1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/msr.h>
23 #include <asm/perf_event.h>
24 #include <asm/tlb.h>
25
26 #include "mm_internal.h"
27
28 #ifdef CONFIG_PARAVIRT
29 # define STATIC_NOPV
30 #else
31 # define STATIC_NOPV static
32 # define __flush_tlb_local native_flush_tlb_local
33 # define __flush_tlb_global native_flush_tlb_global
34 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
35 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
36 #endif
37
38 /*
39 * TLB flushing, formerly SMP-only
40 * c/o Linus Torvalds.
41 *
42 * These mean you can really definitely utterly forget about
43 * writing to user space from interrupts. (Its not allowed anyway).
44 *
45 * Optimizations Manfred Spraul <manfred@colorfullife.com>
46 *
47 * More scalable flush, from Andi Kleen
48 *
49 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
50 */
51
52 /*
53 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
54 * stored in cpu_tlb_state.last_user_mm_spec.
55 */
56 #define LAST_USER_MM_IBPB 0x1UL
57 #define LAST_USER_MM_L1D_FLUSH 0x2UL
58 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
59
60 /* Bits to set when tlbstate and flush is (re)initialized */
61 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
62
63 /*
64 * The x86 feature is called PCID (Process Context IDentifier). It is similar
65 * to what is traditionally called ASID on the RISC processors.
66 *
67 * We don't use the traditional ASID implementation, where each process/mm gets
68 * its own ASID and flush/restart when we run out of ASID space.
69 *
70 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
71 * that came by on this CPU, allowing cheaper switch_mm between processes on
72 * this CPU.
73 *
74 * We end up with different spaces for different things. To avoid confusion we
75 * use different names for each of them:
76 *
77 * ASID - [0, TLB_NR_DYN_ASIDS-1]
78 * the canonical identifier for an mm, dynamically allocated on each CPU
79 * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
80 * the canonical, global identifier for an mm, identical across all CPUs
81 *
82 * kPCID - [1, MAX_ASID_AVAILABLE]
83 * the value we write into the PCID part of CR3; corresponds to the
84 * ASID+1, because PCID 0 is special.
85 *
86 * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
87 * for KPTI each mm has two address spaces and thus needs two
88 * PCID values, but we can still do with a single ASID denomination
89 * for each mm. Corresponds to kPCID + 2048.
90 *
91 */
92
93 /*
94 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
95 * user/kernel switches
96 */
97 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
98 # define PTI_CONSUMED_PCID_BITS 1
99 #else
100 # define PTI_CONSUMED_PCID_BITS 0
101 #endif
102
103 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
104
105 /*
106 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
107 * for them being zero-based. Another -1 is because PCID 0 is reserved for
108 * use by non-PCID-aware users.
109 */
110 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
111
112 /*
113 * Given @asid, compute kPCID
114 */
kern_pcid(u16 asid)115 static inline u16 kern_pcid(u16 asid)
116 {
117 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
118
119 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
120 /*
121 * Make sure that the dynamic ASID space does not conflict with the
122 * bit we are using to switch between user and kernel ASIDs.
123 */
124 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
125
126 /*
127 * The ASID being passed in here should have respected the
128 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
129 */
130 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
131 #endif
132 /*
133 * The dynamically-assigned ASIDs that get passed in are small
134 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
135 * so do not bother to clear it.
136 *
137 * If PCID is on, ASID-aware code paths put the ASID+1 into the
138 * PCID bits. This serves two purposes. It prevents a nasty
139 * situation in which PCID-unaware code saves CR3, loads some other
140 * value (with PCID == 0), and then restores CR3, thus corrupting
141 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
142 * that any bugs involving loading a PCID-enabled CR3 with
143 * CR4.PCIDE off will trigger deterministically.
144 */
145 return asid + 1;
146 }
147
148 /*
149 * Given @asid, compute uPCID
150 */
user_pcid(u16 asid)151 static inline u16 user_pcid(u16 asid)
152 {
153 u16 ret = kern_pcid(asid);
154 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
155 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
156 #endif
157 return ret;
158 }
159
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)160 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
161 {
162 unsigned long cr3 = __sme_pa(pgd) | lam;
163
164 if (static_cpu_has(X86_FEATURE_PCID)) {
165 cr3 |= kern_pcid(asid);
166 } else {
167 VM_WARN_ON_ONCE(asid != 0);
168 }
169
170 return cr3;
171 }
172
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
174 unsigned long lam)
175 {
176 /*
177 * Use boot_cpu_has() instead of this_cpu_has() as this function
178 * might be called during early boot. This should work even after
179 * boot because all CPU's the have same capabilities:
180 */
181 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
182 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
183 }
184
185 /*
186 * We get here when we do something requiring a TLB invalidation
187 * but could not go invalidate all of the contexts. We do the
188 * necessary invalidation by clearing out the 'ctx_id' which
189 * forces a TLB flush when the context is loaded.
190 */
clear_asid_other(void)191 static void clear_asid_other(void)
192 {
193 u16 asid;
194
195 /*
196 * This is only expected to be set if we have disabled
197 * kernel _PAGE_GLOBAL pages.
198 */
199 if (!static_cpu_has(X86_FEATURE_PTI)) {
200 WARN_ON_ONCE(1);
201 return;
202 }
203
204 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
205 /* Do not need to flush the current asid */
206 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
207 continue;
208 /*
209 * Make sure the next time we go to switch to
210 * this asid, we do a flush:
211 */
212 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
213 }
214 this_cpu_write(cpu_tlbstate.invalidate_other, false);
215 }
216
217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
218
219 struct new_asid {
220 unsigned int asid : 16;
221 unsigned int need_flush : 1;
222 };
223
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen)224 static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
225 {
226 struct new_asid ns;
227 u16 asid;
228
229 if (!static_cpu_has(X86_FEATURE_PCID)) {
230 ns.asid = 0;
231 ns.need_flush = 1;
232 return ns;
233 }
234
235 /*
236 * TLB consistency for global ASIDs is maintained with hardware assisted
237 * remote TLB flushing. Global ASIDs are always up to date.
238 */
239 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
240 u16 global_asid = mm_global_asid(next);
241
242 if (global_asid) {
243 ns.asid = global_asid;
244 ns.need_flush = 0;
245 return ns;
246 }
247 }
248
249 if (this_cpu_read(cpu_tlbstate.invalidate_other))
250 clear_asid_other();
251
252 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
253 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
254 next->context.ctx_id)
255 continue;
256
257 ns.asid = asid;
258 ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
259 return ns;
260 }
261
262 /*
263 * We don't currently own an ASID slot on this CPU.
264 * Allocate a slot.
