1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_INCONSISTENT_FOOTER,
66 FAULT_TIMEOUT,
67 FAULT_VMALLOC,
68 FAULT_MAX,
69 };
70
71 /* indicate which option to update */
72 enum fault_option {
73 FAULT_RATE = 1, /* only update fault rate */
74 FAULT_TYPE = 2, /* only update fault type */
75 FAULT_ALL = 4, /* reset all fault injection options/stats */
76 };
77
78 #ifdef CONFIG_F2FS_FAULT_INJECTION
79 struct f2fs_fault_info {
80 atomic_t inject_ops;
81 int inject_rate;
82 unsigned int inject_type;
83 /* Used to account total count of injection for each type */
84 unsigned int inject_count[FAULT_MAX];
85 };
86
87 extern const char *f2fs_fault_name[FAULT_MAX];
88 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
89
90 /* maximum retry count for injected failure */
91 #define DEFAULT_FAILURE_RETRY_COUNT 8
92 #else
93 #define DEFAULT_FAILURE_RETRY_COUNT 1
94 #endif
95
96 /*
97 * For mount options
98 */
99 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
100 #define F2FS_MOUNT_DISCARD 0x00000002
101 #define F2FS_MOUNT_NOHEAP 0x00000004
102 #define F2FS_MOUNT_XATTR_USER 0x00000008
103 #define F2FS_MOUNT_POSIX_ACL 0x00000010
104 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
105 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
106 #define F2FS_MOUNT_INLINE_DATA 0x00000080
107 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
108 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
109 #define F2FS_MOUNT_NOBARRIER 0x00000400
110 #define F2FS_MOUNT_FASTBOOT 0x00000800
111 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
114 #define F2FS_MOUNT_USRQUOTA 0x00008000
115 #define F2FS_MOUNT_GRPQUOTA 0x00010000
116 #define F2FS_MOUNT_PRJQUOTA 0x00020000
117 #define F2FS_MOUNT_QUOTA 0x00040000
118 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
119 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
120 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
121 #define F2FS_MOUNT_NORECOVERY 0x00400000
122 #define F2FS_MOUNT_ATGC 0x00800000
123 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
124 #define F2FS_MOUNT_GC_MERGE 0x02000000
125 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
126 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
127 #define F2FS_MOUNT_NAT_BITS 0x10000000
128 #define F2FS_MOUNT_INLINECRYPT 0x20000000
129 /*
130 * Some f2fs environments expect to be able to pass the "lazytime" option
131 * string rather than using the MS_LAZYTIME flag, so this must remain.
132 */
133 #define F2FS_MOUNT_LAZYTIME 0x40000000
134
135 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
136 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
137 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
138 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
139
140 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
141 typecheck(unsigned long long, b) && \
142 ((long long)((a) - (b)) > 0))
143
144 typedef u32 block_t; /*
145 * should not change u32, since it is the on-disk block
146 * address format, __le32.
147 */
148 typedef u32 nid_t;
149
150 #define COMPRESS_EXT_NUM 16
151
152 enum blkzone_allocation_policy {
153 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
154 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
155 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
156 };
157
158 /*
159 * An implementation of an rwsem that is explicitly unfair to readers. This
160 * prevents priority inversion when a low-priority reader acquires the read lock
161 * while sleeping on the write lock but the write lock is needed by
162 * higher-priority clients.
163 */
164
165 struct f2fs_rwsem {
166 struct rw_semaphore internal_rwsem;
167 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
168 wait_queue_head_t read_waiters;
169 #endif
170 };
171
172 struct f2fs_mount_info {
173 unsigned int opt;
174 block_t root_reserved_blocks; /* root reserved blocks */
175 kuid_t s_resuid; /* reserved blocks for uid */
176 kgid_t s_resgid; /* reserved blocks for gid */
177 int active_logs; /* # of active logs */
178 int inline_xattr_size; /* inline xattr size */
179 #ifdef CONFIG_F2FS_FAULT_INJECTION
180 struct f2fs_fault_info fault_info; /* For fault injection */
181 #endif
182 #ifdef CONFIG_QUOTA
183 /* Names of quota files with journalled quota */
184 char *s_qf_names[MAXQUOTAS];
185 int s_jquota_fmt; /* Format of quota to use */
186 #endif
187 /* For which write hints are passed down to block layer */
188 int alloc_mode; /* segment allocation policy */
189 int fsync_mode; /* fsync policy */
190 int fs_mode; /* fs mode: LFS or ADAPTIVE */
191 int bggc_mode; /* bggc mode: off, on or sync */
192 int memory_mode; /* memory mode */
193 int errors; /* errors parameter */
194 int discard_unit; /*
195 * discard command's offset/size should
196 * be aligned to this unit: block,
197 * segment or section
198 */
199 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
200 block_t unusable_cap_perc; /* percentage for cap */
201 block_t unusable_cap; /* Amount of space allowed to be
202 * unusable when disabling checkpoint
203 */
204
205 /* For compression */
206 unsigned char compress_algorithm; /* algorithm type */
207 unsigned char compress_log_size; /* cluster log size */
208 unsigned char compress_level; /* compress level */
209 bool compress_chksum; /* compressed data chksum */
210 unsigned char compress_ext_cnt; /* extension count */
211 unsigned char nocompress_ext_cnt; /* nocompress extension count */
212 int compress_mode; /* compression mode */
213 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
214 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
215 };
216
217 #define F2FS_FEATURE_ENCRYPT 0x00000001
218 #define F2FS_FEATURE_BLKZONED 0x00000002
219 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
220 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
221 #define F2FS_FEATURE_PRJQUOTA 0x00000010
222 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
223 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
224 #define F2FS_FEATURE_QUOTA_INO 0x00000080
225 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
226 #define F2FS_FEATURE_LOST_FOUND 0x00000200
227 #define F2FS_FEATURE_VERITY 0x00000400
228 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
229 #define F2FS_FEATURE_CASEFOLD 0x00001000
230 #define F2FS_FEATURE_COMPRESSION 0x00002000
231 #define F2FS_FEATURE_RO 0x00004000
232 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
233
234 #define __F2FS_HAS_FEATURE(raw_super, mask) \
235 ((raw_super->feature & cpu_to_le32(mask)) != 0)
236 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
237
238 /*
239 * Default values for user and/or group using reserved blocks
240 */
241 #define F2FS_DEF_RESUID 0
242 #define F2FS_DEF_RESGID 0
243
244 /*
245 * For checkpoint manager
246 */
247 enum {
248 NAT_BITMAP,
249 SIT_BITMAP
250 };
251
252 #define CP_UMOUNT 0x00000001
253 #define CP_FASTBOOT 0x00000002
254 #define CP_SYNC 0x00000004
255 #define CP_RECOVERY 0x00000008
256 #define CP_DISCARD 0x00000010
257 #define CP_TRIMMED 0x00000020
258 #define CP_PAUSE 0x00000040
259 #define CP_RESIZE 0x00000080
260
261 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
262 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
263 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
264 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
265 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
266 #define DEF_CP_INTERVAL 60 /* 60 secs */
267 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
268 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
269 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
270 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
271
272 struct cp_control {
273 int reason;
274 __u64 trim_start;
275 __u64 trim_end;
276 __u64 trim_minlen;
277 };
278
279 /*
280 * indicate meta/data type
281 */
282 enum {
283 META_CP,
284 META_NAT,
285 META_SIT,
286 META_SSA,
287 META_MAX,
288 META_POR,
289 DATA_GENERIC, /* check range only */
290 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
291 DATA_GENERIC_ENHANCE_READ, /*
292 * strong check on range and segment
293 * bitmap but no warning due to race
294 * condition of read on truncated area
295 * by extent_cache
296 */
297 DATA_GENERIC_ENHANCE_UPDATE, /*
298 * strong check on range and segment
299 * bitmap for update case
300 */
301 META_GENERIC,
302 };
303
304 /* for the list of ino */
305 enum {
306 ORPHAN_INO, /* for orphan ino list */
307 APPEND_INO, /* for append ino list */
308 UPDATE_INO, /* for update ino list */
309 TRANS_DIR_INO, /* for transactions dir ino list */
310 XATTR_DIR_INO, /* for xattr updated dir ino list */
311 FLUSH_INO, /* for multiple device flushing */
312 MAX_INO_ENTRY, /* max. list */
313 };
314
315 struct ino_entry {
316 struct list_head list; /* list head */
317 nid_t ino; /* inode number */
318 unsigned int dirty_device; /* dirty device bitmap */
319 };
320
321 /* for the list of inodes to be GCed */
322 struct inode_entry {
323 struct list_head list; /* list head */
324 struct inode *inode; /* vfs inode pointer */
325 };
326
327 struct fsync_node_entry {
328 struct list_head list; /* list head */
329 struct folio *folio; /* warm node folio pointer */
330 unsigned int seq_id; /* sequence id */
331 };
332
333 struct ckpt_req {
334 struct completion wait; /* completion for checkpoint done */
335 struct llist_node llnode; /* llist_node to be linked in wait queue */
336 int ret; /* return code of checkpoint */
337 ktime_t queue_time; /* request queued time */
338 };
339
340 struct ckpt_req_control {
341 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
342 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
343 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
344 atomic_t issued_ckpt; /* # of actually issued ckpts */
345 atomic_t total_ckpt; /* # of total ckpts */
346 atomic_t queued_ckpt; /* # of queued ckpts */
347 struct llist_head issue_list; /* list for command issue */
348 spinlock_t stat_lock; /* lock for below checkpoint time stats */
349 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
350 unsigned int peak_time; /* peak wait time in msec until now */
351 };
352
353 /* for the bitmap indicate blocks to be discarded */
354 struct discard_entry {
355 struct list_head list; /* list head */
356 block_t start_blkaddr; /* start blockaddr of current segment */
357 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
358 };
359
360 /* minimum discard granularity, unit: block count */
361 #define MIN_DISCARD_GRANULARITY 1
362 /* default discard granularity of inner discard thread, unit: block count */
363 #define DEFAULT_DISCARD_GRANULARITY 16
364 /* default maximum discard granularity of ordered discard, unit: block count */
365 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
366
367 /* max discard pend list number */
368 #define MAX_PLIST_NUM 512
369 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
370 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
371
372 enum {
373 D_PREP, /* initial */
374 D_PARTIAL, /* partially submitted */
375 D_SUBMIT, /* all submitted */
376 D_DONE, /* finished */
377 };
378
379 struct discard_info {
380 block_t lstart; /* logical start address */
381 block_t len; /* length */
382 block_t start; /* actual start address in dev */
383 };
384
385 struct discard_cmd {
386 struct rb_node rb_node; /* rb node located in rb-tree */
387 struct discard_info di; /* discard info */
388 struct list_head list; /* command list */
389 struct completion wait; /* compleation */
390 struct block_device *bdev; /* bdev */
391 unsigned short ref; /* reference count */
392 unsigned char state; /* state */
393 unsigned char queued; /* queued discard */
394 int error; /* bio error */
395 spinlock_t lock; /* for state/bio_ref updating */
396 unsigned short bio_ref; /* bio reference count */
397 };
398
399 enum {
400 DPOLICY_BG,
401 DPOLICY_FORCE,
402 DPOLICY_FSTRIM,
403 DPOLICY_UMOUNT,
404 MAX_DPOLICY,
405 };
406
407 enum {
408 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
409 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
410 DPOLICY_IO_AWARE_MAX,
411 };
412
413 struct discard_policy {
414 int type; /* type of discard */
415 unsigned int min_interval; /* used for candidates exist */
416 unsigned int mid_interval; /* used for device busy */
417 unsigned int max_interval; /* used for candidates not exist */
418 unsigned int max_requests; /* # of discards issued per round */
419 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
420 bool io_aware; /* issue discard in idle time */
421 bool sync; /* submit discard with REQ_SYNC flag */
422 bool ordered; /* issue discard by lba order */
423 bool timeout; /* discard timeout for put_super */
424 unsigned int granularity; /* discard granularity */
425 };
426
427 struct discard_cmd_control {
428 struct task_struct *f2fs_issue_discard; /* discard thread */
429 struct list_head entry_list; /* 4KB discard entry list */
430 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
431 struct list_head wait_list; /* store on-flushing entries */
432 struct list_head fstrim_list; /* in-flight discard from fstrim */
433 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
434 struct mutex cmd_lock;
435 unsigned int nr_discards; /* # of discards in the list */
436 unsigned int max_discards; /* max. discards to be issued */
437 unsigned int max_discard_request; /* max. discard request per round */
438 unsigned int min_discard_issue_time; /* min. interval between discard issue */
439 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
440 unsigned int max_discard_issue_time; /* max. interval between discard issue */
441 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
442 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
443 unsigned int discard_granularity; /* discard granularity */
444 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
445 unsigned int discard_io_aware; /* io_aware policy */
446 unsigned int undiscard_blks; /* # of undiscard blocks */
447 unsigned int next_pos; /* next discard position */
448 atomic_t issued_discard; /* # of issued discard */
449 atomic_t queued_discard; /* # of queued discard */
450 atomic_t discard_cmd_cnt; /* # of cached cmd count */
451 struct rb_root_cached root; /* root of discard rb-tree */
452 bool rbtree_check; /* config for consistence check */
453 bool discard_wake; /* to wake up discard thread */
454 };
455
456 /* for the list of fsync inodes, used only during recovery */
457 struct fsync_inode_entry {
458 struct list_head list; /* list head */
459 struct inode *inode; /* vfs inode pointer */
460 block_t blkaddr; /* block address locating the last fsync */
461 block_t last_dentry; /* block address locating the last dentry */
462 };
463
464 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
465 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
466
467 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
468 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
469 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
470 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
471
472 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
473 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
474
update_nats_in_cursum(struct f2fs_journal * journal,int i)475 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
476 {
477 int before = nats_in_cursum(journal);
478
479 journal->n_nats = cpu_to_le16(before + i);
480 return before;
481 }
482
update_sits_in_cursum(struct f2fs_journal * journal,int i)483 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
484 {
485 int before = sits_in_cursum(journal);
486
487 journal->n_sits = cpu_to_le16(before + i);
488 return before;
489 }
490
__has_cursum_space(struct f2fs_journal * journal,int size,int type)491 static inline bool __has_cursum_space(struct f2fs_journal *journal,
492 int size, int type)
493 {
494 if (type == NAT_JOURNAL)
495 return size <= MAX_NAT_JENTRIES(journal);
496 return size <= MAX_SIT_JENTRIES(journal);
497 }
498
499 /* for inline stuff */
500 #define DEF_INLINE_RESERVED_SIZE 1
501 static inline int get_extra_isize(struct inode *inode);
502 static inline int get_inline_xattr_addrs(struct inode *inode);
503 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
504 (CUR_ADDRS_PER_INODE(inode) - \
505 get_inline_xattr_addrs(inode) - \
506 DEF_INLINE_RESERVED_SIZE))
507
508 /* for inline dir */
509 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
510 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
511 BITS_PER_BYTE + 1))
512 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
513 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
514 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
515 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
516 NR_INLINE_DENTRY(inode) + \
517 INLINE_DENTRY_BITMAP_SIZE(inode)))
518
519 /*
520 * For INODE and NODE manager
521 */
522 /* for directory operations */
523
524 struct f2fs_filename {
525 /*
526 * The filename the user specified. This is NULL for some
527 * filesystem-internal operations, e.g. converting an inline directory
528 * to a non-inline one, or roll-forward recovering an encrypted dentry.
529 */
530 const struct qstr *usr_fname;
531
532 /*
533 * The on-disk filename. For encrypted directories, this is encrypted.
534 * This may be NULL for lookups in an encrypted dir without the key.
535 */
536 struct fscrypt_str disk_name;
537
538 /* The dirhash of this filename */
539 f2fs_hash_t hash;
540
541 #ifdef CONFIG_FS_ENCRYPTION
542 /*
543 * For lookups in encrypted directories: either the buffer backing
544 * disk_name, or a buffer that holds the decoded no-key name.
545 */
546 struct fscrypt_str crypto_buf;
547 #endif
548 #if IS_ENABLED(CONFIG_UNICODE)
549 /*
550 * For casefolded directories: the casefolded name, but it's left NULL
551 * if the original name is not valid Unicode, if the original name is
552 * "." or "..", if the directory is both casefolded and encrypted and
553 * its encryption key is unavailable, or if the filesystem is doing an
554 * internal operation where usr_fname is also NULL. In all these cases
555 * we fall back to treating the name as an opaque byte sequence.
556 */
557 struct qstr cf_name;
558 #endif
559 };
560
561 struct f2fs_dentry_ptr {
562 struct inode *inode;
563 void *bitmap;
564 struct f2fs_dir_entry *dentry;
565 __u8 (*filename)[F2FS_SLOT_LEN];
566 int max;
567 int nr_bitmap;
568 };
569
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)570 static inline void make_dentry_ptr_block(struct inode *inode,
571 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
572 {
573 d->inode = inode;
574 d->max = NR_DENTRY_IN_BLOCK;
575 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
576 d->bitmap = t->dentry_bitmap;
577 d->dentry = t->dentry;
578 d->filename = t->filename;
579 }
580
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)581 static inline void make_dentry_ptr_inline(struct inode *inode,
582 struct f2fs_dentry_ptr *d, void *t)
583 {
584 int entry_cnt = NR_INLINE_DENTRY(inode);
585 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
586 int reserved_size = INLINE_RESERVED_SIZE(inode);
587
588 d->inode = inode;
589 d->max = entry_cnt;
590 d->nr_bitmap = bitmap_size;
591 d->bitmap = t;
592 d->dentry = t + bitmap_size + reserved_size;
593 d->filename = t + bitmap_size + reserved_size +
594 SIZE_OF_DIR_ENTRY * entry_cnt;
595 }
596
597 /*
598 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
599 * as its node offset to distinguish from index node blocks.
600 * But some bits are used to mark the node block.
601 */
602 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
603 >> OFFSET_BIT_SHIFT)
604 enum {
605 ALLOC_NODE, /* allocate a new node page if needed */
606 LOOKUP_NODE, /* look up a node without readahead */
607 LOOKUP_NODE_RA, /*
608 * look up a node with readahead called
609 * by get_data_block.
