xref: /linux/drivers/nvdimm/region_devs.c (revision ba9dac987319d4f3969691dcf366ef19c9ed8281)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/kstrtox.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/hash.h>
12 #include <linux/sort.h>
13 #include <linux/io.h>
14 #include <linux/nd.h>
15 #include "nd-core.h"
16 #include "nd.h"
17 
18 /*
19  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
20  * irrelevant.
21  */
22 #include <linux/io-64-nonatomic-hi-lo.h>
23 
24 static DEFINE_PER_CPU(int, flush_idx);
25 
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)26 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
27 		struct nd_region_data *ndrd)
28 {
29 	int i, j;
30 
31 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
32 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
33 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
34 		struct resource *res = &nvdimm->flush_wpq[i];
35 		unsigned long pfn = PHYS_PFN(res->start);
36 		void __iomem *flush_page;
37 
38 		/* check if flush hints share a page */
39 		for (j = 0; j < i; j++) {
40 			struct resource *res_j = &nvdimm->flush_wpq[j];
41 			unsigned long pfn_j = PHYS_PFN(res_j->start);
42 
43 			if (pfn == pfn_j)
44 				break;
45 		}
46 
47 		if (j < i)
48 			flush_page = (void __iomem *) ((unsigned long)
49 					ndrd_get_flush_wpq(ndrd, dimm, j)
50 					& PAGE_MASK);
51 		else
52 			flush_page = devm_nvdimm_ioremap(dev,
53 					PFN_PHYS(pfn), PAGE_SIZE);
54 		if (!flush_page)
55 			return -ENXIO;
56 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
57 				+ (res->start & ~PAGE_MASK));
58 	}
59 
60 	return 0;
61 }
62 
nd_region_invalidate_memregion(struct nd_region * nd_region)63 static int nd_region_invalidate_memregion(struct nd_region *nd_region)
64 {
65 	int i, incoherent = 0;
66 
67 	for (i = 0; i < nd_region->ndr_mappings; i++) {
68 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
69 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
70 
71 		if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
72 			incoherent++;
73 			break;
74 		}
75 	}
76 
77 	if (!incoherent)
78 		return 0;
79 
80 	if (!cpu_cache_has_invalidate_memregion()) {
81 		if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
82 			dev_warn(
83 				&nd_region->dev,
84 				"Bypassing cpu_cache_invalidate_memergion() for testing!\n");
85 			goto out;
86 		} else {
87 			dev_err(&nd_region->dev,
88 				"Failed to synchronize CPU cache state\n");
89 			return -ENXIO;
90 		}
91 	}
92 
93 	cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
94 out:
95 	for (i = 0; i < nd_region->ndr_mappings; i++) {
96 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
97 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
98 
99 		clear_bit(NDD_INCOHERENT, &nvdimm->flags);
100 	}
101 
102 	return 0;
103 }
104 
get_flush_data(struct nd_region * nd_region,size_t * size,int * num_flush)105 static int get_flush_data(struct nd_region *nd_region, size_t *size, int *num_flush)
106 {
107 	size_t flush_data_size = sizeof(void *);
108 	int _num_flush = 0;
109 	int i;
110 
111 	guard(nvdimm_bus)(&nd_region->dev);
112 	for (i = 0; i < nd_region->ndr_mappings; i++) {
113 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
114 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
115 
116 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags))
117 			return -EBUSY;
118 
119 		/* at least one null hint slot per-dimm for the "no-hint" case */
120 		flush_data_size += sizeof(void *);
121 		_num_flush = min_not_zero(_num_flush, nvdimm->num_flush);
122 		if (!nvdimm->num_flush)
123 			continue;
124 		flush_data_size += nvdimm->num_flush * sizeof(void *);
125 	}
126 
127 	*size = flush_data_size;
128 	*num_flush = _num_flush;
129 
130 	return 0;
131 }
132 
nd_region_activate(struct nd_region * nd_region)133 int nd_region_activate(struct nd_region *nd_region)
134 {
135 	int i, j, rc, num_flush;
136 	struct nd_region_data *ndrd;
137 	struct device *dev = &nd_region->dev;
138 	size_t flush_data_size;
139 
140 	rc = get_flush_data(nd_region, &flush_data_size, &num_flush);
141 	if (rc)
142 		return rc;
143 
144 	rc = nd_region_invalidate_memregion(nd_region);
145 	if (rc)
146 		return rc;
147 
148 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
149 	if (!ndrd)
150 		return -ENOMEM;
151 	dev_set_drvdata(dev, ndrd);
152 
153 	if (!num_flush)
154 		return 0;
155 
156 	ndrd->hints_shift = ilog2(num_flush);
157 	for (i = 0; i < nd_region->ndr_mappings; i++) {
158 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
159 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
160 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
161 
162 		if (rc)
163 			return rc;
164 	}
165 
166 	/*
167 	 * Clear out entries that are duplicates. This should prevent the
168 	 * extra flushings.
