1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/vfp/vfpmodule.c
4 *
5 * Copyright (C) 2004 ARM Limited.
6 * Written by Deep Blue Solutions Limited.
7 */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30
31 #include "vfpinstr.h"
32 #include "vfp.h"
33
34 static bool have_vfp __ro_after_init;
35
36 /*
37 * Dual-use variable.
38 * Used in startup: set to non-zero if VFP checks fail
39 * After startup, holds VFP architecture
40 */
41 static unsigned int VFP_arch;
42
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46
47 /*
48 * The pointer to the vfpstate structure of the thread which currently
49 * owns the context held in the VFP hardware, or NULL if the hardware
50 * context is invalid.
51 *
52 * For UP, this is sufficient to tell which thread owns the VFP context.
53 * However, for SMP, we also need to check the CPU number stored in the
54 * saved state too to catch migrations.
55 */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58 /*
59 * Is 'thread's most up to date state stored in this CPUs hardware?
60 * Must be called from non-preemptible context.
61 */
vfp_state_in_hw(unsigned int cpu,struct thread_info * thread)62 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63 {
64 #ifdef CONFIG_SMP
65 if (thread->vfpstate.hard.cpu != cpu)
66 return false;
67 #endif
68 return vfp_current_hw_state[cpu] == &thread->vfpstate;
69 }
70
71 /*
72 * Force a reload of the VFP context from the thread structure. We do
73 * this by ensuring that access to the VFP hardware is disabled, and
74 * clear vfp_current_hw_state. Must be called from non-preemptible context.
75 */
vfp_force_reload(unsigned int cpu,struct thread_info * thread)76 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77 {
78 if (vfp_state_in_hw(cpu, thread)) {
79 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80 vfp_current_hw_state[cpu] = NULL;
81 }
82 #ifdef CONFIG_SMP
83 thread->vfpstate.hard.cpu = NR_CPUS;
84 #endif
85 }
86
87 /*
88 * Per-thread VFP initialization.
89 */
vfp_thread_flush(struct thread_info * thread)90 static void vfp_thread_flush(struct thread_info *thread)
91 {
92 union vfp_state *vfp = &thread->vfpstate;
93 unsigned int cpu;
94
95 /*
96 * Disable VFP to ensure we initialize it first. We must ensure
97 * that the modification of vfp_current_hw_state[] and hardware
98 * disable are done for the same CPU and without preemption.
99 *
100 * Do this first to ensure that preemption won't overwrite our
101 * state saving should access to the VFP be enabled at this point.
102 */
103 cpu = get_cpu();
104 if (vfp_current_hw_state[cpu] == vfp)
105 vfp_current_hw_state[cpu] = NULL;
106 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107 put_cpu();
108
109 memset(vfp, 0, sizeof(union vfp_state));
110
111 vfp->hard.fpexc = FPEXC_EN;
112 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113 #ifdef CONFIG_SMP
114 vfp->hard.cpu = NR_CPUS;
115 #endif
116 }
117
vfp_thread_exit(struct thread_info * thread)118 static void vfp_thread_exit(struct thread_info *thread)
119 {
120 /* release case: Per-thread VFP cleanup. */
121 union vfp_state *vfp = &thread->vfpstate;
122 unsigned int cpu = get_cpu();
123
124 if (vfp_current_hw_state[cpu] == vfp)
125 vfp_current_hw_state[cpu] = NULL;
126 put_cpu();
127 }
128
vfp_thread_copy(struct thread_info * thread)129 static void vfp_thread_copy(struct thread_info *thread)
130 {
131 struct thread_info *parent = current_thread_info();
132
133 vfp_sync_hwstate(parent);
134 thread->vfpstate = parent->vfpstate;
135 #ifdef CONFIG_SMP
136 thread->vfpstate.hard.cpu = NR_CPUS;
137 #endif
138 }
139
140 /*
141 * When this function is called with the following 'cmd's, the following
142 * is true while this function is being run:
143 * THREAD_NOFTIFY_SWTICH:
144 * - the previously running thread will not be scheduled onto another CPU.
