xref: /linux/arch/x86/events/perf_event.h (revision 547c5775a742d9c83891b629b75d1d4c8e88d8c0)
1 /*
2  * Performance events x86 architecture header
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 
17 #include <asm/fpu/xstate.h>
18 #include <asm/intel_ds.h>
19 #include <asm/cpu.h>
20 #include <asm/msr.h>
21 
22 /* To enable MSR tracing please use the generic trace points. */
23 
24 /*
25  *          |   NHM/WSM    |      SNB     |
26  * register -------------------------------
27  *          |  HT  | no HT |  HT  | no HT |
28  *-----------------------------------------
29  * offcore  | core | core  | cpu  | core  |
30  * lbr_sel  | core | core  | cpu  | core  |
31  * ld_lat   | cpu  | core  | cpu  | core  |
32  *-----------------------------------------
33  *
34  * Given that there is a small number of shared regs,
35  * we can pre-allocate their slot in the per-cpu
36  * per-core reg tables.
37  */
38 enum extra_reg_type {
39 	EXTRA_REG_NONE		= -1, /* not used */
40 
41 	EXTRA_REG_RSP_0		= 0,  /* offcore_response_0 */
42 	EXTRA_REG_RSP_1		= 1,  /* offcore_response_1 */
43 	EXTRA_REG_LBR		= 2,  /* lbr_select */
44 	EXTRA_REG_LDLAT		= 3,  /* ld_lat_threshold */
45 	EXTRA_REG_FE		= 4,  /* fe_* */
46 	EXTRA_REG_SNOOP_0	= 5,  /* snoop response 0 */
47 	EXTRA_REG_SNOOP_1	= 6,  /* snoop response 1 */
48 
49 	EXTRA_REG_MAX		      /* number of entries needed */
50 };
51 
52 struct event_constraint {
53 	union {
54 		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
55 		u64		idxmsk64;
56 	};
57 	u64		code;
58 	u64		cmask;
59 	int		weight;
60 	int		overlap;
61 	int		flags;
62 	unsigned int	size;
63 };
64 
constraint_match(struct event_constraint * c,u64 ecode)65 static inline bool constraint_match(struct event_constraint *c, u64 ecode)
66 {
67 	return ((ecode & c->cmask) - c->code) <= (u64)c->size;
68 }
69 
70 #define PERF_ARCH(name, val)	\
71 	PERF_X86_EVENT_##name = val,
72 
73 /*
74  * struct hw_perf_event.flags flags
75  */
76 enum {
77 #include "perf_event_flags.h"
78 };
79 
80 #undef PERF_ARCH
81 
82 #define PERF_ARCH(name, val)						\
83 	static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) ==	\
84 		      PERF_X86_EVENT_##name);
85 
86 #include "perf_event_flags.h"
87 
88 #undef PERF_ARCH
89 
is_topdown_count(struct perf_event * event)90 static inline bool is_topdown_count(struct perf_event *event)
91 {
92 	return event->hw.flags & PERF_X86_EVENT_TOPDOWN;
93 }
94 
is_metric_event(struct perf_event * event)95 static inline bool is_metric_event(struct perf_event *event)
96 {
97 	u64 config = event->attr.config;
98 
99 	return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) &&
100 		((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING)  &&
101 		((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX);
102 }
103 
is_slots_event(struct perf_event * event)104 static inline bool is_slots_event(struct perf_event *event)
105 {
106 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS;
107 }
108 
is_topdown_event(struct perf_event * event)109 static inline bool is_topdown_event(struct perf_event *event)
110 {
111 	return is_metric_event(event) || is_slots_event(event);
112 }
113 
114 int is_x86_event(struct perf_event *event);
115 
check_leader_group(struct perf_event * leader,int flags)116 static inline bool check_leader_group(struct perf_event *leader, int flags)
117 {
118 	return is_x86_event(leader) ? !!(leader->hw.flags & flags) : false;
119 }
120 
is_branch_counters_group(struct perf_event * event)121 static inline bool is_branch_counters_group(struct perf_event *event)
122 {
123 	return check_leader_group(event->group_leader, PERF_X86_EVENT_BRANCH_COUNTERS);
124 }
125 
is_pebs_counter_event_group(struct perf_event * event)126 static inline bool is_pebs_counter_event_group(struct perf_event *event)
127 {
128 	return check_leader_group(event->group_leader, PERF_X86_EVENT_PEBS_CNTR);
129 }
130 
is_acr_event_group(struct perf_event * event)131 static inline bool is_acr_event_group(struct perf_event *event)
132 {
133 	return check_leader_group(event->group_leader, PERF_X86_EVENT_ACR);
134 }
135 
136 struct amd_nb {
137 	int nb_id;  /* NorthBridge id */
138 	int refcnt; /* reference count */
139 	struct perf_event *owners[X86_PMC_IDX_MAX];
140 	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
141 };
142 
143 #define PEBS_COUNTER_MASK	((1ULL << MAX_PEBS_EVENTS) - 1)
144 #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60)
145 #define PEBS_OUTPUT_OFFSET	61
146 #define PEBS_OUTPUT_MASK	(3ull << PEBS_OUTPUT_OFFSET)
147 #define PEBS_OUTPUT_PT		(1ull << PEBS_OUTPUT_OFFSET)
148 #define PEBS_VIA_PT_MASK	(PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD)
149 
150 /*
151  * Flags PEBS can handle without an PMI.
152  *
153  * TID can only be handled by flushing at context switch.
154  * REGS_USER can be handled for events limited to ring 3.
155  *
156  */
157 #define LARGE_PEBS_FLAGS \
158 	(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \
159 	PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \
160 	PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \
161 	PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \
162 	PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \
163 	PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \
164 	PERF_SAMPLE_WEIGHT_TYPE)
165 
166 #define PEBS_GP_REGS			\
167 	((1ULL << PERF_REG_X86_AX)    | \
168 	 (1ULL << PERF_REG_X86_BX)    | \
169 	 (1ULL << PERF_REG_X86_CX)    | \
170 	 (1ULL << PERF_REG_X86_DX)    | \
171 	 (1ULL << PERF_REG_X86_DI)    | \
172 	 (1ULL << PERF_REG_X86_SI)    | \
173 	 (1ULL << PERF_REG_X86_SP)    | \
174 	 (1ULL << PERF_REG_X86_BP)    | \
175 	 (1ULL << PERF_REG_X86_IP)    | \
176 	 (1ULL << PERF_REG_X86_FLAGS) | \
177 	 (1ULL << PERF_REG_X86_R8)    | \
178 	 (1ULL << PERF_REG_X86_R9)    | \
179 	 (1ULL << PERF_REG_X86_R10)   | \
180 	 (1ULL << PERF_REG_X86_R11)   | \
181 	 (1ULL << PERF_REG_X86_R12)   | \
182 	 (1ULL << PERF_REG_X86_R13)   | \
183 	 (1ULL << PERF_REG_X86_R14)   | \
184 	 (1ULL << PERF_REG_X86_R15))
185 
186 /*
187  * Per register state.
188  */
189 struct er_account {
190 	raw_spinlock_t      lock;	/* per-core: protect structure */
191 	u64                 config;	/* extra MSR config */
192 	u64                 reg;	/* extra MSR number */
193 	atomic_t            ref;	/* reference count */
194 };
195 
196 /*
197  * Per core/cpu state
198  *
199  * Used to coordinate shared registers between HT threads or
200  * among events on a single PMU.
