1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42
43 /**
44 * DOC: skb checksums
45 *
46 * The interface for checksum offload between the stack and networking drivers
47 * is as follows...
48 *
49 * IP checksum related features
50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51 *
52 * Drivers advertise checksum offload capabilities in the features of a device.
53 * From the stack's point of view these are capabilities offered by the driver.
54 * A driver typically only advertises features that it is capable of offloading
55 * to its device.
56 *
57 * .. flat-table:: Checksum related device features
58 * :widths: 1 10
59 *
60 * * - %NETIF_F_HW_CSUM
61 * - The driver (or its device) is able to compute one
62 * IP (one's complement) checksum for any combination
63 * of protocols or protocol layering. The checksum is
64 * computed and set in a packet per the CHECKSUM_PARTIAL
65 * interface (see below).
66 *
67 * * - %NETIF_F_IP_CSUM
68 * - Driver (device) is only able to checksum plain
69 * TCP or UDP packets over IPv4. These are specifically
70 * unencapsulated packets of the form IPv4|TCP or
71 * IPv4|UDP where the Protocol field in the IPv4 header
72 * is TCP or UDP. The IPv4 header may contain IP options.
73 * This feature cannot be set in features for a device
74 * with NETIF_F_HW_CSUM also set. This feature is being
75 * DEPRECATED (see below).
76 *
77 * * - %NETIF_F_IPV6_CSUM
78 * - Driver (device) is only able to checksum plain
79 * TCP or UDP packets over IPv6. These are specifically
80 * unencapsulated packets of the form IPv6|TCP or
81 * IPv6|UDP where the Next Header field in the IPv6
82 * header is either TCP or UDP. IPv6 extension headers
83 * are not supported with this feature. This feature
84 * cannot be set in features for a device with
85 * NETIF_F_HW_CSUM also set. This feature is being
86 * DEPRECATED (see below).
87 *
88 * * - %NETIF_F_RXCSUM
89 * - Driver (device) performs receive checksum offload.
90 * This flag is only used to disable the RX checksum
91 * feature for a device. The stack will accept receive
92 * checksum indication in packets received on a device
93 * regardless of whether NETIF_F_RXCSUM is set.
94 *
95 * Checksumming of received packets by device
96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97 *
98 * Indication of checksum verification is set in &sk_buff.ip_summed.
99 * Possible values are:
100 *
101 * - %CHECKSUM_NONE
102 *
103 * Device did not checksum this packet e.g. due to lack of capabilities.
104 * The packet contains full (though not verified) checksum in packet but
105 * not in skb->csum. Thus, skb->csum is undefined in this case.
106 *
107 * - %CHECKSUM_UNNECESSARY
108 *
109 * The hardware you're dealing with doesn't calculate the full checksum
110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112 * if their checksums are okay. &sk_buff.csum is still undefined in this case
113 * though. A driver or device must never modify the checksum field in the
114 * packet even if checksum is verified.
115 *
116 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
117 *
118 * - TCP: IPv6 and IPv4.
119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120 * zero UDP checksum for either IPv4 or IPv6, the networking stack
121 * may perform further validation in this case.
122 * - GRE: only if the checksum is present in the header.
123 * - SCTP: indicates the CRC in SCTP header has been validated.
124 * - FCOE: indicates the CRC in FC frame has been validated.
125 *
126 * &sk_buff.csum_level indicates the number of consecutive checksums found in
127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129 * and a device is able to verify the checksums for UDP (possibly zero),
130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131 * two. If the device were only able to verify the UDP checksum and not
132 * GRE, either because it doesn't support GRE checksum or because GRE
133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134 * not considered in this case).
135 *
136 * - %CHECKSUM_COMPLETE
137 *
138 * This is the most generic way. The device supplied checksum of the _whole_
139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140 * hardware doesn't need to parse L3/L4 headers to implement this.
141 *
142 * Notes:
143 *
144 * - Even if device supports only some protocols, but is able to produce
145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147 *
148 * - %CHECKSUM_PARTIAL
149 *
150 * A checksum is set up to be offloaded to a device as described in the
151 * output description for CHECKSUM_PARTIAL. This may occur on a packet
152 * received directly from another Linux OS, e.g., a virtualized Linux kernel
153 * on the same host, or it may be set in the input path in GRO or remote
154 * checksum offload. For the purposes of checksum verification, the checksum
155 * referred to by skb->csum_start + skb->csum_offset and any preceding
156 * checksums in the packet are considered verified. Any checksums in the
157 * packet that are after the checksum being offloaded are not considered to
158 * be verified.
159 *
160 * Checksumming on transmit for non-GSO
161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162 *
163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164 * Values are:
165 *
166 * - %CHECKSUM_PARTIAL
167 *
168 * The driver is required to checksum the packet as seen by hard_start_xmit()
169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
170 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
171 * A driver may verify that the
172 * csum_start and csum_offset values are valid values given the length and
173 * offset of the packet, but it should not attempt to validate that the
174 * checksum refers to a legitimate transport layer checksum -- it is the
175 * purview of the stack to validate that csum_start and csum_offset are set
176 * correctly.
177 *
178 * When the stack requests checksum offload for a packet, the driver MUST
179 * ensure that the checksum is set correctly. A driver can either offload the
180 * checksum calculation to the device, or call skb_checksum_help (in the case
181 * that the device does not support offload for a particular checksum).
182 *
183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185 * checksum offload capability.
186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187 * on network device checksumming capabilities: if a packet does not match
188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189 * &sk_buff.csum_not_inet, see :ref:`crc`)
190 * is called to resolve the checksum.
191 *
192 * - %CHECKSUM_NONE
193 *
194 * The skb was already checksummed by the protocol, or a checksum is not
195 * required.
196 *
197 * - %CHECKSUM_UNNECESSARY
198 *
199 * This has the same meaning as CHECKSUM_NONE for checksum offload on
200 * output.
201 *
202 * - %CHECKSUM_COMPLETE
203 *
204 * Not used in checksum output. If a driver observes a packet with this value
205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206 *
207 * .. _crc:
208 *
209 * Non-IP checksum (CRC) offloads
210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211 *
212 * .. flat-table::
213 * :widths: 1 10
214 *
215 * * - %NETIF_F_SCTP_CRC
216 * - This feature indicates that a device is capable of
217 * offloading the SCTP CRC in a packet. To perform this offload the stack
218 * will set csum_start and csum_offset accordingly, set ip_summed to
219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221 * A driver that supports both IP checksum offload and SCTP CRC32c offload
222 * must verify which offload is configured for a packet by testing the
223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225 *
226 * * - %NETIF_F_FCOE_CRC
227 * - This feature indicates that a device is capable of offloading the FCOE
228 * CRC in a packet. To perform this offload the stack will set ip_summed
229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230 * accordingly. Note that there is no indication in the skbuff that the
231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232 * both IP checksum offload and FCOE CRC offload must verify which offload
233 * is configured for a packet, presumably by inspecting packet headers.
234 *
235 * Checksumming on output with GSO
236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237 *
238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241 * part of the GSO operation is implied. If a checksum is being offloaded
242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243 * csum_offset are set to refer to the outermost checksum being offloaded
244 * (two offloaded checksums are possible with UDP encapsulation).
245 */
246
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE 0
249 #define CHECKSUM_UNNECESSARY 1
250 #define CHECKSUM_COMPLETE 2
251 #define CHECKSUM_PARTIAL 3
252
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL 3
255
256 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X) \
258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259
260 /* For X bytes available in skb->head, what is the minimal
261 * allocation needed, knowing struct skb_shared_info needs
262 * to be aligned.
263 */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266
267 #define SKB_MAX_ORDER(X, ORDER) \
268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
271
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) + \
274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 enum {
291 BRNF_PROTO_UNCHANGED,
292 BRNF_PROTO_8021Q,
293 BRNF_PROTO_PPPOE
294 } orig_proto:8;
295 u8 pkt_otherhost:1;
296 u8 in_prerouting:1;
297 u8 bridged_dnat:1;
298 u8 sabotage_in_done:1;
299 __u16 frag_max_size;
300 int physinif;
301
302 /* always valid & non-NULL from FORWARD on, for physdev match */
303 struct net_device *physoutdev;
304 union {
305 /* prerouting: detect dnat in orig/reply direction */
306 __be32 ipv4_daddr;
307 struct in6_addr ipv6_daddr;
308
309 /* after prerouting + nat detected: store original source
310 * mac since neigh resolution overwrites it, only used while
311 * skb is out in neigh layer.
312 */
313 char neigh_header[8];
314 };
315 };
316 #endif
317
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320 * ovs recirc_id. It will be set to the current chain by tc
321 * and read by ovs to recirc_id.
322 */
323 struct tc_skb_ext {
324 union {
325 u64 act_miss_cookie;
326 __u32 chain;
327 };
328 __u16 mru;
329 __u16 zone;
330 u8 post_ct:1;
331 u8 post_ct_snat:1;
332 u8 post_ct_dnat:1;
333 u8 act_miss:1; /* Set if act_miss_cookie is used */
334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337
338 struct sk_buff_head {
339 /* These two members must be first to match sk_buff. */
340 struct_group_tagged(sk_buff_list, list,
341 struct sk_buff *next;
342 struct sk_buff *prev;
343 );
344
345 __u32 qlen;
346 spinlock_t lock;
347 };
348
349 struct sk_buff;
350
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
359 */
360 #define GSO_BY_FRAGS 0xFFFF
361
362 typedef struct skb_frag {
363 netmem_ref netmem;
364 unsigned int len;
365 unsigned int offset;
366 } skb_frag_t;
367
368 /**
369 * skb_frag_size() - Returns the size of a skb fragment
370 * @frag: skb fragment
371 */
skb_frag_size(const skb_frag_t * frag)372 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373 {
374 return frag->len;
375 }
376
377 /**
378 * skb_frag_size_set() - Sets the size of a skb fragment
379 * @frag: skb fragment
380 * @size: size of fragment
381 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383 {
384 frag->len = size;
385 }
386
387 /**
388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389 * @frag: skb fragment
390 * @delta: value to add
391 */
skb_frag_size_add(skb_frag_t * frag,int delta)392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393 {
394 frag->len += delta;
395 }
396
397 /**
398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399 * @frag: skb fragment
400 * @delta: value to subtract
401 */
skb_frag_size_sub(skb_frag_t * frag,int delta)402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403 {
404 frag->len -= delta;
405 }
406
407 /**
408 * skb_frag_must_loop - Test if %p is a high memory page
409 * @p: fragment's page
410 */
skb_frag_must_loop(struct page * p)411 static inline bool skb_frag_must_loop(struct page *p)
412 {
413 #if defined(CONFIG_HIGHMEM)
414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 return true;
416 #endif
417 return false;
418 }
419
420 /**
421 * skb_frag_foreach_page - loop over pages in a fragment
422 *
423 * @f: skb frag to operate on
424 * @f_off: offset from start of f->netmem
425 * @f_len: length from f_off to loop over
426 * @p: (temp var) current page
427 * @p_off: (temp var) offset from start of current page,
428 * non-zero only on first page.
429 * @p_len: (temp var) length in current page,
430 * < PAGE_SIZE only on first and last page.
431 * @copied: (temp var) length so far, excluding current p_len.
432 *
433 * A fragment can hold a compound page, in which case per-page
434 * operations, notably kmap_atomic, must be called for each
435 * regular page.
436 */
437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
439 p_off = (f_off) & (PAGE_SIZE - 1), \
440 p_len = skb_frag_must_loop(p) ? \
441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
442 copied = 0; \
443 copied < f_len; \
444 copied += p_len, p++, p_off = 0, \
445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
446
447 /**
448 * struct skb_shared_hwtstamps - hardware time stamps
449 * @hwtstamp: hardware time stamp transformed into duration
450 * since arbitrary point in time
451 * @netdev_data: address/cookie of network device driver used as
452 * reference to actual hardware time stamp
453 *
454 * Software time stamps generated by ktime_get_real() are stored in
455 * skb->tstamp.
456 *
457 * hwtstamps can only be compared against other hwtstamps from
458 * the same device.
459 *
460 * This structure is attached to packets as part of the
461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462 */
463 struct skb_shared_hwtstamps {
464 union {
465 ktime_t hwtstamp;
466 void *netdev_data;
467 };
468 };
469
470 /* Definitions for tx_flags in struct skb_shared_info */
471 enum {
472 /* generate hardware time stamp */
473 SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
474
475 /* generate software time stamp when queueing packet to NIC */
476 SKBTX_SW_TSTAMP = 1 << 1,
477
478 /* device driver is going to provide hardware time stamp */
479 SKBTX_IN_PROGRESS = 1 << 2,
480
481 /* generate software time stamp on packet tx completion */
482 SKBTX_COMPLETION_TSTAMP = 1 << 3,
483
484 /* generate wifi status information (where possible) */
485 SKBTX_WIFI_STATUS = 1 << 4,
486
487 /* determine hardware time stamp based on time or cycles */
488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489
490 /* generate software time stamp when entering packet scheduling */
491 SKBTX_SCHED_TSTAMP = 1 << 6,
492
493 /* used for bpf extension when a bpf program is loaded */
494 SKBTX_BPF = 1 << 7,
495 };
496
497 #define SKBTX_HW_TSTAMP (SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
498
499 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
500 SKBTX_SCHED_TSTAMP | \
501 SKBTX_BPF | \
502 SKBTX_COMPLETION_TSTAMP)
503 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
504 SKBTX_ANY_SW_TSTAMP)
505
506 /* Definitions for flags in struct skb_shared_info */
507 enum {
508 /* use zcopy routines */
509 SKBFL_ZEROCOPY_ENABLE = BIT(0),
510
511 /* This indicates at least one fragment might be overwritten
512 * (as in vmsplice(), sendfile() ...)
513 * If we need to compute a TX checksum, we'll need to copy
514 * all frags to avoid possible bad checksum
515 */
516 SKBFL_SHARED_FRAG = BIT(1),
517
518 /* segment contains only zerocopy data and should not be
519 * charged to the kernel memory.
520 */
521 SKBFL_PURE_ZEROCOPY = BIT(2),
522
523 SKBFL_DONT_ORPHAN = BIT(3),
524
525 /* page references are managed by the ubuf_info, so it's safe to
526 * use frags only up until ubuf_info is released
527 */
528 SKBFL_MANAGED_FRAG_REFS = BIT(4),
529 };
530
531 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
532 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
533 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
534
535 struct ubuf_info_ops {
536 void (*complete)(struct sk_buff *, struct ubuf_info *,
537 bool zerocopy_success);
538 /* has to be compatible with skb_zcopy_set() */
539 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
540 };
541
542 /*
543 * The callback notifies userspace to release buffers when skb DMA is done in
544 * lower device, the skb last reference should be 0 when calling this.
545 * The zerocopy_success argument is true if zero copy transmit occurred,
546 * false on data copy or out of memory error caused by data copy attempt.
547 * The ctx field is used to track device context.
548 * The desc field is used to track userspace buffer index.
549 */
550 struct ubuf_info {
551 const struct ubuf_info_ops *ops;
552 refcount_t refcnt;
553 u8 flags;
554 };
555
556 struct ubuf_info_msgzc {
557 struct ubuf_info ubuf;
558
559 union {
560 struct {
561 unsigned long desc;
562 void *ctx;
563 };
564 struct {
565 u32 id;
566 u16 len;
567 u16 zerocopy:1;
568 u32 bytelen;
569 };
570 };
571
572 struct mmpin {
573 struct user_struct *user;
574 unsigned int num_pg;
575 } mmp;
576 };
577
578 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
579 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
580 ubuf)
581
582 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
583 void mm_unaccount_pinned_pages(struct mmpin *mmp);
584
585 /* Preserve some data across TX submission and completion.
586 *
587 * Note, this state is stored in the driver. Extending the layout
588 * might need some special care.
589 */
590 struct xsk_tx_metadata_compl {
591 __u64 *tx_timestamp;
592 };
593
594 /* This data is invariant across clones and lives at
595 * the end of the header data, ie. at skb->end.
596 */
597 struct skb_shared_info {
598 __u8 flags;
599 __u8 meta_len;
600 __u8 nr_frags;
601 __u8 tx_flags;
602 unsigned short gso_size;
603 /* Warning: this field is not always filled in (UFO)! */
604 unsigned short gso_segs;
605 struct sk_buff *frag_list;
606 union {
607 struct skb_shared_hwtstamps hwtstamps;
608 struct xsk_tx_metadata_compl xsk_meta;
609 };
610 unsigned int gso_type;
611 u32 tskey;
612
613 /*
614 * Warning : all fields before dataref are cleared in __alloc_skb()
615 */
616 atomic_t dataref;
617
618 union {
619 struct {
620 u32 xdp_frags_size;
621 u32 xdp_frags_truesize;
622 };
623
624 /*
625 * Intermediate layers must ensure that destructor_arg
626 * remains valid until skb destructor.
627 */
628 void *destructor_arg;
629 };
630
631 /* must be last field, see pskb_expand_head() */
632 skb_frag_t frags[MAX_SKB_FRAGS];
633 };
634
635 /**
636 * DOC: dataref and headerless skbs
637 *
638 * Transport layers send out clones of payload skbs they hold for
639 * retransmissions. To allow lower layers of the stack to prepend their headers
640 * we split &skb_shared_info.dataref into two halves.
641 * The lower 16 bits count the overall number of references.
642 * The higher 16 bits indicate how many of the references are payload-only.
643 * skb_header_cloned() checks if skb is allowed to add / write the headers.
644 *
645 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
646 * (via __skb_header_release()). Any clone created from marked skb will get
647 * &sk_buff.hdr_len populated with the available headroom.
648 * If there's the only clone in existence it's able to modify the headroom
649 * at will. The sequence of calls inside the transport layer is::
650 *
651 * <alloc skb>
652 * skb_reserve()
653 * __skb_header_release()
654 * skb_clone()
655 * // send the clone down the stack
656 *
657 * This is not a very generic construct and it depends on the transport layers
658 * doing the right thing. In practice there's usually only one payload-only skb.
659 * Having multiple payload-only skbs with different lengths of hdr_len is not
660 * possible. The payload-only skbs should never leave their owner.