169 	 */
170 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
171 		/* ignore if NULL already */
172 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
173 			continue;
174 
175 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
176 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
177 			    ndrd_get_flush_wpq(ndrd, j, 0))
178 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
179 	}
180 
181 	return 0;
182 }
183 
nd_region_release(struct device * dev)184 static void nd_region_release(struct device *dev)
185 {
186 	struct nd_region *nd_region = to_nd_region(dev);
187 	u16 i;
188 
189 	for (i = 0; i < nd_region->ndr_mappings; i++) {
190 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
191 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
192 
193 		put_device(&nvdimm->dev);
194 	}
195 	free_percpu(nd_region->lane);
196 	if (!test_bit(ND_REGION_CXL, &nd_region->flags))
197 		memregion_free(nd_region->id);
198 	kfree(nd_region);
199 }
200 
to_nd_region(struct device * dev)201 struct nd_region *to_nd_region(struct device *dev)
202 {
203 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
204 
205 	WARN_ON(dev->type->release != nd_region_release);
206 	return nd_region;
207 }
208 EXPORT_SYMBOL_GPL(to_nd_region);
209 
nd_region_dev(struct nd_region * nd_region)210 struct device *nd_region_dev(struct nd_region *nd_region)
211 {
212 	if (!nd_region)
213 		return NULL;
214 	return &nd_region->dev;
215 }
216 EXPORT_SYMBOL_GPL(nd_region_dev);
217 
nd_region_provider_data(struct nd_region * nd_region)218 void *nd_region_provider_data(struct nd_region *nd_region)
219 {
220 	return nd_region->provider_data;
221 }
222 EXPORT_SYMBOL_GPL(nd_region_provider_data);
223 
224 /**
225  * nd_region_to_nstype() - region to an integer namespace type
226  * @nd_region: region-device to interrogate
227  *
228  * This is the 'nstype' attribute of a region as well, an input to the
229  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
230  * namespace devices with namespace drivers.
231  */
nd_region_to_nstype(struct nd_region * nd_region)232 int nd_region_to_nstype(struct nd_region *nd_region)
233 {
234 	if (is_memory(&nd_region->dev)) {
235 		u16 i, label;
236 
237 		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
238 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
239 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
240 
241 			if (test_bit(NDD_LABELING, &nvdimm->flags))
242 				label++;
243 		}
244 		if (label)
245 			return ND_DEVICE_NAMESPACE_PMEM;
246 		else
247 			return ND_DEVICE_NAMESPACE_IO;
248 	}
249 
250 	return 0;
251 }
252 EXPORT_SYMBOL(nd_region_to_nstype);
253 
region_size(struct nd_region * nd_region)254 static unsigned long long region_size(struct nd_region *nd_region)
255 {
256 	if (is_memory(&nd_region->dev)) {
257 		return nd_region->ndr_size;
258 	} else if (nd_region->ndr_mappings == 1) {
259 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
260 
261 		return nd_mapping->size;
262 	}
263 
264 	return 0;
265 }
266 
size_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t size_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	return sprintf(buf, "%llu\n", region_size(nd_region));
273 }
274 static DEVICE_ATTR_RO(size);
275 
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t deep_flush_show(struct device *dev,
277 		struct device_attribute *attr, char *buf)
278 {
279 	struct nd_region *nd_region = to_nd_region(dev);
280 
281 	/*
282 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
283 	 * not visible.
284 	 */
285 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
286 }
287 
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)288 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
289 		const char *buf, size_t len)
290 {
291 	bool flush;
292 	int rc = kstrtobool(buf, &flush);
293 	struct nd_region *nd_region = to_nd_region(dev);
294 
295 	if (rc)
296 		return rc;
297 	if (!flush)
298 		return -EINVAL;
299 	rc = nvdimm_flush(nd_region, NULL);
300 	if (rc)
301 		return rc;
302 
303 	return len;
304 }
305 static DEVICE_ATTR_RW(deep_flush);
306 
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)307 static ssize_t mappings_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct nd_region *nd_region = to_nd_region(dev);
311 
312 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
313 }
314 static DEVICE_ATTR_RO(mappings);
315 
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t nstype_show(struct device *dev,
317 		struct device_attribute *attr, char *buf)
318 {
319 	struct nd_region *nd_region = to_nd_region(dev);
320 
321 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
322 }
323 static DEVICE_ATTR_RO(nstype);
324 
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t set_cookie_show(struct device *dev,
326 		struct device_attribute *attr, char *buf)
327 {
328 	struct nd_region *nd_region = to_nd_region(dev);
329 	struct nd_interleave_set *nd_set = nd_region->nd_set;
330 	ssize_t rc = 0;
331 
332 	if (is_memory(dev) && nd_set)
333 		/* pass, should be precluded by region_visible */;
334 	else
335 		return -ENXIO;
336 
337 	/*
338 	 * The cookie to show depends on which specification of the
339 	 * labels we are using. If there are not labels then default to
340 	 * the v1.1 namespace label cookie definition. To read all this
341 	 * data we need to wait for probing to settle.
