1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11 /*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66
67 /*
68 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69 * pointers get hashed to arbitrary values.
70 *
71 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73 *
74 * Userland doesn't know about %px so also use %p there.
75 */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81
82 #define MA_ROOT_PARENT 1
83
84 /*
85 * Maple state flags
86 * * MA_STATE_BULK - Bulk insert mode
87 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90 #define MA_STATE_BULK 1
91 #define MA_STATE_REBALANCE 2
92 #define MA_STATE_PREALLOC 4
93
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 [maple_dense] = MAPLE_NODE_SLOTS,
103 [maple_leaf_64] = ULONG_MAX,
104 [maple_range_64] = ULONG_MAX,
105 [maple_arange_64] = ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109
110 static const unsigned char mt_slots[] = {
111 [maple_dense] = MAPLE_NODE_SLOTS,
112 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
113 [maple_range_64] = MAPLE_RANGE64_SLOTS,
114 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117
118 static const unsigned char mt_pivots[] = {
119 [maple_dense] = 0,
120 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
121 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
122 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125
126 static const unsigned char mt_min_slots[] = {
127 [maple_dense] = MAPLE_NODE_SLOTS / 2,
128 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
129 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
130 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133
134 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
136
137 struct maple_big_node {
138 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 union {
140 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 struct {
142 unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 };
145 };
146 unsigned char b_end;
147 enum maple_type type;
148 };
149
150 /*
151 * The maple_subtree_state is used to build a tree to replace a segment of an
152 * existing tree in a more atomic way. Any walkers of the older tree will hit a
153 * dead node and restart on updates.
154 */
155 struct maple_subtree_state {
156 struct ma_state *orig_l; /* Original left side of subtree */
157 struct ma_state *orig_r; /* Original right side of subtree */
158 struct ma_state *l; /* New left side of subtree */
159 struct ma_state *m; /* New middle of subtree (rare) */
160 struct ma_state *r; /* New right side of subtree */
161 struct ma_topiary *free; /* nodes to be freed */
162 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
163 struct maple_big_node *bn;
164 };
165
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172
173 /* Functions */
mt_alloc_one(gfp_t gfp)174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183
mt_free_one(struct maple_node * node)184 static inline void mt_free_one(struct maple_node *node)
185 {
186 kmem_cache_free(maple_node_cache, node);
187 }
188
mt_free_bulk(size_t size,void __rcu ** nodes)189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193
mt_free_rcu(struct rcu_head * head)194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 struct maple_node *node = container_of(head, struct maple_node, rcu);
197
198 kmem_cache_free(maple_node_cache, node);
199 }
200
201 /*
202 * ma_free_rcu() - Use rcu callback to free a maple node
203 * @node: The node to free
204 *
205 * The maple tree uses the parent pointer to indicate this node is no longer in
206 * use and will be freed.
207 */
ma_free_rcu(struct maple_node * node)208 static void ma_free_rcu(struct maple_node *node)
209 {
210 WARN_ON(node->parent != ma_parent_ptr(node));
211 call_rcu(&node->rcu, mt_free_rcu);
212 }
213
mt_set_height(struct maple_tree * mt,unsigned char height)214 static void mt_set_height(struct maple_tree *mt, unsigned char height)
215 {
216 unsigned int new_flags = mt->ma_flags;
217
218 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX);
220 new_flags |= height << MT_FLAGS_HEIGHT_OFFSET;
221 mt->ma_flags = new_flags;
222 }
223
mas_mt_height(struct ma_state * mas)224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 return mt_height(mas->tree);
227 }
228
mt_attr(struct maple_tree * mt)229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233
mte_node_type(const struct maple_enode * entry)234 static __always_inline enum maple_type mte_node_type(
235 const struct maple_enode *entry)
236 {
237 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 MAPLE_NODE_TYPE_MASK;
239 }
240
ma_is_dense(const enum maple_type type)241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 return type < maple_leaf_64;
244 }
245
ma_is_leaf(const enum maple_type type)246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 return type < maple_range_64;
249 }
250
mte_is_leaf(const struct maple_enode * entry)251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 return ma_is_leaf(mte_node_type(entry));
254 }
255
256 /*
257 * We also reserve values with the bottom two bits set to '10' which are
258 * below 4096
259 */
mt_is_reserved(const void * entry)260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 xa_is_internal(entry);
264 }
265
mas_set_err(struct ma_state * mas,long err)266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 mas->node = MA_ERROR(err);
269 mas->status = ma_error;
270 }
271
mas_is_ptr(const struct ma_state * mas)272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 return mas->status == ma_root;
275 }
276
mas_is_start(const struct ma_state * mas)277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 return mas->status == ma_start;
280 }
281
mas_is_none(const struct ma_state * mas)282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 return mas->status == ma_none;
285 }
286
mas_is_paused(const struct ma_state * mas)287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 return mas->status == ma_pause;
290 }
291
mas_is_overflow(struct ma_state * mas)292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 return mas->status == ma_overflow;
295 }
296
mas_is_underflow(struct ma_state * mas)297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 return mas->status == ma_underflow;
300 }
301
mte_to_node(const struct maple_enode * entry)302 static __always_inline struct maple_node *mte_to_node(
303 const struct maple_enode *entry)
304 {
305 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307
308 /*
309 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310 * @entry: The maple encoded node
311 *
312 * Return: a maple topiary pointer
313 */
mte_to_mat(const struct maple_enode * entry)314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 return (struct maple_topiary *)
317 ((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319
320 /*
321 * mas_mn() - Get the maple state node.
322 * @mas: The maple state
323 *
324 * Return: the maple node (not encoded - bare pointer).
325 */
mas_mn(const struct ma_state * mas)326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 return mte_to_node(mas->node);
329 }
330
331 /*
332 * mte_set_node_dead() - Set a maple encoded node as dead.
333 * @mn: The maple encoded node.
334 */
mte_set_node_dead(struct maple_enode * mn)335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 smp_wmb(); /* Needed for RCU */
339 }
340
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE 0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT 0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL 0x04
347
mt_mk_node(const struct maple_node * node,enum maple_type type)348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 enum maple_type type)
350 {
351 return (void *)((unsigned long)node |
352 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354
mte_mk_root(const struct maple_enode * node)355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359
mte_safe_root(const struct maple_enode * node)360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364
mte_set_full(const struct maple_enode * node)365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369
mte_clear_full(const struct maple_enode * node)370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374
mte_has_null(const struct maple_enode * node)375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379
ma_is_root(struct maple_node * node)380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384
mte_is_root(const struct maple_enode * node)385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 return ma_is_root(mte_to_node(node));
388 }
389
mas_is_root_limits(const struct ma_state * mas)390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 return !mas->min && mas->max == ULONG_MAX;
393 }
394
mt_is_alloc(struct maple_tree * mt)395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399
400 /*
401 * The Parent Pointer
402 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
404 * bit values need an extra bit to store the offset. This extra bit comes from
405 * a reuse of the last bit in the node type. This is possible by using bit 1 to
406 * indicate if bit 2 is part of the type or the slot.
407 *
408 * Note types:
409 * 0x??1 = Root
410 * 0x?00 = 16 bit nodes
411 * 0x010 = 32 bit nodes
412 * 0x110 = 64 bit nodes
413 *
414 * Slot size and alignment
415 * 0b??1 : Root
416 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
417 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
418 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
419 */
420
421 #define MAPLE_PARENT_ROOT 0x01
422
423 #define MAPLE_PARENT_SLOT_SHIFT 0x03
424 #define MAPLE_PARENT_SLOT_MASK 0xF8
425
426 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
428
429 #define MAPLE_PARENT_RANGE64 0x06
430 #define MAPLE_PARENT_RANGE32 0x04
431 #define MAPLE_PARENT_NOT_RANGE16 0x02
432
433 /*
434 * mte_parent_shift() - Get the parent shift for the slot storage.
435 * @parent: The parent pointer cast as an unsigned long
436 * Return: The shift into that pointer to the star to of the slot
437 */
mte_parent_shift(unsigned long parent)438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_SHIFT;
443
444 return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446
447 /*
448 * mte_parent_slot_mask() - Get the slot mask for the parent.
449 * @parent: The parent pointer cast as an unsigned long.
450 * Return: The slot mask for that parent.
451 */
mte_parent_slot_mask(unsigned long parent)452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 /* Note bit 1 == 0 means 16B */
455 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 return MAPLE_PARENT_SLOT_MASK;
457
458 return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460
461 /*
462 * mas_parent_type() - Return the maple_type of the parent from the stored
463 * parent type.
464 * @mas: The maple state
465 * @enode: The maple_enode to extract the parent's enum
466 * Return: The node->parent maple_type
467 */
468 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 unsigned long p_type;
472
473 p_type = (unsigned long)mte_to_node(enode)->parent;
474 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 return 0;
476
477 p_type &= MAPLE_NODE_MASK;
478 p_type &= ~mte_parent_slot_mask(p_type);
479 switch (p_type) {
480 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 if (mt_is_alloc(mas->tree))
482 return maple_arange_64;
483 return maple_range_64;
484 }
485
486 return 0;
487 }
488
489 /*
490 * mas_set_parent() - Set the parent node and encode the slot
491 * @mas: The maple state
492 * @enode: The encoded maple node.
493 * @parent: The encoded maple node that is the parent of @enode.
494 * @slot: The slot that @enode resides in @parent.
495 *
496 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497 * parent type.
498 */
499 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 const struct maple_enode *parent, unsigned char slot)
502 {
503 unsigned long val = (unsigned long)parent;
504 unsigned long shift;
505 unsigned long type;
506 enum maple_type p_type = mte_node_type(parent);
507
508 MAS_BUG_ON(mas, p_type == maple_dense);
509 MAS_BUG_ON(mas, p_type == maple_leaf_64);
510
511 switch (p_type) {
512 case maple_range_64:
513 case maple_arange_64:
514 shift = MAPLE_PARENT_SLOT_SHIFT;
515 type = MAPLE_PARENT_RANGE64;
516 break;
517 default:
518 case maple_dense:
519 case maple_leaf_64:
520 shift = type = 0;
521 break;
522 }
523
524 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 val |= (slot << shift) | type;
526 mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528
529 /*
530 * mte_parent_slot() - get the parent slot of @enode.
531 * @enode: The encoded maple node.
532 *
533 * Return: The slot in the parent node where @enode resides.
534 */
535 static __always_inline
mte_parent_slot(const struct maple_enode * enode)536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539
540 if (unlikely(val & MA_ROOT_PARENT))
541 return 0;
542
543 /*
544 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 */
547 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549
550 /*
551 * mte_parent() - Get the parent of @node.
552 * @enode: The encoded maple node.
553 *
554 * Return: The parent maple node.
555 */
556 static __always_inline
mte_parent(const struct maple_enode * enode)557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 return (void *)((unsigned long)
560 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562
563 /*
564 * ma_dead_node() - check if the @enode is dead.
565 * @enode: The encoded maple node
566 *
567 * Return: true if dead, false otherwise.
568 */
ma_dead_node(const struct maple_node * node)569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 struct maple_node *parent;
572
573 /* Do not reorder reads from the node prior to the parent check */
574 smp_rmb();
575 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 return (parent == node);
577 }
578
579 /*
580 * mte_dead_node() - check if the @enode is dead.
581 * @enode: The encoded maple node
582 *
583 * Return: true if dead, false otherwise.
584 */
mte_dead_node(const struct maple_enode * enode)585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 struct maple_node *node;
588
589 node = mte_to_node(enode);
590 return ma_dead_node(node);
591 }
592
593 /*
594 * mas_allocated() - Get the number of nodes allocated in a maple state.
595 * @mas: The maple state
596 *
597 * The ma_state alloc member is overloaded to hold a pointer to the first
598 * allocated node or to the number of requested nodes to allocate. If bit 0 is
599 * set, then the alloc contains the number of requested nodes. If there is an
600 * allocated node, then the total allocated nodes is in that node.
601 *
602 * Return: The total number of nodes allocated
603 */
mas_allocated(const struct ma_state * mas)604 static inline unsigned long mas_allocated(const struct ma_state *mas)
605 {
606 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
607 return 0;
608
609 return mas->alloc->total;
610 }
611
612 /*
613 * mas_set_alloc_req() - Set the requested number of allocations.
614 * @mas: the maple state
615 * @count: the number of allocations.
616 *
617 * The requested number of allocations is either in the first allocated node,
618 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
619 * no allocated node. Set the request either in the node or do the necessary
620 * encoding to store in @mas->alloc directly.
621 */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)622 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
623 {
624 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
625 if (!count)
626 mas->alloc = NULL;
627 else
628 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
629 return;
630 }
631
632 mas->alloc->request_count = count;
633 }
634
635 /*
636 * mas_alloc_req() - get the requested number of allocations.
637 * @mas: The maple state
638 *
639 * The alloc count is either stored directly in @mas, or in
640 * @mas->alloc->request_count if there is at least one node allocated. Decode
641 * the request count if it's stored directly in @mas->alloc.
642 *
643 * Return: The allocation request count.
644 */
mas_alloc_req(const struct ma_state * mas)645 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
646 {
647 if ((unsigned long)mas->alloc & 0x1)
648 return (unsigned long)(mas->alloc) >> 1;
649 else if (mas->alloc)
650 return mas->alloc->request_count;
651 return 0;
652 }
653
654 /*
655 * ma_pivots() - Get a pointer to the maple node pivots.
656 * @node: the maple node
657 * @type: the node type
658 *
659 * In the event of a dead node, this array may be %NULL
660 *
661 * Return: A pointer to the maple node pivots
662 */
ma_pivots(struct maple_node * node,enum maple_type type)663 static inline unsigned long *ma_pivots(struct maple_node *node,
664 enum maple_type type)
665 {
666 switch (type) {
667 case maple_arange_64:
668 return node->ma64.pivot;
669 case maple_range_64:
670 case maple_leaf_64:
671 return node->mr64.pivot;
672 case maple_dense:
673 return NULL;
674 }
675 return NULL;
676 }
677
678 /*
679 * ma_gaps() - Get a pointer to the maple node gaps.
680 * @node: the maple node
681 * @type: the node type
682 *
683 * Return: A pointer to the maple node gaps
684 */
ma_gaps(struct maple_node * node,enum maple_type type)685 static inline unsigned long *ma_gaps(struct maple_node *node,
686 enum maple_type type)
687 {
688 switch (type) {
689 case maple_arange_64:
690 return node->ma64.gap;
691 case maple_range_64:
692 case maple_leaf_64:
693 case maple_dense:
694 return NULL;
695 }
696 return NULL;
697 }
698
699 /*
700 * mas_safe_pivot() - get the pivot at @piv or mas->max.
701 * @mas: The maple state
702 * @pivots: The pointer to the maple node pivots
703 * @piv: The pivot to fetch
704 * @type: The maple node type
705 *
706 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
707 * otherwise.
708 */
709 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)710 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
711 unsigned char piv, enum maple_type type)
712 {
713 if (piv >= mt_pivots[type])
714 return mas->max;
715
716 return pivots[piv];
717 }
718
719 /*
720 * mas_safe_min() - Return the minimum for a given offset.
721 * @mas: The maple state
722 * @pivots: The pointer to the maple node pivots
723 * @offset: The offset into the pivot array
724 *
725 * Return: The minimum range value that is contained in @offset.
726 */
727 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)728 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
729 {
730 if (likely(offset))
731 return pivots[offset - 1] + 1;
732
733 return mas->min;
734 }
735
736 /*
737 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
738 * @mn: The encoded maple node
739 * @piv: The pivot offset
740 * @val: The value of the pivot
741 */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)742 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
743 unsigned long val)
744 {
745 struct maple_node *node = mte_to_node(mn);
746 enum maple_type type = mte_node_type(mn);
747
748 BUG_ON(piv >= mt_pivots[type]);
749 switch (type) {
750 case maple_range_64:
751 case maple_leaf_64:
752 node->mr64.pivot[piv] = val;
753 break;
754 case maple_arange_64:
755 node->ma64.pivot[piv] = val;
756 break;
757 case maple_dense:
758 break;
759 }
760
761 }
762
763 /*
764 * ma_slots() - Get a pointer to the maple node slots.
765 * @mn: The maple node
766 * @mt: The maple node type
767 *
768 * Return: A pointer to the maple node slots
769 */
ma_slots(struct maple_node * mn,enum maple_type mt)770 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
771 {
772 switch (mt) {
773 case maple_arange_64:
774 return mn->ma64.slot;
775 case maple_range_64:
776 case maple_leaf_64:
777 return mn->mr64.slot;
778 case maple_dense:
779 return mn->slot;
780 }
781
782 return NULL;
783 }
784
mt_write_locked(const struct maple_tree * mt)785 static inline bool mt_write_locked(const struct maple_tree *mt)
786 {
787 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
788 lockdep_is_held(&mt->ma_lock);
789 }
790
mt_locked(const struct maple_tree * mt)791 static __always_inline bool mt_locked(const struct maple_tree *mt)
792 {
793 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
794 lockdep_is_held(&mt->ma_lock);
795 }
796
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)797 static __always_inline void *mt_slot(const struct maple_tree *mt,
798 void __rcu **slots, unsigned char offset)
799 {
800 return rcu_dereference_check(slots[offset], mt_locked(mt));
801 }
802
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)803 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
804 void __rcu **slots, unsigned char offset)
805 {
806 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
807 }
808 /*
809 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
810 * @mas: The maple state
811 * @slots: The pointer to the slots
812 * @offset: The offset into the slots array to fetch
813 *
814 * Return: The entry stored in @slots at the @offset.
815 */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)816 static __always_inline void *mas_slot_locked(struct ma_state *mas,
817 void __rcu **slots, unsigned char offset)
818 {
819 return mt_slot_locked(mas->tree, slots, offset);
820 }
821
822 /*
823 * mas_slot() - Get the slot value when not holding the maple tree lock.
824 * @mas: The maple state
825 * @slots: The pointer to the slots
826 * @offset: The offset into the slots array to fetch
827 *
828 * Return: The entry stored in @slots at the @offset
829 */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)830 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
831 unsigned char offset)
832 {
833 return mt_slot(mas->tree, slots, offset);
834 }
835
836 /*
837 * mas_root() - Get the maple tree root.
838 * @mas: The maple state.
839 *
840 * Return: The pointer to the root of the tree
841 */
mas_root(struct ma_state * mas)842 static __always_inline void *mas_root(struct ma_state *mas)
843 {
844 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
845 }
846
mt_root_locked(struct maple_tree * mt)847 static inline void *mt_root_locked(struct maple_tree *mt)
848 {
849 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
850 }
851
852 /*
853 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
854 * @mas: The maple state.
855 *
856 * Return: The pointer to the root of the tree
857 */
mas_root_locked(struct ma_state * mas)858 static inline void *mas_root_locked(struct ma_state *mas)
859 {
860 return mt_root_locked(mas->tree);
861 }
862
ma_meta(struct maple_node * mn,enum maple_type mt)863 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
864 enum maple_type mt)
865 {
866 switch (mt) {
867 case maple_arange_64:
868 return &mn->ma64.meta;
869 default:
870 return &mn->mr64.meta;
871 }
872 }
873
874 /*
875 * ma_set_meta() - Set the metadata information of a node.
876 * @mn: The maple node
877 * @mt: The maple node type
878 * @offset: The offset of the highest sub-gap in this node.
879 * @end: The end of the data in this node.
880 */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)881 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
882 unsigned char offset, unsigned char end)
883 {
884 struct maple_metadata *meta = ma_meta(mn, mt);
885
886 meta->gap = offset;
887 meta->end = end;
888 }
889
890 /*
891 * mt_clear_meta() - clear the metadata information of a node, if it exists
892 * @mt: The maple tree
893 * @mn: The maple node
894 * @type: The maple node type
895 */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)896 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
897 enum maple_type type)
898 {
899 struct maple_metadata *meta;
900 unsigned long *pivots;
901 void __rcu **slots;
902 void *next;
903
904 switch (type) {
905 case maple_range_64:
906 pivots = mn->mr64.pivot;
907 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
908 slots = mn->mr64.slot;
909 next = mt_slot_locked(mt, slots,
910 MAPLE_RANGE64_SLOTS - 1);
911 if (unlikely((mte_to_node(next) &&
912 mte_node_type(next))))
913 return; /* no metadata, could be node */
914 }
915 fallthrough;
916 case maple_arange_64:
917 meta = ma_meta(mn, type);
918 break;
919 default:
920 return;
921 }
922
923 meta->gap = 0;
924 meta->end = 0;
925 }
926
927 /*
928 * ma_meta_end() - Get the data end of a node from the metadata
929 * @mn: The maple node
930 * @mt: The maple node type
931 */
ma_meta_end(struct maple_node * mn,enum maple_type mt)932 static inline unsigned char ma_meta_end(struct maple_node *mn,
933 enum maple_type mt)
934 {
935 struct maple_metadata *meta = ma_meta(mn, mt);
936
937 return meta->end;
938 }
939
940 /*
941 * ma_meta_gap() - Get the largest gap location of a node from the metadata
942 * @mn: The maple node
943 */
ma_meta_gap(struct maple_node * mn)944 static inline unsigned char ma_meta_gap(struct maple_node *mn)
945 {
946 return mn->ma64.meta.gap;
947 }
948
949 /*
950 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
951 * @mn: The maple node
952 * @mt: The maple node type
953 * @offset: The location of the largest gap.
954 */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)955 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
956 unsigned char offset)
957 {
958
959 struct maple_metadata *meta = ma_meta(mn, mt);
960
961 meta->gap = offset;
962 }
963
964 /*
965 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
966 * @mat: the ma_topiary, a linked list of dead nodes.
967 * @dead_enode: the node to be marked as dead and added to the tail of the list
968 *
969 * Add the @dead_enode to the linked list in @mat.
970 */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)971 static inline void mat_add(struct ma_topiary *mat,
972 struct maple_enode *dead_enode)
973 {
974 mte_set_node_dead(dead_enode);
975 mte_to_mat(dead_enode)->next = NULL;
976 if (!mat->tail) {
977 mat->tail = mat->head = dead_enode;
978 return;
979 }
980
981 mte_to_mat(mat->tail)->next = dead_enode;
982 mat->tail = dead_enode;
983 }
984
985 static void mt_free_walk(struct rcu_head *head);
986 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
987 bool free);
988 /*
989 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
990 * @mas: the maple state
991 * @mat: the ma_topiary linked list of dead nodes to free.
992 *
993 * Destroy walk a dead list.
994 */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)995 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
996 {
997 struct maple_enode *next;
998 struct maple_node *node;
999 bool in_rcu = mt_in_rcu(mas->tree);
1000
1001 while (mat->head) {
1002 next = mte_to_mat(mat->head)->next;
1003 node = mte_to_node(mat->head);
1004 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1005 if (in_rcu)
1006 call_rcu(&node->rcu, mt_free_walk);
1007 mat->head = next;
1008 }
1009 }
1010 /*
1011 * mas_descend() - Descend into the slot stored in the ma_state.
1012 * @mas: the maple state.
1013 *
1014 * Note: Not RCU safe, only use in write side or debug code.
1015 */
mas_descend(struct ma_state * mas)1016 static inline void mas_descend(struct ma_state *mas)
1017 {
1018 enum maple_type type;
1019 unsigned long *pivots;
1020 struct maple_node *node;
1021 void __rcu **slots;
1022
1023 node = mas_mn(mas);
1024 type = mte_node_type(mas->node);
1025 pivots = ma_pivots(node, type);
1026 slots = ma_slots(node, type);
1027
1028 if (mas->offset)
1029 mas->min = pivots[mas->offset - 1] + 1;
1030 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1031 mas->node = mas_slot(mas, slots, mas->offset);
1032 }
1033
1034 /*
1035 * mte_set_gap() - Set a maple node gap.
1036 * @mn: The encoded maple node
1037 * @gap: The offset of the gap to set
1038 * @val: The gap value
1039 */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1040 static inline void mte_set_gap(const struct maple_enode *mn,
1041 unsigned char gap, unsigned long val)
1042 {
1043 switch (mte_node_type(mn)) {
1044 default:
1045 break;
1046 case maple_arange_64:
1047 mte_to_node(mn)->ma64.gap[gap] = val;
1048 break;
1049 }
1050 }
1051
1052 /*
1053 * mas_ascend() - Walk up a level of the tree.
1054 * @mas: The maple state
1055 *
1056 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1057 * may cause several levels of walking up to find the correct min and max.
1058 * May find a dead node which will cause a premature return.
1059 * Return: 1 on dead node, 0 otherwise
1060 */
mas_ascend(struct ma_state * mas)1061 static int mas_ascend(struct ma_state *mas)
1062 {
1063 struct maple_enode *p_enode; /* parent enode. */
1064 struct maple_enode *a_enode; /* ancestor enode. */
1065 struct maple_node *a_node; /* ancestor node. */
1066 struct maple_node *p_node; /* parent node. */
1067 unsigned char a_slot;
1068 enum maple_type a_type;
1069 unsigned long min, max;
1070 unsigned long *pivots;
1071 bool set_max = false, set_min = false;
1072
1073 a_node = mas_mn(mas);
1074 if (ma_is_root(a_node)) {
1075 mas->offset = 0;
1076 return 0;
1077 }
1078
1079 p_node = mte_parent(mas->node);
1080 if (unlikely(a_node == p_node))
1081 return 1;
1082
1083 a_type = mas_parent_type(mas, mas->node);
1084 mas->offset = mte_parent_slot(mas->node);
1085 a_enode = mt_mk_node(p_node, a_type);
1086
1087 /* Check to make sure all parent information is still accurate */
1088 if (p_node != mte_parent(mas->node))
1089 return 1;
1090
1091 mas->node = a_enode;
1092
1093 if (mte_is_root(a_enode)) {
1094 mas->max = ULONG_MAX;
1095 mas->min = 0;
1096 return 0;
1097 }
1098
1099 min = 0;
1100 max = ULONG_MAX;
1101 if (!mas->offset) {
1102 min = mas->min;
1103 set_min = true;
1104 }
1105
1106 if (mas->max == ULONG_MAX)
1107 set_max = true;
1108
1109 do {
1110 p_enode = a_enode;
1111 a_type = mas_parent_type(mas, p_enode);
1112 a_node = mte_parent(p_enode);
1113 a_slot = mte_parent_slot(p_enode);
1114 a_enode = mt_mk_node(a_node, a_type);
1115 pivots = ma_pivots(a_node, a_type);
1116
1117 if (unlikely(ma_dead_node(a_node)))
1118 return 1;
1119
1120 if (!set_min && a_slot) {
1121 set_min = true;
1122 min = pivots[a_slot - 1] + 1;
1123 }
1124
1125 if (!set_max && a_slot < mt_pivots[a_type]) {
1126 set_max = true;
1127 max = pivots[a_slot];
1128 }
1129
1130 if (unlikely(ma_dead_node(a_node)))
1131 return 1;
1132
1133 if (unlikely(ma_is_root(a_node)))
1134 break;
1135
1136 } while (!set_min || !set_max);
1137
1138 mas->max = max;
1139 mas->min = min;
1140 return 0;
1141 }
1142
1143 /*
1144 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1145 * @mas: The maple state
1146 *
1147 * Return: A pointer to a maple node.
1148 */
mas_pop_node(struct ma_state * mas)1149 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1150 {
1151 struct maple_alloc *ret, *node = mas->alloc;
1152 unsigned long total = mas_allocated(mas);
1153 unsigned int req = mas_alloc_req(mas);
1154
1155 /* nothing or a request pending. */
1156 if (WARN_ON(!total))
1157 return NULL;
1158
1159 if (total == 1) {
1160 /* single allocation in this ma_state */
1161 mas->alloc = NULL;
1162 ret = node;
1163 goto single_node;
1164 }
1165
1166 if (node->node_count == 1) {
1167 /* Single allocation in this node. */
1168 mas->alloc = node->slot[0];
1169 mas->alloc->total = node->total - 1;
1170 ret = node;
1171 goto new_head;
1172 }
1173 node->total--;
1174 ret = node->slot[--node->node_count];
1175 node->slot[node->node_count] = NULL;
1176
1177 single_node:
1178 new_head:
1179 if (req) {
1180 req++;
1181 mas_set_alloc_req(mas, req);
1182 }
1183
1184 memset(ret, 0, sizeof(*ret));
1185 return (struct maple_node *)ret;
1186 }
1187
1188 /*
1189 * mas_push_node() - Push a node back on the maple state allocation.
