xref: /linux/lib/zstd/compress/zstd_compress_sequences.c (revision e61f33273ca755b3e2ebee4520a76097199dc7a8)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (c) Meta Platforms, Inc. and affiliates.
4  * All rights reserved.
5  *
6  * This source code is licensed under both the BSD-style license (found in the
7  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
8  * in the COPYING file in the root directory of this source tree).
9  * You may select, at your option, one of the above-listed licenses.
10  */
11 
12  /*-*************************************
13  *  Dependencies
14  ***************************************/
15 #include "zstd_compress_sequences.h"
16 
17 /*
18  * -log2(x / 256) lookup table for x in [0, 256).
19  * If x == 0: Return 0
20  * Else: Return floor(-log2(x / 256) * 256)
21  */
22 static unsigned const kInverseProbabilityLog256[256] = {
23     0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
24     1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
25     874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
26     724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
27     618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
28     535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
29     468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
30     411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
31     362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
32     318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
33     279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
34     244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
35     212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
36     182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
37     155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
38     130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
39     106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
40     83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
41     62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
42     42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
43     23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
44     5,    4,    2,    1,
45 };
46 
ZSTD_getFSEMaxSymbolValue(FSE_CTable const * ctable)47 static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
48   void const* ptr = ctable;
49   U16 const* u16ptr = (U16 const*)ptr;
50   U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
51   return maxSymbolValue;
52 }
53 
54 /*
55  * Returns true if we should use ncount=-1 else we should
56  * use ncount=1 for low probability symbols instead.
57  */
ZSTD_useLowProbCount(size_t const nbSeq)58 static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
59 {
60     /* Heuristic: This should cover most blocks <= 16K and
61      * start to fade out after 16K to about 32K depending on
62      * compressibility.
63      */
64     return nbSeq >= 2048;
65 }
66 
67 /*
68  * Returns the cost in bytes of encoding the normalized count header.
69  * Returns an error if any of the helper functions return an error.
70  */
ZSTD_NCountCost(unsigned const * count,unsigned const max,size_t const nbSeq,unsigned const FSELog)71 static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
72                               size_t const nbSeq, unsigned const FSELog)
73 {
74     BYTE wksp[FSE_NCOUNTBOUND];
75     S16 norm[MaxSeq + 1];
76     const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
77     FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
78     return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
79 }
80 
81 /*
82  * Returns the cost in bits of encoding the distribution described by count
83  * using the entropy bound.
84  */
ZSTD_entropyCost(unsigned const * count,unsigned const max,size_t const total)85 static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
86 {
87     unsigned cost = 0;
88     unsigned s;
89 
90     assert(total > 0);
91     for (s = 0; s <= max; ++s) {
92         unsigned norm = (unsigned)((256 * count[s]) / total);
93         if (count[s] != 0 && norm == 0)
94             norm = 1;
95         assert(count[s] < total);
96         cost += count[s] * kInverseProbabilityLog256[norm];
97     }
98     return cost >> 8;
99 }
100 
101 /*
102  * Returns the cost in bits of encoding the distribution in count using ctable.
103  * Returns an error if ctable cannot represent all the symbols in count.
104  */
ZSTD_fseBitCost(FSE_CTable const * ctable,unsigned const * count,unsigned const max)105 size_t ZSTD_fseBitCost(
106     FSE_CTable const* ctable,
107     unsigned const* count,
108     unsigned const max)
109 {
110     unsigned const kAccuracyLog = 8;
111     size_t cost = 0;
112     unsigned s;
113     FSE_CState_t cstate;
114     FSE_initCState(&cstate, ctable);
115     if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
116         DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
117                     ZSTD_getFSEMaxSymbolValue(ctable), max);
118         return ERROR(GENERIC);
119     }
120     for (s = 0; s <= max; ++s) {
121         unsigned const tableLog = cstate.stateLog;
122         unsigned const badCost = (tableLog + 1) << kAccuracyLog;
123         unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
124         if (count[s] == 0)
125             continue;
126         if (bitCost >= badCost) {
127             DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
128             return ERROR(GENERIC);
129         }
130         cost += (size_t)count[s] * bitCost;
131     }
132     return cost >> kAccuracyLog;
133 }
134 
135 /*
136  * Returns the cost in bits of encoding the distribution in count using the
137  * table described by norm. The max symbol support by norm is assumed >= max.
