xref: /linux/include/linux/ww_mutex.h (revision 136114e0abf03005e182d75761ab694648e6d388)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Wound/Wait Mutexes: blocking mutual exclusion locks with deadlock avoidance
4  *
5  * Original mutex implementation started by Ingo Molnar:
6  *
7  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *
9  * Wait/Die implementation:
10  *  Copyright (C) 2013 Canonical Ltd.
11  * Choice of algorithm:
12  *  Copyright (C) 2018 WMWare Inc.
13  *
14  * This file contains the main data structure and API definitions.
15  */
16 
17 #ifndef __LINUX_WW_MUTEX_H
18 #define __LINUX_WW_MUTEX_H
19 
20 #include <linux/instruction_pointer.h>
21 #include <linux/mutex.h>
22 #include <linux/rtmutex.h>
23 
24 #if defined(CONFIG_DEBUG_MUTEXES) || \
25    (defined(CONFIG_PREEMPT_RT) && defined(CONFIG_DEBUG_RT_MUTEXES))
26 #define DEBUG_WW_MUTEXES
27 #endif
28 
29 #ifndef CONFIG_PREEMPT_RT
30 #define WW_MUTEX_BASE			mutex
31 #define ww_mutex_base_init(l,n,k)	__mutex_init(l,n,k)
32 #define ww_mutex_base_is_locked(b)	mutex_is_locked((b))
33 #else
34 #define WW_MUTEX_BASE			rt_mutex
35 #define ww_mutex_base_init(l,n,k)	__rt_mutex_init(l,n,k)
36 #define ww_mutex_base_is_locked(b)	rt_mutex_base_is_locked(&(b)->rtmutex)
37 #endif
38 
39 struct ww_class {
40 	atomic_long_t stamp;
41 	struct lock_class_key acquire_key;
42 	struct lock_class_key mutex_key;
43 	const char *acquire_name;
44 	const char *mutex_name;
45 	unsigned int is_wait_die;
46 };
47 
48 context_lock_struct(ww_mutex) {
49 	struct WW_MUTEX_BASE base;
50 	struct ww_acquire_ctx *ctx;
51 #ifdef DEBUG_WW_MUTEXES
52 	struct ww_class *ww_class;
53 #endif
54 };
55 
56 context_lock_struct(ww_acquire_ctx) {
57 	struct task_struct *task;
58 	unsigned long stamp;
59 	unsigned int acquired;
60 	unsigned short wounded;
61 	unsigned short is_wait_die;
62 #ifdef DEBUG_WW_MUTEXES
63 	unsigned int done_acquire;
64 	struct ww_class *ww_class;
65 	void *contending_lock;
66 #endif
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 	struct lockdep_map dep_map;
69 	/**
70 	 * @first_lock_dep_map: fake lockdep_map for first locked ww_mutex.
71 	 *
72 	 * lockdep requires the lockdep_map for the first locked ww_mutex
73 	 * in a ww transaction to remain in memory until all ww_mutexes of
74 	 * the transaction have been unlocked. Ensure this by keeping a
75 	 * fake locked ww_mutex lockdep map between ww_acquire_init() and
76 	 * ww_acquire_fini().
77 	 */
78 	struct lockdep_map first_lock_dep_map;
79 #endif
80 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
81 	unsigned int deadlock_inject_interval;
82 	unsigned int deadlock_inject_countdown;
83 #endif
84 };
85 
86 #define __WW_CLASS_INITIALIZER(ww_class, _is_wait_die)	    \
87 		{ .stamp = ATOMIC_LONG_INIT(0) \
88 		, .acquire_name = #ww_class "_acquire" \
89 		, .mutex_name = #ww_class "_mutex" \
90 		, .is_wait_die = _is_wait_die }
91 
92 #define DEFINE_WD_CLASS(classname) \
93 	struct ww_class classname = __WW_CLASS_INITIALIZER(classname, 1)
94 
95 #define DEFINE_WW_CLASS(classname) \
96 	struct ww_class classname = __WW_CLASS_INITIALIZER(classname, 0)
97 
98 /**
99  * ww_mutex_init - initialize the w/w mutex
100  * @lock: the mutex to be initialized
101  * @ww_class: the w/w class the mutex should belong to
102  *
103  * Initialize the w/w mutex to unlocked state and associate it with the given
104  * class. Static define macro for w/w mutex is not provided and this function
105  * is the only way to properly initialize the w/w mutex.