1190 * @mas: The maple state
1191 * @used: The used maple node
1192 *
1193 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1194 * requested node count as necessary.
1195 */
mas_push_node(struct ma_state * mas,struct maple_node * used)1196 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1197 {
1198 struct maple_alloc *reuse = (struct maple_alloc *)used;
1199 struct maple_alloc *head = mas->alloc;
1200 unsigned long count;
1201 unsigned int requested = mas_alloc_req(mas);
1202
1203 count = mas_allocated(mas);
1204
1205 reuse->request_count = 0;
1206 reuse->node_count = 0;
1207 if (count) {
1208 if (head->node_count < MAPLE_ALLOC_SLOTS) {
1209 head->slot[head->node_count++] = reuse;
1210 head->total++;
1211 goto done;
1212 }
1213 reuse->slot[0] = head;
1214 reuse->node_count = 1;
1215 }
1216
1217 reuse->total = count + 1;
1218 mas->alloc = reuse;
1219 done:
1220 if (requested > 1)
1221 mas_set_alloc_req(mas, requested - 1);
1222 }
1223
1224 /*
1225 * mas_alloc_nodes() - Allocate nodes into a maple state
1226 * @mas: The maple state
1227 * @gfp: The GFP Flags
1228 */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1229 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1230 {
1231 struct maple_alloc *node;
1232 unsigned long allocated = mas_allocated(mas);
1233 unsigned int requested = mas_alloc_req(mas);
1234 unsigned int count;
1235 void **slots = NULL;
1236 unsigned int max_req = 0;
1237
1238 if (!requested)
1239 return;
1240
1241 mas_set_alloc_req(mas, 0);
1242 if (mas->mas_flags & MA_STATE_PREALLOC) {
1243 if (allocated)
1244 return;
1245 WARN_ON(!allocated);
1246 }
1247
1248 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1249 node = (struct maple_alloc *)mt_alloc_one(gfp);
1250 if (!node)
1251 goto nomem_one;
1252
1253 if (allocated) {
1254 node->slot[0] = mas->alloc;
1255 node->node_count = 1;
1256 } else {
1257 node->node_count = 0;
1258 }
1259
1260 mas->alloc = node;
1261 node->total = ++allocated;
1262 node->request_count = 0;
1263 requested--;
1264 }
1265
1266 node = mas->alloc;
1267 while (requested) {
1268 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1269 slots = (void **)&node->slot[node->node_count];
1270 max_req = min(requested, max_req);
1271 count = mt_alloc_bulk(gfp, max_req, slots);
1272 if (!count)
1273 goto nomem_bulk;
1274
1275 if (node->node_count == 0) {
1276 node->slot[0]->node_count = 0;
1277 node->slot[0]->request_count = 0;
1278 }
1279
1280 node->node_count += count;
1281 allocated += count;
1282 /* find a non-full node*/
1283 do {
1284 node = node->slot[0];
1285 } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1286 requested -= count;
1287 }
1288 mas->alloc->total = allocated;
1289 return;
1290
1291 nomem_bulk:
1292 /* Clean up potential freed allocations on bulk failure */
1293 memset(slots, 0, max_req * sizeof(unsigned long));
1294 mas->alloc->total = allocated;
1295 nomem_one:
1296 mas_set_alloc_req(mas, requested);
1297 mas_set_err(mas, -ENOMEM);
1298 }
1299
1300 /*
1301 * mas_free() - Free an encoded maple node
1302 * @mas: The maple state
1303 * @used: The encoded maple node to free.
1304 *
1305 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1306 * otherwise.
1307 */
mas_free(struct ma_state * mas,struct maple_enode * used)1308 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1309 {
1310 struct maple_node *tmp = mte_to_node(used);
1311
1312 if (mt_in_rcu(mas->tree))
1313 ma_free_rcu(tmp);
1314 else
1315 mas_push_node(mas, tmp);
1316 }
1317
1318 /*
1319 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1320 * if there is not enough nodes.
1321 * @mas: The maple state
1322 * @count: The number of nodes needed
1323 * @gfp: the gfp flags
1324 */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1325 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1326 {
1327 unsigned long allocated = mas_allocated(mas);
1328
1329 if (allocated < count) {
1330 mas_set_alloc_req(mas, count - allocated);
1331 mas_alloc_nodes(mas, gfp);
1332 }
1333 }
1334
1335 /*
1336 * mas_node_count() - Check if enough nodes are allocated and request more if
1337 * there is not enough nodes.
1338 * @mas: The maple state
1339 * @count: The number of nodes needed
1340 *
1341 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1342 */
mas_node_count(struct ma_state * mas,int count)1343 static void mas_node_count(struct ma_state *mas, int count)
1344 {
1345 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1346 }
1347
1348 /*
1349 * mas_start() - Sets up maple state for operations.
1350 * @mas: The maple state.
1351 *
1352 * If mas->status == ma_start, then set the min, max and depth to
1353 * defaults.
1354 *
1355 * Return:
1356 * - If mas->node is an error or not mas_start, return NULL.
1357 * - If it's an empty tree: NULL & mas->status == ma_none
1358 * - If it's a single entry: The entry & mas->status == ma_root
1359 * - If it's a tree: NULL & mas->status == ma_active
1360 */
mas_start(struct ma_state * mas)1361 static inline struct maple_enode *mas_start(struct ma_state *mas)
1362 {
1363 if (likely(mas_is_start(mas))) {
1364 struct maple_enode *root;
1365
1366 mas->min = 0;
1367 mas->max = ULONG_MAX;
1368
1369 retry:
1370 mas->depth = 0;
1371 root = mas_root(mas);
1372 /* Tree with nodes */
1373 if (likely(xa_is_node(root))) {
1374 mas->depth = 0;
1375 mas->status = ma_active;
1376 mas->node = mte_safe_root(root);
1377 mas->offset = 0;
1378 if (mte_dead_node(mas->node))
1379 goto retry;
1380
1381 return NULL;
1382 }
1383
1384 mas->node = NULL;
1385 /* empty tree */
1386 if (unlikely(!root)) {
1387 mas->status = ma_none;
1388 mas->offset = MAPLE_NODE_SLOTS;
1389 return NULL;
1390 }
1391
1392 /* Single entry tree */
1393 mas->status = ma_root;
1394 mas->offset = MAPLE_NODE_SLOTS;
1395
1396 /* Single entry tree. */
1397 if (mas->index > 0)
1398 return NULL;
1399
1400 return root;
1401 }
1402
1403 return NULL;
1404 }
1405
1406 /*
1407 * ma_data_end() - Find the end of the data in a node.
1408 * @node: The maple node
1409 * @type: The maple node type
1410 * @pivots: The array of pivots in the node
1411 * @max: The maximum value in the node
1412 *
1413 * Uses metadata to find the end of the data when possible.
1414 * Return: The zero indexed last slot with data (may be null).
1415 */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1416 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1417 enum maple_type type, unsigned long *pivots, unsigned long max)
1418 {
1419 unsigned char offset;
1420
1421 if (!pivots)
1422 return 0;
1423
1424 if (type == maple_arange_64)
1425 return ma_meta_end(node, type);
1426
1427 offset = mt_pivots[type] - 1;
1428 if (likely(!pivots[offset]))
1429 return ma_meta_end(node, type);
1430
1431 if (likely(pivots[offset] == max))
1432 return offset;
1433
1434 return mt_pivots[type];
1435 }
1436
1437 /*
1438 * mas_data_end() - Find the end of the data (slot).
1439 * @mas: the maple state
1440 *
1441 * This method is optimized to check the metadata of a node if the node type
1442 * supports data end metadata.
1443 *
1444 * Return: The zero indexed last slot with data (may be null).
1445 */
mas_data_end(struct ma_state * mas)1446 static inline unsigned char mas_data_end(struct ma_state *mas)
1447 {
1448 enum maple_type type;
1449 struct maple_node *node;
1450 unsigned char offset;
1451 unsigned long *pivots;
1452
1453 type = mte_node_type(mas->node);
1454 node = mas_mn(mas);
1455 if (type == maple_arange_64)
1456 return ma_meta_end(node, type);
1457
1458 pivots = ma_pivots(node, type);
1459 if (unlikely(ma_dead_node(node)))
1460 return 0;
1461
1462 offset = mt_pivots[type] - 1;
1463 if (likely(!pivots[offset]))
1464 return ma_meta_end(node, type);
1465
1466 if (likely(pivots[offset] == mas->max))
1467 return offset;
1468
1469 return mt_pivots[type];
1470 }
1471
1472 /*
1473 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1474 * @mas: the maple state
1475 *
1476 * Return: The maximum gap in the leaf.
1477 */
mas_leaf_max_gap(struct ma_state * mas)1478 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1479 {
1480 enum maple_type mt;
1481 unsigned long pstart, gap, max_gap;
1482 struct maple_node *mn;
1483 unsigned long *pivots;
1484 void __rcu **slots;
1485 unsigned char i;
1486 unsigned char max_piv;
1487
1488 mt = mte_node_type(mas->node);
1489 mn = mas_mn(mas);
1490 slots = ma_slots(mn, mt);
1491 max_gap = 0;
1492 if (unlikely(ma_is_dense(mt))) {
1493 gap = 0;
1494 for (i = 0; i < mt_slots[mt]; i++) {
1495 if (slots[i]) {
1496 if (gap > max_gap)
1497 max_gap = gap;
1498 gap = 0;
1499 } else {
1500 gap++;
1501 }
1502 }
1503 if (gap > max_gap)
1504 max_gap = gap;
1505 return max_gap;
1506 }
1507
1508 /*
1509 * Check the first implied pivot optimizes the loop below and slot 1 may
1510 * be skipped if there is a gap in slot 0.
1511 */
1512 pivots = ma_pivots(mn, mt);
1513 if (likely(!slots[0])) {
1514 max_gap = pivots[0] - mas->min + 1;
1515 i = 2;
1516 } else {
1517 i = 1;
1518 }
1519
1520 /* reduce max_piv as the special case is checked before the loop */
1521 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1522 /*
1523 * Check end implied pivot which can only be a gap on the right most
1524 * node.
1525 */
1526 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1527 gap = ULONG_MAX - pivots[max_piv];
1528 if (gap > max_gap)
1529 max_gap = gap;
1530
1531 if (max_gap > pivots[max_piv] - mas->min)
1532 return max_gap;
1533 }
1534
1535 for (; i <= max_piv; i++) {
1536 /* data == no gap. */
1537 if (likely(slots[i]))
1538 continue;
1539
1540 pstart = pivots[i - 1];
1541 gap = pivots[i] - pstart;
1542 if (gap > max_gap)
1543 max_gap = gap;
1544
1545 /* There cannot be two gaps in a row. */
1546 i++;
1547 }
1548 return max_gap;
1549 }
1550
1551 /*
1552 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1553 * @node: The maple node
1554 * @gaps: The pointer to the gaps
1555 * @mt: The maple node type
1556 * @off: Pointer to store the offset location of the gap.
1557 *
1558 * Uses the metadata data end to scan backwards across set gaps.
1559 *
1560 * Return: The maximum gap value
1561 */
1562 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1563 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1564 unsigned char *off)
1565 {
1566 unsigned char offset, i;
1567 unsigned long max_gap = 0;
1568
1569 i = offset = ma_meta_end(node, mt);
1570 do {
1571 if (gaps[i] > max_gap) {
1572 max_gap = gaps[i];
1573 offset = i;
1574 }
1575 } while (i--);
1576
1577 *off = offset;
1578 return max_gap;
1579 }
1580
1581 /*
1582 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1583 * @mas: The maple state.
1584 *
1585 * Return: The gap value.
1586 */
mas_max_gap(struct ma_state * mas)1587 static inline unsigned long mas_max_gap(struct ma_state *mas)
1588 {
1589 unsigned long *gaps;
1590 unsigned char offset;
1591 enum maple_type mt;
1592 struct maple_node *node;
1593
1594 mt = mte_node_type(mas->node);
1595 if (ma_is_leaf(mt))
1596 return mas_leaf_max_gap(mas);
1597
1598 node = mas_mn(mas);
1599 MAS_BUG_ON(mas, mt != maple_arange_64);
1600 offset = ma_meta_gap(node);
1601 gaps = ma_gaps(node, mt);
1602 return gaps[offset];
1603 }
1604
1605 /*
1606 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1607 * @mas: The maple state
1608 * @offset: The gap offset in the parent to set
1609 * @new: The new gap value.
1610 *
1611 * Set the parent gap then continue to set the gap upwards, using the metadata
1612 * of the parent to see if it is necessary to check the node above.
1613 */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1614 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1615 unsigned long new)
1616 {
1617 unsigned long meta_gap = 0;
1618 struct maple_node *pnode;
1619 struct maple_enode *penode;
1620 unsigned long *pgaps;
1621 unsigned char meta_offset;
1622 enum maple_type pmt;
1623
1624 pnode = mte_parent(mas->node);
1625 pmt = mas_parent_type(mas, mas->node);
1626 penode = mt_mk_node(pnode, pmt);
1627 pgaps = ma_gaps(pnode, pmt);
1628
1629 ascend:
1630 MAS_BUG_ON(mas, pmt != maple_arange_64);
1631 meta_offset = ma_meta_gap(pnode);
1632 meta_gap = pgaps[meta_offset];
1633
1634 pgaps[offset] = new;
1635
1636 if (meta_gap == new)
1637 return;
1638
1639 if (offset != meta_offset) {
1640 if (meta_gap > new)
1641 return;
1642
1643 ma_set_meta_gap(pnode, pmt, offset);
1644 } else if (new < meta_gap) {
1645 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1646 ma_set_meta_gap(pnode, pmt, meta_offset);
1647 }
1648
1649 if (ma_is_root(pnode))
1650 return;
1651
1652 /* Go to the parent node. */
1653 pnode = mte_parent(penode);
1654 pmt = mas_parent_type(mas, penode);
1655 pgaps = ma_gaps(pnode, pmt);
1656 offset = mte_parent_slot(penode);
1657 penode = mt_mk_node(pnode, pmt);
1658 goto ascend;
1659 }
1660
1661 /*
1662 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1663 * @mas: the maple state.
1664 */
mas_update_gap(struct ma_state * mas)1665 static inline void mas_update_gap(struct ma_state *mas)
1666 {
1667 unsigned char pslot;
1668 unsigned long p_gap;
1669 unsigned long max_gap;
1670
1671 if (!mt_is_alloc(mas->tree))
1672 return;
1673
1674 if (mte_is_root(mas->node))
1675 return;
1676
1677 max_gap = mas_max_gap(mas);
1678
1679 pslot = mte_parent_slot(mas->node);
1680 p_gap = ma_gaps(mte_parent(mas->node),
1681 mas_parent_type(mas, mas->node))[pslot];
1682
1683 if (p_gap != max_gap)
1684 mas_parent_gap(mas, pslot, max_gap);
1685 }
1686
1687 /*
1688 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1689 * @parent with the slot encoded.
1690 * @mas: the maple state (for the tree)
1691 * @parent: the maple encoded node containing the children.
1692 */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1693 static inline void mas_adopt_children(struct ma_state *mas,
1694 struct maple_enode *parent)
1695 {
1696 enum maple_type type = mte_node_type(parent);
1697 struct maple_node *node = mte_to_node(parent);
1698 void __rcu **slots = ma_slots(node, type);
1699 unsigned long *pivots = ma_pivots(node, type);
1700 struct maple_enode *child;
1701 unsigned char offset;
1702
1703 offset = ma_data_end(node, type, pivots, mas->max);
1704 do {
1705 child = mas_slot_locked(mas, slots, offset);
1706 mas_set_parent(mas, child, parent, offset);
1707 } while (offset--);
1708 }
1709
1710 /*
1711 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1712 * node as dead.
1713 * @mas: the maple state with the new node
1714 * @old_enode: The old maple encoded node to replace.
1715 * @new_height: if we are inserting a root node, update the height of the tree
1716 */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode,char new_height)1717 static inline void mas_put_in_tree(struct ma_state *mas,
1718 struct maple_enode *old_enode, char new_height)
1719 __must_hold(mas->tree->ma_lock)
1720 {
1721 unsigned char offset;
1722 void __rcu **slots;
1723
1724 if (mte_is_root(mas->node)) {
1725 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1726 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1727 mt_set_height(mas->tree, new_height);
1728 } else {
1729
1730 offset = mte_parent_slot(mas->node);
1731 slots = ma_slots(mte_parent(mas->node),
1732 mas_parent_type(mas, mas->node));
1733 rcu_assign_pointer(slots[offset], mas->node);
1734 }
1735
1736 mte_set_node_dead(old_enode);
1737 }
1738
1739 /*
1740 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1741 * dead, and freeing it.
1742 * the parent encoding to locate the maple node in the tree.
1743 * @mas: the ma_state with @mas->node pointing to the new node.
1744 * @old_enode: The old maple encoded node.
1745 * @new_height: The new height of the tree as a result of the operation
1746 */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)1747 static inline void mas_replace_node(struct ma_state *mas,
1748 struct maple_enode *old_enode, unsigned char new_height)
1749 __must_hold(mas->tree->ma_lock)
1750 {
1751 mas_put_in_tree(mas, old_enode, new_height);
1752 mas_free(mas, old_enode);
1753 }
1754
1755 /*
1756 * mas_find_child() - Find a child who has the parent @mas->node.
1757 * @mas: the maple state with the parent.
1758 * @child: the maple state to store the child.
1759 */
mas_find_child(struct ma_state * mas,struct ma_state * child)1760 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1761 __must_hold(mas->tree->ma_lock)
1762 {
1763 enum maple_type mt;
1764 unsigned char offset;
1765 unsigned char end;
1766 unsigned long *pivots;
1767 struct maple_enode *entry;
1768 struct maple_node *node;
1769 void __rcu **slots;
1770
1771 mt = mte_node_type(mas->node);
1772 node = mas_mn(mas);
1773 slots = ma_slots(node, mt);
1774 pivots = ma_pivots(node, mt);
1775 end = ma_data_end(node, mt, pivots, mas->max);
1776 for (offset = mas->offset; offset <= end; offset++) {
1777 entry = mas_slot_locked(mas, slots, offset);
1778 if (mte_parent(entry) == node) {
1779 *child = *mas;
1780 mas->offset = offset + 1;
1781 child->offset = offset;
1782 mas_descend(child);
1783 child->offset = 0;
1784 return true;
1785 }
1786 }
1787 return false;
1788 }
1789
1790 /*
1791 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1792 * old data or set b_node->b_end.
1793 * @b_node: the maple_big_node
1794 * @shift: the shift count
1795 */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1796 static inline void mab_shift_right(struct maple_big_node *b_node,
1797 unsigned char shift)
1798 {
1799 unsigned long size = b_node->b_end * sizeof(unsigned long);
1800
1801 memmove(b_node->pivot + shift, b_node->pivot, size);
1802 memmove(b_node->slot + shift, b_node->slot, size);
1803 if (b_node->type == maple_arange_64)
1804 memmove(b_node->gap + shift, b_node->gap, size);
1805 }
1806
1807 /*
1808 * mab_middle_node() - Check if a middle node is needed (unlikely)
1809 * @b_node: the maple_big_node that contains the data.
1810 * @split: the potential split location
1811 * @slot_count: the size that can be stored in a single node being considered.
1812 *
1813 * Return: true if a middle node is required.
1814 */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1815 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1816 unsigned char slot_count)
1817 {
1818 unsigned char size = b_node->b_end;
1819
1820 if (size >= 2 * slot_count)
1821 return true;
1822
1823 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1824 return true;
1825
1826 return false;
1827 }
1828
1829 /*
1830 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1831 * @b_node: the maple_big_node with the data
1832 * @split: the suggested split location
1833 * @slot_count: the number of slots in the node being considered.
1834 *
1835 * Return: the split location.
1836 */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1837 static inline int mab_no_null_split(struct maple_big_node *b_node,
1838 unsigned char split, unsigned char slot_count)
1839 {
1840 if (!b_node->slot[split]) {
1841 /*
1842 * If the split is less than the max slot && the right side will
1843 * still be sufficient, then increment the split on NULL.
1844 */
1845 if ((split < slot_count - 1) &&
1846 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1847 split++;
1848 else
1849 split--;
1850 }
1851 return split;
1852 }
1853
1854 /*
1855 * mab_calc_split() - Calculate the split location and if there needs to be two
1856 * splits.
1857 * @mas: The maple state
1858 * @bn: The maple_big_node with the data
1859 * @mid_split: The second split, if required. 0 otherwise.
1860 *
1861 * Return: The first split location. The middle split is set in @mid_split.
1862 */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1863 static inline int mab_calc_split(struct ma_state *mas,
1864 struct maple_big_node *bn, unsigned char *mid_split)
1865 {
1866 unsigned char b_end = bn->b_end;
1867 int split = b_end / 2; /* Assume equal split. */
1868 unsigned char slot_count = mt_slots[bn->type];
1869
1870 /*
1871 * To support gap tracking, all NULL entries are kept together and a node cannot
1872 * end on a NULL entry, with the exception of the left-most leaf. The
1873 * limitation means that the split of a node must be checked for this condition
1874 * and be able to put more data in one direction or the other.
1875 */
1876 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1877 *mid_split = 0;
1878 split = b_end - mt_min_slots[bn->type];
1879
1880 if (!ma_is_leaf(bn->type))
1881 return split;
1882
1883 mas->mas_flags |= MA_STATE_REBALANCE;
1884 if (!bn->slot[split])
1885 split--;
1886 return split;
1887 }
1888
1889 /*
1890 * Although extremely rare, it is possible to enter what is known as the 3-way
1891 * split scenario. The 3-way split comes about by means of a store of a range
1892 * that overwrites the end and beginning of two full nodes. The result is a set
1893 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1894 * also be located in different parent nodes which are also full. This can
1895 * carry upwards all the way to the root in the worst case.
1896 */
1897 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1898 split = b_end / 3;
1899 *mid_split = split * 2;
1900 } else {
1901 *mid_split = 0;
1902 }
1903
1904 /* Avoid ending a node on a NULL entry */
1905 split = mab_no_null_split(bn, split, slot_count);
1906
1907 if (unlikely(*mid_split))
1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1909
1910 return split;
1911 }
1912
1913 /*
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1921 */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 unsigned char mas_end, struct maple_big_node *b_node,
1924 unsigned char mab_start)
1925 {
1926 enum maple_type mt;
1927 struct maple_node *node;
1928 void __rcu **slots;
1929 unsigned long *pivots, *gaps;
1930 int i = mas_start, j = mab_start;
1931 unsigned char piv_end;
1932
1933 node = mas_mn(mas);
1934 mt = mte_node_type(mas->node);
1935 pivots = ma_pivots(node, mt);
1936 if (!i) {
1937 b_node->pivot[j] = pivots[i++];
1938 if (unlikely(i > mas_end))
1939 goto complete;
1940 j++;
1941 }
1942
1943 piv_end = min(mas_end, mt_pivots[mt]);
1944 for (; i < piv_end; i++, j++) {
1945 b_node->pivot[j] = pivots[i];
1946 if (unlikely(!b_node->pivot[j]))
1947 goto complete;
1948
1949 if (unlikely(mas->max == b_node->pivot[j]))
1950 goto complete;
1951 }
1952
1953 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1954
1955 complete:
1956 b_node->b_end = ++j;
1957 j -= mab_start;
1958 slots = ma_slots(node, mt);
1959 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1960 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1961 gaps = ma_gaps(node, mt);
1962 memcpy(b_node->gap + mab_start, gaps + mas_start,
1963 sizeof(unsigned long) * j);
1964 }
1965 }
1966
1967 /*
1968 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1969 * @node: The maple node
1970 * @mt: The maple type
1971 * @end: The node end
1972 */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1973 static inline void mas_leaf_set_meta(struct maple_node *node,
1974 enum maple_type mt, unsigned char end)
1975 {
1976 if (end < mt_slots[mt] - 1)
1977 ma_set_meta(node, mt, 0, end);
1978 }
1979
1980 /*
1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982 * @b_node: the maple_big_node that has the data
1983 * @mab_start: the start location in @b_node.
1984 * @mab_end: The end location in @b_node (inclusively)
1985 * @mas: The maple state with the maple encoded node.
1986 */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1987 static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 unsigned char mab_start, unsigned char mab_end,
1989 struct ma_state *mas, bool new_max)
1990 {
1991 int i, j = 0;
1992 enum maple_type mt = mte_node_type(mas->node);
1993 struct maple_node *node = mte_to_node(mas->node);
1994 void __rcu **slots = ma_slots(node, mt);
1995 unsigned long *pivots = ma_pivots(node, mt);
1996 unsigned long *gaps = NULL;
1997 unsigned char end;
1998
1999 if (mab_end - mab_start > mt_pivots[mt])
2000 mab_end--;
2001
2002 if (!pivots[mt_pivots[mt] - 1])
2003 slots[mt_pivots[mt]] = NULL;
2004
2005 i = mab_start;
2006 do {
2007 pivots[j++] = b_node->pivot[i++];
2008 } while (i <= mab_end && likely(b_node->pivot[i]));
2009
2010 memcpy(slots, b_node->slot + mab_start,
2011 sizeof(void *) * (i - mab_start));
2012
2013 if (new_max)
2014 mas->max = b_node->pivot[i - 1];
2015
2016 end = j - 1;
2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 unsigned long max_gap = 0;
2019 unsigned char offset = 0;
2020
2021 gaps = ma_gaps(node, mt);
2022 do {
2023 gaps[--j] = b_node->gap[--i];
2024 if (gaps[j] > max_gap) {
2025 offset = j;
2026 max_gap = gaps[j];
2027 }
2028 } while (j);
2029
2030 ma_set_meta(node, mt, offset, end);
2031 } else {
2032 mas_leaf_set_meta(node, mt, end);
2033 }
2034 }
2035
2036 /*
2037 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2038 * @mas: The maple state
2039 * @end: The maple node end
2040 * @mt: The maple node type
2041 */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2042 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2043 enum maple_type mt)
2044 {
2045 if (!(mas->mas_flags & MA_STATE_BULK))
2046 return;
2047
2048 if (mte_is_root(mas->node))
2049 return;
2050
2051 if (end > mt_min_slots[mt]) {
2052 mas->mas_flags &= ~MA_STATE_REBALANCE;
2053 return;
2054 }
2055 }
2056
2057 /*
2058 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2059 * data from a maple encoded node.
2060 * @wr_mas: the maple write state
2061 * @b_node: the maple_big_node to fill with data
2062 * @offset_end: the offset to end copying
2063 *
2064 * Return: The actual end of the data stored in @b_node
2065 */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2066 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2067 struct maple_big_node *b_node, unsigned char offset_end)
2068 {
2069 unsigned char slot;
2070 unsigned char b_end;
2071 /* Possible underflow of piv will wrap back to 0 before use. */
2072 unsigned long piv;
2073 struct ma_state *mas = wr_mas->mas;
2074
2075 b_node->type = wr_mas->type;
2076 b_end = 0;
2077 slot = mas->offset;
2078 if (slot) {
2079 /* Copy start data up to insert. */
2080 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2081 b_end = b_node->b_end;
2082 piv = b_node->pivot[b_end - 1];
2083 } else
2084 piv = mas->min - 1;
2085
2086 if (piv + 1 < mas->index) {
2087 /* Handle range starting after old range */
2088 b_node->slot[b_end] = wr_mas->content;
2089 if (!wr_mas->content)
2090 b_node->gap[b_end] = mas->index - 1 - piv;
2091 b_node->pivot[b_end++] = mas->index - 1;
2092 }
2093
2094 /* Store the new entry. */
2095 mas->offset = b_end;
2096 b_node->slot[b_end] = wr_mas->entry;
2097 b_node->pivot[b_end] = mas->last;
2098
2099 /* Appended. */
2100 if (mas->last >= mas->max)
2101 goto b_end;
2102
2103 /* Handle new range ending before old range ends */
2104 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2105 if (piv > mas->last) {
2106 if (piv == ULONG_MAX)
2107 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2108
2109 if (offset_end != slot)
2110 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2111 offset_end);
2112
2113 b_node->slot[++b_end] = wr_mas->content;
2114 if (!wr_mas->content)
2115 b_node->gap[b_end] = piv - mas->last + 1;
2116 b_node->pivot[b_end] = piv;
2117 }
2118
2119 slot = offset_end + 1;
2120 if (slot > mas->end)
2121 goto b_end;
2122
2123 /* Copy end data to the end of the node. */
2124 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2125 b_node->b_end--;
2126 return;
2127
2128 b_end:
2129 b_node->b_end = b_end;
2130 }
2131
2132 /*
2133 * mas_prev_sibling() - Find the previous node with the same parent.