342 	 */
343 	guard(device)(dev);
344 	guard(nvdimm_bus)(dev);
345 	wait_nvdimm_bus_probe_idle(dev);
346 	if (nd_region->ndr_mappings) {
347 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
348 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
349 
350 		if (ndd) {
351 			struct nd_namespace_index *nsindex;
352 
353 			nsindex = to_namespace_index(ndd, ndd->ns_current);
354 			rc = sprintf(buf, "%#llx\n",
355 					nd_region_interleave_set_cookie(nd_region,
356 						nsindex));
357 		}
358 	}
359 
360 	if (rc)
361 		return rc;
362 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
363 }
364 static DEVICE_ATTR_RO(set_cookie);
365 
nd_region_available_dpa(struct nd_region * nd_region)366 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
367 {
368 	resource_size_t available;
369 	int i;
370 
371 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
372 
373 	available = 0;
374 	for (i = 0; i < nd_region->ndr_mappings; i++) {
375 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
377 
378 		/* if a dimm is disabled the available capacity is zero */
379 		if (!ndd)
380 			return 0;
381 
382 		available += nd_pmem_available_dpa(nd_region, nd_mapping);
383 	}
384 
385 	return available;
386 }
387 
nd_region_allocatable_dpa(struct nd_region * nd_region)388 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
389 {
390 	resource_size_t avail = 0;
391 	int i;
392 
393 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
394 	for (i = 0; i < nd_region->ndr_mappings; i++) {
395 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
396 
397 		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
398 						    nd_region, nd_mapping));
399 	}
400 	return avail * nd_region->ndr_mappings;
401 }
402 
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)403 static ssize_t available_size_show(struct device *dev,
404 		struct device_attribute *attr, char *buf)
405 {
406 	struct nd_region *nd_region = to_nd_region(dev);
407 
408 	/*
409 	 * Flush in-flight updates and grab a snapshot of the available
410 	 * size.  Of course, this value is potentially invalidated the
411 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
412 	 * problem to not race itself.
413 	 */
414 	guard(device)(dev);
415 	guard(nvdimm_bus)(dev);
416 	wait_nvdimm_bus_probe_idle(dev);
417 
418 	return sprintf(buf, "%llu\n", nd_region_available_dpa(nd_region));
419 }
420 static DEVICE_ATTR_RO(available_size);
421 
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)422 static ssize_t max_available_extent_show(struct device *dev,
423 		struct device_attribute *attr, char *buf)
424 {
425 	struct nd_region *nd_region = to_nd_region(dev);
426 
427 	guard(device)(dev);
428 	guard(nvdimm_bus)(dev);
429 	wait_nvdimm_bus_probe_idle(dev);
430 
431 	return sprintf(buf, "%llu\n", nd_region_allocatable_dpa(nd_region));
432 }
433 static DEVICE_ATTR_RO(max_available_extent);
434 
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)435 static ssize_t init_namespaces_show(struct device *dev,
436 		struct device_attribute *attr, char *buf)
437 {
438 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
439 
440 	guard(nvdimm_bus)(dev);
441 	if (!ndrd)
442 		return -ENXIO;
443 
444 	return sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
445 }
446 static DEVICE_ATTR_RO(init_namespaces);
447 
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t namespace_seed_show(struct device *dev,
449 		struct device_attribute *attr, char *buf)
450 {
451 	struct nd_region *nd_region = to_nd_region(dev);
452 
453 	guard(nvdimm_bus)(dev);
454 	if (nd_region->ns_seed)
455 		return sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
456 
457 	return sprintf(buf, "\n");
458 }
459 static DEVICE_ATTR_RO(namespace_seed);
460 
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)461 static ssize_t btt_seed_show(struct device *dev,
462 		struct device_attribute *attr, char *buf)
463 {
464 	struct nd_region *nd_region = to_nd_region(dev);
465 
466 	guard(nvdimm_bus)(dev);
467 	if (nd_region->btt_seed)
468 		return sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
469 
470 	return sprintf(buf, "\n");
471 }
472 static DEVICE_ATTR_RO(btt_seed);
473 
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t pfn_seed_show(struct device *dev,
475 		struct device_attribute *attr, char *buf)
476 {
477 	struct nd_region *nd_region = to_nd_region(dev);
478 
479 	guard(nvdimm_bus)(dev);
480 	if (nd_region->pfn_seed)
481 		return sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
482 
483 	return sprintf(buf, "\n");
484 }
485 static DEVICE_ATTR_RO(pfn_seed);