201  */
202 struct intel_shared_regs {
203 	struct er_account       regs[EXTRA_REG_MAX];
204 	int                     refcnt;		/* per-core: #HT threads */
205 	unsigned                core_id;	/* per-core: core id */
206 };
207 
208 enum intel_excl_state_type {
209 	INTEL_EXCL_UNUSED    = 0, /* counter is unused */
210 	INTEL_EXCL_SHARED    = 1, /* counter can be used by both threads */
211 	INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */
212 };
213 
214 struct intel_excl_states {
215 	enum intel_excl_state_type state[X86_PMC_IDX_MAX];
216 	bool sched_started; /* true if scheduling has started */
217 };
218 
219 struct intel_excl_cntrs {
220 	raw_spinlock_t	lock;
221 
222 	struct intel_excl_states states[2];
223 
224 	union {
225 		u16	has_exclusive[2];
226 		u32	exclusive_present;
227 	};
228 
229 	int		refcnt;		/* per-core: #HT threads */
230 	unsigned	core_id;	/* per-core: core id */
231 };
232 
233 struct x86_perf_task_context;
234 #define MAX_LBR_ENTRIES		32
235 
236 enum {
237 	LBR_FORMAT_32		= 0x00,
238 	LBR_FORMAT_LIP		= 0x01,
239 	LBR_FORMAT_EIP		= 0x02,
240 	LBR_FORMAT_EIP_FLAGS	= 0x03,
241 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
242 	LBR_FORMAT_INFO		= 0x05,
243 	LBR_FORMAT_TIME		= 0x06,
244 	LBR_FORMAT_INFO2	= 0x07,
245 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_INFO2,
246 };
247 
248 enum {
249 	X86_PERF_KFREE_SHARED = 0,
250 	X86_PERF_KFREE_EXCL   = 1,
251 	X86_PERF_KFREE_MAX
252 };
253 
254 struct cpu_hw_events {
255 	/*
256 	 * Generic x86 PMC bits
257 	 */
258 	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
259 	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
260 	unsigned long		dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
261 	int			enabled;
262 
263 	int			n_events; /* the # of events in the below arrays */
264 	int			n_added;  /* the # last events in the below arrays;
265 					     they've never been enabled yet */
266 	int			n_txn;    /* the # last events in the below arrays;
267 					     added in the current transaction */
268 	int			n_txn_pair;
269 	int			n_txn_metric;
270 	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
271 	u64			tags[X86_PMC_IDX_MAX];
272 
273 	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
274 	struct event_constraint	*event_constraint[X86_PMC_IDX_MAX];
275 
276 	int			n_excl; /* the number of exclusive events */
277 	int			n_late_setup; /* the num of events needs late setup */
278 
279 	unsigned int		txn_flags;
280 	int			is_fake;
281 
282 	/*
283 	 * Intel DebugStore bits
284 	 */
285 	struct debug_store	*ds;
286 	void			*ds_pebs_vaddr;
287 	void			*ds_bts_vaddr;
288 	u64			pebs_enabled;
289 	int			n_pebs;
290 	int			n_large_pebs;
291 	int			n_pebs_via_pt;
292 	int			pebs_output;
293 
294 	/* Current super set of events hardware configuration */
295 	u64			pebs_data_cfg;
296 	u64			active_pebs_data_cfg;
297 	int			pebs_record_size;
298 
299 	/* Intel Fixed counter configuration */
300 	u64			fixed_ctrl_val;
301 	u64			active_fixed_ctrl_val;
302 
303 	/* Intel ACR configuration */
304 	u64			acr_cfg_b[X86_PMC_IDX_MAX];
305 	u64			acr_cfg_c[X86_PMC_IDX_MAX];
306 
307 	/*
308 	 * Intel LBR bits
309 	 */
310 	int				lbr_users;
311 	int				lbr_pebs_users;
312 	struct perf_branch_stack	lbr_stack;
313 	struct perf_branch_entry	lbr_entries[MAX_LBR_ENTRIES];
314 	u64				lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */
315 	union {
316 		struct er_account		*lbr_sel;
317 		struct er_account		*lbr_ctl;
318 	};
319 	u64				br_sel;
320 	void				*last_task_ctx;
321 	int				last_log_id;
322 	int				lbr_select;
323 	void				*lbr_xsave;
324 
325 	/*
326 	 * Intel host/guest exclude bits
327 	 */
328 	u64				intel_ctrl_guest_mask;
329 	u64				intel_ctrl_host_mask;
330 	struct perf_guest_switch_msr	guest_switch_msrs[X86_PMC_IDX_MAX];
331 
332 	/*
333 	 * Intel checkpoint mask
334 	 */
335 	u64				intel_cp_status;
336 
337 	/*
338 	 * manage shared (per-core, per-cpu) registers
339 	 * used on Intel NHM/WSM/SNB
340 	 */
341 	struct intel_shared_regs	*shared_regs;
342 	/*
343 	 * manage exclusive counter access between hyperthread
344 	 */
345 	struct event_constraint *constraint_list; /* in enable order */
346 	struct intel_excl_cntrs		*excl_cntrs;
347 	int excl_thread_id; /* 0 or 1 */
348 
349 	/*
350 	 * SKL TSX_FORCE_ABORT shadow
351 	 */
352 	u64				tfa_shadow;
353 
354 	/*
355 	 * Perf Metrics
356 	 */
357 	/* number of accepted metrics events */
358 	int				n_metric;
359 
360 	/*
361 	 * AMD specific bits
362 	 */
363 	struct amd_nb			*amd_nb;
364 	int				brs_active; /* BRS is enabled */
365 
366 	/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
367 	u64				perf_ctr_virt_mask;
368 	int				n_pair; /* Large increment events */
369 
370 	void				*kfree_on_online[X86_PERF_KFREE_MAX];
371 
372 	struct pmu			*pmu;
373 };
374 
375 #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) {	\
376 	{ .idxmsk64 = (n) },		\
377 	.code = (c),			\
378 	.size = (e) - (c),		\
379 	.cmask = (m),			\
380 	.weight = (w),			\
381 	.overlap = (o),			\
382 	.flags = f,			\
383 }
384 
385 #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \
386 	__EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f)
387 
388 #define EVENT_CONSTRAINT(c, n, m)	\
389 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
390 
391 /*
392  * The constraint_match() function only works for 'simple' event codes
393  * and not for extended (AMD64_EVENTSEL_EVENT) events codes.
394  */
395 #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \
396 	__EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0)
397 
398 #define INTEL_EXCLEVT_CONSTRAINT(c, n)	\
399 	__EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\
400 			   0, PERF_X86_EVENT_EXCL)
401 
402 /*
403  * The overlap flag marks event constraints with overlapping counter
404  * masks. This is the case if the counter mask of such an event is not
405  * a subset of any other counter mask of a constraint with an equal or
406  * higher weight, e.g.:
407  *
408  *  c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
409  *  c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
410  *  c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
411  *
412  * The event scheduler may not select the correct counter in the first
413  * cycle because it needs to know which subsequent events will be
414  * scheduled. It may fail to schedule the events then. So we set the
415  * overlap flag for such constraints to give the scheduler a hint which
416  * events to select for counter rescheduling.
417  *
418  * Care must be taken as the rescheduling algorithm is O(n!) which
419  * will increase scheduling cycles for an over-committed system
420  * dramatically.  The number of such EVENT_CONSTRAINT_OVERLAP() macros
421  * and its counter masks must be kept at a minimum.
422  */
423 #define EVENT_CONSTRAINT_OVERLAP(c, n, m)	\
424 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
425 
426 /*
427  * Constraint on the Event code.
428  */
429 #define INTEL_EVENT_CONSTRAINT(c, n)	\
430 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
431 
432 /*
433  * Constraint on a range of Event codes
434  */
435 #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n)			\
436 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT)
437 
438 /*
439  * Constraint on the Event code + UMask + fixed-mask
440  *
441  * filter mask to validate fixed counter events.
442  * the following filters disqualify for fixed counters:
443  *  - inv
444  *  - edge
445  *  - cnt-mask
446  *  - in_tx
447  *  - in_tx_checkpointed
448  *  The other filters are supported by fixed counters.
449  *  The any-thread option is supported starting with v3.
450  */
451 #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
452 #define FIXED_EVENT_CONSTRAINT(c, n)	\
453 	EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
454 
455 /*
456  * The special metric counters do not actually exist. They are calculated from
457  * the combination of the FxCtr3 + MSR_PERF_METRICS.
458  *
459  * The special metric counters are mapped to a dummy offset for the scheduler.
460  * The sharing between multiple users of the same metric without multiplexing
461  * is not allowed, even though the hardware supports that in principle.