145 * - the next thread to be run (v) will not be running on another CPU.
146 * - thread->cpu is the local CPU number
147 * - not preemptible as we're called in the middle of a thread switch
148 * THREAD_NOTIFY_FLUSH:
149 * - the thread (v) will be running on the local CPU, so
150 * v === current_thread_info()
151 * - thread->cpu is the local CPU number at the time it is accessed,
152 * but may change at any time.
153 * - we could be preempted if tree preempt rcu is enabled, so
154 * it is unsafe to use thread->cpu.
155 * THREAD_NOTIFY_EXIT
156 * - we could be preempted if tree preempt rcu is enabled, so
157 * it is unsafe to use thread->cpu.
158 */
vfp_notifier(struct notifier_block * self,unsigned long cmd,void * v)159 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160 {
161 struct thread_info *thread = v;
162 u32 fpexc;
163 #ifdef CONFIG_SMP
164 unsigned int cpu;
165 #endif
166
167 switch (cmd) {
168 case THREAD_NOTIFY_SWITCH:
169 fpexc = fmrx(FPEXC);
170
171 #ifdef CONFIG_SMP
172 cpu = thread->cpu;
173
174 /*
175 * On SMP, if VFP is enabled, save the old state in
176 * case the thread migrates to a different CPU. The
177 * restoring is done lazily.
178 */
179 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181 #endif
182
183 /*
184 * Always disable VFP so we can lazily save/restore the
185 * old state.
186 */
187 fmxr(FPEXC, fpexc & ~FPEXC_EN);
188 break;
189
190 case THREAD_NOTIFY_FLUSH:
191 vfp_thread_flush(thread);
192 break;
193
194 case THREAD_NOTIFY_EXIT:
195 vfp_thread_exit(thread);
196 break;
197
198 case THREAD_NOTIFY_COPY:
199 vfp_thread_copy(thread);
200 break;
201 }
202
203 return NOTIFY_DONE;
204 }
205
206 static struct notifier_block vfp_notifier_block = {
207 .notifier_call = vfp_notifier,
208 };
209
210 /*
211 * Raise a SIGFPE for the current process.
212 * sicode describes the signal being raised.
213 */
vfp_raise_sigfpe(unsigned int sicode,struct pt_regs * regs)214 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215 {
216 /*
217 * This is the same as NWFPE, because it's not clear what
218 * this is used for
219 */
220 current->thread.error_code = 0;
221 current->thread.trap_no = 6;
222
223 send_sig_fault(SIGFPE, sicode,
224 (void __user *)(instruction_pointer(regs) - 4),
225 current);
226 }
227
vfp_panic(char * reason,u32 inst)228 static void vfp_panic(char *reason, u32 inst)
229 {
230 int i;
231
232 pr_err("VFP: Error: %s\n", reason);
233 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234 fmrx(FPEXC), fmrx(FPSCR), inst);
235 for (i = 0; i < 32; i += 2)
236 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238 }
239
240 /*
241 * Process bitmask of exception conditions.
242 */
vfp_raise_exceptions(u32 exceptions,u32 inst,u32 fpscr,struct pt_regs * regs)243 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244 {
245 int si_code = 0;
246
247 pr_debug("VFP: raising exceptions %08x\n", exceptions);
248
249 if (exceptions == VFP_EXCEPTION_ERROR) {
250 vfp_panic("unhandled bounce", inst);
251 vfp_raise_sigfpe(FPE_FLTINV, regs);
252 return;
253 }
254
255 /*
256 * If any of the status flags are set, update the FPSCR.
257 * Comparison instructions always return at least one of
258 * these flags set.
259 */
260 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262
263 fpscr |= exceptions;
264
265 fmxr(FPSCR, fpscr);
266
267 #define RAISE(stat,en,sig) \
268 if (exceptions & stat && fpscr & en) \
269 si_code = sig;
270
271 /*
272 * These are arranged in priority order, least to highest.
