deep_flush.attr) {
656 int has_flush = nvdimm_has_flush(nd_region);
657
658 if (has_flush == 1)
659 return a->mode;
660 else if (has_flush == 0)
661 return 0444;
662 else
663 return 0;
664 }
665
666 if (a == &dev_attr_persistence_domain.attr) {
667 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
668 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
669 return 0;
670 return a->mode;
671 }
672
673 if (a == &dev_attr_align.attr)
674 return a->mode;
675
676 if (a != &dev_attr_set_cookie.attr
677 && a != &dev_attr_available_size.attr)
678 return a->mode;
679
680 if (type == ND_DEVICE_NAMESPACE_PMEM &&
681 a == &dev_attr_available_size.attr)
682 return a->mode;
683 else if (is_memory(dev) && nd_set)
684 return a->mode;
685
686 return 0;
687 }
688
mappingN(struct device * dev,char * buf,int n)689 static ssize_t mappingN(struct device *dev, char *buf, int n)
690 {
691 struct nd_region *nd_region = to_nd_region(dev);
692 struct nd_mapping *nd_mapping;
693 struct nvdimm *nvdimm;
694
695 if (n >= nd_region->ndr_mappings)
696 return -ENXIO;
697 nd_mapping = &nd_region->mapping[n];
698 nvdimm = nd_mapping->nvdimm;
699
700 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
701 nd_mapping->start, nd_mapping->size,
702 nd_mapping->position);
703 }
704
705 #define REGION_MAPPING(idx) \
706 static ssize_t mapping##idx##_show(struct device *dev, \
707 struct device_attribute *attr, char *buf) \
708 { \
709 return mappingN(dev, buf, idx); \
710 } \
711 static DEVICE_ATTR_RO(mapping##idx)
712
713 /*
714 * 32 should be enough for a while, even in the presence of socket
715 * interleave a 32-way interleave set is a degenerate case.
716 */
717 REGION_MAPPING(0);
718 REGION_MAPPING(1);
719 REGION_MAPPING(2);
720 REGION_MAPPING(3);
721 REGION_MAPPING(4);
722 REGION_MAPPING(5);
723 REGION_MAPPING(6);
724 REGION_MAPPING(7);
725 REGION_MAPPING(8);
726 REGION_MAPPING(9);
727 REGION_MAPPING(10);
728 REGION_MAPPING(11);
729 REGION_MAPPING(12);
730 REGION_MAPPING(13);
731 REGION_MAPPING(14);
732 REGION_MAPPING(15);
733 REGION_MAPPING(16);
734 REGION_MAPPING(17);
735 REGION_MAPPING(18);
736 REGION_MAPPING(19);
737 REGION_MAPPING(20);
738 REGION_MAPPING(21);
739 REGION_MAPPING(22);
740 REGION_MAPPING(23);
741 REGION_MAPPING(24);
742 REGION_MAPPING(25);
743 REGION_MAPPING(26);
744 REGION_MAPPING(27);
745 REGION_MAPPING(28);
746 REGION_MAPPING(29);
747 REGION_MAPPING(30);
748 REGION_MAPPING(31);
749
mapping_visible(struct kobject * kobj,struct attribute * a,int n)750 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
751 {
752 struct device *dev = container_of(kobj, struct device, kobj);
753 struct nd_region *nd_region = to_nd_region(dev);
754
755 if (n < nd_region->ndr_mappings)
756 return a->mode;
757 return 0;
758 }
759
760 static struct attribute *mapping_attributes[] = {
761 &dev_attr_mapping0.attr,
762 &dev_attr_mapping1.attr,
763 &dev_attr_mapping2.attr,
764 &dev_attr_mapping3.attr,
765 &dev_attr_mapping4.attr,
766 &dev_attr_mapping5.attr,
767 &dev_attr_mapping6.attr,
768 &dev_attr_mapping7.attr,
769 &dev_attr_mapping8.attr,
770 &dev_attr_mapping9.attr,
771 &dev_attr_mapping10.attr,
772 &dev_attr_mapping11.attr,
773 &dev_attr_mapping12.attr,
774 &dev_attr_mapping13.attr,
775 &dev_attr_mapping14.attr,
776 &dev_attr_mapping15.attr,
777 &dev_attr_mapping16.attr,
778 &dev_attr_mapping17.attr,
779 &dev_attr_mapping18.attr,
780 &dev_attr_mapping19.attr,
781 &dev_attr_mapping20.attr,
782 &dev_attr_mapping21.attr,
783 &dev_attr_mapping22.attr,
784 &dev_attr_mapping23.attr,
785 &dev_attr_mapping24.attr,
786 &dev_attr_mapping25.attr,
787 &dev_attr_mapping26.attr,
788 &dev_attr_mapping27.attr,
789 &dev_attr_mapping28.attr,
790 &dev_attr_mapping29.attr,
791 &dev_attr_mapping30.attr,
792 &dev_attr_mapping31.attr,
793 NULL,
794 };
795
796 static const struct attribute_group nd_mapping_attribute_group = {
797 .is_visible = mapping_visible,
798 .attrs = mapping_attributes,
799 };
800
801 static const struct attribute_group nd_region_attribute_group = {