486 
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)487 static ssize_t dax_seed_show(struct device *dev,
488 		struct device_attribute *attr, char *buf)
489 {
490 	struct nd_region *nd_region = to_nd_region(dev);
491 
492 	guard(nvdimm_bus)(dev);
493 	if (nd_region->dax_seed)
494 		return sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
495 
496 	return sprintf(buf, "\n");
497 }
498 static DEVICE_ATTR_RO(dax_seed);
499 
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)500 static ssize_t read_only_show(struct device *dev,
501 		struct device_attribute *attr, char *buf)
502 {
503 	struct nd_region *nd_region = to_nd_region(dev);
504 
505 	return sprintf(buf, "%d\n", nd_region->ro);
506 }
507 
revalidate_read_only(struct device * dev,void * data)508 static int revalidate_read_only(struct device *dev, void *data)
509 {
510 	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
511 	return 0;
512 }
513 
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)514 static ssize_t read_only_store(struct device *dev,
515 		struct device_attribute *attr, const char *buf, size_t len)
516 {
517 	bool ro;
518 	int rc = kstrtobool(buf, &ro);
519 	struct nd_region *nd_region = to_nd_region(dev);
520 
521 	if (rc)
522 		return rc;
523 
524 	nd_region->ro = ro;
525 	device_for_each_child(dev, NULL, revalidate_read_only);
526 	return len;
527 }
528 static DEVICE_ATTR_RW(read_only);
529 
align_show(struct device * dev,struct device_attribute * attr,char * buf)530 static ssize_t align_show(struct device *dev,
531 		struct device_attribute *attr, char *buf)
532 {
533 	struct nd_region *nd_region = to_nd_region(dev);
534 
535 	return sprintf(buf, "%#lx\n", nd_region->align);
536 }
537 
align_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)538 static ssize_t align_store(struct device *dev,
539 		struct device_attribute *attr, const char *buf, size_t len)
540 {
541 	struct nd_region *nd_region = to_nd_region(dev);
542 	unsigned long val, dpa;
543 	u32 mappings, remainder;
544 	int rc;
545 
546 	rc = kstrtoul(buf, 0, &val);
547 	if (rc)
548 		return rc;
549 
550 	/*
551 	 * Ensure space-align is evenly divisible by the region
552 	 * interleave-width because the kernel typically has no facility
553 	 * to determine which DIMM(s), dimm-physical-addresses, would
554 	 * contribute to the tail capacity in system-physical-address
555 	 * space for the namespace.
556 	 */
557 	mappings = max_t(u32, 1, nd_region->ndr_mappings);
558 	dpa = div_u64_rem(val, mappings, &remainder);
559 	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
560 			|| val > region_size(nd_region) || remainder)
561 		return -EINVAL;
562 
563 	/*
564 	 * Given that space allocation consults this value multiple
565 	 * times ensure it does not change for the duration of the
566 	 * allocation.
567 	 */
568 	guard(nvdimm_bus)(dev);
569 	nd_region->align = val;
570 
571 	return len;
572 }
573 static DEVICE_ATTR_RW(align);
574 
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)575 static ssize_t region_badblocks_show(struct device *dev,
576 		struct device_attribute *attr, char *buf)
577 {
578 	struct nd_region *nd_region = to_nd_region(dev);
579 	ssize_t rc;
580 
581 	device_lock(dev);
582 	if (dev->driver)
583 		rc = badblocks_show(&nd_region->bb, buf, 0);
584 	else
585 		rc = -ENXIO;
586 	device_unlock(dev);
587 
588 	return rc;
589 }
590 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
591 
resource_show(struct device * dev,struct device_attribute * attr,char * buf)592 static ssize_t resource_show(struct device *dev,
593 		struct device_attribute *attr, char *buf)
594 {
595 	struct nd_region *nd_region = to_nd_region(dev);
596 
597 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
598 }
599 static DEVICE_ATTR_ADMIN_RO(resource);
600 
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)601 static ssize_t persistence_domain_show(struct device *dev,
602 		struct device_attribute *attr, char *buf)
603 {
604 	struct nd_region *nd_region = to_nd_region(dev);
605 
606 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
607 		return sprintf(buf, "cpu_cache\n");
608 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
609 		return sprintf(buf, "memory_controller\n");
610 	else
611 		return sprintf(buf, "\n");
612 }
613 static DEVICE_ATTR_RO(persistence_domain);
614 
615 static struct attribute *nd_region_attributes[] = {
616 	&dev_attr_size.attr,
617 	&dev_attr_align.attr,
618 	&dev_attr_nstype.attr,
619 	&dev_attr_mappings.attr,
620 	&dev_attr_btt_seed.attr,
621 	&dev_attr_pfn_seed.attr,
622 	&dev_attr_dax_seed.attr,