273 */
274 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279
280 if (si_code)
281 vfp_raise_sigfpe(si_code, regs);
282 }
283
284 /*
285 * Emulate a VFP instruction.
286 */
vfp_emulate_instruction(u32 inst,u32 fpscr,struct pt_regs * regs)287 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288 {
289 u32 exceptions = VFP_EXCEPTION_ERROR;
290
291 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292
293 if (INST_CPRTDO(inst)) {
294 if (!INST_CPRT(inst)) {
295 /*
296 * CPDO
297 */
298 if (vfp_single(inst)) {
299 exceptions = vfp_single_cpdo(inst, fpscr);
300 } else {
301 exceptions = vfp_double_cpdo(inst, fpscr);
302 }
303 } else {
304 /*
305 * A CPRT instruction can not appear in FPINST2, nor
306 * can it cause an exception. Therefore, we do not
307 * have to emulate it.
308 */
309 }
310 } else {
311 /*
312 * A CPDT instruction can not appear in FPINST2, nor can
313 * it cause an exception. Therefore, we do not have to
314 * emulate it.
315 */
316 }
317 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
318 return exceptions & ~VFP_NAN_FLAG;
319 }
320
321 /*
322 * Package up a bounce condition.
323 */
VFP_bounce(u32 trigger,u32 fpexc,struct pt_regs * regs)324 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
325 {
326 u32 fpscr, orig_fpscr, fpsid, exceptions;
327
328 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
329
330 /*
331 * At this point, FPEXC can have the following configuration:
332 *
333 * EX DEX IXE
334 * 0 1 x - synchronous exception
335 * 1 x 0 - asynchronous exception
336 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
337 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
338 * implementation), undefined otherwise
339 *
340 * Clear various bits and enable access to the VFP so we can
341 * handle the bounce.
342 */
343 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
344
345 fpsid = fmrx(FPSID);
346 orig_fpscr = fpscr = fmrx(FPSCR);
347
348 /*
349 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
350 */
351 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
352 && (fpscr & FPSCR_IXE)) {
353 /*
354 * Synchronous exception, emulate the trigger instruction
355 */
356 goto emulate;
357 }
358
359 if (fpexc & FPEXC_EX) {
360 /*
361 * Asynchronous exception. The instruction is read from FPINST
362 * and the interrupted instruction has to be restarted.
363 */
364 trigger = fmrx(FPINST);
365 regs->ARM_pc -= 4;
366 } else if (!(fpexc & FPEXC_DEX)) {
367 /*
368 * Illegal combination of bits. It can be caused by an
369 * unallocated VFP instruction but with FPSCR.IXE set and not
370 * on VFP subarch 1.
371 */
372 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
373 return;
374 }
375
376 /*
377 * Modify fpscr to indicate the number of iterations remaining.
378 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
379 * whether FPEXC.VECITR or FPSCR.LEN is used.
380 */
381 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
382 u32 len;
383
384 len = fpexc + (1 << FPEXC_LENGTH_BIT);
385
386 fpscr &= ~FPSCR_LENGTH_MASK;
387 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
388 }
389
390 /*
391 * Handle the first FP instruction. We used to take note of the
392 * FPEXC bounce reason, but this appears to be unreliable.
393 * Emulate the bounced instruction instead.
394 */
395 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
396 if (exceptions)
397 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
398
399 /*
400 * If there isn't a second FP instruction, exit now. Note that
401 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
402 */
403 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
404 return;
405
406 /*
407 * The barrier() here prevents fpinst2 being read
408 * before the condition above.