610 */
611 };
612
613 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
614
615 /* congestion wait timeout value, default: 20ms */
616 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
617
618 /* timeout value injected, default: 1000ms */
619 #define DEFAULT_FAULT_TIMEOUT (msecs_to_jiffies(1000))
620
621 /* maximum retry quota flush count */
622 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
623
624 /* maximum retry of EIO'ed page */
625 #define MAX_RETRY_PAGE_EIO 100
626
627 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
628
629 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
630
631 /* dirty segments threshold for triggering CP */
632 #define DEFAULT_DIRTY_THRESHOLD 4
633
634 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
635 #define RECOVERY_MIN_RA_BLOCKS 1
636
637 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
638
639 /* for in-memory extent cache entry */
640 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
641
642 /* number of extent info in extent cache we try to shrink */
643 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
644
645 /* number of age extent info in extent cache we try to shrink */
646 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
647 #define LAST_AGE_WEIGHT 30
648 #define SAME_AGE_REGION 1024
649
650 /*
651 * Define data block with age less than 1GB as hot data
652 * define data block with age less than 10GB but more than 1GB as warm data
653 */
654 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
655 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
656
657 /* default max read extent count per inode */
658 #define DEF_MAX_READ_EXTENT_COUNT 10240
659
660 /* extent cache type */
661 enum extent_type {
662 EX_READ,
663 EX_BLOCK_AGE,
664 NR_EXTENT_CACHES,
665 };
666
667 struct extent_info {
668 unsigned int fofs; /* start offset in a file */
669 unsigned int len; /* length of the extent */
670 union {
671 /* read extent_cache */
672 struct {
673 /* start block address of the extent */
674 block_t blk;
675 #ifdef CONFIG_F2FS_FS_COMPRESSION
676 /* physical extent length of compressed blocks */
677 unsigned int c_len;
678 #endif
679 };
680 /* block age extent_cache */
681 struct {
682 /* block age of the extent */
683 unsigned long long age;
684 /* last total blocks allocated */
685 unsigned long long last_blocks;
686 };
687 };
688 };
689
690 struct extent_node {
691 struct rb_node rb_node; /* rb node located in rb-tree */
692 struct extent_info ei; /* extent info */
693 struct list_head list; /* node in global extent list of sbi */
694 struct extent_tree *et; /* extent tree pointer */
695 };
696
697 struct extent_tree {
698 nid_t ino; /* inode number */
699 enum extent_type type; /* keep the extent tree type */
700 struct rb_root_cached root; /* root of extent info rb-tree */
701 struct extent_node *cached_en; /* recently accessed extent node */
702 struct list_head list; /* to be used by sbi->zombie_list */
703 rwlock_t lock; /* protect extent info rb-tree */
704 atomic_t node_cnt; /* # of extent node in rb-tree*/
705 bool largest_updated; /* largest extent updated */
706 struct extent_info largest; /* largest cached extent for EX_READ */
707 };
708
709 struct extent_tree_info {
710 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
711 struct mutex extent_tree_lock; /* locking extent radix tree */
712 struct list_head extent_list; /* lru list for shrinker */
713 spinlock_t extent_lock; /* locking extent lru list */
714 atomic_t total_ext_tree; /* extent tree count */
715 struct list_head zombie_list; /* extent zombie tree list */
716 atomic_t total_zombie_tree; /* extent zombie tree count */
717 atomic_t total_ext_node; /* extent info count */
718 };
719
720 /*
721 * State of block returned by f2fs_map_blocks.
722 */
723 #define F2FS_MAP_NEW (1U << 0)
724 #define F2FS_MAP_MAPPED (1U << 1)
725 #define F2FS_MAP_DELALLOC (1U << 2)
726 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
727 F2FS_MAP_DELALLOC)
728
729 struct f2fs_map_blocks {
730 struct block_device *m_bdev; /* for multi-device dio */
731 block_t m_pblk;
732 block_t m_lblk;
733 unsigned int m_len;
734 unsigned int m_flags;
735 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
736 pgoff_t *m_next_extent; /* point to next possible extent */
737 int m_seg_type;
738 bool m_may_create; /* indicate it is from write path */
739 bool m_multidev_dio; /* indicate it allows multi-device dio */
740 };
741
742 /* for flag in get_data_block */
743 enum {
744 F2FS_GET_BLOCK_DEFAULT,
745 F2FS_GET_BLOCK_FIEMAP,
746 F2FS_GET_BLOCK_BMAP,
747 F2FS_GET_BLOCK_DIO,
748 F2FS_GET_BLOCK_PRE_DIO,
749 F2FS_GET_BLOCK_PRE_AIO,
750 F2FS_GET_BLOCK_PRECACHE,
751 };
752
753 /*
754 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
755 */
756 #define FADVISE_COLD_BIT 0x01
757 #define FADVISE_LOST_PINO_BIT 0x02
758 #define FADVISE_ENCRYPT_BIT 0x04
759 #define FADVISE_ENC_NAME_BIT 0x08
760 #define FADVISE_KEEP_SIZE_BIT 0x10
761 #define FADVISE_HOT_BIT 0x20
762 #define FADVISE_VERITY_BIT 0x40
763 #define FADVISE_TRUNC_BIT 0x80
764
765 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
766
767 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
768 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
769 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
770
771 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
772 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
773 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
774
775 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
776 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
777
778 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
779 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
780
781 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
782 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
783
784 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
785 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
786 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
787
788 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
789 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
790
791 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
792 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
793 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
794
795 #define DEF_DIR_LEVEL 0
796
797 /* used for f2fs_inode_info->flags */
798 enum {
799 FI_NEW_INODE, /* indicate newly allocated inode */
800 FI_DIRTY_INODE, /* indicate inode is dirty or not */
801 FI_AUTO_RECOVER, /* indicate inode is recoverable */
802 FI_DIRTY_DIR, /* indicate directory has dirty pages */
803 FI_INC_LINK, /* need to increment i_nlink */
804 FI_ACL_MODE, /* indicate acl mode */
805 FI_NO_ALLOC, /* should not allocate any blocks */
806 FI_FREE_NID, /* free allocated nide */
807 FI_NO_EXTENT, /* not to use the extent cache */
808 FI_INLINE_XATTR, /* used for inline xattr */
809 FI_INLINE_DATA, /* used for inline data*/
810 FI_INLINE_DENTRY, /* used for inline dentry */
811 FI_APPEND_WRITE, /* inode has appended data */
812 FI_UPDATE_WRITE, /* inode has in-place-update data */
813 FI_NEED_IPU, /* used for ipu per file */
814 FI_ATOMIC_FILE, /* indicate atomic file */
815 FI_DATA_EXIST, /* indicate data exists */
816 FI_SKIP_WRITES, /* should skip data page writeback */
817 FI_OPU_WRITE, /* used for opu per file */
818 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
819 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
820 FI_HOT_DATA, /* indicate file is hot */
821 FI_EXTRA_ATTR, /* indicate file has extra attribute */
822 FI_PROJ_INHERIT, /* indicate file inherits projectid */
823 FI_PIN_FILE, /* indicate file should not be gced */
824 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
825 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
826 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
827 FI_MMAP_FILE, /* indicate file was mmapped */
828 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
829 FI_COMPRESS_RELEASED, /* compressed blocks were released */
830 FI_ALIGNED_WRITE, /* enable aligned write */
831 FI_COW_FILE, /* indicate COW file */
832 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
833 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
834 FI_ATOMIC_REPLACE, /* indicate atomic replace */
835 FI_OPENED_FILE, /* indicate file has been opened */
836 FI_DONATE_FINISHED, /* indicate page donation of file has been finished */
837 FI_MAX, /* max flag, never be used */
838 };
839
840 struct f2fs_inode_info {
841 struct inode vfs_inode; /* serve a vfs inode */
842 unsigned long i_flags; /* keep an inode flags for ioctl */
843 unsigned char i_advise; /* use to give file attribute hints */
844 unsigned char i_dir_level; /* use for dentry level for large dir */
845 union {
846 unsigned int i_current_depth; /* only for directory depth */
847 unsigned short i_gc_failures; /* for gc failure statistic */
848 };
849 unsigned int i_pino; /* parent inode number */
850 umode_t i_acl_mode; /* keep file acl mode temporarily */
851
852 /* Use below internally in f2fs*/
853 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
854 unsigned int ioprio_hint; /* hint for IO priority */
855 struct f2fs_rwsem i_sem; /* protect fi info */
856 atomic_t dirty_pages; /* # of dirty pages */
857 f2fs_hash_t chash; /* hash value of given file name */
858 unsigned int clevel; /* maximum level of given file name */
859 struct task_struct *task; /* lookup and create consistency */
860 struct task_struct *cp_task; /* separate cp/wb IO stats*/
861 struct task_struct *wb_task; /* indicate inode is in context of writeback */
862 nid_t i_xattr_nid; /* node id that contains xattrs */
863 loff_t last_disk_size; /* lastly written file size */
864 spinlock_t i_size_lock; /* protect last_disk_size */
865
866 #ifdef CONFIG_QUOTA
867 struct dquot __rcu *i_dquot[MAXQUOTAS];
868
869 /* quota space reservation, managed internally by quota code */
870 qsize_t i_reserved_quota;
871 #endif
872 struct list_head dirty_list; /* dirty list for dirs and files */
873 struct list_head gdirty_list; /* linked in global dirty list */
874
875 /* linked in global inode list for cache donation */
876 struct list_head gdonate_list;
877 pgoff_t donate_start, donate_end; /* inclusive */
878
879 struct task_struct *atomic_write_task; /* store atomic write task */
880 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
881 /* cached extent_tree entry */
882 union {
883 struct inode *cow_inode; /* copy-on-write inode for atomic write */
884 struct inode *atomic_inode;
885 /* point to atomic_inode, available only for cow_inode */
886 };
887
888 /* avoid racing between foreground op and gc */
889 struct f2fs_rwsem i_gc_rwsem[2];
890 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
891
892 int i_extra_isize; /* size of extra space located in i_addr */
893 kprojid_t i_projid; /* id for project quota */
894 int i_inline_xattr_size; /* inline xattr size */
895 struct timespec64 i_crtime; /* inode creation time */
896 struct timespec64 i_disk_time[3];/* inode disk times */
897
898 /* for file compress */
899 atomic_t i_compr_blocks; /* # of compressed blocks */
900 unsigned char i_compress_algorithm; /* algorithm type */
901 unsigned char i_log_cluster_size; /* log of cluster size */
902 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
903 unsigned char i_compress_flag; /* compress flag */
904 unsigned int i_cluster_size; /* cluster size */
905
906 unsigned int atomic_write_cnt;
907 loff_t original_i_size; /* original i_size before atomic write */
908 };
909
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)910 static inline void get_read_extent_info(struct extent_info *ext,
911 struct f2fs_extent *i_ext)
912 {
913 ext->fofs = le32_to_cpu(i_ext->fofs);
914 ext->blk = le32_to_cpu(i_ext->blk);
915 ext->len = le32_to_cpu(i_ext->len);
916 }
917
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)918 static inline void set_raw_read_extent(struct extent_info *ext,
919 struct f2fs_extent *i_ext)
920 {
921 i_ext->fofs = cpu_to_le32(ext->fofs);
922 i_ext->blk = cpu_to_le32(ext->blk);
923 i_ext->len = cpu_to_le32(ext->len);
924 }
925
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)926 static inline bool __is_discard_mergeable(struct discard_info *back,
927 struct discard_info *front, unsigned int max_len)
928 {
929 return (back->lstart + back->len == front->lstart) &&
930 (back->len + front->len <= max_len);
931 }
932
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)933 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
934 struct discard_info *back, unsigned int max_len)
935 {
936 return __is_discard_mergeable(back, cur, max_len);
937 }
938
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)939 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
940 struct discard_info *front, unsigned int max_len)
941 {
942 return __is_discard_mergeable(cur, front, max_len);
943 }
944
945 /*
946 * For free nid management
947 */
948 enum nid_state {
949 FREE_NID, /* newly added to free nid list */
950 PREALLOC_NID, /* it is preallocated */
951 MAX_NID_STATE,
952 };
953
954 enum nat_state {
955 TOTAL_NAT,
956 DIRTY_NAT,
957 RECLAIMABLE_NAT,
958 MAX_NAT_STATE,
959 };
960
961 struct f2fs_nm_info {
962 block_t nat_blkaddr; /* base disk address of NAT */
963 nid_t max_nid; /* maximum possible node ids */
964 nid_t available_nids; /* # of available node ids */
965 nid_t next_scan_nid; /* the next nid to be scanned */
966 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
967 unsigned int ram_thresh; /* control the memory footprint */
968 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
969 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
970
971 /* NAT cache management */
972 struct radix_tree_root nat_root;/* root of the nat entry cache */
973 struct radix_tree_root nat_set_root;/* root of the nat set cache */
974 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
975 struct list_head nat_entries; /* cached nat entry list (clean) */
976 spinlock_t nat_list_lock; /* protect clean nat entry list */
977 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
978 unsigned int nat_blocks; /* # of nat blocks */
979
980 /* free node ids management */
981 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
982 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
983 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
984 spinlock_t nid_list_lock; /* protect nid lists ops */
985 struct mutex build_lock; /* lock for build free nids */
986 unsigned char **free_nid_bitmap;
987 unsigned char *nat_block_bitmap;
988 unsigned short *free_nid_count; /* free nid count of NAT block */
989
990 /* for checkpoint */
991 char *nat_bitmap; /* NAT bitmap pointer */
992
993 unsigned int nat_bits_blocks; /* # of nat bits blocks */
994 unsigned char *nat_bits; /* NAT bits blocks */
995 unsigned char *full_nat_bits; /* full NAT pages */
996 unsigned char *empty_nat_bits; /* empty NAT pages */
997 #ifdef CONFIG_F2FS_CHECK_FS
998 char *nat_bitmap_mir; /* NAT bitmap mirror */
999 #endif
1000 int bitmap_size; /* bitmap size */
1001 };
1002
1003 /*
1004 * this structure is used as one of function parameters.
1005 * all the information are dedicated to a given direct node block determined
1006 * by the data offset in a file.
1007 */
1008 struct dnode_of_data {
1009 struct inode *inode; /* vfs inode pointer */
1010 struct folio *inode_folio; /* its inode folio, NULL is possible */
1011 struct folio *node_folio; /* cached direct node folio */
1012 nid_t nid; /* node id of the direct node block */
1013 unsigned int ofs_in_node; /* data offset in the node page */
1014 bool inode_folio_locked; /* inode folio is locked or not */
1015 bool node_changed; /* is node block changed */
1016 char cur_level; /* level of hole node page */
1017 char max_level; /* level of current page located */
1018 block_t data_blkaddr; /* block address of the node block */
1019 };
1020
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct folio * ifolio,struct folio * nfolio,nid_t nid)1021 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1022 struct folio *ifolio, struct folio *nfolio, nid_t nid)
1023 {
1024 memset(dn, 0, sizeof(*dn));
1025 dn->inode = inode;
1026 dn->inode_folio = ifolio;
1027 dn->node_folio = nfolio;
1028 dn->nid = nid;
1029 }
1030
1031 /*
1032 * For SIT manager
1033 *
1034 * By default, there are 6 active log areas across the whole main area.
1035 * When considering hot and cold data separation to reduce cleaning overhead,
1036 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1037 * respectively.
1038 * In the current design, you should not change the numbers intentionally.
1039 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1040 * logs individually according to the underlying devices. (default: 6)
1041 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1042 * data and 8 for node logs.
1043 */
1044 #define NR_CURSEG_DATA_TYPE (3)
1045 #define NR_CURSEG_NODE_TYPE (3)
1046 #define NR_CURSEG_INMEM_TYPE (2)
1047 #define NR_CURSEG_RO_TYPE (2)
1048 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1049 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1050
1051 enum log_type {
1052 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1053 CURSEG_WARM_DATA, /* data blocks */
1054 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1055 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1056 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1057 CURSEG_COLD_NODE, /* indirect node blocks */
1058 NR_PERSISTENT_LOG, /* number of persistent log */
1059 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1060 /* pinned file that needs consecutive block address */
1061 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1062 NO_CHECK_TYPE, /* number of persistent & inmem log */
1063 };
1064
1065 struct flush_cmd {
1066 struct completion wait;
1067 struct llist_node llnode;
1068 nid_t ino;
1069 int ret;
1070 };
1071
1072 struct flush_cmd_control {
1073 struct task_struct *f2fs_issue_flush; /* flush thread */
1074 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1075 atomic_t issued_flush; /* # of issued flushes */
1076 atomic_t queued_flush; /* # of queued flushes */
1077 struct llist_head issue_list; /* list for command issue */
1078 struct llist_node *dispatch_list; /* list for command dispatch */
1079 };
1080
1081 struct f2fs_sm_info {
1082 struct sit_info *sit_info; /* whole segment information */
1083 struct free_segmap_info *free_info; /* free segment information */
1084 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1085 struct curseg_info *curseg_array; /* active segment information */
1086
1087 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1088
1089 block_t seg0_blkaddr; /* block address of 0'th segment */
1090 block_t main_blkaddr; /* start block address of main area */
1091 block_t ssa_blkaddr; /* start block address of SSA area */
1092
1093 unsigned int segment_count; /* total # of segments */
1094 unsigned int main_segments; /* # of segments in main area */
1095 unsigned int reserved_segments; /* # of reserved segments */
1096 unsigned int ovp_segments; /* # of overprovision segments */
1097
1098 /* a threshold to reclaim prefree segments */
1099 unsigned int rec_prefree_segments;
1100
1101 struct list_head sit_entry_set; /* sit entry set list */
1102
1103 unsigned int ipu_policy; /* in-place-update policy */
1104 unsigned int min_ipu_util; /* in-place-update threshold */
1105 unsigned int min_fsync_blocks; /* threshold for fsync */
1106 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1107 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1108 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1109
1110 /* for flush command control */
1111 struct flush_cmd_control *fcc_info;
1112
1113 /* for discard command control */
1114 struct discard_cmd_control *dcc_info;
1115 };
1116
1117 /*
1118 * For superblock
1119 */
1120 /*
1121 * COUNT_TYPE for monitoring
1122 *
1123 * f2fs monitors the number of several block types such as on-writeback,
1124 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1125 */
1126 #define WB_DATA_TYPE(p, f) \
1127 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1128 enum count_type {
1129 F2FS_DIRTY_DENTS,
1130 F2FS_DIRTY_DATA,
1131 F2FS_DIRTY_QDATA,
1132 F2FS_DIRTY_NODES,
1133 F2FS_DIRTY_META,
1134 F2FS_DIRTY_IMETA,
1135 F2FS_WB_CP_DATA,
1136 F2FS_WB_DATA,
1137 F2FS_RD_DATA,
1138 F2FS_RD_NODE,
1139 F2FS_RD_META,
1140 F2FS_DIO_WRITE,
1141 F2FS_DIO_READ,
1142 NR_COUNT_TYPE,
1143 };
1144
1145 /*
1146 * The below are the page types of bios used in submit_bio().
1147 * The available types are:
1148 * DATA User data pages. It operates as async mode.
1149 * NODE Node pages. It operates as async mode.
1150 * META FS metadata pages such as SIT, NAT, CP.
1151 * NR_PAGE_TYPE The number of page types.