106  *
107  * It is not allowed to initialize an already locked mutex.
108  */
109 static inline void ww_mutex_init(struct ww_mutex *lock,
110 				 struct ww_class *ww_class)
111 {
112 	ww_mutex_base_init(&lock->base, ww_class->mutex_name, &ww_class->mutex_key);
113 	lock->ctx = NULL;
114 #ifdef DEBUG_WW_MUTEXES
115 	lock->ww_class = ww_class;
116 #endif
117 }
118 
119 /**
120  * ww_acquire_init - initialize a w/w acquire context
121  * @ctx: w/w acquire context to initialize
122  * @ww_class: w/w class of the context
123  *
124  * Initializes an context to acquire multiple mutexes of the given w/w class.
125  *
126  * Context-based w/w mutex acquiring can be done in any order whatsoever within
127  * a given lock class. Deadlocks will be detected and handled with the
128  * wait/die logic.
129  *
130  * Mixing of context-based w/w mutex acquiring and single w/w mutex locking can
131  * result in undetected deadlocks and is so forbidden. Mixing different contexts
132  * for the same w/w class when acquiring mutexes can also result in undetected
133  * deadlocks, and is hence also forbidden. Both types of abuse will be caught by
134  * enabling CONFIG_PROVE_LOCKING.
135  *
136  * Nesting of acquire contexts for _different_ w/w classes is possible, subject
137  * to the usual locking rules between different lock classes.
138  *
139  * An acquire context must be released with ww_acquire_fini by the same task
140  * before the memory is freed. It is recommended to allocate the context itself
141  * on the stack.
142  */
143 static inline void ww_acquire_init(struct ww_acquire_ctx *ctx,
144 				   struct ww_class *ww_class)
145 	__acquires(ctx) __no_context_analysis
146 {
147 	ctx->task = current;
148 	ctx->stamp = atomic_long_inc_return_relaxed(&ww_class->stamp);
149 	ctx->acquired = 0;
150 	ctx->wounded = false;
151 	ctx->is_wait_die = ww_class->is_wait_die;
152 #ifdef DEBUG_WW_MUTEXES
153 	ctx->ww_class = ww_class;
154 	ctx->done_acquire = 0;
155 	ctx->contending_lock = NULL;
156 #endif
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 	debug_check_no_locks_freed((void *)ctx, sizeof(*ctx));
159 	lockdep_init_map(&ctx->dep_map, ww_class->acquire_name,
160 			 &ww_class->acquire_key, 0);
161 	lockdep_init_map_wait(&ctx->first_lock_dep_map, ww_class->mutex_name,
162 			      &ww_class->mutex_key, 0, LD_WAIT_SLEEP);
163 	mutex_acquire(&ctx->dep_map, 0, 0, _RET_IP_);
164 	mutex_acquire_nest(&ctx->first_lock_dep_map, 0, 0, &ctx->dep_map, _RET_IP_);
165 #endif
166 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
167 	ctx->deadlock_inject_interval = 1;
168 	ctx->deadlock_inject_countdown = ctx->stamp & 0xf;
169 #endif
170 }
171 
172 /**
173  * ww_acquire_done - marks the end of the acquire phase
174  * @ctx: the acquire context
175  *
176  * Marks the end of the acquire phase, any further w/w mutex lock calls using
177  * this context are forbidden.
178  *
179  * Calling this function is optional, it is just useful to document w/w mutex
180  * code and clearly designated the acquire phase from actually using the locked
181  * data structures.
182  */
183 static inline void ww_acquire_done(struct ww_acquire_ctx *ctx)
184 	__releases(ctx) __acquires_shared(ctx) __no_context_analysis
185 {
186 #ifdef DEBUG_WW_MUTEXES
187 	lockdep_assert_held(ctx);
188 
189 	DEBUG_LOCKS_WARN_ON(ctx->done_acquire);
190 	ctx->done_acquire = 1;
191 #endif
192 }
193 
194 /**
195  * ww_acquire_fini - releases a w/w acquire context
196  * @ctx: the acquire context to free
197  *
198  * Releases a w/w acquire context. This must be called _after_ all acquired w/w
199  * mutexes have been released with ww_mutex_unlock.