265 */
266 ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
267 if (ns.asid >= TLB_NR_DYN_ASIDS) {
268 ns.asid = 0;
269 this_cpu_write(cpu_tlbstate.next_asid, 1);
270 }
271 ns.need_flush = true;
272
273 return ns;
274 }
275
276 /*
277 * Global ASIDs are allocated for multi-threaded processes that are
278 * active on multiple CPUs simultaneously, giving each of those
279 * processes the same PCID on every CPU, for use with hardware-assisted
280 * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
281 *
282 * These global ASIDs are held for the lifetime of the process.
283 */
284 static DEFINE_RAW_SPINLOCK(global_asid_lock);
285 static u16 last_global_asid = MAX_ASID_AVAILABLE;
286 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
287 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
288 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
289
290 /*
291 * When the search for a free ASID in the global ASID space reaches
292 * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
293 * freed global ASIDs are safe to re-use.
294 *
295 * This way the global flush only needs to happen at ASID rollover
296 * time, and not at ASID allocation time.
297 */
reset_global_asid_space(void)298 static void reset_global_asid_space(void)
299 {
300 lockdep_assert_held(&global_asid_lock);
301
302 invlpgb_flush_all_nonglobals();
303
304 /*
305 * The TLB flush above makes it safe to re-use the previously
306 * freed global ASIDs.
307 */
308 bitmap_andnot(global_asid_used, global_asid_used,
309 global_asid_freed, MAX_ASID_AVAILABLE);
310 bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
311
312 /* Restart the search from the start of global ASID space. */
313 last_global_asid = TLB_NR_DYN_ASIDS;
314 }
315
allocate_global_asid(void)316 static u16 allocate_global_asid(void)
317 {
318 u16 asid;
319
320 lockdep_assert_held(&global_asid_lock);
321
322 /* The previous allocation hit the edge of available address space */
323 if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
324 reset_global_asid_space();
325
326 asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
327
328 if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
329 /* This should never happen. */
330 VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
331 global_asid_available);
332 return 0;
333 }
334
335 /* Claim this global ASID. */
336 __set_bit(asid, global_asid_used);
337 last_global_asid = asid;
338 global_asid_available--;
339 return asid;
340 }
341
342 /*
343 * Check whether a process is currently active on more than @threshold CPUs.
344 * This is a cheap estimation on whether or not it may make sense to assign
345 * a global ASID to this process, and use broadcast TLB invalidation.
346 */
mm_active_cpus_exceeds(struct mm_struct * mm,int threshold)347 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
348 {
349 int count = 0;
350 int cpu;
351
352 /* This quick check should eliminate most single threaded programs. */
353 if (cpumask_weight(mm_cpumask(mm)) <= threshold)
354 return false;
355
356 /* Slower check to make sure. */
357 for_each_cpu(cpu, mm_cpumask(mm)) {
358 /* Skip the CPUs that aren't really running this process. */
359 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
360 continue;
361
362 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
363 continue;
364
365 if (++count > threshold)
366 return true;
367 }
368 return false;
369 }
370
371 /*
372 * Assign a global ASID to the current process, protecting against
373 * races between multiple threads in the process.
374 */
use_global_asid(struct mm_struct * mm)375 static void use_global_asid(struct mm_struct *mm)
376 {
377 u16 asid;
378
379 guard(raw_spinlock_irqsave)(&global_asid_lock);
380
381 /* This process is already using broadcast TLB invalidation. */
382 if (mm_global_asid(mm))
383 return;
384
385 /*
386 * The last global ASID was consumed while waiting for the lock.
387 *
388 * If this fires, a more aggressive ASID reuse scheme might be
389 * needed.
390 */
391 if (!global_asid_available) {
392 VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
393 return;
394 }
395
396 asid = allocate_global_asid();
397 if (!asid)
398 return;
399
400 mm_assign_global_asid(mm, asid);
401 }
402
mm_free_global_asid(struct mm_struct * mm)403 void mm_free_global_asid(struct mm_struct *mm)
404 {
405 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
406 return;
407
408 if (!mm_global_asid(mm))
409 return;
410
411 guard(raw_spinlock_irqsave)(&global_asid_lock);
412
413 /* The global ASID can be re-used only after flush at wrap-around. */
414 #ifdef CONFIG_BROADCAST_TLB_FLUSH
415 __set_bit(mm->context.global_asid, global_asid_freed);
416
417 mm->context.global_asid = 0;
418 global_asid_available++;
419 #endif
420 }
421
422 /*
423 * Is the mm transitioning from a CPU-local ASID to a global ASID?
424 */
mm_needs_global_asid(struct mm_struct * mm,u16 asid)425 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
426 {
427 u16 global_asid = mm_global_asid(mm);
428
429 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
430 return false;
431
432 /* Process is transitioning to a global ASID */
433 if (global_asid && asid != global_asid)
434 return true;
435
436 return false;
437 }
438
439 /*
440 * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
441 * systems have over 8k CPUs. Because of this potential ASID shortage,
442 * global ASIDs are handed out to processes that have frequent TLB
443 * flushes and are active on 4 or more CPUs simultaneously.
444 */
consider_global_asid(struct mm_struct * mm)445 static void consider_global_asid(struct mm_struct *mm)
446 {
447 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
448 return;
449
450 /* Check every once in a while. */
451 if ((current->pid & 0x1f) != (jiffies & 0x1f))
452 return;
453
454 /*
455 * Assign a global ASID if the process is active on
456 * 4 or more CPUs simultaneously.
457 */
458 if (mm_active_cpus_exceeds(mm, 3))
459 use_global_asid(mm);
460 }
461
finish_asid_transition(struct flush_tlb_info * info)462 static void finish_asid_transition(struct flush_tlb_info *info)
463 {
464 struct mm_struct *mm = info->mm;
465 int bc_asid = mm_global_asid(mm);
466 int cpu;
467
468 if (!mm_in_asid_transition(mm))
469 return;
470
471 for_each_cpu(cpu, mm_cpumask(mm)) {
472 /*
473 * The remote CPU is context switching. Wait for that to
474 * finish, to catch the unlikely case of it switching to
475 * the target mm with an out of date ASID.
476 */
477 while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
478 cpu_relax();
479
480 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
481 continue;
482
483 /*
484 * If at least one CPU is not using the global ASID yet,
485 * send a TLB flush IPI. The IPI should cause stragglers
486 * to transition soon.
487 *
488 * This can race with the CPU switching to another task;
489 * that results in a (harmless) extra IPI.
490 */
491 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
492 flush_tlb_multi(mm_cpumask(info->mm), info);
493 return;
494 }
495 }
496
497 /* All the CPUs running this process are using the global ASID. */
498 mm_clear_asid_transition(mm);
499 }
500
broadcast_tlb_flush(struct flush_tlb_info * info)501 static void broadcast_tlb_flush(struct flush_tlb_info *info)
502 {
503 bool pmd = info->stride_shift == PMD_SHIFT;
504 unsigned long asid = mm_global_asid(info->mm);
505 unsigned long addr = info->start;
506
507 /*
508 * TLB flushes with INVLPGB are kicked off asynchronously.