1152 * META_FLUSH Make sure the previous pages are written
1153 * with waiting the bio's completion
1154 * ... Only can be used with META.
1155 */
1156 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1157 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1158 enum page_type {
1159 DATA = 0,
1160 NODE = 1, /* should not change this */
1161 META,
1162 NR_PAGE_TYPE,
1163 META_FLUSH,
1164 IPU, /* the below types are used by tracepoints only. */
1165 OPU,
1166 };
1167
1168 enum temp_type {
1169 HOT = 0, /* must be zero for meta bio */
1170 WARM,
1171 COLD,
1172 NR_TEMP_TYPE,
1173 };
1174
1175 enum need_lock_type {
1176 LOCK_REQ = 0,
1177 LOCK_DONE,
1178 LOCK_RETRY,
1179 };
1180
1181 enum cp_reason_type {
1182 CP_NO_NEEDED,
1183 CP_NON_REGULAR,
1184 CP_COMPRESSED,
1185 CP_HARDLINK,
1186 CP_SB_NEED_CP,
1187 CP_WRONG_PINO,
1188 CP_NO_SPC_ROLL,
1189 CP_NODE_NEED_CP,
1190 CP_FASTBOOT_MODE,
1191 CP_SPEC_LOG_NUM,
1192 CP_RECOVER_DIR,
1193 CP_XATTR_DIR,
1194 };
1195
1196 enum iostat_type {
1197 /* WRITE IO */
1198 APP_DIRECT_IO, /* app direct write IOs */
1199 APP_BUFFERED_IO, /* app buffered write IOs */
1200 APP_WRITE_IO, /* app write IOs */
1201 APP_MAPPED_IO, /* app mapped IOs */
1202 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1203 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1204 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1205 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1206 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1207 FS_META_IO, /* meta IOs from kworker/reclaimer */
1208 FS_GC_DATA_IO, /* data IOs from forground gc */
1209 FS_GC_NODE_IO, /* node IOs from forground gc */
1210 FS_CP_DATA_IO, /* data IOs from checkpoint */
1211 FS_CP_NODE_IO, /* node IOs from checkpoint */
1212 FS_CP_META_IO, /* meta IOs from checkpoint */
1213
1214 /* READ IO */
1215 APP_DIRECT_READ_IO, /* app direct read IOs */
1216 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1217 APP_READ_IO, /* app read IOs */
1218 APP_MAPPED_READ_IO, /* app mapped read IOs */
1219 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1220 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1221 FS_DATA_READ_IO, /* data read IOs */
1222 FS_GDATA_READ_IO, /* data read IOs from background gc */
1223 FS_CDATA_READ_IO, /* compressed data read IOs */
1224 FS_NODE_READ_IO, /* node read IOs */
1225 FS_META_READ_IO, /* meta read IOs */
1226
1227 /* other */
1228 FS_DISCARD_IO, /* discard */
1229 FS_FLUSH_IO, /* flush */
1230 FS_ZONE_RESET_IO, /* zone reset */
1231 NR_IO_TYPE,
1232 };
1233
1234 struct f2fs_io_info {
1235 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1236 nid_t ino; /* inode number */
1237 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1238 enum temp_type temp; /* contains HOT/WARM/COLD */
1239 enum req_op op; /* contains REQ_OP_ */
1240 blk_opf_t op_flags; /* req_flag_bits */
1241 block_t new_blkaddr; /* new block address to be written */
1242 block_t old_blkaddr; /* old block address before Cow */
1243 struct page *page; /* page to be written */
1244 struct page *encrypted_page; /* encrypted page */
1245 struct page *compressed_page; /* compressed page */
1246 struct list_head list; /* serialize IOs */
1247 unsigned int compr_blocks; /* # of compressed block addresses */
1248 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1249 unsigned int version:8; /* version of the node */
1250 unsigned int submitted:1; /* indicate IO submission */
1251 unsigned int in_list:1; /* indicate fio is in io_list */
1252 unsigned int is_por:1; /* indicate IO is from recovery or not */
1253 unsigned int encrypted:1; /* indicate file is encrypted */
1254 unsigned int meta_gc:1; /* require meta inode GC */
1255 enum iostat_type io_type; /* io type */
1256 struct writeback_control *io_wbc; /* writeback control */
1257 struct bio **bio; /* bio for ipu */
1258 sector_t *last_block; /* last block number in bio */
1259 };
1260
1261 struct bio_entry {
1262 struct bio *bio;
1263 struct list_head list;
1264 };
1265
1266 #define is_read_io(rw) ((rw) == READ)
1267 struct f2fs_bio_info {
1268 struct f2fs_sb_info *sbi; /* f2fs superblock */
1269 struct bio *bio; /* bios to merge */
1270 sector_t last_block_in_bio; /* last block number */
1271 struct f2fs_io_info fio; /* store buffered io info. */
1272 #ifdef CONFIG_BLK_DEV_ZONED
1273 struct completion zone_wait; /* condition value for the previous open zone to close */
1274 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1275 void *bi_private; /* previous bi_private for pending bio */
1276 #endif
1277 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1278 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1279 struct list_head io_list; /* track fios */
1280 struct list_head bio_list; /* bio entry list head */
1281 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1282 };
1283
1284 #define FDEV(i) (sbi->devs[i])
1285 #define RDEV(i) (raw_super->devs[i])
1286 struct f2fs_dev_info {
1287 struct file *bdev_file;
1288 struct block_device *bdev;
1289 char path[MAX_PATH_LEN];
1290 unsigned int total_segments;
1291 block_t start_blk;
1292 block_t end_blk;
1293 #ifdef CONFIG_BLK_DEV_ZONED
1294 unsigned int nr_blkz; /* Total number of zones */
1295 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1296 #endif
1297 };
1298
1299 enum inode_type {
1300 DIR_INODE, /* for dirty dir inode */
1301 FILE_INODE, /* for dirty regular/symlink inode */
1302 DIRTY_META, /* for all dirtied inode metadata */
1303 DONATE_INODE, /* for all inode to donate pages */
1304 NR_INODE_TYPE,
1305 };
1306
1307 /* for inner inode cache management */
1308 struct inode_management {
1309 struct radix_tree_root ino_root; /* ino entry array */
1310 spinlock_t ino_lock; /* for ino entry lock */
1311 struct list_head ino_list; /* inode list head */
1312 unsigned long ino_num; /* number of entries */
1313 };
1314
1315 /* for GC_AT */
1316 struct atgc_management {
1317 bool atgc_enabled; /* ATGC is enabled or not */
1318 struct rb_root_cached root; /* root of victim rb-tree */
1319 struct list_head victim_list; /* linked with all victim entries */
1320 unsigned int victim_count; /* victim count in rb-tree */
1321 unsigned int candidate_ratio; /* candidate ratio */
1322 unsigned int max_candidate_count; /* max candidate count */
1323 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1324 unsigned long long age_threshold; /* age threshold */
1325 };
1326
1327 struct f2fs_gc_control {
1328 unsigned int victim_segno; /* target victim segment number */
1329 int init_gc_type; /* FG_GC or BG_GC */
1330 bool no_bg_gc; /* check the space and stop bg_gc */
1331 bool should_migrate_blocks; /* should migrate blocks */
1332 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1333 bool one_time; /* require one time GC in one migration unit */
1334 unsigned int nr_free_secs; /* # of free sections to do GC */
1335 };
1336
1337 /*
1338 * For s_flag in struct f2fs_sb_info
1339 * Modification on enum should be synchronized with s_flag array
1340 */
1341 enum {
1342 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1343 SBI_IS_CLOSE, /* specify unmounting */
1344 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1345 SBI_POR_DOING, /* recovery is doing or not */
1346 SBI_NEED_SB_WRITE, /* need to recover superblock */
1347 SBI_NEED_CP, /* need to checkpoint */
1348 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1349 SBI_IS_RECOVERED, /* recovered orphan/data */
1350 SBI_CP_DISABLED, /* CP was disabled last mount */
1351 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1352 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1353 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1354 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1355 SBI_IS_RESIZEFS, /* resizefs is in process */
1356 SBI_IS_FREEZING, /* freezefs is in process */
1357 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1358 MAX_SBI_FLAG,
1359 };
1360
1361 enum {
1362 CP_TIME,
1363 REQ_TIME,
1364 DISCARD_TIME,
1365 GC_TIME,
1366 DISABLE_TIME,
1367 UMOUNT_DISCARD_TIMEOUT,
1368 MAX_TIME,
1369 };
1370
1371 /* Note that you need to keep synchronization with this gc_mode_names array */
1372 enum {
1373 GC_NORMAL,
1374 GC_IDLE_CB,
1375 GC_IDLE_GREEDY,
1376 GC_IDLE_AT,
1377 GC_URGENT_HIGH,
1378 GC_URGENT_LOW,
1379 GC_URGENT_MID,
1380 MAX_GC_MODE,
1381 };
1382
1383 enum {
1384 BGGC_MODE_ON, /* background gc is on */
1385 BGGC_MODE_OFF, /* background gc is off */
1386 BGGC_MODE_SYNC, /*
1387 * background gc is on, migrating blocks
1388 * like foreground gc
1389 */
1390 };
1391
1392 enum {
1393 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1394 FS_MODE_LFS, /* use lfs allocation only */
1395 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1396 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1397 };
1398
1399 enum {
1400 ALLOC_MODE_DEFAULT, /* stay default */
1401 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1402 };
1403
1404 enum fsync_mode {
1405 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1406 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1407 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1408 };
1409
1410 enum {
1411 COMPR_MODE_FS, /*
1412 * automatically compress compression
1413 * enabled files
1414 */
1415 COMPR_MODE_USER, /*
1416 * automatical compression is disabled.
1417 * user can control the file compression
1418 * using ioctls
1419 */
1420 };
1421
1422 enum {
1423 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1424 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1425 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1426 };
1427
1428 enum {
1429 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1430 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1431 };
1432
1433 enum errors_option {
1434 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1435 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1436 MOUNT_ERRORS_PANIC, /* panic on errors */
1437 };
1438
1439 enum {
1440 BACKGROUND,
1441 FOREGROUND,
1442 MAX_CALL_TYPE,
1443 TOTAL_CALL = FOREGROUND,
1444 };
1445
1446 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1447 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1448 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1449
1450 /*
1451 * Layout of f2fs page.private:
1452 *
1453 * Layout A: lowest bit should be 1
1454 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1455 * bit 0 PAGE_PRIVATE_NOT_POINTER
1456 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1457 * bit 2 PAGE_PRIVATE_INLINE_INODE
1458 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1459 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1460 * bit 5- f2fs private data
1461 *
1462 * Layout B: lowest bit should be 0
1463 * page.private is a wrapped pointer.
1464 */
1465 enum {
1466 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1467 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1468 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1469 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1470 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1471 PAGE_PRIVATE_MAX
1472 };
1473
1474 /* For compression */
1475 enum compress_algorithm_type {
1476 COMPRESS_LZO,
1477 COMPRESS_LZ4,
1478 COMPRESS_ZSTD,
1479 COMPRESS_LZORLE,
1480 COMPRESS_MAX,
1481 };
1482
1483 enum compress_flag {
1484 COMPRESS_CHKSUM,
1485 COMPRESS_MAX_FLAG,
1486 };
1487
1488 #define COMPRESS_WATERMARK 20
1489 #define COMPRESS_PERCENT 20
1490
1491 #define COMPRESS_DATA_RESERVED_SIZE 4
1492 struct compress_data {
1493 __le32 clen; /* compressed data size */
1494 __le32 chksum; /* compressed data chksum */
1495 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1496 u8 cdata[]; /* compressed data */
1497 };
1498
1499 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1500
1501 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1502
1503 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1504
1505 #define COMPRESS_LEVEL_OFFSET 8
1506
1507 /* compress context */
1508 struct compress_ctx {
1509 struct inode *inode; /* inode the context belong to */
1510 pgoff_t cluster_idx; /* cluster index number */
1511 unsigned int cluster_size; /* page count in cluster */
1512 unsigned int log_cluster_size; /* log of cluster size */
1513 struct page **rpages; /* pages store raw data in cluster */
1514 unsigned int nr_rpages; /* total page number in rpages */
1515 struct page **cpages; /* pages store compressed data in cluster */
1516 unsigned int nr_cpages; /* total page number in cpages */
1517 unsigned int valid_nr_cpages; /* valid page number in cpages */
1518 void *rbuf; /* virtual mapped address on rpages */
1519 struct compress_data *cbuf; /* virtual mapped address on cpages */
1520 size_t rlen; /* valid data length in rbuf */
1521 size_t clen; /* valid data length in cbuf */
1522 void *private; /* payload buffer for specified compression algorithm */
1523 void *private2; /* extra payload buffer */
1524 };
1525
1526 /* compress context for write IO path */
1527 struct compress_io_ctx {
1528 u32 magic; /* magic number to indicate page is compressed */
1529 struct inode *inode; /* inode the context belong to */
1530 struct page **rpages; /* pages store raw data in cluster */
1531 unsigned int nr_rpages; /* total page number in rpages */
1532 atomic_t pending_pages; /* in-flight compressed page count */
1533 };
1534
1535 /* Context for decompressing one cluster on the read IO path */
1536 struct decompress_io_ctx {
1537 u32 magic; /* magic number to indicate page is compressed */
1538 struct inode *inode; /* inode the context belong to */
1539 pgoff_t cluster_idx; /* cluster index number */
1540 unsigned int cluster_size; /* page count in cluster */
1541 unsigned int log_cluster_size; /* log of cluster size */
1542 struct page **rpages; /* pages store raw data in cluster */
1543 unsigned int nr_rpages; /* total page number in rpages */
1544 struct page **cpages; /* pages store compressed data in cluster */
1545 unsigned int nr_cpages; /* total page number in cpages */
1546 struct page **tpages; /* temp pages to pad holes in cluster */
1547 void *rbuf; /* virtual mapped address on rpages */
1548 struct compress_data *cbuf; /* virtual mapped address on cpages */
1549 size_t rlen; /* valid data length in rbuf */
1550 size_t clen; /* valid data length in cbuf */
1551
1552 /*
1553 * The number of compressed pages remaining to be read in this cluster.
1554 * This is initially nr_cpages. It is decremented by 1 each time a page
1555 * has been read (or failed to be read). When it reaches 0, the cluster
1556 * is decompressed (or an error is reported).
1557 *
1558 * If an error occurs before all the pages have been submitted for I/O,
1559 * then this will never reach 0. In this case the I/O submitter is
1560 * responsible for calling f2fs_decompress_end_io() instead.
1561 */
1562 atomic_t remaining_pages;
1563
1564 /*
1565 * Number of references to this decompress_io_ctx.
1566 *
1567 * One reference is held for I/O completion. This reference is dropped
1568 * after the pagecache pages are updated and unlocked -- either after
1569 * decompression (and verity if enabled), or after an error.
1570 *
1571 * In addition, each compressed page holds a reference while it is in a
1572 * bio. These references are necessary prevent compressed pages from
1573 * being freed while they are still in a bio.
1574 */
1575 refcount_t refcnt;
1576
1577 bool failed; /* IO error occurred before decompression? */
1578 bool need_verity; /* need fs-verity verification after decompression? */
1579 void *private; /* payload buffer for specified decompression algorithm */
1580 void *private2; /* extra payload buffer */
1581 struct work_struct verity_work; /* work to verify the decompressed pages */
1582 struct work_struct free_work; /* work for late free this structure itself */
1583 };
1584
1585 #define NULL_CLUSTER ((unsigned int)(~0))
1586 #define MIN_COMPRESS_LOG_SIZE 2
1587 #define MAX_COMPRESS_LOG_SIZE 8
1588 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1589
1590 struct f2fs_sb_info {
1591 struct super_block *sb; /* pointer to VFS super block */
1592 struct proc_dir_entry *s_proc; /* proc entry */
1593 struct f2fs_super_block *raw_super; /* raw super block pointer */
1594 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1595 int valid_super_block; /* valid super block no */
1596 unsigned long s_flag; /* flags for sbi */
1597 struct mutex writepages; /* mutex for writepages() */
1598
1599 #ifdef CONFIG_BLK_DEV_ZONED
1600 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1601 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1602 /* For adjust the priority writing position of data in zone UFS */
1603 unsigned int blkzone_alloc_policy;
1604 #endif
1605
1606 /* for node-related operations */
1607 struct f2fs_nm_info *nm_info; /* node manager */
1608 struct inode *node_inode; /* cache node blocks */
1609
1610 /* for segment-related operations */
1611 struct f2fs_sm_info *sm_info; /* segment manager */
1612
1613 /* for bio operations */
1614 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1615 /* keep migration IO order for LFS mode */
1616 struct f2fs_rwsem io_order_lock;
1617 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1618 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1619
1620 /* for checkpoint */
1621 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1622 int cur_cp_pack; /* remain current cp pack */
1623 spinlock_t cp_lock; /* for flag in ckpt */
1624 struct inode *meta_inode; /* cache meta blocks */
1625 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1626 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1627 struct f2fs_rwsem node_write; /* locking node writes */
1628 struct f2fs_rwsem node_change; /* locking node change */
1629 wait_queue_head_t cp_wait;
1630 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1631 long interval_time[MAX_TIME]; /* to store thresholds */
1632 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1633
1634 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1635
1636 spinlock_t fsync_node_lock; /* for node entry lock */
1637 struct list_head fsync_node_list; /* node list head */
1638 unsigned int fsync_seg_id; /* sequence id */
1639 unsigned int fsync_node_num; /* number of node entries */
1640
1641 /* for orphan inode, use 0'th array */
1642 unsigned int max_orphans; /* max orphan inodes */
1643
1644 /* for inode management */
1645 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1646 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1647 struct mutex flush_lock; /* for flush exclusion */
1648
1649 /* for extent tree cache */
1650 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1651 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1652 unsigned int max_read_extent_count; /* max read extent count per inode */
1653
1654 /* The threshold used for hot and warm data seperation*/
1655 unsigned int hot_data_age_threshold;
1656 unsigned int warm_data_age_threshold;
1657 unsigned int last_age_weight;
1658
1659 /* control donate caches */
1660 unsigned int donate_files;
1661
1662 /* basic filesystem units */
1663 unsigned int log_sectors_per_block; /* log2 sectors per block */
1664 unsigned int log_blocksize; /* log2 block size */
1665 unsigned int blocksize; /* block size */
1666 unsigned int root_ino_num; /* root inode number*/
1667 unsigned int node_ino_num; /* node inode number*/
1668 unsigned int meta_ino_num; /* meta inode number*/
1669 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1670 unsigned int blocks_per_seg; /* blocks per segment */
1671 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1672 unsigned int segs_per_sec; /* segments per section */
1673 unsigned int secs_per_zone; /* sections per zone */
1674 unsigned int total_sections; /* total section count */
1675 unsigned int total_node_count; /* total node block count */
1676 unsigned int total_valid_node_count; /* valid node block count */
1677 int dir_level; /* directory level */
1678 bool readdir_ra; /* readahead inode in readdir */
1679 u64 max_io_bytes; /* max io bytes to merge IOs */
1680
1681 block_t user_block_count; /* # of user blocks */
1682 block_t total_valid_block_count; /* # of valid blocks */
1683 block_t discard_blks; /* discard command candidats */
1684 block_t last_valid_block_count; /* for recovery */
1685 block_t reserved_blocks; /* configurable reserved blocks */
1686 block_t current_reserved_blocks; /* current reserved blocks */
1687
1688 /* Additional tracking for no checkpoint mode */
1689 block_t unusable_block_count; /* # of blocks saved by last cp */
1690
1691 unsigned int nquota_files; /* # of quota sysfile */
1692 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1693 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1694
1695 /* # of pages, see count_type */
1696 atomic_t nr_pages[NR_COUNT_TYPE];
1697 /* # of allocated blocks */
1698 struct percpu_counter alloc_valid_block_count;
1699 /* # of node block writes as roll forward recovery */
1700 struct percpu_counter rf_node_block_count;
1701
1702 /* writeback control */
1703 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1704
1705 /* valid inode count */
1706 struct percpu_counter total_valid_inode_count;
1707
1708 struct f2fs_mount_info mount_opt; /* mount options */
1709
1710 /* for cleaning operations */
1711 struct f2fs_rwsem gc_lock; /*
1712 * semaphore for GC, avoid
1713 * race between GC and GC or CP
1714 */
1715 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1716 struct atgc_management am; /* atgc management */
1717 unsigned int cur_victim_sec; /* current victim section num */
1718 unsigned int gc_mode; /* current GC state */
1719 unsigned int next_victim_seg[2]; /* next segment in victim section */
1720 spinlock_t gc_remaining_trials_lock;
1721 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1722 unsigned int gc_remaining_trials;
1723
1724 /* for skip statistic */
1725 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1726
1727 /* threshold for gc trials on pinned files */
1728 unsigned short gc_pin_file_threshold;
1729 struct f2fs_rwsem pin_sem;
1730
1731 /* maximum # of trials to find a victim segment for SSR and GC */
1732 unsigned int max_victim_search;
1733 /* migration granularity of garbage collection, unit: segment */
1734 unsigned int migration_granularity;
1735 /* migration window granularity of garbage collection, unit: segment */
1736 unsigned int migration_window_granularity;
1737
1738 /*
1739 * for stat information.