462  */
463 
464 #define METRIC_EVENT_CONSTRAINT(c, n)					\
465 	EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)),	\
466 			 INTEL_ARCH_EVENT_MASK)
467 
468 /*
469  * Constraint on the Event code + UMask
470  */
471 #define INTEL_UEVENT_CONSTRAINT(c, n)	\
472 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
473 
474 /* Constraint on specific umask bit only + event */
475 #define INTEL_UBIT_EVENT_CONSTRAINT(c, n)	\
476 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c))
477 
478 /* Like UEVENT_CONSTRAINT, but match flags too */
479 #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n)	\
480 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
481 
482 #define INTEL_EXCLUEVT_CONSTRAINT(c, n)	\
483 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \
484 			   HWEIGHT(n), 0, PERF_X86_EVENT_EXCL)
485 
486 #define INTEL_PLD_CONSTRAINT(c, n)	\
487 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
488 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
489 
490 #define INTEL_PSD_CONSTRAINT(c, n)	\
491 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
492 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT)
493 
494 #define INTEL_PST_CONSTRAINT(c, n)	\
495 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
496 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
497 
498 #define INTEL_HYBRID_LAT_CONSTRAINT(c, n)	\
499 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
500 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID)
501 
502 #define INTEL_HYBRID_LDLAT_CONSTRAINT(c, n)	\
503 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
504 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_LD_HSW)
505 
506 #define INTEL_HYBRID_STLAT_CONSTRAINT(c, n)	\
507 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
508 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_ST_HSW)
509 
510 /* Event constraint, but match on all event flags too. */
511 #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
512 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
513 
514 #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n)			\
515 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
516 
517 /* Check only flags, but allow all event/umask */
518 #define INTEL_ALL_EVENT_CONSTRAINT(code, n)	\
519 	EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
520 
521 /* Check flags and event code, and set the HSW store flag */
522 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
523 	__EVENT_CONSTRAINT(code, n, 			\
524 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
525 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
526 
527 /* Check flags and event code, and set the HSW load flag */
528 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
529 	__EVENT_CONSTRAINT(code, n,			\
530 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
531 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
532 
533 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \
534 	__EVENT_CONSTRAINT_RANGE(code, end, n,				\
535 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
536 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
537 
538 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \
539 	__EVENT_CONSTRAINT(code, n,			\
540 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
541 			  HWEIGHT(n), 0, \
542 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
543 
544 /* Check flags and event code/umask, and set the HSW store flag */
545 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
546 	__EVENT_CONSTRAINT(code, n, 			\
547 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
548 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
549 
550 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \
551 	__EVENT_CONSTRAINT(code, n,			\
552 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
553 			  HWEIGHT(n), 0, \
554 			  PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL)
555 
556 /* Check flags and event code/umask, and set the HSW load flag */
557 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
558 	__EVENT_CONSTRAINT(code, n, 			\
559 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
560 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
561 
562 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \
563 	__EVENT_CONSTRAINT(code, n,			\
564 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
565 			  HWEIGHT(n), 0, \
566 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
567 
568 /* Check flags and event code/umask, and set the HSW N/A flag */
569 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
570 	__EVENT_CONSTRAINT(code, n, 			\
571 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
572 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
573 
574 
575 /*
576  * We define the end marker as having a weight of -1
577  * to enable blacklisting of events using a counter bitmask
578  * of zero and thus a weight of zero.
579  * The end marker has a weight that cannot possibly be
580  * obtained from counting the bits in the bitmask.
581  */
582 #define EVENT_CONSTRAINT_END { .weight = -1 }
583 
584 /*
585  * Check for end marker with weight == -1
586  */
587 #define for_each_event_constraint(e, c)	\
588 	for ((e) = (c); (e)->weight != -1; (e)++)
589 
590 /*
591  * Extra registers for specific events.
592  *
593  * Some events need large masks and require external MSRs.
594  * Those extra MSRs end up being shared for all events on
595  * a PMU and sometimes between PMU of sibling HT threads.
596  * In either case, the kernel needs to handle conflicting
597  * accesses to those extra, shared, regs. The data structure
598  * to manage those registers is stored in cpu_hw_event.
599  */
600 struct extra_reg {
601 	unsigned int		event;
602 	unsigned int		msr;
603 	u64			config_mask;
604 	u64			valid_mask;
605 	int			idx;  /* per_xxx->regs[] reg index */
606 	bool			extra_msr_access;
607 };
608 
609 #define EVENT_EXTRA_REG(e, ms, m, vm, i) {	\
610 	.event = (e),			\
611 	.msr = (ms),			\
612 	.config_mask = (m),		\
613 	.valid_mask = (vm),		\
614 	.idx = EXTRA_REG_##i,		\
615 	.extra_msr_access = true,	\
616 	}
617 
618 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx)	\
619 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
620 
621 #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
622 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
623 			ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
624 
625 #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
626 	INTEL_UEVENT_EXTRA_REG(c, \
627 			       MSR_PEBS_LD_LAT_THRESHOLD, \
628 			       0xffff, \
629 			       LDLAT)
630 
631 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
632 
633 union perf_capabilities {
634 	struct {
635 		u64	lbr_format:6;
636 		u64	pebs_trap:1;
637 		u64	pebs_arch_reg:1;
638 		u64	pebs_format:4;
639 		u64	smm_freeze:1;
640 		/*
641 		 * PMU supports separate counter range for writing
642 		 * values > 32bit.
643 		 */
644 		u64	full_width_write:1;
645 		u64     pebs_baseline:1;
646 		u64	perf_metrics:1;
647 		u64	pebs_output_pt_available:1;
648 		u64	pebs_timing_info:1;
649 		u64	anythread_deprecated:1;
650 		u64	rdpmc_metrics_clear:1;
651 	};
652 	u64	capabilities;
653 };
654 
655 struct x86_pmu_quirk {
656 	struct x86_pmu_quirk *next;
657 	void (*func)(void);
658 };
659 
660 union x86_pmu_config {
661 	struct {
662 		u64 event:8,
663 		    umask:8,
664 		    usr:1,
665 		    os:1,
666 		    edge:1,
667 		    pc:1,
668 		    interrupt:1,
669 		    __reserved1:1,
670 		    en:1,
671 		    inv:1,
672 		    cmask:8,
673 		    event2:4,
674 		    __reserved2:4,
675 		    go:1,
676 		    ho:1;
677 	} bits;
678 	u64 value;
679 };
680 
681 #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
682 
683 enum {
684 	x86_lbr_exclusive_lbr,
685 	x86_lbr_exclusive_bts,
686 	x86_lbr_exclusive_pt,
687 	x86_lbr_exclusive_max,
688 };
689 
690 #define PERF_PEBS_DATA_SOURCE_MAX	0x100
691 #define PERF_PEBS_DATA_SOURCE_MASK	(PERF_PEBS_DATA_SOURCE_MAX - 1)
692 #define PERF_PEBS_DATA_SOURCE_GRT_MAX	0x10
693 #define PERF_PEBS_DATA_SOURCE_GRT_MASK	(PERF_PEBS_DATA_SOURCE_GRT_MAX - 1)
694 
695 #define X86_HYBRID_PMU_ATOM_IDX		0
696 #define X86_HYBRID_PMU_CORE_IDX		1
697 #define X86_HYBRID_PMU_TINY_IDX		2
698 
699 enum hybrid_pmu_type {
700 	not_hybrid,
701 	hybrid_small		= BIT(X86_HYBRID_PMU_ATOM_IDX),
702 	hybrid_big		= BIT(X86_HYBRID_PMU_CORE_IDX),
703 	hybrid_tiny		= BIT(X86_HYBRID_PMU_TINY_IDX),
704 
705 	/* The belows are only used for matching */
706 	hybrid_big_small	= hybrid_big   | hybrid_small,
707 	hybrid_small_tiny	= hybrid_small | hybrid_tiny,
708 	hybrid_big_small_tiny	= hybrid_big   | hybrid_small_tiny,
709 };
710 
711 struct x86_hybrid_pmu {
712 	struct pmu			pmu;