2134 * @mas: the maple state
2135 *
2136 * Return: True if there is a previous sibling, false otherwise.
2137 */
mas_prev_sibling(struct ma_state * mas)2138 static inline bool mas_prev_sibling(struct ma_state *mas)
2139 {
2140 unsigned int p_slot = mte_parent_slot(mas->node);
2141
2142 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
2143 if (!p_slot)
2144 return false;
2145
2146 mas_ascend(mas);
2147 mas->offset = p_slot - 1;
2148 mas_descend(mas);
2149 return true;
2150 }
2151
2152 /*
2153 * mas_next_sibling() - Find the next node with the same parent.
2154 * @mas: the maple state
2155 *
2156 * Return: true if there is a next sibling, false otherwise.
2157 */
mas_next_sibling(struct ma_state * mas)2158 static inline bool mas_next_sibling(struct ma_state *mas)
2159 {
2160 MA_STATE(parent, mas->tree, mas->index, mas->last);
2161
2162 if (mte_is_root(mas->node))
2163 return false;
2164
2165 parent = *mas;
2166 mas_ascend(&parent);
2167 parent.offset = mte_parent_slot(mas->node) + 1;
2168 if (parent.offset > mas_data_end(&parent))
2169 return false;
2170
2171 *mas = parent;
2172 mas_descend(mas);
2173 return true;
2174 }
2175
2176 /*
2177 * mas_node_or_none() - Set the enode and state.
2178 * @mas: the maple state
2179 * @enode: The encoded maple node.
2180 *
2181 * Set the node to the enode and the status.
2182 */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2183 static inline void mas_node_or_none(struct ma_state *mas,
2184 struct maple_enode *enode)
2185 {
2186 if (enode) {
2187 mas->node = enode;
2188 mas->status = ma_active;
2189 } else {
2190 mas->node = NULL;
2191 mas->status = ma_none;
2192 }
2193 }
2194
2195 /*
2196 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2197 * If @mas->index cannot be found within the containing
2198 * node, we traverse to the last entry in the node.
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204 {
2205 struct ma_state *mas = wr_mas->mas;
2206 unsigned char count, offset;
2207
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2211 return;
2212 }
2213
2214 wr_mas->node = mas_mn(wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 wr_mas->pivots, mas->max);
2218 offset = mas->offset;
2219
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2221 offset++;
2222
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225 wr_mas->offset_end = mas->offset = offset;
2226 }
2227
2228 /*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 */
mast_rebalance_next(struct maple_subtree_state * mast)2232 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2233 {
2234 unsigned char b_end = mast->bn->b_end;
2235
2236 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2237 mast->bn, b_end);
2238 mast->orig_r->last = mast->orig_r->max;
2239 }
2240
2241 /*
2242 * mast_rebalance_prev() - Rebalance against the previous node
2243 * @mast: The maple subtree state
2244 */
mast_rebalance_prev(struct maple_subtree_state * mast)2245 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2246 {
2247 unsigned char end = mas_data_end(mast->orig_l) + 1;
2248 unsigned char b_end = mast->bn->b_end;
2249
2250 mab_shift_right(mast->bn, end);
2251 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2252 mast->l->min = mast->orig_l->min;
2253 mast->orig_l->index = mast->orig_l->min;
2254 mast->bn->b_end = end + b_end;
2255 mast->l->offset += end;
2256 }
2257
2258 /*
2259 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2260 * the node to the right. Checking the nodes to the right then the left at each
2261 * level upwards until root is reached.
2262 * Data is copied into the @mast->bn.
2263 * @mast: The maple_subtree_state.
2264 */
2265 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2266 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2267 {
2268 struct ma_state r_tmp = *mast->orig_r;
2269 struct ma_state l_tmp = *mast->orig_l;
2270 unsigned char depth = 0;
2271
2272 do {
2273 mas_ascend(mast->orig_r);
2274 mas_ascend(mast->orig_l);
2275 depth++;
2276 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2277 mast->orig_r->offset++;
2278 do {
2279 mas_descend(mast->orig_r);
2280 mast->orig_r->offset = 0;
2281 } while (--depth);
2282
2283 mast_rebalance_next(mast);
2284 *mast->orig_l = l_tmp;
2285 return true;
2286 } else if (mast->orig_l->offset != 0) {
2287 mast->orig_l->offset--;
2288 do {
2289 mas_descend(mast->orig_l);
2290 mast->orig_l->offset =
2291 mas_data_end(mast->orig_l);
2292 } while (--depth);
2293
2294 mast_rebalance_prev(mast);
2295 *mast->orig_r = r_tmp;
2296 return true;
2297 }
2298 } while (!mte_is_root(mast->orig_r->node));
2299
2300 *mast->orig_r = r_tmp;
2301 *mast->orig_l = l_tmp;
2302 return false;
2303 }
2304
2305 /*
2306 * mast_ascend() - Ascend the original left and right maple states.
2307 * @mast: the maple subtree state.
2308 *
2309 * Ascend the original left and right sides. Set the offsets to point to the
2310 * data already in the new tree (@mast->l and @mast->r).
2311 */
mast_ascend(struct maple_subtree_state * mast)2312 static inline void mast_ascend(struct maple_subtree_state *mast)
2313 {
2314 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2315 mas_ascend(mast->orig_l);
2316 mas_ascend(mast->orig_r);
2317
2318 mast->orig_r->offset = 0;
2319 mast->orig_r->index = mast->r->max;
2320 /* last should be larger than or equal to index */
2321 if (mast->orig_r->last < mast->orig_r->index)
2322 mast->orig_r->last = mast->orig_r->index;
2323
2324 wr_mas.type = mte_node_type(mast->orig_r->node);
2325 mas_wr_node_walk(&wr_mas);
2326 /* Set up the left side of things */
2327 mast->orig_l->offset = 0;
2328 mast->orig_l->index = mast->l->min;
2329 wr_mas.mas = mast->orig_l;
2330 wr_mas.type = mte_node_type(mast->orig_l->node);
2331 mas_wr_node_walk(&wr_mas);
2332
2333 mast->bn->type = wr_mas.type;
2334 }
2335
2336 /*
2337 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2338 * @mas: the maple state with the allocations.
2339 * @b_node: the maple_big_node with the type encoding.
2340 *
2341 * Use the node type from the maple_big_node to allocate a new node from the
2342 * ma_state. This function exists mainly for code readability.
2343 *
2344 * Return: A new maple encoded node
2345 */
2346 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2347 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2348 {
2349 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2350 }
2351
2352 /*
2353 * mas_mab_to_node() - Set up right and middle nodes
2354 *
2355 * @mas: the maple state that contains the allocations.
2356 * @b_node: the node which contains the data.
2357 * @left: The pointer which will have the left node
2358 * @right: The pointer which may have the right node
2359 * @middle: the pointer which may have the middle node (rare)
2360 * @mid_split: the split location for the middle node
2361 *
2362 * Return: the split of left.
2363 */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2364 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2365 struct maple_big_node *b_node, struct maple_enode **left,
2366 struct maple_enode **right, struct maple_enode **middle,
2367 unsigned char *mid_split)
2368 {
2369 unsigned char split = 0;
2370 unsigned char slot_count = mt_slots[b_node->type];
2371
2372 *left = mas_new_ma_node(mas, b_node);
2373 *right = NULL;
2374 *middle = NULL;
2375 *mid_split = 0;
2376
2377 if (b_node->b_end < slot_count) {
2378 split = b_node->b_end;
2379 } else {
2380 split = mab_calc_split(mas, b_node, mid_split);
2381 *right = mas_new_ma_node(mas, b_node);
2382 }
2383
2384 if (*mid_split)
2385 *middle = mas_new_ma_node(mas, b_node);
2386
2387 return split;
2388
2389 }
2390
2391 /*
2392 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2393 * pointer.
2394 * @b_node: the big node to add the entry
2395 * @mas: the maple state to get the pivot (mas->max)
2396 * @entry: the entry to add, if NULL nothing happens.
2397 */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2398 static inline void mab_set_b_end(struct maple_big_node *b_node,
2399 struct ma_state *mas,
2400 void *entry)
2401 {
2402 if (!entry)
2403 return;
2404
2405 b_node->slot[b_node->b_end] = entry;
2406 if (mt_is_alloc(mas->tree))
2407 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2408 b_node->pivot[b_node->b_end++] = mas->max;
2409 }
2410
2411 /*
2412 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2413 * of @mas->node to either @left or @right, depending on @slot and @split
2414 *
2415 * @mas: the maple state with the node that needs a parent
2416 * @left: possible parent 1
2417 * @right: possible parent 2
2418 * @slot: the slot the mas->node was placed
2419 * @split: the split location between @left and @right
2420 */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2421 static inline void mas_set_split_parent(struct ma_state *mas,
2422 struct maple_enode *left,
2423 struct maple_enode *right,
2424 unsigned char *slot, unsigned char split)
2425 {
2426 if (mas_is_none(mas))
2427 return;
2428
2429 if ((*slot) <= split)
2430 mas_set_parent(mas, mas->node, left, *slot);
2431 else if (right)
2432 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2433
2434 (*slot)++;
2435 }
2436
2437 /*
2438 * mte_mid_split_check() - Check if the next node passes the mid-split
2439 * @l: Pointer to left encoded maple node.
2440 * @m: Pointer to middle encoded maple node.
2441 * @r: Pointer to right encoded maple node.
2442 * @slot: The offset
2443 * @split: The split location.
2444 * @mid_split: The middle split.
2445 */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2446 static inline void mte_mid_split_check(struct maple_enode **l,
2447 struct maple_enode **r,
2448 struct maple_enode *right,
2449 unsigned char slot,
2450 unsigned char *split,
2451 unsigned char mid_split)
2452 {
2453 if (*r == right)
2454 return;
2455
2456 if (slot < mid_split)
2457 return;
2458
2459 *l = *r;
2460 *r = right;
2461 *split = mid_split;
2462 }
2463
2464 /*
2465 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2466 * is taken from @mast->l.
2467 * @mast: the maple subtree state
2468 * @left: the left node
2469 * @right: the right node
2470 * @split: the split location.
2471 */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2472 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2473 struct maple_enode *left,
2474 struct maple_enode *middle,
2475 struct maple_enode *right,
2476 unsigned char split,
2477 unsigned char mid_split)
2478 {
2479 unsigned char slot;
2480 struct maple_enode *l = left;
2481 struct maple_enode *r = right;
2482
2483 if (mas_is_none(mast->l))
2484 return;
2485
2486 if (middle)
2487 r = middle;
2488
2489 slot = mast->l->offset;
2490
2491 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2492 mas_set_split_parent(mast->l, l, r, &slot, split);
2493
2494 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2495 mas_set_split_parent(mast->m, l, r, &slot, split);
2496
2497 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2498 mas_set_split_parent(mast->r, l, r, &slot, split);
2499 }
2500
2501 /*
2502 * mas_topiary_node() - Dispose of a single node
2503 * @mas: The maple state for pushing nodes
2504 * @in_rcu: If the tree is in rcu mode
2505 *
2506 * The node will either be RCU freed or pushed back on the maple state.
2507 */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2508 static inline void mas_topiary_node(struct ma_state *mas,
2509 struct ma_state *tmp_mas, bool in_rcu)
2510 {
2511 struct maple_node *tmp;
2512 struct maple_enode *enode;
2513
2514 if (mas_is_none(tmp_mas))
2515 return;
2516
2517 enode = tmp_mas->node;
2518 tmp = mte_to_node(enode);
2519 mte_set_node_dead(enode);
2520 if (in_rcu)
2521 ma_free_rcu(tmp);
2522 else
2523 mas_push_node(mas, tmp);
2524 }
2525
2526 /*
2527 * mas_topiary_replace() - Replace the data with new data, then repair the
2528 * parent links within the new tree. Iterate over the dead sub-tree and collect
2529 * the dead subtrees and topiary the nodes that are no longer of use.
2530 *
2531 * The new tree will have up to three children with the correct parent. Keep
2532 * track of the new entries as they need to be followed to find the next level
2533 * of new entries.
2534 *
2535 * The old tree will have up to three children with the old parent. Keep track
2536 * of the old entries as they may have more nodes below replaced. Nodes within
2537 * [index, last] are dead subtrees, others need to be freed and followed.
2538 *
2539 * @mas: The maple state pointing at the new data
2540 * @old_enode: The maple encoded node being replaced
2541 * @new_height: The new height of the tree as a result of the operation
2542 *
2543 */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2544 static inline void mas_topiary_replace(struct ma_state *mas,
2545 struct maple_enode *old_enode, unsigned char new_height)
2546 {
2547 struct ma_state tmp[3], tmp_next[3];
2548 MA_TOPIARY(subtrees, mas->tree);
2549 bool in_rcu;
2550 int i, n;
2551
2552 /* Place data in tree & then mark node as old */
2553 mas_put_in_tree(mas, old_enode, new_height);
2554
2555 /* Update the parent pointers in the tree */
2556 tmp[0] = *mas;
2557 tmp[0].offset = 0;
2558 tmp[1].status = ma_none;
2559 tmp[2].status = ma_none;
2560 while (!mte_is_leaf(tmp[0].node)) {
2561 n = 0;
2562 for (i = 0; i < 3; i++) {
2563 if (mas_is_none(&tmp[i]))
2564 continue;
2565
2566 while (n < 3) {
2567 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2568 break;
2569 n++;
2570 }
2571
2572 mas_adopt_children(&tmp[i], tmp[i].node);
2573 }
2574
2575 if (MAS_WARN_ON(mas, n == 0))
2576 break;
2577
2578 while (n < 3)
2579 tmp_next[n++].status = ma_none;
2580
2581 for (i = 0; i < 3; i++)
2582 tmp[i] = tmp_next[i];
2583 }
2584
2585 /* Collect the old nodes that need to be discarded */
2586 if (mte_is_leaf(old_enode))
2587 return mas_free(mas, old_enode);
2588
2589 tmp[0] = *mas;
2590 tmp[0].offset = 0;
2591 tmp[0].node = old_enode;
2592 tmp[1].status = ma_none;
2593 tmp[2].status = ma_none;
2594 in_rcu = mt_in_rcu(mas->tree);
2595 do {
2596 n = 0;
2597 for (i = 0; i < 3; i++) {
2598 if (mas_is_none(&tmp[i]))
2599 continue;
2600
2601 while (n < 3) {
2602 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2603 break;
2604
2605 if ((tmp_next[n].min >= tmp_next->index) &&
2606 (tmp_next[n].max <= tmp_next->last)) {
2607 mat_add(&subtrees, tmp_next[n].node);
2608 tmp_next[n].status = ma_none;
2609 } else {
2610 n++;
2611 }
2612 }
2613 }
2614
2615 if (MAS_WARN_ON(mas, n == 0))
2616 break;
2617
2618 while (n < 3)
2619 tmp_next[n++].status = ma_none;
2620
2621 for (i = 0; i < 3; i++) {
2622 mas_topiary_node(mas, &tmp[i], in_rcu);
2623 tmp[i] = tmp_next[i];
2624 }
2625 } while (!mte_is_leaf(tmp[0].node));
2626
2627 for (i = 0; i < 3; i++)
2628 mas_topiary_node(mas, &tmp[i], in_rcu);
2629
2630 mas_mat_destroy(mas, &subtrees);
2631 }
2632
2633 /*
2634 * mas_wmb_replace() - Write memory barrier and replace
2635 * @mas: The maple state
2636 * @old_enode: The old maple encoded node that is being replaced.
2637 * @new_height: The new height of the tree as a result of the operation
2638 *
2639 * Updates gap as necessary.
2640 */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2641 static inline void mas_wmb_replace(struct ma_state *mas,
2642 struct maple_enode *old_enode, unsigned char new_height)
2643 {
2644 /* Insert the new data in the tree */
2645 mas_topiary_replace(mas, old_enode, new_height);
2646
2647 if (mte_is_leaf(mas->node))
2648 return;
2649
2650 mas_update_gap(mas);
2651 }
2652
2653 /*
2654 * mast_cp_to_nodes() - Copy data out to nodes.
2655 * @mast: The maple subtree state
2656 * @left: The left encoded maple node
2657 * @middle: The middle encoded maple node
2658 * @right: The right encoded maple node
2659 * @split: The location to split between left and (middle ? middle : right)
2660 * @mid_split: The location to split between middle and right.
2661 */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2662 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2663 struct maple_enode *left, struct maple_enode *middle,
2664 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2665 {
2666 bool new_lmax = true;
2667
2668 mas_node_or_none(mast->l, left);
2669 mas_node_or_none(mast->m, middle);
2670 mas_node_or_none(mast->r, right);
2671
2672 mast->l->min = mast->orig_l->min;
2673 if (split == mast->bn->b_end) {
2674 mast->l->max = mast->orig_r->max;
2675 new_lmax = false;
2676 }
2677
2678 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2679
2680 if (middle) {
2681 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2682 mast->m->min = mast->bn->pivot[split] + 1;
2683 split = mid_split;
2684 }
2685
2686 mast->r->max = mast->orig_r->max;
2687 if (right) {
2688 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2689 mast->r->min = mast->bn->pivot[split] + 1;
2690 }
2691 }
2692
2693 /*
2694 * mast_combine_cp_left - Copy in the original left side of the tree into the
2695 * combined data set in the maple subtree state big node.
2696 * @mast: The maple subtree state
2697 */
mast_combine_cp_left(struct maple_subtree_state * mast)2698 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2699 {
2700 unsigned char l_slot = mast->orig_l->offset;
2701
2702 if (!l_slot)
2703 return;
2704
2705 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2706 }
2707
2708 /*
2709 * mast_combine_cp_right: Copy in the original right side of the tree into the
2710 * combined data set in the maple subtree state big node.
2711 * @mast: The maple subtree state
2712 */
mast_combine_cp_right(struct maple_subtree_state * mast)2713 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2714 {
2715 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2716 return;
2717
2718 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2719 mt_slot_count(mast->orig_r->node), mast->bn,
2720 mast->bn->b_end);
2721 mast->orig_r->last = mast->orig_r->max;
2722 }
2723
2724 /*
2725 * mast_sufficient: Check if the maple subtree state has enough data in the big
2726 * node to create at least one sufficient node
2727 * @mast: the maple subtree state
2728 */
mast_sufficient(struct maple_subtree_state * mast)2729 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2730 {
2731 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2732 return true;
2733
2734 return false;
2735 }
2736
2737 /*
2738 * mast_overflow: Check if there is too much data in the subtree state for a
2739 * single node.
2740 * @mast: The maple subtree state
2741 */
mast_overflow(struct maple_subtree_state * mast)2742 static inline bool mast_overflow(struct maple_subtree_state *mast)
2743 {
2744 if (mast->bn->b_end > mt_slot_count(mast->orig_l->node))
2745 return true;
2746
2747 return false;
2748 }
2749
mtree_range_walk(struct ma_state * mas)2750 static inline void *mtree_range_walk(struct ma_state *mas)
2751 {
2752 unsigned long *pivots;
2753 unsigned char offset;
2754 struct maple_node *node;
2755 struct maple_enode *next, *last;
2756 enum maple_type type;
2757 void __rcu **slots;
2758 unsigned char end;
2759 unsigned long max, min;
2760 unsigned long prev_max, prev_min;
2761
2762 next = mas->node;
2763 min = mas->min;
2764 max = mas->max;
2765 do {
2766 last = next;
2767 node = mte_to_node(next);
2768 type = mte_node_type(next);
2769 pivots = ma_pivots(node, type);
2770 end = ma_data_end(node, type, pivots, max);
2771 prev_min = min;
2772 prev_max = max;
2773 if (pivots[0] >= mas->index) {
2774 offset = 0;
2775 max = pivots[0];
2776 goto next;
2777 }
2778
2779 offset = 1;
2780 while (offset < end) {
2781 if (pivots[offset] >= mas->index) {
2782 max = pivots[offset];
2783 break;
2784 }
2785 offset++;
2786 }
2787
2788 min = pivots[offset - 1] + 1;
2789 next:
2790 slots = ma_slots(node, type);
2791 next = mt_slot(mas->tree, slots, offset);
2792 if (unlikely(ma_dead_node(node)))
2793 goto dead_node;
2794 } while (!ma_is_leaf(type));
2795
2796 mas->end = end;
2797 mas->offset = offset;
2798 mas->index = min;
2799 mas->last = max;
2800 mas->min = prev_min;
2801 mas->max = prev_max;
2802 mas->node = last;
2803 return (void *)next;
2804
2805 dead_node:
2806 mas_reset(mas);
2807 return NULL;
2808 }
2809
2810 /*
2811 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2812 * @mas: The starting maple state
2813 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2814 * @count: The estimated count of iterations needed.
2815 *
2816 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2817 * is hit. First @b_node is split into two entries which are inserted into the
2818 * next iteration of the loop. @b_node is returned populated with the final
2819 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2820 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2821 * to account of what has been copied into the new sub-tree. The update of
2822 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2823 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2824 * the new sub-tree in case the sub-tree becomes the full tree.
2825 */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2826 static void mas_spanning_rebalance(struct ma_state *mas,
2827 struct maple_subtree_state *mast, unsigned char count)
2828 {
2829 unsigned char split, mid_split;
2830 unsigned char slot = 0;
2831 unsigned char new_height = 0; /* used if node is a new root */
2832 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2833 struct maple_enode *old_enode;
2834
2835 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2836 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2837 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2838
2839 /*
2840 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2841 * Rebalancing is done by use of the ``struct maple_topiary``.
2842 */
2843 mast->l = &l_mas;
2844 mast->m = &m_mas;
2845 mast->r = &r_mas;
2846 l_mas.status = r_mas.status = m_mas.status = ma_none;
2847
2848 /* Check if this is not root and has sufficient data. */
2849 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2850 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2851 mast_spanning_rebalance(mast);
2852
2853 /*
2854 * Each level of the tree is examined and balanced, pushing data to the left or
2855 * right, or rebalancing against left or right nodes is employed to avoid
2856 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2857 * the tree is created, there may be a mix of new and old nodes. The old nodes
2858 * will have the incorrect parent pointers and currently be in two trees: the
2859 * original tree and the partially new tree. To remedy the parent pointers in
2860 * the old tree, the new data is swapped into the active tree and a walk down
2861 * the tree is performed and the parent pointers are updated.
2862 * See mas_topiary_replace() for more information.
2863 */
2864 while (count--) {
2865 mast->bn->b_end--;
2866 mast->bn->type = mte_node_type(mast->orig_l->node);
2867 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2868 &mid_split);
2869 mast_set_split_parents(mast, left, middle, right, split,
2870 mid_split);
2871 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2872 new_height++;
2873
2874 /*
2875 * Copy data from next level in the tree to mast->bn from next
2876 * iteration
2877 */
2878 memset(mast->bn, 0, sizeof(struct maple_big_node));
2879 mast->bn->type = mte_node_type(left);
2880
2881 /* Root already stored in l->node. */
2882 if (mas_is_root_limits(mast->l))
2883 goto new_root;
2884
2885 mast_ascend(mast);
2886 mast_combine_cp_left(mast);
2887 l_mas.offset = mast->bn->b_end;
2888 mab_set_b_end(mast->bn, &l_mas, left);
2889 mab_set_b_end(mast->bn, &m_mas, middle);
2890 mab_set_b_end(mast->bn, &r_mas, right);
2891
2892 /* Copy anything necessary out of the right node. */
2893 mast_combine_cp_right(mast);
2894 mast->orig_l->last = mast->orig_l->max;
2895
2896 if (mast_sufficient(mast)) {
2897 if (mast_overflow(mast))
2898 continue;
2899
2900 if (mast->orig_l->node == mast->orig_r->node) {
2901 /*
2902 * The data in b_node should be stored in one
2903 * node and in the tree
2904 */
2905 slot = mast->l->offset;
2906 break;
2907 }
2908
2909 continue;
2910 }
2911
2912 /* May be a new root stored in mast->bn */
2913 if (mas_is_root_limits(mast->orig_l))
2914 break;
2915
2916 mast_spanning_rebalance(mast);
2917
2918 /* rebalancing from other nodes may require another loop. */
2919 if (!count)
2920 count++;
2921 }
2922
2923 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2924 mte_node_type(mast->orig_l->node));
2925
2926 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2927 new_height++;
2928 mas_set_parent(mas, left, l_mas.node, slot);
2929 if (middle)
2930 mas_set_parent(mas, middle, l_mas.node, ++slot);
2931
2932 if (right)
2933 mas_set_parent(mas, right, l_mas.node, ++slot);
2934
2935 if (mas_is_root_limits(mast->l)) {
2936 new_root:
2937 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2938 while (!mte_is_root(mast->orig_l->node))
2939 mast_ascend(mast);
2940 } else {
2941 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2942 }
2943
2944 old_enode = mast->orig_l->node;
2945 mas->depth = l_mas.depth;
2946 mas->node = l_mas.node;
2947 mas->min = l_mas.min;
2948 mas->max = l_mas.max;
2949 mas->offset = l_mas.offset;
2950 mas_wmb_replace(mas, old_enode, new_height);
2951 mtree_range_walk(mas);
2952 return;
2953 }
2954
2955 /*
2956 * mas_rebalance() - Rebalance a given node.
2957 * @mas: The maple state
2958 * @b_node: The big maple node.
2959 *
2960 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2961 * Continue upwards until tree is sufficient.
2962 */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2963 static inline void mas_rebalance(struct ma_state *mas,
2964 struct maple_big_node *b_node)
2965 {
2966 char empty_count = mas_mt_height(mas);
2967 struct maple_subtree_state mast;
2968 unsigned char shift, b_end = ++b_node->b_end;
2969
2970 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2971 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2972
2973 trace_ma_op(__func__, mas);
2974
2975 /*
2976 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2977 * against the node to the right if it exists, otherwise the node to the
2978 * left of this node is rebalanced against this node. If rebalancing
2979 * causes just one node to be produced instead of two, then the parent
2980 * is also examined and rebalanced if it is insufficient. Every level
2981 * tries to combine the data in the same way. If one node contains the
2982 * entire range of the tree, then that node is used as a new root node.
2983 */
2984
2985 mast.orig_l = &l_mas;
2986 mast.orig_r = &r_mas;
2987 mast.bn = b_node;
2988 mast.bn->type = mte_node_type(mas->node);
2989
2990 l_mas = r_mas = *mas;
2991
2992 if (mas_next_sibling(&r_mas)) {
2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2994 r_mas.last = r_mas.index = r_mas.max;
2995 } else {
2996 mas_prev_sibling(&l_mas);
2997 shift = mas_data_end(&l_mas) + 1;
2998 mab_shift_right(b_node, shift);
2999 mas->offset += shift;
3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3001 b_node->b_end = shift + b_end;
3002 l_mas.index = l_mas.last = l_mas.min;
3003 }
3004
3005 return mas_spanning_rebalance(mas, &mast, empty_count);
3006 }
3007
3008 /*
3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3010 * state.
3011 * @mas: The maple state
3012 * @end: The end of the left-most node.
3013 *
3014 * During a mass-insert event (such as forking), it may be necessary to
3015 * rebalance the left-most node when it is not sufficient.
