1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR BIT(0)
13
14 #define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */
15 #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
16 #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
17 #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
18 #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
19 #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
20 #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
21 #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
22 #define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
23 #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
24 #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
25
26 /* Flag Status Register bits */
27 #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
28 #define FSR_E_ERR BIT(5) /* Erase operation status */
29 #define FSR_P_ERR BIT(4) /* Program operation status */
30 #define FSR_PT_ERR BIT(1) /* Protection error bit */
31
32 /* Micron ST SPI NOR flash operations. */
33 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
34 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
35 SPI_MEM_OP_ADDR(naddr, addr, 0), \
36 SPI_MEM_OP_NO_DUMMY, \
37 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
38
39 #define MICRON_ST_RDFSR_OP(buf) \
40 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
41 SPI_MEM_OP_NO_ADDR, \
42 SPI_MEM_OP_NO_DUMMY, \
43 SPI_MEM_OP_DATA_IN(1, buf, 0))
44
45 #define MICRON_ST_CLFSR_OP \
46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
47 SPI_MEM_OP_NO_ADDR, \
48 SPI_MEM_OP_NO_DUMMY, \
49 SPI_MEM_OP_NO_DATA)
50
micron_st_nor_octal_dtr_en(struct spi_nor * nor)51 static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
52 {
53 struct spi_mem_op op;
54 u8 *buf = nor->bouncebuf;
55 int ret;
56 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
57
58 /* Use 20 dummy cycles for memory array reads. */
59 *buf = 20;
60 op = (struct spi_mem_op)
61 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
62 SPINOR_REG_MT_CFR1V, 1, buf);
63 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
64 if (ret)
65 return ret;
66
67 buf[0] = SPINOR_MT_OCT_DTR;
68 op = (struct spi_mem_op)
69 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
70 SPINOR_REG_MT_CFR0V, 1, buf);
71 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
72 if (ret)
73 return ret;
74
75 /* Read flash ID to make sure the switch was successful. */
76 ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
77 if (ret) {
78 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
79 return ret;
80 }
81
82 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
83 return -EINVAL;
84
85 return 0;
86 }
87
micron_st_nor_octal_dtr_dis(struct spi_nor * nor)88 static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
89 {
90 struct spi_mem_op op;
91 u8 *buf = nor->bouncebuf;
92 int ret;
93
94 /*
95 * The register is 1-byte wide, but 1-byte transactions are not allowed
96 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
97 * register. Since the transaction needs to be at least 2 bytes wide,
98 * set the next register to its default value. This also makes sense
99 * because the value was changed when enabling 8D-8D-8D mode, it should
100 * be reset when disabling.
101 */
102 buf[0] = SPINOR_MT_EXSPI;
103 buf[1] = SPINOR_REG_MT_CFR1V_DEF;
104 op = (struct spi_mem_op)
105 MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
106 SPINOR_REG_MT_CFR0V, 2, buf);
107 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
108 if (ret)
109 return ret;
110
111 /* Read flash ID to make sure the switch was successful. */
112 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
113 if (ret) {
114 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
115 return ret;
116 }
117
118 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
119 return -EINVAL;
120
121 return 0;
122 }
123
micron_st_nor_set_octal_dtr(struct spi_nor * nor,bool enable)124 static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
125 {
126 return enable ? micron_st_nor_octal_dtr_en(nor) :
127 micron_st_nor_octal_dtr_dis(nor);
128 }
129
mt35xu512aba_default_init(struct spi_nor * nor)130 static void mt35xu512aba_default_init(struct spi_nor *nor)
131 {
132 nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr;
133 }
134
mt35xu512aba_post_sfdp_fixup(struct spi_nor * nor)135 static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
136 {
137 /* Set the Fast Read settings. */
138 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
139 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
140 0, 20, SPINOR_OP_MT_DTR_RD,
141 SNOR_PROTO_8_8_8_DTR);
142
143 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
144 nor->params->rdsr_dummy = 8;
145 nor->params->rdsr_addr_nbytes = 0;
146
147 /*
148 * The BFPT quad enable field is set to a reserved value so the quad
149 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
150 * disable it.