1740 * one is for the LFS mode, and the other is for the SSR mode.
1741 */
1742 #ifdef CONFIG_F2FS_STAT_FS
1743 struct f2fs_stat_info *stat_info; /* FS status information */
1744 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1745 unsigned int segment_count[2]; /* # of allocated segments */
1746 unsigned int block_count[2]; /* # of allocated blocks */
1747 atomic_t inplace_count; /* # of inplace update */
1748 /* # of lookup extent cache */
1749 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1750 /* # of hit rbtree extent node */
1751 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1752 /* # of hit cached extent node */
1753 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1754 /* # of hit largest extent node in read extent cache */
1755 atomic64_t read_hit_largest;
1756 atomic_t inline_xattr; /* # of inline_xattr inodes */
1757 atomic_t inline_inode; /* # of inline_data inodes */
1758 atomic_t inline_dir; /* # of inline_dentry inodes */
1759 atomic_t compr_inode; /* # of compressed inodes */
1760 atomic64_t compr_blocks; /* # of compressed blocks */
1761 atomic_t swapfile_inode; /* # of swapfile inodes */
1762 atomic_t atomic_files; /* # of opened atomic file */
1763 atomic_t max_aw_cnt; /* max # of atomic writes */
1764 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1765 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1766 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1767 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1768 #endif
1769 spinlock_t stat_lock; /* lock for stat operations */
1770
1771 /* to attach REQ_META|REQ_FUA flags */
1772 unsigned int data_io_flag;
1773 unsigned int node_io_flag;
1774
1775 /* For sysfs support */
1776 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1777 struct completion s_kobj_unregister;
1778
1779 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1780 struct completion s_stat_kobj_unregister;
1781
1782 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1783 struct completion s_feature_list_kobj_unregister;
1784
1785 /* For shrinker support */
1786 struct list_head s_list;
1787 struct mutex umount_mutex;
1788 unsigned int shrinker_run_no;
1789
1790 /* For multi devices */
1791 int s_ndevs; /* number of devices */
1792 struct f2fs_dev_info *devs; /* for device list */
1793 unsigned int dirty_device; /* for checkpoint data flush */
1794 spinlock_t dev_lock; /* protect dirty_device */
1795 bool aligned_blksize; /* all devices has the same logical blksize */
1796 unsigned int first_seq_zone_segno; /* first segno in sequential zone */
1797
1798 /* For write statistics */
1799 u64 sectors_written_start;
1800 u64 kbytes_written;
1801
1802 /* Precomputed FS UUID checksum for seeding other checksums */
1803 __u32 s_chksum_seed;
1804
1805 struct workqueue_struct *post_read_wq; /* post read workqueue */
1806
1807 /*
1808 * If we are in irq context, let's update error information into
1809 * on-disk superblock in the work.
1810 */
1811 struct work_struct s_error_work;
1812 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1813 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1814 spinlock_t error_lock; /* protect errors/stop_reason array */
1815 bool error_dirty; /* errors of sb is dirty */
1816
1817 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1818 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1819
1820 /* For reclaimed segs statistics per each GC mode */
1821 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1822 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1823
1824 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1825
1826 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1827 int max_fragment_hole; /* max hole size for block fragmentation mode */
1828
1829 /* For atomic write statistics */
1830 atomic64_t current_atomic_write;
1831 s64 peak_atomic_write;
1832 u64 committed_atomic_block;
1833 u64 revoked_atomic_block;
1834
1835 /* carve out reserved_blocks from total blocks */
1836 bool carve_out;
1837
1838 #ifdef CONFIG_F2FS_FS_COMPRESSION
1839 struct kmem_cache *page_array_slab; /* page array entry */
1840 unsigned int page_array_slab_size; /* default page array slab size */
1841
1842 /* For runtime compression statistics */
1843 u64 compr_written_block;
1844 u64 compr_saved_block;
1845 u32 compr_new_inode;
1846
1847 /* For compressed block cache */
1848 struct inode *compress_inode; /* cache compressed blocks */
1849 unsigned int compress_percent; /* cache page percentage */
1850 unsigned int compress_watermark; /* cache page watermark */
1851 atomic_t compress_page_hit; /* cache hit count */
1852 #endif
1853
1854 #ifdef CONFIG_F2FS_IOSTAT
1855 /* For app/fs IO statistics */
1856 spinlock_t iostat_lock;
1857 unsigned long long iostat_count[NR_IO_TYPE];
1858 unsigned long long iostat_bytes[NR_IO_TYPE];
1859 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1860 bool iostat_enable;
1861 unsigned long iostat_next_period;
1862 unsigned int iostat_period_ms;
1863
1864 /* For io latency related statistics info in one iostat period */
1865 spinlock_t iostat_lat_lock;
1866 struct iostat_lat_info *iostat_io_lat;
1867 #endif
1868 };
1869
1870 /* Definitions to access f2fs_sb_info */
1871 #define SEGS_TO_BLKS(sbi, segs) \
1872 ((segs) << (sbi)->log_blocks_per_seg)
1873 #define BLKS_TO_SEGS(sbi, blks) \
1874 ((blks) >> (sbi)->log_blocks_per_seg)
1875
1876 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1877 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1878 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1879
1880 __printf(3, 4)
1881 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1882
1883 #define f2fs_err(sbi, fmt, ...) \
1884 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1885 #define f2fs_warn(sbi, fmt, ...) \
1886 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1887 #define f2fs_notice(sbi, fmt, ...) \
1888 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1889 #define f2fs_info(sbi, fmt, ...) \
1890 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1891 #define f2fs_debug(sbi, fmt, ...) \
1892 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1893
1894 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1895 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1896 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1897 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1898 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1899 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1900
1901 #ifdef CONFIG_F2FS_FAULT_INJECTION
1902 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1903 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1904 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1905 const char *func, const char *parent_func)
1906 {
1907 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1908
1909 if (!ffi->inject_rate)
1910 return false;
1911
1912 if (!IS_FAULT_SET(ffi, type))
1913 return false;
1914
1915 atomic_inc(&ffi->inject_ops);
1916 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1917 atomic_set(&ffi->inject_ops, 0);
1918 ffi->inject_count[type]++;
1919 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1920 f2fs_fault_name[type], func, parent_func);
1921 return true;
1922 }
1923 return false;
1924 }
1925 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1926 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1927 {
1928 return false;
1929 }
1930 #endif
1931
1932 /*
1933 * Test if the mounted volume is a multi-device volume.
1934 * - For a single regular disk volume, sbi->s_ndevs is 0.
1935 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1936 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1937 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1938 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1939 {
1940 return sbi->s_ndevs > 1;
1941 }
1942
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1943 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1944 {
1945 unsigned long now = jiffies;
1946
1947 sbi->last_time[type] = now;
1948
1949 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1950 if (type == REQ_TIME) {
1951 sbi->last_time[DISCARD_TIME] = now;
1952 sbi->last_time[GC_TIME] = now;
1953 }
1954 }
1955
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1956 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1957 {
1958 unsigned long interval = sbi->interval_time[type] * HZ;
1959
1960 return time_after(jiffies, sbi->last_time[type] + interval);
1961 }
1962
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1963 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1964 int type)
1965 {
1966 unsigned long interval = sbi->interval_time[type] * HZ;
1967 unsigned int wait_ms = 0;
1968 long delta;
1969
1970 delta = (sbi->last_time[type] + interval) - jiffies;
1971 if (delta > 0)
1972 wait_ms = jiffies_to_msecs(delta);
1973
1974 return wait_ms;
1975 }
1976
1977 /*
1978 * Inline functions
1979 */
__f2fs_crc32(u32 crc,const void * address,unsigned int length)1980 static inline u32 __f2fs_crc32(u32 crc, const void *address,
1981 unsigned int length)
1982 {
1983 return crc32(crc, address, length);
1984 }
1985
f2fs_crc32(const void * address,unsigned int length)1986 static inline u32 f2fs_crc32(const void *address, unsigned int length)
1987 {
1988 return __f2fs_crc32(F2FS_SUPER_MAGIC, address, length);
1989 }
1990
f2fs_chksum(u32 crc,const void * address,unsigned int length)1991 static inline u32 f2fs_chksum(u32 crc, const void *address, unsigned int length)
1992 {
1993 return __f2fs_crc32(crc, address, length);
1994 }
1995
F2FS_I(struct inode * inode)1996 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1997 {
1998 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1999 }
2000
F2FS_SB(struct super_block * sb)2001 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2002 {
2003 return sb->s_fs_info;
2004 }
2005
F2FS_I_SB(struct inode * inode)2006 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2007 {
2008 return F2FS_SB(inode->i_sb);
2009 }
2010
F2FS_M_SB(struct address_space * mapping)2011 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2012 {
2013 return F2FS_I_SB(mapping->host);
2014 }
2015
F2FS_F_SB(struct folio * folio)2016 static inline struct f2fs_sb_info *F2FS_F_SB(struct folio *folio)
2017 {
2018 return F2FS_M_SB(folio->mapping);
2019 }
2020
F2FS_P_SB(struct page * page)2021 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2022 {
2023 return F2FS_F_SB(page_folio(page));
2024 }
2025
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2026 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2027 {
2028 return (struct f2fs_super_block *)(sbi->raw_super);
2029 }
2030
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2031 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2032 pgoff_t index)
2033 {
2034 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2035
2036 return (struct f2fs_super_block *)
2037 (page_address(folio_page(folio, idx_in_folio)) +
2038 F2FS_SUPER_OFFSET);
2039 }
2040
F2FS_CKPT(struct f2fs_sb_info * sbi)2041 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2042 {
2043 return (struct f2fs_checkpoint *)(sbi->ckpt);
2044 }
2045
F2FS_NODE(const struct page * page)2046 static inline struct f2fs_node *F2FS_NODE(const struct page *page)
2047 {
2048 return (struct f2fs_node *)page_address(page);
2049 }
2050
F2FS_INODE(struct page * page)2051 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2052 {
2053 return &((struct f2fs_node *)page_address(page))->i;
2054 }
2055
NM_I(struct f2fs_sb_info * sbi)2056 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2057 {
2058 return (struct f2fs_nm_info *)(sbi->nm_info);
2059 }
2060
SM_I(struct f2fs_sb_info * sbi)2061 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2062 {
2063 return (struct f2fs_sm_info *)(sbi->sm_info);
2064 }
2065
SIT_I(struct f2fs_sb_info * sbi)2066 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2067 {
2068 return (struct sit_info *)(SM_I(sbi)->sit_info);
2069 }
2070
FREE_I(struct f2fs_sb_info * sbi)2071 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2072 {
2073 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2074 }
2075
DIRTY_I(struct f2fs_sb_info * sbi)2076 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2077 {
2078 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2079 }
2080
META_MAPPING(struct f2fs_sb_info * sbi)2081 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2082 {
2083 return sbi->meta_inode->i_mapping;
2084 }
2085
NODE_MAPPING(struct f2fs_sb_info * sbi)2086 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2087 {
2088 return sbi->node_inode->i_mapping;
2089 }
2090
is_meta_folio(struct folio * folio)2091 static inline bool is_meta_folio(struct folio *folio)
2092 {
2093 return folio->mapping == META_MAPPING(F2FS_F_SB(folio));
2094 }
2095
is_node_folio(struct folio * folio)2096 static inline bool is_node_folio(struct folio *folio)
2097 {
2098 return folio->mapping == NODE_MAPPING(F2FS_F_SB(folio));
2099 }
2100
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2101 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2102 {
2103 return test_bit(type, &sbi->s_flag);
2104 }
2105
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2106 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2107 {
2108 set_bit(type, &sbi->s_flag);
2109 }
2110
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2111 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2112 {
2113 clear_bit(type, &sbi->s_flag);
2114 }
2115
cur_cp_version(struct f2fs_checkpoint * cp)2116 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2117 {
2118 return le64_to_cpu(cp->checkpoint_ver);
2119 }
2120
f2fs_qf_ino(struct super_block * sb,int type)2121 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2122 {
2123 if (type < F2FS_MAX_QUOTAS)
2124 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2125 return 0;
2126 }
2127
cur_cp_crc(struct f2fs_checkpoint * cp)2128 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2129 {
2130 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2131 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2132 }
2133
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2134 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2135 {
2136 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2137
2138 return ckpt_flags & f;
2139 }
2140
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2141 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2142 {
2143 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2144 }
2145
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2146 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2147 {
2148 unsigned int ckpt_flags;
2149
2150 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2151 ckpt_flags |= f;
2152 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2153 }
2154
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2155 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2156 {
2157 unsigned long flags;
2158
2159 spin_lock_irqsave(&sbi->cp_lock, flags);
2160 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2161 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2162 }
2163
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2164 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2165 {
2166 unsigned int ckpt_flags;
2167
2168 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2169 ckpt_flags &= (~f);
2170 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2171 }
2172
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2173 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2174 {
2175 unsigned long flags;
2176
2177 spin_lock_irqsave(&sbi->cp_lock, flags);
2178 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2179 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2180 }
2181
2182 #define init_f2fs_rwsem(sem) \
2183 do { \
2184 static struct lock_class_key __key; \
2185 \
2186 __init_f2fs_rwsem((sem), #sem, &__key); \
2187 } while (0)
2188
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2189 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2190 const char *sem_name, struct lock_class_key *key)
2191 {
2192 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2193 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2194 init_waitqueue_head(&sem->read_waiters);
2195 #endif
2196 }
2197
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2198 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2199 {
2200 return rwsem_is_locked(&sem->internal_rwsem);
2201 }
2202
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2203 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2204 {
2205 return rwsem_is_contended(&sem->internal_rwsem);
2206 }
2207
f2fs_down_read(struct f2fs_rwsem * sem)2208 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2209 {
2210 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2211 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2212 #else
2213 down_read(&sem->internal_rwsem);
2214 #endif
2215 }
2216
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2217 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2218 {
2219 return down_read_trylock(&sem->internal_rwsem);
2220 }
2221
f2fs_up_read(struct f2fs_rwsem * sem)2222 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2223 {
2224 up_read(&sem->internal_rwsem);
2225 }
2226
f2fs_down_write(struct f2fs_rwsem * sem)2227 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2228 {
2229 down_write(&sem->internal_rwsem);
2230 }
2231
2232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2233 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2234 {
2235 down_read_nested(&sem->internal_rwsem, subclass);
2236 }
2237
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2238 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2239 {
2240 down_write_nested(&sem->internal_rwsem, subclass);
2241 }
2242 #else
2243 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2244 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2245 #endif
2246
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2247 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2248 {
2249 return down_write_trylock(&sem->internal_rwsem);
2250 }
2251
f2fs_up_write(struct f2fs_rwsem * sem)2252 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2253 {
2254 up_write(&sem->internal_rwsem);
2255 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2256 wake_up_all(&sem->read_waiters);
2257 #endif
2258 }
2259
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2260 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2261 {
2262 unsigned long flags;
2263 unsigned char *nat_bits;
2264
2265 /*
2266 * In order to re-enable nat_bits we need to call fsck.f2fs by
2267 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2268 * so let's rely on regular fsck or unclean shutdown.