802 .attrs = nd_region_attributes,
803 .is_visible = region_visible,
804 };
805
806 static const struct attribute_group *nd_region_attribute_groups[] = {
807 &nd_device_attribute_group,
808 &nd_region_attribute_group,
809 &nd_numa_attribute_group,
810 &nd_mapping_attribute_group,
811 NULL,
812 };
813
814 static const struct device_type nd_pmem_device_type = {
815 .name = "nd_pmem",
816 .release = nd_region_release,
817 .groups = nd_region_attribute_groups,
818 };
819
820 static const struct device_type nd_volatile_device_type = {
821 .name = "nd_volatile",
822 .release = nd_region_release,
823 .groups = nd_region_attribute_groups,
824 };
825
is_nd_pmem(const struct device * dev)826 bool is_nd_pmem(const struct device *dev)
827 {
828 return dev ? dev->type == &nd_pmem_device_type : false;
829 }
830
is_nd_volatile(const struct device * dev)831 bool is_nd_volatile(const struct device *dev)
832 {
833 return dev ? dev->type == &nd_volatile_device_type : false;
834 }
835
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)836 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
837 struct nd_namespace_index *nsindex)
838 {
839 struct nd_interleave_set *nd_set = nd_region->nd_set;
840
841 if (!nd_set)
842 return 0;
843
844 if (nsindex && __le16_to_cpu(nsindex->major) == 1
845 && __le16_to_cpu(nsindex->minor) == 1)
846 return nd_set->cookie1;
847 return nd_set->cookie2;
848 }
849
nd_region_interleave_set_altcookie(struct nd_region * nd_region)850 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
851 {
852 struct nd_interleave_set *nd_set = nd_region->nd_set;
853
854 if (nd_set)
855 return nd_set->altcookie;
856 return 0;
857 }
858
nd_mapping_free_labels(struct nd_mapping * nd_mapping)859 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
860 {
861 struct nd_label_ent *label_ent, *e;
862
863 lockdep_assert_held(&nd_mapping->lock);
864 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
865 list_del(&label_ent->list);
866 kfree(label_ent);
867 }
868 }
869
870 /*
871 * When a namespace is activated create new seeds for the next
872 * namespace, or namespace-personality to be configured.
873 */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)874 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
875 {
876 guard(nvdimm_bus)(dev);
877 if (nd_region->ns_seed == dev) {
878 nd_region_create_ns_seed(nd_region);
879 } else if (is_nd_btt(dev)) {
880 struct nd_btt *nd_btt = to_nd_btt(dev);
881
882 if (nd_region->btt_seed == dev)
883 nd_region_create_btt_seed(nd_region);
884 if (nd_region->ns_seed == &nd_btt->ndns->dev)
885 nd_region_create_ns_seed(nd_region);
886 } else if (is_nd_pfn(dev)) {
887 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
888
889 if (nd_region->pfn_seed == dev)
890 nd_region_create_pfn_seed(nd_region);
891 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
892 nd_region_create_ns_seed(nd_region);
893 } else if (is_nd_dax(dev)) {
894 struct nd_dax *nd_dax = to_nd_dax(dev);
895
896 if (nd_region->dax_seed == dev)
897 nd_region_create_dax_seed(nd_region);
898 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
899 nd_region_create_ns_seed(nd_region);
900 }
901 }
902
903 /**
904 * nd_region_acquire_lane - allocate and lock a lane
905 * @nd_region: region id and number of lanes possible
906 *
907 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
908 * We optimize for the common case where there are 256 lanes, one
909 * per-cpu. For larger systems we need to lock to share lanes. For now
910 * this implementation assumes the cost of maintaining an allocator for
911 * free lanes is on the order of the lock hold time, so it implements a
912 * static lane = cpu % num_lanes mapping.
913 *
914 * In the case of a BTT instance on top of a BLK namespace a lane may be
915 * acquired recursively. We lock on the first instance.
916 *
917 * In the case of a BTT instance on top of PMEM, we only acquire a lane
918 * for the BTT metadata updates.