151 */
152 nor->params->quad_enable = NULL;
153
154 return 0;
155 }
156
157 static const struct spi_nor_fixups mt35xu512aba_fixups = {
158 .default_init = mt35xu512aba_default_init,
159 .post_sfdp = mt35xu512aba_post_sfdp_fixup,
160 };
161
162 static const struct flash_info micron_nor_parts[] = {
163 {
164 .id = SNOR_ID(0x2c, 0x5b, 0x1a),
165 .name = "mt35xu512aba",
166 .sector_size = SZ_128K,
167 .size = SZ_64M,
168 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ |
169 SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP,
170 .mfr_flags = USE_FSR,
171 .fixup_flags = SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE,
172 .fixups = &mt35xu512aba_fixups,
173 }, {
174 .id = SNOR_ID(0x2c, 0x5b, 0x1c),
175 .name = "mt35xu02g",
176 .sector_size = SZ_128K,
177 .size = SZ_256M,
178 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ,
179 .mfr_flags = USE_FSR,
180 .fixup_flags = SPI_NOR_4B_OPCODES,
181 },
182 };
183
mt25qu512a_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)184 static int mt25qu512a_post_bfpt_fixup(struct spi_nor *nor,
185 const struct sfdp_parameter_header *bfpt_header,
186 const struct sfdp_bfpt *bfpt)
187 {
188 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
189 return 0;
190 }
191
192 static struct spi_nor_fixups mt25qu512a_fixups = {
193 .post_bfpt = mt25qu512a_post_bfpt_fixup,
194 };
195
st_nor_four_die_late_init(struct spi_nor * nor)196 static int st_nor_four_die_late_init(struct spi_nor *nor)
197 {
198 struct spi_nor_flash_parameter *params = nor->params;
199
200 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
201 params->n_dice = 4;
202
203 /*
204 * Unfortunately the die erase opcode does not have a 4-byte opcode
205 * correspondent for these flashes. The SFDP 4BAIT table fails to
206 * consider the die erase too. We're forced to enter in the 4 byte
207 * address mode in order to benefit of the die erase.
208 */
209 return spi_nor_set_4byte_addr_mode(nor, true);
210 }
211
st_nor_two_die_late_init(struct spi_nor * nor)212 static int st_nor_two_die_late_init(struct spi_nor *nor)
213 {
214 struct spi_nor_flash_parameter *params = nor->params;
215
216 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
217 params->n_dice = 2;
218
219 /*
220 * Unfortunately the die erase opcode does not have a 4-byte opcode
221 * correspondent for these flashes. The SFDP 4BAIT table fails to
222 * consider the die erase too. We're forced to enter in the 4 byte
223 * address mode in order to benefit of the die erase.
224 */
225 return spi_nor_set_4byte_addr_mode(nor, true);
226 }
227
228 static struct spi_nor_fixups n25q00_fixups = {
229 .late_init = st_nor_four_die_late_init,
230 };
231
232 static struct spi_nor_fixups mt25q01_fixups = {
233 .late_init = st_nor_two_die_late_init,
234 };
235
236 static struct spi_nor_fixups mt25q02_fixups = {
237 .late_init = st_nor_four_die_late_init,
238 };
239
240 static const struct flash_info st_nor_parts[] = {
241 {
242 .name = "m25p05-nonjedec",
243 .sector_size = SZ_32K,
244 .size = SZ_64K,
245 }, {
246 .name = "m25p10-nonjedec",
247 .sector_size = SZ_32K,
248 .size = SZ_128K,
249 }, {
250 .name = "m25p20-nonjedec",
251 .size = SZ_256K,
252 }, {
253 .name = "m25p40-nonjedec",
254 .size = SZ_512K,
255 }, {
256 .name = "m25p80-nonjedec",
257 .size = SZ_1M,
258 }, {
259 .name = "m25p16-nonjedec",
260 .size = SZ_2M,
261 }, {
262 .name = "m25p32-nonjedec",
263 .size = SZ_4M,
264 }, {