713 	const char			*name;
714 	enum hybrid_pmu_type		pmu_type;
715 	cpumask_t			supported_cpus;
716 	union perf_capabilities		intel_cap;
717 	u64				intel_ctrl;
718 	u64				pebs_events_mask;
719 	u64				config_mask;
720 	union {
721 			u64		cntr_mask64;
722 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
723 	};
724 	union {
725 			u64		fixed_cntr_mask64;
726 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
727 	};
728 
729 	union {
730 			u64		acr_cntr_mask64;
731 			unsigned long	acr_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
732 	};
733 	union {
734 			u64		acr_cause_mask64;
735 			unsigned long	acr_cause_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
736 	};
737 	struct event_constraint		unconstrained;
738 
739 	u64				hw_cache_event_ids
740 					[PERF_COUNT_HW_CACHE_MAX]
741 					[PERF_COUNT_HW_CACHE_OP_MAX]
742 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
743 	u64				hw_cache_extra_regs
744 					[PERF_COUNT_HW_CACHE_MAX]
745 					[PERF_COUNT_HW_CACHE_OP_MAX]
746 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
747 	struct event_constraint		*event_constraints;
748 	struct event_constraint		*pebs_constraints;
749 	struct extra_reg		*extra_regs;
750 
751 	unsigned int			late_ack	:1,
752 					mid_ack		:1,
753 					enabled_ack	:1;
754 
755 	u64				pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX];
756 };
757 
hybrid_pmu(struct pmu * pmu)758 static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu)
759 {
760 	return container_of(pmu, struct x86_hybrid_pmu, pmu);
761 }
762 
763 extern struct static_key_false perf_is_hybrid;
764 #define is_hybrid()		static_branch_unlikely(&perf_is_hybrid)
765 
766 #define hybrid(_pmu, _field)				\
767 (*({							\
768 	typeof(&x86_pmu._field) __Fp = &x86_pmu._field;	\
769 							\
770 	if (is_hybrid() && (_pmu))			\
771 		__Fp = &hybrid_pmu(_pmu)->_field;	\
772 							\
773 	__Fp;						\
774 }))
775 
776 #define hybrid_var(_pmu, _var)				\
777 (*({							\
778 	typeof(&_var) __Fp = &_var;			\
779 							\
780 	if (is_hybrid() && (_pmu))			\
781 		__Fp = &hybrid_pmu(_pmu)->_var;		\
782 							\
783 	__Fp;						\
784 }))
785 
786 #define hybrid_bit(_pmu, _field)			\
787 ({							\
788 	bool __Fp = x86_pmu._field;			\
789 							\
790 	if (is_hybrid() && (_pmu))			\
791 		__Fp = hybrid_pmu(_pmu)->_field;	\
792 							\
793 	__Fp;						\
794 })
795 
796 /*
797  * struct x86_pmu - generic x86 pmu
798  */
799 struct x86_pmu {
800 	/*
801 	 * Generic x86 PMC bits
802 	 */
803 	const char	*name;
804 	int		version;
805 	int		(*handle_irq)(struct pt_regs *);
806 	void		(*disable_all)(void);
807 	void		(*enable_all)(int added);
808 	void		(*enable)(struct perf_event *);
809 	void		(*disable)(struct perf_event *);
810 	void		(*assign)(struct perf_event *event, int idx);
811 	void		(*add)(struct perf_event *);
812 	void		(*del)(struct perf_event *);
813 	void		(*read)(struct perf_event *event);
814 	int		(*set_period)(struct perf_event *event);
815 	u64		(*update)(struct perf_event *event);
816 	int		(*hw_config)(struct perf_event *event);
817 	int		(*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
818 	void		(*late_setup)(void);
819 	void		(*pebs_enable)(struct perf_event *event);
820 	void		(*pebs_disable)(struct perf_event *event);
821 	void		(*pebs_enable_all)(void);
822 	void		(*pebs_disable_all)(void);
823 	unsigned	eventsel;
824 	unsigned	perfctr;
825 	unsigned	fixedctr;
826 	int		(*addr_offset)(int index, bool eventsel);
827 	int		(*rdpmc_index)(int index);
828 	u64		(*event_map)(int);
829 	int		max_events;
830 	u64		config_mask;
831 	union {
832 			u64		cntr_mask64;
833 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
834 	};
835 	union {
836 			u64		fixed_cntr_mask64;
837 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
838 	};
839 	union {
840 			u64		acr_cntr_mask64;
841 			unsigned long	acr_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
842 	};
843 	union {
844 			u64		acr_cause_mask64;
845 			unsigned long	acr_cause_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
846 	};
847 	int		cntval_bits;
848 	u64		cntval_mask;
849 	union {
850 			unsigned long events_maskl;
851 			unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
852 	};
853 	int		events_mask_len;
854 	int		apic;
855 	u64		max_period;
856 	struct event_constraint *
857 			(*get_event_constraints)(struct cpu_hw_events *cpuc,
858 						 int idx,
859 						 struct perf_event *event);
860 
861 	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
862 						 struct perf_event *event);
863 
864 	void		(*start_scheduling)(struct cpu_hw_events *cpuc);
865 
866 	void		(*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr);
867 
868 	void		(*stop_scheduling)(struct cpu_hw_events *cpuc);
869 
870 	struct event_constraint *event_constraints;
871 	struct x86_pmu_quirk *quirks;
872 	void		(*limit_period)(struct perf_event *event, s64 *l);
873 
874 	/* PMI handler bits */
875 	unsigned int	late_ack		:1,
876 			mid_ack			:1,
877 			enabled_ack		:1;
878 	/*
879 	 * sysfs attrs
880 	 */
881 	int		attr_rdpmc_broken;
882 	int		attr_rdpmc;
883 	struct attribute **format_attrs;
884 
885 	ssize_t		(*events_sysfs_show)(char *page, u64 config);
886 	const struct attribute_group **attr_update;
887 
888 	unsigned long	attr_freeze_on_smi;
889 
890 	/*
891 	 * CPU Hotplug hooks
892 	 */
893 	int		(*cpu_prepare)(int cpu);
894 	void		(*cpu_starting)(int cpu);
895 	void		(*cpu_dying)(int cpu);
896 	void		(*cpu_dead)(int cpu);
897 
898 	void		(*check_microcode)(void);
899 	void		(*sched_task)(struct perf_event_pmu_context *pmu_ctx,
900 				      struct task_struct *task, bool sched_in);
901 
902 	/*
903 	 * Intel Arch Perfmon v2+
904 	 */
905 	u64			intel_ctrl;
906 	union perf_capabilities intel_cap;
907 
908 	/*
909 	 * Intel DebugStore bits
910 	 */
911 	unsigned int	bts			:1,
912 			bts_active		:1,
913 			ds_pebs			:1,
914 			pebs_active		:1,
915 			pebs_broken		:1,
916 			pebs_prec_dist		:1,
917 			pebs_no_tlb		:1,
918 			pebs_no_isolation	:1,
919 			pebs_block		:1,
920 			pebs_ept		:1;
921 	int		pebs_record_size;
922 	int		pebs_buffer_size;
923 	u64		pebs_events_mask;
924 	void		(*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data);
925 	struct event_constraint *pebs_constraints;
926 	void		(*pebs_aliases)(struct perf_event *event);
927 	u64		(*pebs_latency_data)(struct perf_event *event, u64 status);
928 	unsigned long	large_pebs_flags;
929 	u64		rtm_abort_event;
930 	u64		pebs_capable;
931 
932 	/*
933 	 * Intel LBR
934 	 */
935 	unsigned int	lbr_tos, lbr_from, lbr_to,
936 			lbr_info, lbr_nr;	   /* LBR base regs and size */
937 	union {
938 		u64	lbr_sel_mask;		   /* LBR_SELECT valid bits */
939 		u64	lbr_ctl_mask;		   /* LBR_CTL valid bits */
940 	};
941 	union {
942 		const int	*lbr_sel_map;	   /* lbr_select mappings */
943 		int		*lbr_ctl_map;	   /* LBR_CTL mappings */
944 	};
945 	u64		lbr_callstack_users;	   /* lbr callstack system wide users */
946 	bool		lbr_double_abort;	   /* duplicated lbr aborts */
947 	bool		lbr_pt_coexist;		   /* (LBR|BTS) may coexist with PT */
948 
949 	unsigned int	lbr_has_info:1;
950 	unsigned int	lbr_has_tsx:1;
951 	unsigned int	lbr_from_flags:1;
952 	unsigned int	lbr_to_cycles:1;
953 
954 	/*
955 	 * Intel Architectural LBR CPUID Enumeration
956 	 */
957 	unsigned int	lbr_depth_mask:8;
958 	unsigned int	lbr_deep_c_reset:1;
959 	unsigned int	lbr_lip:1;
960 	unsigned int	lbr_cpl:1;
961 	unsigned int	lbr_filter:1;
962 	unsigned int	lbr_call_stack:1;
963 	unsigned int	lbr_mispred:1;
964 	unsigned int	lbr_timed_lbr:1;
965 	unsigned int	lbr_br_type:1;
966 	unsigned int	lbr_counters:4;
967 
968 	void		(*lbr_reset)(void);
969 	void		(*lbr_read)(struct cpu_hw_events *cpuc);
970 	void		(*lbr_save)(void *ctx);
971 	void		(*lbr_restore)(void *ctx);
972 
973 	/*
974 	 * Intel PT/LBR/BTS are exclusive
975 	 */
976 	atomic_t	lbr_exclusive[x86_lbr_exclusive_max];
977 
978 	/*
979 	 * Intel perf metrics
980 	 */
981 	int		num_topdown_events;
982 
983 	/*
984 	 * AMD bits
985 	 */
986 	unsigned int	amd_nb_constraints : 1;
987 	u64		perf_ctr_pair_en;
988 
989 	/*
990 	 * Extra registers for events
991 	 */
992 	struct extra_reg *extra_regs;
993 	unsigned int flags;
994 
995 	/*
996 	 * Intel host/guest support (KVM)
997 	 */
998 	struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data);
999 
1000 	/*
1001 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
1002 	 */
1003 	int (*check_period) (struct perf_event *event, u64 period);
1004 
1005 	int (*aux_output_match) (struct perf_event *event);
1006 
1007 	void (*filter)(struct pmu *pmu, int cpu, bool *ret);
1008 	/*
1009 	 * Hybrid support
1010 	 *
1011 	 * Most PMU capabilities are the same among different hybrid PMUs.