509 * The inc_mm_tlb_gen() guarantees page table updates are done
510 * before these TLB flushes happen.
511 */
512 if (info->end == TLB_FLUSH_ALL) {
513 invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
514 /* Do any CPUs supporting INVLPGB need PTI? */
515 if (cpu_feature_enabled(X86_FEATURE_PTI))
516 invlpgb_flush_single_pcid_nosync(user_pcid(asid));
517 } else do {
518 unsigned long nr = 1;
519
520 if (info->stride_shift <= PMD_SHIFT) {
521 nr = (info->end - addr) >> info->stride_shift;
522 nr = clamp_val(nr, 1, invlpgb_count_max);
523 }
524
525 invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
526 if (cpu_feature_enabled(X86_FEATURE_PTI))
527 invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
528
529 addr += nr << info->stride_shift;
530 } while (addr < info->end);
531
532 finish_asid_transition(info);
533
534 /* Wait for the INVLPGBs kicked off above to finish. */
535 __tlbsync();
536 }
537
538 /*
539 * Given an ASID, flush the corresponding user ASID. We can delay this
540 * until the next time we switch to it.
541 *
542 * See SWITCH_TO_USER_CR3.
543 */
invalidate_user_asid(u16 asid)544 static inline void invalidate_user_asid(u16 asid)
545 {
546 /* There is no user ASID if address space separation is off */
547 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
548 return;
549
550 /*
551 * We only have a single ASID if PCID is off and the CR3
552 * write will have flushed it.
553 */
554 if (!cpu_feature_enabled(X86_FEATURE_PCID))
555 return;
556
557 if (!static_cpu_has(X86_FEATURE_PTI))
558 return;
559
560 __set_bit(kern_pcid(asid),
561 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
562 }
563
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)564 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
565 bool need_flush)
566 {
567 unsigned long new_mm_cr3;
568
569 if (need_flush) {
570 invalidate_user_asid(new_asid);
571 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
572 } else {
573 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
574 }
575
576 /*
577 * Caution: many callers of this function expect
578 * that load_cr3() is serializing and orders TLB
579 * fills with respect to the mm_cpumask writes.
580 */
581 write_cr3(new_mm_cr3);
582 }
583
leave_mm(void)584 void leave_mm(void)
585 {
586 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
587
588 /*
589 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
590 * If so, our callers still expect us to flush the TLB, but there
591 * aren't any user TLB entries in init_mm to worry about.
592 *
593 * This needs to happen before any other sanity checks due to
594 * intel_idle's shenanigans.
595 */
596 if (loaded_mm == &init_mm)
597 return;
598
599 /* Warn if we're not lazy. */
600 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
601
602 switch_mm(NULL, &init_mm, NULL);
603 }
604 EXPORT_SYMBOL_GPL(leave_mm);
605
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)606 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
607 struct task_struct *tsk)
608 {
609 unsigned long flags;
610
611 local_irq_save(flags);
612 switch_mm_irqs_off(NULL, next, tsk);
613 local_irq_restore(flags);
614 }
615
616 /*
617 * Invoked from return to user/guest by a task that opted-in to L1D
618 * flushing but ended up running on an SMT enabled core due to wrong
619 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
620 * contract which this task requested.
621 */
l1d_flush_force_sigbus(struct callback_head * ch)622 static void l1d_flush_force_sigbus(struct callback_head *ch)
623 {
624 force_sig(SIGBUS);
625 }
626
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)627 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
628 struct task_struct *next)
629 {
630 /* Flush L1D if the outgoing task requests it */
631 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
632 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
633
634 /* Check whether the incoming task opted in for L1D flush */
635 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
636 return;
637
638 /*
639 * Validate that it is not running on an SMT sibling as this would
640 * make the exercise pointless because the siblings share L1D. If
641 * it runs on a SMT sibling, notify it with SIGBUS on return to
642 * user/guest
643 */
644 if (this_cpu_read(cpu_info.smt_active)) {
645 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
646 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
647 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
648 }
649 }
650
mm_mangle_tif_spec_bits(struct task_struct * next)651 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
652 {
653 unsigned long next_tif = read_task_thread_flags(next);
654 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
655
656 /*
657 * Ensure that the bit shift above works as expected and the two flags
658 * end up in bit 0 and 1.
659 */
660 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
661
662 return (unsigned long)next->mm | spec_bits;
663 }
664
cond_mitigation(struct task_struct * next)665 static void cond_mitigation(struct task_struct *next)
666 {
667 unsigned long prev_mm, next_mm;
668
669 if (!next || !next->mm)
670 return;
671
672 next_mm = mm_mangle_tif_spec_bits(next);
673 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
674
675 /*
676 * Avoid user->user BTB/RSB poisoning by flushing them when switching
677 * between processes. This stops one process from doing Spectre-v2
678 * attacks on another.
679 *
680 * Both, the conditional and the always IBPB mode use the mm
681 * pointer to avoid the IBPB when switching between tasks of the
682 * same process. Using the mm pointer instead of mm->context.ctx_id
683 * opens a hypothetical hole vs. mm_struct reuse, which is more or
684 * less impossible to control by an attacker. Aside of that it
685 * would only affect the first schedule so the theoretically
686 * exposed data is not really interesting.
687 */
688 if (static_branch_likely(&switch_mm_cond_ibpb)) {
689 /*
690 * This is a bit more complex than the always mode because
691 * it has to handle two cases:
692 *
693 * 1) Switch from a user space task (potential attacker)
694 * which has TIF_SPEC_IB set to a user space task
695 * (potential victim) which has TIF_SPEC_IB not set.
696 *
697 * 2) Switch from a user space task (potential attacker)
698 * which has TIF_SPEC_IB not set to a user space task
699 * (potential victim) which has TIF_SPEC_IB set.
700 *
701 * This could be done by unconditionally issuing IBPB when
702 * a task which has TIF_SPEC_IB set is either scheduled in
703 * or out. Though that results in two flushes when:
704 *
705 * - the same user space task is scheduled out and later
706 * scheduled in again and only a kernel thread ran in
707 * between.
708 *
709 * - a user space task belonging to the same process is
710 * scheduled in after a kernel thread ran in between
711 *
712 * - a user space task belonging to the same process is
713 * scheduled in immediately.
714 *
715 * Optimize this with reasonably small overhead for the
716 * above cases. Mangle the TIF_SPEC_IB bit into the mm
717 * pointer of the incoming task which is stored in
718 * cpu_tlbstate.last_user_mm_spec for comparison.