3016 */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3017 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3018 {
3019 enum maple_type mt = mte_node_type(mas->node);
3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3021 struct maple_enode *eparent, *old_eparent;
3022 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3023 void __rcu **l_slots, **slots;
3024 unsigned long *l_pivs, *pivs, gap;
3025 bool in_rcu = mt_in_rcu(mas->tree);
3026 unsigned char new_height = mas_mt_height(mas);
3027
3028 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029
3030 l_mas = *mas;
3031 mas_prev_sibling(&l_mas);
3032
3033 /* set up node. */
3034 if (in_rcu) {
3035 newnode = mas_pop_node(mas);
3036 } else {
3037 newnode = &reuse;
3038 }
3039
3040 node = mas_mn(mas);
3041 newnode->parent = node->parent;
3042 slots = ma_slots(newnode, mt);
3043 pivs = ma_pivots(newnode, mt);
3044 left = mas_mn(&l_mas);
3045 l_slots = ma_slots(left, mt);
3046 l_pivs = ma_pivots(left, mt);
3047 if (!l_slots[split])
3048 split++;
3049 tmp = mas_data_end(&l_mas) - split;
3050
3051 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 pivs[tmp] = l_mas.max;
3054 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056
3057 l_mas.max = l_pivs[split];
3058 mas->min = l_mas.max + 1;
3059 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3060 mas_parent_type(&l_mas, l_mas.node));
3061 tmp += end;
3062 if (!in_rcu) {
3063 unsigned char max_p = mt_pivots[mt];
3064 unsigned char max_s = mt_slots[mt];
3065
3066 if (tmp < max_p)
3067 memset(pivs + tmp, 0,
3068 sizeof(unsigned long) * (max_p - tmp));
3069
3070 if (tmp < mt_slots[mt])
3071 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072
3073 memcpy(node, newnode, sizeof(struct maple_node));
3074 ma_set_meta(node, mt, 0, tmp - 1);
3075 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3076 l_pivs[split]);
3077
3078 /* Remove data from l_pivs. */
3079 tmp = split + 1;
3080 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 ma_set_meta(left, mt, 0, split);
3083 eparent = old_eparent;
3084
3085 goto done;
3086 }
3087
3088 /* RCU requires replacing both l_mas, mas, and parent. */
3089 mas->node = mt_mk_node(newnode, mt);
3090 ma_set_meta(newnode, mt, 0, tmp);
3091
3092 new_left = mas_pop_node(mas);
3093 new_left->parent = left->parent;
3094 mt = mte_node_type(l_mas.node);
3095 slots = ma_slots(new_left, mt);
3096 pivs = ma_pivots(new_left, mt);
3097 memcpy(slots, l_slots, sizeof(void *) * split);
3098 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 ma_set_meta(new_left, mt, 0, split);
3100 l_mas.node = mt_mk_node(new_left, mt);
3101
3102 /* replace parent. */
3103 offset = mte_parent_slot(mas->node);
3104 mt = mas_parent_type(&l_mas, l_mas.node);
3105 parent = mas_pop_node(mas);
3106 slots = ma_slots(parent, mt);
3107 pivs = ma_pivots(parent, mt);
3108 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3109 rcu_assign_pointer(slots[offset], mas->node);
3110 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 pivs[offset - 1] = l_mas.max;
3112 eparent = mt_mk_node(parent, mt);
3113 done:
3114 gap = mas_leaf_max_gap(mas);
3115 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 gap = mas_leaf_max_gap(&l_mas);
3117 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 mas_ascend(mas);
3119
3120 if (in_rcu) {
3121 mas_replace_node(mas, old_eparent, new_height);
3122 mas_adopt_children(mas, mas->node);
3123 }
3124
3125 mas_update_gap(mas);
3126 }
3127
3128 /*
3129 * mas_split_final_node() - Split the final node in a subtree operation.
3130 * @mast: the maple subtree state
3131 * @mas: The maple state
3132 */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas)3133 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3134 struct ma_state *mas)
3135 {
3136 struct maple_enode *ancestor;
3137
3138 if (mte_is_root(mas->node)) {
3139 if (mt_is_alloc(mas->tree))
3140 mast->bn->type = maple_arange_64;
3141 else
3142 mast->bn->type = maple_range_64;
3143 }
3144 /*
3145 * Only a single node is used here, could be root.
3146 * The Big_node data should just fit in a single node.
3147 */
3148 ancestor = mas_new_ma_node(mas, mast->bn);
3149 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3150 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3151 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3152
3153 mast->l->node = ancestor;
3154 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3155 mas->offset = mast->bn->b_end - 1;
3156 }
3157
3158 /*
3159 * mast_fill_bnode() - Copy data into the big node in the subtree state
3160 * @mast: The maple subtree state
3161 * @mas: the maple state
3162 * @skip: The number of entries to skip for new nodes insertion.
3163 */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3164 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3165 struct ma_state *mas,
3166 unsigned char skip)
3167 {
3168 bool cp = true;
3169 unsigned char split;
3170
3171 memset(mast->bn, 0, sizeof(struct maple_big_node));
3172
3173 if (mte_is_root(mas->node)) {
3174 cp = false;
3175 } else {
3176 mas_ascend(mas);
3177 mas->offset = mte_parent_slot(mas->node);
3178 }
3179
3180 if (cp && mast->l->offset)
3181 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3182
3183 split = mast->bn->b_end;
3184 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3185 mast->r->offset = mast->bn->b_end;
3186 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3187 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3188 cp = false;
3189
3190 if (cp)
3191 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3192 mast->bn, mast->bn->b_end);
3193
3194 mast->bn->b_end--;
3195 mast->bn->type = mte_node_type(mas->node);
3196 }
3197
3198 /*
3199 * mast_split_data() - Split the data in the subtree state big node into regular
3200 * nodes.
3201 * @mast: The maple subtree state
3202 * @mas: The maple state
3203 * @split: The location to split the big node
3204 */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3205 static inline void mast_split_data(struct maple_subtree_state *mast,
3206 struct ma_state *mas, unsigned char split)
3207 {
3208 unsigned char p_slot;
3209
3210 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3211 mte_set_pivot(mast->r->node, 0, mast->r->max);
3212 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3213 mast->l->offset = mte_parent_slot(mas->node);
3214 mast->l->max = mast->bn->pivot[split];
3215 mast->r->min = mast->l->max + 1;
3216 if (mte_is_leaf(mas->node))
3217 return;
3218
3219 p_slot = mast->orig_l->offset;
3220 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3221 &p_slot, split);
3222 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3223 &p_slot, split);
3224 }
3225
3226 /*
3227 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3228 * data to the right or left node if there is room.
3229 * @mas: The maple state
3230 * @mast: The maple subtree state
3231 * @left: Push left or not.
3232 *
3233 * Keeping the height of the tree low means faster lookups.
3234 *
3235 * Return: True if pushed, false otherwise.
3236 */
mas_push_data(struct ma_state * mas,struct maple_subtree_state * mast,bool left)3237 static inline bool mas_push_data(struct ma_state *mas,
3238 struct maple_subtree_state *mast, bool left)
3239 {
3240 unsigned char slot_total = mast->bn->b_end;
3241 unsigned char end, space, split;
3242
3243 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3244 tmp_mas = *mas;
3245 tmp_mas.depth = mast->l->depth;
3246
3247 if (left && !mas_prev_sibling(&tmp_mas))
3248 return false;
3249 else if (!left && !mas_next_sibling(&tmp_mas))
3250 return false;
3251
3252 end = mas_data_end(&tmp_mas);
3253 slot_total += end;
3254 space = 2 * mt_slot_count(mas->node) - 2;
3255 /* -2 instead of -1 to ensure there isn't a triple split */
3256 if (ma_is_leaf(mast->bn->type))
3257 space--;
3258
3259 if (mas->max == ULONG_MAX)
3260 space--;
3261
3262 if (slot_total >= space)
3263 return false;
3264
3265 /* Get the data; Fill mast->bn */
3266 mast->bn->b_end++;
3267 if (left) {
3268 mab_shift_right(mast->bn, end + 1);
3269 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3270 mast->bn->b_end = slot_total + 1;
3271 } else {
3272 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3273 }
3274
3275 /* Configure mast for splitting of mast->bn */
3276 split = mt_slots[mast->bn->type] - 2;
3277 if (left) {
3278 /* Switch mas to prev node */
3279 *mas = tmp_mas;
3280 /* Start using mast->l for the left side. */
3281 tmp_mas.node = mast->l->node;
3282 *mast->l = tmp_mas;
3283 } else {
3284 tmp_mas.node = mast->r->node;
3285 *mast->r = tmp_mas;
3286 split = slot_total - split;
3287 }
3288 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3289 /* Update parent slot for split calculation. */
3290 if (left)
3291 mast->orig_l->offset += end + 1;
3292
3293 mast_split_data(mast, mas, split);
3294 mast_fill_bnode(mast, mas, 2);
3295 mas_split_final_node(mast, mas);
3296 return true;
3297 }
3298
3299 /*
3300 * mas_split() - Split data that is too big for one node into two.
3301 * @mas: The maple state
3302 * @b_node: The maple big node
3303 */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3304 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3305 {
3306 struct maple_subtree_state mast;
3307 int height = 0;
3308 unsigned int orig_height = mas_mt_height(mas);
3309 unsigned char mid_split, split = 0;
3310 struct maple_enode *old;
3311
3312 /*
3313 * Splitting is handled differently from any other B-tree; the Maple
3314 * Tree splits upwards. Splitting up means that the split operation
3315 * occurs when the walk of the tree hits the leaves and not on the way
3316 * down. The reason for splitting up is that it is impossible to know
3317 * how much space will be needed until the leaf is (or leaves are)
3318 * reached. Since overwriting data is allowed and a range could
3319 * overwrite more than one range or result in changing one entry into 3
3320 * entries, it is impossible to know if a split is required until the
3321 * data is examined.
3322 *
3323 * Splitting is a balancing act between keeping allocations to a minimum
3324 * and avoiding a 'jitter' event where a tree is expanded to make room
3325 * for an entry followed by a contraction when the entry is removed. To
3326 * accomplish the balance, there are empty slots remaining in both left
3327 * and right nodes after a split.
3328 */
3329 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3330 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3331 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3332 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3333
3334 trace_ma_op(__func__, mas);
3335
3336 mast.l = &l_mas;
3337 mast.r = &r_mas;
3338 mast.orig_l = &prev_l_mas;
3339 mast.orig_r = &prev_r_mas;
3340 mast.bn = b_node;
3341
3342 while (height++ <= orig_height) {
3343 if (mt_slots[b_node->type] > b_node->b_end) {
3344 mas_split_final_node(&mast, mas);
3345 break;
3346 }
3347
3348 l_mas = r_mas = *mas;
3349 l_mas.node = mas_new_ma_node(mas, b_node);
3350 r_mas.node = mas_new_ma_node(mas, b_node);
3351 /*
3352 * Another way that 'jitter' is avoided is to terminate a split up early if the
3353 * left or right node has space to spare. This is referred to as "pushing left"
3354 * or "pushing right" and is similar to the B* tree, except the nodes left or
3355 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3356 * is a significant savings.
3357 */
3358 /* Try to push left. */
3359 if (mas_push_data(mas, &mast, true)) {
3360 height++;
3361 break;
3362 }
3363 /* Try to push right. */
3364 if (mas_push_data(mas, &mast, false)) {
3365 height++;
3366 break;
3367 }
3368
3369 split = mab_calc_split(mas, b_node, &mid_split);
3370 mast_split_data(&mast, mas, split);
3371 /*
3372 * Usually correct, mab_mas_cp in the above call overwrites
3373 * r->max.
3374 */
3375 mast.r->max = mas->max;
3376 mast_fill_bnode(&mast, mas, 1);
3377 prev_l_mas = *mast.l;
3378 prev_r_mas = *mast.r;
3379 }
3380
3381 /* Set the original node as dead */
3382 old = mas->node;
3383 mas->node = l_mas.node;
3384 mas_wmb_replace(mas, old, height);
3385 mtree_range_walk(mas);
3386 return;
3387 }
3388
3389 /*
3390 * mas_commit_b_node() - Commit the big node into the tree.
3391 * @wr_mas: The maple write state
3392 * @b_node: The maple big node
3393 */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3394 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3395 struct maple_big_node *b_node)
3396 {
3397 enum store_type type = wr_mas->mas->store_type;
3398
3399 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3400
3401 if (type == wr_rebalance)
3402 return mas_rebalance(wr_mas->mas, b_node);
3403
3404 return mas_split(wr_mas->mas, b_node);
3405 }
3406
3407 /*
3408 * mas_root_expand() - Expand a root to a node
3409 * @mas: The maple state
3410 * @entry: The entry to store into the tree
3411 */
mas_root_expand(struct ma_state * mas,void * entry)3412 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3413 {
3414 void *contents = mas_root_locked(mas);
3415 enum maple_type type = maple_leaf_64;
3416 struct maple_node *node;
3417 void __rcu **slots;
3418 unsigned long *pivots;
3419 int slot = 0;
3420
3421 node = mas_pop_node(mas);
3422 pivots = ma_pivots(node, type);
3423 slots = ma_slots(node, type);
3424 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3425 mas->node = mt_mk_node(node, type);
3426 mas->status = ma_active;
3427
3428 if (mas->index) {
3429 if (contents) {
3430 rcu_assign_pointer(slots[slot], contents);
3431 if (likely(mas->index > 1))
3432 slot++;
3433 }
3434 pivots[slot++] = mas->index - 1;
3435 }
3436
3437 rcu_assign_pointer(slots[slot], entry);
3438 mas->offset = slot;
3439 pivots[slot] = mas->last;
3440 if (mas->last != ULONG_MAX)
3441 pivots[++slot] = ULONG_MAX;
3442
3443 mt_set_height(mas->tree, 1);
3444 ma_set_meta(node, maple_leaf_64, 0, slot);
3445 /* swap the new root into the tree */
3446 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3447 return;
3448 }
3449
3450 /*
3451 * mas_store_root() - Storing value into root.
3452 * @mas: The maple state
3453 * @entry: The entry to store.
3454 *
3455 * There is no root node now and we are storing a value into the root - this
3456 * function either assigns the pointer or expands into a node.
3457 */
mas_store_root(struct ma_state * mas,void * entry)3458 static inline void mas_store_root(struct ma_state *mas, void *entry)
3459 {
3460 if (!entry) {
3461 if (!mas->index)
3462 rcu_assign_pointer(mas->tree->ma_root, NULL);
3463 } else if (likely((mas->last != 0) || (mas->index != 0)))
3464 mas_root_expand(mas, entry);
3465 else if (((unsigned long) (entry) & 3) == 2)
3466 mas_root_expand(mas, entry);
3467 else {
3468 rcu_assign_pointer(mas->tree->ma_root, entry);
3469 mas->status = ma_start;
3470 }
3471 }
3472
3473 /*
3474 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3475 * spans the node.
3476 * @wr_mas: The maple write state
3477 *
3478 * Spanning writes are writes that start in one node and end in another OR if
3479 * the write of a %NULL will cause the node to end with a %NULL.
3480 *
3481 * Return: True if this is a spanning write, false otherwise.
3482 */
mas_is_span_wr(struct ma_wr_state * wr_mas)3483 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3484 {
3485 unsigned long max = wr_mas->r_max;
3486 unsigned long last = wr_mas->mas->last;
3487 enum maple_type type = wr_mas->type;
3488 void *entry = wr_mas->entry;
3489
3490 /* Contained in this pivot, fast path */
3491 if (last < max)
3492 return false;
3493
3494 if (ma_is_leaf(type)) {
3495 max = wr_mas->mas->max;
3496 if (last < max)
3497 return false;
3498 }
3499
3500 if (last == max) {
3501 /*
3502 * The last entry of leaf node cannot be NULL unless it is the
3503 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3504 */
3505 if (entry || last == ULONG_MAX)
3506 return false;
3507 }
3508
3509 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3510 return true;
3511 }
3512
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3513 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3514 {
3515 wr_mas->type = mte_node_type(wr_mas->mas->node);
3516 mas_wr_node_walk(wr_mas);
3517 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3518 }
3519
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3520 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3521 {
3522 wr_mas->mas->max = wr_mas->r_max;
3523 wr_mas->mas->min = wr_mas->r_min;
3524 wr_mas->mas->node = wr_mas->content;
3525 wr_mas->mas->offset = 0;
3526 wr_mas->mas->depth++;
3527 }
3528 /*
3529 * mas_wr_walk() - Walk the tree for a write.
3530 * @wr_mas: The maple write state
3531 *
3532 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3533 *
3534 * Return: True if it's contained in a node, false on spanning write.
3535 */
mas_wr_walk(struct ma_wr_state * wr_mas)3536 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3537 {
3538 struct ma_state *mas = wr_mas->mas;
3539
3540 while (true) {
3541 mas_wr_walk_descend(wr_mas);
3542 if (unlikely(mas_is_span_wr(wr_mas)))
3543 return false;
3544
3545 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3546 mas->offset);
3547 if (ma_is_leaf(wr_mas->type))
3548 return true;
3549
3550 if (mas->end < mt_slots[wr_mas->type] - 1)
3551 wr_mas->vacant_height = mas->depth + 1;
3552
3553 if (ma_is_root(mas_mn(mas))) {
3554 /* root needs more than 2 entries to be sufficient + 1 */
3555 if (mas->end > 2)
3556 wr_mas->sufficient_height = 1;
3557 } else if (mas->end > mt_min_slots[wr_mas->type] + 1)
3558 wr_mas->sufficient_height = mas->depth + 1;
3559
3560 mas_wr_walk_traverse(wr_mas);
3561 }
3562
3563 return true;
3564 }
3565
mas_wr_walk_index(struct ma_wr_state * wr_mas)3566 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3567 {
3568 struct ma_state *mas = wr_mas->mas;
3569
3570 while (true) {
3571 mas_wr_walk_descend(wr_mas);
3572 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3573 mas->offset);
3574 if (ma_is_leaf(wr_mas->type))
3575 return;
3576 mas_wr_walk_traverse(wr_mas);
3577 }
3578 }
3579 /*
3580 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3581 * @l_wr_mas: The left maple write state
3582 * @r_wr_mas: The right maple write state
3583 */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3584 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3585 struct ma_wr_state *r_wr_mas)
3586 {
3587 struct ma_state *r_mas = r_wr_mas->mas;
3588 struct ma_state *l_mas = l_wr_mas->mas;
3589 unsigned char l_slot;
3590
3591 l_slot = l_mas->offset;
3592 if (!l_wr_mas->content)
3593 l_mas->index = l_wr_mas->r_min;
3594
3595 if ((l_mas->index == l_wr_mas->r_min) &&
3596 (l_slot &&
3597 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3598 if (l_slot > 1)
3599 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3600 else
3601 l_mas->index = l_mas->min;
3602
3603 l_mas->offset = l_slot - 1;
3604 }
3605
3606 if (!r_wr_mas->content) {
3607 if (r_mas->last < r_wr_mas->r_max)
3608 r_mas->last = r_wr_mas->r_max;
3609 r_mas->offset++;
3610 } else if ((r_mas->last == r_wr_mas->r_max) &&
3611 (r_mas->last < r_mas->max) &&
3612 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3613 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3614 r_wr_mas->type, r_mas->offset + 1);
3615 r_mas->offset++;
3616 }
3617 }
3618
mas_state_walk(struct ma_state * mas)3619 static inline void *mas_state_walk(struct ma_state *mas)
3620 {
3621 void *entry;
3622
3623 entry = mas_start(mas);
3624 if (mas_is_none(mas))
3625 return NULL;
3626
3627 if (mas_is_ptr(mas))
3628 return entry;
3629
3630 return mtree_range_walk(mas);
3631 }
3632
3633 /*
3634 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3635 * to date.
3636 *
3637 * @mas: The maple state.
3638 *
3639 * Note: Leaves mas in undesirable state.
3640 * Return: The entry for @mas->index or %NULL on dead node.
3641 */
mtree_lookup_walk(struct ma_state * mas)3642 static inline void *mtree_lookup_walk(struct ma_state *mas)
3643 {
3644 unsigned long *pivots;
3645 unsigned char offset;
3646 struct maple_node *node;
3647 struct maple_enode *next;
3648 enum maple_type type;
3649 void __rcu **slots;
3650 unsigned char end;
3651
3652 next = mas->node;
3653 do {
3654 node = mte_to_node(next);
3655 type = mte_node_type(next);
3656 pivots = ma_pivots(node, type);
3657 end = mt_pivots[type];
3658 offset = 0;
3659 do {
3660 if (pivots[offset] >= mas->index)
3661 break;
3662 } while (++offset < end);
3663
3664 slots = ma_slots(node, type);
3665 next = mt_slot(mas->tree, slots, offset);
3666 if (unlikely(ma_dead_node(node)))
3667 goto dead_node;
3668 } while (!ma_is_leaf(type));
3669
3670 return (void *)next;
3671
3672 dead_node:
3673 mas_reset(mas);
3674 return NULL;
3675 }
3676
3677 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3678 /*
3679 * mas_new_root() - Create a new root node that only contains the entry passed
3680 * in.
3681 * @mas: The maple state
3682 * @entry: The entry to store.
3683 *
3684 * Only valid when the index == 0 and the last == ULONG_MAX
3685 */
mas_new_root(struct ma_state * mas,void * entry)3686 static inline void mas_new_root(struct ma_state *mas, void *entry)
3687 {
3688 struct maple_enode *root = mas_root_locked(mas);
3689 enum maple_type type = maple_leaf_64;
3690 struct maple_node *node;
3691 void __rcu **slots;
3692 unsigned long *pivots;
3693
3694 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3695
3696 if (!entry) {
3697 mt_set_height(mas->tree, 0);
3698 rcu_assign_pointer(mas->tree->ma_root, entry);
3699 mas->status = ma_start;
3700 goto done;
3701 }
3702
3703 node = mas_pop_node(mas);
3704 pivots = ma_pivots(node, type);
3705 slots = ma_slots(node, type);
3706 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3707 mas->node = mt_mk_node(node, type);
3708 mas->status = ma_active;
3709 rcu_assign_pointer(slots[0], entry);
3710 pivots[0] = mas->last;
3711 mt_set_height(mas->tree, 1);
3712 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3713
3714 done:
3715 if (xa_is_node(root))
3716 mte_destroy_walk(root, mas->tree);
3717
3718 return;
3719 }
3720 /*
3721 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3722 * and new nodes where necessary, then place the sub-tree in the actual tree.
3723 * Note that mas is expected to point to the node which caused the store to
3724 * span.
3725 * @wr_mas: The maple write state
3726 */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3727 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3728 {
3729 struct maple_subtree_state mast;
3730 struct maple_big_node b_node;
3731 struct ma_state *mas;
3732 unsigned char height;
3733
3734 /* Left and Right side of spanning store */
3735 MA_STATE(l_mas, NULL, 0, 0);
3736 MA_STATE(r_mas, NULL, 0, 0);
3737 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3738 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3739
3740 /*
3741 * A store operation that spans multiple nodes is called a spanning
3742 * store and is handled early in the store call stack by the function
3743 * mas_is_span_wr(). When a spanning store is identified, the maple
3744 * state is duplicated. The first maple state walks the left tree path
3745 * to ``index``, the duplicate walks the right tree path to ``last``.
3746 * The data in the two nodes are combined into a single node, two nodes,
3747 * or possibly three nodes (see the 3-way split above). A ``NULL``
3748 * written to the last entry of a node is considered a spanning store as
3749 * a rebalance is required for the operation to complete and an overflow
3750 * of data may happen.
3751 */
3752 mas = wr_mas->mas;
3753 trace_ma_op(__func__, mas);
3754
3755 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3756 return mas_new_root(mas, wr_mas->entry);
3757 /*
3758 * Node rebalancing may occur due to this store, so there may be three new
3759 * entries per level plus a new root.
3760 */
3761 height = mas_mt_height(mas);
3762
3763 /*
3764 * Set up right side. Need to get to the next offset after the spanning
3765 * store to ensure it's not NULL and to combine both the next node and
3766 * the node with the start together.
3767 */
3768 r_mas = *mas;
3769 /* Avoid overflow, walk to next slot in the tree. */
3770 if (r_mas.last + 1)
3771 r_mas.last++;
3772
3773 r_mas.index = r_mas.last;
3774 mas_wr_walk_index(&r_wr_mas);
3775 r_mas.last = r_mas.index = mas->last;
3776
3777 /* Set up left side. */
3778 l_mas = *mas;
3779 mas_wr_walk_index(&l_wr_mas);
3780
3781 if (!wr_mas->entry) {
3782 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3783 mas->offset = l_mas.offset;
3784 mas->index = l_mas.index;
3785 mas->last = l_mas.last = r_mas.last;
3786 }
3787
3788 /* expanding NULLs may make this cover the entire range */
3789 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3790 mas_set_range(mas, 0, ULONG_MAX);
3791 return mas_new_root(mas, wr_mas->entry);
3792 }
3793
3794 memset(&b_node, 0, sizeof(struct maple_big_node));
3795 /* Copy l_mas and store the value in b_node. */
3796 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3797 /* Copy r_mas into b_node if there is anything to copy. */
3798 if (r_mas.max > r_mas.last)
3799 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3800 &b_node, b_node.b_end + 1);
3801 else
3802 b_node.b_end++;
3803
3804 /* Stop spanning searches by searching for just index. */
3805 l_mas.index = l_mas.last = mas->index;
3806
3807 mast.bn = &b_node;
3808 mast.orig_l = &l_mas;
3809 mast.orig_r = &r_mas;
3810 /* Combine l_mas and r_mas and split them up evenly again. */
3811 return mas_spanning_rebalance(mas, &mast, height + 1);
3812 }
3813
3814 /*
3815 * mas_wr_node_store() - Attempt to store the value in a node
3816 * @wr_mas: The maple write state
3817 *
3818 * Attempts to reuse the node, but may allocate.
3819 */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3820 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3821 unsigned char new_end)
3822 {
3823 struct ma_state *mas = wr_mas->mas;
3824 void __rcu **dst_slots;
3825 unsigned long *dst_pivots;
3826 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3827 struct maple_node reuse, *newnode;
3828 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3829 bool in_rcu = mt_in_rcu(mas->tree);
3830 unsigned char height = mas_mt_height(mas);
3831
3832 if (mas->last == wr_mas->end_piv)
3833 offset_end++; /* don't copy this offset */
3834 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3835 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3836
3837 /* set up node. */
3838 if (in_rcu) {
3839 newnode = mas_pop_node(mas);
3840 } else {
3841 memset(&reuse, 0, sizeof(struct maple_node));
3842 newnode = &reuse;
3843 }
3844
3845 newnode->parent = mas_mn(mas)->parent;
3846 dst_pivots = ma_pivots(newnode, wr_mas->type);
3847 dst_slots = ma_slots(newnode, wr_mas->type);
3848 /* Copy from start to insert point */
3849 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3850 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3851
3852 /* Handle insert of new range starting after old range */
3853 if (wr_mas->r_min < mas->index) {
3854 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3855 dst_pivots[mas->offset++] = mas->index - 1;
3856 }
3857
3858 /* Store the new entry and range end. */
3859 if (mas->offset < node_pivots)
3860 dst_pivots[mas->offset] = mas->last;
3861 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3862
3863 /*
3864 * this range wrote to the end of the node or it overwrote the rest of
3865 * the data
3866 */
3867 if (offset_end > mas->end)
3868 goto done;
3869
3870 dst_offset = mas->offset + 1;
3871 /* Copy to the end of node if necessary. */
3872 copy_size = mas->end - offset_end + 1;
3873 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3874 sizeof(void *) * copy_size);
3875 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3876 sizeof(unsigned long) * (copy_size - 1));
3877
3878 if (new_end < node_pivots)
3879 dst_pivots[new_end] = mas->max;
3880
3881 done:
3882 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3883 if (in_rcu) {
3884 struct maple_enode *old_enode = mas->node;
3885
3886 mas->node = mt_mk_node(newnode, wr_mas->type);
3887 mas_replace_node(mas, old_enode, height);
3888 } else {
3889 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3890 }
3891 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3892 mas_update_gap(mas);
3893 mas->end = new_end;
3894 return;
3895 }
3896
3897 /*
3898 * mas_wr_slot_store: Attempt to store a value in a slot.