661 */
662 #define SKB_DATAREF_SHIFT 16
663 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
664
665
666 enum {
667 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
668 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
669 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
670 };
671
672 enum {
673 SKB_GSO_TCPV4 = 1 << 0,
674
675 /* This indicates the skb is from an untrusted source. */
676 SKB_GSO_DODGY = 1 << 1,
677
678 /* This indicates the tcp segment has CWR set. */
679 SKB_GSO_TCP_ECN = 1 << 2,
680
681 SKB_GSO_TCP_FIXEDID = 1 << 3,
682
683 SKB_GSO_TCPV6 = 1 << 4,
684
685 SKB_GSO_FCOE = 1 << 5,
686
687 SKB_GSO_GRE = 1 << 6,
688
689 SKB_GSO_GRE_CSUM = 1 << 7,
690
691 SKB_GSO_IPXIP4 = 1 << 8,
692
693 SKB_GSO_IPXIP6 = 1 << 9,
694
695 SKB_GSO_UDP_TUNNEL = 1 << 10,
696
697 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
698
699 SKB_GSO_PARTIAL = 1 << 12,
700
701 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
702
703 SKB_GSO_SCTP = 1 << 14,
704
705 SKB_GSO_ESP = 1 << 15,
706
707 SKB_GSO_UDP = 1 << 16,
708
709 SKB_GSO_UDP_L4 = 1 << 17,
710
711 SKB_GSO_FRAGLIST = 1 << 18,
712
713 SKB_GSO_TCP_ACCECN = 1 << 19,
714 };
715
716 #if BITS_PER_LONG > 32
717 #define NET_SKBUFF_DATA_USES_OFFSET 1
718 #endif
719
720 #ifdef NET_SKBUFF_DATA_USES_OFFSET
721 typedef unsigned int sk_buff_data_t;
722 #else
723 typedef unsigned char *sk_buff_data_t;
724 #endif
725
726 enum skb_tstamp_type {
727 SKB_CLOCK_REALTIME,
728 SKB_CLOCK_MONOTONIC,
729 SKB_CLOCK_TAI,
730 __SKB_CLOCK_MAX = SKB_CLOCK_TAI,
731 };
732
733 /**
734 * DOC: Basic sk_buff geometry
735 *
736 * struct sk_buff itself is a metadata structure and does not hold any packet
737 * data. All the data is held in associated buffers.
738 *
739 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
740 * into two parts:
741 *
742 * - data buffer, containing headers and sometimes payload;
743 * this is the part of the skb operated on by the common helpers
744 * such as skb_put() or skb_pull();
745 * - shared info (struct skb_shared_info) which holds an array of pointers
746 * to read-only data in the (page, offset, length) format.
747 *
748 * Optionally &skb_shared_info.frag_list may point to another skb.
749 *
750 * Basic diagram may look like this::
751 *
752 * ---------------
753 * | sk_buff |
754 * ---------------
755 * ,--------------------------- + head
756 * / ,----------------- + data
757 * / / ,----------- + tail
758 * | | | , + end
759 * | | | |
760 * v v v v
761 * -----------------------------------------------
762 * | headroom | data | tailroom | skb_shared_info |
763 * -----------------------------------------------
764 * + [page frag]
765 * + [page frag]
766 * + [page frag]
767 * + [page frag] ---------
768 * + frag_list --> | sk_buff |
769 * ---------
770 *
771 */
772
773 /**
774 * struct sk_buff - socket buffer
775 * @next: Next buffer in list
776 * @prev: Previous buffer in list
777 * @tstamp: Time we arrived/left
778 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
779 * for retransmit timer
780 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
781 * @list: queue head
782 * @ll_node: anchor in an llist (eg socket defer_list)
783 * @sk: Socket we are owned by
784 * @dev: Device we arrived on/are leaving by
785 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
786 * @cb: Control buffer. Free for use by every layer. Put private vars here
787 * @_skb_refdst: destination entry (with norefcount bit)
788 * @len: Length of actual data
789 * @data_len: Data length
790 * @mac_len: Length of link layer header
791 * @hdr_len: writable header length of cloned skb
792 * @csum: Checksum (must include start/offset pair)
793 * @csum_start: Offset from skb->head where checksumming should start
794 * @csum_offset: Offset from csum_start where checksum should be stored
795 * @priority: Packet queueing priority
796 * @ignore_df: allow local fragmentation
797 * @cloned: Head may be cloned (check refcnt to be sure)
798 * @ip_summed: Driver fed us an IP checksum
799 * @nohdr: Payload reference only, must not modify header
800 * @pkt_type: Packet class
801 * @fclone: skbuff clone status
802 * @ipvs_property: skbuff is owned by ipvs
803 * @inner_protocol_type: whether the inner protocol is
804 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
805 * @remcsum_offload: remote checksum offload is enabled
806 * @offload_fwd_mark: Packet was L2-forwarded in hardware
807 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
808 * @tc_skip_classify: do not classify packet. set by IFB device
809 * @tc_at_ingress: used within tc_classify to distinguish in/egress
810 * @redirected: packet was redirected by packet classifier
811 * @from_ingress: packet was redirected from the ingress path
812 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
813 * @peeked: this packet has been seen already, so stats have been
814 * done for it, don't do them again
815 * @nf_trace: netfilter packet trace flag
816 * @protocol: Packet protocol from driver
817 * @destructor: Destruct function
818 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
819 * @_sk_redir: socket redirection information for skmsg
820 * @_nfct: Associated connection, if any (with nfctinfo bits)
821 * @skb_iif: ifindex of device we arrived on
822 * @tc_index: Traffic control index
823 * @hash: the packet hash
824 * @queue_mapping: Queue mapping for multiqueue devices
825 * @head_frag: skb was allocated from page fragments,
826 * not allocated by kmalloc() or vmalloc().
827 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
828 * @pp_recycle: mark the packet for recycling instead of freeing (implies
829 * page_pool support on driver)
830 * @active_extensions: active extensions (skb_ext_id types)
831 * @ndisc_nodetype: router type (from link layer)
832 * @ooo_okay: allow the mapping of a socket to a queue to be changed
833 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
834 * ports.
835 * @sw_hash: indicates hash was computed in software stack
836 * @wifi_acked_valid: wifi_acked was set
837 * @wifi_acked: whether frame was acked on wifi or not
838 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
839 * @encapsulation: indicates the inner headers in the skbuff are valid
840 * @encap_hdr_csum: software checksum is needed
841 * @csum_valid: checksum is already valid
842 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
843 * @csum_complete_sw: checksum was completed by software
844 * @csum_level: indicates the number of consecutive checksums found in
845 * the packet minus one that have been verified as
846 * CHECKSUM_UNNECESSARY (max 3)
847 * @unreadable: indicates that at least 1 of the fragments in this skb is
848 * unreadable.
849 * @dst_pending_confirm: need to confirm neighbour
850 * @decrypted: Decrypted SKB
851 * @slow_gro: state present at GRO time, slower prepare step required
852 * @tstamp_type: When set, skb->tstamp has the
853 * delivery_time clock base of skb->tstamp.
854 * @napi_id: id of the NAPI struct this skb came from
855 * @sender_cpu: (aka @napi_id) source CPU in XPS
856 * @alloc_cpu: CPU which did the skb allocation.
857 * @secmark: security marking
858 * @mark: Generic packet mark
859 * @reserved_tailroom: (aka @mark) number of bytes of free space available
860 * at the tail of an sk_buff
861 * @vlan_all: vlan fields (proto & tci)
862 * @vlan_proto: vlan encapsulation protocol
863 * @vlan_tci: vlan tag control information
864 * @inner_protocol: Protocol (encapsulation)
865 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
866 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
867 * @inner_transport_header: Inner transport layer header (encapsulation)
868 * @inner_network_header: Network layer header (encapsulation)
869 * @inner_mac_header: Link layer header (encapsulation)
870 * @transport_header: Transport layer header
871 * @network_header: Network layer header
872 * @mac_header: Link layer header
873 * @kcov_handle: KCOV remote handle for remote coverage collection
874 * @tail: Tail pointer
875 * @end: End pointer
876 * @head: Head of buffer
877 * @data: Data head pointer
878 * @truesize: Buffer size
879 * @users: User count - see {datagram,tcp}.c
880 * @extensions: allocated extensions, valid if active_extensions is nonzero
881 */
882
883 struct sk_buff {
884 union {
885 struct {
886 /* These two members must be first to match sk_buff_head. */
887 struct sk_buff *next;
888 struct sk_buff *prev;
889
890 union {
891 struct net_device *dev;
892 /* Some protocols might use this space to store information,
893 * while device pointer would be NULL.
894 * UDP receive path is one user.
895 */
896 unsigned long dev_scratch;
897 };
898 };
899 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
900 struct list_head list;
901 struct llist_node ll_node;
902 };
903
904 struct sock *sk;
905
906 union {
907 ktime_t tstamp;
908 u64 skb_mstamp_ns; /* earliest departure time */
909 };
910 /*
911 * This is the control buffer. It is free to use for every
912 * layer. Please put your private variables there. If you
913 * want to keep them across layers you have to do a skb_clone()
914 * first. This is owned by whoever has the skb queued ATM.
915 */
916 char cb[48] __aligned(8);
917
918 union {
919 struct {
920 unsigned long _skb_refdst;
921 void (*destructor)(struct sk_buff *skb);
922 };
923 struct list_head tcp_tsorted_anchor;
924 #ifdef CONFIG_NET_SOCK_MSG
925 unsigned long _sk_redir;
926 #endif
927 };
928
929 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
930 unsigned long _nfct;
931 #endif
932 unsigned int len,
933 data_len;
934 __u16 mac_len,
935 hdr_len;
936
937 /* Following fields are _not_ copied in __copy_skb_header()
938 * Note that queue_mapping is here mostly to fill a hole.
939 */
940 __u16 queue_mapping;
941
942 /* if you move cloned around you also must adapt those constants */
943 #ifdef __BIG_ENDIAN_BITFIELD
944 #define CLONED_MASK (1 << 7)
945 #else
946 #define CLONED_MASK 1
947 #endif
948 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
949
950 /* private: */
951 __u8 __cloned_offset[0];
952 /* public: */
953 __u8 cloned:1,
954 nohdr:1,
955 fclone:2,
956 peeked:1,
957 head_frag:1,
958 pfmemalloc:1,
959 pp_recycle:1; /* page_pool recycle indicator */
960 #ifdef CONFIG_SKB_EXTENSIONS
961 __u8 active_extensions;
962 #endif
963
964 /* Fields enclosed in headers group are copied
965 * using a single memcpy() in __copy_skb_header()
966 */
967 struct_group(headers,
968
969 /* private: */
970 __u8 __pkt_type_offset[0];
971 /* public: */
972 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
973 __u8 ignore_df:1;
974 __u8 dst_pending_confirm:1;
975 __u8 ip_summed:2;
976 __u8 ooo_okay:1;
977
978 /* private: */
979 __u8 __mono_tc_offset[0];
980 /* public: */
981 __u8 tstamp_type:2; /* See skb_tstamp_type */
982 #ifdef CONFIG_NET_XGRESS
983 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
984 __u8 tc_skip_classify:1;
985 #endif
986 __u8 remcsum_offload:1;
987 __u8 csum_complete_sw:1;
988 __u8 csum_level:2;
989 __u8 inner_protocol_type:1;
990
991 __u8 l4_hash:1;
992 __u8 sw_hash:1;
993 #ifdef CONFIG_WIRELESS
994 __u8 wifi_acked_valid:1;
995 __u8 wifi_acked:1;
996 #endif
997 __u8 no_fcs:1;
998 /* Indicates the inner headers are valid in the skbuff. */
999 __u8 encapsulation:1;
1000 __u8 encap_hdr_csum:1;
1001 __u8 csum_valid:1;
1002 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1003 __u8 ndisc_nodetype:2;
1004 #endif
1005
1006 #if IS_ENABLED(CONFIG_IP_VS)
1007 __u8 ipvs_property:1;
1008 #endif
1009 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1010 __u8 nf_trace:1;
1011 #endif
1012 #ifdef CONFIG_NET_SWITCHDEV
1013 __u8 offload_fwd_mark:1;
1014 __u8 offload_l3_fwd_mark:1;
1015 #endif
1016 __u8 redirected:1;
1017 #ifdef CONFIG_NET_REDIRECT
1018 __u8 from_ingress:1;
1019 #endif
1020 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1021 __u8 nf_skip_egress:1;
1022 #endif
1023 #ifdef CONFIG_SKB_DECRYPTED
1024 __u8 decrypted:1;
1025 #endif
1026 __u8 slow_gro:1;
1027 #if IS_ENABLED(CONFIG_IP_SCTP)
1028 __u8 csum_not_inet:1;
1029 #endif
1030 __u8 unreadable:1;
1031 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1032 __u16 tc_index; /* traffic control index */
1033 #endif
1034
1035 u16 alloc_cpu;
1036
1037 union {
1038 __wsum csum;
1039 struct {
1040 __u16 csum_start;
1041 __u16 csum_offset;
1042 };
1043 };
1044 __u32 priority;
1045 int skb_iif;
1046 __u32 hash;
1047 union {
1048 u32 vlan_all;
1049 struct {
1050 __be16 vlan_proto;
1051 __u16 vlan_tci;
1052 };
1053 };
1054 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1055 union {
1056 unsigned int napi_id;
1057 unsigned int sender_cpu;
1058 };
1059 #endif
1060 #ifdef CONFIG_NETWORK_SECMARK
1061 __u32 secmark;
1062 #endif
1063
1064 union {
1065 __u32 mark;
1066 __u32 reserved_tailroom;
1067 };
1068
1069 union {
1070 __be16 inner_protocol;
1071 __u8 inner_ipproto;
1072 };
1073
1074 __u16 inner_transport_header;
1075 __u16 inner_network_header;
1076 __u16 inner_mac_header;
1077
1078 __be16 protocol;
1079 __u16 transport_header;
1080 __u16 network_header;
1081 __u16 mac_header;
1082
1083 #ifdef CONFIG_KCOV
1084 u64 kcov_handle;
1085 #endif
1086
1087 ); /* end headers group */
1088
1089 /* These elements must be at the end, see alloc_skb() for details. */
1090 sk_buff_data_t tail;
1091 sk_buff_data_t end;
1092 unsigned char *head,
1093 *data;
1094 unsigned int truesize;
1095 refcount_t users;
1096
1097 #ifdef CONFIG_SKB_EXTENSIONS
1098 /* only usable after checking ->active_extensions != 0 */
1099 struct skb_ext *extensions;
1100 #endif
1101 };
1102
1103 /* if you move pkt_type around you also must adapt those constants */
1104 #ifdef __BIG_ENDIAN_BITFIELD
1105 #define PKT_TYPE_MAX (7 << 5)
1106 #else
1107 #define PKT_TYPE_MAX 7
1108 #endif
1109 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1110
1111 /* if you move tc_at_ingress or tstamp_type
1112 * around, you also must adapt these constants.
1113 */
1114 #ifdef __BIG_ENDIAN_BITFIELD
1115 #define SKB_TSTAMP_TYPE_MASK (3 << 6)
1116 #define SKB_TSTAMP_TYPE_RSHIFT (6)
1117 #define TC_AT_INGRESS_MASK (1 << 5)
1118 #else
1119 #define SKB_TSTAMP_TYPE_MASK (3)
1120 #define TC_AT_INGRESS_MASK (1 << 2)
1121 #endif
1122 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1123
1124 #ifdef __KERNEL__
1125 /*
1126 * Handling routines are only of interest to the kernel
1127 */
1128
1129 #define SKB_ALLOC_FCLONE 0x01
1130 #define SKB_ALLOC_RX 0x02
1131 #define SKB_ALLOC_NAPI 0x04
1132
1133 /**
1134 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1135 * @skb: buffer
1136 */
skb_pfmemalloc(const struct sk_buff * skb)1137 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1138 {
1139 return unlikely(skb->pfmemalloc);
1140 }
1141
1142 /*
1143 * skb might have a dst pointer attached, refcounted or not.
1144 * _skb_refdst low order bit is set if refcount was _not_ taken
1145 */
1146 #define SKB_DST_NOREF 1UL
1147 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1148
1149 /**
1150 * skb_dst - returns skb dst_entry
1151 * @skb: buffer
1152 *
1153 * Returns: skb dst_entry, regardless of reference taken or not.
1154 */
skb_dst(const struct sk_buff * skb)1155 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1156 {
1157 /* If refdst was not refcounted, check we still are in a
1158 * rcu_read_lock section
1159 */
1160 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1161 !rcu_read_lock_held() &&
1162 !rcu_read_lock_bh_held());
1163 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1164 }
1165
1166 /**
1167 * skb_dst_set - sets skb dst
1168 * @skb: buffer
1169 * @dst: dst entry
1170 *
1171 * Sets skb dst, assuming a reference was taken on dst and should
1172 * be released by skb_dst_drop()
1173 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1174 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1175 {
1176 skb->slow_gro |= !!dst;
1177 skb->_skb_refdst = (unsigned long)dst;
1178 }
1179
1180 /**
1181 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1182 * @skb: buffer
1183 * @dst: dst entry
1184 *
1185 * Sets skb dst, assuming a reference was not taken on dst.
1186 * If dst entry is cached, we do not take reference and dst_release
1187 * will be avoided by refdst_drop. If dst entry is not cached, we take
1188 * reference, so that last dst_release can destroy the dst immediately.
1189 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1190 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1191 {
1192 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1193 skb->slow_gro |= !!dst;
1194 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1195 }
1196
1197 /**
1198 * skb_dst_is_noref - Test if skb dst isn't refcounted
1199 * @skb: buffer
1200 */
skb_dst_is_noref(const struct sk_buff * skb)1201 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1202 {
1203 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1204 }
1205
1206 /* For mangling skb->pkt_type from user space side from applications
1207 * such as nft, tc, etc, we only allow a conservative subset of
1208 * possible pkt_types to be set.
1209 */
skb_pkt_type_ok(u32 ptype)1210 static inline bool skb_pkt_type_ok(u32 ptype)
1211 {
1212 return ptype <= PACKET_OTHERHOST;
1213 }
1214
1215 /**
1216 * skb_napi_id - Returns the skb's NAPI id
1217 * @skb: buffer
1218 */
skb_napi_id(const struct sk_buff * skb)1219 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1220 {
1221 #ifdef CONFIG_NET_RX_BUSY_POLL
1222 return skb->napi_id;
1223 #else
1224 return 0;
1225 #endif
1226 }
1227
skb_wifi_acked_valid(const struct sk_buff * skb)1228 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1229 {
1230 #ifdef CONFIG_WIRELESS
1231 return skb->wifi_acked_valid;
1232 #else
1233 return 0;
1234 #endif
1235 }
1236
1237 /**
1238 * skb_unref - decrement the skb's reference count
1239 * @skb: buffer
1240 *
1241 * Returns: true if we can free the skb.
1242 */
skb_unref(struct sk_buff * skb)1243 static inline bool skb_unref(struct sk_buff *skb)
1244 {
1245 if (unlikely(!skb))
1246 return false;
1247 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1248 smp_rmb();
1249 else if (likely(!refcount_dec_and_test(&skb->users)))
1250 return false;
1251
1252 return true;
1253 }
1254
skb_data_unref(const struct sk_buff * skb,struct skb_shared_info * shinfo)1255 static inline bool skb_data_unref(const struct sk_buff *skb,
1256 struct skb_shared_info *shinfo)
1257 {
1258 int bias;
1259
1260 if (!skb->cloned)
1261 return true;
1262
1263 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1264
1265 if (atomic_read(&shinfo->dataref) == bias)
1266 smp_rmb();
1267 else if (atomic_sub_return(bias, &shinfo->dataref))
1268 return false;
1269
1270 return true;
1271 }
1272
1273 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1274 enum skb_drop_reason reason);
1275
1276 static inline void
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1277 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1278 {
1279 sk_skb_reason_drop(NULL, skb, reason);
1280 }
1281
1282 /**
1283 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1284 * @skb: buffer to free
1285 */
kfree_skb(struct sk_buff * skb)1286 static inline void kfree_skb(struct sk_buff *skb)
1287 {
1288 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1289 }
1290
1291 void skb_release_head_state(struct sk_buff *skb);
1292 void kfree_skb_list_reason(struct sk_buff *segs,
1293 enum skb_drop_reason reason);
1294 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1295 void skb_tx_error(struct sk_buff *skb);
1296
kfree_skb_list(struct sk_buff * segs)1297 static inline void kfree_skb_list(struct sk_buff *segs)
1298 {
1299 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1300 }
1301
1302 #ifdef CONFIG_TRACEPOINTS
1303 void consume_skb(struct sk_buff *skb);
1304 #else
consume_skb(struct sk_buff * skb)1305 static inline void consume_skb(struct sk_buff *skb)
1306 {
1307 return kfree_skb(skb);
1308 }
1309 #endif
1310
1311 void __consume_stateless_skb(struct sk_buff *skb);
1312 void __kfree_skb(struct sk_buff *skb);
1313
1314 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1315 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1316 bool *fragstolen, int *delta_truesize);
1317
1318 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1319 int node);
1320 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1321 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1322 struct sk_buff *build_skb_around(struct sk_buff *skb,
1323 void *data, unsigned int frag_size);
1324 void skb_attempt_defer_free(struct sk_buff *skb);
1325
1326 u32 napi_skb_cache_get_bulk(void **skbs, u32 n);
1327 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1328 struct sk_buff *slab_build_skb(void *data);
1329
1330 /**
1331 * alloc_skb - allocate a network buffer
1332 * @size: size to allocate
1333 * @priority: allocation mask
1334 *
1335 * This function is a convenient wrapper around __alloc_skb().