623 	&dev_attr_deep_flush.attr,
624 	&dev_attr_read_only.attr,
625 	&dev_attr_set_cookie.attr,
626 	&dev_attr_available_size.attr,
627 	&dev_attr_max_available_extent.attr,
628 	&dev_attr_namespace_seed.attr,
629 	&dev_attr_init_namespaces.attr,
630 	&dev_attr_badblocks.attr,
631 	&dev_attr_resource.attr,
632 	&dev_attr_persistence_domain.attr,
633 	NULL,
634 };
635 
region_visible(struct kobject * kobj,struct attribute * a,int n)636 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
637 {
638 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
639 	struct nd_region *nd_region = to_nd_region(dev);
640 	struct nd_interleave_set *nd_set = nd_region->nd_set;
641 	int type = nd_region_to_nstype(nd_region);
642 
643 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
644 		return 0;
645 
646 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
647 		return 0;
648 
649 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
650 		return 0;
651 
652 	if (a == &dev_attr_resource.attr && !is_memory(dev))
653 		return 0;
654 
655 	if (a == &dev_attr_deep_flush.attr) {
656 		int has_flush = nvdimm_has_flush(nd_region);
657 
658 		if (has_flush == 1)
659 			return a->mode;
660 		else if (has_flush == 0)
661 			return 0444;
662 		else
663 			return 0;
664 	}
665 
666 	if (a == &dev_attr_persistence_domain.attr) {
667 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
668 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
669 			return 0;
670 		return a->mode;
671 	}
672 
673 	if (a == &dev_attr_align.attr)
674 		return a->mode;
675 
676 	if (a != &dev_attr_set_cookie.attr
677 			&& a != &dev_attr_available_size.attr)
678 		return a->mode;
679 
680 	if (type == ND_DEVICE_NAMESPACE_PMEM &&
681 	    a == &dev_attr_available_size.attr)
682 		return a->mode;
683 	else if (is_memory(dev) && nd_set)
684 		return a->mode;
685 
686 	return 0;
687 }
688 
mappingN(struct device * dev,char * buf,int n)689 static ssize_t mappingN(struct device *dev, char *buf, int n)
690 {
691 	struct nd_region *nd_region = to_nd_region(dev);
692 	struct nd_mapping *nd_mapping;
693 	struct nvdimm *nvdimm;
694 
695 	if (n >= nd_region->ndr_mappings)
696 		return -ENXIO;
697 	nd_mapping = &nd_region->mapping[n];
698 	nvdimm = nd_mapping->nvdimm;
699 
700 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
701 			nd_mapping->start, nd_mapping->size,
702 			nd_mapping->position);
703 }
704 
705 #define REGION_MAPPING(idx) \
706 static ssize_t mapping##idx##_show(struct device *dev,		\
707 		struct device_attribute *attr, char *buf)	\
708 {								\
709 	return mappingN(dev, buf, idx);				\
710 }								\
711 static DEVICE_ATTR_RO(mapping##idx)
712 
713 /*
714  * 32 should be enough for a while, even in the presence of socket
715  * interleave a 32-way interleave set is a degenerate case.
716  */
717 REGION_MAPPING(0);
718 REGION_MAPPING(1);
719 REGION_MAPPING(2);
720 REGION_MAPPING(3);
721 REGION_MAPPING(4);
722 REGION_MAPPING(5);
723 REGION_MAPPING(6);
724 REGION_MAPPING(7);
725 REGION_MAPPING(8);
726 REGION_MAPPING(9);
727 REGION_MAPPING(10);
728 REGION_MAPPING(11);
729 REGION_MAPPING(12);
730 REGION_MAPPING(13);
731 REGION_MAPPING(14);
732 REGION_MAPPING(15);
733 REGION_MAPPING(16);
734 REGION_MAPPING(17);
735 REGION_MAPPING(18);
736 REGION_MAPPING(19);
737 REGION_MAPPING(20);
738 REGION_MAPPING(21);
739 REGION_MAPPING(22);
740 REGION_MAPPING(23);
741 REGION_MAPPING(24);
742 REGION_MAPPING(25);
743 REGION_MAPPING(26);
744 REGION_MAPPING(27);
745 REGION_MAPPING(28);
746 REGION_MAPPING(29);
747 REGION_MAPPING(30);
748 REGION_MAPPING(31);
749 
mapping_visible(struct kobject * kobj,struct attribute * a,int n)750 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
751 {
752 	struct device *dev = container_of(kobj, struct device, kobj);
753 	struct nd_region *nd_region = to_nd_region(dev);
754 
755 	if (n < nd_region->ndr_mappings)
756 		return a->mode;
757 	return 0;
758 }
759 
760 static struct attribute *mapping_attributes[] = {
761 	&dev_attr_mapping0.attr,
762 	&dev_attr_mapping1.attr,
763 	&dev_attr_mapping2.attr,
764 	&dev_attr_mapping3.attr,
765 	&dev_attr_mapping4.attr,
766 	&dev_attr_mapping5.attr,
767 	&dev_attr_mapping6.attr,
768 	&dev_attr_mapping7.attr,
769 	&dev_attr_mapping8.attr,
770 	&dev_attr_mapping9.attr,
771 	&dev_attr_mapping10.attr,
772 	&dev_attr_mapping11.attr,
773 	&dev_attr_mapping12.attr,
774 	&dev_attr_mapping13.attr,
775 	&dev_attr_mapping14.attr,
776 	&dev_attr_mapping15.attr,
777 	&dev_attr_mapping16.attr,
778 	&dev_attr_mapping17.attr,
779 	&dev_attr_mapping18.attr,