3899 * @wr_mas: the maple write state
3900 */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3901 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3902 {
3903 struct ma_state *mas = wr_mas->mas;
3904 unsigned char offset = mas->offset;
3905 void __rcu **slots = wr_mas->slots;
3906 bool gap = false;
3907
3908 gap |= !mt_slot_locked(mas->tree, slots, offset);
3909 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3910
3911 if (wr_mas->offset_end - offset == 1) {
3912 if (mas->index == wr_mas->r_min) {
3913 /* Overwriting the range and a part of the next one */
3914 rcu_assign_pointer(slots[offset], wr_mas->entry);
3915 wr_mas->pivots[offset] = mas->last;
3916 } else {
3917 /* Overwriting a part of the range and the next one */
3918 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3919 wr_mas->pivots[offset] = mas->index - 1;
3920 mas->offset++; /* Keep mas accurate. */
3921 }
3922 } else {
3923 WARN_ON_ONCE(mt_in_rcu(mas->tree));
3924 /*
3925 * Expand the range, only partially overwriting the previous and
3926 * next ranges
3927 */
3928 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3929 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3930 wr_mas->pivots[offset] = mas->index - 1;
3931 wr_mas->pivots[offset + 1] = mas->last;
3932 mas->offset++; /* Keep mas accurate. */
3933 }
3934
3935 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3936 /*
3937 * Only update gap when the new entry is empty or there is an empty
3938 * entry in the original two ranges.
3939 */
3940 if (!wr_mas->entry || gap)
3941 mas_update_gap(mas);
3942
3943 return;
3944 }
3945
mas_wr_extend_null(struct ma_wr_state * wr_mas)3946 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3947 {
3948 struct ma_state *mas = wr_mas->mas;
3949
3950 if (!wr_mas->slots[wr_mas->offset_end]) {
3951 /* If this one is null, the next and prev are not */
3952 mas->last = wr_mas->end_piv;
3953 } else {
3954 /* Check next slot(s) if we are overwriting the end */
3955 if ((mas->last == wr_mas->end_piv) &&
3956 (mas->end != wr_mas->offset_end) &&
3957 !wr_mas->slots[wr_mas->offset_end + 1]) {
3958 wr_mas->offset_end++;
3959 if (wr_mas->offset_end == mas->end)
3960 mas->last = mas->max;
3961 else
3962 mas->last = wr_mas->pivots[wr_mas->offset_end];
3963 wr_mas->end_piv = mas->last;
3964 }
3965 }
3966
3967 if (!wr_mas->content) {
3968 /* If this one is null, the next and prev are not */
3969 mas->index = wr_mas->r_min;
3970 } else {
3971 /* Check prev slot if we are overwriting the start */
3972 if (mas->index == wr_mas->r_min && mas->offset &&
3973 !wr_mas->slots[mas->offset - 1]) {
3974 mas->offset--;
3975 wr_mas->r_min = mas->index =
3976 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3977 wr_mas->r_max = wr_mas->pivots[mas->offset];
3978 }
3979 }
3980 }
3981
mas_wr_end_piv(struct ma_wr_state * wr_mas)3982 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3983 {
3984 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3985 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3986 wr_mas->offset_end++;
3987
3988 if (wr_mas->offset_end < wr_mas->mas->end)
3989 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3990 else
3991 wr_mas->end_piv = wr_mas->mas->max;
3992 }
3993
mas_wr_new_end(struct ma_wr_state * wr_mas)3994 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3995 {
3996 struct ma_state *mas = wr_mas->mas;
3997 unsigned char new_end = mas->end + 2;
3998
3999 new_end -= wr_mas->offset_end - mas->offset;
4000 if (wr_mas->r_min == mas->index)
4001 new_end--;
4002
4003 if (wr_mas->end_piv == mas->last)
4004 new_end--;
4005
4006 return new_end;
4007 }
4008
4009 /*
4010 * mas_wr_append: Attempt to append
4011 * @wr_mas: the maple write state
4012 * @new_end: The end of the node after the modification
4013 *
4014 * This is currently unsafe in rcu mode since the end of the node may be cached
4015 * by readers while the node contents may be updated which could result in
4016 * inaccurate information.
4017 */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4018 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
4019 unsigned char new_end)
4020 {
4021 struct ma_state *mas = wr_mas->mas;
4022 void __rcu **slots;
4023 unsigned char end = mas->end;
4024
4025 if (new_end < mt_pivots[wr_mas->type]) {
4026 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4027 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4028 }
4029
4030 slots = wr_mas->slots;
4031 if (new_end == end + 1) {
4032 if (mas->last == wr_mas->r_max) {
4033 /* Append to end of range */
4034 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4035 wr_mas->pivots[end] = mas->index - 1;
4036 mas->offset = new_end;
4037 } else {
4038 /* Append to start of range */
4039 rcu_assign_pointer(slots[new_end], wr_mas->content);
4040 wr_mas->pivots[end] = mas->last;
4041 rcu_assign_pointer(slots[end], wr_mas->entry);
4042 }
4043 } else {
4044 /* Append to the range without touching any boundaries. */
4045 rcu_assign_pointer(slots[new_end], wr_mas->content);
4046 wr_mas->pivots[end + 1] = mas->last;
4047 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4048 wr_mas->pivots[end] = mas->index - 1;
4049 mas->offset = end + 1;
4050 }
4051
4052 if (!wr_mas->content || !wr_mas->entry)
4053 mas_update_gap(mas);
4054
4055 mas->end = new_end;
4056 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4057 return;
4058 }
4059
4060 /*
4061 * mas_wr_bnode() - Slow path for a modification.
4062 * @wr_mas: The write maple state
4063 *
4064 * This is where split, rebalance end up.
4065 */
mas_wr_bnode(struct ma_wr_state * wr_mas)4066 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4067 {
4068 struct maple_big_node b_node;
4069
4070 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4071 memset(&b_node, 0, sizeof(struct maple_big_node));
4072 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4073 mas_commit_b_node(wr_mas, &b_node);
4074 }
4075
4076 /*
4077 * mas_wr_store_entry() - Internal call to store a value
4078 * @wr_mas: The maple write state
4079 */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4080 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4081 {
4082 struct ma_state *mas = wr_mas->mas;
4083 unsigned char new_end = mas_wr_new_end(wr_mas);
4084
4085 switch (mas->store_type) {
4086 case wr_exact_fit:
4087 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4088 if (!!wr_mas->entry ^ !!wr_mas->content)
4089 mas_update_gap(mas);
4090 break;
4091 case wr_append:
4092 mas_wr_append(wr_mas, new_end);
4093 break;
4094 case wr_slot_store:
4095 mas_wr_slot_store(wr_mas);
4096 break;
4097 case wr_node_store:
4098 mas_wr_node_store(wr_mas, new_end);
4099 break;
4100 case wr_spanning_store:
4101 mas_wr_spanning_store(wr_mas);
4102 break;
4103 case wr_split_store:
4104 case wr_rebalance:
4105 mas_wr_bnode(wr_mas);
4106 break;
4107 case wr_new_root:
4108 mas_new_root(mas, wr_mas->entry);
4109 break;
4110 case wr_store_root:
4111 mas_store_root(mas, wr_mas->entry);
4112 break;
4113 case wr_invalid:
4114 MT_BUG_ON(mas->tree, 1);
4115 }
4116
4117 return;
4118 }
4119
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4120 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4121 {
4122 struct ma_state *mas = wr_mas->mas;
4123
4124 if (!mas_is_active(mas)) {
4125 if (mas_is_start(mas))
4126 goto set_content;
4127
4128 if (unlikely(mas_is_paused(mas)))
4129 goto reset;
4130
4131 if (unlikely(mas_is_none(mas)))
4132 goto reset;
4133
4134 if (unlikely(mas_is_overflow(mas)))
4135 goto reset;
4136
4137 if (unlikely(mas_is_underflow(mas)))
4138 goto reset;
4139 }
4140
4141 /*
4142 * A less strict version of mas_is_span_wr() where we allow spanning
4143 * writes within this node. This is to stop partial walks in
4144 * mas_prealloc() from being reset.
4145 */
4146 if (mas->last > mas->max)
4147 goto reset;
4148
4149 if (wr_mas->entry)
4150 goto set_content;
4151
4152 if (mte_is_leaf(mas->node) && mas->last == mas->max)
4153 goto reset;
4154
4155 goto set_content;
4156
4157 reset:
4158 mas_reset(mas);
4159 set_content:
4160 wr_mas->content = mas_start(mas);
4161 }
4162
4163 /**
4164 * mas_prealloc_calc() - Calculate number of nodes needed for a
4165 * given store oepration
4166 * @wr_mas: The maple write state
4167 * @entry: The entry to store into the tree
4168 *
4169 * Return: Number of nodes required for preallocation.
4170 */
mas_prealloc_calc(struct ma_wr_state * wr_mas,void * entry)4171 static inline int mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
4172 {
4173 struct ma_state *mas = wr_mas->mas;
4174 unsigned char height = mas_mt_height(mas);
4175 int ret = height * 3 + 1;
4176 unsigned char delta = height - wr_mas->vacant_height;
4177
4178 switch (mas->store_type) {
4179 case wr_exact_fit:
4180 case wr_append:
4181 case wr_slot_store:
4182 ret = 0;
4183 break;
4184 case wr_spanning_store:
4185 if (wr_mas->sufficient_height < wr_mas->vacant_height)
4186 ret = (height - wr_mas->sufficient_height) * 3 + 1;
4187 else
4188 ret = delta * 3 + 1;
4189 break;
4190 case wr_split_store:
4191 ret = delta * 2 + 1;
4192 break;
4193 case wr_rebalance:
4194 if (wr_mas->sufficient_height < wr_mas->vacant_height)
4195 ret = (height - wr_mas->sufficient_height) * 2 + 1;
4196 else
4197 ret = delta * 2 + 1;
4198 break;
4199 case wr_node_store:
4200 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4201 break;
4202 case wr_new_root:
4203 ret = 1;
4204 break;
4205 case wr_store_root:
4206 if (likely((mas->last != 0) || (mas->index != 0)))
4207 ret = 1;
4208 else if (((unsigned long) (entry) & 3) == 2)
4209 ret = 1;
4210 else
4211 ret = 0;
4212 break;
4213 case wr_invalid:
4214 WARN_ON_ONCE(1);
4215 }
4216
4217 return ret;
4218 }
4219
4220 /*
4221 * mas_wr_store_type() - Determine the store type for a given
4222 * store operation.
4223 * @wr_mas: The maple write state
4224 *
4225 * Return: the type of store needed for the operation
4226 */
mas_wr_store_type(struct ma_wr_state * wr_mas)4227 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4228 {
4229 struct ma_state *mas = wr_mas->mas;
4230 unsigned char new_end;
4231
4232 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4233 return wr_store_root;
4234
4235 if (unlikely(!mas_wr_walk(wr_mas)))
4236 return wr_spanning_store;
4237
4238 /* At this point, we are at the leaf node that needs to be altered. */
4239 mas_wr_end_piv(wr_mas);
4240 if (!wr_mas->entry)
4241 mas_wr_extend_null(wr_mas);
4242
4243 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4244 return wr_exact_fit;
4245
4246 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4247 return wr_new_root;
4248
4249 new_end = mas_wr_new_end(wr_mas);
4250 /* Potential spanning rebalance collapsing a node */
4251 if (new_end < mt_min_slots[wr_mas->type]) {
4252 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4253 return wr_rebalance;
4254 return wr_node_store;
4255 }
4256
4257 if (new_end >= mt_slots[wr_mas->type])
4258 return wr_split_store;
4259
4260 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4261 return wr_append;
4262
4263 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4264 (wr_mas->offset_end - mas->offset == 1)))
4265 return wr_slot_store;
4266
4267 return wr_node_store;
4268 }
4269
4270 /**
4271 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4272 * @wr_mas: The maple write state
4273 * @entry: The entry that will be stored
4274 *
4275 */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4276 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4277 {
4278 int request;
4279
4280 mas_wr_prealloc_setup(wr_mas);
4281 wr_mas->mas->store_type = mas_wr_store_type(wr_mas);
4282 request = mas_prealloc_calc(wr_mas, entry);
4283 if (!request)
4284 return;
4285
4286 mas_node_count(wr_mas->mas, request);
4287 }
4288
4289 /**
4290 * mas_insert() - Internal call to insert a value
4291 * @mas: The maple state
4292 * @entry: The entry to store
4293 *
4294 * Return: %NULL or the contents that already exists at the requested index
4295 * otherwise. The maple state needs to be checked for error conditions.
4296 */
mas_insert(struct ma_state * mas,void * entry)4297 static inline void *mas_insert(struct ma_state *mas, void *entry)
4298 {
4299 MA_WR_STATE(wr_mas, mas, entry);
4300
4301 /*
4302 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4303 * tree. If the insert fits exactly into an existing gap with a value
4304 * of NULL, then the slot only needs to be written with the new value.
4305 * If the range being inserted is adjacent to another range, then only a
4306 * single pivot needs to be inserted (as well as writing the entry). If
4307 * the new range is within a gap but does not touch any other ranges,
4308 * then two pivots need to be inserted: the start - 1, and the end. As
4309 * usual, the entry must be written. Most operations require a new node
4310 * to be allocated and replace an existing node to ensure RCU safety,
4311 * when in RCU mode. The exception to requiring a newly allocated node
4312 * is when inserting at the end of a node (appending). When done
4313 * carefully, appending can reuse the node in place.
4314 */
4315 wr_mas.content = mas_start(mas);
4316 if (wr_mas.content)
4317 goto exists;
4318
4319 mas_wr_preallocate(&wr_mas, entry);
4320 if (mas_is_err(mas))
4321 return NULL;
4322
4323 /* spanning writes always overwrite something */
4324 if (mas->store_type == wr_spanning_store)
4325 goto exists;
4326
4327 /* At this point, we are at the leaf node that needs to be altered. */
4328 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4329 wr_mas.offset_end = mas->offset;
4330 wr_mas.end_piv = wr_mas.r_max;
4331
4332 if (wr_mas.content || (mas->last > wr_mas.r_max))
4333 goto exists;
4334 }
4335
4336 mas_wr_store_entry(&wr_mas);
4337 return wr_mas.content;
4338
4339 exists:
4340 mas_set_err(mas, -EEXIST);
4341 return wr_mas.content;
4342
4343 }
4344
4345 /**
4346 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4347 * @mas: The maple state.
4348 * @startp: Pointer to ID.
4349 * @range_lo: Lower bound of range to search.
4350 * @range_hi: Upper bound of range to search.
4351 * @entry: The entry to store.
4352 * @next: Pointer to next ID to allocate.
4353 * @gfp: The GFP_FLAGS to use for allocations.
4354 *
4355 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4356 * allocation succeeded after wrapping, or -EBUSY if there are no
4357 * free entries.
4358 */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4359 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4360 void *entry, unsigned long range_lo, unsigned long range_hi,
4361 unsigned long *next, gfp_t gfp)
4362 {
4363 unsigned long min = range_lo;
4364 int ret = 0;
4365
4366 range_lo = max(min, *next);
4367 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4368 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4369 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4370 ret = 1;
4371 }
4372 if (ret < 0 && range_lo > min) {
4373 mas_reset(mas);
4374 ret = mas_empty_area(mas, min, range_hi, 1);
4375 if (ret == 0)
4376 ret = 1;
4377 }
4378 if (ret < 0)
4379 return ret;
4380
4381 do {
4382 mas_insert(mas, entry);
4383 } while (mas_nomem(mas, gfp));
4384 if (mas_is_err(mas))
4385 return xa_err(mas->node);
4386
4387 *startp = mas->index;
4388 *next = *startp + 1;
4389 if (*next == 0)
4390 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4391
4392 mas_destroy(mas);
4393 return ret;
4394 }
4395 EXPORT_SYMBOL(mas_alloc_cyclic);
4396
mas_rewalk(struct ma_state * mas,unsigned long index)4397 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4398 {
4399 retry:
4400 mas_set(mas, index);
4401 mas_state_walk(mas);
4402 if (mas_is_start(mas))
4403 goto retry;
4404 }
4405
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4406 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4407 struct maple_node *node, const unsigned long index)
4408 {
4409 if (unlikely(ma_dead_node(node))) {
4410 mas_rewalk(mas, index);
4411 return true;
4412 }
4413 return false;
4414 }
4415
4416 /*
4417 * mas_prev_node() - Find the prev non-null entry at the same level in the
4418 * tree. The prev value will be mas->node[mas->offset] or the status will be
4419 * ma_none.
4420 * @mas: The maple state
4421 * @min: The lower limit to search
4422 *
4423 * The prev node value will be mas->node[mas->offset] or the status will be
4424 * ma_none.
4425 * Return: 1 if the node is dead, 0 otherwise.
4426 */
mas_prev_node(struct ma_state * mas,unsigned long min)4427 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4428 {
4429 enum maple_type mt;
4430 int offset, level;
4431 void __rcu **slots;
4432 struct maple_node *node;
4433 unsigned long *pivots;
4434 unsigned long max;
4435
4436 node = mas_mn(mas);
4437 if (!mas->min)
4438 goto no_entry;
4439
4440 max = mas->min - 1;
4441 if (max < min)
4442 goto no_entry;
4443
4444 level = 0;
4445 do {
4446 if (ma_is_root(node))
4447 goto no_entry;
4448
4449 /* Walk up. */
4450 if (unlikely(mas_ascend(mas)))
4451 return 1;
4452 offset = mas->offset;
4453 level++;
4454 node = mas_mn(mas);
4455 } while (!offset);
4456
4457 offset--;
4458 mt = mte_node_type(mas->node);
4459 while (level > 1) {
4460 level--;
4461 slots = ma_slots(node, mt);
4462 mas->node = mas_slot(mas, slots, offset);
4463 if (unlikely(ma_dead_node(node)))
4464 return 1;
4465
4466 mt = mte_node_type(mas->node);
4467 node = mas_mn(mas);
4468 pivots = ma_pivots(node, mt);
4469 offset = ma_data_end(node, mt, pivots, max);
4470 if (unlikely(ma_dead_node(node)))
4471 return 1;
4472 }
4473
4474 slots = ma_slots(node, mt);
4475 mas->node = mas_slot(mas, slots, offset);
4476 pivots = ma_pivots(node, mt);
4477 if (unlikely(ma_dead_node(node)))
4478 return 1;
4479
4480 if (likely(offset))
4481 mas->min = pivots[offset - 1] + 1;
4482 mas->max = max;
4483 mas->offset = mas_data_end(mas);
4484 if (unlikely(mte_dead_node(mas->node)))
4485 return 1;
4486
4487 mas->end = mas->offset;
4488 return 0;
4489
4490 no_entry:
4491 if (unlikely(ma_dead_node(node)))
4492 return 1;
4493
4494 mas->status = ma_underflow;
4495 return 0;
4496 }
4497
4498 /*
4499 * mas_prev_slot() - Get the entry in the previous slot
4500 *
4501 * @mas: The maple state
4502 * @min: The minimum starting range
4503 * @empty: Can be empty
4504 *
4505 * Return: The entry in the previous slot which is possibly NULL
4506 */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4507 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4508 {
4509 void *entry;
4510 void __rcu **slots;
4511 unsigned long pivot;
4512 enum maple_type type;
4513 unsigned long *pivots;
4514 struct maple_node *node;
4515 unsigned long save_point = mas->index;
4516
4517 retry:
4518 node = mas_mn(mas);
4519 type = mte_node_type(mas->node);
4520 pivots = ma_pivots(node, type);
4521 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4522 goto retry;
4523
4524 if (mas->min <= min) {
4525 pivot = mas_safe_min(mas, pivots, mas->offset);
4526
4527 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4528 goto retry;
4529
4530 if (pivot <= min)
4531 goto underflow;
4532 }
4533
4534 again:
4535 if (likely(mas->offset)) {
4536 mas->offset--;
4537 mas->last = mas->index - 1;
4538 mas->index = mas_safe_min(mas, pivots, mas->offset);
4539 } else {
4540 if (mas->index <= min)
4541 goto underflow;
4542
4543 if (mas_prev_node(mas, min)) {
4544 mas_rewalk(mas, save_point);
4545 goto retry;
4546 }
4547
4548 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4549 return NULL;
4550
4551 mas->last = mas->max;
4552 node = mas_mn(mas);
4553 type = mte_node_type(mas->node);
4554 pivots = ma_pivots(node, type);
4555 mas->index = pivots[mas->offset - 1] + 1;
4556 }
4557
4558 slots = ma_slots(node, type);
4559 entry = mas_slot(mas, slots, mas->offset);
4560 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4561 goto retry;
4562
4563
4564 if (likely(entry))
4565 return entry;
4566
4567 if (!empty) {
4568 if (mas->index <= min) {
4569 mas->status = ma_underflow;
4570 return NULL;
4571 }
4572
4573 goto again;
4574 }
4575
4576 return entry;
4577
4578 underflow:
4579 mas->status = ma_underflow;
4580 return NULL;
4581 }
4582
4583 /*
4584 * mas_next_node() - Get the next node at the same level in the tree.
4585 * @mas: The maple state
4586 * @node: The maple node
4587 * @max: The maximum pivot value to check.
4588 *
4589 * The next value will be mas->node[mas->offset] or the status will have
4590 * overflowed.
4591 * Return: 1 on dead node, 0 otherwise.
4592 */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4593 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4594 unsigned long max)
4595 {
4596 unsigned long min;
4597 unsigned long *pivots;
4598 struct maple_enode *enode;
4599 struct maple_node *tmp;
4600 int level = 0;
4601 unsigned char node_end;
4602 enum maple_type mt;
4603 void __rcu **slots;
4604
4605 if (mas->max >= max)
4606 goto overflow;
4607
4608 min = mas->max + 1;
4609 level = 0;
4610 do {
4611 if (ma_is_root(node))
4612 goto overflow;
4613
4614 /* Walk up. */
4615 if (unlikely(mas_ascend(mas)))
4616 return 1;
4617
4618 level++;
4619 node = mas_mn(mas);
4620 mt = mte_node_type(mas->node);
4621 pivots = ma_pivots(node, mt);
4622 node_end = ma_data_end(node, mt, pivots, mas->max);
4623 if (unlikely(ma_dead_node(node)))
4624 return 1;
4625
4626 } while (unlikely(mas->offset == node_end));
4627
4628 slots = ma_slots(node, mt);
4629 mas->offset++;
4630 enode = mas_slot(mas, slots, mas->offset);
4631 if (unlikely(ma_dead_node(node)))
4632 return 1;
4633
4634 if (level > 1)
4635 mas->offset = 0;
4636
4637 while (unlikely(level > 1)) {
4638 level--;
4639 mas->node = enode;
4640 node = mas_mn(mas);
4641 mt = mte_node_type(mas->node);
4642 slots = ma_slots(node, mt);
4643 enode = mas_slot(mas, slots, 0);
4644 if (unlikely(ma_dead_node(node)))
4645 return 1;
4646 }
4647
4648 if (!mas->offset)
4649 pivots = ma_pivots(node, mt);
4650
4651 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4652 tmp = mte_to_node(enode);
4653 mt = mte_node_type(enode);
4654 pivots = ma_pivots(tmp, mt);
4655 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4656 if (unlikely(ma_dead_node(node)))
4657 return 1;
4658
4659 mas->node = enode;
4660 mas->min = min;
4661 return 0;
4662
4663 overflow:
4664 if (unlikely(ma_dead_node(node)))
4665 return 1;
4666
4667 mas->status = ma_overflow;
4668 return 0;
4669 }
4670
4671 /*
4672 * mas_next_slot() - Get the entry in the next slot
4673 *
4674 * @mas: The maple state
4675 * @max: The maximum starting range
4676 * @empty: Can be empty
4677 *
4678 * Return: The entry in the next slot which is possibly NULL
4679 */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4680 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4681 {
4682 void __rcu **slots;
4683 unsigned long *pivots;
4684 unsigned long pivot;
4685 enum maple_type type;
4686 struct maple_node *node;
4687 unsigned long save_point = mas->last;
4688 void *entry;
4689
4690 retry:
4691 node = mas_mn(mas);
4692 type = mte_node_type(mas->node);
4693 pivots = ma_pivots(node, type);
4694 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4695 goto retry;
4696
4697 if (mas->max >= max) {
4698 if (likely(mas->offset < mas->end))
4699 pivot = pivots[mas->offset];
4700 else
4701 pivot = mas->max;
4702
4703 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4704 goto retry;
4705
4706 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4707 mas->status = ma_overflow;
4708 return NULL;
4709 }
4710 }
4711
4712 if (likely(mas->offset < mas->end)) {
4713 mas->index = pivots[mas->offset] + 1;
4714 again:
4715 mas->offset++;
4716 if (likely(mas->offset < mas->end))
4717 mas->last = pivots[mas->offset];
4718 else
4719 mas->last = mas->max;
4720 } else {
4721 if (mas->last >= max) {
4722 mas->status = ma_overflow;
4723 return NULL;
4724 }
4725
4726 if (mas_next_node(mas, node, max)) {
4727 mas_rewalk(mas, save_point);
4728 goto retry;
4729 }
4730
4731 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4732 return NULL;
4733
4734 mas->offset = 0;
4735 mas->index = mas->min;
4736 node = mas_mn(mas);
4737 type = mte_node_type(mas->node);
4738 pivots = ma_pivots(node, type);
4739 mas->last = pivots[0];
4740 }
4741
4742 slots = ma_slots(node, type);
4743 entry = mt_slot(mas->tree, slots, mas->offset);
4744 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4745 goto retry;
4746
4747 if (entry)
4748 return entry;
4749
4750
4751 if (!empty) {
4752 if (mas->last >= max) {
4753 mas->status = ma_overflow;
4754 return NULL;
4755 }
4756
4757 mas->index = mas->last + 1;
4758 goto again;
4759 }
4760
4761 return entry;
4762 }
4763
4764 /*
4765 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4766 * highest gap address of a given size in a given node and descend.
4767 * @mas: The maple state
4768 * @size: The needed size.
4769 *
4770 * Return: True if found in a leaf, false otherwise.
4771 *
4772 */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4773 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4774 unsigned long *gap_min, unsigned long *gap_max)
4775 {
4776 enum maple_type type = mte_node_type(mas->node);
4777 struct maple_node *node = mas_mn(mas);
4778 unsigned long *pivots, *gaps;
4779 void __rcu **slots;
4780 unsigned long gap = 0;
4781 unsigned long max, min;
4782 unsigned char offset;
4783
4784 if (unlikely(mas_is_err(mas)))
4785 return true;
4786
4787 if (ma_is_dense(type)) {
4788 /* dense nodes. */
4789 mas->offset = (unsigned char)(mas->index - mas->min);
4790 return true;
4791 }
4792
4793 pivots = ma_pivots(node, type);
4794 slots = ma_slots(node, type);
4795 gaps = ma_gaps(node, type);
4796 offset = mas->offset;
4797 min = mas_safe_min(mas, pivots, offset);
4798 /* Skip out of bounds. */
4799 while (mas->last < min)
4800 min = mas_safe_min(mas, pivots, --offset);
4801
4802 max = mas_safe_pivot(mas, pivots, offset, type);
4803 while (mas->index <= max) {
4804 gap = 0;
4805 if (gaps)
4806 gap = gaps[offset];
4807 else if (!mas_slot(mas, slots, offset))
4808 gap = max - min + 1;
4809
4810 if (gap) {
4811 if ((size <= gap) && (size <= mas->last - min + 1))
4812 break;
4813
4814 if (!gaps) {
4815 /* Skip the next slot, it cannot be a gap. */
4816 if (offset < 2)
4817 goto ascend;
4818
4819 offset -= 2;
4820 max = pivots[offset];
4821 min = mas_safe_min(mas, pivots, offset);
4822 continue;
4823 }
4824 }
4825
4826 if (!offset)
4827 goto ascend;
4828
4829 offset--;
4830 max = min - 1;
4831 min = mas_safe_min(mas, pivots, offset);
4832 }
4833
4834 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4835 goto no_space;
4836
4837 if (unlikely(ma_is_leaf(type))) {
4838 mas->offset = offset;
4839 *gap_min = min;
4840 *gap_max = min + gap - 1;
4841 return true;
4842 }
4843
4844 /* descend, only happens under lock. */
4845 mas->node = mas_slot(mas, slots, offset);
4846 mas->min = min;
4847 mas->max = max;
4848 mas->offset = mas_data_end(mas);
4849 return false;
4850
4851 ascend:
4852 if (!mte_is_root(mas->node))
4853 return false;
4854
4855 no_space:
4856 mas_set_err(mas, -EBUSY);
4857 return false;
4858 }
4859
mas_anode_descend(struct ma_state * mas,unsigned long size)4860 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4861 {
4862 enum maple_type type = mte_node_type(mas->node);
4863 unsigned long pivot, min, gap = 0;
4864 unsigned char offset, data_end;
4865 unsigned long *gaps, *pivots;
4866 void __rcu **slots;
4867 struct maple_node *node;
4868 bool found = false;
4869
4870 if (ma_is_dense(type)) {
4871 mas->offset = (unsigned char)(mas->index - mas->min);
4872 return true;
4873 }
4874
4875 node = mas_mn(mas);
4876 pivots = ma_pivots(node, type);
4877 slots = ma_slots(node, type);
4878 gaps = ma_gaps(node, type);
4879 offset = mas->offset;
4880 min = mas_safe_min(mas, pivots, offset);
4881 data_end = ma_data_end(node, type, pivots, mas->max);
4882 for (; offset <= data_end; offset++) {
4883 pivot = mas_safe_pivot(mas, pivots, offset, type);
4884
4885 /* Not within lower bounds */
4886 if (mas->index > pivot)
4887 goto next_slot;
4888
4889 if (gaps)
4890 gap = gaps[offset];
4891 else if (!mas_slot(mas, slots, offset))
4892 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4893 else
4894 goto next_slot;
4895
4896 if (gap >= size) {
4897 if (ma_is_leaf(type)) {
4898 found = true;
4899 break;
4900 }
4901
4902 mas->node = mas_slot(mas, slots, offset);
4903 mas->min = min;
4904 mas->max = pivot;
4905 offset = 0;
4906 break;
4907 }
4908 next_slot:
4909 min = pivot + 1;
4910 if (mas->last <= pivot) {
4911 mas_set_err(mas, -EBUSY);
4912 return true;
4913 }
4914 }
4915
4916 mas->offset = offset;
4917 return found;
4918 }
4919
4920 /**
4921 * mas_walk() - Search for @mas->index in the tree.