719 *
720 * Issue IBPB only if the mm's are different and one or
721 * both have the IBPB bit set.
722 */
723 if (next_mm != prev_mm &&
724 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
725 indirect_branch_prediction_barrier();
726 }
727
728 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
729 /*
730 * Only flush when switching to a user space task with a
731 * different context than the user space task which ran
732 * last on this CPU.
733 */
734 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
735 indirect_branch_prediction_barrier();
736 }
737
738 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
739 /*
740 * Flush L1D when the outgoing task requested it and/or
741 * check whether the incoming task requested L1D flushing
742 * and ended up on an SMT sibling.
743 */
744 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
745 l1d_flush_evaluate(prev_mm, next_mm, next);
746 }
747
748 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
749 }
750
751 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)752 static inline void cr4_update_pce_mm(struct mm_struct *mm)
753 {
754 if (static_branch_unlikely(&rdpmc_always_available_key) ||
755 (!static_branch_unlikely(&rdpmc_never_available_key) &&
756 atomic_read(&mm->context.perf_rdpmc_allowed))) {
757 /*
758 * Clear the existing dirty counters to
759 * prevent the leak for an RDPMC task.
760 */
761 perf_clear_dirty_counters();
762 cr4_set_bits_irqsoff(X86_CR4_PCE);
763 } else
764 cr4_clear_bits_irqsoff(X86_CR4_PCE);
765 }
766
cr4_update_pce(void * ignored)767 void cr4_update_pce(void *ignored)
768 {
769 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
770 }
771
772 #else
cr4_update_pce_mm(struct mm_struct * mm)773 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
774 #endif
775
776 /*
777 * This optimizes when not actually switching mm's. Some architectures use the
778 * 'unused' argument for this optimization, but x86 must use
779 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
780 * 'current->active_mm' up to date.
781 */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)782 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
783 struct task_struct *tsk)
784 {
785 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
786 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
787 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
788 unsigned cpu = smp_processor_id();
789 unsigned long new_lam;
790 struct new_asid ns;
791 u64 next_tlb_gen;
792
793
794 /* We don't want flush_tlb_func() to run concurrently with us. */
795 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
796 WARN_ON_ONCE(!irqs_disabled());
797
798 /*
799 * Verify that CR3 is what we think it is. This will catch
800 * hypothetical buggy code that directly switches to swapper_pg_dir
801 * without going through leave_mm() / switch_mm_irqs_off() or that
802 * does something like write_cr3(read_cr3_pa()).
803 *
804 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
805 * isn't free.
806 */
807 #ifdef CONFIG_DEBUG_VM
808 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
809 tlbstate_lam_cr3_mask()))) {
810 /*
811 * If we were to BUG here, we'd be very likely to kill
812 * the system so hard that we don't see the call trace.
813 * Try to recover instead by ignoring the error and doing
814 * a global flush to minimize the chance of corruption.
815 *
816 * (This is far from being a fully correct recovery.
817 * Architecturally, the CPU could prefetch something
818 * back into an incorrect ASID slot and leave it there
819 * to cause trouble down the road. It's better than
820 * nothing, though.)
821 */
822 __flush_tlb_all();
823 }
824 #endif
825 if (was_lazy)
826 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
827
828 /*
829 * The membarrier system call requires a full memory barrier and
830 * core serialization before returning to user-space, after
831 * storing to rq->curr, when changing mm. This is because
832 * membarrier() sends IPIs to all CPUs that are in the target mm
833 * to make them issue memory barriers. However, if another CPU
834 * switches to/from the target mm concurrently with
835 * membarrier(), it can cause that CPU not to receive an IPI
836 * when it really should issue a memory barrier. Writing to CR3
837 * provides that full memory barrier and core serializing
838 * instruction.
839 */
840 if (prev == next) {
841 /* Not actually switching mm's */
842 VM_WARN_ON(is_dyn_asid(prev_asid) &&
843 this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
844 next->context.ctx_id);
845
846 /*
847 * If this races with another thread that enables lam, 'new_lam'
848 * might not match tlbstate_lam_cr3_mask().
849 */
850
851 /*
852 * Even in lazy TLB mode, the CPU should stay set in the
853 * mm_cpumask. The TLB shootdown code can figure out from
854 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
855 */
856 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
857 WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
858 !cpumask_test_cpu(cpu, mm_cpumask(next))))
859 cpumask_set_cpu(cpu, mm_cpumask(next));
860
861 /* Check if the current mm is transitioning to a global ASID */
862 if (mm_needs_global_asid(next, prev_asid)) {
863 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
864 ns = choose_new_asid(next, next_tlb_gen);
865 goto reload_tlb;
866 }
867
868 /*
869 * Broadcast TLB invalidation keeps this ASID up to date
870 * all the time.
871 */
872 if (is_global_asid(prev_asid))
873 return;
874
875 /*
876 * If the CPU is not in lazy TLB mode, we are just switching
877 * from one thread in a process to another thread in the same
878 * process. No TLB flush required.
879 */
880 if (!was_lazy)
881 return;
882
883 /*
884 * Read the tlb_gen to check whether a flush is needed.
885 * If the TLB is up to date, just use it.
886 * The barrier synchronizes with the tlb_gen increment in
887 * the TLB shootdown code.
888 */
889 smp_mb();
890 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
891 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
892 next_tlb_gen)
893 return;
894
895 /*
896 * TLB contents went out of date while we were in lazy
897 * mode. Fall through to the TLB switching code below.
898 */
899 ns.asid = prev_asid;
900 ns.need_flush = true;
901 } else {
902 /*
903 * Apply process to process speculation vulnerability
904 * mitigations if applicable.
905 */
906 cond_mitigation(tsk);
907
908 /*
909 * Indicate that CR3 is about to change. nmi_uaccess_okay()
910 * and others are sensitive to the window where mm_cpumask(),
911 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
912 */
913 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
914 barrier();
915
916 /* Start receiving IPIs and then read tlb_gen (and LAM below) */
917 if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
918 cpumask_set_cpu(cpu, mm_cpumask(next));
919 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
920
921 ns = choose_new_asid(next, next_tlb_gen);
922 }
923
924 reload_tlb:
925 new_lam = mm_lam_cr3_mask(next);
926 if (ns.need_flush) {
927 VM_WARN_ON_ONCE(is_global_asid(ns.asid));
928 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
929 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
930 load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
931
932 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
933 } else {
934 /* The new ASID is already up to date. */
935 load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
936
937 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
938 }
939
940 /* Make sure we write CR3 before loaded_mm. */
941 barrier();
942
943 this_cpu_write(cpu_tlbstate.loaded_mm, next);
944 this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
945 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
946
947 if (next != prev) {
948 cr4_update_pce_mm(next);
949 switch_ldt(prev, next);
950 }
951 }
952
953 /*
954 * Please ignore the name of this function. It should be called
955 * switch_to_kernel_thread().