2269 */
2270
2271 if (lock)
2272 spin_lock_irqsave(&sbi->cp_lock, flags);
2273 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2274 nat_bits = NM_I(sbi)->nat_bits;
2275 NM_I(sbi)->nat_bits = NULL;
2276 if (lock)
2277 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2278
2279 kvfree(nat_bits);
2280 }
2281
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2282 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2283 struct cp_control *cpc)
2284 {
2285 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2286
2287 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2288 }
2289
f2fs_lock_op(struct f2fs_sb_info * sbi)2290 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2291 {
2292 f2fs_down_read(&sbi->cp_rwsem);
2293 }
2294
f2fs_trylock_op(struct f2fs_sb_info * sbi)2295 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2296 {
2297 if (time_to_inject(sbi, FAULT_LOCK_OP))
2298 return 0;
2299 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2300 }
2301
f2fs_unlock_op(struct f2fs_sb_info * sbi)2302 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2303 {
2304 f2fs_up_read(&sbi->cp_rwsem);
2305 }
2306
f2fs_lock_all(struct f2fs_sb_info * sbi)2307 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2308 {
2309 f2fs_down_write(&sbi->cp_rwsem);
2310 }
2311
f2fs_unlock_all(struct f2fs_sb_info * sbi)2312 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2313 {
2314 f2fs_up_write(&sbi->cp_rwsem);
2315 }
2316
__get_cp_reason(struct f2fs_sb_info * sbi)2317 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2318 {
2319 int reason = CP_SYNC;
2320
2321 if (test_opt(sbi, FASTBOOT))
2322 reason = CP_FASTBOOT;
2323 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2324 reason = CP_UMOUNT;
2325 return reason;
2326 }
2327
__remain_node_summaries(int reason)2328 static inline bool __remain_node_summaries(int reason)
2329 {
2330 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2331 }
2332
__exist_node_summaries(struct f2fs_sb_info * sbi)2333 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2334 {
2335 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2336 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2337 }
2338
2339 /*
2340 * Check whether the inode has blocks or not
2341 */
F2FS_HAS_BLOCKS(struct inode * inode)2342 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2343 {
2344 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2345
2346 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2347 }
2348
f2fs_has_xattr_block(unsigned int ofs)2349 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2350 {
2351 return ofs == XATTR_NODE_OFFSET;
2352 }
2353
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2354 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2355 struct inode *inode, bool cap)
2356 {
2357 if (!inode)
2358 return true;
2359 if (!test_opt(sbi, RESERVE_ROOT))
2360 return false;
2361 if (IS_NOQUOTA(inode))
2362 return true;
2363 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2364 return true;
2365 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2366 in_group_p(F2FS_OPTION(sbi).s_resgid))
2367 return true;
2368 if (cap && capable(CAP_SYS_RESOURCE))
2369 return true;
2370 return false;
2371 }
2372
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2373 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2374 struct inode *inode, bool cap)
2375 {
2376 block_t avail_user_block_count;
2377
2378 avail_user_block_count = sbi->user_block_count -
2379 sbi->current_reserved_blocks;
2380
2381 if (!__allow_reserved_blocks(sbi, inode, cap))
2382 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2383
2384 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2385 if (avail_user_block_count > sbi->unusable_block_count)
2386 avail_user_block_count -= sbi->unusable_block_count;
2387 else
2388 avail_user_block_count = 0;
2389 }
2390
2391 return avail_user_block_count;
2392 }
2393
2394 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2395 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2396 struct inode *inode, blkcnt_t *count, bool partial)
2397 {
2398 long long diff = 0, release = 0;
2399 block_t avail_user_block_count;
2400 int ret;
2401
2402 ret = dquot_reserve_block(inode, *count);
2403 if (ret)
2404 return ret;
2405
2406 if (time_to_inject(sbi, FAULT_BLOCK)) {
2407 release = *count;
2408 goto release_quota;
2409 }
2410
2411 /*
2412 * let's increase this in prior to actual block count change in order
2413 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2414 */
2415 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2416
2417 spin_lock(&sbi->stat_lock);
2418
2419 avail_user_block_count = get_available_block_count(sbi, inode, true);
2420 diff = (long long)sbi->total_valid_block_count + *count -
2421 avail_user_block_count;
2422 if (unlikely(diff > 0)) {
2423 if (!partial) {
2424 spin_unlock(&sbi->stat_lock);
2425 release = *count;
2426 goto enospc;
2427 }
2428 if (diff > *count)
2429 diff = *count;
2430 *count -= diff;
2431 release = diff;
2432 if (!*count) {
2433 spin_unlock(&sbi->stat_lock);
2434 goto enospc;
2435 }
2436 }
2437 sbi->total_valid_block_count += (block_t)(*count);
2438
2439 spin_unlock(&sbi->stat_lock);
2440
2441 if (unlikely(release)) {
2442 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2443 dquot_release_reservation_block(inode, release);
2444 }
2445 f2fs_i_blocks_write(inode, *count, true, true);
2446 return 0;
2447
2448 enospc:
2449 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2450 release_quota:
2451 dquot_release_reservation_block(inode, release);
2452 return -ENOSPC;
2453 }
2454
2455 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2456 static inline bool page_private_##name(struct page *page) \
2457 { \
2458 return PagePrivate(page) && \
2459 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2460 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2461 }
2462
2463 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2464 static inline void set_page_private_##name(struct page *page) \
2465 { \
2466 if (!PagePrivate(page)) \
2467 attach_page_private(page, (void *)0); \
2468 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2469 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2470 }
2471
2472 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2473 static inline void clear_page_private_##name(struct page *page) \
2474 { \
2475 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2476 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2477 detach_page_private(page); \
2478 }
2479
2480 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2481 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2482 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2483 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2484
2485 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2486 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2487 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2488 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2489
2490 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2491 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2492 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2493 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2494
get_page_private_data(struct page * page)2495 static inline unsigned long get_page_private_data(struct page *page)
2496 {
2497 unsigned long data = page_private(page);
2498
2499 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2500 return 0;
2501 return data >> PAGE_PRIVATE_MAX;
2502 }
2503
set_page_private_data(struct page * page,unsigned long data)2504 static inline void set_page_private_data(struct page *page, unsigned long data)
2505 {
2506 if (!PagePrivate(page))
2507 attach_page_private(page, (void *)0);
2508 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2509 page_private(page) |= data << PAGE_PRIVATE_MAX;
2510 }
2511
clear_page_private_data(struct page * page)2512 static inline void clear_page_private_data(struct page *page)
2513 {
2514 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2515 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2516 detach_page_private(page);
2517 }
2518
clear_page_private_all(struct page * page)2519 static inline void clear_page_private_all(struct page *page)
2520 {
2521 clear_page_private_data(page);
2522 clear_page_private_reference(page);
2523 clear_page_private_gcing(page);
2524 clear_page_private_inline(page);
2525 clear_page_private_atomic(page);
2526
2527 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2528 }
2529
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2530 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2531 struct inode *inode,
2532 block_t count)
2533 {
2534 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2535
2536 spin_lock(&sbi->stat_lock);
2537 if (unlikely(sbi->total_valid_block_count < count)) {
2538 f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2539 sbi->total_valid_block_count, inode->i_ino, count);
2540 sbi->total_valid_block_count = 0;
2541 set_sbi_flag(sbi, SBI_NEED_FSCK);
2542 } else {
2543 sbi->total_valid_block_count -= count;
2544 }
2545 if (sbi->reserved_blocks &&
2546 sbi->current_reserved_blocks < sbi->reserved_blocks)
2547 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2548 sbi->current_reserved_blocks + count);
2549 spin_unlock(&sbi->stat_lock);
2550 if (unlikely(inode->i_blocks < sectors)) {
2551 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2552 inode->i_ino,
2553 (unsigned long long)inode->i_blocks,
2554 (unsigned long long)sectors);
2555 set_sbi_flag(sbi, SBI_NEED_FSCK);
2556 return;
2557 }
2558 f2fs_i_blocks_write(inode, count, false, true);
2559 }
2560
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2561 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2562 {
2563 atomic_inc(&sbi->nr_pages[count_type]);
2564
2565 if (count_type == F2FS_DIRTY_DENTS ||
2566 count_type == F2FS_DIRTY_NODES ||
2567 count_type == F2FS_DIRTY_META ||
2568 count_type == F2FS_DIRTY_QDATA ||
2569 count_type == F2FS_DIRTY_IMETA)
2570 set_sbi_flag(sbi, SBI_IS_DIRTY);
2571 }
2572
inode_inc_dirty_pages(struct inode * inode)2573 static inline void inode_inc_dirty_pages(struct inode *inode)
2574 {
2575 atomic_inc(&F2FS_I(inode)->dirty_pages);
2576 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2577 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2578 if (IS_NOQUOTA(inode))
2579 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2580 }
2581
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2582 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2583 {
2584 atomic_dec(&sbi->nr_pages[count_type]);
2585 }
2586
inode_dec_dirty_pages(struct inode * inode)2587 static inline void inode_dec_dirty_pages(struct inode *inode)
2588 {
2589 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2590 !S_ISLNK(inode->i_mode))
2591 return;
2592
2593 atomic_dec(&F2FS_I(inode)->dirty_pages);
2594 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2595 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2596 if (IS_NOQUOTA(inode))
2597 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2598 }
2599
inc_atomic_write_cnt(struct inode * inode)2600 static inline void inc_atomic_write_cnt(struct inode *inode)
2601 {
2602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603 struct f2fs_inode_info *fi = F2FS_I(inode);
2604 u64 current_write;
2605
2606 fi->atomic_write_cnt++;
2607 atomic64_inc(&sbi->current_atomic_write);
2608 current_write = atomic64_read(&sbi->current_atomic_write);
2609 if (current_write > sbi->peak_atomic_write)
2610 sbi->peak_atomic_write = current_write;
2611 }
2612
release_atomic_write_cnt(struct inode * inode)2613 static inline void release_atomic_write_cnt(struct inode *inode)
2614 {
2615 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2616 struct f2fs_inode_info *fi = F2FS_I(inode);
2617
2618 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2619 fi->atomic_write_cnt = 0;
2620 }
2621
get_pages(struct f2fs_sb_info * sbi,int count_type)2622 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2623 {
2624 return atomic_read(&sbi->nr_pages[count_type]);
2625 }
2626
get_dirty_pages(struct inode * inode)2627 static inline int get_dirty_pages(struct inode *inode)
2628 {
2629 return atomic_read(&F2FS_I(inode)->dirty_pages);
2630 }
2631
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2632 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2633 {
2634 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2635 BLKS_PER_SEC(sbi));
2636 }
2637
valid_user_blocks(struct f2fs_sb_info * sbi)2638 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2639 {
2640 return sbi->total_valid_block_count;
2641 }
2642
discard_blocks(struct f2fs_sb_info * sbi)2643 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2644 {
2645 return sbi->discard_blks;
2646 }
2647
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2648 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2649 {
2650 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2651
2652 /* return NAT or SIT bitmap */
2653 if (flag == NAT_BITMAP)
2654 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2655 else if (flag == SIT_BITMAP)
2656 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2657
2658 return 0;
2659 }
2660
__cp_payload(struct f2fs_sb_info * sbi)2661 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2662 {
2663 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2664 }
2665
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2666 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2667 {
2668 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2669 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2670 int offset;
2671
2672 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2673 offset = (flag == SIT_BITMAP) ?
2674 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2675 /*
2676 * if large_nat_bitmap feature is enabled, leave checksum
2677 * protection for all nat/sit bitmaps.
2678 */
2679 return tmp_ptr + offset + sizeof(__le32);
2680 }
2681
2682 if (__cp_payload(sbi) > 0) {
2683 if (flag == NAT_BITMAP)
2684 return tmp_ptr;
2685 else
2686 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2687 } else {
2688 offset = (flag == NAT_BITMAP) ?
2689 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2690 return tmp_ptr + offset;
2691 }
2692 }
2693
__start_cp_addr(struct f2fs_sb_info * sbi)2694 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2695 {
2696 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2697
2698 if (sbi->cur_cp_pack == 2)
2699 start_addr += BLKS_PER_SEG(sbi);
2700 return start_addr;
2701 }
2702
__start_cp_next_addr(struct f2fs_sb_info * sbi)2703 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2704 {
2705 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2706
2707 if (sbi->cur_cp_pack == 1)
2708 start_addr += BLKS_PER_SEG(sbi);
2709 return start_addr;
2710 }
2711
__set_cp_next_pack(struct f2fs_sb_info * sbi)2712 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2713 {
2714 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2715 }
2716
__start_sum_addr(struct f2fs_sb_info * sbi)2717 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2718 {
2719 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2720 }
2721
2722 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2723 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2724 struct inode *inode, bool is_inode)
2725 {
2726 block_t valid_block_count;
2727 unsigned int valid_node_count;
2728 unsigned int avail_user_block_count;
2729 int err;
2730
2731 if (is_inode) {
2732 if (inode) {
2733 err = dquot_alloc_inode(inode);
2734 if (err)
2735 return err;
2736 }
2737 } else {
2738 err = dquot_reserve_block(inode, 1);
2739 if (err)
2740 return err;
2741 }
2742
2743 if (time_to_inject(sbi, FAULT_BLOCK))
2744 goto enospc;
2745
2746 spin_lock(&sbi->stat_lock);
2747
2748 valid_block_count = sbi->total_valid_block_count + 1;
2749 avail_user_block_count = get_available_block_count(sbi, inode, false);
2750
2751 if (unlikely(valid_block_count > avail_user_block_count)) {
2752 spin_unlock(&sbi->stat_lock);
2753 goto enospc;
2754 }
2755
2756 valid_node_count = sbi->total_valid_node_count + 1;
2757 if (unlikely(valid_node_count > sbi->total_node_count)) {
2758 spin_unlock(&sbi->stat_lock);
2759 goto enospc;
2760 }
2761
2762 sbi->total_valid_node_count++;
2763 sbi->total_valid_block_count++;
2764 spin_unlock(&sbi->stat_lock);
2765
2766 if (inode) {
2767 if (is_inode)
2768 f2fs_mark_inode_dirty_sync(inode, true);
2769 else
2770 f2fs_i_blocks_write(inode, 1, true, true);
2771 }
2772
2773 percpu_counter_inc(&sbi->alloc_valid_block_count);
2774 return 0;
2775
2776 enospc:
2777 if (is_inode) {
2778 if (inode)
2779 dquot_free_inode(inode);
2780 } else {
2781 dquot_release_reservation_block(inode, 1);
2782 }
2783 return -ENOSPC;
2784 }
2785
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2786 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2787 struct inode *inode, bool is_inode)
2788 {
2789 spin_lock(&sbi->stat_lock);
2790
2791 if (unlikely(!sbi->total_valid_block_count ||
2792 !sbi->total_valid_node_count)) {
2793 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2794 sbi->total_valid_block_count,
2795 sbi->total_valid_node_count);
2796 set_sbi_flag(sbi, SBI_NEED_FSCK);
2797 } else {
2798 sbi->total_valid_block_count--;
2799 sbi->total_valid_node_count--;
2800 }
2801
2802 if (sbi->reserved_blocks &&
2803 sbi->current_reserved_blocks < sbi->reserved_blocks)
2804 sbi->current_reserved_blocks++;
2805
2806 spin_unlock(&sbi->stat_lock);
2807
2808 if (is_inode) {
2809 dquot_free_inode(inode);
2810 } else {
2811 if (unlikely(inode->i_blocks == 0)) {
2812 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2813 inode->i_ino,
2814 (unsigned long long)inode->i_blocks);
2815 set_sbi_flag(sbi, SBI_NEED_FSCK);
2816 return;
2817 }
2818 f2fs_i_blocks_write(inode, 1, false, true);
2819 }
2820 }
2821
valid_node_count(struct f2fs_sb_info * sbi)2822 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2823 {
2824 return sbi->total_valid_node_count;
2825 }
2826
inc_valid_inode_count(struct f2fs_sb_info * sbi)2827 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2828 {
2829 percpu_counter_inc(&sbi->total_valid_inode_count);
2830 }
2831
dec_valid_inode_count(struct f2fs_sb_info * sbi)2832 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2833 {
2834 percpu_counter_dec(&sbi->total_valid_inode_count);
2835 }
2836
valid_inode_count(struct f2fs_sb_info * sbi)2837 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2838 {
2839 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2840 }
2841
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2842 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2843 pgoff_t index, bool for_write)
2844 {
2845 struct folio *folio;
2846 unsigned int flags;
2847
2848 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2849 fgf_t fgf_flags;
2850
2851 if (!for_write)
2852 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2853 else
2854 fgf_flags = FGP_LOCK;
2855 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2856 if (!IS_ERR(folio))
2857 return folio;
2858
2859 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2860 return ERR_PTR(-ENOMEM);
2861 }
2862
2863 if (!for_write)
2864 return filemap_grab_folio(mapping, index);
2865
2866 flags = memalloc_nofs_save();
2867 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2868 mapping_gfp_mask(mapping));
2869 memalloc_nofs_restore(flags);
2870
2871 return folio;
2872 }
2873
f2fs_filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2874 static inline struct folio *f2fs_filemap_get_folio(
2875 struct address_space *mapping, pgoff_t index,
2876 fgf_t fgp_flags, gfp_t gfp_mask)
2877 {
2878 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2879 return ERR_PTR(-ENOMEM);
2880
2881 return __filemap_get_folio(mapping, index, fgp_flags, gfp_mask);
2882 }
2883
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2884 static inline struct page *f2fs_pagecache_get_page(
2885 struct address_space *mapping, pgoff_t index,
2886 fgf_t fgp_flags, gfp_t gfp_mask)
2887 {
2888 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2889 return NULL;
2890
2891 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2892 }
2893
f2fs_folio_put(struct folio * folio,bool unlock)2894 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2895 {
2896 if (IS_ERR_OR_NULL(folio))
2897 return;
2898
2899 if (unlock) {
2900 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2901 folio_unlock(folio);
2902 }
2903 folio_put(folio);
2904 }
2905
f2fs_put_page(struct page * page,int unlock)2906 static inline void f2fs_put_page(struct page *page, int unlock)
2907 {
2908 if (!page)
2909 return;
2910 f2fs_folio_put(page_folio(page), unlock);
2911 }
2912
f2fs_put_dnode(struct dnode_of_data * dn)2913 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2914 {
2915 if (dn->node_folio)
2916 f2fs_folio_put(dn->node_folio, true);
2917 if (dn->inode_folio && dn->node_folio != dn->inode_folio)
2918 f2fs_folio_put(dn->inode_folio, false);
2919 dn->node_folio = NULL;
2920 dn->inode_folio = NULL;
2921 }
2922
f2fs_kmem_cache_create(const char * name,size_t size)2923 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2924 size_t size)
2925 {
2926 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2927 }
2928
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2929 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2930 gfp_t flags)
2931 {
2932 void *entry;
2933
2934 entry = kmem_cache_alloc(cachep, flags);
2935 if (!entry)
2936 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2937 return entry;
2938 }
2939
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2940 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2941 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2942 {
2943 if (nofail)
2944 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2945
2946 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2947 return NULL;
2948
2949 return kmem_cache_alloc(cachep, flags);
2950 }
2951
is_inflight_io(struct f2fs_sb_info * sbi,int type)2952 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2953 {
2954 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2955 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2956 get_pages(sbi, F2FS_WB_CP_DATA) ||
2957 get_pages(sbi, F2FS_DIO_READ) ||
2958 get_pages(sbi, F2FS_DIO_WRITE))
2959 return true;
2960
2961 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2962 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2963 return true;
2964
2965 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2966 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2967 return true;
2968 return false;
2969 }
2970
is_inflight_read_io(struct f2fs_sb_info * sbi)2971 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2972 {
2973 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2974 }
2975
is_idle(struct f2fs_sb_info * sbi,int type)2976 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2977 {
2978 bool zoned_gc = (type == GC_TIME &&
2979 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2980
2981 if (sbi->gc_mode == GC_URGENT_HIGH)
2982 return true;
2983
2984 if (zoned_gc) {
2985 if (is_inflight_read_io(sbi))
2986 return false;
2987 } else {
2988 if (is_inflight_io(sbi, type))
2989 return false;
2990 }
2991
2992 if (sbi->gc_mode == GC_URGENT_MID)
2993 return true;
2994
2995 if (sbi->gc_mode == GC_URGENT_LOW &&
2996 (type == DISCARD_TIME || type == GC_TIME))
2997 return true;
2998
2999 if (zoned_gc)
3000 return true;
3001
3002 return f2fs_time_over(sbi, type);
3003 }
3004
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3005 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3006 unsigned long index, void *item)
3007 {
3008 while (radix_tree_insert(root, index, item))
3009 cond_resched();
3010 }
3011
3012 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
3013
IS_INODE(struct page * page)3014 static inline bool IS_INODE(struct page *page)
3015 {
3016 struct f2fs_node *p = F2FS_NODE(page);
3017
3018 return RAW_IS_INODE(p);
3019 }
3020
offset_in_addr(struct f2fs_inode * i)3021 static inline int offset_in_addr(struct f2fs_inode *i)
3022 {
3023 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3024 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3025 }
3026
blkaddr_in_node(struct f2fs_node * node)3027 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3028 {
3029 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3030 }
3031
3032 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)3033 static inline unsigned int get_dnode_base(struct inode *inode,
3034 struct page *node_page)
3035 {
3036 if (!IS_INODE(node_page))
3037 return 0;
3038
3039 return inode ? get_extra_isize(inode) :
3040 offset_in_addr(&F2FS_NODE(node_page)->i);
3041 }
3042
get_dnode_addr(struct inode * inode,struct folio * node_folio)3043 static inline __le32 *get_dnode_addr(struct inode *inode,
3044 struct folio *node_folio)
3045 {
3046 return blkaddr_in_node(F2FS_NODE(&node_folio->page)) +
3047 get_dnode_base(inode, &node_folio->page);
3048 }
3049
data_blkaddr(struct inode * inode,struct folio * node_folio,unsigned int offset)3050 static inline block_t data_blkaddr(struct inode *inode,
3051 struct folio *node_folio, unsigned int offset)
3052 {
3053 return le32_to_cpu(*(get_dnode_addr(inode, node_folio) + offset));
3054 }
3055
f2fs_data_blkaddr(struct dnode_of_data * dn)3056 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3057 {
3058 return data_blkaddr(dn->inode, dn->node_folio, dn->ofs_in_node);
3059 }
3060
f2fs_test_bit(unsigned int nr,char * addr)3061 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3062 {
3063 int mask;
3064
3065 addr += (nr >> 3);
3066 mask = BIT(7 - (nr & 0x07));
3067 return mask & *addr;
3068 }
3069
f2fs_set_bit(unsigned int nr,char * addr)3070 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3071 {
3072 int mask;
3073
3074 addr += (nr >> 3);
3075 mask = BIT(7 - (nr & 0x07));
3076 *addr |= mask;
3077 }
3078
f2fs_clear_bit(unsigned int nr,char * addr)3079 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3080 {
3081 int mask;
3082
3083 addr += (nr >> 3);
3084 mask = BIT(7 - (nr & 0x07));
3085 *addr &= ~mask;
3086 }
3087
f2fs_test_and_set_bit(unsigned int nr,char * addr)3088 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3089 {
3090 int mask;
3091 int ret;
3092
3093 addr += (nr >> 3);
3094 mask = BIT(7 - (nr & 0x07));
3095 ret = mask & *addr;
3096 *addr |= mask;
3097 return ret;
3098 }
3099