200  */
201 static inline void ww_acquire_fini(struct ww_acquire_ctx *ctx)
202 	__releases_shared(ctx) __no_context_analysis
203 {
204 #ifdef CONFIG_DEBUG_LOCK_ALLOC
205 	mutex_release(&ctx->first_lock_dep_map, _THIS_IP_);
206 	mutex_release(&ctx->dep_map, _THIS_IP_);
207 #endif
208 #ifdef DEBUG_WW_MUTEXES
209 	DEBUG_LOCKS_WARN_ON(ctx->acquired);
210 	if (!IS_ENABLED(CONFIG_PROVE_LOCKING))
211 		/*
212 		 * lockdep will normally handle this,
213 		 * but fail without anyway
214 		 */
215 		ctx->done_acquire = 1;
216 
217 	if (!IS_ENABLED(CONFIG_DEBUG_LOCK_ALLOC))
218 		/* ensure ww_acquire_fini will still fail if called twice */
219 		ctx->acquired = ~0U;
220 #endif
221 }
222 
223 /**
224  * ww_mutex_lock - acquire the w/w mutex
225  * @lock: the mutex to be acquired
226  * @ctx: w/w acquire context, or NULL to acquire only a single lock.
227  *
228  * Lock the w/w mutex exclusively for this task.
229  *
230  * Deadlocks within a given w/w class of locks are detected and handled with the
231  * wait/die algorithm. If the lock isn't immediately available this function
232  * will either sleep until it is (wait case). Or it selects the current context
233  * for backing off by returning -EDEADLK (die case). Trying to acquire the
234  * same lock with the same context twice is also detected and signalled by
235  * returning -EALREADY. Returns 0 if the mutex was successfully acquired.
236  *
237  * In the die case the caller must release all currently held w/w mutexes for
238  * the given context and then wait for this contending lock to be available by
239  * calling ww_mutex_lock_slow. Alternatively callers can opt to not acquire this
240  * lock and proceed with trying to acquire further w/w mutexes (e.g. when
241  * scanning through lru lists trying to free resources).
242  *
243  * The mutex must later on be released by the same task that
244  * acquired it. The task may not exit without first unlocking the mutex. Also,
245  * kernel memory where the mutex resides must not be freed with the mutex still
246  * locked. The mutex must first be initialized (or statically defined) before it
247  * can be locked. memset()-ing the mutex to 0 is not allowed. The mutex must be
248  * of the same w/w lock class as was used to initialize the acquire context.
249  *
250  * A mutex acquired with this function must be released with ww_mutex_unlock.
251  */
252 extern int /* __must_check */ ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
253 	__cond_acquires(0, lock) __must_hold(ctx);
254 
255 /**
256  * ww_mutex_lock_interruptible - acquire the w/w mutex, interruptible
257  * @lock: the mutex to be acquired
258  * @ctx: w/w acquire context
259  *
260  * Lock the w/w mutex exclusively for this task.
261  *
262  * Deadlocks within a given w/w class of locks are detected and handled with the
263  * wait/die algorithm. If the lock isn't immediately available this function
264  * will either sleep until it is (wait case). Or it selects the current context
265  * for backing off by returning -EDEADLK (die case). Trying to acquire the
266  * same lock with the same context twice is also detected and signalled by
267  * returning -EALREADY. Returns 0 if the mutex was successfully acquired. If a
268  * signal arrives while waiting for the lock then this function returns -EINTR.
269  *
270  * In the die case the caller must release all currently held w/w mutexes for
271  * the given context and then wait for this contending lock to be available by
272  * calling ww_mutex_lock_slow_interruptible. Alternatively callers can opt to
273  * not acquire this lock and proceed with trying to acquire further w/w mutexes
274  * (e.g. when scanning through lru lists trying to free resources).
275  *
276  * The mutex must later on be released by the same task that
277  * acquired it. The task may not exit without first unlocking the mutex. Also,
278  * kernel memory where the mutex resides must not be freed with the mutex still
279  * locked. The mutex must first be initialized (or statically defined) before it
280  * can be locked. memset()-ing the mutex to 0 is not allowed. The mutex must be
281  * of the same w/w lock class as was used to initialize the acquire context.
282  *
283  * A mutex acquired with this function must be released with ww_mutex_unlock.