956 *
957 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
958 * kernel thread or other context without an mm. Acceptable implementations
959 * include doing nothing whatsoever, switching to init_mm, or various clever
960 * lazy tricks to try to minimize TLB flushes.
961 *
962 * The scheduler reserves the right to call enter_lazy_tlb() several times
963 * in a row. It will notify us that we're going back to a real mm by
964 * calling switch_mm_irqs_off().
965 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)966 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
967 {
968 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
969 return;
970
971 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
972 }
973
974 /*
975 * Using a temporary mm allows to set temporary mappings that are not accessible
976 * by other CPUs. Such mappings are needed to perform sensitive memory writes
977 * that override the kernel memory protections (e.g., W^X), without exposing the
978 * temporary page-table mappings that are required for these write operations to
979 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
980 * mapping is torn down. Temporary mms can also be used for EFI runtime service
981 * calls or similar functionality.
982 *
983 * It is illegal to schedule while using a temporary mm -- the context switch
984 * code is unaware of the temporary mm and does not know how to context switch.
985 * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
986 *
987 * Note: For sensitive memory writes, the temporary mm needs to be used
988 * exclusively by a single core, and IRQs should be disabled while the
989 * temporary mm is loaded, thereby preventing interrupt handler bugs from
990 * overriding the kernel memory protection.
991 */
use_temporary_mm(struct mm_struct * temp_mm)992 struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
993 {
994 struct mm_struct *prev_mm;
995
996 lockdep_assert_preemption_disabled();
997 guard(irqsave)();
998
999 /*
1000 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1001 * with a stale address space WITHOUT being in lazy mode after
1002 * restoring the previous mm.
1003 */
1004 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1005 leave_mm();
1006
1007 prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1008 switch_mm_irqs_off(NULL, temp_mm, current);
1009
1010 /*
1011 * If breakpoints are enabled, disable them while the temporary mm is
1012 * used. Userspace might set up watchpoints on addresses that are used
1013 * in the temporary mm, which would lead to wrong signals being sent or
1014 * crashes.
1015 *
1016 * Note that breakpoints are not disabled selectively, which also causes
1017 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1018 * undesirable, but still seems reasonable as the code that runs in the
1019 * temporary mm should be short.
1020 */
1021 if (hw_breakpoint_active())
1022 hw_breakpoint_disable();
1023
1024 return prev_mm;
1025 }
1026
unuse_temporary_mm(struct mm_struct * prev_mm)1027 void unuse_temporary_mm(struct mm_struct *prev_mm)
1028 {
1029 lockdep_assert_preemption_disabled();
1030 guard(irqsave)();
1031
1032 /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
1033 cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
1034
1035 switch_mm_irqs_off(NULL, prev_mm, current);
1036
1037 /*
1038 * Restore the breakpoints if they were disabled before the temporary mm
1039 * was loaded.
1040 */
1041 if (hw_breakpoint_active())
1042 hw_breakpoint_restore();
1043 }
1044
1045 /*
1046 * Call this when reinitializing a CPU. It fixes the following potential
1047 * problems:
1048 *
1049 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
1050 * because the CPU was taken down and came back up with CR3's PCID
1051 * bits clear. CPU hotplug can do this.
1052 *
1053 * - The TLB contains junk in slots corresponding to inactive ASIDs.
1054 *
1055 * - The CPU went so far out to lunch that it may have missed a TLB
1056 * flush.
1057 */
initialize_tlbstate_and_flush(void)1058 void initialize_tlbstate_and_flush(void)
1059 {
1060 int i;
1061 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1062 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
1063 unsigned long lam = mm_lam_cr3_mask(mm);
1064 unsigned long cr3 = __read_cr3();
1065
1066 /* Assert that CR3 already references the right mm. */
1067 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
1068
1069 /* LAM expected to be disabled */
1070 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
1071 WARN_ON(lam);
1072
1073 /*
1074 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
1075 * doesn't work like other CR4 bits because it can only be set from
1076 * long mode.)
1077 */
1078 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
1079 !(cr4_read_shadow() & X86_CR4_PCIDE));
1080
1081 /* Disable LAM, force ASID 0 and force a TLB flush. */
1082 write_cr3(build_cr3(mm->pgd, 0, 0));
1083
1084 /* Reinitialize tlbstate. */
1085 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
1086 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
1087 this_cpu_write(cpu_tlbstate.next_asid, 1);
1088 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
1089 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
1090 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
1091
1092 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
1093 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
1094 }
1095
1096 /*
1097 * flush_tlb_func()'s memory ordering requirement is that any
1098 * TLB fills that happen after we flush the TLB are ordered after we
1099 * read active_mm's tlb_gen. We don't need any explicit barriers
1100 * because all x86 flush operations are serializing and the
1101 * atomic64_read operation won't be reordered by the compiler.
1102 */
flush_tlb_func(void * info)1103 static void flush_tlb_func(void *info)
1104 {
1105 /*
1106 * We have three different tlb_gen values in here. They are:
1107 *
1108 * - mm_tlb_gen: the latest generation.
1109 * - local_tlb_gen: the generation that this CPU has already caught
1110 * up to.
1111 * - f->new_tlb_gen: the generation that the requester of the flush
1112 * wants us to catch up to.
1113 */
1114 const struct flush_tlb_info *f = info;
1115 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1116 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1117 u64 local_tlb_gen;
1118 bool local = smp_processor_id() == f->initiating_cpu;
1119 unsigned long nr_invalidate = 0;
1120 u64 mm_tlb_gen;
1121
1122 /* This code cannot presently handle being reentered. */
1123 VM_WARN_ON(!irqs_disabled());
1124
1125 if (!local) {
1126 inc_irq_stat(irq_tlb_count);
1127 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1128 }
1129
1130 /* The CPU was left in the mm_cpumask of the target mm. Clear it. */
1131 if (f->mm && f->mm != loaded_mm) {
1132 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm));
1133 trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0);
1134 return;
1135 }
1136
1137 if (unlikely(loaded_mm == &init_mm))
1138 return;
1139
1140 /* Reload the ASID if transitioning into or out of a global ASID */
1141 if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
1142 switch_mm_irqs_off(NULL, loaded_mm, NULL);
1143 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1144 }
1145
1146 /* Broadcast ASIDs are always kept up to date with INVLPGB. */
1147 if (is_global_asid(loaded_mm_asid))
1148 return;
1149
1150 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
1151 loaded_mm->context.ctx_id);
1152
1153 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
1154 /*
1155 * We're in lazy mode. We need to at least flush our
1156 * paging-structure cache to avoid speculatively reading
1157 * garbage into our TLB. Since switching to init_mm is barely
1158 * slower than a minimal flush, just switch to init_mm.