780 	&dev_attr_mapping19.attr,
781 	&dev_attr_mapping20.attr,
782 	&dev_attr_mapping21.attr,
783 	&dev_attr_mapping22.attr,
784 	&dev_attr_mapping23.attr,
785 	&dev_attr_mapping24.attr,
786 	&dev_attr_mapping25.attr,
787 	&dev_attr_mapping26.attr,
788 	&dev_attr_mapping27.attr,
789 	&dev_attr_mapping28.attr,
790 	&dev_attr_mapping29.attr,
791 	&dev_attr_mapping30.attr,
792 	&dev_attr_mapping31.attr,
793 	NULL,
794 };
795 
796 static const struct attribute_group nd_mapping_attribute_group = {
797 	.is_visible = mapping_visible,
798 	.attrs = mapping_attributes,
799 };
800 
801 static const struct attribute_group nd_region_attribute_group = {
802 	.attrs = nd_region_attributes,
803 	.is_visible = region_visible,
804 };
805 
806 static const struct attribute_group *nd_region_attribute_groups[] = {
807 	&nd_device_attribute_group,
808 	&nd_region_attribute_group,
809 	&nd_numa_attribute_group,
810 	&nd_mapping_attribute_group,
811 	NULL,
812 };
813 
814 static const struct device_type nd_pmem_device_type = {
815 	.name = "nd_pmem",
816 	.release = nd_region_release,
817 	.groups = nd_region_attribute_groups,
818 };
819 
820 static const struct device_type nd_volatile_device_type = {
821 	.name = "nd_volatile",
822 	.release = nd_region_release,
823 	.groups = nd_region_attribute_groups,
824 };
825 
is_nd_pmem(const struct device * dev)826 bool is_nd_pmem(const struct device *dev)
827 {
828 	return dev ? dev->type == &nd_pmem_device_type : false;
829 }
830 
is_nd_volatile(const struct device * dev)831 bool is_nd_volatile(const struct device *dev)
832 {
833 	return dev ? dev->type == &nd_volatile_device_type : false;
834 }
835 
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)836 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
837 		struct nd_namespace_index *nsindex)
838 {
839 	struct nd_interleave_set *nd_set = nd_region->nd_set;
840 
841 	if (!nd_set)
842 		return 0;
843 
844 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
845 			&& __le16_to_cpu(nsindex->minor) == 1)
846 		return nd_set->cookie1;
847 	return nd_set->cookie2;
848 }
849 
nd_region_interleave_set_altcookie(struct nd_region * nd_region)850 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
851 {
852 	struct nd_interleave_set *nd_set = nd_region->nd_set;
853 
854 	if (nd_set)
855 		return nd_set->altcookie;
856 	return 0;
857 }
858 
nd_mapping_free_labels(struct nd_mapping * nd_mapping)859 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
860 {
861 	struct nd_label_ent *label_ent, *e;
862 
863 	lockdep_assert_held(&nd_mapping->lock);
864 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
865 		list_del(&label_ent->list);
866 		kfree(label_ent);
867 	}
868 }
869 
870 /*
871  * When a namespace is activated create new seeds for the next
872  * namespace, or namespace-personality to be configured.
873  */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)874 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
875 {
876 	guard(nvdimm_bus)(dev);
877 	if (nd_region->ns_seed == dev) {
878 		nd_region_create_ns_seed(nd_region);
879 	} else if (is_nd_btt(dev)) {
880 		struct nd_btt *nd_btt = to_nd_btt(dev);
881 
882 		if (nd_region->btt_seed == dev)
883 			nd_region_create_btt_seed(nd_region);
884 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
885 			nd_region_create_ns_seed(nd_region);
886 	} else if (is_nd_pfn(dev)) {
887 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
888 
889 		if (nd_region->pfn_seed == dev)
890 			nd_region_create_pfn_seed(nd_region);
891 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
892 			nd_region_create_ns_seed(nd_region);
893 	} else if (is_nd_dax(dev)) {
894 		struct nd_dax *nd_dax = to_nd_dax(dev);
895 
896 		if (nd_region->dax_seed == dev)
897 			nd_region_create_dax_seed(nd_region);
898 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
899 			nd_region_create_ns_seed(nd_region);
900 	}
901 }
902 
903 /**
904  * nd_region_acquire_lane - allocate and lock a lane
905  * @nd_region: region id and number of lanes possible
906  *
907  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
908  * We optimize for the common case where there are 256 lanes, one
909  * per-cpu.  For larger systems we need to lock to share lanes.  For now
910  * this implementation assumes the cost of maintaining an allocator for
911  * free lanes is on the order of the lock hold time, so it implements a
912  * static lane = cpu % num_lanes mapping.
913  *
914  * In the case of a BTT instance on top of a BLK namespace a lane may be
915  * acquired recursively.  We lock on the first instance.