1336 */
alloc_skb(unsigned int size,gfp_t priority)1337 static inline struct sk_buff *alloc_skb(unsigned int size,
1338 gfp_t priority)
1339 {
1340 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1341 }
1342
1343 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1344 unsigned long data_len,
1345 int max_page_order,
1346 int *errcode,
1347 gfp_t gfp_mask);
1348 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1349
1350 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1351 struct sk_buff_fclones {
1352 struct sk_buff skb1;
1353
1354 struct sk_buff skb2;
1355
1356 refcount_t fclone_ref;
1357 };
1358
1359 /**
1360 * skb_fclone_busy - check if fclone is busy
1361 * @sk: socket
1362 * @skb: buffer
1363 *
1364 * Returns: true if skb is a fast clone, and its clone is not freed.
1365 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1366 * so we also check that didn't happen.
1367 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1368 static inline bool skb_fclone_busy(const struct sock *sk,
1369 const struct sk_buff *skb)
1370 {
1371 const struct sk_buff_fclones *fclones;
1372
1373 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1374
1375 return skb->fclone == SKB_FCLONE_ORIG &&
1376 refcount_read(&fclones->fclone_ref) > 1 &&
1377 READ_ONCE(fclones->skb2.sk) == sk;
1378 }
1379
1380 /**
1381 * alloc_skb_fclone - allocate a network buffer from fclone cache
1382 * @size: size to allocate
1383 * @priority: allocation mask
1384 *
1385 * This function is a convenient wrapper around __alloc_skb().
1386 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1387 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1388 gfp_t priority)
1389 {
1390 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1391 }
1392
1393 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1394 void skb_headers_offset_update(struct sk_buff *skb, int off);
1395 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1396 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1397 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1398 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1399 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1400 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1401 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1402 gfp_t gfp_mask)
1403 {
1404 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1405 }
1406
1407 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1408 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1409 unsigned int headroom);
1410 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1411 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1412 int newtailroom, gfp_t priority);
1413 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1414 int offset, int len);
1415 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1416 int offset, int len);
1417 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1418 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1419
1420 /**
1421 * skb_pad - zero pad the tail of an skb
1422 * @skb: buffer to pad
1423 * @pad: space to pad
1424 *
1425 * Ensure that a buffer is followed by a padding area that is zero
1426 * filled. Used by network drivers which may DMA or transfer data
1427 * beyond the buffer end onto the wire.
1428 *
1429 * May return error in out of memory cases. The skb is freed on error.
1430 */
skb_pad(struct sk_buff * skb,int pad)1431 static inline int skb_pad(struct sk_buff *skb, int pad)
1432 {
1433 return __skb_pad(skb, pad, true);
1434 }
1435 #define dev_kfree_skb(a) consume_skb(a)
1436
1437 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1438 int offset, size_t size, size_t max_frags);
1439
1440 struct skb_seq_state {
1441 __u32 lower_offset;
1442 __u32 upper_offset;
1443 __u32 frag_idx;
1444 __u32 stepped_offset;
1445 struct sk_buff *root_skb;
1446 struct sk_buff *cur_skb;
1447 __u8 *frag_data;
1448 __u32 frag_off;
1449 };
1450
1451 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1452 unsigned int to, struct skb_seq_state *st);
1453 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1454 struct skb_seq_state *st);
1455 void skb_abort_seq_read(struct skb_seq_state *st);
1456 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1457
1458 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1459 unsigned int to, struct ts_config *config);
1460
1461 /*
1462 * Packet hash types specify the type of hash in skb_set_hash.
1463 *
1464 * Hash types refer to the protocol layer addresses which are used to
1465 * construct a packet's hash. The hashes are used to differentiate or identify
1466 * flows of the protocol layer for the hash type. Hash types are either
1467 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1468 *
1469 * Properties of hashes:
1470 *
1471 * 1) Two packets in different flows have different hash values
1472 * 2) Two packets in the same flow should have the same hash value
1473 *
1474 * A hash at a higher layer is considered to be more specific. A driver should
1475 * set the most specific hash possible.
1476 *
1477 * A driver cannot indicate a more specific hash than the layer at which a hash
1478 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1479 *
1480 * A driver may indicate a hash level which is less specific than the
1481 * actual layer the hash was computed on. For instance, a hash computed
1482 * at L4 may be considered an L3 hash. This should only be done if the
1483 * driver can't unambiguously determine that the HW computed the hash at
1484 * the higher layer. Note that the "should" in the second property above
1485 * permits this.
1486 */
1487 enum pkt_hash_types {
1488 PKT_HASH_TYPE_NONE, /* Undefined type */
1489 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1490 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1491 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1492 };
1493
skb_clear_hash(struct sk_buff * skb)1494 static inline void skb_clear_hash(struct sk_buff *skb)
1495 {
1496 skb->hash = 0;
1497 skb->sw_hash = 0;
1498 skb->l4_hash = 0;
1499 }
1500
skb_clear_hash_if_not_l4(struct sk_buff * skb)1501 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1502 {
1503 if (!skb->l4_hash)
1504 skb_clear_hash(skb);
1505 }
1506
1507 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1508 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1509 {
1510 skb->l4_hash = is_l4;
1511 skb->sw_hash = is_sw;
1512 skb->hash = hash;
1513 }
1514
1515 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1516 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1517 {
1518 /* Used by drivers to set hash from HW */
1519 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1520 }
1521
1522 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1523 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1524 {
1525 __skb_set_hash(skb, hash, true, is_l4);
1526 }
1527
1528 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1529
__skb_get_hash_symmetric(const struct sk_buff * skb)1530 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1531 {
1532 return __skb_get_hash_symmetric_net(NULL, skb);
1533 }
1534
1535 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1536 u32 skb_get_poff(const struct sk_buff *skb);
1537 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1538 const struct flow_keys_basic *keys, int hlen);
1539 __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1540 const void *data, int hlen_proto);
1541
1542 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1543 const struct flow_dissector_key *key,
1544 unsigned int key_count);
1545
1546 struct bpf_flow_dissector;
1547 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1548 __be16 proto, int nhoff, int hlen, unsigned int flags);
1549
1550 bool __skb_flow_dissect(const struct net *net,
1551 const struct sk_buff *skb,
1552 struct flow_dissector *flow_dissector,
1553 void *target_container, const void *data,
1554 __be16 proto, int nhoff, int hlen, unsigned int flags);
1555
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1556 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1557 struct flow_dissector *flow_dissector,
1558 void *target_container, unsigned int flags)
1559 {
1560 return __skb_flow_dissect(NULL, skb, flow_dissector,
1561 target_container, NULL, 0, 0, 0, flags);
1562 }
1563
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1564 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1565 struct flow_keys *flow,
1566 unsigned int flags)
1567 {
1568 memset(flow, 0, sizeof(*flow));
1569 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1570 flow, NULL, 0, 0, 0, flags);
1571 }
1572
1573 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1574 skb_flow_dissect_flow_keys_basic(const struct net *net,
1575 const struct sk_buff *skb,
1576 struct flow_keys_basic *flow,
1577 const void *data, __be16 proto,
1578 int nhoff, int hlen, unsigned int flags)
1579 {
1580 memset(flow, 0, sizeof(*flow));
1581 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1582 data, proto, nhoff, hlen, flags);
1583 }
1584
1585 void skb_flow_dissect_meta(const struct sk_buff *skb,
1586 struct flow_dissector *flow_dissector,
1587 void *target_container);
1588
1589 /* Gets a skb connection tracking info, ctinfo map should be a
1590 * map of mapsize to translate enum ip_conntrack_info states
1591 * to user states.
1592 */
1593 void
1594 skb_flow_dissect_ct(const struct sk_buff *skb,
1595 struct flow_dissector *flow_dissector,
1596 void *target_container,
1597 u16 *ctinfo_map, size_t mapsize,
1598 bool post_ct, u16 zone);
1599 void
1600 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1601 struct flow_dissector *flow_dissector,
1602 void *target_container);
1603
1604 void skb_flow_dissect_hash(const struct sk_buff *skb,
1605 struct flow_dissector *flow_dissector,
1606 void *target_container);
1607
skb_get_hash_net(const struct net * net,struct sk_buff * skb)1608 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1609 {
1610 if (!skb->l4_hash && !skb->sw_hash)
1611 __skb_get_hash_net(net, skb);
1612
1613 return skb->hash;
1614 }
1615
skb_get_hash(struct sk_buff * skb)1616 static inline __u32 skb_get_hash(struct sk_buff *skb)
1617 {
1618 if (!skb->l4_hash && !skb->sw_hash)
1619 __skb_get_hash_net(NULL, skb);
1620
1621 return skb->hash;
1622 }
1623
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1624 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1625 {
1626 if (!skb->l4_hash && !skb->sw_hash) {
1627 struct flow_keys keys;
1628 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1629
1630 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1631 }
1632
1633 return skb->hash;
1634 }
1635
1636 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1637 const siphash_key_t *perturb);
1638
skb_get_hash_raw(const struct sk_buff * skb)1639 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1640 {
1641 return skb->hash;
1642 }
1643
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1644 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1645 {
1646 to->hash = from->hash;
1647 to->sw_hash = from->sw_hash;
1648 to->l4_hash = from->l4_hash;
1649 };
1650
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1651 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1652 const struct sk_buff *skb2)
1653 {
1654 #ifdef CONFIG_SKB_DECRYPTED
1655 return skb2->decrypted - skb1->decrypted;
1656 #else
1657 return 0;
1658 #endif
1659 }
1660
skb_is_decrypted(const struct sk_buff * skb)1661 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1662 {
1663 #ifdef CONFIG_SKB_DECRYPTED
1664 return skb->decrypted;
1665 #else
1666 return false;
1667 #endif
1668 }
1669
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1670 static inline void skb_copy_decrypted(struct sk_buff *to,
1671 const struct sk_buff *from)
1672 {
1673 #ifdef CONFIG_SKB_DECRYPTED
1674 to->decrypted = from->decrypted;
1675 #endif
1676 }
1677
1678 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1680 {
1681 return skb->head + skb->end;
1682 }
1683
skb_end_offset(const struct sk_buff * skb)1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1685 {
1686 return skb->end;
1687 }
1688
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1690 {
1691 skb->end = offset;
1692 }
1693 #else
skb_end_pointer(const struct sk_buff * skb)1694 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1695 {
1696 return skb->end;
1697 }
1698
skb_end_offset(const struct sk_buff * skb)1699 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1700 {
1701 return skb->end - skb->head;
1702 }
1703
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1704 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1705 {
1706 skb->end = skb->head + offset;
1707 }
1708 #endif
1709
1710 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1711
1712 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1713 struct ubuf_info *uarg);
1714
1715 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1716
1717 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1718 struct sk_buff *skb, struct iov_iter *from,
1719 size_t length);
1720
1721 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1722 struct iov_iter *from, size_t length);
1723
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1724 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1725 struct msghdr *msg, int len)
1726 {
1727 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1728 }
1729
1730 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1731 struct msghdr *msg, int len,
1732 struct ubuf_info *uarg);
1733
1734 /* Internal */
1735 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1736
skb_hwtstamps(struct sk_buff * skb)1737 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1738 {
1739 return &skb_shinfo(skb)->hwtstamps;
1740 }
1741
skb_zcopy(struct sk_buff * skb)1742 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1743 {
1744 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1745
1746 return is_zcopy ? skb_uarg(skb) : NULL;
1747 }
1748
skb_zcopy_pure(const struct sk_buff * skb)1749 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1750 {
1751 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1752 }
1753
skb_zcopy_managed(const struct sk_buff * skb)1754 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1755 {
1756 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1757 }
1758
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1759 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1760 const struct sk_buff *skb2)
1761 {
1762 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1763 }
1764
net_zcopy_get(struct ubuf_info * uarg)1765 static inline void net_zcopy_get(struct ubuf_info *uarg)
1766 {
1767 refcount_inc(&uarg->refcnt);
1768 }
1769
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1770 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1771 {
1772 skb_shinfo(skb)->destructor_arg = uarg;
1773 skb_shinfo(skb)->flags |= uarg->flags;
1774 }
1775
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1776 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1777 bool *have_ref)
1778 {
1779 if (skb && uarg && !skb_zcopy(skb)) {
1780 if (unlikely(have_ref && *have_ref))
1781 *have_ref = false;
1782 else
1783 net_zcopy_get(uarg);
1784 skb_zcopy_init(skb, uarg);
1785 }
1786 }
1787
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1788 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1789 {
1790 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1791 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1792 }
1793
skb_zcopy_is_nouarg(struct sk_buff * skb)1794 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1795 {
1796 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1797 }
1798
skb_zcopy_get_nouarg(struct sk_buff * skb)1799 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1800 {
1801 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1802 }
1803
net_zcopy_put(struct ubuf_info * uarg)1804 static inline void net_zcopy_put(struct ubuf_info *uarg)
1805 {
1806 if (uarg)
1807 uarg->ops->complete(NULL, uarg, true);
1808 }
1809
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1810 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1811 {
1812 if (uarg) {
1813 if (uarg->ops == &msg_zerocopy_ubuf_ops)
1814 msg_zerocopy_put_abort(uarg, have_uref);
1815 else if (have_uref)
1816 net_zcopy_put(uarg);
1817 }
1818 }
1819
1820 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1821 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1822 {
1823 struct ubuf_info *uarg = skb_zcopy(skb);
1824
1825 if (uarg) {
1826 if (!skb_zcopy_is_nouarg(skb))
1827 uarg->ops->complete(skb, uarg, zerocopy_success);
1828
1829 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1830 }
1831 }
1832
1833 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1834
skb_zcopy_downgrade_managed(struct sk_buff * skb)1835 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1836 {
1837 if (unlikely(skb_zcopy_managed(skb)))
1838 __skb_zcopy_downgrade_managed(skb);
1839 }
1840
1841 /* Return true if frags in this skb are readable by the host. */
skb_frags_readable(const struct sk_buff * skb)1842 static inline bool skb_frags_readable(const struct sk_buff *skb)
1843 {
1844 return !skb->unreadable;
1845 }
1846
skb_mark_not_on_list(struct sk_buff * skb)1847 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1848 {
1849 skb->next = NULL;
1850 }
1851
skb_poison_list(struct sk_buff * skb)1852 static inline void skb_poison_list(struct sk_buff *skb)
1853 {
1854 #ifdef CONFIG_DEBUG_NET
1855 skb->next = SKB_LIST_POISON_NEXT;
1856 #endif
1857 }
1858
1859 /* Iterate through singly-linked GSO fragments of an skb. */
1860 #define skb_list_walk_safe(first, skb, next_skb) \
1861 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1862 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1863
skb_list_del_init(struct sk_buff * skb)1864 static inline void skb_list_del_init(struct sk_buff *skb)
1865 {
1866 __list_del_entry(&skb->list);
1867 skb_mark_not_on_list(skb);
1868 }
1869
1870 /**
1871 * skb_queue_empty - check if a queue is empty
1872 * @list: queue head
1873 *
1874 * Returns true if the queue is empty, false otherwise.
1875 */
skb_queue_empty(const struct sk_buff_head * list)1876 static inline int skb_queue_empty(const struct sk_buff_head *list)
1877 {
1878 return list->next == (const struct sk_buff *) list;
1879 }
1880
1881 /**
1882 * skb_queue_empty_lockless - check if a queue is empty
1883 * @list: queue head
1884 *
1885 * Returns true if the queue is empty, false otherwise.
1886 * This variant can be used in lockless contexts.
1887 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1888 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1889 {
1890 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1891 }
1892
1893
1894 /**
1895 * skb_queue_is_last - check if skb is the last entry in the queue
1896 * @list: queue head
1897 * @skb: buffer
1898 *
1899 * Returns true if @skb is the last buffer on the list.
1900 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1901 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1902 const struct sk_buff *skb)
1903 {
1904 return skb->next == (const struct sk_buff *) list;
1905 }
1906
1907 /**
1908 * skb_queue_is_first - check if skb is the first entry in the queue
1909 * @list: queue head
1910 * @skb: buffer
1911 *
1912 * Returns true if @skb is the first buffer on the list.
1913 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1914 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1915 const struct sk_buff *skb)
1916 {
1917 return skb->prev == (const struct sk_buff *) list;
1918 }
1919
1920 /**
1921 * skb_queue_next - return the next packet in the queue
1922 * @list: queue head
1923 * @skb: current buffer
1924 *
1925 * Return the next packet in @list after @skb. It is only valid to
1926 * call this if skb_queue_is_last() evaluates to false.
1927 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1928 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1929 const struct sk_buff *skb)
1930 {
1931 /* This BUG_ON may seem severe, but if we just return then we
1932 * are going to dereference garbage.
1933 */
1934 BUG_ON(skb_queue_is_last(list, skb));
1935 return skb->next;
1936 }
1937
1938 /**
1939 * skb_queue_prev - return the prev packet in the queue
1940 * @list: queue head
1941 * @skb: current buffer
1942 *
1943 * Return the prev packet in @list before @skb. It is only valid to
1944 * call this if skb_queue_is_first() evaluates to false.
1945 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1946 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1947 const struct sk_buff *skb)
1948 {
1949 /* This BUG_ON may seem severe, but if we just return then we
1950 * are going to dereference garbage.
1951 */
1952 BUG_ON(skb_queue_is_first(list, skb));
1953 return skb->prev;
1954 }
1955
1956 /**
1957 * skb_get - reference buffer
1958 * @skb: buffer to reference
1959 *
1960 * Makes another reference to a socket buffer and returns a pointer
1961 * to the buffer.
1962 */
skb_get(struct sk_buff * skb)1963 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1964 {
1965 refcount_inc(&skb->users);
1966 return skb;
1967 }
1968
1969 /*
1970 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1971 */
1972
1973 /**
1974 * skb_cloned - is the buffer a clone
1975 * @skb: buffer to check
1976 *
1977 * Returns true if the buffer was generated with skb_clone() and is
1978 * one of multiple shared copies of the buffer. Cloned buffers are
1979 * shared data so must not be written to under normal circumstances.