1159 *
1160 * This should be rare, with native_flush_tlb_multi() skipping
1161 * IPIs to lazy TLB mode CPUs.
1162 */
1163 switch_mm_irqs_off(NULL, &init_mm, NULL);
1164 return;
1165 }
1166
1167 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
1168
1169 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
1170 f->new_tlb_gen <= local_tlb_gen)) {
1171 /*
1172 * The TLB is already up to date in respect to f->new_tlb_gen.
1173 * While the core might be still behind mm_tlb_gen, checking
1174 * mm_tlb_gen unnecessarily would have negative caching effects
1175 * so avoid it.
1176 */
1177 return;
1178 }
1179
1180 /*
1181 * Defer mm_tlb_gen reading as long as possible to avoid cache
1182 * contention.
1183 */
1184 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
1185
1186 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
1187 /*
1188 * There's nothing to do: we're already up to date. This can
1189 * happen if two concurrent flushes happen -- the first flush to
1190 * be handled can catch us all the way up, leaving no work for
1191 * the second flush.
1192 */
1193 goto done;
1194 }
1195
1196 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
1197 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
1198
1199 /*
1200 * If we get to this point, we know that our TLB is out of date.
1201 * This does not strictly imply that we need to flush (it's
1202 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
1203 * going to need to flush in the very near future, so we might
1204 * as well get it over with.
1205 *
1206 * The only question is whether to do a full or partial flush.
1207 *
1208 * We do a partial flush if requested and two extra conditions
1209 * are met:
1210 *
1211 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
1212 * we've always done all needed flushes to catch up to
1213 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
1214 * f->new_tlb_gen == 3, then we know that the flush needed to bring
1215 * us up to date for tlb_gen 3 is the partial flush we're
1216 * processing.
1217 *
1218 * As an example of why this check is needed, suppose that there
1219 * are two concurrent flushes. The first is a full flush that
1220 * changes context.tlb_gen from 1 to 2. The second is a partial
1221 * flush that changes context.tlb_gen from 2 to 3. If they get
1222 * processed on this CPU in reverse order, we'll see
1223 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1224 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
1225 * 3, we'd be break the invariant: we'd update local_tlb_gen above
1226 * 1 without the full flush that's needed for tlb_gen 2.
1227 *
1228 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
1229 * Partial TLB flushes are not all that much cheaper than full TLB
1230 * flushes, so it seems unlikely that it would be a performance win
1231 * to do a partial flush if that won't bring our TLB fully up to
1232 * date. By doing a full flush instead, we can increase
1233 * local_tlb_gen all the way to mm_tlb_gen and we can probably
1234 * avoid another flush in the very near future.
1235 */
1236 if (f->end != TLB_FLUSH_ALL &&
1237 f->new_tlb_gen == local_tlb_gen + 1 &&
1238 f->new_tlb_gen == mm_tlb_gen) {
1239 /* Partial flush */
1240 unsigned long addr = f->start;
1241
1242 /* Partial flush cannot have invalid generations */
1243 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
1244
1245 /* Partial flush must have valid mm */
1246 VM_WARN_ON(f->mm == NULL);
1247
1248 nr_invalidate = (f->end - f->start) >> f->stride_shift;
1249
1250 while (addr < f->end) {
1251 flush_tlb_one_user(addr);
1252 addr += 1UL << f->stride_shift;
1253 }
1254 if (local)
1255 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
1256 } else {
1257 /* Full flush. */
1258 nr_invalidate = TLB_FLUSH_ALL;
1259
1260 flush_tlb_local();
1261 if (local)
1262 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1263 }
1264
1265 /* Both paths above update our state to mm_tlb_gen. */
1266 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
1267
1268 /* Tracing is done in a unified manner to reduce the code size */
1269 done:
1270 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
1271 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
1272 TLB_LOCAL_MM_SHOOTDOWN,
1273 nr_invalidate);
1274 }
1275
should_flush_tlb(int cpu,void * data)1276 static bool should_flush_tlb(int cpu, void *data)
1277 {
1278 struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
1279 struct flush_tlb_info *info = data;
1280
1281 /*
1282 * Order the 'loaded_mm' and 'is_lazy' against their
1283 * write ordering in switch_mm_irqs_off(). Ensure
1284 * 'is_lazy' is at least as new as 'loaded_mm'.
1285 */
1286 smp_rmb();
1287
1288 /* Lazy TLB will get flushed at the next context switch. */
1289 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
1290 return false;
1291
1292 /* No mm means kernel memory flush. */
1293 if (!info->mm)
1294 return true;
1295
1296 /*
1297 * While switching, the remote CPU could have state from
1298 * either the prev or next mm. Assume the worst and flush.
1299 */
1300 if (loaded_mm == LOADED_MM_SWITCHING)
1301 return true;
1302
1303 /* The target mm is loaded, and the CPU is not lazy. */
1304 if (loaded_mm == info->mm)
1305 return true;
1306
1307 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */
1308 if (info->trim_cpumask)
1309 return true;
1310
1311 return false;
1312 }
1313
should_trim_cpumask(struct mm_struct * mm)1314 static bool should_trim_cpumask(struct mm_struct *mm)
1315 {
1316 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
1317 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
1318 return true;
1319 }
1320 return false;
1321 }
1322
1323 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
1324 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
1325
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1326 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
1327 const struct flush_tlb_info *info)
1328 {
1329 /*
1330 * Do accounting and tracing. Note that there are (and have always been)
1331 * cases in which a remote TLB flush will be traced, but eventually
1332 * would not happen.
1333 */
1334 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1335 if (info->end == TLB_FLUSH_ALL)
1336 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
1337 else
1338 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
1339 (info->end - info->start) >> PAGE_SHIFT);
1340
1341 /*
1342 * If no page tables were freed, we can skip sending IPIs to
1343 * CPUs in lazy TLB mode. They will flush the CPU themselves
1344 * at the next context switch.
1345 *
1346 * However, if page tables are getting freed, we need to send the
1347 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
1348 * up on the new contents of what used to be page tables, while
1349 * doing a speculative memory access.
1350 */
1351 if (info->freed_tables || mm_in_asid_transition(info->mm))
1352 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
1353 else
1354 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
1355 (void *)info, 1, cpumask);
1356 }
1357
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1358 void flush_tlb_multi(const struct cpumask *cpumask,
1359 const struct flush_tlb_info *info)
1360 {
1361 __flush_tlb_multi(cpumask, info);
1362 }
1363
1364 /*
1365 * See Documentation/arch/x86/tlb.rst for details. We choose 33
1366 * because it is large enough to cover the vast majority (at
1367 * least 95%) of allocations, and is small enough that we are
1368 * confident it will not cause too much overhead. Each single
1369 * flush is about 100 ns, so this caps the maximum overhead at
1370 * _about_ 3,000 ns.