916  *
917  * In the case of a BTT instance on top of PMEM, we only acquire a lane
918  * for the BTT metadata updates.
919  */
nd_region_acquire_lane(struct nd_region * nd_region)920 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
921 {
922 	unsigned int cpu, lane;
923 
924 	migrate_disable();
925 	cpu = smp_processor_id();
926 	if (nd_region->num_lanes < nr_cpu_ids) {
927 		struct nd_percpu_lane *ndl_lock, *ndl_count;
928 
929 		lane = cpu % nd_region->num_lanes;
930 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
931 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
932 		if (ndl_count->count++ == 0)
933 			spin_lock(&ndl_lock->lock);
934 	} else
935 		lane = cpu;
936 
937 	return lane;
938 }
939 EXPORT_SYMBOL(nd_region_acquire_lane);
940 
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)941 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
942 {
943 	if (nd_region->num_lanes < nr_cpu_ids) {
944 		unsigned int cpu = smp_processor_id();
945 		struct nd_percpu_lane *ndl_lock, *ndl_count;
946 
947 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
948 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
949 		if (--ndl_count->count == 0)
950 			spin_unlock(&ndl_lock->lock);
951 	}
952 	migrate_enable();
953 }
954 EXPORT_SYMBOL(nd_region_release_lane);
955 
956 /*
957  * PowerPC requires this alignment for memremap_pages(). All other archs
958  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
959  */
960 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
961 
default_align(struct nd_region * nd_region)962 static unsigned long default_align(struct nd_region *nd_region)
963 {
964 	unsigned long align;
965 	u32 remainder;
966 	int mappings;
967 
968 	align = MEMREMAP_COMPAT_ALIGN_MAX;
969 	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
970 		align = PAGE_SIZE;
971 
972 	mappings = max_t(u16, 1, nd_region->ndr_mappings);
973 	div_u64_rem(align, mappings, &remainder);
974 	if (remainder)
975 		align *= mappings;
976 
977 	return align;
978 }
979 
980 static struct lock_class_key nvdimm_region_key;
981 
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,const struct device_type * dev_type,const char * caller)982 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
983 		struct nd_region_desc *ndr_desc,
984 		const struct device_type *dev_type, const char *caller)
985 {
986 	struct nd_region *nd_region;
987 	struct device *dev;
988 	unsigned int i;
989 	int ro = 0;
990 
991 	for (i = 0; i < ndr_desc->num_mappings; i++) {
992 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
993 		struct nvdimm *nvdimm = mapping->nvdimm;
994 
995 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
996 			dev_err(&nvdimm_bus->dev,
997 				"%s: %s mapping%d is not %ld aligned\n",
998 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
999 			return NULL;
1000 		}
1001 
1002 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1003 			ro = 1;
1004 
1005 	}
1006 
1007 	nd_region =
1008 		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1009 			GFP_KERNEL);
1010 
1011 	if (!nd_region)
1012 		return NULL;
1013 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1014 	/* CXL pre-assigns memregion ids before creating nvdimm regions */
1015 	if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1016 		nd_region->id = ndr_desc->memregion;
1017 	} else {
1018 		nd_region->id = memregion_alloc(GFP_KERNEL);
1019 		if (nd_region->id < 0)
1020 			goto err_id;
1021 	}
1022 
1023 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1024 	if (!nd_region->lane)
1025 		goto err_percpu;
1026 
1027         for (i = 0; i < nr_cpu_ids; i++) {
1028 		struct nd_percpu_lane *ndl;
1029 
1030 		ndl = per_cpu_ptr(nd_region->lane, i);
1031 		spin_lock_init(&ndl->lock);
1032 		ndl->count = 0;
1033 	}
1034 
1035 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1036 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1037 		struct nvdimm *nvdimm = mapping->nvdimm;
1038 
1039 		nd_region->mapping[i].nvdimm = nvdimm;
1040 		nd_region->mapping[i].start = mapping->start;
1041 		nd_region->mapping[i].size = mapping->size;
1042 		nd_region->mapping[i].position = mapping->position;
1043 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1044 		mutex_init(&nd_region->mapping[i].lock);
1045 
1046 		get_device(&nvdimm->dev);
1047 	}
1048 	nd_region->provider_data = ndr_desc->provider_data;
1049 	nd_region->nd_set = ndr_desc->nd_set;
1050 	nd_region->num_lanes = ndr_desc->num_lanes;
1051 	nd_region->flags = ndr_desc->flags;
1052 	nd_region->ro = ro;
1053 	nd_region->numa_node = ndr_desc->numa_node;
1054 	nd_region->target_node = ndr_desc->target_node;
1055 	ida_init(&nd_region->ns_ida);
1056 	ida_init(&nd_region->btt_ida);
1057 	ida_init(&nd_region->pfn_ida);
1058 	ida_init(&nd_region->dax_ida);
1059 	dev = &nd_region->dev;
1060 	dev_set_name(dev, "region%d", nd_region->id);
1061 	dev->parent = &nvdimm_bus->dev;
1062 	dev->type = dev_type;
1063 	dev->groups = ndr_desc->attr_groups;
1064 	dev->of_node = ndr_desc->of_node;
1065 	nd_region->ndr_size = resource_size(ndr_desc->res);