284  */
285 extern int __must_check ww_mutex_lock_interruptible(struct ww_mutex *lock,
286 						    struct ww_acquire_ctx *ctx)
287 	__cond_acquires(0, lock) __must_hold(ctx);
288 
289 /**
290  * ww_mutex_lock_slow - slowpath acquiring of the w/w mutex
291  * @lock: the mutex to be acquired
292  * @ctx: w/w acquire context
293  *
294  * Acquires a w/w mutex with the given context after a die case. This function
295  * will sleep until the lock becomes available.
296  *
297  * The caller must have released all w/w mutexes already acquired with the
298  * context and then call this function on the contended lock.
299  *
300  * Afterwards the caller may continue to (re)acquire the other w/w mutexes it
301  * needs with ww_mutex_lock. Note that the -EALREADY return code from
302  * ww_mutex_lock can be used to avoid locking this contended mutex twice.
303  *
304  * It is forbidden to call this function with any other w/w mutexes associated
305  * with the context held. It is forbidden to call this on anything else than the
306  * contending mutex.
307  *
308  * Note that the slowpath lock acquiring can also be done by calling
309  * ww_mutex_lock directly. This function here is simply to help w/w mutex
310  * locking code readability by clearly denoting the slowpath.
311  */
312 static inline void
313 ww_mutex_lock_slow(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
314 	__acquires(lock) __must_hold(ctx) __no_context_analysis
315 {
316 	int ret;
317 #ifdef DEBUG_WW_MUTEXES
318 	DEBUG_LOCKS_WARN_ON(!ctx->contending_lock);
319 #endif
320 	ret = ww_mutex_lock(lock, ctx);
321 	(void)ret;
322 }
323 
324 /**
325  * ww_mutex_lock_slow_interruptible - slowpath acquiring of the w/w mutex, interruptible
326  * @lock: the mutex to be acquired
327  * @ctx: w/w acquire context
328  *
329  * Acquires a w/w mutex with the given context after a die case. This function
330  * will sleep until the lock becomes available and returns 0 when the lock has
331  * been acquired. If a signal arrives while waiting for the lock then this
332  * function returns -EINTR.
333  *
334  * The caller must have released all w/w mutexes already acquired with the
335  * context and then call this function on the contended lock.
336  *
337  * Afterwards the caller may continue to (re)acquire the other w/w mutexes it
338  * needs with ww_mutex_lock. Note that the -EALREADY return code from
339  * ww_mutex_lock can be used to avoid locking this contended mutex twice.
340  *
341  * It is forbidden to call this function with any other w/w mutexes associated
342  * with the given context held. It is forbidden to call this on anything else
343  * than the contending mutex.
344  *
345  * Note that the slowpath lock acquiring can also be done by calling
346  * ww_mutex_lock_interruptible directly. This function here is simply to help
347  * w/w mutex locking code readability by clearly denoting the slowpath.
348  */
349 static inline int __must_check
350 ww_mutex_lock_slow_interruptible(struct ww_mutex *lock,
351 				 struct ww_acquire_ctx *ctx)
352 	__cond_acquires(0, lock) __must_hold(ctx)
353 {
354 #ifdef DEBUG_WW_MUTEXES
355 	DEBUG_LOCKS_WARN_ON(!ctx->contending_lock);
356 #endif
357 	return ww_mutex_lock_interruptible(lock, ctx);
358 }
359 
360 extern void ww_mutex_unlock(struct ww_mutex *lock) __releases(lock);
361 
362 extern int __must_check ww_mutex_trylock(struct ww_mutex *lock,
363 					 struct ww_acquire_ctx *ctx)
364 	__cond_acquires(true, lock) __must_hold(ctx);
365 
366 /***
367  * ww_mutex_destroy - mark a w/w mutex unusable
368  * @lock: the mutex to be destroyed
369  *
370  * This function marks the mutex uninitialized, and any subsequent
371  * use of the mutex is forbidden. The mutex must not be locked when
372  * this function is called.
373  */
374 static inline void ww_mutex_destroy(struct ww_mutex *lock)
375 	__must_not_hold(lock)
376 {
377 #ifndef CONFIG_PREEMPT_RT
378 	mutex_destroy(&lock->base);
379 #endif
380 }
381 
382 /**
383  * ww_mutex_is_locked - is the w/w mutex locked
384  * @lock: the mutex to be queried
385  *
386  * Returns 1 if the mutex is locked, 0 if unlocked.
387  */
388 static inline bool ww_mutex_is_locked(struct ww_mutex *lock)
389 {
390 	return ww_mutex_base_is_locked(&lock->base);
391 }
392 
393 #endif
394