1012 	 * The global x86_pmu saves the architecture capabilities, which
1013 	 * are available for all PMUs. The hybrid_pmu only includes the
1014 	 * unique capabilities.
1015 	 */
1016 	int				num_hybrid_pmus;
1017 	struct x86_hybrid_pmu		*hybrid_pmu;
1018 	enum intel_cpu_type (*get_hybrid_cpu_type)	(void);
1019 };
1020 
1021 struct x86_perf_task_context_opt {
1022 	int lbr_callstack_users;
1023 	int lbr_stack_state;
1024 	int log_id;
1025 };
1026 
1027 struct x86_perf_task_context {
1028 	u64 lbr_sel;
1029 	int tos;
1030 	int valid_lbrs;
1031 	struct x86_perf_task_context_opt opt;
1032 	struct lbr_entry lbr[MAX_LBR_ENTRIES];
1033 };
1034 
1035 struct x86_perf_task_context_arch_lbr {
1036 	struct x86_perf_task_context_opt opt;
1037 	struct lbr_entry entries[];
1038 };
1039 
1040 /*
1041  * Add padding to guarantee the 64-byte alignment of the state buffer.
1042  *
1043  * The structure is dynamically allocated. The size of the LBR state may vary
1044  * based on the number of LBR registers.
1045  *
1046  * Do not put anything after the LBR state.
1047  */
1048 struct x86_perf_task_context_arch_lbr_xsave {
1049 	struct x86_perf_task_context_opt		opt;
1050 
1051 	union {
1052 		struct xregs_state			xsave;
1053 		struct {
1054 			struct fxregs_state		i387;
1055 			struct xstate_header		header;
1056 			struct arch_lbr_state		lbr;
1057 		} __attribute__ ((packed, aligned (XSAVE_ALIGNMENT)));
1058 	};
1059 };
1060 
1061 #define x86_add_quirk(func_)						\
1062 do {									\
1063 	static struct x86_pmu_quirk __quirk __initdata = {		\
1064 		.func = func_,						\
1065 	};								\
1066 	__quirk.next = x86_pmu.quirks;					\
1067 	x86_pmu.quirks = &__quirk;					\
1068 } while (0)
1069 
1070 /*
1071  * x86_pmu flags
1072  */
1073 #define PMU_FL_NO_HT_SHARING	0x1 /* no hyper-threading resource sharing */
1074 #define PMU_FL_HAS_RSP_1	0x2 /* has 2 equivalent offcore_rsp regs   */
1075 #define PMU_FL_EXCL_CNTRS	0x4 /* has exclusive counter requirements  */
1076 #define PMU_FL_EXCL_ENABLED	0x8 /* exclusive counter active */
1077 #define PMU_FL_PEBS_ALL		0x10 /* all events are valid PEBS events */
1078 #define PMU_FL_TFA		0x20 /* deal with TSX force abort */
1079 #define PMU_FL_PAIR		0x40 /* merge counters for large incr. events */
1080 #define PMU_FL_INSTR_LATENCY	0x80 /* Support Instruction Latency in PEBS Memory Info Record */
1081 #define PMU_FL_MEM_LOADS_AUX	0x100 /* Require an auxiliary event for the complete memory info */
1082 #define PMU_FL_RETIRE_LATENCY	0x200 /* Support Retire Latency in PEBS */
1083 #define PMU_FL_BR_CNTR		0x400 /* Support branch counter logging */
1084 #define PMU_FL_DYN_CONSTRAINT	0x800 /* Needs dynamic constraint */
1085 
1086 #define EVENT_VAR(_id)  event_attr_##_id
1087 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1088 
1089 #define EVENT_ATTR(_name, _id)						\
1090 static struct perf_pmu_events_attr EVENT_VAR(_id) = {			\
1091 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1092 	.id		= PERF_COUNT_HW_##_id,				\
1093 	.event_str	= NULL,						\
1094 };
1095 
1096 #define EVENT_ATTR_STR(_name, v, str)					\
1097 static struct perf_pmu_events_attr event_attr_##v = {			\
1098 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1099 	.id		= 0,						\
1100 	.event_str	= str,						\
1101 };
1102 
1103 #define EVENT_ATTR_STR_HT(_name, v, noht, ht)				\
1104 static struct perf_pmu_events_ht_attr event_attr_##v = {		\
1105 	.attr		= __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\
1106 	.id		= 0,						\
1107 	.event_str_noht	= noht,						\
1108 	.event_str_ht	= ht,						\
1109 }
1110 
1111 #define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu)			\
1112 static struct perf_pmu_events_hybrid_attr event_attr_##v = {		\
1113 	.attr		= __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\
1114 	.id		= 0,						\
1115 	.event_str	= str,						\
1116 	.pmu_type	= _pmu,						\
1117 }
1118 
1119 #define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr)
1120 
1121 #define FORMAT_ATTR_HYBRID(_name, _pmu)					\
1122 static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\
1123 	.attr		= __ATTR_RO(_name),				\
1124 	.pmu_type	= _pmu,						\
1125 }
1126 
1127 int is_x86_event(struct perf_event *event);
1128 struct pmu *x86_get_pmu(unsigned int cpu);
1129 extern struct x86_pmu x86_pmu __read_mostly;
1130 
1131 DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period);
1132 DECLARE_STATIC_CALL(x86_pmu_update,     *x86_pmu.update);
1133 DECLARE_STATIC_CALL(x86_pmu_drain_pebs,	*x86_pmu.drain_pebs);
1134 DECLARE_STATIC_CALL(x86_pmu_late_setup,	*x86_pmu.late_setup);
1135 DECLARE_STATIC_CALL(x86_pmu_pebs_enable, *x86_pmu.pebs_enable);
1136 DECLARE_STATIC_CALL(x86_pmu_pebs_disable, *x86_pmu.pebs_disable);
1137 DECLARE_STATIC_CALL(x86_pmu_pebs_enable_all, *x86_pmu.pebs_enable_all);
1138 DECLARE_STATIC_CALL(x86_pmu_pebs_disable_all, *x86_pmu.pebs_disable_all);
1139 
task_context_opt(void * ctx)1140 static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx)
1141 {
1142 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
1143 		return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt;
1144 
1145 	return &((struct x86_perf_task_context *)ctx)->opt;
1146 }
1147 
x86_pmu_has_lbr_callstack(void)1148 static inline bool x86_pmu_has_lbr_callstack(void)
1149 {
1150 	return  x86_pmu.lbr_sel_map &&
1151 		x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0;
1152 }
1153 
1154 DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
1155 DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1156 
1157 int x86_perf_event_set_period(struct perf_event *event);
1158 
1159 /*
1160  * Generalized hw caching related hw_event table, filled
1161  * in on a per model basis. A value of 0 means
1162  * 'not supported', -1 means 'hw_event makes no sense on
1163  * this CPU', any other value means the raw hw_event
1164  * ID.