1980 */
skb_cloned(const struct sk_buff * skb)1981 static inline int skb_cloned(const struct sk_buff *skb)
1982 {
1983 return skb->cloned &&
1984 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1985 }
1986
skb_unclone(struct sk_buff * skb,gfp_t pri)1987 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1988 {
1989 might_sleep_if(gfpflags_allow_blocking(pri));
1990
1991 if (skb_cloned(skb))
1992 return pskb_expand_head(skb, 0, 0, pri);
1993
1994 return 0;
1995 }
1996
1997 /* This variant of skb_unclone() makes sure skb->truesize
1998 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1999 *
2000 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2001 * when various debugging features are in place.
2002 */
2003 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2004 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2005 {
2006 might_sleep_if(gfpflags_allow_blocking(pri));
2007
2008 if (skb_cloned(skb))
2009 return __skb_unclone_keeptruesize(skb, pri);
2010 return 0;
2011 }
2012
2013 /**
2014 * skb_header_cloned - is the header a clone
2015 * @skb: buffer to check
2016 *
2017 * Returns true if modifying the header part of the buffer requires
2018 * the data to be copied.
2019 */
skb_header_cloned(const struct sk_buff * skb)2020 static inline int skb_header_cloned(const struct sk_buff *skb)
2021 {
2022 int dataref;
2023
2024 if (!skb->cloned)
2025 return 0;
2026
2027 dataref = atomic_read(&skb_shinfo(skb)->dataref);
2028 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2029 return dataref != 1;
2030 }
2031
skb_header_unclone(struct sk_buff * skb,gfp_t pri)2032 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2033 {
2034 might_sleep_if(gfpflags_allow_blocking(pri));
2035
2036 if (skb_header_cloned(skb))
2037 return pskb_expand_head(skb, 0, 0, pri);
2038
2039 return 0;
2040 }
2041
2042 /**
2043 * __skb_header_release() - allow clones to use the headroom
2044 * @skb: buffer to operate on
2045 *
2046 * See "DOC: dataref and headerless skbs".
2047 */
__skb_header_release(struct sk_buff * skb)2048 static inline void __skb_header_release(struct sk_buff *skb)
2049 {
2050 skb->nohdr = 1;
2051 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2052 }
2053
2054
2055 /**
2056 * skb_shared - is the buffer shared
2057 * @skb: buffer to check
2058 *
2059 * Returns true if more than one person has a reference to this
2060 * buffer.
2061 */
skb_shared(const struct sk_buff * skb)2062 static inline int skb_shared(const struct sk_buff *skb)
2063 {
2064 return refcount_read(&skb->users) != 1;
2065 }
2066
2067 /**
2068 * skb_share_check - check if buffer is shared and if so clone it
2069 * @skb: buffer to check
2070 * @pri: priority for memory allocation
2071 *
2072 * If the buffer is shared the buffer is cloned and the old copy
2073 * drops a reference. A new clone with a single reference is returned.
2074 * If the buffer is not shared the original buffer is returned. When
2075 * being called from interrupt status or with spinlocks held pri must
2076 * be GFP_ATOMIC.
2077 *
2078 * NULL is returned on a memory allocation failure.
2079 */
skb_share_check(struct sk_buff * skb,gfp_t pri)2080 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2081 {
2082 might_sleep_if(gfpflags_allow_blocking(pri));
2083 if (skb_shared(skb)) {
2084 struct sk_buff *nskb = skb_clone(skb, pri);
2085
2086 if (likely(nskb))
2087 consume_skb(skb);
2088 else
2089 kfree_skb(skb);
2090 skb = nskb;
2091 }
2092 return skb;
2093 }
2094
2095 /*
2096 * Copy shared buffers into a new sk_buff. We effectively do COW on
2097 * packets to handle cases where we have a local reader and forward
2098 * and a couple of other messy ones. The normal one is tcpdumping
2099 * a packet that's being forwarded.
2100 */
2101
2102 /**
2103 * skb_unshare - make a copy of a shared buffer
2104 * @skb: buffer to check
2105 * @pri: priority for memory allocation
2106 *
2107 * If the socket buffer is a clone then this function creates a new
2108 * copy of the data, drops a reference count on the old copy and returns
2109 * the new copy with the reference count at 1. If the buffer is not a clone
2110 * the original buffer is returned. When called with a spinlock held or
2111 * from interrupt state @pri must be %GFP_ATOMIC
2112 *
2113 * %NULL is returned on a memory allocation failure.
2114 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2115 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2116 gfp_t pri)
2117 {
2118 might_sleep_if(gfpflags_allow_blocking(pri));
2119 if (skb_cloned(skb)) {
2120 struct sk_buff *nskb = skb_copy(skb, pri);
2121
2122 /* Free our shared copy */
2123 if (likely(nskb))
2124 consume_skb(skb);
2125 else
2126 kfree_skb(skb);
2127 skb = nskb;
2128 }
2129 return skb;
2130 }
2131
2132 /**
2133 * skb_peek - peek at the head of an &sk_buff_head
2134 * @list_: list to peek at
2135 *
2136 * Peek an &sk_buff. Unlike most other operations you _MUST_
2137 * be careful with this one. A peek leaves the buffer on the
2138 * list and someone else may run off with it. You must hold
2139 * the appropriate locks or have a private queue to do this.
2140 *
2141 * Returns %NULL for an empty list or a pointer to the head element.
2142 * The reference count is not incremented and the reference is therefore
2143 * volatile. Use with caution.
2144 */
skb_peek(const struct sk_buff_head * list_)2145 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2146 {
2147 struct sk_buff *skb = list_->next;
2148
2149 if (skb == (struct sk_buff *)list_)
2150 skb = NULL;
2151 return skb;
2152 }
2153
2154 /**
2155 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2156 * @list_: list to peek at
2157 *
2158 * Like skb_peek(), but the caller knows that the list is not empty.
2159 */
__skb_peek(const struct sk_buff_head * list_)2160 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2161 {
2162 return list_->next;
2163 }
2164
2165 /**
2166 * skb_peek_next - peek skb following the given one from a queue
2167 * @skb: skb to start from
2168 * @list_: list to peek at
2169 *
2170 * Returns %NULL when the end of the list is met or a pointer to the
2171 * next element. The reference count is not incremented and the
2172 * reference is therefore volatile. Use with caution.
2173 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2174 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2175 const struct sk_buff_head *list_)
2176 {
2177 struct sk_buff *next = skb->next;
2178
2179 if (next == (struct sk_buff *)list_)
2180 next = NULL;
2181 return next;
2182 }
2183
2184 /**
2185 * skb_peek_tail - peek at the tail of an &sk_buff_head
2186 * @list_: list to peek at
2187 *
2188 * Peek an &sk_buff. Unlike most other operations you _MUST_
2189 * be careful with this one. A peek leaves the buffer on the
2190 * list and someone else may run off with it. You must hold
2191 * the appropriate locks or have a private queue to do this.
2192 *
2193 * Returns %NULL for an empty list or a pointer to the tail element.
2194 * The reference count is not incremented and the reference is therefore
2195 * volatile. Use with caution.
2196 */
skb_peek_tail(const struct sk_buff_head * list_)2197 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2198 {
2199 struct sk_buff *skb = READ_ONCE(list_->prev);
2200
2201 if (skb == (struct sk_buff *)list_)
2202 skb = NULL;
2203 return skb;
2204
2205 }
2206
2207 /**
2208 * skb_queue_len - get queue length
2209 * @list_: list to measure
2210 *
2211 * Return the length of an &sk_buff queue.
2212 */
skb_queue_len(const struct sk_buff_head * list_)2213 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2214 {
2215 return list_->qlen;
2216 }
2217
2218 /**
2219 * skb_queue_len_lockless - get queue length
2220 * @list_: list to measure
2221 *
2222 * Return the length of an &sk_buff queue.
2223 * This variant can be used in lockless contexts.
2224 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2225 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2226 {
2227 return READ_ONCE(list_->qlen);
2228 }
2229
2230 /**
2231 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2232 * @list: queue to initialize
2233 *
2234 * This initializes only the list and queue length aspects of
2235 * an sk_buff_head object. This allows to initialize the list
2236 * aspects of an sk_buff_head without reinitializing things like
2237 * the spinlock. It can also be used for on-stack sk_buff_head
2238 * objects where the spinlock is known to not be used.
2239 */
__skb_queue_head_init(struct sk_buff_head * list)2240 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2241 {
2242 list->prev = list->next = (struct sk_buff *)list;
2243 list->qlen = 0;
2244 }
2245
2246 /*
2247 * This function creates a split out lock class for each invocation;
2248 * this is needed for now since a whole lot of users of the skb-queue
2249 * infrastructure in drivers have different locking usage (in hardirq)
2250 * than the networking core (in softirq only). In the long run either the
2251 * network layer or drivers should need annotation to consolidate the
2252 * main types of usage into 3 classes.
2253 */
skb_queue_head_init(struct sk_buff_head * list)2254 static inline void skb_queue_head_init(struct sk_buff_head *list)
2255 {
2256 spin_lock_init(&list->lock);
2257 __skb_queue_head_init(list);
2258 }
2259
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2260 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2261 struct lock_class_key *class)
2262 {
2263 skb_queue_head_init(list);
2264 lockdep_set_class(&list->lock, class);
2265 }
2266
2267 /*
2268 * Insert an sk_buff on a list.
2269 *
2270 * The "__skb_xxxx()" functions are the non-atomic ones that
2271 * can only be called with interrupts disabled.
2272 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2273 static inline void __skb_insert(struct sk_buff *newsk,
2274 struct sk_buff *prev, struct sk_buff *next,
2275 struct sk_buff_head *list)
2276 {
2277 /* See skb_queue_empty_lockless() and skb_peek_tail()
2278 * for the opposite READ_ONCE()
2279 */
2280 WRITE_ONCE(newsk->next, next);
2281 WRITE_ONCE(newsk->prev, prev);
2282 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2283 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2284 WRITE_ONCE(list->qlen, list->qlen + 1);
2285 }
2286
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2287 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2288 struct sk_buff *prev,
2289 struct sk_buff *next)
2290 {
2291 struct sk_buff *first = list->next;
2292 struct sk_buff *last = list->prev;
2293
2294 WRITE_ONCE(first->prev, prev);
2295 WRITE_ONCE(prev->next, first);
2296
2297 WRITE_ONCE(last->next, next);
2298 WRITE_ONCE(next->prev, last);
2299 }
2300
2301 /**
2302 * skb_queue_splice - join two skb lists, this is designed for stacks
2303 * @list: the new list to add
2304 * @head: the place to add it in the first list
2305 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2306 static inline void skb_queue_splice(const struct sk_buff_head *list,
2307 struct sk_buff_head *head)
2308 {
2309 if (!skb_queue_empty(list)) {
2310 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2311 head->qlen += list->qlen;
2312 }
2313 }
2314
2315 /**
2316 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2317 * @list: the new list to add
2318 * @head: the place to add it in the first list
2319 *
2320 * The list at @list is reinitialised
2321 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2322 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2323 struct sk_buff_head *head)
2324 {
2325 if (!skb_queue_empty(list)) {
2326 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2327 head->qlen += list->qlen;
2328 __skb_queue_head_init(list);
2329 }
2330 }
2331
2332 /**
2333 * skb_queue_splice_tail - join two skb lists, each list being a queue
2334 * @list: the new list to add
2335 * @head: the place to add it in the first list
2336 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2337 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2338 struct sk_buff_head *head)
2339 {
2340 if (!skb_queue_empty(list)) {
2341 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2342 head->qlen += list->qlen;
2343 }
2344 }
2345
2346 /**
2347 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2348 * @list: the new list to add
2349 * @head: the place to add it in the first list
2350 *
2351 * Each of the lists is a queue.
2352 * The list at @list is reinitialised
2353 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2354 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2355 struct sk_buff_head *head)
2356 {
2357 if (!skb_queue_empty(list)) {
2358 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2359 head->qlen += list->qlen;
2360 __skb_queue_head_init(list);
2361 }
2362 }
2363
2364 /**
2365 * __skb_queue_after - queue a buffer at the list head
2366 * @list: list to use
2367 * @prev: place after this buffer
2368 * @newsk: buffer to queue
2369 *
2370 * Queue a buffer int the middle of a list. This function takes no locks
2371 * and you must therefore hold required locks before calling it.
2372 *
2373 * A buffer cannot be placed on two lists at the same time.
2374 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2375 static inline void __skb_queue_after(struct sk_buff_head *list,
2376 struct sk_buff *prev,
2377 struct sk_buff *newsk)
2378 {
2379 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2380 }
2381
2382 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2383 struct sk_buff_head *list);
2384
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2385 static inline void __skb_queue_before(struct sk_buff_head *list,
2386 struct sk_buff *next,
2387 struct sk_buff *newsk)
2388 {
2389 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2390 }
2391
2392 /**
2393 * __skb_queue_head - queue a buffer at the list head
2394 * @list: list to use
2395 * @newsk: buffer to queue
2396 *
2397 * Queue a buffer at the start of a list. This function takes no locks
2398 * and you must therefore hold required locks before calling it.
2399 *
2400 * A buffer cannot be placed on two lists at the same time.
2401 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2402 static inline void __skb_queue_head(struct sk_buff_head *list,
2403 struct sk_buff *newsk)
2404 {
2405 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2406 }
2407 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2408
2409 /**
2410 * __skb_queue_tail - queue a buffer at the list tail
2411 * @list: list to use
2412 * @newsk: buffer to queue
2413 *
2414 * Queue a buffer at the end of a list. This function takes no locks
2415 * and you must therefore hold required locks before calling it.
2416 *
2417 * A buffer cannot be placed on two lists at the same time.
2418 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2419 static inline void __skb_queue_tail(struct sk_buff_head *list,
2420 struct sk_buff *newsk)
2421 {
2422 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2423 }
2424 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2425
2426 /*
2427 * remove sk_buff from list. _Must_ be called atomically, and with
2428 * the list known..
2429 */
2430 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2431 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2432 {
2433 struct sk_buff *next, *prev;
2434
2435 WRITE_ONCE(list->qlen, list->qlen - 1);
2436 next = skb->next;
2437 prev = skb->prev;
2438 skb->next = skb->prev = NULL;
2439 WRITE_ONCE(next->prev, prev);
2440 WRITE_ONCE(prev->next, next);
2441 }
2442
2443 /**
2444 * __skb_dequeue - remove from the head of the queue
2445 * @list: list to dequeue from
2446 *
2447 * Remove the head of the list. This function does not take any locks
2448 * so must be used with appropriate locks held only. The head item is
2449 * returned or %NULL if the list is empty.
2450 */
__skb_dequeue(struct sk_buff_head * list)2451 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2452 {
2453 struct sk_buff *skb = skb_peek(list);
2454 if (skb)
2455 __skb_unlink(skb, list);
2456 return skb;
2457 }
2458 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2459
2460 /**
2461 * __skb_dequeue_tail - remove from the tail of the queue
2462 * @list: list to dequeue from
2463 *
2464 * Remove the tail of the list. This function does not take any locks
2465 * so must be used with appropriate locks held only. The tail item is
2466 * returned or %NULL if the list is empty.
2467 */
__skb_dequeue_tail(struct sk_buff_head * list)2468 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2469 {
2470 struct sk_buff *skb = skb_peek_tail(list);
2471 if (skb)
2472 __skb_unlink(skb, list);
2473 return skb;
2474 }
2475 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2476
2477
skb_is_nonlinear(const struct sk_buff * skb)2478 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2479 {
2480 return skb->data_len;
2481 }
2482
skb_headlen(const struct sk_buff * skb)2483 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2484 {
2485 return skb->len - skb->data_len;
2486 }
2487
__skb_pagelen(const struct sk_buff * skb)2488 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2489 {
2490 unsigned int i, len = 0;
2491
2492 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2493 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2494 return len;
2495 }
2496
skb_pagelen(const struct sk_buff * skb)2497 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2498 {
2499 return skb_headlen(skb) + __skb_pagelen(skb);
2500 }
2501
skb_frag_fill_netmem_desc(skb_frag_t * frag,netmem_ref netmem,int off,int size)2502 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2503 netmem_ref netmem, int off,
2504 int size)
2505 {
2506 frag->netmem = netmem;
2507 frag->offset = off;
2508 skb_frag_size_set(frag, size);
2509 }
2510
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2511 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2512 struct page *page,
2513 int off, int size)
2514 {
2515 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2516 }
2517
__skb_fill_netmem_desc_noacc(struct skb_shared_info * shinfo,int i,netmem_ref netmem,int off,int size)2518 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2519 int i, netmem_ref netmem,
2520 int off, int size)
2521 {
2522 skb_frag_t *frag = &shinfo->frags[i];
2523
2524 skb_frag_fill_netmem_desc(frag, netmem, off, size);
2525 }
2526
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2527 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2528 int i, struct page *page,
2529 int off, int size)
2530 {
2531 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2532 size);
2533 }
2534
2535 /**
2536 * skb_len_add - adds a number to len fields of skb
2537 * @skb: buffer to add len to
2538 * @delta: number of bytes to add
2539 */
skb_len_add(struct sk_buff * skb,int delta)2540 static inline void skb_len_add(struct sk_buff *skb, int delta)
2541 {
2542 skb->len += delta;
2543 skb->data_len += delta;
2544 skb->truesize += delta;
2545 }
2546
2547 /**
2548 * __skb_fill_netmem_desc - initialise a fragment in an skb
2549 * @skb: buffer containing fragment to be initialised
2550 * @i: fragment index to initialise
2551 * @netmem: the netmem to use for this fragment
2552 * @off: the offset to the data with @page
2553 * @size: the length of the data
2554 *
2555 * Initialises the @i'th fragment of @skb to point to &size bytes at
2556 * offset @off within @page.
2557 *
2558 * Does not take any additional reference on the fragment.
2559 */
__skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2560 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2561 netmem_ref netmem, int off, int size)
2562 {
2563 struct page *page;
2564
2565 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2566
2567 if (netmem_is_net_iov(netmem)) {
2568 skb->unreadable = true;
2569 return;
2570 }
2571
2572 page = netmem_to_page(netmem);
2573
2574 /* Propagate page pfmemalloc to the skb if we can. The problem is
2575 * that not all callers have unique ownership of the page but rely
2576 * on page_is_pfmemalloc doing the right thing(tm).
2577 */
2578 page = compound_head(page);
2579 if (page_is_pfmemalloc(page))
2580 skb->pfmemalloc = true;
2581 }
2582
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2583 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2584 struct page *page, int off, int size)
2585 {
2586 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2587 }
2588
skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2589 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2590 netmem_ref netmem, int off, int size)
2591 {
2592 __skb_fill_netmem_desc(skb, i, netmem, off, size);
2593 skb_shinfo(skb)->nr_frags = i + 1;
2594 }
2595
2596 /**
2597 * skb_fill_page_desc - initialise a paged fragment in an skb
2598 * @skb: buffer containing fragment to be initialised
2599 * @i: paged fragment index to initialise
2600 * @page: the page to use for this fragment
2601 * @off: the offset to the data with @page
2602 * @size: the length of the data
2603 *
2604 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2605 * @skb to point to @size bytes at offset @off within @page. In
2606 * addition updates @skb such that @i is the last fragment.