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3100 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3101 {
3102 int mask;
3103 int ret;
3104
3105 addr += (nr >> 3);
3106 mask = BIT(7 - (nr & 0x07));
3107 ret = mask & *addr;
3108 *addr &= ~mask;
3109 return ret;
3110 }
3111
f2fs_change_bit(unsigned int nr,char * addr)3112 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3113 {
3114 int mask;
3115
3116 addr += (nr >> 3);
3117 mask = BIT(7 - (nr & 0x07));
3118 *addr ^= mask;
3119 }
3120
3121 /*
3122 * On-disk inode flags (f2fs_inode::i_flags)
3123 */
3124 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3125 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3126 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3127 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3128 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3129 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3130 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3131 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3132 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3133 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3134 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3135 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3136
3137 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3138
3139 /* Flags that should be inherited by new inodes from their parent. */
3140 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3141 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3142 F2FS_CASEFOLD_FL)
3143
3144 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3145 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3146 F2FS_CASEFOLD_FL))
3147
3148 /* Flags that are appropriate for non-directories/regular files. */
3149 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3150
3151 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3152
f2fs_mask_flags(umode_t mode,__u32 flags)3153 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3154 {
3155 if (S_ISDIR(mode))
3156 return flags;
3157 else if (S_ISREG(mode))
3158 return flags & F2FS_REG_FLMASK;
3159 else
3160 return flags & F2FS_OTHER_FLMASK;
3161 }
3162
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3163 static inline void __mark_inode_dirty_flag(struct inode *inode,
3164 int flag, bool set)
3165 {
3166 switch (flag) {
3167 case FI_INLINE_XATTR:
3168 case FI_INLINE_DATA:
3169 case FI_INLINE_DENTRY:
3170 case FI_NEW_INODE:
3171 if (set)
3172 return;
3173 fallthrough;
3174 case FI_DATA_EXIST:
3175 case FI_PIN_FILE:
3176 case FI_COMPRESS_RELEASED:
3177 f2fs_mark_inode_dirty_sync(inode, true);
3178 }
3179 }
3180
set_inode_flag(struct inode * inode,int flag)3181 static inline void set_inode_flag(struct inode *inode, int flag)
3182 {
3183 set_bit(flag, F2FS_I(inode)->flags);
3184 __mark_inode_dirty_flag(inode, flag, true);
3185 }
3186
is_inode_flag_set(struct inode * inode,int flag)3187 static inline int is_inode_flag_set(struct inode *inode, int flag)
3188 {
3189 return test_bit(flag, F2FS_I(inode)->flags);
3190 }
3191
clear_inode_flag(struct inode * inode,int flag)3192 static inline void clear_inode_flag(struct inode *inode, int flag)
3193 {
3194 clear_bit(flag, F2FS_I(inode)->flags);
3195 __mark_inode_dirty_flag(inode, flag, false);
3196 }
3197
f2fs_verity_in_progress(struct inode * inode)3198 static inline bool f2fs_verity_in_progress(struct inode *inode)
3199 {
3200 return IS_ENABLED(CONFIG_FS_VERITY) &&
3201 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3202 }
3203
set_acl_inode(struct inode * inode,umode_t mode)3204 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3205 {
3206 F2FS_I(inode)->i_acl_mode = mode;
3207 set_inode_flag(inode, FI_ACL_MODE);
3208 f2fs_mark_inode_dirty_sync(inode, false);
3209 }
3210
f2fs_i_links_write(struct inode * inode,bool inc)3211 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3212 {
3213 if (inc)
3214 inc_nlink(inode);
3215 else
3216 drop_nlink(inode);
3217 f2fs_mark_inode_dirty_sync(inode, true);
3218 }
3219
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3220 static inline void f2fs_i_blocks_write(struct inode *inode,
3221 block_t diff, bool add, bool claim)
3222 {
3223 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3224 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3225
3226 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3227 if (add) {
3228 if (claim)
3229 dquot_claim_block(inode, diff);
3230 else
3231 dquot_alloc_block_nofail(inode, diff);
3232 } else {
3233 dquot_free_block(inode, diff);
3234 }
3235
3236 f2fs_mark_inode_dirty_sync(inode, true);
3237 if (clean || recover)
3238 set_inode_flag(inode, FI_AUTO_RECOVER);
3239 }
3240
3241 static inline bool f2fs_is_atomic_file(struct inode *inode);
3242
f2fs_i_size_write(struct inode * inode,loff_t i_size)3243 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3244 {
3245 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3246 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3247
3248 if (i_size_read(inode) == i_size)
3249 return;
3250
3251 i_size_write(inode, i_size);
3252
3253 if (f2fs_is_atomic_file(inode))
3254 return;
3255
3256 f2fs_mark_inode_dirty_sync(inode, true);
3257 if (clean || recover)
3258 set_inode_flag(inode, FI_AUTO_RECOVER);
3259 }
3260
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3261 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3262 {
3263 F2FS_I(inode)->i_current_depth = depth;
3264 f2fs_mark_inode_dirty_sync(inode, true);
3265 }
3266
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3267 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3268 unsigned int count)
3269 {
3270 F2FS_I(inode)->i_gc_failures = count;
3271 f2fs_mark_inode_dirty_sync(inode, true);
3272 }
3273
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3274 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3275 {
3276 F2FS_I(inode)->i_xattr_nid = xnid;
3277 f2fs_mark_inode_dirty_sync(inode, true);
3278 }
3279
f2fs_i_pino_write(struct inode * inode,nid_t pino)3280 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3281 {
3282 F2FS_I(inode)->i_pino = pino;
3283 f2fs_mark_inode_dirty_sync(inode, true);
3284 }
3285
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3286 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3287 {
3288 struct f2fs_inode_info *fi = F2FS_I(inode);
3289
3290 if (ri->i_inline & F2FS_INLINE_XATTR)
3291 set_bit(FI_INLINE_XATTR, fi->flags);
3292 if (ri->i_inline & F2FS_INLINE_DATA)
3293 set_bit(FI_INLINE_DATA, fi->flags);
3294 if (ri->i_inline & F2FS_INLINE_DENTRY)
3295 set_bit(FI_INLINE_DENTRY, fi->flags);
3296 if (ri->i_inline & F2FS_DATA_EXIST)
3297 set_bit(FI_DATA_EXIST, fi->flags);
3298 if (ri->i_inline & F2FS_EXTRA_ATTR)
3299 set_bit(FI_EXTRA_ATTR, fi->flags);
3300 if (ri->i_inline & F2FS_PIN_FILE)
3301 set_bit(FI_PIN_FILE, fi->flags);
3302 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3303 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3304 }
3305
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3306 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3307 {
3308 ri->i_inline = 0;
3309
3310 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3311 ri->i_inline |= F2FS_INLINE_XATTR;
3312 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3313 ri->i_inline |= F2FS_INLINE_DATA;
3314 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3315 ri->i_inline |= F2FS_INLINE_DENTRY;
3316 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3317 ri->i_inline |= F2FS_DATA_EXIST;
3318 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3319 ri->i_inline |= F2FS_EXTRA_ATTR;
3320 if (is_inode_flag_set(inode, FI_PIN_FILE))
3321 ri->i_inline |= F2FS_PIN_FILE;
3322 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3323 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3324 }
3325
f2fs_has_extra_attr(struct inode * inode)3326 static inline int f2fs_has_extra_attr(struct inode *inode)
3327 {
3328 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3329 }
3330
f2fs_has_inline_xattr(struct inode * inode)3331 static inline int f2fs_has_inline_xattr(struct inode *inode)
3332 {
3333 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3334 }
3335
f2fs_compressed_file(struct inode * inode)3336 static inline int f2fs_compressed_file(struct inode *inode)
3337 {
3338 return S_ISREG(inode->i_mode) &&
3339 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3340 }
3341
f2fs_need_compress_data(struct inode * inode)3342 static inline bool f2fs_need_compress_data(struct inode *inode)
3343 {
3344 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3345
3346 if (!f2fs_compressed_file(inode))
3347 return false;
3348
3349 if (compress_mode == COMPR_MODE_FS)
3350 return true;
3351 else if (compress_mode == COMPR_MODE_USER &&
3352 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3353 return true;
3354
3355 return false;
3356 }
3357
addrs_per_page(struct inode * inode,bool is_inode)3358 static inline unsigned int addrs_per_page(struct inode *inode,
3359 bool is_inode)
3360 {
3361 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3362 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3363
3364 if (f2fs_compressed_file(inode))
3365 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3366 return addrs;
3367 }
3368
inline_xattr_addr(struct inode * inode,struct folio * folio)3369 static inline void *inline_xattr_addr(struct inode *inode, struct folio *folio)
3370 {
3371 struct f2fs_inode *ri = F2FS_INODE(&folio->page);
3372
3373 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3374 get_inline_xattr_addrs(inode)]);
3375 }
3376
inline_xattr_size(struct inode * inode)3377 static inline int inline_xattr_size(struct inode *inode)
3378 {
3379 if (f2fs_has_inline_xattr(inode))
3380 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3381 return 0;
3382 }
3383
3384 /*
3385 * Notice: check inline_data flag without inode page lock is unsafe.
3386 * It could change at any time by f2fs_convert_inline_folio().
3387 */
f2fs_has_inline_data(struct inode * inode)3388 static inline int f2fs_has_inline_data(struct inode *inode)
3389 {
3390 return is_inode_flag_set(inode, FI_INLINE_DATA);
3391 }
3392
f2fs_exist_data(struct inode * inode)3393 static inline int f2fs_exist_data(struct inode *inode)
3394 {
3395 return is_inode_flag_set(inode, FI_DATA_EXIST);
3396 }
3397
f2fs_is_mmap_file(struct inode * inode)3398 static inline int f2fs_is_mmap_file(struct inode *inode)
3399 {
3400 return is_inode_flag_set(inode, FI_MMAP_FILE);
3401 }
3402
f2fs_is_pinned_file(struct inode * inode)3403 static inline bool f2fs_is_pinned_file(struct inode *inode)
3404 {
3405 return is_inode_flag_set(inode, FI_PIN_FILE);
3406 }
3407
f2fs_is_atomic_file(struct inode * inode)3408 static inline bool f2fs_is_atomic_file(struct inode *inode)
3409 {
3410 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3411 }
3412
f2fs_is_cow_file(struct inode * inode)3413 static inline bool f2fs_is_cow_file(struct inode *inode)
3414 {
3415 return is_inode_flag_set(inode, FI_COW_FILE);
3416 }
3417
inline_data_addr(struct inode * inode,struct folio * folio)3418 static inline void *inline_data_addr(struct inode *inode, struct folio *folio)
3419 {
3420 __le32 *addr = get_dnode_addr(inode, folio);
3421
3422 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3423 }
3424
f2fs_has_inline_dentry(struct inode * inode)3425 static inline int f2fs_has_inline_dentry(struct inode *inode)
3426 {
3427 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3428 }
3429
is_file(struct inode * inode,int type)3430 static inline int is_file(struct inode *inode, int type)
3431 {
3432 return F2FS_I(inode)->i_advise & type;
3433 }
3434
set_file(struct inode * inode,int type)3435 static inline void set_file(struct inode *inode, int type)
3436 {
3437 if (is_file(inode, type))
3438 return;
3439 F2FS_I(inode)->i_advise |= type;
3440 f2fs_mark_inode_dirty_sync(inode, true);
3441 }
3442
clear_file(struct inode * inode,int type)3443 static inline void clear_file(struct inode *inode, int type)
3444 {
3445 if (!is_file(inode, type))
3446 return;
3447 F2FS_I(inode)->i_advise &= ~type;
3448 f2fs_mark_inode_dirty_sync(inode, true);
3449 }
3450
f2fs_is_time_consistent(struct inode * inode)3451 static inline bool f2fs_is_time_consistent(struct inode *inode)
3452 {
3453 struct timespec64 ts = inode_get_atime(inode);
3454
3455 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3456 return false;
3457 ts = inode_get_ctime(inode);
3458 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3459 return false;
3460 ts = inode_get_mtime(inode);
3461 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3462 return false;
3463 return true;
3464 }
3465
f2fs_skip_inode_update(struct inode * inode,int dsync)3466 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3467 {
3468 bool ret;
3469
3470 if (dsync) {
3471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3472
3473 spin_lock(&sbi->inode_lock[DIRTY_META]);
3474 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3475 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3476 return ret;
3477 }
3478 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3479 file_keep_isize(inode) ||
3480 i_size_read(inode) & ~PAGE_MASK)
3481 return false;
3482
3483 if (!f2fs_is_time_consistent(inode))
3484 return false;
3485
3486 spin_lock(&F2FS_I(inode)->i_size_lock);
3487 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3488 spin_unlock(&F2FS_I(inode)->i_size_lock);
3489
3490 return ret;
3491 }
3492
f2fs_readonly(struct super_block * sb)3493 static inline bool f2fs_readonly(struct super_block *sb)
3494 {
3495 return sb_rdonly(sb);
3496 }
3497
f2fs_cp_error(struct f2fs_sb_info * sbi)3498 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3499 {
3500 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3501 }
3502
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3503 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3504 size_t size, gfp_t flags)
3505 {
3506 if (time_to_inject(sbi, FAULT_KMALLOC))
3507 return NULL;
3508
3509 return kmalloc(size, flags);
3510 }
3511
f2fs_getname(struct f2fs_sb_info * sbi)3512 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3513 {
3514 if (time_to_inject(sbi, FAULT_KMALLOC))
3515 return NULL;
3516
3517 return __getname();
3518 }
3519
f2fs_putname(char * buf)3520 static inline void f2fs_putname(char *buf)
3521 {
3522 __putname(buf);
3523 }
3524
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3525 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3526 size_t size, gfp_t flags)
3527 {
3528 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3529 }
3530
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3531 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3532 size_t size, gfp_t flags)
3533 {
3534 if (time_to_inject(sbi, FAULT_KVMALLOC))
3535 return NULL;
3536
3537 return kvmalloc(size, flags);
3538 }
3539
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3540 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3541 size_t size, gfp_t flags)
3542 {
3543 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3544 }
3545
f2fs_vmalloc(struct f2fs_sb_info * sbi,size_t size)3546 static inline void *f2fs_vmalloc(struct f2fs_sb_info *sbi, size_t size)
3547 {
3548 if (time_to_inject(sbi, FAULT_VMALLOC))
3549 return NULL;
3550
3551 return vmalloc(size);
3552 }
3553
get_extra_isize(struct inode * inode)3554 static inline int get_extra_isize(struct inode *inode)
3555 {
3556 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3557 }
3558
get_inline_xattr_addrs(struct inode * inode)3559 static inline int get_inline_xattr_addrs(struct inode *inode)
3560 {
3561 return F2FS_I(inode)->i_inline_xattr_size;
3562 }
3563
3564 #define f2fs_get_inode_mode(i) \
3565 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3566 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3567
3568 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3569
3570 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3571 (offsetof(struct f2fs_inode, i_extra_end) - \
3572 offsetof(struct f2fs_inode, i_extra_isize)) \
3573
3574 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3575 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3576 ((offsetof(typeof(*(f2fs_inode)), field) + \
3577 sizeof((f2fs_inode)->field)) \
3578 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3579
3580 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3581
3582 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3583
3584 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3585 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3586 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3587 block_t blkaddr, int type)
3588 {
3589 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3590 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3591 blkaddr, type);
3592 }
3593
__is_valid_data_blkaddr(block_t blkaddr)3594 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3595 {
3596 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3597 blkaddr == COMPRESS_ADDR)
3598 return false;
3599 return true;
3600 }
3601
3602 /*
3603 * file.c
3604 */
3605 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3606 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3607 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3608 int f2fs_truncate(struct inode *inode);
3609 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3610 struct kstat *stat, u32 request_mask, unsigned int flags);
3611 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3612 struct iattr *attr);
3613 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3614 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3615 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3616 bool readonly, bool need_lock);
3617 int f2fs_precache_extents(struct inode *inode);
3618 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3619 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3620 struct dentry *dentry, struct fileattr *fa);
3621 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3622 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3623 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3624 int f2fs_pin_file_control(struct inode *inode, bool inc);
3625
3626 /*
3627 * inode.c
3628 */
3629 void f2fs_set_inode_flags(struct inode *inode);
3630 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct folio *folio);
3631 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3632 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3633 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3634 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3635 void f2fs_update_inode(struct inode *inode, struct folio *node_folio);
3636 void f2fs_update_inode_page(struct inode *inode);
3637 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3638 void f2fs_evict_inode(struct inode *inode);
3639 void f2fs_handle_failed_inode(struct inode *inode);
3640
3641 /*
3642 * namei.c
3643 */
3644 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3645 bool hot, bool set);
3646 struct dentry *f2fs_get_parent(struct dentry *child);
3647 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3648 struct inode **new_inode);
3649
3650 /*
3651 * dir.c
3652 */
3653 #if IS_ENABLED(CONFIG_UNICODE)
3654 int f2fs_init_casefolded_name(const struct inode *dir,
3655 struct f2fs_filename *fname);
3656 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3657 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3658 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3659 struct f2fs_filename *fname)
3660 {
3661 return 0;
3662 }
3663
f2fs_free_casefolded_name(struct f2fs_filename * fname)3664 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3665 {
3666 }
3667 #endif /* CONFIG_UNICODE */
3668
3669 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3670 int lookup, struct f2fs_filename *fname);
3671 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3672 struct f2fs_filename *fname);
3673 void f2fs_free_filename(struct f2fs_filename *fname);
3674 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3675 const struct f2fs_filename *fname, int *max_slots,
3676 bool use_hash);
3677 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3678 unsigned int start_pos, struct fscrypt_str *fstr);
3679 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3680 struct f2fs_dentry_ptr *d);
3681 struct folio *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3682 const struct f2fs_filename *fname, struct folio *dfolio);
3683 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3684 unsigned int current_depth);
3685 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3686 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3687 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3688 const struct f2fs_filename *fname, struct folio **res_folio);
3689 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3690 const struct qstr *child, struct folio **res_folio);
3691 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct folio **f);
3692 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3693 struct folio **folio);
3694 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3695 struct folio *folio, struct inode *inode);
3696 bool f2fs_has_enough_room(struct inode *dir, struct folio *ifolio,
3697 const struct f2fs_filename *fname);
3698 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3699 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3700 unsigned int bit_pos);
3701 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3702 struct inode *inode, nid_t ino, umode_t mode);
3703 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3704 struct inode *inode, nid_t ino, umode_t mode);
3705 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3706 struct inode *inode, nid_t ino, umode_t mode);
3707 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct folio *folio,
3708 struct inode *dir, struct inode *inode);
3709 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3710 struct f2fs_filename *fname);
3711 bool f2fs_empty_dir(struct inode *dir);
3712
f2fs_add_link(struct dentry * dentry,struct inode * inode)3713 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3714 {
3715 if (fscrypt_is_nokey_name(dentry))
3716 return -ENOKEY;
3717 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3718 inode, inode->i_ino, inode->i_mode);
3719 }
3720
3721 /*
3722 * super.c
3723 */
3724 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3725 void f2fs_inode_synced(struct inode *inode);
3726 int f2fs_dquot_initialize(struct inode *inode);
3727 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3728 int f2fs_do_quota_sync(struct super_block *sb, int type);
3729 loff_t max_file_blocks(struct inode *inode);
3730 void f2fs_quota_off_umount(struct super_block *sb);
3731 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3732 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3733 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3734 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3735 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3736 int f2fs_sync_fs(struct super_block *sb, int sync);
3737 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3738
3739 /*
3740 * hash.c
3741 */
3742 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3743
3744 /*
3745 * node.c
3746 */
3747 struct node_info;
3748
3749 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3750 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3751 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio);
3752 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3753 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio);
3754 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3755 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3756 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3757 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3758 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3759 struct node_info *ni, bool checkpoint_context);
3760 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3762 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3763 int f2fs_truncate_xattr_node(struct inode *inode);
3764 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3765 unsigned int seq_id);
3766 int f2fs_remove_inode_page(struct inode *inode);
3767 struct folio *f2fs_new_inode_folio(struct inode *inode);
3768 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs);
3769 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3770 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid);
3771 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3772 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid);
3773 int f2fs_move_node_folio(struct folio *node_folio, int gc_type);
3774 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3775 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3776 struct writeback_control *wbc, bool atomic,
3777 unsigned int *seq_id);
3778 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3779 struct writeback_control *wbc,
3780 bool do_balance, enum iostat_type io_type);
3781 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3782 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3783 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3784 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3785 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3786 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio);
3787 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3788 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3789 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3790 unsigned int segno, struct f2fs_summary_block *sum);
3791 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3792 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3793 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3794 int __init f2fs_create_node_manager_caches(void);
3795 void f2fs_destroy_node_manager_caches(void);
3796
3797 /*
3798 * segment.c
3799 */
3800 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3801 int f2fs_commit_atomic_write(struct inode *inode);
3802 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3803 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3804 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3805 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3806 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3807 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3808 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3809 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3810 unsigned int len);