409 */
410 barrier();
411 trigger = fmrx(FPINST2);
412
413 emulate:
414 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
415 if (exceptions)
416 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417 }
418
vfp_enable(void * unused)419 static void vfp_enable(void *unused)
420 {
421 u32 access;
422
423 BUG_ON(preemptible());
424 access = get_copro_access();
425
426 /*
427 * Enable full access to VFP (cp10 and cp11)
428 */
429 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
430 }
431
432 /* Called by platforms on which we want to disable VFP because it may not be
433 * present on all CPUs within a SMP complex. Needs to be called prior to
434 * vfp_init().
435 */
vfp_disable(void)436 void __init vfp_disable(void)
437 {
438 if (VFP_arch) {
439 pr_debug("%s: should be called prior to vfp_init\n", __func__);
440 return;
441 }
442 VFP_arch = 1;
443 }
444
445 #ifdef CONFIG_CPU_PM
vfp_pm_suspend(void)446 static int vfp_pm_suspend(void)
447 {
448 struct thread_info *ti = current_thread_info();
449 u32 fpexc = fmrx(FPEXC);
450
451 /* if vfp is on, then save state for resumption */
452 if (fpexc & FPEXC_EN) {
453 pr_debug("%s: saving vfp state\n", __func__);
454 vfp_save_state(&ti->vfpstate, fpexc);
455
456 /* disable, just in case */
457 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
458 } else if (vfp_current_hw_state[ti->cpu]) {
459 #ifndef CONFIG_SMP
460 fmxr(FPEXC, fpexc | FPEXC_EN);
461 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
462 fmxr(FPEXC, fpexc);
463 #endif
464 }
465
466 /* clear any information we had about last context state */
467 vfp_current_hw_state[ti->cpu] = NULL;
468
469 return 0;
470 }
471
vfp_pm_resume(void)472 static void vfp_pm_resume(void)
473 {
474 /* ensure we have access to the vfp */
475 vfp_enable(NULL);
476
477 /* and disable it to ensure the next usage restores the state */
478 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
479 }
480
vfp_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)481 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
482 void *v)
483 {
484 switch (cmd) {
485 case CPU_PM_ENTER:
486 vfp_pm_suspend();
487 break;
488 case CPU_PM_ENTER_FAILED:
489 case CPU_PM_EXIT:
490 vfp_pm_resume();
491 break;
492 }
493 return NOTIFY_OK;
494 }
495
496 static struct notifier_block vfp_cpu_pm_notifier_block = {
497 .notifier_call = vfp_cpu_pm_notifier,
498 };
499
vfp_pm_init(void)500 static void vfp_pm_init(void)
501 {
502 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
503 }
504
505 #else
vfp_pm_init(void)506 static inline void vfp_pm_init(void) { }
507 #endif /* CONFIG_CPU_PM */
508
509 /*
510 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
511 * with the hardware state.
512 */
vfp_sync_hwstate(struct thread_info * thread)513 void vfp_sync_hwstate(struct thread_info *thread)
514 {
515 unsigned int cpu = get_cpu();
516
517 local_bh_disable();
518
519 if (vfp_state_in_hw(cpu, thread)) {
520 u32 fpexc = fmrx(FPEXC);
521
522 /*
523 * Save the last VFP state on this CPU.
524 */
525 fmxr(FPEXC, fpexc | FPEXC_EN);
526 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527 fmxr(FPEXC, fpexc);
528 }
529
530 local_bh_enable();
531 put_cpu();
532 }
533
534 /* Ensure that the thread reloads the hardware VFP state on the next use. */
vfp_flush_hwstate(struct thread_info * thread)535 void vfp_flush_hwstate(struct thread_info *thread)
536 {
537 unsigned int cpu = get_cpu();
538
539 vfp_force_reload(cpu, thread);
540
541 put_cpu();
542 }
543
544 /*
545 * Save the current VFP state into the provided structures and prepare
546 * for entry into a new function (signal handler).