138  * norm must be valid for every symbol with non-zero probability in count.
139  */
ZSTD_crossEntropyCost(short const * norm,unsigned accuracyLog,unsigned const * count,unsigned const max)140 size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
141                              unsigned const* count, unsigned const max)
142 {
143     unsigned const shift = 8 - accuracyLog;
144     size_t cost = 0;
145     unsigned s;
146     assert(accuracyLog <= 8);
147     for (s = 0; s <= max; ++s) {
148         unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
149         unsigned const norm256 = normAcc << shift;
150         assert(norm256 > 0);
151         assert(norm256 < 256);
152         cost += count[s] * kInverseProbabilityLog256[norm256];
153     }
154     return cost >> 8;
155 }
156 
157 SymbolEncodingType_e
ZSTD_selectEncodingType(FSE_repeat * repeatMode,unsigned const * count,unsigned const max,size_t const mostFrequent,size_t nbSeq,unsigned const FSELog,FSE_CTable const * prevCTable,short const * defaultNorm,U32 defaultNormLog,ZSTD_DefaultPolicy_e const isDefaultAllowed,ZSTD_strategy const strategy)158 ZSTD_selectEncodingType(
159         FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
160         size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
161         FSE_CTable const* prevCTable,
162         short const* defaultNorm, U32 defaultNormLog,
163         ZSTD_DefaultPolicy_e const isDefaultAllowed,
164         ZSTD_strategy const strategy)
165 {
166     ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
167     if (mostFrequent == nbSeq) {
168         *repeatMode = FSE_repeat_none;
169         if (isDefaultAllowed && nbSeq <= 2) {
170             /* Prefer set_basic over set_rle when there are 2 or fewer symbols,
171              * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
172              * If basic encoding isn't possible, always choose RLE.
173              */
174             DEBUGLOG(5, "Selected set_basic");
175             return set_basic;
176         }
177         DEBUGLOG(5, "Selected set_rle");
178         return set_rle;
179     }
180     if (strategy < ZSTD_lazy) {
181         if (isDefaultAllowed) {
182             size_t const staticFse_nbSeq_max = 1000;
183             size_t const mult = 10 - strategy;
184             size_t const baseLog = 3;
185             size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
186             assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
187             assert(mult <= 9 && mult >= 7);
188             if ( (*repeatMode == FSE_repeat_valid)
189               && (nbSeq < staticFse_nbSeq_max) ) {
190                 DEBUGLOG(5, "Selected set_repeat");
191                 return set_repeat;
192             }
193             if ( (nbSeq < dynamicFse_nbSeq_min)
194               || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
195                 DEBUGLOG(5, "Selected set_basic");
196                 /* The format allows default tables to be repeated, but it isn't useful.
197                  * When using simple heuristics to select encoding type, we don't want
198                  * to confuse these tables with dictionaries. When running more careful
199                  * analysis, we don't need to waste time checking both repeating tables
200                  * and default tables.