1165  */
1166 
1167 #define C(x) PERF_COUNT_HW_CACHE_##x
1168 
1169 extern u64 __read_mostly hw_cache_event_ids
1170 				[PERF_COUNT_HW_CACHE_MAX]
1171 				[PERF_COUNT_HW_CACHE_OP_MAX]
1172 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1173 extern u64 __read_mostly hw_cache_extra_regs
1174 				[PERF_COUNT_HW_CACHE_MAX]
1175 				[PERF_COUNT_HW_CACHE_OP_MAX]
1176 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1177 
1178 u64 x86_perf_event_update(struct perf_event *event);
1179 
intel_pmu_topdown_event_update(struct perf_event * event,u64 * val)1180 static inline u64 intel_pmu_topdown_event_update(struct perf_event *event, u64 *val)
1181 {
1182 	return x86_perf_event_update(event);
1183 }
1184 DECLARE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
1185 
x86_pmu_config_addr(int index)1186 static inline unsigned int x86_pmu_config_addr(int index)
1187 {
1188 	return x86_pmu.eventsel + (x86_pmu.addr_offset ?
1189 				   x86_pmu.addr_offset(index, true) : index);
1190 }
1191 
x86_pmu_event_addr(int index)1192 static inline unsigned int x86_pmu_event_addr(int index)
1193 {
1194 	return x86_pmu.perfctr + (x86_pmu.addr_offset ?
1195 				  x86_pmu.addr_offset(index, false) : index);
1196 }
1197 
x86_pmu_fixed_ctr_addr(int index)1198 static inline unsigned int x86_pmu_fixed_ctr_addr(int index)
1199 {
1200 	return x86_pmu.fixedctr + (x86_pmu.addr_offset ?
1201 				   x86_pmu.addr_offset(index, false) : index);
1202 }
1203 
x86_pmu_rdpmc_index(int index)1204 static inline int x86_pmu_rdpmc_index(int index)
1205 {
1206 	return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
1207 }
1208 
1209 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
1210 		     unsigned long *fixed_cntr_mask);
1211 
1212 int x86_add_exclusive(unsigned int what);
1213 
1214 void x86_del_exclusive(unsigned int what);
1215 
1216 int x86_reserve_hardware(void);
1217 
1218 void x86_release_hardware(void);
1219 
1220 int x86_pmu_max_precise(void);
1221 
1222 void hw_perf_lbr_event_destroy(struct perf_event *event);
1223 
1224 int x86_setup_perfctr(struct perf_event *event);
1225 
1226 int x86_pmu_hw_config(struct perf_event *event);
1227 
1228 void x86_pmu_disable_all(void);
1229 
has_amd_brs(struct hw_perf_event * hwc)1230 static inline bool has_amd_brs(struct hw_perf_event *hwc)
1231 {
1232 	return hwc->flags & PERF_X86_EVENT_AMD_BRS;
1233 }
1234 
is_counter_pair(struct hw_perf_event * hwc)1235 static inline bool is_counter_pair(struct hw_perf_event *hwc)
1236 {
1237 	return hwc->flags & PERF_X86_EVENT_PAIR;
1238 }
1239 
__x86_pmu_enable_event(struct hw_perf_event * hwc,u64 enable_mask)1240 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
1241 					  u64 enable_mask)
1242 {
1243 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1244 
1245 	if (hwc->extra_reg.reg)
1246 		wrmsrq(hwc->extra_reg.reg, hwc->extra_reg.config);
1247 
1248 	/*
1249 	 * Add enabled Merge event on next counter
1250 	 * if large increment event being enabled on this counter
1251 	 */
1252 	if (is_counter_pair(hwc))
1253 		wrmsrq(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en);
1254 
1255 	wrmsrq(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
1256 }
1257 
1258 void x86_pmu_enable_all(int added);
1259 
1260 int perf_assign_events(struct event_constraint **constraints, int n,
1261 			int wmin, int wmax, int gpmax, int *assign);
1262 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
1263 
1264 void x86_pmu_stop(struct perf_event *event, int flags);
1265 
x86_pmu_disable_event(struct perf_event * event)1266 static inline void x86_pmu_disable_event(struct perf_event *event)
1267 {
1268 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1269 	struct hw_perf_event *hwc = &event->hw;
1270 
1271 	wrmsrq(hwc->config_base, hwc->config & ~disable_mask);
1272 
1273 	if (is_counter_pair(hwc))
1274 		wrmsrq(x86_pmu_config_addr(hwc->idx + 1), 0);
1275 }
1276 
1277 void x86_pmu_enable_event(struct perf_event *event);
1278 
1279 int x86_pmu_handle_irq(struct pt_regs *regs);
1280 
1281 void x86_pmu_show_pmu_cap(struct pmu *pmu);
1282 
x86_pmu_num_counters(struct pmu * pmu)1283 static inline int x86_pmu_num_counters(struct pmu *pmu)
1284 {
1285 	return hweight64(hybrid(pmu, cntr_mask64));
1286 }
1287 
x86_pmu_max_num_counters(struct pmu * pmu)1288 static inline int x86_pmu_max_num_counters(struct pmu *pmu)
1289 {
1290 	return fls64(hybrid(pmu, cntr_mask64));
1291 }
1292 
x86_pmu_num_counters_fixed(struct pmu * pmu)1293 static inline int x86_pmu_num_counters_fixed(struct pmu *pmu)
1294 {
1295 	return hweight64(hybrid(pmu, fixed_cntr_mask64));
1296 }
1297 
x86_pmu_max_num_counters_fixed(struct pmu * pmu)1298 static inline int x86_pmu_max_num_counters_fixed(struct pmu *pmu)
1299 {
1300 	return fls64(hybrid(pmu, fixed_cntr_mask64));
1301 }
1302 
x86_pmu_get_event_config(struct perf_event * event)1303 static inline u64 x86_pmu_get_event_config(struct perf_event *event)
1304 {
1305 	return event->attr.config & hybrid(event->pmu, config_mask);
1306 }
1307 
1308 extern struct event_constraint emptyconstraint;
1309 
1310 extern struct event_constraint unconstrained;
1311 
kernel_ip(unsigned long ip)1312 static inline bool kernel_ip(unsigned long ip)
1313 {
1314 #ifdef CONFIG_X86_32
1315 	return ip > PAGE_OFFSET;
1316 #else
1317 	return (long)ip < 0;
1318 #endif
1319 }
1320 
1321 /*
1322  * Not all PMUs provide the right context information to place the reported IP
1323  * into full context. Specifically segment registers are typically not
1324  * supplied.
1325  *
1326  * Assuming the address is a linear address (it is for IBS), we fake the CS and
1327  * vm86 mode using the known zero-based code segment and 'fix up' the registers
1328  * to reflect this.
1329  *
1330  * Intel PEBS/LBR appear to typically provide the effective address, nothing
1331  * much we can do about that but pray and treat it like a linear address.