1066 	nd_region->ndr_start = ndr_desc->res->start;
1067 	nd_region->align = default_align(nd_region);
1068 	if (ndr_desc->flush)
1069 		nd_region->flush = ndr_desc->flush;
1070 	else
1071 		nd_region->flush = NULL;
1072 
1073 	device_initialize(dev);
1074 	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1075 	nd_device_register(dev);
1076 
1077 	return nd_region;
1078 
1079 err_percpu:
1080 	if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1081 		memregion_free(nd_region->id);
1082 err_id:
1083 	kfree(nd_region);
1084 	return NULL;
1085 }
1086 
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1087 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1088 		struct nd_region_desc *ndr_desc)
1089 {
1090 	ndr_desc->num_lanes = ND_MAX_LANES;
1091 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1092 			__func__);
1093 }
1094 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1095 
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1096 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1097 		struct nd_region_desc *ndr_desc)
1098 {
1099 	ndr_desc->num_lanes = ND_MAX_LANES;
1100 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1101 			__func__);
1102 }
1103 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1104 
nvdimm_region_delete(struct nd_region * nd_region)1105 void nvdimm_region_delete(struct nd_region *nd_region)
1106 {
1107 	if (nd_region)
1108 		nd_device_unregister(&nd_region->dev, ND_SYNC);
1109 }
1110 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1111 
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1112 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1113 {
1114 	int rc = 0;
1115 
1116 	if (!nd_region->flush)
1117 		rc = generic_nvdimm_flush(nd_region);
1118 	else {
1119 		if (nd_region->flush(nd_region, bio))
1120 			rc = -EIO;
1121 	}
1122 
1123 	return rc;
1124 }
1125 /**
1126  * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1127  * @nd_region: interleaved pmem region
1128  */
generic_nvdimm_flush(struct nd_region * nd_region)1129 int generic_nvdimm_flush(struct nd_region *nd_region)
1130 {
1131 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1132 	int i, idx;
1133 
1134 	/*
1135 	 * Try to encourage some diversity in flush hint addresses
1136 	 * across cpus assuming a limited number of flush hints.
1137 	 */
1138 	idx = this_cpu_read(flush_idx);
1139 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1140 
1141 	/*
1142 	 * The pmem_wmb() is needed to 'sfence' all
1143 	 * previous writes such that they are architecturally visible for
1144 	 * the platform buffer flush. Note that we've already arranged for pmem
1145 	 * writes to avoid the cache via memcpy_flushcache().  The final
1146 	 * wmb() ensures ordering for the NVDIMM flush write.
1147 	 */
1148 	pmem_wmb();
1149 	for (i = 0; i < nd_region->ndr_mappings; i++)
1150 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1151 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1152 	wmb();
1153 
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(nvdimm_flush);
1157 
1158 /**
1159  * nvdimm_has_flush - determine write flushing requirements
1160  * @nd_region: interleaved pmem region
1161  *
1162  * Returns 1 if writes require flushing
1163  * Returns 0 if writes do not require flushing
1164  * Returns -ENXIO if flushing capability can not be determined
1165  */
nvdimm_has_flush(struct nd_region * nd_region)1166 int nvdimm_has_flush(struct nd_region *nd_region)
1167 {
1168 	int i;
1169 
1170 	/* no nvdimm or pmem api == flushing capability unknown */
1171 	if (nd_region->ndr_mappings == 0
1172 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1173 		return -ENXIO;
1174 
1175 	/* Test if an explicit flush function is defined */
1176 	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1177 		return 1;
1178 
1179 	/* Test if any flush hints for the region are available */
1180 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1181 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1182 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1183 
1184 		/* flush hints present / available */
1185 		if (nvdimm->num_flush)
1186 			return 1;
1187 	}
1188 
1189 	/*
1190 	 * The platform defines dimm devices without hints nor explicit flush,
1191 	 * assume platform persistence mechanism like ADR
1192 	 */
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1196 
nvdimm_has_cache(struct nd_region * nd_region)1197 int nvdimm_has_cache(struct nd_region *nd_region)
1198 {
1199 	return is_nd_pmem(&nd_region->dev) &&
1200 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1201 }
1202 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1203 
is_nvdimm_sync(struct nd_region * nd_region)1204 bool is_nvdimm_sync(struct nd_region *nd_region)
1205 {
1206 	if (is_nd_volatile(&nd_region->dev))
1207 		return true;
1208 
1209 	return is_nd_pmem(&nd_region->dev) &&
1210 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1211 }
1212 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1213 
1214 MODULE_IMPORT_NS("DEVMEM");
1215