547 */
vfp_preserve_user_clear_hwstate(struct user_vfp * ufp,struct user_vfp_exc * ufp_exc)548 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549 struct user_vfp_exc *ufp_exc)
550 {
551 struct thread_info *thread = current_thread_info();
552 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553
554 /* Ensure that the saved hwstate is up-to-date. */
555 vfp_sync_hwstate(thread);
556
557 /*
558 * Copy the floating point registers. There can be unused
559 * registers see asm/hwcap.h for details.
560 */
561 memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562
563 /*
564 * Copy the status and control register.
565 */
566 ufp->fpscr = hwstate->fpscr;
567
568 /*
569 * Copy the exception registers.
570 */
571 ufp_exc->fpexc = hwstate->fpexc;
572 ufp_exc->fpinst = hwstate->fpinst;
573 ufp_exc->fpinst2 = hwstate->fpinst2;
574
575 /* Ensure that VFP is disabled. */
576 vfp_flush_hwstate(thread);
577
578 /*
579 * As per the PCS, clear the length and stride bits for function
580 * entry.
581 */
582 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583 return 0;
584 }
585
586 /* Sanitise and restore the current VFP state from the provided structures. */
vfp_restore_user_hwstate(struct user_vfp * ufp,struct user_vfp_exc * ufp_exc)587 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588 {
589 struct thread_info *thread = current_thread_info();
590 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591 unsigned long fpexc;
592
593 /* Disable VFP to avoid corrupting the new thread state. */
594 vfp_flush_hwstate(thread);
595
596 /*
597 * Copy the floating point registers. There can be unused
598 * registers see asm/hwcap.h for details.
599 */
600 memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601 /*
602 * Copy the status and control register.
603 */
604 hwstate->fpscr = ufp->fpscr;
605
606 /*
607 * Sanitise and restore the exception registers.
608 */
609 fpexc = ufp_exc->fpexc;
610
611 /* Ensure the VFP is enabled. */
612 fpexc |= FPEXC_EN;
613
614 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
615 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616 hwstate->fpexc = fpexc;
617
618 hwstate->fpinst = ufp_exc->fpinst;
619 hwstate->fpinst2 = ufp_exc->fpinst2;
620
621 return 0;
622 }
623
624 /*
625 * VFP hardware can lose all context when a CPU goes offline.
626 * As we will be running in SMP mode with CPU hotplug, we will save the
627 * hardware state at every thread switch. We clear our held state when
628 * a CPU has been killed, indicating that the VFP hardware doesn't contain
629 * a threads VFP state. When a CPU starts up, we re-enable access to the
630 * VFP hardware. The callbacks below are called on the CPU which
631 * is being offlined/onlined.
632 */
vfp_dying_cpu(unsigned int cpu)633 static int vfp_dying_cpu(unsigned int cpu)
634 {
635 vfp_current_hw_state[cpu] = NULL;
636 return 0;
637 }
638
vfp_starting_cpu(unsigned int unused)639 static int vfp_starting_cpu(unsigned int unused)
640 {
641 vfp_enable(NULL);
642 return 0;
643 }
644
vfp_kmode_exception(struct pt_regs * regs,unsigned int instr)645 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
646 {
647 /*
648 * If we reach this point, a floating point exception has been raised
649 * while running in kernel mode. If the NEON/VFP unit was enabled at the
650 * time, it means a VFP instruction has been issued that requires
651 * software assistance to complete, something which is not currently
652 * supported in kernel mode.
653 * If the NEON/VFP unit was disabled, and the location pointed to below
654 * is properly preceded by a call to kernel_neon_begin(), something has
655 * caused the task to be scheduled out and back in again. In this case,
656 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
657 * be helpful in localizing the problem.
658 */
659 if (fmrx(FPEXC) & FPEXC_EN)
660 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
661 else
662 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
663 pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
664 return 1;
665 }
666
667 /*
668 * vfp_support_entry - Handle VFP exception
669 *
670 * @regs: pt_regs structure holding the register state at exception entry
671 * @trigger: The opcode of the instruction that triggered the exception
672 *
673 * Returns 0 if the exception was handled, or an error code otherwise.