1332  */
set_linear_ip(struct pt_regs * regs,unsigned long ip)1333 static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
1334 {
1335 	regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
1336 	if (regs->flags & X86_VM_MASK)
1337 		regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
1338 	regs->ip = ip;
1339 }
1340 
1341 /*
1342  * x86control flow change classification
1343  * x86control flow changes include branches, interrupts, traps, faults
1344  */
1345 enum {
1346 	X86_BR_NONE		= 0,      /* unknown */
1347 
1348 	X86_BR_USER		= 1 << 0, /* branch target is user */
1349 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
1350 
1351 	X86_BR_CALL		= 1 << 2, /* call */
1352 	X86_BR_RET		= 1 << 3, /* return */
1353 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
1354 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
1355 	X86_BR_INT		= 1 << 6, /* sw interrupt */
1356 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
1357 	X86_BR_JCC		= 1 << 8, /* conditional */
1358 	X86_BR_JMP		= 1 << 9, /* jump */
1359 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
1360 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
1361 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
1362 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
1363 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
1364 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
1365 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
1366 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
1367 
1368 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
1369 
1370 };
1371 
1372 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
1373 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
1374 
1375 #define X86_BR_ANY       \
1376 	(X86_BR_CALL    |\
1377 	 X86_BR_RET     |\
1378 	 X86_BR_SYSCALL |\
1379 	 X86_BR_SYSRET  |\
1380 	 X86_BR_INT     |\
1381 	 X86_BR_IRET    |\
1382 	 X86_BR_JCC     |\
1383 	 X86_BR_JMP	 |\
1384 	 X86_BR_IRQ	 |\
1385 	 X86_BR_ABORT	 |\
1386 	 X86_BR_IND_CALL |\
1387 	 X86_BR_IND_JMP  |\
1388 	 X86_BR_ZERO_CALL)
1389 
1390 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
1391 
1392 #define X86_BR_ANY_CALL		 \
1393 	(X86_BR_CALL		|\
1394 	 X86_BR_IND_CALL	|\
1395 	 X86_BR_ZERO_CALL	|\
1396 	 X86_BR_SYSCALL		|\
1397 	 X86_BR_IRQ		|\
1398 	 X86_BR_INT)
1399 
1400 int common_branch_type(int type);
1401 int branch_type(unsigned long from, unsigned long to, int abort);
1402 int branch_type_fused(unsigned long from, unsigned long to, int abort,
1403 		      int *offset);
1404 
1405 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
1406 ssize_t intel_event_sysfs_show(char *page, u64 config);
1407 
1408 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1409 			  char *page);
1410 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1411 			  char *page);
1412 ssize_t events_hybrid_sysfs_show(struct device *dev,
1413 				 struct device_attribute *attr,
1414 				 char *page);
1415 
fixed_counter_disabled(int i,struct pmu * pmu)1416 static inline bool fixed_counter_disabled(int i, struct pmu *pmu)
1417 {
1418 	u64 intel_ctrl = hybrid(pmu, intel_ctrl);
1419 
1420 	return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED));
1421 }
1422 
1423 #ifdef CONFIG_CPU_SUP_AMD
1424 
1425 int amd_pmu_init(void);
1426 
1427 int amd_pmu_lbr_init(void);
1428 void amd_pmu_lbr_reset(void);
1429 void amd_pmu_lbr_read(void);
1430 void amd_pmu_lbr_add(struct perf_event *event);
1431 void amd_pmu_lbr_del(struct perf_event *event);
1432 void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
1433 			    struct task_struct *task, bool sched_in);
1434 void amd_pmu_lbr_enable_all(void);
1435 void amd_pmu_lbr_disable_all(void);
1436 int amd_pmu_lbr_hw_config(struct perf_event *event);
1437 
__amd_pmu_lbr_disable(void)1438 static __always_inline void __amd_pmu_lbr_disable(void)
1439 {
1440 	u64 dbg_ctl, dbg_extn_cfg;
1441 
1442 	rdmsrq(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg);
1443 	wrmsrq(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg & ~DBG_EXTN_CFG_LBRV2EN);
1444 
1445 	if (cpu_feature_enabled(X86_FEATURE_AMD_LBR_PMC_FREEZE)) {
1446 		rdmsrq(MSR_IA32_DEBUGCTLMSR, dbg_ctl);
1447 		wrmsrq(MSR_IA32_DEBUGCTLMSR, dbg_ctl & ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1448 	}
1449 }
1450 
1451 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1452 
1453 #define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */
1454 
1455 int amd_brs_init(void);
1456 void amd_brs_disable(void);
1457 void amd_brs_enable(void);
1458 void amd_brs_enable_all(void);
1459 void amd_brs_disable_all(void);
1460 void amd_brs_drain(void);
1461 void amd_brs_lopwr_init(void);
1462 int amd_brs_hw_config(struct perf_event *event);
1463 void amd_brs_reset(void);
1464 
amd_pmu_brs_add(struct perf_event * event)1465 static inline void amd_pmu_brs_add(struct perf_event *event)
1466 {
1467 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1468 
1469 	perf_sched_cb_inc(event->pmu);
1470 	cpuc->lbr_users++;
1471 	/*
1472 	 * No need to reset BRS because it is reset
1473 	 * on brs_enable() and it is saturating
1474 	 */
1475 }
1476 
amd_pmu_brs_del(struct perf_event * event)1477 static inline void amd_pmu_brs_del(struct perf_event *event)
1478 {
1479 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1480 
1481 	cpuc->lbr_users--;
1482 	WARN_ON_ONCE(cpuc->lbr_users < 0);
1483 
1484 	perf_sched_cb_dec(event->pmu);
1485 }
1486 
1487 void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx,
1488 			    struct task_struct *task, bool sched_in);
1489 #else
amd_brs_init(void)1490 static inline int amd_brs_init(void)
1491 {
1492 	return 0;
1493 }
amd_brs_disable(void)1494 static inline void amd_brs_disable(void) {}
amd_brs_enable(void)1495 static inline void amd_brs_enable(void) {}
amd_brs_drain(void)1496 static inline void amd_brs_drain(void) {}
amd_brs_lopwr_init(void)1497 static inline void amd_brs_lopwr_init(void) {}
amd_brs_disable_all(void)1498 static inline void amd_brs_disable_all(void) {}
amd_brs_hw_config(struct perf_event * event)1499 static inline int amd_brs_hw_config(struct perf_event *event)
1500 {
1501 	return 0;
1502 }
amd_brs_reset(void)1503 static inline void amd_brs_reset(void) {}
1504 
amd_pmu_brs_add(struct perf_event * event)1505 static inline void amd_pmu_brs_add(struct perf_event *event)
1506 {
1507 }
1508 
amd_pmu_brs_del(struct perf_event * event)1509 static inline void amd_pmu_brs_del(struct perf_event *event)
1510 {
1511 }
1512 
amd_pmu_brs_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)1513 static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx,
1514 					  struct task_struct *task, bool sched_in)
1515 {
1516 }
1517 
amd_brs_enable_all(void)1518 static inline void amd_brs_enable_all(void)
1519 {
1520 }
1521 
1522 #endif
1523 
1524 #else /* CONFIG_CPU_SUP_AMD */
1525 
amd_pmu_init(void)1526 static inline int amd_pmu_init(void)
1527 {
1528 	return 0;
1529 }
1530 
amd_brs_init(void)1531 static inline int amd_brs_init(void)
1532 {
1533 	return -EOPNOTSUPP;
1534 }
1535 
amd_brs_drain(void)1536 static inline void amd_brs_drain(void)
1537 {
1538 }
1539 
amd_brs_enable_all(void)1540 static inline void amd_brs_enable_all(void)
1541 {
1542 }
1543 
amd_brs_disable_all(void)1544 static inline void amd_brs_disable_all(void)
1545 {
1546 }
1547 #endif /* CONFIG_CPU_SUP_AMD */
1548 
is_pebs_pt(struct perf_event * event)1549 static inline int is_pebs_pt(struct perf_event *event)
1550 {
1551 	return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT);
1552 }
1553 
1554 #ifdef CONFIG_CPU_SUP_INTEL
1555 
intel_pmu_has_bts_period(struct perf_event * event,u64 period)1556 static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period)
1557 {
1558 	struct hw_perf_event *hwc = &event->hw;
1559 	unsigned int hw_event, bts_event;
1560 
1561 	if (event->attr.freq)
1562 		return false;
1563 
1564 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1565 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1566 
1567 	return hw_event == bts_event && period == 1;
1568 }
1569 