2607 *
2608 * Does not take any additional reference on the fragment.
2609 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2610 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2611 struct page *page, int off, int size)
2612 {
2613 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2614 }
2615
2616 /**
2617 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2618 * @skb: buffer containing fragment to be initialised
2619 * @i: paged fragment index to initialise
2620 * @page: the page to use for this fragment
2621 * @off: the offset to the data with @page
2622 * @size: the length of the data
2623 *
2624 * Variant of skb_fill_page_desc() which does not deal with
2625 * pfmemalloc, if page is not owned by us.
2626 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2627 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2628 struct page *page, int off,
2629 int size)
2630 {
2631 struct skb_shared_info *shinfo = skb_shinfo(skb);
2632
2633 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2634 shinfo->nr_frags = i + 1;
2635 }
2636
2637 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2638 int off, int size, unsigned int truesize);
2639
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)2640 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2641 struct page *page, int off, int size,
2642 unsigned int truesize)
2643 {
2644 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2645 truesize);
2646 }
2647
2648 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2649 unsigned int truesize);
2650
2651 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2652
2653 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2654 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2655 {
2656 return skb->head + skb->tail;
2657 }
2658
skb_reset_tail_pointer(struct sk_buff * skb)2659 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2660 {
2661 skb->tail = skb->data - skb->head;
2662 }
2663
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2664 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2665 {
2666 skb_reset_tail_pointer(skb);
2667 skb->tail += offset;
2668 }
2669
2670 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2671 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2672 {
2673 return skb->tail;
2674 }
2675
skb_reset_tail_pointer(struct sk_buff * skb)2676 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2677 {
2678 skb->tail = skb->data;
2679 }
2680
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2681 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2682 {
2683 skb->tail = skb->data + offset;
2684 }
2685
2686 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2687
skb_assert_len(struct sk_buff * skb)2688 static inline void skb_assert_len(struct sk_buff *skb)
2689 {
2690 #ifdef CONFIG_DEBUG_NET
2691 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2692 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2693 #endif /* CONFIG_DEBUG_NET */
2694 }
2695
2696 #if defined(CONFIG_FAIL_SKB_REALLOC)
2697 void skb_might_realloc(struct sk_buff *skb);
2698 #else
skb_might_realloc(struct sk_buff * skb)2699 static inline void skb_might_realloc(struct sk_buff *skb) {}
2700 #endif
2701
2702 /*
2703 * Add data to an sk_buff
2704 */
2705 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2706 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2707 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2708 {
2709 void *tmp = skb_tail_pointer(skb);
2710 SKB_LINEAR_ASSERT(skb);
2711 skb->tail += len;
2712 skb->len += len;
2713 return tmp;
2714 }
2715
__skb_put_zero(struct sk_buff * skb,unsigned int len)2716 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2717 {
2718 void *tmp = __skb_put(skb, len);
2719
2720 memset(tmp, 0, len);
2721 return tmp;
2722 }
2723
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2724 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2725 unsigned int len)
2726 {
2727 void *tmp = __skb_put(skb, len);
2728
2729 memcpy(tmp, data, len);
2730 return tmp;
2731 }
2732
__skb_put_u8(struct sk_buff * skb,u8 val)2733 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2734 {
2735 *(u8 *)__skb_put(skb, 1) = val;
2736 }
2737
skb_put_zero(struct sk_buff * skb,unsigned int len)2738 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2739 {
2740 void *tmp = skb_put(skb, len);
2741
2742 memset(tmp, 0, len);
2743
2744 return tmp;
2745 }
2746
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2747 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2748 unsigned int len)
2749 {
2750 void *tmp = skb_put(skb, len);
2751
2752 memcpy(tmp, data, len);
2753
2754 return tmp;
2755 }
2756
skb_put_u8(struct sk_buff * skb,u8 val)2757 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2758 {
2759 *(u8 *)skb_put(skb, 1) = val;
2760 }
2761
2762 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2763 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2764 {
2765 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2766
2767 skb->data -= len;
2768 skb->len += len;
2769 return skb->data;
2770 }
2771
2772 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2773 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2774 {
2775 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2776
2777 skb->len -= len;
2778 if (unlikely(skb->len < skb->data_len)) {
2779 #if defined(CONFIG_DEBUG_NET)
2780 skb->len += len;
2781 pr_err("__skb_pull(len=%u)\n", len);
2782 skb_dump(KERN_ERR, skb, false);
2783 #endif
2784 BUG();
2785 }
2786 return skb->data += len;
2787 }
2788
skb_pull_inline(struct sk_buff * skb,unsigned int len)2789 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2790 {
2791 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2792 }
2793
2794 void *skb_pull_data(struct sk_buff *skb, size_t len);
2795
2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2797
2798 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2799 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2800 {
2801 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2802 skb_might_realloc(skb);
2803
2804 if (likely(len <= skb_headlen(skb)))
2805 return SKB_NOT_DROPPED_YET;
2806
2807 if (unlikely(len > skb->len))
2808 return SKB_DROP_REASON_PKT_TOO_SMALL;
2809
2810 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2811 return SKB_DROP_REASON_NOMEM;
2812
2813 return SKB_NOT_DROPPED_YET;
2814 }
2815
pskb_may_pull(struct sk_buff * skb,unsigned int len)2816 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2817 {
2818 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2819 }
2820
pskb_pull(struct sk_buff * skb,unsigned int len)2821 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2822 {
2823 if (!pskb_may_pull(skb, len))
2824 return NULL;
2825
2826 skb->len -= len;
2827 return skb->data += len;
2828 }
2829
2830 void skb_condense(struct sk_buff *skb);
2831
2832 /**
2833 * skb_headroom - bytes at buffer head
2834 * @skb: buffer to check
2835 *
2836 * Return the number of bytes of free space at the head of an &sk_buff.
2837 */
skb_headroom(const struct sk_buff * skb)2838 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2839 {
2840 return skb->data - skb->head;
2841 }
2842
2843 /**
2844 * skb_tailroom - bytes at buffer end
2845 * @skb: buffer to check
2846 *
2847 * Return the number of bytes of free space at the tail of an sk_buff
2848 */
skb_tailroom(const struct sk_buff * skb)2849 static inline int skb_tailroom(const struct sk_buff *skb)
2850 {
2851 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2852 }
2853
2854 /**
2855 * skb_availroom - bytes at buffer end
2856 * @skb: buffer to check
2857 *
2858 * Return the number of bytes of free space at the tail of an sk_buff
2859 * allocated by sk_stream_alloc()
2860 */
skb_availroom(const struct sk_buff * skb)2861 static inline int skb_availroom(const struct sk_buff *skb)
2862 {
2863 if (skb_is_nonlinear(skb))
2864 return 0;
2865
2866 return skb->end - skb->tail - skb->reserved_tailroom;
2867 }
2868
2869 /**
2870 * skb_reserve - adjust headroom
2871 * @skb: buffer to alter
2872 * @len: bytes to move
2873 *
2874 * Increase the headroom of an empty &sk_buff by reducing the tail
2875 * room. This is only allowed for an empty buffer.
2876 */
skb_reserve(struct sk_buff * skb,int len)2877 static inline void skb_reserve(struct sk_buff *skb, int len)
2878 {
2879 skb->data += len;
2880 skb->tail += len;
2881 }
2882
2883 /**
2884 * skb_tailroom_reserve - adjust reserved_tailroom
2885 * @skb: buffer to alter
2886 * @mtu: maximum amount of headlen permitted
2887 * @needed_tailroom: minimum amount of reserved_tailroom
2888 *
2889 * Set reserved_tailroom so that headlen can be as large as possible but
2890 * not larger than mtu and tailroom cannot be smaller than
2891 * needed_tailroom.
2892 * The required headroom should already have been reserved before using
2893 * this function.
2894 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2895 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2896 unsigned int needed_tailroom)
2897 {
2898 SKB_LINEAR_ASSERT(skb);
2899 if (mtu < skb_tailroom(skb) - needed_tailroom)
2900 /* use at most mtu */
2901 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2902 else
2903 /* use up to all available space */
2904 skb->reserved_tailroom = needed_tailroom;
2905 }
2906
2907 #define ENCAP_TYPE_ETHER 0
2908 #define ENCAP_TYPE_IPPROTO 1
2909
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2910 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2911 __be16 protocol)
2912 {
2913 skb->inner_protocol = protocol;
2914 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2915 }
2916
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2917 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2918 __u8 ipproto)
2919 {
2920 skb->inner_ipproto = ipproto;
2921 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2922 }
2923
skb_reset_inner_headers(struct sk_buff * skb)2924 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2925 {
2926 skb->inner_mac_header = skb->mac_header;
2927 skb->inner_network_header = skb->network_header;
2928 skb->inner_transport_header = skb->transport_header;
2929 }
2930
skb_mac_header_was_set(const struct sk_buff * skb)2931 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2932 {
2933 return skb->mac_header != (typeof(skb->mac_header))~0U;
2934 }
2935
skb_reset_mac_len(struct sk_buff * skb)2936 static inline void skb_reset_mac_len(struct sk_buff *skb)
2937 {
2938 if (!skb_mac_header_was_set(skb)) {
2939 DEBUG_NET_WARN_ON_ONCE(1);
2940 skb->mac_len = 0;
2941 } else {
2942 skb->mac_len = skb->network_header - skb->mac_header;
2943 }
2944 }
2945
skb_inner_transport_header(const struct sk_buff * skb)2946 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2947 *skb)
2948 {
2949 return skb->head + skb->inner_transport_header;
2950 }
2951
skb_inner_transport_offset(const struct sk_buff * skb)2952 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2953 {
2954 return skb_inner_transport_header(skb) - skb->data;
2955 }
2956
skb_reset_inner_transport_header(struct sk_buff * skb)2957 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2958 {
2959 long offset = skb->data - skb->head;
2960
2961 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2962 skb->inner_transport_header = offset;
2963 }
2964
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2965 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2966 const int offset)
2967 {
2968 skb_reset_inner_transport_header(skb);
2969 skb->inner_transport_header += offset;
2970 }
2971
skb_inner_network_header(const struct sk_buff * skb)2972 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2973 {
2974 return skb->head + skb->inner_network_header;
2975 }
2976
skb_reset_inner_network_header(struct sk_buff * skb)2977 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2978 {
2979 long offset = skb->data - skb->head;
2980
2981 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2982 skb->inner_network_header = offset;
2983 }
2984
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2985 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2986 const int offset)
2987 {
2988 skb_reset_inner_network_header(skb);
2989 skb->inner_network_header += offset;
2990 }
2991
skb_inner_network_header_was_set(const struct sk_buff * skb)2992 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2993 {
2994 return skb->inner_network_header > 0;
2995 }
2996
skb_inner_mac_header(const struct sk_buff * skb)2997 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2998 {
2999 return skb->head + skb->inner_mac_header;
3000 }
3001
skb_reset_inner_mac_header(struct sk_buff * skb)3002 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
3003 {
3004 long offset = skb->data - skb->head;
3005
3006 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3007 skb->inner_mac_header = offset;
3008 }
3009
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)3010 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3011 const int offset)
3012 {
3013 skb_reset_inner_mac_header(skb);
3014 skb->inner_mac_header += offset;
3015 }
skb_transport_header_was_set(const struct sk_buff * skb)3016 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3017 {
3018 return skb->transport_header != (typeof(skb->transport_header))~0U;
3019 }
3020
skb_transport_header(const struct sk_buff * skb)3021 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3022 {
3023 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3024 return skb->head + skb->transport_header;
3025 }
3026
skb_reset_transport_header(struct sk_buff * skb)3027 static inline void skb_reset_transport_header(struct sk_buff *skb)
3028 {
3029 long offset = skb->data - skb->head;
3030
3031 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3032 skb->transport_header = offset;
3033 }
3034
skb_set_transport_header(struct sk_buff * skb,const int offset)3035 static inline void skb_set_transport_header(struct sk_buff *skb,
3036 const int offset)
3037 {
3038 skb_reset_transport_header(skb);
3039 skb->transport_header += offset;
3040 }
3041
skb_network_header(const struct sk_buff * skb)3042 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3043 {
3044 return skb->head + skb->network_header;
3045 }
3046
skb_reset_network_header(struct sk_buff * skb)3047 static inline void skb_reset_network_header(struct sk_buff *skb)
3048 {
3049 long offset = skb->data - skb->head;
3050
3051 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3052 skb->network_header = offset;
3053 }
3054
skb_set_network_header(struct sk_buff * skb,const int offset)3055 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3056 {
3057 skb_reset_network_header(skb);
3058 skb->network_header += offset;
3059 }
3060
skb_mac_header(const struct sk_buff * skb)3061 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3062 {
3063 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3064 return skb->head + skb->mac_header;
3065 }
3066
skb_mac_offset(const struct sk_buff * skb)3067 static inline int skb_mac_offset(const struct sk_buff *skb)
3068 {
3069 return skb_mac_header(skb) - skb->data;
3070 }
3071
skb_mac_header_len(const struct sk_buff * skb)3072 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3073 {
3074 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3075 return skb->network_header - skb->mac_header;
3076 }
3077
skb_unset_mac_header(struct sk_buff * skb)3078 static inline void skb_unset_mac_header(struct sk_buff *skb)
3079 {
3080 skb->mac_header = (typeof(skb->mac_header))~0U;
3081 }
3082
skb_reset_mac_header(struct sk_buff * skb)3083 static inline void skb_reset_mac_header(struct sk_buff *skb)
3084 {
3085 long offset = skb->data - skb->head;
3086
3087 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3088 skb->mac_header = offset;
3089 }
3090
skb_set_mac_header(struct sk_buff * skb,const int offset)3091 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3092 {
3093 skb_reset_mac_header(skb);
3094 skb->mac_header += offset;
3095 }
3096
skb_pop_mac_header(struct sk_buff * skb)3097 static inline void skb_pop_mac_header(struct sk_buff *skb)
3098 {
3099 skb->mac_header = skb->network_header;
3100 }
3101
skb_probe_transport_header(struct sk_buff * skb)3102 static inline void skb_probe_transport_header(struct sk_buff *skb)
3103 {
3104 struct flow_keys_basic keys;
3105
3106 if (skb_transport_header_was_set(skb))
3107 return;
3108
3109 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3110 NULL, 0, 0, 0, 0))
3111 skb_set_transport_header(skb, keys.control.thoff);
3112 }
3113
skb_mac_header_rebuild(struct sk_buff * skb)3114 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3115 {
3116 if (skb_mac_header_was_set(skb)) {
3117 const unsigned char *old_mac = skb_mac_header(skb);
3118
3119 skb_set_mac_header(skb, -skb->mac_len);
3120 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3121 }
3122 }
3123
3124 /* Move the full mac header up to current network_header.
3125 * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3126 * Must be provided the complete mac header length.
3127 */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)3128 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3129 {
3130 if (skb_mac_header_was_set(skb)) {
3131 const unsigned char *old_mac = skb_mac_header(skb);
3132
3133 skb_set_mac_header(skb, -full_mac_len);
3134 memmove(skb_mac_header(skb), old_mac, full_mac_len);
3135 __skb_push(skb, full_mac_len - skb->mac_len);
3136 }
3137 }
3138
skb_checksum_start_offset(const struct sk_buff * skb)3139 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3140 {
3141 return skb->csum_start - skb_headroom(skb);
3142 }
3143
skb_checksum_start(const struct sk_buff * skb)3144 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3145 {
3146 return skb->head + skb->csum_start;
3147 }
3148
skb_transport_offset(const struct sk_buff * skb)3149 static inline int skb_transport_offset(const struct sk_buff *skb)
3150 {
3151 return skb_transport_header(skb) - skb->data;
3152 }
3153
skb_network_header_len(const struct sk_buff * skb)3154 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3155 {
3156 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3157 return skb->transport_header - skb->network_header;
3158 }
3159
skb_inner_network_header_len(const struct sk_buff * skb)3160 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3161 {
3162 return skb->inner_transport_header - skb->inner_network_header;
3163 }
3164
skb_network_offset(const struct sk_buff * skb)3165 static inline int skb_network_offset(const struct sk_buff *skb)
3166 {
3167 return skb_network_header(skb) - skb->data;
3168 }
3169
skb_inner_network_offset(const struct sk_buff * skb)3170 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3171 {
3172 return skb_inner_network_header(skb) - skb->data;
3173 }
3174
3175 static inline enum skb_drop_reason
pskb_network_may_pull_reason(struct sk_buff * skb,unsigned int len)3176 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3177 {
3178 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3179 }
3180
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3181 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3182 {
3183 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3184 }
3185
3186 /*
3187 * CPUs often take a performance hit when accessing unaligned memory
3188 * locations. The actual performance hit varies, it can be small if the
3189 * hardware handles it or large if we have to take an exception and fix it
3190 * in software.
3191 *
3192 * Since an ethernet header is 14 bytes network drivers often end up with
3193 * the IP header at an unaligned offset. The IP header can be aligned by
3194 * shifting the start of the packet by 2 bytes. Drivers should do this
3195 * with:
3196 *
3197 * skb_reserve(skb, NET_IP_ALIGN);
3198 *
3199 * The downside to this alignment of the IP header is that the DMA is now
3200 * unaligned. On some architectures the cost of an unaligned DMA is high
3201 * and this cost outweighs the gains made by aligning the IP header.
3202 *
3203 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3204 * to be overridden.
3205 */
3206 #ifndef NET_IP_ALIGN
3207 #define NET_IP_ALIGN 2
3208 #endif
3209
3210 /*
3211 * The networking layer reserves some headroom in skb data (via
3212 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3213 * the header has to grow. In the default case, if the header has to grow
3214 * 32 bytes or less we avoid the reallocation.
3215 *
3216 * Unfortunately this headroom changes the DMA alignment of the resulting
3217 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3218 * on some architectures. An architecture can override this value,
3219 * perhaps setting it to a cacheline in size (since that will maintain
3220 * cacheline alignment of the DMA). It must be a power of 2.
3221 *
3222 * Various parts of the networking layer expect at least 32 bytes of
3223 * headroom, you should not reduce this.
3224 *
3225 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3226 * to reduce average number of cache lines per packet.
3227 * get_rps_cpu() for example only access one 64 bytes aligned block :
3228 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3229 */
3230 #ifndef NET_SKB_PAD
3231 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3232 #endif
3233
3234 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3235
__skb_set_length(struct sk_buff * skb,unsigned int len)3236 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3237 {
3238 if (WARN_ON(skb_is_nonlinear(skb)))
3239 return;
3240 skb->len = len;
3241 skb_set_tail_pointer(skb, len);
3242 }
3243
__skb_trim(struct sk_buff * skb,unsigned int len)3244 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3245 {
3246 __skb_set_length(skb, len);
3247 }
3248
3249 void skb_trim(struct sk_buff *skb, unsigned int len);
3250
__pskb_trim(struct sk_buff * skb,unsigned int len)3251 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3252 {
3253 if (skb->data_len)
3254 return ___pskb_trim(skb, len);
3255 __skb_trim(skb, len);
3256 return 0;
3257 }
3258
pskb_trim(struct sk_buff * skb,unsigned int len)3259 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3260 {
3261 skb_might_realloc(skb);
3262 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3263 }
3264
3265 /**
3266 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3267 * @skb: buffer to alter
3268 * @len: new length
3269 *
3270 * This is identical to pskb_trim except that the caller knows that
3271 * the skb is not cloned so we should never get an error due to out-
3272 * of-memory.