4922 * @mas: The maple state.
4923 *
4924 * mas->index and mas->last will be set to the range if there is a value. If
4925 * mas->status is ma_none, reset to ma_start
4926 *
4927 * Return: the entry at the location or %NULL.
4928 */
mas_walk(struct ma_state * mas)4929 void *mas_walk(struct ma_state *mas)
4930 {
4931 void *entry;
4932
4933 if (!mas_is_active(mas) || !mas_is_start(mas))
4934 mas->status = ma_start;
4935 retry:
4936 entry = mas_state_walk(mas);
4937 if (mas_is_start(mas)) {
4938 goto retry;
4939 } else if (mas_is_none(mas)) {
4940 mas->index = 0;
4941 mas->last = ULONG_MAX;
4942 } else if (mas_is_ptr(mas)) {
4943 if (!mas->index) {
4944 mas->last = 0;
4945 return entry;
4946 }
4947
4948 mas->index = 1;
4949 mas->last = ULONG_MAX;
4950 mas->status = ma_none;
4951 return NULL;
4952 }
4953
4954 return entry;
4955 }
4956 EXPORT_SYMBOL_GPL(mas_walk);
4957
mas_rewind_node(struct ma_state * mas)4958 static inline bool mas_rewind_node(struct ma_state *mas)
4959 {
4960 unsigned char slot;
4961
4962 do {
4963 if (mte_is_root(mas->node)) {
4964 slot = mas->offset;
4965 if (!slot)
4966 return false;
4967 } else {
4968 mas_ascend(mas);
4969 slot = mas->offset;
4970 }
4971 } while (!slot);
4972
4973 mas->offset = --slot;
4974 return true;
4975 }
4976
4977 /*
4978 * mas_skip_node() - Internal function. Skip over a node.
4979 * @mas: The maple state.
4980 *
4981 * Return: true if there is another node, false otherwise.
4982 */
mas_skip_node(struct ma_state * mas)4983 static inline bool mas_skip_node(struct ma_state *mas)
4984 {
4985 if (mas_is_err(mas))
4986 return false;
4987
4988 do {
4989 if (mte_is_root(mas->node)) {
4990 if (mas->offset >= mas_data_end(mas)) {
4991 mas_set_err(mas, -EBUSY);
4992 return false;
4993 }
4994 } else {
4995 mas_ascend(mas);
4996 }
4997 } while (mas->offset >= mas_data_end(mas));
4998
4999 mas->offset++;
5000 return true;
5001 }
5002
5003 /*
5004 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5005 * @size
5006 * @mas: The maple state
5007 * @size: The size of the gap required
5008 *
5009 * Search between @mas->index and @mas->last for a gap of @size.
5010 */
mas_awalk(struct ma_state * mas,unsigned long size)5011 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5012 {
5013 struct maple_enode *last = NULL;
5014
5015 /*
5016 * There are 4 options:
5017 * go to child (descend)
5018 * go back to parent (ascend)
5019 * no gap found. (return, error == -EBUSY)
5020 * found the gap. (return)
5021 */
5022 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5023 if (last == mas->node)
5024 mas_skip_node(mas);
5025 else
5026 last = mas->node;
5027 }
5028 }
5029
5030 /*
5031 * mas_sparse_area() - Internal function. Return upper or lower limit when
5032 * searching for a gap in an empty tree.
5033 * @mas: The maple state
5034 * @min: the minimum range
5035 * @max: The maximum range
5036 * @size: The size of the gap
5037 * @fwd: Searching forward or back
5038 */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5039 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5040 unsigned long max, unsigned long size, bool fwd)
5041 {
5042 if (!unlikely(mas_is_none(mas)) && min == 0) {
5043 min++;
5044 /*
5045 * At this time, min is increased, we need to recheck whether
5046 * the size is satisfied.
5047 */
5048 if (min > max || max - min + 1 < size)
5049 return -EBUSY;
5050 }
5051 /* mas_is_ptr */
5052
5053 if (fwd) {
5054 mas->index = min;
5055 mas->last = min + size - 1;
5056 } else {
5057 mas->last = max;
5058 mas->index = max - size + 1;
5059 }
5060 return 0;
5061 }
5062
5063 /*
5064 * mas_empty_area() - Get the lowest address within the range that is
5065 * sufficient for the size requested.
5066 * @mas: The maple state
5067 * @min: The lowest value of the range
5068 * @max: The highest value of the range
5069 * @size: The size needed
5070 */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5071 int mas_empty_area(struct ma_state *mas, unsigned long min,
5072 unsigned long max, unsigned long size)
5073 {
5074 unsigned char offset;
5075 unsigned long *pivots;
5076 enum maple_type mt;
5077 struct maple_node *node;
5078
5079 if (min > max)
5080 return -EINVAL;
5081
5082 if (size == 0 || max - min < size - 1)
5083 return -EINVAL;
5084
5085 if (mas_is_start(mas))
5086 mas_start(mas);
5087 else if (mas->offset >= 2)
5088 mas->offset -= 2;
5089 else if (!mas_skip_node(mas))
5090 return -EBUSY;
5091
5092 /* Empty set */
5093 if (mas_is_none(mas) || mas_is_ptr(mas))
5094 return mas_sparse_area(mas, min, max, size, true);
5095
5096 /* The start of the window can only be within these values */
5097 mas->index = min;
5098 mas->last = max;
5099 mas_awalk(mas, size);
5100
5101 if (unlikely(mas_is_err(mas)))
5102 return xa_err(mas->node);
5103
5104 offset = mas->offset;
5105 node = mas_mn(mas);
5106 mt = mte_node_type(mas->node);
5107 pivots = ma_pivots(node, mt);
5108 min = mas_safe_min(mas, pivots, offset);
5109 if (mas->index < min)
5110 mas->index = min;
5111 mas->last = mas->index + size - 1;
5112 mas->end = ma_data_end(node, mt, pivots, mas->max);
5113 return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(mas_empty_area);
5116
5117 /*
5118 * mas_empty_area_rev() - Get the highest address within the range that is
5119 * sufficient for the size requested.
5120 * @mas: The maple state
5121 * @min: The lowest value of the range
5122 * @max: The highest value of the range
5123 * @size: The size needed
5124 */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5125 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5126 unsigned long max, unsigned long size)
5127 {
5128 struct maple_enode *last = mas->node;
5129
5130 if (min > max)
5131 return -EINVAL;
5132
5133 if (size == 0 || max - min < size - 1)
5134 return -EINVAL;
5135
5136 if (mas_is_start(mas))
5137 mas_start(mas);
5138 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5139 return -EBUSY;
5140
5141 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5142 return mas_sparse_area(mas, min, max, size, false);
5143 else if (mas->offset >= 2)
5144 mas->offset -= 2;
5145 else
5146 mas->offset = mas_data_end(mas);
5147
5148
5149 /* The start of the window can only be within these values. */
5150 mas->index = min;
5151 mas->last = max;
5152
5153 while (!mas_rev_awalk(mas, size, &min, &max)) {
5154 if (last == mas->node) {
5155 if (!mas_rewind_node(mas))
5156 return -EBUSY;
5157 } else {
5158 last = mas->node;
5159 }
5160 }
5161
5162 if (mas_is_err(mas))
5163 return xa_err(mas->node);
5164
5165 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5166 return -EBUSY;
5167
5168 /* Trim the upper limit to the max. */
5169 if (max < mas->last)
5170 mas->last = max;
5171
5172 mas->index = mas->last - size + 1;
5173 mas->end = mas_data_end(mas);
5174 return 0;
5175 }
5176 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5177
5178 /*
5179 * mte_dead_leaves() - Mark all leaves of a node as dead.
5180 * @enode: the encoded node
5181 * @mt: the maple tree
5182 * @slots: Pointer to the slot array
5183 *
5184 * Must hold the write lock.
5185 *
5186 * Return: The number of leaves marked as dead.
5187 */
5188 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5189 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5190 void __rcu **slots)
5191 {
5192 struct maple_node *node;
5193 enum maple_type type;
5194 void *entry;
5195 int offset;
5196
5197 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5198 entry = mt_slot(mt, slots, offset);
5199 type = mte_node_type(entry);
5200 node = mte_to_node(entry);
5201 /* Use both node and type to catch LE & BE metadata */
5202 if (!node || !type)
5203 break;
5204
5205 mte_set_node_dead(entry);
5206 node->type = type;
5207 rcu_assign_pointer(slots[offset], node);
5208 }
5209
5210 return offset;
5211 }
5212
5213 /**
5214 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5215 * @enode: The maple encoded node
5216 * @offset: The starting offset
5217 *
5218 * Note: This can only be used from the RCU callback context.
5219 */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5220 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5221 {
5222 struct maple_node *node, *next;
5223 void __rcu **slots = NULL;
5224
5225 next = mte_to_node(*enode);
5226 do {
5227 *enode = ma_enode_ptr(next);
5228 node = mte_to_node(*enode);
5229 slots = ma_slots(node, node->type);
5230 next = rcu_dereference_protected(slots[offset],
5231 lock_is_held(&rcu_callback_map));
5232 offset = 0;
5233 } while (!ma_is_leaf(next->type));
5234
5235 return slots;
5236 }
5237
5238 /**
5239 * mt_free_walk() - Walk & free a tree in the RCU callback context
5240 * @head: The RCU head that's within the node.
5241 *
5242 * Note: This can only be used from the RCU callback context.
5243 */
mt_free_walk(struct rcu_head * head)5244 static void mt_free_walk(struct rcu_head *head)
5245 {
5246 void __rcu **slots;
5247 struct maple_node *node, *start;
5248 struct maple_enode *enode;
5249 unsigned char offset;
5250 enum maple_type type;
5251
5252 node = container_of(head, struct maple_node, rcu);
5253
5254 if (ma_is_leaf(node->type))
5255 goto free_leaf;
5256
5257 start = node;
5258 enode = mt_mk_node(node, node->type);
5259 slots = mte_dead_walk(&enode, 0);
5260 node = mte_to_node(enode);
5261 do {
5262 mt_free_bulk(node->slot_len, slots);
5263 offset = node->parent_slot + 1;
5264 enode = node->piv_parent;
5265 if (mte_to_node(enode) == node)
5266 goto free_leaf;
5267
5268 type = mte_node_type(enode);
5269 slots = ma_slots(mte_to_node(enode), type);
5270 if ((offset < mt_slots[type]) &&
5271 rcu_dereference_protected(slots[offset],
5272 lock_is_held(&rcu_callback_map)))
5273 slots = mte_dead_walk(&enode, offset);
5274 node = mte_to_node(enode);
5275 } while ((node != start) || (node->slot_len < offset));
5276
5277 slots = ma_slots(node, node->type);
5278 mt_free_bulk(node->slot_len, slots);
5279
5280 free_leaf:
5281 mt_free_rcu(&node->rcu);
5282 }
5283
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5284 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5285 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5286 {
5287 struct maple_node *node;
5288 struct maple_enode *next = *enode;
5289 void __rcu **slots = NULL;
5290 enum maple_type type;
5291 unsigned char next_offset = 0;
5292
5293 do {
5294 *enode = next;
5295 node = mte_to_node(*enode);
5296 type = mte_node_type(*enode);
5297 slots = ma_slots(node, type);
5298 next = mt_slot_locked(mt, slots, next_offset);
5299 if ((mte_dead_node(next)))
5300 next = mt_slot_locked(mt, slots, ++next_offset);
5301
5302 mte_set_node_dead(*enode);
5303 node->type = type;
5304 node->piv_parent = prev;
5305 node->parent_slot = offset;
5306 offset = next_offset;
5307 next_offset = 0;
5308 prev = *enode;
5309 } while (!mte_is_leaf(next));
5310
5311 return slots;
5312 }
5313
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5314 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5315 bool free)
5316 {
5317 void __rcu **slots;
5318 struct maple_node *node = mte_to_node(enode);
5319 struct maple_enode *start;
5320
5321 if (mte_is_leaf(enode)) {
5322 node->type = mte_node_type(enode);
5323 goto free_leaf;
5324 }
5325
5326 start = enode;
5327 slots = mte_destroy_descend(&enode, mt, start, 0);
5328 node = mte_to_node(enode); // Updated in the above call.
5329 do {
5330 enum maple_type type;
5331 unsigned char offset;
5332 struct maple_enode *parent, *tmp;
5333
5334 node->slot_len = mte_dead_leaves(enode, mt, slots);
5335 if (free)
5336 mt_free_bulk(node->slot_len, slots);
5337 offset = node->parent_slot + 1;
5338 enode = node->piv_parent;
5339 if (mte_to_node(enode) == node)
5340 goto free_leaf;
5341
5342 type = mte_node_type(enode);
5343 slots = ma_slots(mte_to_node(enode), type);
5344 if (offset >= mt_slots[type])
5345 goto next;
5346
5347 tmp = mt_slot_locked(mt, slots, offset);
5348 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5349 parent = enode;
5350 enode = tmp;
5351 slots = mte_destroy_descend(&enode, mt, parent, offset);
5352 }
5353 next:
5354 node = mte_to_node(enode);
5355 } while (start != enode);
5356
5357 node = mte_to_node(enode);
5358 node->slot_len = mte_dead_leaves(enode, mt, slots);
5359 if (free)
5360 mt_free_bulk(node->slot_len, slots);
5361
5362 free_leaf:
5363 if (free)
5364 mt_free_rcu(&node->rcu);
5365 else
5366 mt_clear_meta(mt, node, node->type);
5367 }
5368
5369 /*
5370 * mte_destroy_walk() - Free a tree or sub-tree.
5371 * @enode: the encoded maple node (maple_enode) to start
5372 * @mt: the tree to free - needed for node types.
5373 *
5374 * Must hold the write lock.
5375 */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5376 static inline void mte_destroy_walk(struct maple_enode *enode,
5377 struct maple_tree *mt)
5378 {
5379 struct maple_node *node = mte_to_node(enode);
5380
5381 if (mt_in_rcu(mt)) {
5382 mt_destroy_walk(enode, mt, false);
5383 call_rcu(&node->rcu, mt_free_walk);
5384 } else {
5385 mt_destroy_walk(enode, mt, true);
5386 }
5387 }
5388 /* Interface */
5389
5390 /**
5391 * mas_store() - Store an @entry.
5392 * @mas: The maple state.
5393 * @entry: The entry to store.
5394 *
5395 * The @mas->index and @mas->last is used to set the range for the @entry.
5396 *
5397 * Return: the first entry between mas->index and mas->last or %NULL.
5398 */
mas_store(struct ma_state * mas,void * entry)5399 void *mas_store(struct ma_state *mas, void *entry)
5400 {
5401 int request;
5402 MA_WR_STATE(wr_mas, mas, entry);
5403
5404 trace_ma_write(__func__, mas, 0, entry);
5405 #ifdef CONFIG_DEBUG_MAPLE_TREE
5406 if (MAS_WARN_ON(mas, mas->index > mas->last))
5407 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5408 entry);
5409
5410 if (mas->index > mas->last) {
5411 mas_set_err(mas, -EINVAL);
5412 return NULL;
5413 }
5414
5415 #endif
5416
5417 /*
5418 * Storing is the same operation as insert with the added caveat that it
5419 * can overwrite entries. Although this seems simple enough, one may
5420 * want to examine what happens if a single store operation was to
5421 * overwrite multiple entries within a self-balancing B-Tree.
5422 */
5423 mas_wr_prealloc_setup(&wr_mas);
5424 mas->store_type = mas_wr_store_type(&wr_mas);
5425 if (mas->mas_flags & MA_STATE_PREALLOC) {
5426 mas_wr_store_entry(&wr_mas);
5427 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5428 return wr_mas.content;
5429 }
5430
5431 request = mas_prealloc_calc(&wr_mas, entry);
5432 if (!request)
5433 goto store;
5434
5435 mas_node_count(mas, request);
5436 if (mas_is_err(mas))
5437 return NULL;
5438
5439 store:
5440 mas_wr_store_entry(&wr_mas);
5441 mas_destroy(mas);
5442 return wr_mas.content;
5443 }
5444 EXPORT_SYMBOL_GPL(mas_store);
5445
5446 /**
5447 * mas_store_gfp() - Store a value into the tree.
5448 * @mas: The maple state
5449 * @entry: The entry to store
5450 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5451 *
5452 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5453 * be allocated.
5454 */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5456 {
5457 unsigned long index = mas->index;
5458 unsigned long last = mas->last;
5459 MA_WR_STATE(wr_mas, mas, entry);
5460 int ret = 0;
5461
5462 retry:
5463 mas_wr_preallocate(&wr_mas, entry);
5464 if (unlikely(mas_nomem(mas, gfp))) {
5465 if (!entry)
5466 __mas_set_range(mas, index, last);
5467 goto retry;
5468 }
5469
5470 if (mas_is_err(mas)) {
5471 ret = xa_err(mas->node);
5472 goto out;
5473 }
5474
5475 mas_wr_store_entry(&wr_mas);
5476 out:
5477 mas_destroy(mas);
5478 return ret;
5479 }
5480 EXPORT_SYMBOL_GPL(mas_store_gfp);
5481
5482 /**
5483 * mas_store_prealloc() - Store a value into the tree using memory
5484 * preallocated in the maple state.
5485 * @mas: The maple state
5486 * @entry: The entry to store.
5487 */
mas_store_prealloc(struct ma_state * mas,void * entry)5488 void mas_store_prealloc(struct ma_state *mas, void *entry)
5489 {
5490 MA_WR_STATE(wr_mas, mas, entry);
5491
5492 if (mas->store_type == wr_store_root) {
5493 mas_wr_prealloc_setup(&wr_mas);
5494 goto store;
5495 }
5496
5497 mas_wr_walk_descend(&wr_mas);
5498 if (mas->store_type != wr_spanning_store) {
5499 /* set wr_mas->content to current slot */
5500 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5501 mas_wr_end_piv(&wr_mas);
5502 }
5503
5504 store:
5505 trace_ma_write(__func__, mas, 0, entry);
5506 mas_wr_store_entry(&wr_mas);
5507 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5508 mas_destroy(mas);
5509 }
5510 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5511
5512 /**
5513 * mas_preallocate() - Preallocate enough nodes for a store operation
5514 * @mas: The maple state
5515 * @entry: The entry that will be stored
5516 * @gfp: The GFP_FLAGS to use for allocations.
5517 *
5518 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5519 */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5520 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5521 {
5522 MA_WR_STATE(wr_mas, mas, entry);
5523 int ret = 0;
5524 int request;
5525
5526 mas_wr_prealloc_setup(&wr_mas);
5527 mas->store_type = mas_wr_store_type(&wr_mas);
5528 request = mas_prealloc_calc(&wr_mas, entry);
5529 if (!request)
5530 goto set_flag;
5531
5532 mas->mas_flags &= ~MA_STATE_PREALLOC;
5533 mas_node_count_gfp(mas, request, gfp);
5534 if (mas_is_err(mas)) {
5535 mas_set_alloc_req(mas, 0);
5536 ret = xa_err(mas->node);
5537 mas_destroy(mas);
5538 mas_reset(mas);
5539 return ret;
5540 }
5541
5542 set_flag:
5543 mas->mas_flags |= MA_STATE_PREALLOC;
5544 return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(mas_preallocate);
5547
5548 /*
5549 * mas_destroy() - destroy a maple state.
5550 * @mas: The maple state
5551 *
5552 * Upon completion, check the left-most node and rebalance against the node to
5553 * the right if necessary. Frees any allocated nodes associated with this maple
5554 * state.
5555 */
mas_destroy(struct ma_state * mas)5556 void mas_destroy(struct ma_state *mas)
5557 {
5558 struct maple_alloc *node;
5559 unsigned long total;
5560
5561 /*
5562 * When using mas_for_each() to insert an expected number of elements,
5563 * it is possible that the number inserted is less than the expected
5564 * number. To fix an invalid final node, a check is performed here to
5565 * rebalance the previous node with the final node.
5566 */
5567 if (mas->mas_flags & MA_STATE_REBALANCE) {
5568 unsigned char end;
5569 if (mas_is_err(mas))
5570 mas_reset(mas);
5571 mas_start(mas);
5572 mtree_range_walk(mas);
5573 end = mas->end + 1;
5574 if (end < mt_min_slot_count(mas->node) - 1)
5575 mas_destroy_rebalance(mas, end);
5576
5577 mas->mas_flags &= ~MA_STATE_REBALANCE;
5578 }
5579 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5580
5581 total = mas_allocated(mas);
5582 while (total) {
5583 node = mas->alloc;
5584 mas->alloc = node->slot[0];
5585 if (node->node_count > 1) {
5586 size_t count = node->node_count - 1;
5587
5588 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5589 total -= count;
5590 }
5591 mt_free_one(ma_mnode_ptr(node));
5592 total--;
5593 }
5594
5595 mas->alloc = NULL;
5596 }
5597 EXPORT_SYMBOL_GPL(mas_destroy);
5598
5599 /*
5600 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5601 * @mas: The maple state
5602 * @nr_entries: The number of expected entries.
5603 *
5604 * This will attempt to pre-allocate enough nodes to store the expected number
5605 * of entries. The allocations will occur using the bulk allocator interface
5606 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5607 * to ensure any unused nodes are freed.
5608 *
5609 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5610 */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5611 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5612 {
5613 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5614 struct maple_enode *enode = mas->node;
5615 int nr_nodes;
5616 int ret;
5617
5618 /*
5619 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5620 * forking a process and duplicating the VMAs from one tree to a new
5621 * tree. When such a situation arises, it is known that the new tree is
5622 * not going to be used until the entire tree is populated. For
5623 * performance reasons, it is best to use a bulk load with RCU disabled.
5624 * This allows for optimistic splitting that favours the left and reuse
5625 * of nodes during the operation.
5626 */
5627
5628 /* Optimize splitting for bulk insert in-order */
5629 mas->mas_flags |= MA_STATE_BULK;
5630
5631 /*
5632 * Avoid overflow, assume a gap between each entry and a trailing null.
5633 * If this is wrong, it just means allocation can happen during
5634 * insertion of entries.
5635 */
5636 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5637 if (!mt_is_alloc(mas->tree))
5638 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5639
5640 /* Leaves; reduce slots to keep space for expansion */
5641 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5642 /* Internal nodes */
5643 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5644 /* Add working room for split (2 nodes) + new parents */
5645 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5646
5647 /* Detect if allocations run out */
5648 mas->mas_flags |= MA_STATE_PREALLOC;
5649
5650 if (!mas_is_err(mas))
5651 return 0;
5652
5653 ret = xa_err(mas->node);
5654 mas->node = enode;
5655 mas_destroy(mas);
5656 return ret;
5657
5658 }
5659 EXPORT_SYMBOL_GPL(mas_expected_entries);
5660
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5661 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5662 void **entry)
5663 {
5664 bool was_none = mas_is_none(mas);
5665
5666 if (unlikely(mas->last >= max)) {
5667 mas->status = ma_overflow;
5668 return true;
5669 }
5670
5671 switch (mas->status) {
5672 case ma_active:
5673 return false;
5674 case ma_none:
5675 fallthrough;
5676 case ma_pause:
5677 mas->status = ma_start;
5678 fallthrough;
5679 case ma_start:
5680 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5681 break;
5682 case ma_overflow:
5683 /* Overflowed before, but the max changed */
5684 mas->status = ma_active;
5685 break;
5686 case ma_underflow:
5687 /* The user expects the mas to be one before where it is */
5688 mas->status = ma_active;
5689 *entry = mas_walk(mas);
5690 if (*entry)
5691 return true;
5692 break;
5693 case ma_root:
5694 break;
5695 case ma_error:
5696 return true;
5697 }
5698
5699 if (likely(mas_is_active(mas))) /* Fast path */
5700 return false;
5701
5702 if (mas_is_ptr(mas)) {
5703 *entry = NULL;
5704 if (was_none && mas->index == 0) {
5705 mas->index = mas->last = 0;
5706 return true;
5707 }
5708 mas->index = 1;
5709 mas->last = ULONG_MAX;
5710 mas->status = ma_none;
5711 return true;
5712 }
5713
5714 if (mas_is_none(mas))
5715 return true;
5716
5717 return false;
5718 }
5719
5720 /**
5721 * mas_next() - Get the next entry.
5722 * @mas: The maple state
5723 * @max: The maximum index to check.
5724 *
5725 * Returns the next entry after @mas->index.
5726 * Must hold rcu_read_lock or the write lock.
5727 * Can return the zero entry.
5728 *
5729 * Return: The next entry or %NULL
5730 */
mas_next(struct ma_state * mas,unsigned long max)5731 void *mas_next(struct ma_state *mas, unsigned long max)
5732 {
5733 void *entry = NULL;
5734
5735 if (mas_next_setup(mas, max, &entry))
5736 return entry;
5737
5738 /* Retries on dead nodes handled by mas_next_slot */
5739 return mas_next_slot(mas, max, false);
5740 }
5741 EXPORT_SYMBOL_GPL(mas_next);
5742
5743 /**
5744 * mas_next_range() - Advance the maple state to the next range
5745 * @mas: The maple state
5746 * @max: The maximum index to check.
5747 *
5748 * Sets @mas->index and @mas->last to the range.
5749 * Must hold rcu_read_lock or the write lock.
5750 * Can return the zero entry.
5751 *
5752 * Return: The next entry or %NULL
5753 */
mas_next_range(struct ma_state * mas,unsigned long max)5754 void *mas_next_range(struct ma_state *mas, unsigned long max)
5755 {
5756 void *entry = NULL;
5757
5758 if (mas_next_setup(mas, max, &entry))
5759 return entry;
5760
5761 /* Retries on dead nodes handled by mas_next_slot */
5762 return mas_next_slot(mas, max, true);
5763 }
5764 EXPORT_SYMBOL_GPL(mas_next_range);
5765
5766 /**
5767 * mt_next() - get the next value in the maple tree
5768 * @mt: The maple tree
5769 * @index: The start index
5770 * @max: The maximum index to check
5771 *
5772 * Takes RCU read lock internally to protect the search, which does not
5773 * protect the returned pointer after dropping RCU read lock.
5774 * See also: Documentation/core-api/maple_tree.rst
5775 *
5776 * Return: The entry higher than @index or %NULL if nothing is found.