265 .name = "m25p64-nonjedec",
266 .size = SZ_8M,
267 }, {
268 .name = "m25p128-nonjedec",
269 .sector_size = SZ_256K,
270 .size = SZ_16M,
271 }, {
272 .id = SNOR_ID(0x20, 0x20, 0x10),
273 .name = "m25p05",
274 .sector_size = SZ_32K,
275 .size = SZ_64K,
276 }, {
277 .id = SNOR_ID(0x20, 0x20, 0x11),
278 .name = "m25p10",
279 .sector_size = SZ_32K,
280 .size = SZ_128K,
281 }, {
282 .id = SNOR_ID(0x20, 0x20, 0x12),
283 .name = "m25p20",
284 .size = SZ_256K,
285 }, {
286 .id = SNOR_ID(0x20, 0x20, 0x13),
287 .name = "m25p40",
288 .size = SZ_512K,
289 }, {
290 .id = SNOR_ID(0x20, 0x20, 0x14),
291 .name = "m25p80",
292 .size = SZ_1M,
293 }, {
294 .id = SNOR_ID(0x20, 0x20, 0x15),
295 .name = "m25p16",
296 .size = SZ_2M,
297 }, {
298 .id = SNOR_ID(0x20, 0x20, 0x16),
299 .name = "m25p32",
300 .size = SZ_4M,
301 }, {
302 .id = SNOR_ID(0x20, 0x20, 0x17),
303 .name = "m25p64",
304 .size = SZ_8M,
305 }, {
306 .id = SNOR_ID(0x20, 0x20, 0x18),
307 .name = "m25p128",
308 .sector_size = SZ_256K,
309 .size = SZ_16M,
310 }, {
311 .id = SNOR_ID(0x20, 0x40, 0x11),
312 .name = "m45pe10",
313 .size = SZ_128K,
314 }, {
315 .id = SNOR_ID(0x20, 0x40, 0x14),
316 .name = "m45pe80",
317 .size = SZ_1M,
318 }, {
319 .id = SNOR_ID(0x20, 0x40, 0x15),
320 .name = "m45pe16",
321 .size = SZ_2M,
322 }, {
323 .id = SNOR_ID(0x20, 0x63, 0x16),
324 .name = "m25px32-s1",
325 .size = SZ_4M,
326 .no_sfdp_flags = SECT_4K,
327 }, {
328 .id = SNOR_ID(0x20, 0x71, 0x14),
329 .name = "m25px80",
330 .size = SZ_1M,
331 }, {
332 .id = SNOR_ID(0x20, 0x71, 0x15),
333 .name = "m25px16",
334 .size = SZ_2M,
335 .no_sfdp_flags = SECT_4K,
336 }, {
337 .id = SNOR_ID(0x20, 0x71, 0x16),
338 .name = "m25px32",
339 .size = SZ_4M,
340 .no_sfdp_flags = SECT_4K,
341 }, {
342 .id = SNOR_ID(0x20, 0x71, 0x17),
343 .name = "m25px64",
344 .size = SZ_8M,
345 }, {
346 .id = SNOR_ID(0x20, 0x73, 0x16),
347 .name = "m25px32-s0",
348 .size = SZ_4M,
349 .no_sfdp_flags = SECT_4K,
350 }, {
351 .id = SNOR_ID(0x20, 0x80, 0x12),
352 .name = "m25pe20",
353 .size = SZ_256K,
354 }, {
355 .id = SNOR_ID(0x20, 0x80, 0x14),
356 .name = "m25pe80",
357 .size = SZ_1M,
358 }, {
359 .id = SNOR_ID(0x20, 0x80, 0x15),
360 .name = "m25pe16",
361 .size = SZ_2M,
362 .no_sfdp_flags = SECT_4K,
363 }, {
364 .id = SNOR_ID(0x20, 0xba, 0x16),
365 .name = "n25q032",
366 .size = SZ_4M,
367 .no_sfdp_flags = SPI_NOR_QUAD_READ,
368 }, {
369 .id = SNOR_ID(0x20, 0xba, 0x17),
370 .name = "n25q064",
371 .size = SZ_8M,
372 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
373 }, {
374 .id = SNOR_ID(0x20, 0xba, 0x18),
375 .name = "n25q128a13",
376 .size = SZ_16M,
377 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
378 SPI_NOR_BP3_SR_BIT6,
379 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
380 .mfr_flags = USE_FSR,
381 }, {
382 .id = SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00),
383 .name = "mt25ql256a",
384 .size = SZ_32M,
385 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
386 .fixup_flags = SPI_NOR_4B_OPCODES,
387 .mfr_flags = USE_FSR,
388 }, {
389 .id = SNOR_ID(0x20, 0xba, 0x19),
390 .name = "n25q256a",
391 .size = SZ_32M,
392 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
393 .mfr_flags = USE_FSR,
394 }, {
395 .id = SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00),
396 .name = "mt25ql512a",
397 .size = SZ_64M,
398 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
399 .fixup_flags = SPI_NOR_4B_OPCODES,
400 .mfr_flags = USE_FSR,