3811 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3812 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3813 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3814 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3815 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3816 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3817 struct cp_control *cpc);
3818 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3819 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3820 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3821 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3822 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3823 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3824 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3825 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3826 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3827 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3828 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3829 unsigned int start, unsigned int end);
3830 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3831 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3832 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3833 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3834 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3835 struct cp_control *cpc);
3836 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno);
3837 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3838 block_t blk_addr);
3839 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3840 enum iostat_type io_type);
3841 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3842 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3843 struct f2fs_io_info *fio);
3844 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3845 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3846 block_t old_blkaddr, block_t new_blkaddr,
3847 bool recover_curseg, bool recover_newaddr,
3848 bool from_gc);
3849 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3850 block_t old_addr, block_t new_addr,
3851 unsigned char version, bool recover_curseg,
3852 bool recover_newaddr);
3853 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3854 enum log_type seg_type);
3855 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3856 block_t old_blkaddr, block_t *new_blkaddr,
3857 struct f2fs_summary *sum, int type,
3858 struct f2fs_io_info *fio);
3859 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3860 block_t blkaddr, unsigned int blkcnt);
3861 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3862 bool ordered, bool locked);
3863 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3864 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3865 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3866 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3867 block_t len);
3868 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3869 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3870 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3871 unsigned int val, int alloc);
3872 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3873 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3874 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3875 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3876 int __init f2fs_create_segment_manager_caches(void);
3877 void f2fs_destroy_segment_manager_caches(void);
3878 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3879 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3880 enum page_type type, enum temp_type temp);
3881 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3882 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3883 unsigned int segno);
3884 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3885 unsigned int segno);
3886
fio_inode(struct f2fs_io_info * fio)3887 static inline struct inode *fio_inode(struct f2fs_io_info *fio)
3888 {
3889 return page_folio(fio->page)->mapping->host;
3890 }
3891
3892 #define DEF_FRAGMENT_SIZE 4
3893 #define MIN_FRAGMENT_SIZE 1
3894 #define MAX_FRAGMENT_SIZE 512
3895
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3896 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3897 {
3898 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3899 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3900 }
3901
3902 /*
3903 * checkpoint.c
3904 */
3905 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3906 unsigned char reason);
3907 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3908 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3909 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3910 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3911 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3912 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3913 block_t blkaddr, int type);
3914 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3915 block_t blkaddr, int type);
3916 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3917 int type, bool sync);
3918 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3919 unsigned int ra_blocks);
3920 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3921 long nr_to_write, enum iostat_type io_type);
3922 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3923 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3924 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3925 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3926 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3927 unsigned int devidx, int type);
3928 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3929 unsigned int devidx, int type);
3930 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3931 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3932 void f2fs_add_orphan_inode(struct inode *inode);
3933 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3934 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3935 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3936 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3937 void f2fs_remove_dirty_inode(struct inode *inode);
3938 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3939 bool from_cp);
3940 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3941 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3942 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3943 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3944 int __init f2fs_create_checkpoint_caches(void);
3945 void f2fs_destroy_checkpoint_caches(void);
3946 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3947 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3948 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3949 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3950
3951 /*
3952 * data.c
3953 */
3954 int __init f2fs_init_bioset(void);
3955 void f2fs_destroy_bioset(void);
3956 bool f2fs_is_cp_guaranteed(struct page *page);
3957 int f2fs_init_bio_entry_cache(void);
3958 void f2fs_destroy_bio_entry_cache(void);
3959 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3960 enum page_type type);
3961 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3962 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3963 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3964 struct inode *inode, struct page *page,
3965 nid_t ino, enum page_type type);
3966 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3967 struct bio **bio, struct folio *folio);
3968 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3969 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3970 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3971 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3972 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3973 block_t blk_addr, sector_t *sector);
3974 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3975 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3976 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3977 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3978 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3979 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3980 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3981 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
3982 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3983 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
3984 pgoff_t *next_pgofs);
3985 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
3986 bool for_write);
3987 struct folio *f2fs_get_new_data_folio(struct inode *inode,
3988 struct folio *ifolio, pgoff_t index, bool new_i_size);
3989 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3990 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3991 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3992 u64 start, u64 len);
3993 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3994 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3995 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3996 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3997 struct bio **bio, sector_t *last_block,
3998 struct writeback_control *wbc,
3999 enum iostat_type io_type,
4000 int compr_blocks, bool allow_balance);
4001 void f2fs_write_failed(struct inode *inode, loff_t to);
4002 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4003 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4004 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4005 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4006 int f2fs_init_post_read_processing(void);
4007 void f2fs_destroy_post_read_processing(void);
4008 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4009 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4010 extern const struct iomap_ops f2fs_iomap_ops;
4011
4012 /*
4013 * gc.c
4014 */
4015 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4016 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4017 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4018 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4019 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4020 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4021 unsigned int start_seg, unsigned int end_seg,
4022 bool dry_run, unsigned int dry_run_sections);
4023 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4024 int __init f2fs_create_garbage_collection_cache(void);
4025 void f2fs_destroy_garbage_collection_cache(void);
4026 /* victim selection function for cleaning and SSR */
4027 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4028 int gc_type, int type, char alloc_mode,
4029 unsigned long long age, bool one_time);
4030
4031 /*
4032 * recovery.c
4033 */
4034 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4035 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4036 int __init f2fs_create_recovery_cache(void);
4037 void f2fs_destroy_recovery_cache(void);
4038
4039 /*
4040 * debug.c
4041 */
4042 #ifdef CONFIG_F2FS_STAT_FS
4043 enum {
4044 DEVSTAT_INUSE,
4045 DEVSTAT_DIRTY,
4046 DEVSTAT_FULL,
4047 DEVSTAT_FREE,
4048 DEVSTAT_PREFREE,
4049 DEVSTAT_MAX,
4050 };
4051
4052 struct f2fs_dev_stats {
4053 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4054 };
4055
4056 struct f2fs_stat_info {
4057 struct list_head stat_list;
4058 struct f2fs_sb_info *sbi;
4059 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4060 int main_area_segs, main_area_sections, main_area_zones;
4061 unsigned long long hit_cached[NR_EXTENT_CACHES];
4062 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4063 unsigned long long total_ext[NR_EXTENT_CACHES];
4064 unsigned long long hit_total[NR_EXTENT_CACHES];
4065 int ext_tree[NR_EXTENT_CACHES];
4066 int zombie_tree[NR_EXTENT_CACHES];
4067 int ext_node[NR_EXTENT_CACHES];
4068 /* to count memory footprint */
4069 unsigned long long ext_mem[NR_EXTENT_CACHES];
4070 /* for read extent cache */
4071 unsigned long long hit_largest;
4072 /* for block age extent cache */
4073 unsigned long long allocated_data_blocks;
4074 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4075 int ndirty_data, ndirty_qdata;
4076 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4077 unsigned int nquota_files, ndonate_files;
4078 int nats, dirty_nats, sits, dirty_sits;
4079 int free_nids, avail_nids, alloc_nids;
4080 int total_count, utilization;
4081 int nr_wb_cp_data, nr_wb_data;
4082 int nr_rd_data, nr_rd_node, nr_rd_meta;
4083 int nr_dio_read, nr_dio_write;
4084 unsigned int io_skip_bggc, other_skip_bggc;
4085 int nr_flushing, nr_flushed, flush_list_empty;
4086 int nr_discarding, nr_discarded;
4087 int nr_discard_cmd;
4088 unsigned int undiscard_blks;
4089 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4090 unsigned int cur_ckpt_time, peak_ckpt_time;
4091 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4092 int compr_inode, swapfile_inode;
4093 unsigned long long compr_blocks;
4094 int aw_cnt, max_aw_cnt;
4095 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4096 unsigned int bimodal, avg_vblocks;
4097 int util_free, util_valid, util_invalid;
4098 int rsvd_segs, overp_segs;
4099 int dirty_count, node_pages, meta_pages, compress_pages;
4100 int compress_page_hit;
4101 int prefree_count, free_segs, free_secs;
4102 int cp_call_count[MAX_CALL_TYPE], cp_count;
4103 int gc_call_count[MAX_CALL_TYPE];
4104 int gc_segs[2][2];
4105 int gc_secs[2][2];
4106 int tot_blks, data_blks, node_blks;
4107 int bg_data_blks, bg_node_blks;
4108 int curseg[NR_CURSEG_TYPE];
4109 int cursec[NR_CURSEG_TYPE];
4110 int curzone[NR_CURSEG_TYPE];
4111 unsigned int dirty_seg[NR_CURSEG_TYPE];
4112 unsigned int full_seg[NR_CURSEG_TYPE];
4113 unsigned int valid_blks[NR_CURSEG_TYPE];
4114
4115 unsigned int meta_count[META_MAX];
4116 unsigned int segment_count[2];
4117 unsigned int block_count[2];
4118 unsigned int inplace_count;
4119 unsigned long long base_mem, cache_mem, page_mem;
4120 struct f2fs_dev_stats *dev_stats;
4121 };
4122
F2FS_STAT(struct f2fs_sb_info * sbi)4123 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4124 {
4125 return (struct f2fs_stat_info *)sbi->stat_info;
4126 }
4127
4128 #define stat_inc_cp_call_count(sbi, foreground) \
4129 atomic_inc(&sbi->cp_call_count[(foreground)])
4130 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4131 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4132 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4133 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4134 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4135 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4136 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4137 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4138 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4139 #define stat_inc_inline_xattr(inode) \
4140 do { \
4141 if (f2fs_has_inline_xattr(inode)) \
4142 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4143 } while (0)
4144 #define stat_dec_inline_xattr(inode) \
4145 do { \
4146 if (f2fs_has_inline_xattr(inode)) \
4147 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4148 } while (0)
4149 #define stat_inc_inline_inode(inode) \
4150 do { \
4151 if (f2fs_has_inline_data(inode)) \
4152 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4153 } while (0)
4154 #define stat_dec_inline_inode(inode) \
4155 do { \
4156 if (f2fs_has_inline_data(inode)) \
4157 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4158 } while (0)
4159 #define stat_inc_inline_dir(inode) \
4160 do { \
4161 if (f2fs_has_inline_dentry(inode)) \
4162 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4163 } while (0)
4164 #define stat_dec_inline_dir(inode) \
4165 do { \
4166 if (f2fs_has_inline_dentry(inode)) \
4167 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4168 } while (0)
4169 #define stat_inc_compr_inode(inode) \
4170 do { \
4171 if (f2fs_compressed_file(inode)) \
4172 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4173 } while (0)
4174 #define stat_dec_compr_inode(inode) \
4175 do { \
4176 if (f2fs_compressed_file(inode)) \
4177 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4178 } while (0)
4179 #define stat_add_compr_blocks(inode, blocks) \
4180 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4181 #define stat_sub_compr_blocks(inode, blocks) \
4182 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4183 #define stat_inc_swapfile_inode(inode) \
4184 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4185 #define stat_dec_swapfile_inode(inode) \
4186 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4187 #define stat_inc_atomic_inode(inode) \
4188 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4189 #define stat_dec_atomic_inode(inode) \
4190 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4191 #define stat_inc_meta_count(sbi, blkaddr) \
4192 do { \
4193 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4194 atomic_inc(&(sbi)->meta_count[META_CP]); \
4195 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4196 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4197 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4198 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4199 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4200 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4201 } while (0)
4202 #define stat_inc_seg_type(sbi, curseg) \
4203 ((sbi)->segment_count[(curseg)->alloc_type]++)
4204 #define stat_inc_block_count(sbi, curseg) \
4205 ((sbi)->block_count[(curseg)->alloc_type]++)
4206 #define stat_inc_inplace_blocks(sbi) \
4207 (atomic_inc(&(sbi)->inplace_count))
4208 #define stat_update_max_atomic_write(inode) \
4209 do { \
4210 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4211 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4212 if (cur > max) \
4213 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4214 } while (0)
4215 #define stat_inc_gc_call_count(sbi, foreground) \
4216 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4217 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4218 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4219 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4220 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4221
4222 #define stat_inc_tot_blk_count(si, blks) \
4223 ((si)->tot_blks += (blks))
4224
4225 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4226 do { \
4227 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4228 stat_inc_tot_blk_count(si, blks); \
4229 si->data_blks += (blks); \
4230 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4231 } while (0)
4232
4233 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4234 do { \
4235 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4236 stat_inc_tot_blk_count(si, blks); \
4237 si->node_blks += (blks); \
4238 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4239 } while (0)
4240
4241 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4242 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4243 void __init f2fs_create_root_stats(void);
4244 void f2fs_destroy_root_stats(void);
4245 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4246 #else
4247 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4248 #define stat_inc_cp_count(sbi) do { } while (0)
4249 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4250 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4251 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4252 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4253 #define stat_inc_total_hit(sbi, type) do { } while (0)
4254 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4255 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4256 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4257 #define stat_inc_inline_xattr(inode) do { } while (0)
4258 #define stat_dec_inline_xattr(inode) do { } while (0)
4259 #define stat_inc_inline_inode(inode) do { } while (0)
4260 #define stat_dec_inline_inode(inode) do { } while (0)
4261 #define stat_inc_inline_dir(inode) do { } while (0)
4262 #define stat_dec_inline_dir(inode) do { } while (0)
4263 #define stat_inc_compr_inode(inode) do { } while (0)
4264 #define stat_dec_compr_inode(inode) do { } while (0)
4265 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4266 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4267 #define stat_inc_swapfile_inode(inode) do { } while (0)
4268 #define stat_dec_swapfile_inode(inode) do { } while (0)
4269 #define stat_inc_atomic_inode(inode) do { } while (0)
4270 #define stat_dec_atomic_inode(inode) do { } while (0)
4271 #define stat_update_max_atomic_write(inode) do { } while (0)
4272 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4273 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4274 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4275 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4276 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4277 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4278 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4279 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4280 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4281 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4282
f2fs_build_stats(struct f2fs_sb_info * sbi)4283 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4284 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4285 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4286 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4287 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4288 #endif
4289
4290 extern const struct file_operations f2fs_dir_operations;
4291 extern const struct file_operations f2fs_file_operations;
4292 extern const struct inode_operations f2fs_file_inode_operations;
4293 extern const struct address_space_operations f2fs_dblock_aops;
4294 extern const struct address_space_operations f2fs_node_aops;
4295 extern const struct address_space_operations f2fs_meta_aops;
4296 extern const struct inode_operations f2fs_dir_inode_operations;
4297 extern const struct inode_operations f2fs_symlink_inode_operations;
4298 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4299 extern const struct inode_operations f2fs_special_inode_operations;
4300 extern struct kmem_cache *f2fs_inode_entry_slab;
4301
4302 /*
4303 * inline.c
4304 */
4305 bool f2fs_may_inline_data(struct inode *inode);
4306 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4307 bool f2fs_may_inline_dentry(struct inode *inode);
4308 void f2fs_do_read_inline_data(struct folio *folio, struct folio *ifolio);
4309 void f2fs_truncate_inline_inode(struct inode *inode, struct folio *ifolio,
4310 u64 from);
4311 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4312 int f2fs_convert_inline_folio(struct dnode_of_data *dn, struct folio *folio);
4313 int f2fs_convert_inline_inode(struct inode *inode);
4314 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4315 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4316 int f2fs_recover_inline_data(struct inode *inode, struct folio *nfolio);
4317 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4318 const struct f2fs_filename *fname, struct folio **res_folio,
4319 bool use_hash);
4320 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4321 struct folio *ifolio);
4322 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4323 struct inode *inode, nid_t ino, umode_t mode);
4324 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4325 struct folio *folio, struct inode *dir, struct inode *inode);
4326 bool f2fs_empty_inline_dir(struct inode *dir);
4327 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4328 struct fscrypt_str *fstr);
4329 int f2fs_inline_data_fiemap(struct inode *inode,
4330 struct fiemap_extent_info *fieinfo,
4331 __u64 start, __u64 len);
4332
4333 /*
4334 * shrinker.c
4335 */
4336 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4337 struct shrink_control *sc);
4338 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4339 struct shrink_control *sc);
4340 unsigned int f2fs_donate_files(void);
4341 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4342 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4343 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4344
4345 /*
4346 * extent_cache.c
4347 */
4348 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4349 void f2fs_init_extent_tree(struct inode *inode);
4350 void f2fs_drop_extent_tree(struct inode *inode);
4351 void f2fs_destroy_extent_node(struct inode *inode);
4352 void f2fs_destroy_extent_tree(struct inode *inode);
4353 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4354 int __init f2fs_create_extent_cache(void);
4355 void f2fs_destroy_extent_cache(void);
4356
4357 /* read extent cache ops */
4358 void f2fs_init_read_extent_tree(struct inode *inode, struct folio *ifolio);
4359 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4360 struct extent_info *ei);
4361 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4362 block_t *blkaddr);
4363 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4364 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4365 pgoff_t fofs, block_t blkaddr, unsigned int len);
4366 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4367 int nr_shrink);
4368
4369 /* block age extent cache ops */
4370 void f2fs_init_age_extent_tree(struct inode *inode);
4371 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4372 struct extent_info *ei);
4373 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4374 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4375 pgoff_t fofs, unsigned int len);
4376 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4377 int nr_shrink);
4378
4379 /*
4380 * sysfs.c
4381 */
4382 #define MIN_RA_MUL 2
4383 #define MAX_RA_MUL 256
4384
4385 int __init f2fs_init_sysfs(void);
4386 void f2fs_exit_sysfs(void);
4387 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4388 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4389
4390 /* verity.c */
4391 extern const struct fsverity_operations f2fs_verityops;
4392
4393 /*
4394 * crypto support
4395 */
f2fs_encrypted_file(struct inode * inode)4396 static inline bool f2fs_encrypted_file(struct inode *inode)
4397 {
4398 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4399 }
4400
f2fs_set_encrypted_inode(struct inode * inode)4401 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4402 {
4403 #ifdef CONFIG_FS_ENCRYPTION
4404 file_set_encrypt(inode);
4405 f2fs_set_inode_flags(inode);
4406 #endif
4407 }
4408
4409 /*
4410 * Returns true if the reads of the inode's data need to undergo some
4411 * postprocessing step, like decryption or authenticity verification.