919 */
nd_region_acquire_lane(struct nd_region * nd_region)920 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
921 {
922 unsigned int cpu, lane;
923
924 migrate_disable();
925 cpu = smp_processor_id();
926 if (nd_region->num_lanes < nr_cpu_ids) {
927 struct nd_percpu_lane *ndl_lock, *ndl_count;
928
929 lane = cpu % nd_region->num_lanes;
930 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
931 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
932 if (ndl_count->count++ == 0)
933 spin_lock(&ndl_lock->lock);
934 } else
935 lane = cpu;
936
937 return lane;
938 }
939 EXPORT_SYMBOL(nd_region_acquire_lane);
940
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)941 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
942 {
943 if (nd_region->num_lanes < nr_cpu_ids) {
944 unsigned int cpu = smp_processor_id();
945 struct nd_percpu_lane *ndl_lock, *ndl_count;
946
947 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
948 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
949 if (--ndl_count->count == 0)
950 spin_unlock(&ndl_lock->lock);
951 }
952 migrate_enable();
953 }
954 EXPORT_SYMBOL(nd_region_release_lane);
955
956 /*
957 * PowerPC requires this alignment for memremap_pages(). All other archs
958 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
959 */
960 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
961
default_align(struct nd_region * nd_region)962 static unsigned long default_align(struct nd_region *nd_region)
963 {
964 unsigned long align;
965 u32 remainder;
966 int mappings;
967
968 align = MEMREMAP_COMPAT_ALIGN_MAX;
969 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
970 align = PAGE_SIZE;
971
972 mappings = max_t(u16, 1, nd_region->ndr_mappings);
973 div_u64_rem(align, mappings, &remainder);
974 if (remainder)
975 align *= mappings;
976
977 return align;
978 }
979
980 static struct lock_class_key nvdimm_region_key;
981
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,const struct device_type * dev_type,const char * caller)982 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
983 struct nd_region_desc *ndr_desc,
984 const struct device_type *dev_type, const char *caller)
985 {
986 struct nd_region *nd_region;
987 struct device *dev;
988 unsigned int i;
989 int ro = 0;
990
991 for (i = 0; i < ndr_desc->num_mappings; i++) {
992 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
993 struct nvdimm *nvdimm = mapping->nvdimm;
994
995 if ((mapping->start | mapping->size) % PAGE_SIZE) {
996 dev_err(&nvdimm_bus->dev,
997 "%s: %s mapping%d is not %ld aligned\n",
998 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
999 return NULL;
1000 }
1001
1002 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1003 ro = 1;
1004
1005 }
1006
1007 nd_region =
1008 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1009 GFP_KERNEL);
1010
1011 if (!nd_region)
1012 return NULL;
1013 nd_region->ndr_mappings = ndr_desc->num_mappings;
1014 /* CXL pre-assigns memregion ids before creating nvdimm regions */
1015 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1016 nd_region->id = ndr_desc->memregion;
1017 } else {
1018 nd_region->id = memregion_alloc(GFP_KERNEL);
1019 if (nd_region->id < 0)
1020 goto err_id;
1021 }
1022
1023 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1024 if (!nd_region->lane)
1025 goto err_percpu;
1026
1027 for (i = 0; i < nr_cpu_ids; i++) {
1028 struct nd_percpu_lane *ndl;
1029
1030 ndl = per_cpu_ptr(nd_region->lane, i);
1031 spin_lock_init(&ndl->lock);
1032 ndl->count = 0;
1033 }
1034
1035 for (i = 0; i < ndr_desc->num_mappings; i++) {
1036 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1037 struct nvdimm *nvdimm = mapping->nvdimm;
1038
1039 nd_region->mapping[i].nvdimm = nvdimm;
1040 nd_region->mapping[i].start = mapping->start;
1041 nd_region->mapping[i].size = mapping->size;
1042 nd_region->mapping[i].position = mapping->position;
1043 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1044 mutex_init(&nd_region->mapping[i].lock);
1045
1046 get_device(&nvdimm->dev);
1047 }
1048 nd_region->provider_data = ndr_desc->provider_data;
1049 nd_region->nd_set = ndr_desc->nd_set;
1050 nd_region->num_lanes = ndr_desc->num_lanes;
1051 nd_region->flags = ndr_desc->flags;
1052 nd_region->ro = ro;
1053 nd_region->numa_node = ndr_desc->numa_node;
1054 nd_region->target_node = ndr_desc->target_node;
1055 ida_init(&nd_region->ns_ida);
1056 ida_init(&nd_region->btt_ida);
1057 ida_init(&nd_region->pfn_ida);
1058 ida_init(&nd_region->dax_ida);
1059 dev = &nd_region->dev;
1060 dev_set_name(dev, "region%d", nd_region->id);
1061 dev->parent = &nvdimm_bus->dev;
1062 dev->type = dev_type;
1063 dev->groups = ndr_desc->attr_groups;
1064 dev->of_node = ndr_desc->of_node;
1065 nd_region->ndr_size = resource_size(ndr_desc->res);
1066 nd_region->ndr_start = ndr_desc->res->start;