674 */
vfp_support_entry(struct pt_regs * regs,u32 trigger)675 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
676 {
677 struct thread_info *ti = current_thread_info();
678 u32 fpexc;
679
680 if (unlikely(!have_vfp))
681 return -ENODEV;
682
683 if (!user_mode(regs))
684 return vfp_kmode_exception(regs, trigger);
685
686 local_bh_disable();
687 fpexc = fmrx(FPEXC);
688
689 /*
690 * If the VFP unit was not enabled yet, we have to check whether the
691 * VFP state in the CPU's registers is the most recent VFP state
692 * associated with the process. On UP systems, we don't save the VFP
693 * state eagerly on a context switch, so we may need to save the
694 * VFP state to memory first, as it may belong to another process.
695 */
696 if (!(fpexc & FPEXC_EN)) {
697 /*
698 * Enable the VFP unit but mask the FP exception flag for the
699 * time being, so we can access all the registers.
700 */
701 fpexc |= FPEXC_EN;
702 fmxr(FPEXC, fpexc & ~FPEXC_EX);
703
704 /*
705 * Check whether or not the VFP state in the CPU's registers is
706 * the most recent VFP state associated with this task. On SMP,
707 * migration may result in multiple CPUs holding VFP states
708 * that belong to the same task, but only the most recent one
709 * is valid.
710 */
711 if (!vfp_state_in_hw(ti->cpu, ti)) {
712 if (!IS_ENABLED(CONFIG_SMP) &&
713 vfp_current_hw_state[ti->cpu] != NULL) {
714 /*
715 * This CPU is currently holding the most
716 * recent VFP state associated with another
717 * task, and we must save that to memory first.
718 */
719 vfp_save_state(vfp_current_hw_state[ti->cpu],
720 fpexc);
721 }
722
723 /*
724 * We can now proceed with loading the task's VFP state
725 * from memory into the CPU registers.
726 */
727 fpexc = vfp_load_state(&ti->vfpstate);
728 vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
729 #ifdef CONFIG_SMP
730 /*
731 * Record that this CPU is now the one holding the most
732 * recent VFP state of the task.
733 */
734 ti->vfpstate.hard.cpu = ti->cpu;
735 #endif
736 }
737
738 if (fpexc & FPEXC_EX)
739 /*
740 * Might as well handle the pending exception before
741 * retrying branch out before setting an FPEXC that
742 * stops us reading stuff.
743 */
744 goto bounce;
745
746 /*
747 * No FP exception is pending: just enable the VFP and
748 * replay the instruction that trapped.
749 */
750 fmxr(FPEXC, fpexc);
751 } else {
752 /* Check for synchronous or asynchronous exceptions */
753 if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
754 u32 fpscr = fmrx(FPSCR);
755
756 /*
757 * On some implementations of the VFP subarch 1,
758 * setting FPSCR.IXE causes all the CDP instructions to
759 * be bounced synchronously without setting the
760 * FPEXC.EX bit
761 */
762 if (!(fpscr & FPSCR_IXE)) {
763 if (!(fpscr & FPSCR_LENGTH_MASK)) {
764 pr_debug("not VFP\n");
765 local_bh_enable();
766 return -ENOEXEC;
767 }
768 fpexc |= FPEXC_DEX;
769 }
770 }
771 bounce: regs->ARM_pc += 4;
772 VFP_bounce(trigger, fpexc, regs);
773 }
774
775 local_bh_enable();
776 return 0;
777 }
778
779 static struct undef_hook neon_support_hook[] = {{
780 .instr_mask = 0xfe000000,
781 .instr_val = 0xf2000000,
782 .cpsr_mask = PSR_T_BIT,