3273 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3274 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3275 {
3276 int err = pskb_trim(skb, len);
3277 BUG_ON(err);
3278 }
3279
__skb_grow(struct sk_buff * skb,unsigned int len)3280 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3281 {
3282 unsigned int diff = len - skb->len;
3283
3284 if (skb_tailroom(skb) < diff) {
3285 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3286 GFP_ATOMIC);
3287 if (ret)
3288 return ret;
3289 }
3290 __skb_set_length(skb, len);
3291 return 0;
3292 }
3293
3294 /**
3295 * skb_orphan - orphan a buffer
3296 * @skb: buffer to orphan
3297 *
3298 * If a buffer currently has an owner then we call the owner's
3299 * destructor function and make the @skb unowned. The buffer continues
3300 * to exist but is no longer charged to its former owner.
3301 */
skb_orphan(struct sk_buff * skb)3302 static inline void skb_orphan(struct sk_buff *skb)
3303 {
3304 if (skb->destructor) {
3305 skb->destructor(skb);
3306 skb->destructor = NULL;
3307 skb->sk = NULL;
3308 } else {
3309 BUG_ON(skb->sk);
3310 }
3311 }
3312
3313 /**
3314 * skb_orphan_frags - orphan the frags contained in a buffer
3315 * @skb: buffer to orphan frags from
3316 * @gfp_mask: allocation mask for replacement pages
3317 *
3318 * For each frag in the SKB which needs a destructor (i.e. has an
3319 * owner) create a copy of that frag and release the original
3320 * page by calling the destructor.
3321 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3322 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3323 {
3324 if (likely(!skb_zcopy(skb)))
3325 return 0;
3326 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3327 return 0;
3328 return skb_copy_ubufs(skb, gfp_mask);
3329 }
3330
3331 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3332 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3333 {
3334 if (likely(!skb_zcopy(skb)))
3335 return 0;
3336 return skb_copy_ubufs(skb, gfp_mask);
3337 }
3338
3339 /**
3340 * __skb_queue_purge_reason - empty a list
3341 * @list: list to empty
3342 * @reason: drop reason
3343 *
3344 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3345 * the list and one reference dropped. This function does not take the
3346 * list lock and the caller must hold the relevant locks to use it.
3347 */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3348 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3349 enum skb_drop_reason reason)
3350 {
3351 struct sk_buff *skb;
3352
3353 while ((skb = __skb_dequeue(list)) != NULL)
3354 kfree_skb_reason(skb, reason);
3355 }
3356
__skb_queue_purge(struct sk_buff_head * list)3357 static inline void __skb_queue_purge(struct sk_buff_head *list)
3358 {
3359 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3360 }
3361
3362 void skb_queue_purge_reason(struct sk_buff_head *list,
3363 enum skb_drop_reason reason);
3364
skb_queue_purge(struct sk_buff_head * list)3365 static inline void skb_queue_purge(struct sk_buff_head *list)
3366 {
3367 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3368 }
3369
3370 unsigned int skb_rbtree_purge(struct rb_root *root);
3371 void skb_errqueue_purge(struct sk_buff_head *list);
3372
3373 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3374
3375 /**
3376 * netdev_alloc_frag - allocate a page fragment
3377 * @fragsz: fragment size
3378 *
3379 * Allocates a frag from a page for receive buffer.
3380 * Uses GFP_ATOMIC allocations.
3381 */
netdev_alloc_frag(unsigned int fragsz)3382 static inline void *netdev_alloc_frag(unsigned int fragsz)
3383 {
3384 return __netdev_alloc_frag_align(fragsz, ~0u);
3385 }
3386
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3387 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3388 unsigned int align)
3389 {
3390 WARN_ON_ONCE(!is_power_of_2(align));
3391 return __netdev_alloc_frag_align(fragsz, -align);
3392 }
3393
3394 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3395 gfp_t gfp_mask);
3396
3397 /**
3398 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3399 * @dev: network device to receive on
3400 * @length: length to allocate
3401 *
3402 * Allocate a new &sk_buff and assign it a usage count of one. The
3403 * buffer has unspecified headroom built in. Users should allocate
3404 * the headroom they think they need without accounting for the
3405 * built in space. The built in space is used for optimisations.
3406 *
3407 * %NULL is returned if there is no free memory. Although this function
3408 * allocates memory it can be called from an interrupt.
3409 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3410 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3411 unsigned int length)
3412 {
3413 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3414 }
3415
3416 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3417 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3418 gfp_t gfp_mask)
3419 {
3420 return __netdev_alloc_skb(NULL, length, gfp_mask);
3421 }
3422
3423 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3424 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3425 {
3426 return netdev_alloc_skb(NULL, length);
3427 }
3428
3429
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3430 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3431 unsigned int length, gfp_t gfp)
3432 {
3433 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3434
3435 if (NET_IP_ALIGN && skb)
3436 skb_reserve(skb, NET_IP_ALIGN);
3437 return skb;
3438 }
3439
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3440 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3441 unsigned int length)
3442 {
3443 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3444 }
3445
skb_free_frag(void * addr)3446 static inline void skb_free_frag(void *addr)
3447 {
3448 page_frag_free(addr);
3449 }
3450
3451 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3452
napi_alloc_frag(unsigned int fragsz)3453 static inline void *napi_alloc_frag(unsigned int fragsz)
3454 {
3455 return __napi_alloc_frag_align(fragsz, ~0u);
3456 }
3457
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3458 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3459 unsigned int align)
3460 {
3461 WARN_ON_ONCE(!is_power_of_2(align));
3462 return __napi_alloc_frag_align(fragsz, -align);
3463 }
3464
3465 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3466 void napi_consume_skb(struct sk_buff *skb, int budget);
3467
3468 void napi_skb_free_stolen_head(struct sk_buff *skb);
3469 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3470
3471 /**
3472 * __dev_alloc_pages - allocate page for network Rx
3473 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3474 * @order: size of the allocation
3475 *
3476 * Allocate a new page.
3477 *
3478 * %NULL is returned if there is no free memory.
3479 */
__dev_alloc_pages_noprof(gfp_t gfp_mask,unsigned int order)3480 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3481 unsigned int order)
3482 {
3483 /* This piece of code contains several assumptions.
3484 * 1. This is for device Rx, therefore a cold page is preferred.
3485 * 2. The expectation is the user wants a compound page.
3486 * 3. If requesting a order 0 page it will not be compound
3487 * due to the check to see if order has a value in prep_new_page
3488 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3489 * code in gfp_to_alloc_flags that should be enforcing this.
3490 */
3491 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3492
3493 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3494 }
3495 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3496
3497 /*
3498 * This specialized allocator has to be a macro for its allocations to be
3499 * accounted separately (to have a separate alloc_tag).
3500 */
3501 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3502
3503 /**
3504 * __dev_alloc_page - allocate a page for network Rx
3505 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3506 *
3507 * Allocate a new page.
3508 *
3509 * %NULL is returned if there is no free memory.
3510 */
__dev_alloc_page_noprof(gfp_t gfp_mask)3511 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3512 {
3513 return __dev_alloc_pages_noprof(gfp_mask, 0);
3514 }
3515 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3516
3517 /*
3518 * This specialized allocator has to be a macro for its allocations to be
3519 * accounted separately (to have a separate alloc_tag).
3520 */
3521 #define dev_alloc_page() dev_alloc_pages(0)
3522
3523 /**
3524 * dev_page_is_reusable - check whether a page can be reused for network Rx
3525 * @page: the page to test
3526 *
3527 * A page shouldn't be considered for reusing/recycling if it was allocated
3528 * under memory pressure or at a distant memory node.
3529 *
3530 * Returns: false if this page should be returned to page allocator, true
3531 * otherwise.
3532 */
dev_page_is_reusable(const struct page * page)3533 static inline bool dev_page_is_reusable(const struct page *page)
3534 {
3535 return likely(page_to_nid(page) == numa_mem_id() &&
3536 !page_is_pfmemalloc(page));
3537 }
3538
3539 /**
3540 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3541 * @page: The page that was allocated from skb_alloc_page
3542 * @skb: The skb that may need pfmemalloc set
3543 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3544 static inline void skb_propagate_pfmemalloc(const struct page *page,
3545 struct sk_buff *skb)
3546 {
3547 if (page_is_pfmemalloc(page))
3548 skb->pfmemalloc = true;
3549 }
3550
3551 /**
3552 * skb_frag_off() - Returns the offset of a skb fragment
3553 * @frag: the paged fragment
3554 */
skb_frag_off(const skb_frag_t * frag)3555 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3556 {
3557 return frag->offset;
3558 }
3559
3560 /**
3561 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3562 * @frag: skb fragment
3563 * @delta: value to add
3564 */
skb_frag_off_add(skb_frag_t * frag,int delta)3565 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3566 {
3567 frag->offset += delta;
3568 }
3569
3570 /**
3571 * skb_frag_off_set() - Sets the offset of a skb fragment
3572 * @frag: skb fragment
3573 * @offset: offset of fragment
3574 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3575 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3576 {
3577 frag->offset = offset;
3578 }
3579
3580 /**
3581 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3582 * @fragto: skb fragment where offset is set
3583 * @fragfrom: skb fragment offset is copied from
3584 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3585 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3586 const skb_frag_t *fragfrom)
3587 {
3588 fragto->offset = fragfrom->offset;
3589 }
3590
3591 /* Return: true if the skb_frag contains a net_iov. */
skb_frag_is_net_iov(const skb_frag_t * frag)3592 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3593 {
3594 return netmem_is_net_iov(frag->netmem);
3595 }
3596
3597 /**
3598 * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3599 * @frag: the fragment
3600 *
3601 * Return: the &struct net_iov associated with @frag. Returns NULL if this
3602 * frag has no associated net_iov.
3603 */
skb_frag_net_iov(const skb_frag_t * frag)3604 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3605 {
3606 if (!skb_frag_is_net_iov(frag))
3607 return NULL;
3608
3609 return netmem_to_net_iov(frag->netmem);
3610 }
3611
3612 /**
3613 * skb_frag_page - retrieve the page referred to by a paged fragment
3614 * @frag: the paged fragment
3615 *
3616 * Return: the &struct page associated with @frag. Returns NULL if this frag
3617 * has no associated page.
3618 */
skb_frag_page(const skb_frag_t * frag)3619 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3620 {
3621 if (skb_frag_is_net_iov(frag))
3622 return NULL;
3623
3624 return netmem_to_page(frag->netmem);
3625 }
3626
3627 /**
3628 * skb_frag_netmem - retrieve the netmem referred to by a fragment
3629 * @frag: the fragment
3630 *
3631 * Return: the &netmem_ref associated with @frag.
3632 */
skb_frag_netmem(const skb_frag_t * frag)3633 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3634 {
3635 return frag->netmem;
3636 }
3637
3638 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3639 unsigned int headroom);
3640 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3641 const struct bpf_prog *prog);
3642
3643 /**
3644 * skb_frag_address - gets the address of the data contained in a paged fragment
3645 * @frag: the paged fragment buffer
3646 *
3647 * Returns: the address of the data within @frag. The page must already
3648 * be mapped.
3649 */
skb_frag_address(const skb_frag_t * frag)3650 static inline void *skb_frag_address(const skb_frag_t *frag)
3651 {
3652 if (!skb_frag_page(frag))
3653 return NULL;
3654
3655 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3656 }
3657
3658 /**
3659 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3660 * @frag: the paged fragment buffer
3661 *
3662 * Returns: the address of the data within @frag. Checks that the page
3663 * is mapped and returns %NULL otherwise.
3664 */
skb_frag_address_safe(const skb_frag_t * frag)3665 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3666 {
3667 void *ptr = page_address(skb_frag_page(frag));
3668 if (unlikely(!ptr))
3669 return NULL;
3670
3671 return ptr + skb_frag_off(frag);
3672 }
3673
3674 /**
3675 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3676 * @fragto: skb fragment where page is set
3677 * @fragfrom: skb fragment page is copied from
3678 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3679 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3680 const skb_frag_t *fragfrom)
3681 {
3682 fragto->netmem = fragfrom->netmem;
3683 }
3684
3685 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3686
3687 /**
3688 * __skb_frag_dma_map - maps a paged fragment via the DMA API
3689 * @dev: the device to map the fragment to
3690 * @frag: the paged fragment to map
3691 * @offset: the offset within the fragment (starting at the
3692 * fragment's own offset)
3693 * @size: the number of bytes to map
3694 * @dir: the direction of the mapping (``PCI_DMA_*``)
3695 *
3696 * Maps the page associated with @frag to @device.
3697 */
__skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3698 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3699 const skb_frag_t *frag,
3700 size_t offset, size_t size,
3701 enum dma_data_direction dir)
3702 {
3703 return dma_map_page(dev, skb_frag_page(frag),
3704 skb_frag_off(frag) + offset, size, dir);
3705 }
3706
3707 #define skb_frag_dma_map(dev, frag, ...) \
3708 CONCATENATE(_skb_frag_dma_map, \
3709 COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3710
3711 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \
3712 const skb_frag_t *uf = (frag); \
3713 size_t uo = (offset); \
3714 \
3715 __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \
3716 DMA_TO_DEVICE); \
3717 })
3718 #define _skb_frag_dma_map1(dev, frag, offset) \
3719 __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \
3720 __UNIQUE_ID(offset_))
3721 #define _skb_frag_dma_map0(dev, frag) \
3722 _skb_frag_dma_map1(dev, frag, 0)
3723 #define _skb_frag_dma_map2(dev, frag, offset, size) \
3724 __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3725 #define _skb_frag_dma_map3(dev, frag, offset, size, dir) \
3726 __skb_frag_dma_map(dev, frag, offset, size, dir)
3727
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3728 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3729 gfp_t gfp_mask)
3730 {
3731 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3732 }
3733
3734
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3735 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3736 gfp_t gfp_mask)
3737 {
3738 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3739 }
3740
3741
3742 /**
3743 * skb_clone_writable - is the header of a clone writable
3744 * @skb: buffer to check
3745 * @len: length up to which to write
3746 *
3747 * Returns true if modifying the header part of the cloned buffer
3748 * does not requires the data to be copied.
3749 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3750 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3751 {
3752 return !skb_header_cloned(skb) &&
3753 skb_headroom(skb) + len <= skb->hdr_len;
3754 }
3755
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3756 static inline int skb_try_make_writable(struct sk_buff *skb,
3757 unsigned int write_len)
3758 {
3759 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3760 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3761 }
3762
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3763 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3764 int cloned)
3765 {
3766 int delta = 0;
3767
3768 if (headroom > skb_headroom(skb))
3769 delta = headroom - skb_headroom(skb);
3770
3771 if (delta || cloned)
3772 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3773 GFP_ATOMIC);
3774 return 0;
3775 }
3776
3777 /**
3778 * skb_cow - copy header of skb when it is required
3779 * @skb: buffer to cow
3780 * @headroom: needed headroom
3781 *
3782 * If the skb passed lacks sufficient headroom or its data part
3783 * is shared, data is reallocated. If reallocation fails, an error
3784 * is returned and original skb is not changed.
3785 *
3786 * The result is skb with writable area skb->head...skb->tail
3787 * and at least @headroom of space at head.
3788 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3789 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3790 {
3791 return __skb_cow(skb, headroom, skb_cloned(skb));
3792 }
3793
3794 /**
3795 * skb_cow_head - skb_cow but only making the head writable
3796 * @skb: buffer to cow
3797 * @headroom: needed headroom
3798 *
3799 * This function is identical to skb_cow except that we replace the
3800 * skb_cloned check by skb_header_cloned. It should be used when
3801 * you only need to push on some header and do not need to modify
3802 * the data.
3803 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3804 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3805 {
3806 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3807 }
3808
3809 /**
3810 * skb_padto - pad an skbuff up to a minimal size
3811 * @skb: buffer to pad
3812 * @len: minimal length
3813 *
3814 * Pads up a buffer to ensure the trailing bytes exist and are
3815 * blanked. If the buffer already contains sufficient data it
3816 * is untouched. Otherwise it is extended. Returns zero on
3817 * success. The skb is freed on error.
3818 */
skb_padto(struct sk_buff * skb,unsigned int len)3819 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3820 {
3821 unsigned int size = skb->len;
3822 if (likely(size >= len))
3823 return 0;
3824 return skb_pad(skb, len - size);
3825 }
3826
3827 /**
3828 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3829 * @skb: buffer to pad
3830 * @len: minimal length
3831 * @free_on_error: free buffer on error
3832 *
3833 * Pads up a buffer to ensure the trailing bytes exist and are
3834 * blanked. If the buffer already contains sufficient data it
3835 * is untouched. Otherwise it is extended. Returns zero on
3836 * success. The skb is freed on error if @free_on_error is true.
3837 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3838 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3839 unsigned int len,
3840 bool free_on_error)
3841 {
3842 unsigned int size = skb->len;
3843
3844 if (unlikely(size < len)) {
3845 len -= size;
3846 if (__skb_pad(skb, len, free_on_error))
3847 return -ENOMEM;
3848 __skb_put(skb, len);
3849 }
3850 return 0;
3851 }
3852
3853 /**
3854 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3855 * @skb: buffer to pad
3856 * @len: minimal length
3857 *
3858 * Pads up a buffer to ensure the trailing bytes exist and are
3859 * blanked. If the buffer already contains sufficient data it
3860 * is untouched. Otherwise it is extended. Returns zero on
3861 * success. The skb is freed on error.
3862 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3863 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3864 {
3865 return __skb_put_padto(skb, len, true);
3866 }
3867
3868 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3869 __must_check;
3870
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3871 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3872 const struct page *page, int off)
3873 {
3874 if (skb_zcopy(skb))
3875 return false;
3876 if (i) {
3877 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3878
3879 return page == skb_frag_page(frag) &&
3880 off == skb_frag_off(frag) + skb_frag_size(frag);
3881 }
3882 return false;
3883 }
3884
__skb_linearize(struct sk_buff * skb)3885 static inline int __skb_linearize(struct sk_buff *skb)
3886 {
3887 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3888 }
3889
3890 /**
3891 * skb_linearize - convert paged skb to linear one
3892 * @skb: buffer to linarize
3893 *
3894 * If there is no free memory -ENOMEM is returned, otherwise zero
3895 * is returned and the old skb data released.
3896 */
skb_linearize(struct sk_buff * skb)3897 static inline int skb_linearize(struct sk_buff *skb)
3898 {
3899 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3900 }
3901
3902 /**
3903 * skb_has_shared_frag - can any frag be overwritten
3904 * @skb: buffer to test
3905 *
3906 * Return: true if the skb has at least one frag that might be modified
3907 * by an external entity (as in vmsplice()/sendfile())
3908 */
skb_has_shared_frag(const struct sk_buff * skb)3909 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3910 {
3911 return skb_is_nonlinear(skb) &&
3912 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3913 }
3914
3915 /**
3916 * skb_linearize_cow - make sure skb is linear and writable
3917 * @skb: buffer to process
3918 *
3919 * If there is no free memory -ENOMEM is returned, otherwise zero
3920 * is returned and the old skb data released.