5777 */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5778 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5779 {
5780 void *entry = NULL;
5781 MA_STATE(mas, mt, index, index);
5782
5783 rcu_read_lock();
5784 entry = mas_next(&mas, max);
5785 rcu_read_unlock();
5786 return entry;
5787 }
5788 EXPORT_SYMBOL_GPL(mt_next);
5789
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5790 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5791 {
5792 if (unlikely(mas->index <= min)) {
5793 mas->status = ma_underflow;
5794 return true;
5795 }
5796
5797 switch (mas->status) {
5798 case ma_active:
5799 return false;
5800 case ma_start:
5801 break;
5802 case ma_none:
5803 fallthrough;
5804 case ma_pause:
5805 mas->status = ma_start;
5806 break;
5807 case ma_underflow:
5808 /* underflowed before but the min changed */
5809 mas->status = ma_active;
5810 break;
5811 case ma_overflow:
5812 /* User expects mas to be one after where it is */
5813 mas->status = ma_active;
5814 *entry = mas_walk(mas);
5815 if (*entry)
5816 return true;
5817 break;
5818 case ma_root:
5819 break;
5820 case ma_error:
5821 return true;
5822 }
5823
5824 if (mas_is_start(mas))
5825 mas_walk(mas);
5826
5827 if (unlikely(mas_is_ptr(mas))) {
5828 if (!mas->index) {
5829 mas->status = ma_none;
5830 return true;
5831 }
5832 mas->index = mas->last = 0;
5833 *entry = mas_root(mas);
5834 return true;
5835 }
5836
5837 if (mas_is_none(mas)) {
5838 if (mas->index) {
5839 /* Walked to out-of-range pointer? */
5840 mas->index = mas->last = 0;
5841 mas->status = ma_root;
5842 *entry = mas_root(mas);
5843 return true;
5844 }
5845 return true;
5846 }
5847
5848 return false;
5849 }
5850
5851 /**
5852 * mas_prev() - Get the previous entry
5853 * @mas: The maple state
5854 * @min: The minimum value to check.
5855 *
5856 * Must hold rcu_read_lock or the write lock.
5857 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5858 * searchable nodes.
5859 *
5860 * Return: the previous value or %NULL.
5861 */
mas_prev(struct ma_state * mas,unsigned long min)5862 void *mas_prev(struct ma_state *mas, unsigned long min)
5863 {
5864 void *entry = NULL;
5865
5866 if (mas_prev_setup(mas, min, &entry))
5867 return entry;
5868
5869 return mas_prev_slot(mas, min, false);
5870 }
5871 EXPORT_SYMBOL_GPL(mas_prev);
5872
5873 /**
5874 * mas_prev_range() - Advance to the previous range
5875 * @mas: The maple state
5876 * @min: The minimum value to check.
5877 *
5878 * Sets @mas->index and @mas->last to the range.
5879 * Must hold rcu_read_lock or the write lock.
5880 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5881 * searchable nodes.
5882 *
5883 * Return: the previous value or %NULL.
5884 */
mas_prev_range(struct ma_state * mas,unsigned long min)5885 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5886 {
5887 void *entry = NULL;
5888
5889 if (mas_prev_setup(mas, min, &entry))
5890 return entry;
5891
5892 return mas_prev_slot(mas, min, true);
5893 }
5894 EXPORT_SYMBOL_GPL(mas_prev_range);
5895
5896 /**
5897 * mt_prev() - get the previous value in the maple tree
5898 * @mt: The maple tree
5899 * @index: The start index
5900 * @min: The minimum index to check
5901 *
5902 * Takes RCU read lock internally to protect the search, which does not
5903 * protect the returned pointer after dropping RCU read lock.
5904 * See also: Documentation/core-api/maple_tree.rst
5905 *
5906 * Return: The entry before @index or %NULL if nothing is found.
5907 */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5908 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5909 {
5910 void *entry = NULL;
5911 MA_STATE(mas, mt, index, index);
5912
5913 rcu_read_lock();
5914 entry = mas_prev(&mas, min);
5915 rcu_read_unlock();
5916 return entry;
5917 }
5918 EXPORT_SYMBOL_GPL(mt_prev);
5919
5920 /**
5921 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5922 * @mas: The maple state to pause
5923 *
5924 * Some users need to pause a walk and drop the lock they're holding in
5925 * order to yield to a higher priority thread or carry out an operation
5926 * on an entry. Those users should call this function before they drop
5927 * the lock. It resets the @mas to be suitable for the next iteration
5928 * of the loop after the user has reacquired the lock. If most entries
5929 * found during a walk require you to call mas_pause(), the mt_for_each()
5930 * iterator may be more appropriate.
5931 *
5932 */
mas_pause(struct ma_state * mas)5933 void mas_pause(struct ma_state *mas)
5934 {
5935 mas->status = ma_pause;
5936 mas->node = NULL;
5937 }
5938 EXPORT_SYMBOL_GPL(mas_pause);
5939
5940 /**
5941 * mas_find_setup() - Internal function to set up mas_find*().
5942 * @mas: The maple state
5943 * @max: The maximum index
5944 * @entry: Pointer to the entry
5945 *
5946 * Returns: True if entry is the answer, false otherwise.
5947 */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5948 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5949 {
5950 switch (mas->status) {
5951 case ma_active:
5952 if (mas->last < max)
5953 return false;
5954 return true;
5955 case ma_start:
5956 break;
5957 case ma_pause:
5958 if (unlikely(mas->last >= max))
5959 return true;
5960
5961 mas->index = ++mas->last;
5962 mas->status = ma_start;
5963 break;
5964 case ma_none:
5965 if (unlikely(mas->last >= max))
5966 return true;
5967
5968 mas->index = mas->last;
5969 mas->status = ma_start;
5970 break;
5971 case ma_underflow:
5972 /* mas is pointing at entry before unable to go lower */
5973 if (unlikely(mas->index >= max)) {
5974 mas->status = ma_overflow;
5975 return true;
5976 }
5977
5978 mas->status = ma_active;
5979 *entry = mas_walk(mas);
5980 if (*entry)
5981 return true;
5982 break;
5983 case ma_overflow:
5984 if (unlikely(mas->last >= max))
5985 return true;
5986
5987 mas->status = ma_active;
5988 *entry = mas_walk(mas);
5989 if (*entry)
5990 return true;
5991 break;
5992 case ma_root:
5993 break;
5994 case ma_error:
5995 return true;
5996 }
5997
5998 if (mas_is_start(mas)) {
5999 /* First run or continue */
6000 if (mas->index > max)
6001 return true;
6002
6003 *entry = mas_walk(mas);
6004 if (*entry)
6005 return true;
6006
6007 }
6008
6009 if (unlikely(mas_is_ptr(mas)))
6010 goto ptr_out_of_range;
6011
6012 if (unlikely(mas_is_none(mas)))
6013 return true;
6014
6015 if (mas->index == max)
6016 return true;
6017
6018 return false;
6019
6020 ptr_out_of_range:
6021 mas->status = ma_none;
6022 mas->index = 1;
6023 mas->last = ULONG_MAX;
6024 return true;
6025 }
6026
6027 /**
6028 * mas_find() - On the first call, find the entry at or after mas->index up to
6029 * %max. Otherwise, find the entry after mas->index.
6030 * @mas: The maple state
6031 * @max: The maximum value to check.
6032 *
6033 * Must hold rcu_read_lock or the write lock.
6034 * If an entry exists, last and index are updated accordingly.
6035 * May set @mas->status to ma_overflow.
6036 *
6037 * Return: The entry or %NULL.
6038 */
mas_find(struct ma_state * mas,unsigned long max)6039 void *mas_find(struct ma_state *mas, unsigned long max)
6040 {
6041 void *entry = NULL;
6042
6043 if (mas_find_setup(mas, max, &entry))
6044 return entry;
6045
6046 /* Retries on dead nodes handled by mas_next_slot */
6047 entry = mas_next_slot(mas, max, false);
6048 /* Ignore overflow */
6049 mas->status = ma_active;
6050 return entry;
6051 }
6052 EXPORT_SYMBOL_GPL(mas_find);
6053
6054 /**
6055 * mas_find_range() - On the first call, find the entry at or after
6056 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6057 * @mas: The maple state
6058 * @max: The maximum value to check.
6059 *
6060 * Must hold rcu_read_lock or the write lock.
6061 * If an entry exists, last and index are updated accordingly.
6062 * May set @mas->status to ma_overflow.
6063 *
6064 * Return: The entry or %NULL.
6065 */
mas_find_range(struct ma_state * mas,unsigned long max)6066 void *mas_find_range(struct ma_state *mas, unsigned long max)
6067 {
6068 void *entry = NULL;
6069
6070 if (mas_find_setup(mas, max, &entry))
6071 return entry;
6072
6073 /* Retries on dead nodes handled by mas_next_slot */
6074 return mas_next_slot(mas, max, true);
6075 }
6076 EXPORT_SYMBOL_GPL(mas_find_range);
6077
6078 /**
6079 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6080 * @mas: The maple state
6081 * @min: The minimum index
6082 * @entry: Pointer to the entry
6083 *
6084 * Returns: True if entry is the answer, false otherwise.
6085 */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6086 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6087 void **entry)
6088 {
6089
6090 switch (mas->status) {
6091 case ma_active:
6092 goto active;
6093 case ma_start:
6094 break;
6095 case ma_pause:
6096 if (unlikely(mas->index <= min)) {
6097 mas->status = ma_underflow;
6098 return true;
6099 }
6100 mas->last = --mas->index;
6101 mas->status = ma_start;
6102 break;
6103 case ma_none:
6104 if (mas->index <= min)
6105 goto none;
6106
6107 mas->last = mas->index;
6108 mas->status = ma_start;
6109 break;
6110 case ma_overflow: /* user expects the mas to be one after where it is */
6111 if (unlikely(mas->index <= min)) {
6112 mas->status = ma_underflow;
6113 return true;
6114 }
6115
6116 mas->status = ma_active;
6117 break;
6118 case ma_underflow: /* user expects the mas to be one before where it is */
6119 if (unlikely(mas->index <= min))
6120 return true;
6121
6122 mas->status = ma_active;
6123 break;
6124 case ma_root:
6125 break;
6126 case ma_error:
6127 return true;
6128 }
6129
6130 if (mas_is_start(mas)) {
6131 /* First run or continue */
6132 if (mas->index < min)
6133 return true;
6134
6135 *entry = mas_walk(mas);
6136 if (*entry)
6137 return true;
6138 }
6139
6140 if (unlikely(mas_is_ptr(mas)))
6141 goto none;
6142
6143 if (unlikely(mas_is_none(mas))) {
6144 /*
6145 * Walked to the location, and there was nothing so the previous
6146 * location is 0.
6147 */
6148 mas->last = mas->index = 0;
6149 mas->status = ma_root;
6150 *entry = mas_root(mas);
6151 return true;
6152 }
6153
6154 active:
6155 if (mas->index < min)
6156 return true;
6157
6158 return false;
6159
6160 none:
6161 mas->status = ma_none;
6162 return true;
6163 }
6164
6165 /**
6166 * mas_find_rev: On the first call, find the first non-null entry at or below
6167 * mas->index down to %min. Otherwise find the first non-null entry below
6168 * mas->index down to %min.
6169 * @mas: The maple state
6170 * @min: The minimum value to check.
6171 *
6172 * Must hold rcu_read_lock or the write lock.
6173 * If an entry exists, last and index are updated accordingly.
6174 * May set @mas->status to ma_underflow.
6175 *
6176 * Return: The entry or %NULL.
6177 */
mas_find_rev(struct ma_state * mas,unsigned long min)6178 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6179 {
6180 void *entry = NULL;
6181
6182 if (mas_find_rev_setup(mas, min, &entry))
6183 return entry;
6184
6185 /* Retries on dead nodes handled by mas_prev_slot */
6186 return mas_prev_slot(mas, min, false);
6187
6188 }
6189 EXPORT_SYMBOL_GPL(mas_find_rev);
6190
6191 /**
6192 * mas_find_range_rev: On the first call, find the first non-null entry at or
6193 * below mas->index down to %min. Otherwise advance to the previous slot after
6194 * mas->index down to %min.
6195 * @mas: The maple state
6196 * @min: The minimum value to check.
6197 *
6198 * Must hold rcu_read_lock or the write lock.
6199 * If an entry exists, last and index are updated accordingly.
6200 * May set @mas->status to ma_underflow.
6201 *
6202 * Return: The entry or %NULL.
6203 */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6204 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6205 {
6206 void *entry = NULL;
6207
6208 if (mas_find_rev_setup(mas, min, &entry))
6209 return entry;
6210
6211 /* Retries on dead nodes handled by mas_prev_slot */
6212 return mas_prev_slot(mas, min, true);
6213 }
6214 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6215
6216 /**
6217 * mas_erase() - Find the range in which index resides and erase the entire
6218 * range.
6219 * @mas: The maple state
6220 *
6221 * Must hold the write lock.
6222 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6223 * erases that range.
6224 *
6225 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6226 */
mas_erase(struct ma_state * mas)6227 void *mas_erase(struct ma_state *mas)
6228 {
6229 void *entry;
6230 unsigned long index = mas->index;
6231 MA_WR_STATE(wr_mas, mas, NULL);
6232
6233 if (!mas_is_active(mas) || !mas_is_start(mas))
6234 mas->status = ma_start;
6235
6236 write_retry:
6237 entry = mas_state_walk(mas);
6238 if (!entry)
6239 return NULL;
6240
6241 /* Must reset to ensure spanning writes of last slot are detected */
6242 mas_reset(mas);
6243 mas_wr_preallocate(&wr_mas, NULL);
6244 if (mas_nomem(mas, GFP_KERNEL)) {
6245 /* in case the range of entry changed when unlocked */
6246 mas->index = mas->last = index;
6247 goto write_retry;
6248 }
6249
6250 if (mas_is_err(mas))
6251 goto out;
6252
6253 mas_wr_store_entry(&wr_mas);
6254 out:
6255 mas_destroy(mas);
6256 return entry;
6257 }
6258 EXPORT_SYMBOL_GPL(mas_erase);
6259
6260 /**
6261 * mas_nomem() - Check if there was an error allocating and do the allocation
6262 * if necessary If there are allocations, then free them.
6263 * @mas: The maple state
6264 * @gfp: The GFP_FLAGS to use for allocations
6265 * Return: true on allocation, false otherwise.
6266 */
mas_nomem(struct ma_state * mas,gfp_t gfp)6267 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6268 __must_hold(mas->tree->ma_lock)
6269 {
6270 if (likely(mas->node != MA_ERROR(-ENOMEM)))
6271 return false;
6272
6273 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6274 mtree_unlock(mas->tree);
6275 mas_alloc_nodes(mas, gfp);
6276 mtree_lock(mas->tree);
6277 } else {
6278 mas_alloc_nodes(mas, gfp);
6279 }
6280
6281 if (!mas_allocated(mas))
6282 return false;
6283
6284 mas->status = ma_start;
6285 return true;
6286 }
6287
maple_tree_init(void)6288 void __init maple_tree_init(void)
6289 {
6290 maple_node_cache = kmem_cache_create("maple_node",
6291 sizeof(struct maple_node), sizeof(struct maple_node),
6292 SLAB_PANIC, NULL);
6293 }
6294
6295 /**
6296 * mtree_load() - Load a value stored in a maple tree
6297 * @mt: The maple tree
6298 * @index: The index to load
6299 *
6300 * Return: the entry or %NULL
6301 */
mtree_load(struct maple_tree * mt,unsigned long index)6302 void *mtree_load(struct maple_tree *mt, unsigned long index)
6303 {
6304 MA_STATE(mas, mt, index, index);
6305 void *entry;
6306
6307 trace_ma_read(__func__, &mas);
6308 rcu_read_lock();
6309 retry:
6310 entry = mas_start(&mas);
6311 if (unlikely(mas_is_none(&mas)))
6312 goto unlock;
6313
6314 if (unlikely(mas_is_ptr(&mas))) {
6315 if (index)
6316 entry = NULL;
6317
6318 goto unlock;
6319 }
6320
6321 entry = mtree_lookup_walk(&mas);
6322 if (!entry && unlikely(mas_is_start(&mas)))
6323 goto retry;
6324 unlock:
6325 rcu_read_unlock();
6326 if (xa_is_zero(entry))
6327 return NULL;
6328
6329 return entry;
6330 }
6331 EXPORT_SYMBOL(mtree_load);
6332
6333 /**
6334 * mtree_store_range() - Store an entry at a given range.
6335 * @mt: The maple tree
6336 * @index: The start of the range
6337 * @last: The end of the range
6338 * @entry: The entry to store
6339 * @gfp: The GFP_FLAGS to use for allocations
6340 *
6341 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6342 * be allocated.
6343 */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6344 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6345 unsigned long last, void *entry, gfp_t gfp)
6346 {
6347 MA_STATE(mas, mt, index, last);
6348 int ret = 0;
6349
6350 trace_ma_write(__func__, &mas, 0, entry);
6351 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6352 return -EINVAL;
6353
6354 if (index > last)
6355 return -EINVAL;
6356
6357 mtree_lock(mt);
6358 ret = mas_store_gfp(&mas, entry, gfp);
6359 mtree_unlock(mt);
6360
6361 return ret;
6362 }
6363 EXPORT_SYMBOL(mtree_store_range);
6364
6365 /**
6366 * mtree_store() - Store an entry at a given index.
6367 * @mt: The maple tree
6368 * @index: The index to store the value
6369 * @entry: The entry to store
6370 * @gfp: The GFP_FLAGS to use for allocations
6371 *
6372 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6373 * be allocated.
6374 */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6375 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6376 gfp_t gfp)
6377 {
6378 return mtree_store_range(mt, index, index, entry, gfp);
6379 }
6380 EXPORT_SYMBOL(mtree_store);
6381
6382 /**
6383 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6384 * @mt: The maple tree
6385 * @first: The start of the range
6386 * @last: The end of the range
6387 * @entry: The entry to store
6388 * @gfp: The GFP_FLAGS to use for allocations.
6389 *
6390 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6391 * request, -ENOMEM if memory could not be allocated.
6392 */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6393 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6394 unsigned long last, void *entry, gfp_t gfp)
6395 {
6396 MA_STATE(ms, mt, first, last);
6397 int ret = 0;
6398
6399 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6400 return -EINVAL;
6401
6402 if (first > last)
6403 return -EINVAL;
6404
6405 mtree_lock(mt);
6406 retry:
6407 mas_insert(&ms, entry);
6408 if (mas_nomem(&ms, gfp))
6409 goto retry;
6410
6411 mtree_unlock(mt);
6412 if (mas_is_err(&ms))
6413 ret = xa_err(ms.node);
6414
6415 mas_destroy(&ms);
6416 return ret;
6417 }
6418 EXPORT_SYMBOL(mtree_insert_range);
6419
6420 /**
6421 * mtree_insert() - Insert an entry at a given index if there is no value.
6422 * @mt: The maple tree
6423 * @index : The index to store the value
6424 * @entry: The entry to store
6425 * @gfp: The GFP_FLAGS to use for allocations.
6426 *
6427 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6428 * request, -ENOMEM if memory could not be allocated.
6429 */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6430 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6431 gfp_t gfp)
6432 {
6433 return mtree_insert_range(mt, index, index, entry, gfp);
6434 }
6435 EXPORT_SYMBOL(mtree_insert);
6436
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6437 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6438 void *entry, unsigned long size, unsigned long min,
6439 unsigned long max, gfp_t gfp)
6440 {
6441 int ret = 0;
6442
6443 MA_STATE(mas, mt, 0, 0);
6444 if (!mt_is_alloc(mt))
6445 return -EINVAL;
6446
6447 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6448 return -EINVAL;
6449
6450 mtree_lock(mt);
6451 retry:
6452 ret = mas_empty_area(&mas, min, max, size);
6453 if (ret)
6454 goto unlock;
6455
6456 mas_insert(&mas, entry);
6457 /*
6458 * mas_nomem() may release the lock, causing the allocated area
6459 * to be unavailable, so try to allocate a free area again.
6460 */
6461 if (mas_nomem(&mas, gfp))
6462 goto retry;
6463
6464 if (mas_is_err(&mas))
6465 ret = xa_err(mas.node);
6466 else
6467 *startp = mas.index;
6468
6469 unlock:
6470 mtree_unlock(mt);
6471 mas_destroy(&mas);
6472 return ret;
6473 }
6474 EXPORT_SYMBOL(mtree_alloc_range);
6475
6476 /**
6477 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6478 * @mt: The maple tree.
6479 * @startp: Pointer to ID.
6480 * @range_lo: Lower bound of range to search.
6481 * @range_hi: Upper bound of range to search.
6482 * @entry: The entry to store.
6483 * @next: Pointer to next ID to allocate.
6484 * @gfp: The GFP_FLAGS to use for allocations.
6485 *
6486 * Finds an empty entry in @mt after @next, stores the new index into
6487 * the @id pointer, stores the entry at that index, then updates @next.
6488 *
6489 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6490 *
6491 * Context: Any context. Takes and releases the mt.lock. May sleep if
6492 * the @gfp flags permit.
6493 *
6494 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6495 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6496 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6497 * free entries.
6498 */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6499 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6500 void *entry, unsigned long range_lo, unsigned long range_hi,
6501 unsigned long *next, gfp_t gfp)
6502 {
6503 int ret;
6504
6505 MA_STATE(mas, mt, 0, 0);
6506
6507 if (!mt_is_alloc(mt))
6508 return -EINVAL;
6509 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6510 return -EINVAL;
6511 mtree_lock(mt);
6512 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6513 next, gfp);
6514 mtree_unlock(mt);
6515 return ret;
6516 }
6517 EXPORT_SYMBOL(mtree_alloc_cyclic);
6518
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6519 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6520 void *entry, unsigned long size, unsigned long min,
6521 unsigned long max, gfp_t gfp)
6522 {
6523 int ret = 0;
6524
6525 MA_STATE(mas, mt, 0, 0);
6526 if (!mt_is_alloc(mt))
6527 return -EINVAL;
6528
6529 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6530 return -EINVAL;
6531
6532 mtree_lock(mt);
6533 retry:
6534 ret = mas_empty_area_rev(&mas, min, max, size);
6535 if (ret)
6536 goto unlock;
6537
6538 mas_insert(&mas, entry);
6539 /*
6540 * mas_nomem() may release the lock, causing the allocated area
6541 * to be unavailable, so try to allocate a free area again.
6542 */
6543 if (mas_nomem(&mas, gfp))
6544 goto retry;
6545
6546 if (mas_is_err(&mas))
6547 ret = xa_err(mas.node);
6548 else
6549 *startp = mas.index;
6550
6551 unlock:
6552 mtree_unlock(mt);
6553 mas_destroy(&mas);
6554 return ret;
6555 }
6556 EXPORT_SYMBOL(mtree_alloc_rrange);
6557
6558 /**
6559 * mtree_erase() - Find an index and erase the entire range.
6560 * @mt: The maple tree
6561 * @index: The index to erase
6562 *
6563 * Erasing is the same as a walk to an entry then a store of a NULL to that
6564 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6565 *
6566 * Return: The entry stored at the @index or %NULL
6567 */
mtree_erase(struct maple_tree * mt,unsigned long index)6568 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6569 {
6570 void *entry = NULL;
6571
6572 MA_STATE(mas, mt, index, index);
6573 trace_ma_op(__func__, &mas);
6574
6575 mtree_lock(mt);
6576 entry = mas_erase(&mas);
6577 mtree_unlock(mt);
6578
6579 return entry;
6580 }
6581 EXPORT_SYMBOL(mtree_erase);
6582
6583 /*
6584 * mas_dup_free() - Free an incomplete duplication of a tree.
6585 * @mas: The maple state of a incomplete tree.
6586 *
6587 * The parameter @mas->node passed in indicates that the allocation failed on
6588 * this node. This function frees all nodes starting from @mas->node in the
6589 * reverse order of mas_dup_build(). There is no need to hold the source tree
6590 * lock at this time.
6591 */
mas_dup_free(struct ma_state * mas)6592 static void mas_dup_free(struct ma_state *mas)
6593 {
6594 struct maple_node *node;
6595 enum maple_type type;
6596 void __rcu **slots;
6597 unsigned char count, i;
6598
6599 /* Maybe the first node allocation failed. */
6600 if (mas_is_none(mas))
6601 return;
6602
6603 while (!mte_is_root(mas->node)) {
6604 mas_ascend(mas);
6605 if (mas->offset) {
6606 mas->offset--;
6607 do {
6608 mas_descend(mas);
6609 mas->offset = mas_data_end(mas);
6610 } while (!mte_is_leaf(mas->node));
6611
6612 mas_ascend(mas);
6613 }
6614
6615 node = mte_to_node(mas->node);
6616 type = mte_node_type(mas->node);
6617 slots = ma_slots(node, type);
6618 count = mas_data_end(mas) + 1;
6619 for (i = 0; i < count; i++)
6620 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6621 mt_free_bulk(count, slots);
6622 }
6623
6624 node = mte_to_node(mas->node);
6625 mt_free_one(node);
6626 }
6627
6628 /*
6629 * mas_copy_node() - Copy a maple node and replace the parent.
6630 * @mas: The maple state of source tree.
6631 * @new_mas: The maple state of new tree.
6632 * @parent: The parent of the new node.
6633 *
6634 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6635 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6636 */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6637 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6638 struct maple_pnode *parent)
6639 {
6640 struct maple_node *node = mte_to_node(mas->node);
6641 struct maple_node *new_node = mte_to_node(new_mas->node);
6642 unsigned long val;
6643
6644 /* Copy the node completely. */
6645 memcpy(new_node, node, sizeof(struct maple_node));
6646 /* Update the parent node pointer. */
6647 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6648 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6649 }
6650
6651 /*
6652 * mas_dup_alloc() - Allocate child nodes for a maple node.
6653 * @mas: The maple state of source tree.
6654 * @new_mas: The maple state of new tree.
6655 * @gfp: The GFP_FLAGS to use for allocations.
6656 *
6657 * This function allocates child nodes for @new_mas->node during the duplication
6658 * process. If memory allocation fails, @mas is set to -ENOMEM.
6659 */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6660 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6661 gfp_t gfp)
6662 {
6663 struct maple_node *node = mte_to_node(mas->node);
6664 struct maple_node *new_node = mte_to_node(new_mas->node);
6665 enum maple_type type;
6666 unsigned char request, count, i;
6667 void __rcu **slots;
6668 void __rcu **new_slots;
6669 unsigned long val;
6670
6671 /* Allocate memory for child nodes. */
6672 type = mte_node_type(mas->node);
6673 new_slots = ma_slots(new_node, type);
6674 request = mas_data_end(mas) + 1;
6675 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6676 if (unlikely(count < request)) {
6677 memset(new_slots, 0, request * sizeof(void *));
6678 mas_set_err(mas, -ENOMEM);
6679 return;
6680 }
6681
6682 /* Restore node type information in slots. */
6683 slots = ma_slots(node, type);
6684 for (i = 0; i < count; i++) {
6685 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6686 val &= MAPLE_NODE_MASK;
6687 ((unsigned long *)new_slots)[i] |= val;
6688 }
6689 }
6690
6691 /*
6692 * mas_dup_build() - Build a new maple tree from a source tree
6693 * @mas: The maple state of source tree, need to be in MAS_START state.
6694 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6695 * @gfp: The GFP_FLAGS to use for allocations.
6696 *
6697 * This function builds a new tree in DFS preorder. If the memory allocation
6698 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6699 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6700 *
6701 * Note that the attributes of the two trees need to be exactly the same, and the
6702 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6703 */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6704 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6705 gfp_t gfp)
6706 {
6707 struct maple_node *node;
6708 struct maple_pnode *parent = NULL;
6709 struct maple_enode *root;
6710 enum maple_type type;
6711
6712 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6713 unlikely(!mtree_empty(new_mas->tree))) {
6714 mas_set_err(mas, -EINVAL);
6715 return;
6716 }
6717
6718 root = mas_start(mas);
6719 if (mas_is_ptr(mas) || mas_is_none(mas))
6720 goto set_new_tree;
6721
6722 node = mt_alloc_one(gfp);
6723 if (!node) {
6724 new_mas->status = ma_none;
6725 mas_set_err(mas, -ENOMEM);
6726 return;
6727 }
6728
6729 type = mte_node_type(mas->node);
6730 root = mt_mk_node(node, type);
6731 new_mas->node = root;
6732 new_mas->min = 0;
6733 new_mas->max = ULONG_MAX;
6734 root = mte_mk_root(root);
6735 while (1) {
6736 mas_copy_node(mas, new_mas, parent);
6737 if (!mte_is_leaf(mas->node)) {
6738 /* Only allocate child nodes for non-leaf nodes. */
6739 mas_dup_alloc(mas, new_mas, gfp);
6740 if (unlikely(mas_is_err(mas)))
6741 return;
6742 } else {
6743 /*
6744 * This is the last leaf node and duplication is
6745 * completed.