1371 *
1372 * This is in units of pages.
1373 */
1374 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1375
1376 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1377
1378 #ifdef CONFIG_DEBUG_VM
1379 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1380 #endif
1381
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1382 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1383 unsigned long start, unsigned long end,
1384 unsigned int stride_shift, bool freed_tables,
1385 u64 new_tlb_gen)
1386 {
1387 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1388
1389 #ifdef CONFIG_DEBUG_VM
1390 /*
1391 * Ensure that the following code is non-reentrant and flush_tlb_info
1392 * is not overwritten. This means no TLB flushing is initiated by
1393 * interrupt handlers and machine-check exception handlers.
1394 */
1395 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1396 #endif
1397
1398 /*
1399 * If the number of flushes is so large that a full flush
1400 * would be faster, do a full flush.
1401 */
1402 if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
1403 start = 0;
1404 end = TLB_FLUSH_ALL;
1405 }
1406
1407 info->start = start;
1408 info->end = end;
1409 info->mm = mm;
1410 info->stride_shift = stride_shift;
1411 info->freed_tables = freed_tables;
1412 info->new_tlb_gen = new_tlb_gen;
1413 info->initiating_cpu = smp_processor_id();
1414 info->trim_cpumask = 0;
1415
1416 return info;
1417 }
1418
put_flush_tlb_info(void)1419 static void put_flush_tlb_info(void)
1420 {
1421 #ifdef CONFIG_DEBUG_VM
1422 /* Complete reentrancy prevention checks */
1423 barrier();
1424 this_cpu_dec(flush_tlb_info_idx);
1425 #endif
1426 }
1427
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1428 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1429 unsigned long end, unsigned int stride_shift,
1430 bool freed_tables)
1431 {
1432 struct flush_tlb_info *info;
1433 int cpu = get_cpu();
1434 u64 new_tlb_gen;
1435
1436 /* This is also a barrier that synchronizes with switch_mm(). */
1437 new_tlb_gen = inc_mm_tlb_gen(mm);
1438
1439 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1440 new_tlb_gen);
1441
1442 /*
1443 * flush_tlb_multi() is not optimized for the common case in which only
1444 * a local TLB flush is needed. Optimize this use-case by calling
1445 * flush_tlb_func_local() directly in this case.
1446 */
1447 if (mm_global_asid(mm)) {
1448 broadcast_tlb_flush(info);
1449 } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1450 info->trim_cpumask = should_trim_cpumask(mm);
1451 flush_tlb_multi(mm_cpumask(mm), info);
1452 consider_global_asid(mm);
1453 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1454 lockdep_assert_irqs_enabled();
1455 local_irq_disable();
1456 flush_tlb_func(info);
1457 local_irq_enable();
1458 }
1459
1460 put_flush_tlb_info();
1461 put_cpu();
1462 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1463 }
1464
do_flush_tlb_all(void * info)1465 static void do_flush_tlb_all(void *info)
1466 {
1467 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1468 __flush_tlb_all();
1469 }
1470
flush_tlb_all(void)1471 void flush_tlb_all(void)
1472 {
1473 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1474
1475 /* First try (faster) hardware-assisted TLB invalidation. */
1476 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1477 invlpgb_flush_all();
1478 else
1479 /* Fall back to the IPI-based invalidation. */
1480 on_each_cpu(do_flush_tlb_all, NULL, 1);
1481 }
1482
1483 /* Flush an arbitrarily large range of memory with INVLPGB. */
invlpgb_kernel_range_flush(struct flush_tlb_info * info)1484 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
1485 {
1486 unsigned long addr, nr;
1487
1488 for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
1489 nr = (info->end - addr) >> PAGE_SHIFT;
1490
1491 /*
1492 * INVLPGB has a limit on the size of ranges it can
1493 * flush. Break up large flushes.
1494 */
1495 nr = clamp_val(nr, 1, invlpgb_count_max);
1496
1497 invlpgb_flush_addr_nosync(addr, nr);
1498 }
1499 __tlbsync();
1500 }
1501
do_kernel_range_flush(void * info)1502 static void do_kernel_range_flush(void *info)
1503 {
1504 struct flush_tlb_info *f = info;
1505 unsigned long addr;
1506
1507 /* flush range by one by one 'invlpg' */
1508 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1509 flush_tlb_one_kernel(addr);
1510 }
1511
kernel_tlb_flush_all(struct flush_tlb_info * info)1512 static void kernel_tlb_flush_all(struct flush_tlb_info *info)
1513 {
1514 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1515 invlpgb_flush_all();
1516 else
1517 on_each_cpu(do_flush_tlb_all, NULL, 1);
1518 }
1519
kernel_tlb_flush_range(struct flush_tlb_info * info)1520 static void kernel_tlb_flush_range(struct flush_tlb_info *info)
1521 {
1522 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1523 invlpgb_kernel_range_flush(info);
1524 else
1525 on_each_cpu(do_kernel_range_flush, info, 1);
1526 }
1527
flush_tlb_kernel_range(unsigned long start,unsigned long end)1528 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1529 {
1530 struct flush_tlb_info *info;
1531
1532 guard(preempt)();
1533
1534 info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
1535 TLB_GENERATION_INVALID);
1536
1537 if (info->end == TLB_FLUSH_ALL)
1538 kernel_tlb_flush_all(info);
1539 else
1540 kernel_tlb_flush_range(info);
1541
1542 put_flush_tlb_info();
1543 }
1544
1545 /*
1546 * This can be used from process context to figure out what the value of
1547 * CR3 is without needing to do a (slow) __read_cr3().
1548 *
1549 * It's intended to be used for code like KVM that sneakily changes CR3
1550 * and needs to restore it. It needs to be used very carefully.
1551 */
__get_current_cr3_fast(void)1552 unsigned long __get_current_cr3_fast(void)
1553 {
1554 unsigned long cr3 =
1555 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1556 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1557 tlbstate_lam_cr3_mask());
1558
1559 /* For now, be very restrictive about when this can be called. */
1560 VM_WARN_ON(in_nmi() || preemptible());
1561
1562 VM_BUG_ON(cr3 != __read_cr3());
1563 return cr3;
1564 }
1565 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1566
1567 /*
1568 * Flush one page in the kernel mapping
1569 */
flush_tlb_one_kernel(unsigned long addr)1570 void flush_tlb_one_kernel(unsigned long addr)
1571 {
1572 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1573
1574 /*
1575 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1576 * paravirt equivalent. Even with PCID, this is sufficient: we only
1577 * use PCID if we also use global PTEs for the kernel mapping, and
1578 * INVLPG flushes global translations across all address spaces.