783 .cpsr_val = 0,
784 .fn = vfp_support_entry,
785 }, {
786 .instr_mask = 0xff100000,
787 .instr_val = 0xf4000000,
788 .cpsr_mask = PSR_T_BIT,
789 .cpsr_val = 0,
790 .fn = vfp_support_entry,
791 }, {
792 .instr_mask = 0xef000000,
793 .instr_val = 0xef000000,
794 .cpsr_mask = PSR_T_BIT,
795 .cpsr_val = PSR_T_BIT,
796 .fn = vfp_support_entry,
797 }, {
798 .instr_mask = 0xff100000,
799 .instr_val = 0xf9000000,
800 .cpsr_mask = PSR_T_BIT,
801 .cpsr_val = PSR_T_BIT,
802 .fn = vfp_support_entry,
803 }, {
804 .instr_mask = 0xff000800,
805 .instr_val = 0xfc000800,
806 .cpsr_mask = 0,
807 .cpsr_val = 0,
808 .fn = vfp_support_entry,
809 }, {
810 .instr_mask = 0xff000800,
811 .instr_val = 0xfd000800,
812 .cpsr_mask = 0,
813 .cpsr_val = 0,
814 .fn = vfp_support_entry,
815 }, {
816 .instr_mask = 0xff000800,
817 .instr_val = 0xfe000800,
818 .cpsr_mask = 0,
819 .cpsr_val = 0,
820 .fn = vfp_support_entry,
821 }};
822
823 static struct undef_hook vfp_support_hook = {
824 .instr_mask = 0x0c000e00,
825 .instr_val = 0x0c000a00,
826 .fn = vfp_support_entry,
827 };
828
829 #ifdef CONFIG_KERNEL_MODE_NEON
830
831 /*
832 * Kernel-side NEON support functions
833 */
kernel_neon_begin(void)834 void kernel_neon_begin(void)
835 {
836 struct thread_info *thread = current_thread_info();
837 unsigned int cpu;
838 u32 fpexc;
839
840 local_bh_disable();
841
842 /*
843 * Kernel mode NEON is only allowed outside of hardirq context with
844 * preemption and softirq processing disabled. This will make sure that
845 * the kernel mode NEON register contents never need to be preserved.
846 */
847 BUG_ON(in_hardirq());
848 cpu = __smp_processor_id();
849
850 fpexc = fmrx(FPEXC) | FPEXC_EN;
851 fmxr(FPEXC, fpexc);
852
853 /*
854 * Save the userland NEON/VFP state. Under UP,
855 * the owner could be a task other than 'current'
856 */
857 if (vfp_state_in_hw(cpu, thread))
858 vfp_save_state(&thread->vfpstate, fpexc);
859 #ifndef CONFIG_SMP
860 else if (vfp_current_hw_state[cpu] != NULL)
861 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
862 #endif
863 vfp_current_hw_state[cpu] = NULL;
864 }
865 EXPORT_SYMBOL(kernel_neon_begin);
866
kernel_neon_end(void)867 void kernel_neon_end(void)
868 {
869 /* Disable the NEON/VFP unit. */
870 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
871 local_bh_enable();
872 }
873 EXPORT_SYMBOL(kernel_neon_end);
874
875 #endif /* CONFIG_KERNEL_MODE_NEON */
876
vfp_detect(struct pt_regs * regs,unsigned int instr)877 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
878 {
879 VFP_arch = UINT_MAX; /* mark as not present */
880 regs->ARM_pc += 4;
881 return 0;
882 }
883
884 static struct undef_hook vfp_detect_hook __initdata = {
885 .instr_mask = 0x0c000e00,
886 .instr_val = 0x0c000a00,
887 .cpsr_mask = MODE_MASK,
888 .cpsr_val = SVC_MODE,
889 .fn = vfp_detect,
890 };
891
892 /*
893 * VFP support code initialisation.
894 */
vfp_init(void)895 static int __init vfp_init(void)
896 {
897 unsigned int vfpsid;
898 unsigned int cpu_arch = cpu_architecture();
899 unsigned int isar6;
900
901 /*
902 * Enable the access to the VFP on all online CPUs so the
903 * following test on FPSID will succeed.