201                  */
202                 *repeatMode = FSE_repeat_none;
203                 return set_basic;
204             }
205         }
206     } else {
207         size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
208         size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
209         size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
210         size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
211 
212         if (isDefaultAllowed) {
213             assert(!ZSTD_isError(basicCost));
214             assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
215         }
216         assert(!ZSTD_isError(NCountCost));
217         assert(compressedCost < ERROR(maxCode));
218         DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
219                     (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
220         if (basicCost <= repeatCost && basicCost <= compressedCost) {
221             DEBUGLOG(5, "Selected set_basic");
222             assert(isDefaultAllowed);
223             *repeatMode = FSE_repeat_none;
224             return set_basic;
225         }
226         if (repeatCost <= compressedCost) {
227             DEBUGLOG(5, "Selected set_repeat");
228             assert(!ZSTD_isError(repeatCost));
229             return set_repeat;
230         }
231         assert(compressedCost < basicCost && compressedCost < repeatCost);
232     }
233     DEBUGLOG(5, "Selected set_compressed");
234     *repeatMode = FSE_repeat_check;
235     return set_compressed;
236 }
237 
238 typedef struct {
239     S16 norm[MaxSeq + 1];
240     U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
241 } ZSTD_BuildCTableWksp;
242 
243 size_t
ZSTD_buildCTable(void * dst,size_t dstCapacity,FSE_CTable * nextCTable,U32 FSELog,SymbolEncodingType_e type,unsigned * count,U32 max,const BYTE * codeTable,size_t nbSeq,const S16 * defaultNorm,U32 defaultNormLog,U32 defaultMax,const FSE_CTable * prevCTable,size_t prevCTableSize,void * entropyWorkspace,size_t entropyWorkspaceSize)244 ZSTD_buildCTable(void* dst, size_t dstCapacity,
245                 FSE_CTable* nextCTable, U32 FSELog, SymbolEncodingType_e type,
246                 unsigned* count, U32 max,
247                 const BYTE* codeTable, size_t nbSeq,
248                 const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
249                 const FSE_CTable* prevCTable, size_t prevCTableSize,
250                 void* entropyWorkspace, size_t entropyWorkspaceSize)
251 {
252     BYTE* op = (BYTE*)dst;
253     const BYTE* const oend = op + dstCapacity;
254     DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
255 
256     switch (type) {
257     case set_rle:
258         FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
259         RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
260         *op = codeTable[0];
261         return 1;
262     case set_repeat:
263         ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
264         return 0;
265     case set_basic:
266         FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
267         return 0;
268     case set_compressed: {
269         ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
270         size_t nbSeq_1 = nbSeq;
271         const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
272         if (count[codeTable[nbSeq-1]] > 1) {
273             count[codeTable[nbSeq-1]]--;
274             nbSeq_1--;
275         }
276         assert(nbSeq_1 > 1);
277         assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
278         (void)entropyWorkspaceSize;
279         FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
280         assert(oend >= op);
281         {   size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog);   /* overflow protected */
282             FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
283             FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
284             return NCountSize;
285         }
286     }
287     default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
288     }
289 }
290 
291 FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,SeqDef const * sequences,size_t nbSeq,int longOffsets)292 ZSTD_encodeSequences_body(
293             void* dst, size_t dstCapacity,
294             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
295             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
296             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
297             SeqDef const* sequences, size_t nbSeq, int longOffsets)
298 {
299     BIT_CStream_t blockStream;
300     FSE_CState_t  stateMatchLength;
301     FSE_CState_t  stateOffsetBits;
302     FSE_CState_t  stateLitLength;
303 
304     RETURN_ERROR_IF(
305         ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
306         dstSize_tooSmall, "not enough space remaining");
307     DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
308                 (int)(blockStream.endPtr - blockStream.startPtr),
309                 (unsigned)dstCapacity);
310 
311     /* first symbols */
312     FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
313     FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
314     FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
315     BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
316     if (MEM_32bits()) BIT_flushBits(&blockStream);
317     BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
318     if (MEM_32bits()) BIT_flushBits(&blockStream);
319     if (longOffsets) {
320         U32 const ofBits = ofCodeTable[nbSeq-1];
321         unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
322         if (extraBits) {
323             BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
324             BIT_flushBits(&blockStream);
325         }
326         BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
327                     ofBits - extraBits);
328     } else {
329         BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
330     }
331     BIT_flushBits(&blockStream);
332 
333     {   size_t n;