401 }, {
402 .id = SNOR_ID(0x20, 0xba, 0x20),
403 .name = "n25q512ax3",
404 .size = SZ_64M,
405 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
406 SPI_NOR_BP3_SR_BIT6,
407 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
408 .mfr_flags = USE_FSR,
409 }, {
410 .id = SNOR_ID(0x20, 0xba, 0x21),
411 .name = "n25q00",
412 .size = SZ_128M,
413 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
414 SPI_NOR_BP3_SR_BIT6,
415 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
416 .mfr_flags = USE_FSR,
417 .fixups = &n25q00_fixups,
418 }, {
419 .id = SNOR_ID(0x20, 0xba, 0x22),
420 .name = "mt25ql02g",
421 .size = SZ_256M,
422 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
423 .mfr_flags = USE_FSR,
424 .fixups = &mt25q02_fixups,
425 }, {
426 .id = SNOR_ID(0x20, 0xbb, 0x15),
427 .name = "n25q016a",
428 .size = SZ_2M,
429 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
430 }, {
431 .id = SNOR_ID(0x20, 0xbb, 0x16),
432 .name = "n25q032a",
433 .size = SZ_4M,
434 .no_sfdp_flags = SPI_NOR_QUAD_READ,
435 }, {
436 .id = SNOR_ID(0x20, 0xbb, 0x17),
437 .name = "n25q064a",
438 .size = SZ_8M,
439 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
440 SPI_NOR_BP3_SR_BIT6,
441 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
442 }, {
443 .id = SNOR_ID(0x20, 0xbb, 0x18),
444 .name = "n25q128a11",
445 .size = SZ_16M,
446 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
447 SPI_NOR_BP3_SR_BIT6,
448 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
449 .mfr_flags = USE_FSR,
450 }, {
451 .id = SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00),
452 .name = "mt25qu256a",
453 .size = SZ_32M,
454 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
455 SPI_NOR_BP3_SR_BIT6,
456 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
457 .fixup_flags = SPI_NOR_4B_OPCODES,
458 .mfr_flags = USE_FSR,
459 }, {
460 .id = SNOR_ID(0x20, 0xbb, 0x19),
461 .name = "n25q256ax1",
462 .size = SZ_32M,
463 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
464 .mfr_flags = USE_FSR,
465 }, {
466 .id = SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00),
467 .name = "mt25qu512a",
468 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
469 SPI_NOR_BP3_SR_BIT6,
470 .mfr_flags = USE_FSR,
471 .fixups = &mt25qu512a_fixups,
472 }, {
473 .id = SNOR_ID(0x20, 0xbb, 0x20),
474 .name = "n25q512a",
475 .size = SZ_64M,
476 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
477 SPI_NOR_BP3_SR_BIT6,
478 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
479 .mfr_flags = USE_FSR,
480 }, {
481 .id = SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00),
482 .name = "mt25qu01g",
483 .mfr_flags = USE_FSR,
484 .fixups = &mt25q01_fixups,
485 }, {
486 .id = SNOR_ID(0x20, 0xbb, 0x21),
487 .name = "n25q00a",
488 .size = SZ_128M,
489 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
490 .mfr_flags = USE_FSR,
491 .fixups = &n25q00_fixups,
492 }, {
493 .id = SNOR_ID(0x20, 0xbb, 0x22),
494 .name = "mt25qu02g",
495 .size = SZ_256M,
496 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
497 .mfr_flags = USE_FSR,
498 .fixups = &mt25q02_fixups,
499 }
500 };
501
502 /**
503 * micron_st_nor_read_fsr() - Read the Flag Status Register.
504 * @nor: pointer to 'struct spi_nor'
505 * @fsr: pointer to a DMA-able buffer where the value of the
506 * Flag Status Register will be written. Should be at least 2
507 * bytes.
508 *
509 * Return: 0 on success, -errno otherwise.