904 */
905 if (cpu_arch >= CPU_ARCH_ARMv6)
906 on_each_cpu(vfp_enable, NULL, 1);
907
908 /*
909 * First check that there is a VFP that we can use.
910 * The handler is already setup to just log calls, so
911 * we just need to read the VFPSID register.
912 */
913 register_undef_hook(&vfp_detect_hook);
914 barrier();
915 vfpsid = fmrx(FPSID);
916 barrier();
917 unregister_undef_hook(&vfp_detect_hook);
918
919 pr_info("VFP support v0.3: ");
920 if (VFP_arch) {
921 pr_cont("not present\n");
922 return 0;
923 /* Extract the architecture on CPUID scheme */
924 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
925 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
926 VFP_arch >>= FPSID_ARCH_BIT;
927 /*
928 * Check for the presence of the Advanced SIMD
929 * load/store instructions, integer and single
930 * precision floating point operations. Only check
931 * for NEON if the hardware has the MVFR registers.
932 */
933 if (IS_ENABLED(CONFIG_NEON) &&
934 (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
935 elf_hwcap |= HWCAP_NEON;
936 for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
937 register_undef_hook(&neon_support_hook[i]);
938 }
939
940 if (IS_ENABLED(CONFIG_VFPv3)) {
941 u32 mvfr0 = fmrx(MVFR0);
942 if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
943 ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
944 elf_hwcap |= HWCAP_VFPv3;
945 /*
946 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
947 * this configuration only have 16 x 64bit
948 * registers.
949 */
950 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
951 /* also v4-D16 */
952 elf_hwcap |= HWCAP_VFPv3D16;
953 else
954 elf_hwcap |= HWCAP_VFPD32;
955 }
956
957 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
958 elf_hwcap |= HWCAP_VFPv4;
959 if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
960 elf_hwcap |= HWCAP_ASIMDHP;
961 if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
962 elf_hwcap |= HWCAP_FPHP;
963 }
964
965 /*
966 * Check for the presence of Advanced SIMD Dot Product
967 * instructions.
968 */
969 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
970 if (cpuid_feature_extract_field(isar6, 4) == 0x1)
971 elf_hwcap |= HWCAP_ASIMDDP;
972 /*
973 * Check for the presence of Advanced SIMD Floating point
974 * half-precision multiplication instructions.
975 */
976 if (cpuid_feature_extract_field(isar6, 8) == 0x1)
977 elf_hwcap |= HWCAP_ASIMDFHM;
978 /*
979 * Check for the presence of Advanced SIMD Bfloat16
980 * floating point instructions.
981 */
982 if (cpuid_feature_extract_field(isar6, 20) == 0x1)
983 elf_hwcap |= HWCAP_ASIMDBF16;
984 /*
985 * Check for the presence of Advanced SIMD and floating point
986 * Int8 matrix multiplication instructions instructions.
987 */
988 if (cpuid_feature_extract_field(isar6, 24) == 0x1)
989 elf_hwcap |= HWCAP_I8MM;
990
991 /* Extract the architecture version on pre-cpuid scheme */
992 } else {
993 if (vfpsid & FPSID_NODOUBLE) {
994 pr_cont("no double precision support\n");
995 return 0;
996 }
997
998 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
999 }
1000
1001 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1002 "arm/vfp:starting", vfp_starting_cpu,
1003 vfp_dying_cpu);
1004
1005 have_vfp = true;
1006
1007 register_undef_hook(&vfp_support_hook);
1008 thread_register_notifier(&vfp_notifier_block);
1009 vfp_pm_init();
1010
1011 /*
1012 * We detected VFP, and the support code is
1013 * in place; report VFP support to userspace.
1014 */
1015 elf_hwcap |= HWCAP_VFP;
1016
1017 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1018 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1019 VFP_arch,
1020 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1021 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1022 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1023
1024 return 0;
1025 }
1026
1027 core_initcall(vfp_init);
1028