intel_pmu_has_bts(struct perf_event * event)1570 static inline bool intel_pmu_has_bts(struct perf_event *event)
1571 {
1572 	struct hw_perf_event *hwc = &event->hw;
1573 
1574 	return intel_pmu_has_bts_period(event, hwc->sample_period);
1575 }
1576 
__intel_pmu_pebs_disable_all(void)1577 static __always_inline void __intel_pmu_pebs_disable_all(void)
1578 {
1579 	wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1580 }
1581 
__intel_pmu_arch_lbr_disable(void)1582 static __always_inline void __intel_pmu_arch_lbr_disable(void)
1583 {
1584 	wrmsrq(MSR_ARCH_LBR_CTL, 0);
1585 }
1586 
__intel_pmu_lbr_disable(void)1587 static __always_inline void __intel_pmu_lbr_disable(void)
1588 {
1589 	u64 debugctl;
1590 
1591 	rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
1592 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1593 	wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
1594 }
1595 
1596 int intel_pmu_save_and_restart(struct perf_event *event);
1597 
1598 struct event_constraint *
1599 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1600 			  struct perf_event *event);
1601 
1602 extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
1603 extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
1604 
1605 int intel_pmu_init(void);
1606 
1607 void init_debug_store_on_cpu(int cpu);
1608 
1609 void fini_debug_store_on_cpu(int cpu);
1610 
1611 void release_ds_buffers(void);
1612 
1613 void reserve_ds_buffers(void);
1614 
1615 void release_lbr_buffers(void);
1616 
1617 void reserve_lbr_buffers(void);
1618 
1619 extern struct event_constraint bts_constraint;
1620 extern struct event_constraint vlbr_constraint;
1621 
1622 void intel_pmu_enable_bts(u64 config);
1623 
1624 void intel_pmu_disable_bts(void);
1625 
1626 int intel_pmu_drain_bts_buffer(void);
1627 
1628 void intel_pmu_late_setup(void);
1629 
1630 u64 grt_latency_data(struct perf_event *event, u64 status);
1631 
1632 u64 cmt_latency_data(struct perf_event *event, u64 status);
1633 
1634 u64 lnl_latency_data(struct perf_event *event, u64 status);
1635 
1636 u64 arl_h_latency_data(struct perf_event *event, u64 status);
1637 
1638 extern struct event_constraint intel_core2_pebs_event_constraints[];
1639 
1640 extern struct event_constraint intel_atom_pebs_event_constraints[];
1641 
1642 extern struct event_constraint intel_slm_pebs_event_constraints[];
1643 
1644 extern struct event_constraint intel_glm_pebs_event_constraints[];
1645 
1646 extern struct event_constraint intel_glp_pebs_event_constraints[];
1647 
1648 extern struct event_constraint intel_grt_pebs_event_constraints[];
1649 
1650 extern struct event_constraint intel_nehalem_pebs_event_constraints[];
1651 
1652 extern struct event_constraint intel_westmere_pebs_event_constraints[];
1653 
1654 extern struct event_constraint intel_snb_pebs_event_constraints[];
1655 
1656 extern struct event_constraint intel_ivb_pebs_event_constraints[];
1657 
1658 extern struct event_constraint intel_hsw_pebs_event_constraints[];
1659 
1660 extern struct event_constraint intel_bdw_pebs_event_constraints[];
1661 
1662 extern struct event_constraint intel_skl_pebs_event_constraints[];
1663 
1664 extern struct event_constraint intel_icl_pebs_event_constraints[];
1665 
1666 extern struct event_constraint intel_glc_pebs_event_constraints[];
1667 
1668 extern struct event_constraint intel_lnc_pebs_event_constraints[];
1669 
1670 struct event_constraint *intel_pebs_constraints(struct perf_event *event);
1671 
1672 void intel_pmu_pebs_add(struct perf_event *event);
1673 
1674 void intel_pmu_pebs_del(struct perf_event *event);
1675 
1676 void intel_pmu_pebs_enable(struct perf_event *event);
1677 
1678 void intel_pmu_pebs_disable(struct perf_event *event);
1679 
1680 void intel_pmu_pebs_enable_all(void);
1681 
1682 void intel_pmu_pebs_disable_all(void);
1683 
1684 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1685 
1686 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc);
1687 
1688 void intel_pmu_drain_pebs_buffer(void);
1689 
1690 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr);
1691 
1692 void intel_pebs_init(void);
1693 
1694 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
1695 				struct cpu_hw_events *cpuc,
1696 				struct perf_event *event);
1697 
1698 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
1699 			      struct task_struct *task, bool sched_in);
1700 
1701 u64 lbr_from_signext_quirk_wr(u64 val);
1702 
1703 void intel_pmu_lbr_reset(void);
1704 
1705 void intel_pmu_lbr_reset_32(void);
1706 
1707 void intel_pmu_lbr_reset_64(void);
1708 
1709 void intel_pmu_lbr_add(struct perf_event *event);
1710 
1711 void intel_pmu_lbr_del(struct perf_event *event);
1712 
1713 void intel_pmu_lbr_enable_all(bool pmi);
1714 
1715 void intel_pmu_lbr_disable_all(void);
1716 
1717 void intel_pmu_lbr_read(void);
1718 
1719 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc);
1720 
1721 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc);
1722 
1723 void intel_pmu_lbr_save(void *ctx);
1724 
1725 void intel_pmu_lbr_restore(void *ctx);
1726 
1727 void intel_pmu_lbr_init_core(void);
1728 
1729 void intel_pmu_lbr_init_nhm(void);
1730 
1731 void intel_pmu_lbr_init_atom(void);
1732 
1733 void intel_pmu_lbr_init_slm(void);
1734 
1735 void intel_pmu_lbr_init_snb(void);
1736 
1737 void intel_pmu_lbr_init_hsw(void);
1738 
1739 void intel_pmu_lbr_init_skl(void);
1740 
1741 void intel_pmu_lbr_init_knl(void);
1742 
1743 void intel_pmu_lbr_init(void);
1744 
1745 void intel_pmu_arch_lbr_init(void);
1746 
1747 void intel_pmu_pebs_data_source_nhm(void);
1748 
1749 void intel_pmu_pebs_data_source_skl(bool pmem);
1750 
1751 void intel_pmu_pebs_data_source_adl(void);
1752 
1753 void intel_pmu_pebs_data_source_grt(void);
1754 
1755 void intel_pmu_pebs_data_source_mtl(void);
1756 
1757 void intel_pmu_pebs_data_source_arl_h(void);
1758 
1759 void intel_pmu_pebs_data_source_cmt(void);
1760 
1761 void intel_pmu_pebs_data_source_lnl(void);
1762 
1763 int intel_pmu_setup_lbr_filter(struct perf_event *event);
1764 
1765 void intel_pt_interrupt(void);
1766 
1767 int intel_bts_interrupt(void);
1768 
1769 void intel_bts_enable_local(void);
1770 
1771 void intel_bts_disable_local(void);
1772 
1773 int p4_pmu_init(void);
1774 
1775 int p6_pmu_init(void);
1776 
1777 int knc_pmu_init(void);
1778 
is_ht_workaround_enabled(void)1779 static inline int is_ht_workaround_enabled(void)
1780 {
1781 	return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED);
1782 }
1783 
intel_pmu_pebs_mask(u64 cntr_mask)1784 static inline u64 intel_pmu_pebs_mask(u64 cntr_mask)
1785 {
1786 	return MAX_PEBS_EVENTS_MASK & cntr_mask;
1787 }
1788 
intel_pmu_max_num_pebs(struct pmu * pmu)1789 static inline int intel_pmu_max_num_pebs(struct pmu *pmu)
1790 {
1791 	static_assert(MAX_PEBS_EVENTS == 32);
1792 	return fls((u32)hybrid(pmu, pebs_events_mask));
1793 }
1794 
1795 #else /* CONFIG_CPU_SUP_INTEL */
1796 
reserve_ds_buffers(void)1797 static inline void reserve_ds_buffers(void)
1798 {
1799 }
1800 
release_ds_buffers(void)1801 static inline void release_ds_buffers(void)
1802 {
1803 }
1804 
release_lbr_buffers(void)1805 static inline void release_lbr_buffers(void)
1806 {
1807 }
1808 
reserve_lbr_buffers(void)1809 static inline void reserve_lbr_buffers(void)
1810 {
1811 }
1812 
intel_pmu_init(void)1813 static inline int intel_pmu_init(void)
1814 {
1815 	return 0;
1816 }
1817 
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)1818 static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
1819 {
1820 	return 0;
1821 }
1822 
intel_cpuc_finish(struct cpu_hw_events * cpuc)1823 static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
1824 {
1825 }
1826 
is_ht_workaround_enabled(void)1827 static inline int is_ht_workaround_enabled(void)
1828 {
1829 	return 0;
1830 }
1831 #endif /* CONFIG_CPU_SUP_INTEL */
1832 
1833 #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN))
1834 int zhaoxin_pmu_init(void);
1835 #else
zhaoxin_pmu_init(void)1836 static inline int zhaoxin_pmu_init(void)
1837 {
1838 	return 0;
1839 }
1840 #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/
1841