6746 */
6747 if (mas->max == ULONG_MAX)
6748 goto done;
6749
6750 /* This is not the last leaf node and needs to go up. */
6751 do {
6752 mas_ascend(mas);
6753 mas_ascend(new_mas);
6754 } while (mas->offset == mas_data_end(mas));
6755
6756 /* Move to the next subtree. */
6757 mas->offset++;
6758 new_mas->offset++;
6759 }
6760
6761 mas_descend(mas);
6762 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6763 mas_descend(new_mas);
6764 mas->offset = 0;
6765 new_mas->offset = 0;
6766 }
6767 done:
6768 /* Specially handle the parent of the root node. */
6769 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6770 set_new_tree:
6771 /* Make them the same height */
6772 new_mas->tree->ma_flags = mas->tree->ma_flags;
6773 rcu_assign_pointer(new_mas->tree->ma_root, root);
6774 }
6775
6776 /**
6777 * __mt_dup(): Duplicate an entire maple tree
6778 * @mt: The source maple tree
6779 * @new: The new maple tree
6780 * @gfp: The GFP_FLAGS to use for allocations
6781 *
6782 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6783 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6784 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6785 * source node except for all the addresses stored in it. It will be faster than
6786 * traversing all elements in the source tree and inserting them one by one into
6787 * the new tree.
6788 * The user needs to ensure that the attributes of the source tree and the new
6789 * tree are the same, and the new tree needs to be an empty tree, otherwise
6790 * -EINVAL will be returned.
6791 * Note that the user needs to manually lock the source tree and the new tree.
6792 *
6793 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6794 * the attributes of the two trees are different or the new tree is not an empty
6795 * tree.
6796 */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6797 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6798 {
6799 int ret = 0;
6800 MA_STATE(mas, mt, 0, 0);
6801 MA_STATE(new_mas, new, 0, 0);
6802
6803 mas_dup_build(&mas, &new_mas, gfp);
6804 if (unlikely(mas_is_err(&mas))) {
6805 ret = xa_err(mas.node);
6806 if (ret == -ENOMEM)
6807 mas_dup_free(&new_mas);
6808 }
6809
6810 return ret;
6811 }
6812 EXPORT_SYMBOL(__mt_dup);
6813
6814 /**
6815 * mtree_dup(): Duplicate an entire maple tree
6816 * @mt: The source maple tree
6817 * @new: The new maple tree
6818 * @gfp: The GFP_FLAGS to use for allocations
6819 *
6820 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6821 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6822 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6823 * source node except for all the addresses stored in it. It will be faster than
6824 * traversing all elements in the source tree and inserting them one by one into
6825 * the new tree.
6826 * The user needs to ensure that the attributes of the source tree and the new
6827 * tree are the same, and the new tree needs to be an empty tree, otherwise
6828 * -EINVAL will be returned.
6829 *
6830 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6831 * the attributes of the two trees are different or the new tree is not an empty
6832 * tree.
6833 */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6834 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6835 {
6836 int ret = 0;
6837 MA_STATE(mas, mt, 0, 0);
6838 MA_STATE(new_mas, new, 0, 0);
6839
6840 mas_lock(&new_mas);
6841 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6842 mas_dup_build(&mas, &new_mas, gfp);
6843 mas_unlock(&mas);
6844 if (unlikely(mas_is_err(&mas))) {
6845 ret = xa_err(mas.node);
6846 if (ret == -ENOMEM)
6847 mas_dup_free(&new_mas);
6848 }
6849
6850 mas_unlock(&new_mas);
6851 return ret;
6852 }
6853 EXPORT_SYMBOL(mtree_dup);
6854
6855 /**
6856 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6857 * @mt: The maple tree
6858 *
6859 * Note: Does not handle locking.
6860 */
__mt_destroy(struct maple_tree * mt)6861 void __mt_destroy(struct maple_tree *mt)
6862 {
6863 void *root = mt_root_locked(mt);
6864
6865 rcu_assign_pointer(mt->ma_root, NULL);
6866 if (xa_is_node(root))
6867 mte_destroy_walk(root, mt);
6868
6869 mt->ma_flags = mt_attr(mt);
6870 }
6871 EXPORT_SYMBOL_GPL(__mt_destroy);
6872
6873 /**
6874 * mtree_destroy() - Destroy a maple tree
6875 * @mt: The maple tree
6876 *
6877 * Frees all resources used by the tree. Handles locking.
6878 */
mtree_destroy(struct maple_tree * mt)6879 void mtree_destroy(struct maple_tree *mt)
6880 {
6881 mtree_lock(mt);
6882 __mt_destroy(mt);
6883 mtree_unlock(mt);
6884 }
6885 EXPORT_SYMBOL(mtree_destroy);
6886
6887 /**
6888 * mt_find() - Search from the start up until an entry is found.
6889 * @mt: The maple tree
6890 * @index: Pointer which contains the start location of the search
6891 * @max: The maximum value of the search range
6892 *
6893 * Takes RCU read lock internally to protect the search, which does not
6894 * protect the returned pointer after dropping RCU read lock.
6895 * See also: Documentation/core-api/maple_tree.rst
6896 *
6897 * In case that an entry is found @index is updated to point to the next
6898 * possible entry independent whether the found entry is occupying a
6899 * single index or a range if indices.
6900 *
6901 * Return: The entry at or after the @index or %NULL
6902 */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6903 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6904 {
6905 MA_STATE(mas, mt, *index, *index);
6906 void *entry;
6907 #ifdef CONFIG_DEBUG_MAPLE_TREE
6908 unsigned long copy = *index;
6909 #endif
6910
6911 trace_ma_read(__func__, &mas);
6912
6913 if ((*index) > max)
6914 return NULL;
6915
6916 rcu_read_lock();
6917 retry:
6918 entry = mas_state_walk(&mas);
6919 if (mas_is_start(&mas))
6920 goto retry;
6921
6922 if (unlikely(xa_is_zero(entry)))
6923 entry = NULL;
6924
6925 if (entry)
6926 goto unlock;
6927
6928 while (mas_is_active(&mas) && (mas.last < max)) {
6929 entry = mas_next_slot(&mas, max, false);
6930 if (likely(entry && !xa_is_zero(entry)))
6931 break;
6932 }
6933
6934 if (unlikely(xa_is_zero(entry)))
6935 entry = NULL;
6936 unlock:
6937 rcu_read_unlock();
6938 if (likely(entry)) {
6939 *index = mas.last + 1;
6940 #ifdef CONFIG_DEBUG_MAPLE_TREE
6941 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6942 pr_err("index not increased! %lx <= %lx\n",
6943 *index, copy);
6944 #endif
6945 }
6946
6947 return entry;
6948 }
6949 EXPORT_SYMBOL(mt_find);
6950
6951 /**
6952 * mt_find_after() - Search from the start up until an entry is found.
6953 * @mt: The maple tree
6954 * @index: Pointer which contains the start location of the search
6955 * @max: The maximum value to check
6956 *
6957 * Same as mt_find() except that it checks @index for 0 before
6958 * searching. If @index == 0, the search is aborted. This covers a wrap
6959 * around of @index to 0 in an iterator loop.
6960 *
6961 * Return: The entry at or after the @index or %NULL
6962 */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6963 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6964 unsigned long max)
6965 {
6966 if (!(*index))
6967 return NULL;
6968
6969 return mt_find(mt, index, max);
6970 }
6971 EXPORT_SYMBOL(mt_find_after);
6972
6973 #ifdef CONFIG_DEBUG_MAPLE_TREE
6974 atomic_t maple_tree_tests_run;
6975 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6976 atomic_t maple_tree_tests_passed;
6977 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6978
6979 #ifndef __KERNEL__
6980 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6981 void mt_set_non_kernel(unsigned int val)
6982 {
6983 kmem_cache_set_non_kernel(maple_node_cache, val);
6984 }
6985
6986 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6987 void (*callback)(void *));
mt_set_callback(void (* callback)(void *))6988 void mt_set_callback(void (*callback)(void *))
6989 {
6990 kmem_cache_set_callback(maple_node_cache, callback);
6991 }
6992
6993 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)6994 void mt_set_private(void *private)
6995 {
6996 kmem_cache_set_private(maple_node_cache, private);
6997 }
6998
6999 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)7000 unsigned long mt_get_alloc_size(void)
7001 {
7002 return kmem_cache_get_alloc(maple_node_cache);
7003 }
7004
7005 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)7006 void mt_zero_nr_tallocated(void)
7007 {
7008 kmem_cache_zero_nr_tallocated(maple_node_cache);
7009 }
7010
7011 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)7012 unsigned int mt_nr_tallocated(void)
7013 {
7014 return kmem_cache_nr_tallocated(maple_node_cache);
7015 }
7016
7017 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)7018 unsigned int mt_nr_allocated(void)
7019 {
7020 return kmem_cache_nr_allocated(maple_node_cache);
7021 }
7022
mt_cache_shrink(void)7023 void mt_cache_shrink(void)
7024 {
7025 }
7026 #else
7027 /*
7028 * mt_cache_shrink() - For testing, don't use this.
7029 *
7030 * Certain testcases can trigger an OOM when combined with other memory
7031 * debugging configuration options. This function is used to reduce the
7032 * possibility of an out of memory even due to kmem_cache objects remaining
7033 * around for longer than usual.
7034 */
mt_cache_shrink(void)7035 void mt_cache_shrink(void)
7036 {
7037 kmem_cache_shrink(maple_node_cache);
7038
7039 }
7040 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7041
7042 #endif /* not defined __KERNEL__ */
7043 /*
7044 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7045 * @mas: The maple state
7046 * @offset: The offset into the slot array to fetch.
7047 *
7048 * Return: The entry stored at @offset.
7049 */
mas_get_slot(struct ma_state * mas,unsigned char offset)7050 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7051 unsigned char offset)
7052 {
7053 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7054 offset);
7055 }
7056
7057 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7058 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7059 {
7060
7061 struct maple_enode *p, *mn = mas->node;
7062 unsigned long p_min, p_max;
7063
7064 mas_next_node(mas, mas_mn(mas), max);
7065 if (!mas_is_overflow(mas))
7066 return;
7067
7068 if (mte_is_root(mn))
7069 return;
7070
7071 mas->node = mn;
7072 mas_ascend(mas);
7073 do {
7074 p = mas->node;
7075 p_min = mas->min;
7076 p_max = mas->max;
7077 mas_prev_node(mas, 0);
7078 } while (!mas_is_underflow(mas));
7079
7080 mas->node = p;
7081 mas->max = p_max;
7082 mas->min = p_min;
7083 }
7084
7085 /* Tree validations */
7086 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7087 unsigned long min, unsigned long max, unsigned int depth,
7088 enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7089 static void mt_dump_range(unsigned long min, unsigned long max,
7090 unsigned int depth, enum mt_dump_format format)
7091 {
7092 static const char spaces[] = " ";
7093
7094 switch(format) {
7095 case mt_dump_hex:
7096 if (min == max)
7097 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7098 else
7099 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7100 break;
7101 case mt_dump_dec:
7102 if (min == max)
7103 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7104 else
7105 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7106 }
7107 }
7108
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7109 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7110 unsigned int depth, enum mt_dump_format format)
7111 {
7112 mt_dump_range(min, max, depth, format);
7113
7114 if (xa_is_value(entry))
7115 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7116 xa_to_value(entry), entry);
7117 else if (xa_is_zero(entry))
7118 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7119 else if (mt_is_reserved(entry))
7120 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7121 else
7122 pr_cont(PTR_FMT "\n", entry);
7123 }
7124
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7125 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7126 unsigned long min, unsigned long max, unsigned int depth,
7127 enum mt_dump_format format)
7128 {
7129 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7130 bool leaf = mte_is_leaf(entry);
7131 unsigned long first = min;
7132 int i;
7133
7134 pr_cont(" contents: ");
7135 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7136 switch(format) {
7137 case mt_dump_hex:
7138 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7139 break;
7140 case mt_dump_dec:
7141 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7142 }
7143 }
7144 pr_cont(PTR_FMT "\n", node->slot[i]);
7145 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7146 unsigned long last = max;
7147
7148 if (i < (MAPLE_RANGE64_SLOTS - 1))
7149 last = node->pivot[i];
7150 else if (!node->slot[i] && max != mt_node_max(entry))
7151 break;
7152 if (last == 0 && i > 0)
7153 break;
7154 if (leaf)
7155 mt_dump_entry(mt_slot(mt, node->slot, i),
7156 first, last, depth + 1, format);
7157 else if (node->slot[i])
7158 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7159 first, last, depth + 1, format);
7160
7161 if (last == max)
7162 break;
7163 if (last > max) {
7164 switch(format) {
7165 case mt_dump_hex:
7166 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7167 node, last, max, i);
7168 break;
7169 case mt_dump_dec:
7170 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7171 node, last, max, i);
7172 }
7173 }
7174 first = last + 1;
7175 }
7176 }
7177
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7178 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7179 unsigned long min, unsigned long max, unsigned int depth,
7180 enum mt_dump_format format)
7181 {
7182 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7183 unsigned long first = min;
7184 int i;
7185
7186 pr_cont(" contents: ");
7187 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7188 switch (format) {
7189 case mt_dump_hex:
7190 pr_cont("%lx ", node->gap[i]);
7191 break;
7192 case mt_dump_dec:
7193 pr_cont("%lu ", node->gap[i]);
7194 }
7195 }
7196 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7197 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7198 switch (format) {
7199 case mt_dump_hex:
7200 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7201 break;
7202 case mt_dump_dec:
7203 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7204 }
7205 }
7206 pr_cont(PTR_FMT "\n", node->slot[i]);
7207 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7208 unsigned long last = max;
7209
7210 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7211 last = node->pivot[i];
7212 else if (!node->slot[i])
7213 break;
7214 if (last == 0 && i > 0)
7215 break;
7216 if (node->slot[i])
7217 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7218 first, last, depth + 1, format);
7219
7220 if (last == max)
7221 break;
7222 if (last > max) {
7223 switch(format) {
7224 case mt_dump_hex:
7225 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7226 node, last, max, i);
7227 break;
7228 case mt_dump_dec:
7229 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7230 node, last, max, i);
7231 }
7232 }
7233 first = last + 1;
7234 }
7235 }
7236
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7237 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7238 unsigned long min, unsigned long max, unsigned int depth,
7239 enum mt_dump_format format)
7240 {
7241 struct maple_node *node = mte_to_node(entry);
7242 unsigned int type = mte_node_type(entry);
7243 unsigned int i;
7244
7245 mt_dump_range(min, max, depth, format);
7246
7247 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7248 depth, type, node ? node->parent : NULL);
7249 switch (type) {
7250 case maple_dense:
7251 pr_cont("\n");
7252 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7253 if (min + i > max)
7254 pr_cont("OUT OF RANGE: ");
7255 mt_dump_entry(mt_slot(mt, node->slot, i),
7256 min + i, min + i, depth, format);
7257 }
7258 break;
7259 case maple_leaf_64:
7260 case maple_range_64:
7261 mt_dump_range64(mt, entry, min, max, depth, format);
7262 break;
7263 case maple_arange_64:
7264 mt_dump_arange64(mt, entry, min, max, depth, format);
7265 break;
7266
7267 default:
7268 pr_cont(" UNKNOWN TYPE\n");
7269 }
7270 }
7271
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7272 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7273 {
7274 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7275
7276 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7277 mt, mt->ma_flags, mt_height(mt), entry);
7278 if (xa_is_node(entry))
7279 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7280 else if (entry)
7281 mt_dump_entry(entry, 0, 0, 0, format);
7282 else
7283 pr_info("(empty)\n");
7284 }
7285 EXPORT_SYMBOL_GPL(mt_dump);
7286
7287 /*
7288 * Calculate the maximum gap in a node and check if that's what is reported in
7289 * the parent (unless root).
7290 */
mas_validate_gaps(struct ma_state * mas)7291 static void mas_validate_gaps(struct ma_state *mas)
7292 {
7293 struct maple_enode *mte = mas->node;
7294 struct maple_node *p_mn, *node = mte_to_node(mte);
7295 enum maple_type mt = mte_node_type(mas->node);
7296 unsigned long gap = 0, max_gap = 0;
7297 unsigned long p_end, p_start = mas->min;
7298 unsigned char p_slot, offset;
7299 unsigned long *gaps = NULL;
7300 unsigned long *pivots = ma_pivots(node, mt);
7301 unsigned int i;
7302
7303 if (ma_is_dense(mt)) {
7304 for (i = 0; i < mt_slot_count(mte); i++) {
7305 if (mas_get_slot(mas, i)) {
7306 if (gap > max_gap)
7307 max_gap = gap;
7308 gap = 0;
7309 continue;
7310 }
7311 gap++;
7312 }
7313 goto counted;
7314 }
7315
7316 gaps = ma_gaps(node, mt);
7317 for (i = 0; i < mt_slot_count(mte); i++) {
7318 p_end = mas_safe_pivot(mas, pivots, i, mt);
7319
7320 if (!gaps) {
7321 if (!mas_get_slot(mas, i))
7322 gap = p_end - p_start + 1;
7323 } else {
7324 void *entry = mas_get_slot(mas, i);
7325
7326 gap = gaps[i];
7327 MT_BUG_ON(mas->tree, !entry);
7328
7329 if (gap > p_end - p_start + 1) {
7330 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7331 mas_mn(mas), i, gap, p_end, p_start,
7332 p_end - p_start + 1);
7333 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7334 }
7335 }
7336
7337 if (gap > max_gap)
7338 max_gap = gap;
7339
7340 p_start = p_end + 1;
7341 if (p_end >= mas->max)
7342 break;
7343 }
7344
7345 counted:
7346 if (mt == maple_arange_64) {
7347 MT_BUG_ON(mas->tree, !gaps);
7348 offset = ma_meta_gap(node);
7349 if (offset > i) {
7350 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7351 MT_BUG_ON(mas->tree, 1);
7352 }
7353
7354 if (gaps[offset] != max_gap) {
7355 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7356 node, offset, max_gap);
7357 MT_BUG_ON(mas->tree, 1);
7358 }
7359
7360 for (i++ ; i < mt_slot_count(mte); i++) {
7361 if (gaps[i] != 0) {
7362 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7363 node, i);
7364 MT_BUG_ON(mas->tree, 1);
7365 }
7366 }
7367 }
7368
7369 if (mte_is_root(mte))
7370 return;
7371
7372 p_slot = mte_parent_slot(mas->node);
7373 p_mn = mte_parent(mte);
7374 MT_BUG_ON(mas->tree, max_gap > mas->max);
7375 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7376 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7377 mt_dump(mas->tree, mt_dump_hex);
7378 MT_BUG_ON(mas->tree, 1);
7379 }
7380 }
7381
mas_validate_parent_slot(struct ma_state * mas)7382 static void mas_validate_parent_slot(struct ma_state *mas)
7383 {
7384 struct maple_node *parent;
7385 struct maple_enode *node;
7386 enum maple_type p_type;
7387 unsigned char p_slot;
7388 void __rcu **slots;
7389 int i;
7390
7391 if (mte_is_root(mas->node))
7392 return;
7393
7394 p_slot = mte_parent_slot(mas->node);
7395 p_type = mas_parent_type(mas, mas->node);
7396 parent = mte_parent(mas->node);
7397 slots = ma_slots(parent, p_type);
7398 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7399
7400 /* Check prev/next parent slot for duplicate node entry */
7401
7402 for (i = 0; i < mt_slots[p_type]; i++) {
7403 node = mas_slot(mas, slots, i);
7404 if (i == p_slot) {
7405 if (node != mas->node)
7406 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7407 parent, i, mas_mn(mas));
7408 MT_BUG_ON(mas->tree, node != mas->node);
7409 } else if (node == mas->node) {
7410 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7411 mas_mn(mas), parent, i, p_slot);
7412 MT_BUG_ON(mas->tree, node == mas->node);
7413 }
7414 }
7415 }
7416
mas_validate_child_slot(struct ma_state * mas)7417 static void mas_validate_child_slot(struct ma_state *mas)
7418 {
7419 enum maple_type type = mte_node_type(mas->node);
7420 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7421 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7422 struct maple_enode *child;
7423 unsigned char i;
7424
7425 if (mte_is_leaf(mas->node))
7426 return;
7427
7428 for (i = 0; i < mt_slots[type]; i++) {
7429 child = mas_slot(mas, slots, i);
7430
7431 if (!child) {
7432 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7433 mas_mn(mas), i);
7434 MT_BUG_ON(mas->tree, 1);
7435 }
7436
7437 if (mte_parent_slot(child) != i) {
7438 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7439 mas_mn(mas), i, mte_to_node(child),
7440 mte_parent_slot(child));
7441 MT_BUG_ON(mas->tree, 1);
7442 }
7443
7444 if (mte_parent(child) != mte_to_node(mas->node)) {
7445 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7446 mte_to_node(child), mte_parent(child),
7447 mte_to_node(mas->node));
7448 MT_BUG_ON(mas->tree, 1);
7449 }
7450
7451 if (i < mt_pivots[type] && pivots[i] == mas->max)
7452 break;
7453 }
7454 }
7455
7456 /*
7457 * Validate all pivots are within mas->min and mas->max, check metadata ends
7458 * where the maximum ends and ensure there is no slots or pivots set outside of
7459 * the end of the data.
7460 */
mas_validate_limits(struct ma_state * mas)7461 static void mas_validate_limits(struct ma_state *mas)
7462 {
7463 int i;
7464 unsigned long prev_piv = 0;
7465 enum maple_type type = mte_node_type(mas->node);
7466 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7467 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7468
7469 for (i = 0; i < mt_slots[type]; i++) {
7470 unsigned long piv;
7471
7472 piv = mas_safe_pivot(mas, pivots, i, type);
7473
7474 if (!piv && (i != 0)) {
7475 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7476 mas_mn(mas), i);
7477 MAS_WARN_ON(mas, 1);
7478 }
7479
7480 if (prev_piv > piv) {
7481 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7482 mas_mn(mas), i, piv, prev_piv);
7483 MAS_WARN_ON(mas, piv < prev_piv);
7484 }
7485
7486 if (piv < mas->min) {
7487 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7488 piv, mas->min);
7489 MAS_WARN_ON(mas, piv < mas->min);
7490 }
7491 if (piv > mas->max) {
7492 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7493 piv, mas->max);
7494 MAS_WARN_ON(mas, piv > mas->max);
7495 }
7496 prev_piv = piv;
7497 if (piv == mas->max)
7498 break;
7499 }
7500
7501 if (mas_data_end(mas) != i) {
7502 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7503 mas_mn(mas), mas_data_end(mas), i);
7504 MT_BUG_ON(mas->tree, 1);
7505 }
7506
7507 for (i += 1; i < mt_slots[type]; i++) {
7508 void *entry = mas_slot(mas, slots, i);
7509
7510 if (entry && (i != mt_slots[type] - 1)) {
7511 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7512 mas_mn(mas), i, entry);
7513 MT_BUG_ON(mas->tree, entry != NULL);
7514 }
7515
7516 if (i < mt_pivots[type]) {
7517 unsigned long piv = pivots[i];
7518
7519 if (!piv)
7520 continue;
7521
7522 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7523 mas_mn(mas), i, piv);
7524 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7525 }
7526 }
7527 }
7528
mt_validate_nulls(struct maple_tree * mt)7529 static void mt_validate_nulls(struct maple_tree *mt)
7530 {
7531 void *entry, *last = (void *)1;
7532 unsigned char offset = 0;
7533 void __rcu **slots;
7534 MA_STATE(mas, mt, 0, 0);
7535
7536 mas_start(&mas);
7537 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7538 return;
7539
7540 while (!mte_is_leaf(mas.node))
7541 mas_descend(&mas);
7542
7543 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7544 do {
7545 entry = mas_slot(&mas, slots, offset);
7546 if (!last && !entry) {
7547 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7548 mas_mn(&mas), offset);
7549 }
7550 MT_BUG_ON(mt, !last && !entry);
7551 last = entry;
7552 if (offset == mas_data_end(&mas)) {
7553 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7554 if (mas_is_overflow(&mas))
7555 return;
7556 offset = 0;
7557 slots = ma_slots(mte_to_node(mas.node),
7558 mte_node_type(mas.node));
7559 } else {
7560 offset++;
7561 }
7562
7563 } while (!mas_is_overflow(&mas));
7564 }
7565
7566 /*
7567 * validate a maple tree by checking:
7568 * 1. The limits (pivots are within mas->min to mas->max)
7569 * 2. The gap is correctly set in the parents
7570 */
mt_validate(struct maple_tree * mt)7571 void mt_validate(struct maple_tree *mt)
7572 __must_hold(mas->tree->ma_lock)
7573 {
7574 unsigned char end;
7575
7576 MA_STATE(mas, mt, 0, 0);
7577 mas_start(&mas);
7578 if (!mas_is_active(&mas))
7579 return;
7580
7581 while (!mte_is_leaf(mas.node))
7582 mas_descend(&mas);
7583
7584 while (!mas_is_overflow(&mas)) {
7585 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7586 end = mas_data_end(&mas);
7587 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7588 (!mte_is_root(mas.node)))) {
7589 pr_err("Invalid size %u of " PTR_FMT "\n",
7590 end, mas_mn(&mas));
7591 }
7592
7593 mas_validate_parent_slot(&mas);
7594 mas_validate_limits(&mas);
7595 mas_validate_child_slot(&mas);
7596 if (mt_is_alloc(mt))
7597 mas_validate_gaps(&mas);
7598 mas_dfs_postorder(&mas, ULONG_MAX);
7599 }
7600 mt_validate_nulls(mt);
7601 }
7602 EXPORT_SYMBOL_GPL(mt_validate);
7603
mas_dump(const struct ma_state * mas)7604 void mas_dump(const struct ma_state *mas)
7605 {
7606 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7607 mas->tree, mas->node);
7608 switch (mas->status) {
7609 case ma_active:
7610 pr_err("(ma_active)");
7611 break;
7612 case ma_none:
7613 pr_err("(ma_none)");
7614 break;
7615 case ma_root:
7616 pr_err("(ma_root)");
7617 break;
7618 case ma_start:
7619 pr_err("(ma_start) ");
7620 break;
7621 case ma_pause:
7622 pr_err("(ma_pause) ");
7623 break;
7624 case ma_overflow:
7625 pr_err("(ma_overflow) ");
7626 break;
7627 case ma_underflow:
7628 pr_err("(ma_underflow) ");
7629 break;
7630 case ma_error:
7631 pr_err("(ma_error) ");
7632 break;
7633 }
7634
7635 pr_err("Store Type: ");
7636 switch (mas->store_type) {
7637 case wr_invalid:
7638 pr_err("invalid store type\n");
7639 break;
7640 case wr_new_root:
7641 pr_err("new_root\n");
7642 break;
7643 case wr_store_root:
7644 pr_err("store_root\n");
7645 break;
7646 case wr_exact_fit:
7647 pr_err("exact_fit\n");
7648 break;
7649 case wr_split_store:
7650 pr_err("split_store\n");
7651 break;
7652 case wr_slot_store:
7653 pr_err("slot_store\n");
7654 break;
7655 case wr_append:
7656 pr_err("append\n");
7657 break;
7658 case wr_node_store:
7659 pr_err("node_store\n");
7660 break;
7661 case wr_spanning_store:
7662 pr_err("spanning_store\n");
7663 break;
7664 case wr_rebalance:
7665 pr_err("rebalance\n");
7666 break;
7667 }
7668
7669 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7670 mas->index, mas->last);
7671 pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7672 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7673 if (mas->index > mas->last)
7674 pr_err("Check index & last\n");
7675 }
7676 EXPORT_SYMBOL_GPL(mas_dump);
7677
mas_wr_dump(const struct ma_wr_state * wr_mas)7678 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7679 {
7680 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7681 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7682 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7683 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7684 wr_mas->end_piv);
7685 }
7686 EXPORT_SYMBOL_GPL(mas_wr_dump);
7687
7688 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7689