3921 */
skb_linearize_cow(struct sk_buff * skb)3922 static inline int skb_linearize_cow(struct sk_buff *skb)
3923 {
3924 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3925 __skb_linearize(skb) : 0;
3926 }
3927
3928 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3929 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3930 unsigned int off)
3931 {
3932 if (skb->ip_summed == CHECKSUM_COMPLETE)
3933 skb->csum = csum_block_sub(skb->csum,
3934 csum_partial(start, len, 0), off);
3935 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3936 skb_checksum_start_offset(skb) < 0)
3937 skb->ip_summed = CHECKSUM_NONE;
3938 }
3939
3940 /**
3941 * skb_postpull_rcsum - update checksum for received skb after pull
3942 * @skb: buffer to update
3943 * @start: start of data before pull
3944 * @len: length of data pulled
3945 *
3946 * After doing a pull on a received packet, you need to call this to
3947 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3948 * CHECKSUM_NONE so that it can be recomputed from scratch.
3949 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3950 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3951 const void *start, unsigned int len)
3952 {
3953 if (skb->ip_summed == CHECKSUM_COMPLETE)
3954 skb->csum = wsum_negate(csum_partial(start, len,
3955 wsum_negate(skb->csum)));
3956 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3957 skb_checksum_start_offset(skb) < 0)
3958 skb->ip_summed = CHECKSUM_NONE;
3959 }
3960
3961 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3962 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3963 unsigned int off)
3964 {
3965 if (skb->ip_summed == CHECKSUM_COMPLETE)
3966 skb->csum = csum_block_add(skb->csum,
3967 csum_partial(start, len, 0), off);
3968 }
3969
3970 /**
3971 * skb_postpush_rcsum - update checksum for received skb after push
3972 * @skb: buffer to update
3973 * @start: start of data after push
3974 * @len: length of data pushed
3975 *
3976 * After doing a push on a received packet, you need to call this to
3977 * update the CHECKSUM_COMPLETE checksum.
3978 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3979 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3980 const void *start, unsigned int len)
3981 {
3982 __skb_postpush_rcsum(skb, start, len, 0);
3983 }
3984
3985 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3986
3987 /**
3988 * skb_push_rcsum - push skb and update receive checksum
3989 * @skb: buffer to update
3990 * @len: length of data pulled
3991 *
3992 * This function performs an skb_push on the packet and updates
3993 * the CHECKSUM_COMPLETE checksum. It should be used on
3994 * receive path processing instead of skb_push unless you know
3995 * that the checksum difference is zero (e.g., a valid IP header)
3996 * or you are setting ip_summed to CHECKSUM_NONE.
3997 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3998 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3999 {
4000 skb_push(skb, len);
4001 skb_postpush_rcsum(skb, skb->data, len);
4002 return skb->data;
4003 }
4004
4005 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4006 /**
4007 * pskb_trim_rcsum - trim received skb and update checksum
4008 * @skb: buffer to trim
4009 * @len: new length
4010 *
4011 * This is exactly the same as pskb_trim except that it ensures the
4012 * checksum of received packets are still valid after the operation.
4013 * It can change skb pointers.
4014 */
4015
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)4016 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4017 {
4018 skb_might_realloc(skb);
4019 if (likely(len >= skb->len))
4020 return 0;
4021 return pskb_trim_rcsum_slow(skb, len);
4022 }
4023
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)4024 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4025 {
4026 if (skb->ip_summed == CHECKSUM_COMPLETE)
4027 skb->ip_summed = CHECKSUM_NONE;
4028 __skb_trim(skb, len);
4029 return 0;
4030 }
4031
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)4032 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4033 {
4034 if (skb->ip_summed == CHECKSUM_COMPLETE)
4035 skb->ip_summed = CHECKSUM_NONE;
4036 return __skb_grow(skb, len);
4037 }
4038
4039 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4040 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4041 #define skb_rb_last(root) rb_to_skb(rb_last(root))
4042 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
4043 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
4044
4045 #define skb_queue_walk(queue, skb) \
4046 for (skb = (queue)->next; \
4047 skb != (struct sk_buff *)(queue); \
4048 skb = skb->next)
4049
4050 #define skb_queue_walk_safe(queue, skb, tmp) \
4051 for (skb = (queue)->next, tmp = skb->next; \
4052 skb != (struct sk_buff *)(queue); \
4053 skb = tmp, tmp = skb->next)
4054
4055 #define skb_queue_walk_from(queue, skb) \
4056 for (; skb != (struct sk_buff *)(queue); \
4057 skb = skb->next)
4058
4059 #define skb_rbtree_walk(skb, root) \
4060 for (skb = skb_rb_first(root); skb != NULL; \
4061 skb = skb_rb_next(skb))
4062
4063 #define skb_rbtree_walk_from(skb) \
4064 for (; skb != NULL; \
4065 skb = skb_rb_next(skb))
4066
4067 #define skb_rbtree_walk_from_safe(skb, tmp) \
4068 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
4069 skb = tmp)
4070
4071 #define skb_queue_walk_from_safe(queue, skb, tmp) \
4072 for (tmp = skb->next; \
4073 skb != (struct sk_buff *)(queue); \
4074 skb = tmp, tmp = skb->next)
4075
4076 #define skb_queue_reverse_walk(queue, skb) \
4077 for (skb = (queue)->prev; \
4078 skb != (struct sk_buff *)(queue); \
4079 skb = skb->prev)
4080
4081 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
4082 for (skb = (queue)->prev, tmp = skb->prev; \
4083 skb != (struct sk_buff *)(queue); \
4084 skb = tmp, tmp = skb->prev)
4085
4086 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
4087 for (tmp = skb->prev; \
4088 skb != (struct sk_buff *)(queue); \
4089 skb = tmp, tmp = skb->prev)
4090
skb_has_frag_list(const struct sk_buff * skb)4091 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4092 {
4093 return skb_shinfo(skb)->frag_list != NULL;
4094 }
4095
skb_frag_list_init(struct sk_buff * skb)4096 static inline void skb_frag_list_init(struct sk_buff *skb)
4097 {
4098 skb_shinfo(skb)->frag_list = NULL;
4099 }
4100
4101 #define skb_walk_frags(skb, iter) \
4102 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4103
4104
4105 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4106 int *err, long *timeo_p,
4107 const struct sk_buff *skb);
4108 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4109 struct sk_buff_head *queue,
4110 unsigned int flags,
4111 int *off, int *err,
4112 struct sk_buff **last);
4113 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4114 struct sk_buff_head *queue,
4115 unsigned int flags, int *off, int *err,
4116 struct sk_buff **last);
4117 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4118 struct sk_buff_head *sk_queue,
4119 unsigned int flags, int *off, int *err);
4120 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4121 __poll_t datagram_poll(struct file *file, struct socket *sock,
4122 struct poll_table_struct *wait);
4123 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4124 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4125 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4126 struct msghdr *msg, int size)
4127 {
4128 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4129 }
4130 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4131 struct msghdr *msg);
4132 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4133 struct iov_iter *to, int len,
4134 struct ahash_request *hash);
4135 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4136 struct iov_iter *from, int len);
4137 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4138 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4139 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4140 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4141 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4142 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4143 int len);
4144 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4145 struct pipe_inode_info *pipe, unsigned int len,
4146 unsigned int flags);
4147 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4148 int len);
4149 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4150 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4151 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4152 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4153 int len, int hlen);
4154 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4155 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4156 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4157 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4158 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4159 unsigned int offset);
4160 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4161 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4162 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4163 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4164 int skb_vlan_pop(struct sk_buff *skb);
4165 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4166 int skb_eth_pop(struct sk_buff *skb);
4167 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4168 const unsigned char *src);
4169 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4170 int mac_len, bool ethernet);
4171 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4172 bool ethernet);
4173 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4174 int skb_mpls_dec_ttl(struct sk_buff *skb);
4175 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4176 gfp_t gfp);
4177
memcpy_from_msg(void * data,struct msghdr * msg,int len)4178 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4179 {
4180 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4181 }
4182
memcpy_to_msg(struct msghdr * msg,void * data,int len)4183 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4184 {
4185 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4186 }
4187
4188 struct skb_checksum_ops {
4189 __wsum (*update)(const void *mem, int len, __wsum wsum);
4190 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4191 };
4192
4193 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4194
4195 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4196 __wsum csum, const struct skb_checksum_ops *ops);
4197 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4198 __wsum csum);
4199
4200 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4201 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4202 const void *data, int hlen, void *buffer)
4203 {
4204 if (likely(hlen - offset >= len))
4205 return (void *)data + offset;
4206
4207 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4208 return NULL;
4209
4210 return buffer;
4211 }
4212
4213 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4214 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4215 {
4216 return __skb_header_pointer(skb, offset, len, skb->data,
4217 skb_headlen(skb), buffer);
4218 }
4219
4220 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4221 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4222 {
4223 if (likely(skb_headlen(skb) - offset >= len))
4224 return skb->data + offset;
4225 return NULL;
4226 }
4227
4228 /**
4229 * skb_needs_linearize - check if we need to linearize a given skb
4230 * depending on the given device features.
4231 * @skb: socket buffer to check
4232 * @features: net device features
4233 *
4234 * Returns true if either:
4235 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4236 * 2. skb is fragmented and the device does not support SG.
4237 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4238 static inline bool skb_needs_linearize(struct sk_buff *skb,
4239 netdev_features_t features)
4240 {
4241 return skb_is_nonlinear(skb) &&
4242 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4243 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4244 }
4245
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4246 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4247 void *to,
4248 const unsigned int len)
4249 {
4250 memcpy(to, skb->data, len);
4251 }
4252
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4253 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4254 const int offset, void *to,
4255 const unsigned int len)
4256 {
4257 memcpy(to, skb->data + offset, len);
4258 }
4259
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4260 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4261 const void *from,
4262 const unsigned int len)
4263 {
4264 memcpy(skb->data, from, len);
4265 }
4266
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4267 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4268 const int offset,
4269 const void *from,
4270 const unsigned int len)
4271 {
4272 memcpy(skb->data + offset, from, len);
4273 }
4274
4275 void skb_init(void);
4276
skb_get_ktime(const struct sk_buff * skb)4277 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4278 {
4279 return skb->tstamp;
4280 }
4281
4282 /**
4283 * skb_get_timestamp - get timestamp from a skb
4284 * @skb: skb to get stamp from
4285 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4286 *
4287 * Timestamps are stored in the skb as offsets to a base timestamp.
4288 * This function converts the offset back to a struct timeval and stores
4289 * it in stamp.
4290 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4291 static inline void skb_get_timestamp(const struct sk_buff *skb,
4292 struct __kernel_old_timeval *stamp)
4293 {
4294 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4295 }
4296
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4297 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4298 struct __kernel_sock_timeval *stamp)
4299 {
4300 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4301
4302 stamp->tv_sec = ts.tv_sec;
4303 stamp->tv_usec = ts.tv_nsec / 1000;
4304 }
4305
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4306 static inline void skb_get_timestampns(const struct sk_buff *skb,
4307 struct __kernel_old_timespec *stamp)
4308 {
4309 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4310
4311 stamp->tv_sec = ts.tv_sec;
4312 stamp->tv_nsec = ts.tv_nsec;
4313 }
4314
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4315 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4316 struct __kernel_timespec *stamp)
4317 {
4318 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4319
4320 stamp->tv_sec = ts.tv_sec;
4321 stamp->tv_nsec = ts.tv_nsec;
4322 }
4323
__net_timestamp(struct sk_buff * skb)4324 static inline void __net_timestamp(struct sk_buff *skb)
4325 {
4326 skb->tstamp = ktime_get_real();
4327 skb->tstamp_type = SKB_CLOCK_REALTIME;
4328 }
4329
net_timedelta(ktime_t t)4330 static inline ktime_t net_timedelta(ktime_t t)
4331 {
4332 return ktime_sub(ktime_get_real(), t);
4333 }
4334
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,u8 tstamp_type)4335 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4336 u8 tstamp_type)
4337 {
4338 skb->tstamp = kt;
4339
4340 if (kt)
4341 skb->tstamp_type = tstamp_type;
4342 else
4343 skb->tstamp_type = SKB_CLOCK_REALTIME;
4344 }
4345
skb_set_delivery_type_by_clockid(struct sk_buff * skb,ktime_t kt,clockid_t clockid)4346 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4347 ktime_t kt, clockid_t clockid)
4348 {
4349 u8 tstamp_type = SKB_CLOCK_REALTIME;
4350
4351 switch (clockid) {
4352 case CLOCK_REALTIME:
4353 break;
4354 case CLOCK_MONOTONIC:
4355 tstamp_type = SKB_CLOCK_MONOTONIC;
4356 break;
4357 case CLOCK_TAI:
4358 tstamp_type = SKB_CLOCK_TAI;
4359 break;
4360 default:
4361 WARN_ON_ONCE(1);
4362 kt = 0;
4363 }
4364
4365 skb_set_delivery_time(skb, kt, tstamp_type);
4366 }
4367
4368 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4369
4370 /* It is used in the ingress path to clear the delivery_time.
4371 * If needed, set the skb->tstamp to the (rcv) timestamp.
4372 */
skb_clear_delivery_time(struct sk_buff * skb)4373 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4374 {
4375 if (skb->tstamp_type) {
4376 skb->tstamp_type = SKB_CLOCK_REALTIME;
4377 if (static_branch_unlikely(&netstamp_needed_key))
4378 skb->tstamp = ktime_get_real();
4379 else
4380 skb->tstamp = 0;
4381 }
4382 }
4383
skb_clear_tstamp(struct sk_buff * skb)4384 static inline void skb_clear_tstamp(struct sk_buff *skb)
4385 {
4386 if (skb->tstamp_type)
4387 return;
4388
4389 skb->tstamp = 0;
4390 }
4391
skb_tstamp(const struct sk_buff * skb)4392 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4393 {
4394 if (skb->tstamp_type)
4395 return 0;
4396
4397 return skb->tstamp;
4398 }
4399
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4400 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4401 {
4402 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4403 return skb->tstamp;
4404
4405 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4406 return ktime_get_real();
4407
4408 return 0;
4409 }
4410
skb_metadata_len(const struct sk_buff * skb)4411 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4412 {
4413 return skb_shinfo(skb)->meta_len;
4414 }
4415
skb_metadata_end(const struct sk_buff * skb)4416 static inline void *skb_metadata_end(const struct sk_buff *skb)
4417 {
4418 return skb_mac_header(skb);
4419 }
4420
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4421 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4422 const struct sk_buff *skb_b,
4423 u8 meta_len)
4424 {
4425 const void *a = skb_metadata_end(skb_a);
4426 const void *b = skb_metadata_end(skb_b);
4427 u64 diffs = 0;
4428
4429 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4430 BITS_PER_LONG != 64)
4431 goto slow;
4432
4433 /* Using more efficient variant than plain call to memcmp(). */
4434 switch (meta_len) {
4435 #define __it(x, op) (x -= sizeof(u##op))
4436 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4437 case 32: diffs |= __it_diff(a, b, 64);
4438 fallthrough;
4439 case 24: diffs |= __it_diff(a, b, 64);
4440 fallthrough;
4441 case 16: diffs |= __it_diff(a, b, 64);
4442 fallthrough;
4443 case 8: diffs |= __it_diff(a, b, 64);
4444 break;
4445 case 28: diffs |= __it_diff(a, b, 64);
4446 fallthrough;
4447 case 20: diffs |= __it_diff(a, b, 64);
4448 fallthrough;
4449 case 12: diffs |= __it_diff(a, b, 64);
4450 fallthrough;
4451 case 4: diffs |= __it_diff(a, b, 32);
4452 break;
4453 default:
4454 slow:
4455 return memcmp(a - meta_len, b - meta_len, meta_len);
4456 }
4457 return diffs;
4458 }
4459
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4460 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4461 const struct sk_buff *skb_b)
4462 {
4463 u8 len_a = skb_metadata_len(skb_a);
4464 u8 len_b = skb_metadata_len(skb_b);
4465
4466 if (!(len_a | len_b))
4467 return false;
4468
4469 return len_a != len_b ?
4470 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4471 }
4472
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4473 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4474 {
4475 skb_shinfo(skb)->meta_len = meta_len;
4476 }
4477
skb_metadata_clear(struct sk_buff * skb)4478 static inline void skb_metadata_clear(struct sk_buff *skb)
4479 {
4480 skb_metadata_set(skb, 0);
4481 }
4482
4483 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4484
4485 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4486
4487 void skb_clone_tx_timestamp(struct sk_buff *skb);
4488 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4489
4490 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4491
skb_clone_tx_timestamp(struct sk_buff * skb)4492 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4493 {
4494 }
4495
skb_defer_rx_timestamp(struct sk_buff * skb)4496 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4497 {
4498 return false;
4499 }
4500
4501 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4502
4503 /**
4504 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4505 *
4506 * PHY drivers may accept clones of transmitted packets for
4507 * timestamping via their phy_driver.txtstamp method. These drivers
4508 * must call this function to return the skb back to the stack with a
4509 * timestamp.
4510 *
4511 * @skb: clone of the original outgoing packet
4512 * @hwtstamps: hardware time stamps
4513 *
4514 */
4515 void skb_complete_tx_timestamp(struct sk_buff *skb,
4516 struct skb_shared_hwtstamps *hwtstamps);
4517
4518 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4519 struct skb_shared_hwtstamps *hwtstamps,
4520 struct sock *sk, int tstype);
4521
4522 /**
4523 * skb_tstamp_tx - queue clone of skb with send time stamps
4524 * @orig_skb: the original outgoing packet
4525 * @hwtstamps: hardware time stamps, may be NULL if not available
4526 *
4527 * If the skb has a socket associated, then this function clones the
4528 * skb (thus sharing the actual data and optional structures), stores
4529 * the optional hardware time stamping information (if non NULL) or
4530 * generates a software time stamp (otherwise), then queues the clone
4531 * to the error queue of the socket. Errors are silently ignored.
4532 */
4533 void skb_tstamp_tx(struct sk_buff *orig_skb,
4534 struct skb_shared_hwtstamps *hwtstamps);
4535
4536 /**
4537 * skb_tx_timestamp() - Driver hook for transmit timestamping
4538 *
4539 * Ethernet MAC Drivers should call this function in their hard_xmit()
4540 * function immediately before giving the sk_buff to the MAC hardware.
4541 *
4542 * Specifically, one should make absolutely sure that this function is
4543 * called before TX completion of this packet can trigger. Otherwise
4544 * the packet could potentially already be freed.
4545 *
4546 * @skb: A socket buffer.