4412 */
f2fs_post_read_required(struct inode * inode)4413 static inline bool f2fs_post_read_required(struct inode *inode)
4414 {
4415 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4416 f2fs_compressed_file(inode);
4417 }
4418
f2fs_used_in_atomic_write(struct inode * inode)4419 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4420 {
4421 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4422 }
4423
f2fs_meta_inode_gc_required(struct inode * inode)4424 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4425 {
4426 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4427 }
4428
4429 /*
4430 * compress.c
4431 */
4432 #ifdef CONFIG_F2FS_FS_COMPRESSION
4433 enum cluster_check_type {
4434 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4435 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4436 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4437 };
4438 bool f2fs_is_compressed_page(struct page *page);
4439 struct folio *f2fs_compress_control_folio(struct folio *folio);
4440 int f2fs_prepare_compress_overwrite(struct inode *inode,
4441 struct page **pagep, pgoff_t index, void **fsdata);
4442 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4443 pgoff_t index, unsigned copied);
4444 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4445 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4446 bool f2fs_is_compress_backend_ready(struct inode *inode);
4447 bool f2fs_is_compress_level_valid(int alg, int lvl);
4448 int __init f2fs_init_compress_mempool(void);
4449 void f2fs_destroy_compress_mempool(void);
4450 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4451 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4452 block_t blkaddr, bool in_task);
4453 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4454 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4455 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4456 int index, int nr_pages, bool uptodate);
4457 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4458 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4459 int f2fs_write_multi_pages(struct compress_ctx *cc,
4460 int *submitted,
4461 struct writeback_control *wbc,
4462 enum iostat_type io_type);
4463 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4464 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4465 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4466 pgoff_t fofs, block_t blkaddr,
4467 unsigned int llen, unsigned int c_len);
4468 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4469 unsigned nr_pages, sector_t *last_block_in_bio,
4470 struct readahead_control *rac, bool for_write);
4471 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4472 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4473 bool in_task);
4474 void f2fs_put_folio_dic(struct folio *folio, bool in_task);
4475 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4476 unsigned int ofs_in_node);
4477 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4478 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4479 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4480 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4481 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4482 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4483 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4484 int __init f2fs_init_compress_cache(void);
4485 void f2fs_destroy_compress_cache(void);
4486 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4487 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4488 block_t blkaddr, unsigned int len);
4489 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4490 nid_t ino, block_t blkaddr);
4491 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
4492 block_t blkaddr);
4493 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4494 #define inc_compr_inode_stat(inode) \
4495 do { \
4496 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4497 sbi->compr_new_inode++; \
4498 } while (0)
4499 #define add_compr_block_stat(inode, blocks) \
4500 do { \
4501 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4502 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4503 sbi->compr_written_block += blocks; \
4504 sbi->compr_saved_block += diff; \
4505 } while (0)
4506 #else
f2fs_is_compressed_page(struct page * page)4507 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4508 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4509 {
4510 if (!f2fs_compressed_file(inode))
4511 return true;
4512 /* not support compression */
4513 return false;
4514 }
f2fs_is_compress_level_valid(int alg,int lvl)4515 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_folio(struct folio * folio)4516 static inline struct folio *f2fs_compress_control_folio(struct folio *folio)
4517 {
4518 WARN_ON_ONCE(1);
4519 return ERR_PTR(-EINVAL);
4520 }
f2fs_init_compress_mempool(void)4521 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4522 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4523 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4524 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4525 static inline void f2fs_end_read_compressed_page(struct page *page,
4526 bool failed, block_t blkaddr, bool in_task)
4527 {
4528 WARN_ON_ONCE(1);
4529 }
f2fs_put_folio_dic(struct folio * folio,bool in_task)4530 static inline void f2fs_put_folio_dic(struct folio *folio, bool in_task)
4531 {
4532 WARN_ON_ONCE(1);
4533 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4534 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4535 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4536 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4537 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4538 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4539 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4540 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4541 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4542 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4543 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4544 block_t blkaddr, unsigned int len) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4545 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4546 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)4547 static inline bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi,
4548 struct folio *folio, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4549 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4550 nid_t ino) { }
4551 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4552 static inline int f2fs_is_compressed_cluster(
4553 struct inode *inode,
4554 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4555 static inline bool f2fs_is_sparse_cluster(
4556 struct inode *inode,
4557 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4558 static inline void f2fs_update_read_extent_tree_range_compressed(
4559 struct inode *inode,
4560 pgoff_t fofs, block_t blkaddr,
4561 unsigned int llen, unsigned int c_len) { }
4562 #endif
4563
set_compress_context(struct inode * inode)4564 static inline int set_compress_context(struct inode *inode)
4565 {
4566 #ifdef CONFIG_F2FS_FS_COMPRESSION
4567 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4568 struct f2fs_inode_info *fi = F2FS_I(inode);
4569
4570 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4571 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4572 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4573 BIT(COMPRESS_CHKSUM) : 0;
4574 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4575 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4576 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4577 F2FS_OPTION(sbi).compress_level)
4578 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4579 fi->i_flags |= F2FS_COMPR_FL;
4580 set_inode_flag(inode, FI_COMPRESSED_FILE);
4581 stat_inc_compr_inode(inode);
4582 inc_compr_inode_stat(inode);
4583 f2fs_mark_inode_dirty_sync(inode, true);
4584 return 0;
4585 #else
4586 return -EOPNOTSUPP;
4587 #endif
4588 }
4589
f2fs_disable_compressed_file(struct inode * inode)4590 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4591 {
4592 struct f2fs_inode_info *fi = F2FS_I(inode);
4593
4594 f2fs_down_write(&fi->i_sem);
4595
4596 if (!f2fs_compressed_file(inode)) {
4597 f2fs_up_write(&fi->i_sem);
4598 return true;
4599 }
4600 if (f2fs_is_mmap_file(inode) ||
4601 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4602 f2fs_up_write(&fi->i_sem);
4603 return false;
4604 }
4605
4606 fi->i_flags &= ~F2FS_COMPR_FL;
4607 stat_dec_compr_inode(inode);
4608 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4609 f2fs_mark_inode_dirty_sync(inode, true);
4610
4611 f2fs_up_write(&fi->i_sem);
4612 return true;
4613 }
4614
4615 #define F2FS_FEATURE_FUNCS(name, flagname) \
4616 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4617 { \
4618 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4619 }
4620
4621 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4622 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4623 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4624 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4625 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4626 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4627 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4628 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4629 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4630 F2FS_FEATURE_FUNCS(verity, VERITY);
4631 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4632 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4633 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4634 F2FS_FEATURE_FUNCS(readonly, RO);
4635 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4636
4637 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4638 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4639 unsigned int zone)
4640 {
4641 return test_bit(zone, FDEV(devi).blkz_seq);
4642 }
4643
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4644 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4645 block_t blkaddr)
4646 {
4647 return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4648 }
4649 #endif
4650
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4651 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4652 struct block_device *bdev)
4653 {
4654 int i;
4655
4656 if (!f2fs_is_multi_device(sbi))
4657 return 0;
4658
4659 for (i = 0; i < sbi->s_ndevs; i++)
4660 if (FDEV(i).bdev == bdev)
4661 return i;
4662
4663 WARN_ON(1);
4664 return -1;
4665 }
4666
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4667 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4668 {
4669 return f2fs_sb_has_blkzoned(sbi);
4670 }
4671
f2fs_bdev_support_discard(struct block_device * bdev)4672 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4673 {
4674 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4675 }
4676
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4677 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4678 {
4679 int i;
4680
4681 if (!f2fs_is_multi_device(sbi))
4682 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4683
4684 for (i = 0; i < sbi->s_ndevs; i++)
4685 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4686 return true;
4687 return false;
4688 }
4689
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4690 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4691 {
4692 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4693 f2fs_hw_should_discard(sbi);
4694 }
4695
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4696 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4697 {
4698 int i;
4699
4700 if (!f2fs_is_multi_device(sbi))
4701 return bdev_read_only(sbi->sb->s_bdev);
4702
4703 for (i = 0; i < sbi->s_ndevs; i++)
4704 if (bdev_read_only(FDEV(i).bdev))
4705 return true;
4706 return false;
4707 }
4708
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4709 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4710 {
4711 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4712 }
4713
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4714 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4715 {
4716 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4717 }
4718
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4719 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4720 block_t blkaddr)
4721 {
4722 if (f2fs_sb_has_blkzoned(sbi)) {
4723 #ifdef CONFIG_BLK_DEV_ZONED
4724 int devi = f2fs_target_device_index(sbi, blkaddr);
4725
4726 if (!bdev_is_zoned(FDEV(devi).bdev))
4727 return false;
4728
4729 if (f2fs_is_multi_device(sbi)) {
4730 if (blkaddr < FDEV(devi).start_blk ||
4731 blkaddr > FDEV(devi).end_blk) {
4732 f2fs_err(sbi, "Invalid block %x", blkaddr);
4733 return false;
4734 }
4735 blkaddr -= FDEV(devi).start_blk;
4736 }
4737
4738 return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4739 #else
4740 return false;
4741 #endif
4742 }
4743 return false;
4744 }
4745
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4746 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4747 {
4748 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4749 }
4750
f2fs_may_compress(struct inode * inode)4751 static inline bool f2fs_may_compress(struct inode *inode)
4752 {
4753 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4754 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4755 f2fs_is_mmap_file(inode))
4756 return false;
4757 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4758 }
4759
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4760 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4761 u64 blocks, bool add)
4762 {
4763 struct f2fs_inode_info *fi = F2FS_I(inode);
4764 int diff = fi->i_cluster_size - blocks;
4765
4766 /* don't update i_compr_blocks if saved blocks were released */
4767 if (!add && !atomic_read(&fi->i_compr_blocks))
4768 return;
4769
4770 if (add) {
4771 atomic_add(diff, &fi->i_compr_blocks);
4772 stat_add_compr_blocks(inode, diff);
4773 } else {
4774 atomic_sub(diff, &fi->i_compr_blocks);
4775 stat_sub_compr_blocks(inode, diff);
4776 }
4777 f2fs_mark_inode_dirty_sync(inode, true);
4778 }
4779
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4780 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4781 int flag)
4782 {
4783 if (!f2fs_is_multi_device(sbi))
4784 return false;
4785 if (flag != F2FS_GET_BLOCK_DIO)
4786 return false;
4787 return sbi->aligned_blksize;
4788 }
4789
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4790 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4791 {
4792 return fsverity_active(inode) &&
4793 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4794 }
4795
4796 #ifdef CONFIG_F2FS_FAULT_INJECTION
4797 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4798 unsigned long type, enum fault_option fo);
4799 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)4800 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4801 unsigned long rate, unsigned long type,
4802 enum fault_option fo)
4803 {
4804 return 0;
4805 }
4806 #endif
4807
is_journalled_quota(struct f2fs_sb_info * sbi)4808 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4809 {
4810 #ifdef CONFIG_QUOTA
4811 if (f2fs_sb_has_quota_ino(sbi))
4812 return true;
4813 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4814 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4815 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4816 return true;
4817 #endif
4818 return false;
4819 }
4820
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4821 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4822 {
4823 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4824 }
4825
f2fs_io_schedule_timeout(long timeout)4826 static inline void f2fs_io_schedule_timeout(long timeout)
4827 {
4828 set_current_state(TASK_UNINTERRUPTIBLE);
4829 io_schedule_timeout(timeout);
4830 }
4831
f2fs_io_schedule_timeout_killable(long timeout)4832 static inline void f2fs_io_schedule_timeout_killable(long timeout)
4833 {
4834 while (timeout) {
4835 if (fatal_signal_pending(current))
4836 return;
4837 set_current_state(TASK_UNINTERRUPTIBLE);
4838 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
4839 if (timeout <= DEFAULT_IO_TIMEOUT)
4840 return;
4841 timeout -= DEFAULT_IO_TIMEOUT;
4842 }
4843 }
4844
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4845 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4846 struct folio *folio, enum page_type type)
4847 {
4848 pgoff_t ofs = folio->index;
4849
4850 if (unlikely(f2fs_cp_error(sbi)))
4851 return;
4852
4853 if (ofs == sbi->page_eio_ofs[type]) {
4854 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4855 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4856 } else {
4857 sbi->page_eio_ofs[type] = ofs;
4858 sbi->page_eio_cnt[type] = 0;
4859 }
4860 }
4861
f2fs_is_readonly(struct f2fs_sb_info * sbi)4862 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4863 {
4864 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4865 }
4866
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4867 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4868 block_t blkaddr, unsigned int cnt)
4869 {
4870 bool need_submit = false;
4871 int i = 0;
4872
4873 do {
4874 struct folio *folio;
4875
4876 folio = filemap_get_folio(META_MAPPING(sbi), blkaddr + i);
4877 if (!IS_ERR(folio)) {
4878 if (folio_test_writeback(folio))
4879 need_submit = true;
4880 f2fs_folio_put(folio, false);
4881 }
4882 } while (++i < cnt && !need_submit);
4883
4884 if (need_submit)
4885 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4886 NULL, 0, DATA);
4887
4888 truncate_inode_pages_range(META_MAPPING(sbi),
4889 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4890 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4891 }
4892
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4893 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4894 block_t blkaddr, unsigned int len)
4895 {
4896 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4897 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4898 }
4899
4900 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4901 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4902
4903 #endif /* _LINUX_F2FS_H */
4904