510 */
micron_st_nor_read_fsr(struct spi_nor * nor,u8 * fsr)511 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
512 {
513 int ret;
514
515 if (nor->spimem) {
516 struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
517
518 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
519 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
520 op.dummy.nbytes = nor->params->rdsr_dummy;
521 /*
522 * We don't want to read only one byte in DTR mode. So,
523 * read 2 and then discard the second byte.
524 */
525 op.data.nbytes = 2;
526 }
527
528 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
529
530 ret = spi_mem_exec_op(nor->spimem, &op);
531 } else {
532 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
533 1);
534 }
535
536 if (ret)
537 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
538
539 return ret;
540 }
541
542 /**
543 * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
544 * @nor: pointer to 'struct spi_nor'.
545 */
micron_st_nor_clear_fsr(struct spi_nor * nor)546 static void micron_st_nor_clear_fsr(struct spi_nor *nor)
547 {
548 int ret;
549
550 if (nor->spimem) {
551 struct spi_mem_op op = MICRON_ST_CLFSR_OP;
552
553 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
554
555 ret = spi_mem_exec_op(nor->spimem, &op);
556 } else {
557 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
558 NULL, 0);
559 }
560
561 if (ret)
562 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
563 }
564
565 /**
566 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
567 * Register to see if the flash is ready for new commands. If there are any
568 * errors in the FSR clear them.
569 * @nor: pointer to 'struct spi_nor'.
570 *
571 * Return: 1 if ready, 0 if not ready, -errno on errors.
572 */
micron_st_nor_ready(struct spi_nor * nor)573 static int micron_st_nor_ready(struct spi_nor *nor)
574 {
575 int sr_ready, ret;
576
577 sr_ready = spi_nor_sr_ready(nor);
578 if (sr_ready < 0)
579 return sr_ready;
580
581 ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
582 if (ret) {
583 /*
584 * Some controllers, such as Intel SPI, do not support low
585 * level operations such as reading the flag status
586 * register. They only expose small amount of high level
587 * operations to the software. If this is the case we use
588 * only the status register value.
589 */
590 return ret == -EOPNOTSUPP ? sr_ready : ret;
591 }
592
593 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
594 if (nor->bouncebuf[0] & FSR_E_ERR)
595 dev_err(nor->dev, "Erase operation failed.\n");
596 else
597 dev_err(nor->dev, "Program operation failed.\n");
598
599 if (nor->bouncebuf[0] & FSR_PT_ERR)
600 dev_err(nor->dev,
601 "Attempted to modify a protected sector.\n");
602
603 micron_st_nor_clear_fsr(nor);
604
605 /*
606 * WEL bit remains set to one when an erase or page program
607 * error occurs. Issue a Write Disable command to protect
608 * against inadvertent writes that can possibly corrupt the
609 * contents of the memory.
610 */
611 ret = spi_nor_write_disable(nor);
612 if (ret)
613 return ret;
614
615 return -EIO;
616 }
617
618 return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
619 }
620
micron_st_nor_default_init(struct spi_nor * nor)621 static void micron_st_nor_default_init(struct spi_nor *nor)
622 {
623 nor->flags |= SNOR_F_HAS_LOCK;
624 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
625 nor->params->quad_enable = NULL;
626 }
627
micron_st_nor_late_init(struct spi_nor * nor)628 static int micron_st_nor_late_init(struct spi_nor *nor)
629 {
630 struct spi_nor_flash_parameter *params = nor->params;
631
632 if (nor->info->mfr_flags & USE_FSR)
633 params->ready = micron_st_nor_ready;
634
635 if (!params->set_4byte_addr_mode)
636 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
637
638 return 0;
639 }
640
641 static const struct spi_nor_fixups micron_st_nor_fixups = {
642 .default_init = micron_st_nor_default_init,
643 .late_init = micron_st_nor_late_init,
644 };
645
646 const struct spi_nor_manufacturer spi_nor_micron = {
647 .name = "micron",
648 .parts = micron_nor_parts,
649 .nparts = ARRAY_SIZE(micron_nor_parts),
650 .fixups = µn_st_nor_fixups,
651 };
652
653 const struct spi_nor_manufacturer spi_nor_st = {
654 .name = "st",
655 .parts = st_nor_parts,
656 .nparts = ARRAY_SIZE(st_nor_parts),
657 .fixups = µn_st_nor_fixups,
658 };
659