4547 */
skb_tx_timestamp(struct sk_buff * skb)4548 static inline void skb_tx_timestamp(struct sk_buff *skb)
4549 {
4550 skb_clone_tx_timestamp(skb);
4551 if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4552 skb_tstamp_tx(skb, NULL);
4553 }
4554
4555 /**
4556 * skb_complete_wifi_ack - deliver skb with wifi status
4557 *
4558 * @skb: the original outgoing packet
4559 * @acked: ack status
4560 *
4561 */
4562 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4563
4564 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4565 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4566
skb_csum_unnecessary(const struct sk_buff * skb)4567 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4568 {
4569 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4570 skb->csum_valid ||
4571 (skb->ip_summed == CHECKSUM_PARTIAL &&
4572 skb_checksum_start_offset(skb) >= 0));
4573 }
4574
4575 /**
4576 * skb_checksum_complete - Calculate checksum of an entire packet
4577 * @skb: packet to process
4578 *
4579 * This function calculates the checksum over the entire packet plus
4580 * the value of skb->csum. The latter can be used to supply the
4581 * checksum of a pseudo header as used by TCP/UDP. It returns the
4582 * checksum.
4583 *
4584 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4585 * this function can be used to verify that checksum on received
4586 * packets. In that case the function should return zero if the
4587 * checksum is correct. In particular, this function will return zero
4588 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4589 * hardware has already verified the correctness of the checksum.
4590 */
skb_checksum_complete(struct sk_buff * skb)4591 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4592 {
4593 return skb_csum_unnecessary(skb) ?
4594 0 : __skb_checksum_complete(skb);
4595 }
4596
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4597 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4598 {
4599 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4600 if (skb->csum_level == 0)
4601 skb->ip_summed = CHECKSUM_NONE;
4602 else
4603 skb->csum_level--;
4604 }
4605 }
4606
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4607 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4608 {
4609 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4610 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4611 skb->csum_level++;
4612 } else if (skb->ip_summed == CHECKSUM_NONE) {
4613 skb->ip_summed = CHECKSUM_UNNECESSARY;
4614 skb->csum_level = 0;
4615 }
4616 }
4617
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4618 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4619 {
4620 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4621 skb->ip_summed = CHECKSUM_NONE;
4622 skb->csum_level = 0;
4623 }
4624 }
4625
4626 /* Check if we need to perform checksum complete validation.
4627 *
4628 * Returns: true if checksum complete is needed, false otherwise
4629 * (either checksum is unnecessary or zero checksum is allowed).
4630 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4631 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4632 bool zero_okay,
4633 __sum16 check)
4634 {
4635 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4636 skb->csum_valid = 1;
4637 __skb_decr_checksum_unnecessary(skb);
4638 return false;
4639 }
4640
4641 return true;
4642 }
4643
4644 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4645 * in checksum_init.
4646 */
4647 #define CHECKSUM_BREAK 76
4648
4649 /* Unset checksum-complete
4650 *
4651 * Unset checksum complete can be done when packet is being modified
4652 * (uncompressed for instance) and checksum-complete value is
4653 * invalidated.
4654 */
skb_checksum_complete_unset(struct sk_buff * skb)4655 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4656 {
4657 if (skb->ip_summed == CHECKSUM_COMPLETE)
4658 skb->ip_summed = CHECKSUM_NONE;
4659 }
4660
4661 /* Validate (init) checksum based on checksum complete.
4662 *
4663 * Return values:
4664 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4665 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4666 * checksum is stored in skb->csum for use in __skb_checksum_complete
4667 * non-zero: value of invalid checksum
4668 *
4669 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4670 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4671 bool complete,
4672 __wsum psum)
4673 {
4674 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4675 if (!csum_fold(csum_add(psum, skb->csum))) {
4676 skb->csum_valid = 1;
4677 return 0;
4678 }
4679 }
4680
4681 skb->csum = psum;
4682
4683 if (complete || skb->len <= CHECKSUM_BREAK) {
4684 __sum16 csum;
4685
4686 csum = __skb_checksum_complete(skb);
4687 skb->csum_valid = !csum;
4688 return csum;
4689 }
4690
4691 return 0;
4692 }
4693
null_compute_pseudo(struct sk_buff * skb,int proto)4694 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4695 {
4696 return 0;
4697 }
4698
4699 /* Perform checksum validate (init). Note that this is a macro since we only
4700 * want to calculate the pseudo header which is an input function if necessary.
4701 * First we try to validate without any computation (checksum unnecessary) and
4702 * then calculate based on checksum complete calling the function to compute
4703 * pseudo header.
4704 *
4705 * Return values:
4706 * 0: checksum is validated or try to in skb_checksum_complete
4707 * non-zero: value of invalid checksum
4708 */
4709 #define __skb_checksum_validate(skb, proto, complete, \
4710 zero_okay, check, compute_pseudo) \
4711 ({ \
4712 __sum16 __ret = 0; \
4713 skb->csum_valid = 0; \
4714 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4715 __ret = __skb_checksum_validate_complete(skb, \
4716 complete, compute_pseudo(skb, proto)); \
4717 __ret; \
4718 })
4719
4720 #define skb_checksum_init(skb, proto, compute_pseudo) \
4721 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4722
4723 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4724 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4725
4726 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4727 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4728
4729 #define skb_checksum_validate_zero_check(skb, proto, check, \
4730 compute_pseudo) \
4731 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4732
4733 #define skb_checksum_simple_validate(skb) \
4734 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4735
__skb_checksum_convert_check(struct sk_buff * skb)4736 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4737 {
4738 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4739 }
4740
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4741 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4742 {
4743 skb->csum = ~pseudo;
4744 skb->ip_summed = CHECKSUM_COMPLETE;
4745 }
4746
4747 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4748 do { \
4749 if (__skb_checksum_convert_check(skb)) \
4750 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4751 } while (0)
4752
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4753 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4754 u16 start, u16 offset)
4755 {
4756 skb->ip_summed = CHECKSUM_PARTIAL;
4757 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4758 skb->csum_offset = offset - start;
4759 }
4760
4761 /* Update skbuf and packet to reflect the remote checksum offload operation.
4762 * When called, ptr indicates the starting point for skb->csum when
4763 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4764 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4765 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4766 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4767 int start, int offset, bool nopartial)
4768 {
4769 __wsum delta;
4770
4771 if (!nopartial) {
4772 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4773 return;
4774 }
4775
4776 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4777 __skb_checksum_complete(skb);
4778 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4779 }
4780
4781 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4782
4783 /* Adjust skb->csum since we changed the packet */
4784 skb->csum = csum_add(skb->csum, delta);
4785 }
4786
skb_nfct(const struct sk_buff * skb)4787 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4788 {
4789 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4790 return (void *)(skb->_nfct & NFCT_PTRMASK);
4791 #else
4792 return NULL;
4793 #endif
4794 }
4795
skb_get_nfct(const struct sk_buff * skb)4796 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4797 {
4798 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4799 return skb->_nfct;
4800 #else
4801 return 0UL;
4802 #endif
4803 }
4804
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4805 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4806 {
4807 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4808 skb->slow_gro |= !!nfct;
4809 skb->_nfct = nfct;
4810 #endif
4811 }
4812
4813 #ifdef CONFIG_SKB_EXTENSIONS
4814 enum skb_ext_id {
4815 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4816 SKB_EXT_BRIDGE_NF,
4817 #endif
4818 #ifdef CONFIG_XFRM
4819 SKB_EXT_SEC_PATH,
4820 #endif
4821 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4822 TC_SKB_EXT,
4823 #endif
4824 #if IS_ENABLED(CONFIG_MPTCP)
4825 SKB_EXT_MPTCP,
4826 #endif
4827 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4828 SKB_EXT_MCTP,
4829 #endif
4830 SKB_EXT_NUM, /* must be last */
4831 };
4832
4833 /**
4834 * struct skb_ext - sk_buff extensions
4835 * @refcnt: 1 on allocation, deallocated on 0
4836 * @offset: offset to add to @data to obtain extension address
4837 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4838 * @data: start of extension data, variable sized
4839 *
4840 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4841 * to use 'u8' types while allowing up to 2kb worth of extension data.
4842 */
4843 struct skb_ext {
4844 refcount_t refcnt;
4845 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4846 u8 chunks; /* same */
4847 char data[] __aligned(8);
4848 };
4849
4850 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4851 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4852 struct skb_ext *ext);
4853 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4854 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4855 void __skb_ext_put(struct skb_ext *ext);
4856
skb_ext_put(struct sk_buff * skb)4857 static inline void skb_ext_put(struct sk_buff *skb)
4858 {
4859 if (skb->active_extensions)
4860 __skb_ext_put(skb->extensions);
4861 }
4862
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4863 static inline void __skb_ext_copy(struct sk_buff *dst,
4864 const struct sk_buff *src)
4865 {
4866 dst->active_extensions = src->active_extensions;
4867
4868 if (src->active_extensions) {
4869 struct skb_ext *ext = src->extensions;
4870
4871 refcount_inc(&ext->refcnt);
4872 dst->extensions = ext;
4873 }
4874 }
4875
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4876 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4877 {
4878 skb_ext_put(dst);
4879 __skb_ext_copy(dst, src);
4880 }
4881
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4882 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4883 {
4884 return !!ext->offset[i];
4885 }
4886
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4887 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4888 {
4889 return skb->active_extensions & (1 << id);
4890 }
4891
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4892 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4893 {
4894 if (skb_ext_exist(skb, id))
4895 __skb_ext_del(skb, id);
4896 }
4897
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4898 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4899 {
4900 if (skb_ext_exist(skb, id)) {
4901 struct skb_ext *ext = skb->extensions;
4902
4903 return (void *)ext + (ext->offset[id] << 3);
4904 }
4905
4906 return NULL;
4907 }
4908
skb_ext_reset(struct sk_buff * skb)4909 static inline void skb_ext_reset(struct sk_buff *skb)
4910 {
4911 if (unlikely(skb->active_extensions)) {
4912 __skb_ext_put(skb->extensions);
4913 skb->active_extensions = 0;
4914 }
4915 }
4916
skb_has_extensions(struct sk_buff * skb)4917 static inline bool skb_has_extensions(struct sk_buff *skb)
4918 {
4919 return unlikely(skb->active_extensions);
4920 }
4921 #else
skb_ext_put(struct sk_buff * skb)4922 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4923 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4924 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4925 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4926 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4927 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4928 #endif /* CONFIG_SKB_EXTENSIONS */
4929
nf_reset_ct(struct sk_buff * skb)4930 static inline void nf_reset_ct(struct sk_buff *skb)
4931 {
4932 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4933 nf_conntrack_put(skb_nfct(skb));
4934 skb->_nfct = 0;
4935 #endif
4936 }
4937
nf_reset_trace(struct sk_buff * skb)4938 static inline void nf_reset_trace(struct sk_buff *skb)
4939 {
4940 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4941 skb->nf_trace = 0;
4942 #endif
4943 }
4944
ipvs_reset(struct sk_buff * skb)4945 static inline void ipvs_reset(struct sk_buff *skb)
4946 {
4947 #if IS_ENABLED(CONFIG_IP_VS)
4948 skb->ipvs_property = 0;
4949 #endif
4950 }
4951
4952 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4953 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4954 bool copy)
4955 {
4956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4957 dst->_nfct = src->_nfct;
4958 nf_conntrack_get(skb_nfct(src));
4959 #endif
4960 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4961 if (copy)
4962 dst->nf_trace = src->nf_trace;
4963 #endif
4964 }
4965
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4966 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4967 {
4968 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4969 nf_conntrack_put(skb_nfct(dst));
4970 #endif
4971 dst->slow_gro = src->slow_gro;
4972 __nf_copy(dst, src, true);
4973 }
4974
4975 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4976 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4977 {
4978 to->secmark = from->secmark;
4979 }
4980
skb_init_secmark(struct sk_buff * skb)4981 static inline void skb_init_secmark(struct sk_buff *skb)
4982 {
4983 skb->secmark = 0;
4984 }
4985 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4986 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4987 { }
4988
skb_init_secmark(struct sk_buff * skb)4989 static inline void skb_init_secmark(struct sk_buff *skb)
4990 { }
4991 #endif
4992
secpath_exists(const struct sk_buff * skb)4993 static inline int secpath_exists(const struct sk_buff *skb)
4994 {
4995 #ifdef CONFIG_XFRM
4996 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4997 #else
4998 return 0;
4999 #endif
5000 }
5001
skb_irq_freeable(const struct sk_buff * skb)5002 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5003 {
5004 return !skb->destructor &&
5005 !secpath_exists(skb) &&
5006 !skb_nfct(skb) &&
5007 !skb->_skb_refdst &&
5008 !skb_has_frag_list(skb);
5009 }
5010
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)5011 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5012 {
5013 skb->queue_mapping = queue_mapping;
5014 }
5015
skb_get_queue_mapping(const struct sk_buff * skb)5016 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5017 {
5018 return skb->queue_mapping;
5019 }
5020
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)5021 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5022 {
5023 to->queue_mapping = from->queue_mapping;
5024 }
5025
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)5026 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5027 {
5028 skb->queue_mapping = rx_queue + 1;
5029 }
5030
skb_get_rx_queue(const struct sk_buff * skb)5031 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5032 {
5033 return skb->queue_mapping - 1;
5034 }
5035
skb_rx_queue_recorded(const struct sk_buff * skb)5036 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5037 {
5038 return skb->queue_mapping != 0;
5039 }
5040
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)5041 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5042 {
5043 skb->dst_pending_confirm = val;
5044 }
5045
skb_get_dst_pending_confirm(const struct sk_buff * skb)5046 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5047 {
5048 return skb->dst_pending_confirm != 0;
5049 }
5050
skb_sec_path(const struct sk_buff * skb)5051 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5052 {
5053 #ifdef CONFIG_XFRM
5054 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5055 #else
5056 return NULL;
5057 #endif
5058 }
5059
skb_is_gso(const struct sk_buff * skb)5060 static inline bool skb_is_gso(const struct sk_buff *skb)
5061 {
5062 return skb_shinfo(skb)->gso_size;
5063 }
5064
5065 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)5066 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5067 {
5068 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5069 }
5070
5071 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)5072 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5073 {
5074 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5075 }
5076
5077 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)5078 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5079 {
5080 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5081 }
5082
skb_gso_reset(struct sk_buff * skb)5083 static inline void skb_gso_reset(struct sk_buff *skb)
5084 {
5085 skb_shinfo(skb)->gso_size = 0;
5086 skb_shinfo(skb)->gso_segs = 0;
5087 skb_shinfo(skb)->gso_type = 0;
5088 }
5089
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5090 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5091 u16 increment)
5092 {
5093 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5094 return;
5095 shinfo->gso_size += increment;
5096 }
5097
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5098 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5099 u16 decrement)
5100 {
5101 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5102 return;
5103 shinfo->gso_size -= decrement;
5104 }
5105
5106 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5107
skb_warn_if_lro(const struct sk_buff * skb)5108 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5109 {
5110 /* LRO sets gso_size but not gso_type, whereas if GSO is really
5111 * wanted then gso_type will be set. */
5112 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5113
5114 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5115 unlikely(shinfo->gso_type == 0)) {
5116 __skb_warn_lro_forwarding(skb);
5117 return true;
5118 }
5119 return false;
5120 }
5121
skb_forward_csum(struct sk_buff * skb)5122 static inline void skb_forward_csum(struct sk_buff *skb)
5123 {
5124 /* Unfortunately we don't support this one. Any brave souls? */
5125 if (skb->ip_summed == CHECKSUM_COMPLETE)
5126 skb->ip_summed = CHECKSUM_NONE;
5127 }
5128
5129 /**
5130 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5131 * @skb: skb to check
5132 *
5133 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5134 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5135 * use this helper, to document places where we make this assertion.
5136 */
skb_checksum_none_assert(const struct sk_buff * skb)5137 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5138 {
5139 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5140 }
5141
5142 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5143
5144 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5145 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5146 unsigned int transport_len,
5147 __sum16(*skb_chkf)(struct sk_buff *skb));
5148
5149 /**
5150 * skb_head_is_locked - Determine if the skb->head is locked down
5151 * @skb: skb to check
5152 *
5153 * The head on skbs build around a head frag can be removed if they are
5154 * not cloned. This function returns true if the skb head is locked down
5155 * due to either being allocated via kmalloc, or by being a clone with
5156 * multiple references to the head.
5157 */
skb_head_is_locked(const struct sk_buff * skb)5158 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5159 {
5160 return !skb->head_frag || skb_cloned(skb);
5161 }
5162
5163 /* Local Checksum Offload.
5164 * Compute outer checksum based on the assumption that the
5165 * inner checksum will be offloaded later.
5166 * See Documentation/networking/checksum-offloads.rst for
5167 * explanation of how this works.
5168 * Fill in outer checksum adjustment (e.g. with sum of outer
5169 * pseudo-header) before calling.
5170 * Also ensure that inner checksum is in linear data area.
5171 */
lco_csum(struct sk_buff * skb)5172 static inline __wsum lco_csum(struct sk_buff *skb)
5173 {
5174 unsigned char *csum_start = skb_checksum_start(skb);
5175 unsigned char *l4_hdr = skb_transport_header(skb);
5176 __wsum partial;
5177
5178 /* Start with complement of inner checksum adjustment */
5179 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5180 skb->csum_offset));
5181
5182 /* Add in checksum of our headers (incl. outer checksum
5183 * adjustment filled in by caller) and return result.
5184 */
5185 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5186 }
5187
skb_is_redirected(const struct sk_buff * skb)5188 static inline bool skb_is_redirected(const struct sk_buff *skb)
5189 {
5190 return skb->redirected;
5191 }
5192
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5193 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5194 {
5195 skb->redirected = 1;
5196 #ifdef CONFIG_NET_REDIRECT
5197 skb->from_ingress = from_ingress;
5198 if (skb->from_ingress)
5199 skb_clear_tstamp(skb);
5200 #endif
5201 }
5202
skb_reset_redirect(struct sk_buff * skb)5203 static inline void skb_reset_redirect(struct sk_buff *skb)
5204 {
5205 skb->redirected = 0;
5206 }
5207
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5208 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5209 bool from_ingress)
5210 {
5211 skb->redirected = 1;
5212 #ifdef CONFIG_NET_REDIRECT
5213 skb->from_ingress = from_ingress;
5214 #endif
5215 }
5216
skb_csum_is_sctp(struct sk_buff * skb)5217 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5218 {
5219 #if IS_ENABLED(CONFIG_IP_SCTP)
5220 return skb->csum_not_inet;
5221 #else
5222 return 0;
5223 #endif
5224 }
5225
skb_reset_csum_not_inet(struct sk_buff * skb)5226 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5227 {
5228 skb->ip_summed = CHECKSUM_NONE;
5229 #if IS_ENABLED(CONFIG_IP_SCTP)
5230 skb->csum_not_inet = 0;
5231 #endif
5232 }
5233
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5234 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5235 const u64 kcov_handle)
5236 {
5237 #ifdef CONFIG_KCOV
5238 skb->kcov_handle = kcov_handle;
5239 #endif
5240 }
5241
skb_get_kcov_handle(struct sk_buff * skb)5242 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5243 {
5244 #ifdef CONFIG_KCOV
5245 return skb->kcov_handle;
5246 #else
5247 return 0;
5248 #endif
5249 }
5250
skb_mark_for_recycle(struct sk_buff * skb)5251 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5252 {
5253 #ifdef CONFIG_PAGE_POOL
5254 skb->pp_recycle = 1;
5255 #endif
5256 }
5257
5258 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5259 ssize_t maxsize, gfp_t gfp);
5260
5261 #endif /* __KERNEL__ */
5262 #endif /* _LINUX_SKBUFF_H */
5263