1579 *
1580 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1581 * __flush_tlb_one_user() will flush the given address for the current
1582 * kernel address space and for its usermode counterpart, but it does
1583 * not flush it for other address spaces.
1584 */
1585 flush_tlb_one_user(addr);
1586
1587 if (!static_cpu_has(X86_FEATURE_PTI))
1588 return;
1589
1590 /*
1591 * See above. We need to propagate the flush to all other address
1592 * spaces. In principle, we only need to propagate it to kernelmode
1593 * address spaces, but the extra bookkeeping we would need is not
1594 * worth it.
1595 */
1596 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1597 }
1598
1599 /*
1600 * Flush one page in the user mapping
1601 */
native_flush_tlb_one_user(unsigned long addr)1602 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1603 {
1604 u32 loaded_mm_asid;
1605 bool cpu_pcide;
1606
1607 /* Flush 'addr' from the kernel PCID: */
1608 invlpg(addr);
1609
1610 /* If PTI is off there is no user PCID and nothing to flush. */
1611 if (!static_cpu_has(X86_FEATURE_PTI))
1612 return;
1613
1614 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1615 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1616
1617 /*
1618 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1619 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1620 * #GP's even if called before CR4.PCIDE has been initialized.
1621 */
1622 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1623 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1624 else
1625 invalidate_user_asid(loaded_mm_asid);
1626 }
1627
flush_tlb_one_user(unsigned long addr)1628 void flush_tlb_one_user(unsigned long addr)
1629 {
1630 __flush_tlb_one_user(addr);
1631 }
1632
1633 /*
1634 * Flush everything
1635 */
native_flush_tlb_global(void)1636 STATIC_NOPV void native_flush_tlb_global(void)
1637 {
1638 unsigned long flags;
1639
1640 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1641 /*
1642 * Using INVPCID is considerably faster than a pair of writes
1643 * to CR4 sandwiched inside an IRQ flag save/restore.
1644 *
1645 * Note, this works with CR4.PCIDE=0 or 1.
1646 */
1647 invpcid_flush_all();
1648 return;
1649 }
1650
1651 /*
1652 * Read-modify-write to CR4 - protect it from preemption and
1653 * from interrupts. (Use the raw variant because this code can
1654 * be called from deep inside debugging code.)
1655 */
1656 raw_local_irq_save(flags);
1657
1658 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1659
1660 raw_local_irq_restore(flags);
1661 }
1662
1663 /*
1664 * Flush the entire current user mapping
1665 */
native_flush_tlb_local(void)1666 STATIC_NOPV void native_flush_tlb_local(void)
1667 {
1668 /*
1669 * Preemption or interrupts must be disabled to protect the access
1670 * to the per CPU variable and to prevent being preempted between
1671 * read_cr3() and write_cr3().
1672 */
1673 WARN_ON_ONCE(preemptible());
1674
1675 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1676
1677 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1678 native_write_cr3(__native_read_cr3());
1679 }
1680
flush_tlb_local(void)1681 void flush_tlb_local(void)
1682 {
1683 __flush_tlb_local();
1684 }
1685
1686 /*
1687 * Flush everything
1688 */
__flush_tlb_all(void)1689 void __flush_tlb_all(void)
1690 {
1691 /*
1692 * This is to catch users with enabled preemption and the PGE feature
1693 * and don't trigger the warning in __native_flush_tlb().
1694 */
1695 VM_WARN_ON_ONCE(preemptible());
1696
1697 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1698 __flush_tlb_global();
1699 } else {
1700 /*
1701 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1702 */
1703 flush_tlb_local();
1704 }
1705 }
1706 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1707
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1708 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1709 {
1710 struct flush_tlb_info *info;
1711
1712 int cpu = get_cpu();
1713
1714 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1715 TLB_GENERATION_INVALID);
1716 /*
1717 * flush_tlb_multi() is not optimized for the common case in which only
1718 * a local TLB flush is needed. Optimize this use-case by calling
1719 * flush_tlb_func_local() directly in this case.
1720 */
1721 if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
1722 invlpgb_flush_all_nonglobals();
1723 batch->unmapped_pages = false;
1724 } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1725 flush_tlb_multi(&batch->cpumask, info);
1726 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1727 lockdep_assert_irqs_enabled();
1728 local_irq_disable();
1729 flush_tlb_func(info);
1730 local_irq_enable();
1731 }
1732
1733 cpumask_clear(&batch->cpumask);
1734
1735 put_flush_tlb_info();
1736 put_cpu();
1737 }
1738
1739 /*
1740 * Blindly accessing user memory from NMI context can be dangerous
1741 * if we're in the middle of switching the current user task or
1742 * switching the loaded mm. It can also be dangerous if we
1743 * interrupted some kernel code that was temporarily using a
1744 * different mm.
1745 */
nmi_uaccess_okay(void)1746 bool nmi_uaccess_okay(void)
1747 {
1748 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1749 struct mm_struct *current_mm = current->mm;
1750
1751 VM_WARN_ON_ONCE(!loaded_mm);
1752
1753 /*
1754 * The condition we want to check is
1755 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1756 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1757 * is supposed to be reasonably fast.
1758 *
1759 * Instead, we check the almost equivalent but somewhat conservative
1760 * condition below, and we rely on the fact that switch_mm_irqs_off()
1761 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1762 */
1763 if (loaded_mm != current_mm)
1764 return false;
1765
1766 VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
1767
1768 return true;
1769 }
1770
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1771 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1772 size_t count, loff_t *ppos)
1773 {
1774 char buf[32];
1775 unsigned int len;
1776
1777 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1778 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1779 }
1780
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1781 static ssize_t tlbflush_write_file(struct file *file,
1782 const char __user *user_buf, size_t count, loff_t *ppos)
1783 {
1784 char buf[32];
1785 ssize_t len;
1786 int ceiling;
1787
1788 len = min(count, sizeof(buf) - 1);
1789 if (copy_from_user(buf, user_buf, len))
1790 return -EFAULT;
1791
1792 buf[len] = '\0';
1793 if (kstrtoint(buf, 0, &ceiling))
1794 return -EINVAL;
1795
1796 if (ceiling < 0)
1797 return -EINVAL;
1798
1799 tlb_single_page_flush_ceiling = ceiling;
1800 return count;
1801 }
1802
1803 static const struct file_operations fops_tlbflush = {
1804 .read = tlbflush_read_file,
1805 .write = tlbflush_write_file,
1806 .llseek = default_llseek,
1807 };
1808
create_tlb_single_page_flush_ceiling(void)1809 static int __init create_tlb_single_page_flush_ceiling(void)
1810 {
1811 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1812 arch_debugfs_dir, NULL, &fops_tlbflush);
1813 return 0;
1814 }
1815 late_initcall(create_tlb_single_page_flush_ceiling);
1816