1067 nd_region->align = default_align(nd_region);
1068 if (ndr_desc->flush)
1069 nd_region->flush = ndr_desc->flush;
1070 else
1071 nd_region->flush = NULL;
1072
1073 device_initialize(dev);
1074 lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1075 nd_device_register(dev);
1076
1077 return nd_region;
1078
1079 err_percpu:
1080 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1081 memregion_free(nd_region->id);
1082 err_id:
1083 kfree(nd_region);
1084 return NULL;
1085 }
1086
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1087 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1088 struct nd_region_desc *ndr_desc)
1089 {
1090 ndr_desc->num_lanes = ND_MAX_LANES;
1091 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1092 __func__);
1093 }
1094 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1095
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1096 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1097 struct nd_region_desc *ndr_desc)
1098 {
1099 ndr_desc->num_lanes = ND_MAX_LANES;
1100 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1101 __func__);
1102 }
1103 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1104
nvdimm_region_delete(struct nd_region * nd_region)1105 void nvdimm_region_delete(struct nd_region *nd_region)
1106 {
1107 if (nd_region)
1108 nd_device_unregister(&nd_region->dev, ND_SYNC);
1109 }
1110 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1111
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1112 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1113 {
1114 int rc = 0;
1115
1116 if (!nd_region->flush)
1117 rc = generic_nvdimm_flush(nd_region);
1118 else {
1119 if (nd_region->flush(nd_region, bio))
1120 rc = -EIO;
1121 }
1122
1123 return rc;
1124 }
1125 /**
1126 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1127 * @nd_region: interleaved pmem region
1128 */
generic_nvdimm_flush(struct nd_region * nd_region)1129 int generic_nvdimm_flush(struct nd_region *nd_region)
1130 {
1131 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1132 int i, idx;
1133
1134 /*
1135 * Try to encourage some diversity in flush hint addresses
1136 * across cpus assuming a limited number of flush hints.
1137 */
1138 idx = this_cpu_read(flush_idx);
1139 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1140
1141 /*
1142 * The pmem_wmb() is needed to 'sfence' all
1143 * previous writes such that they are architecturally visible for
1144 * the platform buffer flush. Note that we've already arranged for pmem
1145 * writes to avoid the cache via memcpy_flushcache(). The final
1146 * wmb() ensures ordering for the NVDIMM flush write.
1147 */
1148 pmem_wmb();
1149 for (i = 0; i < nd_region->ndr_mappings; i++)
1150 if (ndrd_get_flush_wpq(ndrd, i, 0))
1151 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1152 wmb();
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(nvdimm_flush);
1157
1158 /**
1159 * nvdimm_has_flush - determine write flushing requirements
1160 * @nd_region: interleaved pmem region
1161 *
1162 * Returns 1 if writes require flushing
1163 * Returns 0 if writes do not require flushing
1164 * Returns -ENXIO if flushing capability can not be determined
1165 */
nvdimm_has_flush(struct nd_region * nd_region)1166 int nvdimm_has_flush(struct nd_region *nd_region)
1167 {
1168 int i;
1169
1170 /* no nvdimm or pmem api == flushing capability unknown */
1171 if (nd_region->ndr_mappings == 0
1172 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1173 return -ENXIO;
1174
1175 /* Test if an explicit flush function is defined */
1176 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1177 return 1;
1178
1179 /* Test if any flush hints for the region are available */
1180 for (i = 0; i < nd_region->ndr_mappings; i++) {
1181 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1182 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1183
1184 /* flush hints present / available */
1185 if (nvdimm->num_flush)
1186 return 1;
1187 }
1188
1189 /*
1190 * The platform defines dimm devices without hints nor explicit flush,
1191 * assume platform persistence mechanism like ADR
1192 */
1193 return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1196
nvdimm_has_cache(struct nd_region * nd_region)1197 int nvdimm_has_cache(struct nd_region *nd_region)
1198 {
1199 return is_nd_pmem(&nd_region->dev) &&
1200 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1201 }
1202 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1203
is_nvdimm_sync(struct nd_region * nd_region)1204 bool is_nvdimm_sync(struct nd_region *nd_region)
1205 {
1206 if (is_nd_volatile(&nd_region->dev))
1207 return true;
1208
1209 return is_nd_pmem(&nd_region->dev) &&
1210 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1211 }
1212 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1213
1214 MODULE_IMPORT_NS("DEVMEM");
1215