334         for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
335             BYTE const llCode = llCodeTable[n];
336             BYTE const ofCode = ofCodeTable[n];
337             BYTE const mlCode = mlCodeTable[n];
338             U32  const llBits = LL_bits[llCode];
339             U32  const ofBits = ofCode;
340             U32  const mlBits = ML_bits[mlCode];
341             DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
342                         (unsigned)sequences[n].litLength,
343                         (unsigned)sequences[n].mlBase + MINMATCH,
344                         (unsigned)sequences[n].offBase);
345                                                                             /* 32b*/  /* 64b*/
346                                                                             /* (7)*/  /* (7)*/
347             FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
348             FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
349             if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
350             FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
351             if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
352                 BIT_flushBits(&blockStream);                                /* (7)*/
353             BIT_addBits(&blockStream, sequences[n].litLength, llBits);
354             if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
355             BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
356             if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
357             if (longOffsets) {
358                 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
359                 if (extraBits) {
360                     BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
361                     BIT_flushBits(&blockStream);                            /* (7)*/
362                 }
363                 BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
364                             ofBits - extraBits);                            /* 31 */
365             } else {
366                 BIT_addBits(&blockStream, sequences[n].offBase, ofBits);     /* 31 */
367             }
368             BIT_flushBits(&blockStream);                                    /* (7)*/
369             DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
370     }   }
371 
372     DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
373     FSE_flushCState(&blockStream, &stateMatchLength);
374     DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
375     FSE_flushCState(&blockStream, &stateOffsetBits);
376     DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
377     FSE_flushCState(&blockStream, &stateLitLength);
378 
379     {   size_t const streamSize = BIT_closeCStream(&blockStream);
380         RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
381         return streamSize;
382     }
383 }
384 
385 static size_t
ZSTD_encodeSequences_default(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,SeqDef const * sequences,size_t nbSeq,int longOffsets)386 ZSTD_encodeSequences_default(
387             void* dst, size_t dstCapacity,
388             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
389             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
390             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
391             SeqDef const* sequences, size_t nbSeq, int longOffsets)
392 {
393     return ZSTD_encodeSequences_body(dst, dstCapacity,
394                                     CTable_MatchLength, mlCodeTable,
395                                     CTable_OffsetBits, ofCodeTable,
396                                     CTable_LitLength, llCodeTable,
397                                     sequences, nbSeq, longOffsets);
398 }
399 
400 
401 #if DYNAMIC_BMI2
402 
403 static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,SeqDef const * sequences,size_t nbSeq,int longOffsets)404 ZSTD_encodeSequences_bmi2(
405             void* dst, size_t dstCapacity,
406             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
407             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
408             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
409             SeqDef const* sequences, size_t nbSeq, int longOffsets)
410 {
411     return ZSTD_encodeSequences_body(dst, dstCapacity,
412                                     CTable_MatchLength, mlCodeTable,
413                                     CTable_OffsetBits, ofCodeTable,
414                                     CTable_LitLength, llCodeTable,
415                                     sequences, nbSeq, longOffsets);
416 }
417 
418 #endif
419 
ZSTD_encodeSequences(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,SeqDef const * sequences,size_t nbSeq,int longOffsets,int bmi2)420 size_t ZSTD_encodeSequences(
421             void* dst, size_t dstCapacity,
422             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
423             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
424             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
425             SeqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
426 {
427     DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
428 #if DYNAMIC_BMI2
429     if (bmi2) {
430         return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
431                                          CTable_MatchLength, mlCodeTable,
432                                          CTable_OffsetBits, ofCodeTable,
433                                          CTable_LitLength, llCodeTable,
434                                          sequences, nbSeq, longOffsets);
435     }
436 #endif
437     (void)bmi2;
438     return ZSTD_encodeSequences_default(dst, dstCapacity,
439                                         CTable_MatchLength, mlCodeTable,
440                                         CTable_OffsetBits, ofCodeTable,
441                                         CTable_LitLength, llCodeTable,
442                                         sequences, nbSeq, longOffsets);
443 }
444