1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4 *
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 *
8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 *
10 * Basic principles:
11 *
12 * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13 * the kernel to set one of a handful of 'caching type' attributes for physical
14 * memory ranges: uncached, write-combining, write-through, write-protected,
15 * and the most commonly used and default attribute: write-back caching.
16 *
17 * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
18 * a hardware interface to enumerate a limited number of physical memory ranges
19 * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20 * Even modern CPUs have MTRRs enabled - but these are typically not touched
21 * by the kernel or by user-space (such as the X server), we rely on PAT for any
22 * additional cache attribute logic.
23 *
24 * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25 * cache attribute information to the mapped memory range: there's 3 bits used,
26 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27 * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28 *
29 * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30 * that only support 4 types of PAT entries, and interaction with MTRRs, see
31 * below for details. )
32 */
33
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/fs.h>
44 #include <linux/rbtree.h>
45
46 #include <asm/cacheflush.h>
47 #include <asm/cacheinfo.h>
48 #include <asm/processor.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51 #include <asm/fcntl.h>
52 #include <asm/e820/api.h>
53 #include <asm/mtrr.h>
54 #include <asm/page.h>
55 #include <asm/msr.h>
56 #include <asm/memtype.h>
57 #include <asm/io.h>
58
59 #include "memtype.h"
60 #include "../mm_internal.h"
61
62 #undef pr_fmt
63 #define pr_fmt(fmt) "" fmt
64
65 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
66 static u64 __ro_after_init pat_msr_val;
67
68 /*
69 * PAT support is enabled by default, but can be disabled for
70 * various user-requested or hardware-forced reasons:
71 */
pat_disable(const char * msg_reason)72 static void __init pat_disable(const char *msg_reason)
73 {
74 if (pat_disabled)
75 return;
76
77 pat_disabled = true;
78 pr_info("x86/PAT: %s\n", msg_reason);
79
80 memory_caching_control &= ~CACHE_PAT;
81 }
82
nopat(char * str)83 static int __init nopat(char *str)
84 {
85 pat_disable("PAT support disabled via boot option.");
86 return 0;
87 }
88 early_param("nopat", nopat);
89
pat_enabled(void)90 bool pat_enabled(void)
91 {
92 return !pat_disabled;
93 }
94 EXPORT_SYMBOL_GPL(pat_enabled);
95
96 int pat_debug_enable;
97
pat_debug_setup(char * str)98 static int __init pat_debug_setup(char *str)
99 {
100 pat_debug_enable = 1;
101 return 1;
102 }
103 __setup("debugpat", pat_debug_setup);
104
105 #ifdef CONFIG_X86_PAT
106 /*
107 * X86 PAT uses page flags arch_1 and arch_2 together to keep track of
108 * memory type of pages that have backing page struct.
109 *
110 * X86 PAT supports 4 different memory types:
111 * - _PAGE_CACHE_MODE_WB
112 * - _PAGE_CACHE_MODE_WC
113 * - _PAGE_CACHE_MODE_UC_MINUS
114 * - _PAGE_CACHE_MODE_WT
115 *
116 * _PAGE_CACHE_MODE_WB is the default type.
117 */
118
119 #define _PGMT_WB 0
120 #define _PGMT_WC (1UL << PG_arch_1)
121 #define _PGMT_UC_MINUS (1UL << PG_arch_2)
122 #define _PGMT_WT (1UL << PG_arch_2 | 1UL << PG_arch_1)
123 #define _PGMT_MASK (1UL << PG_arch_2 | 1UL << PG_arch_1)
124 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
125
get_page_memtype(struct page * pg)126 static inline enum page_cache_mode get_page_memtype(struct page *pg)
127 {
128 unsigned long pg_flags = pg->flags & _PGMT_MASK;
129
130 if (pg_flags == _PGMT_WB)
131 return _PAGE_CACHE_MODE_WB;
132 else if (pg_flags == _PGMT_WC)
133 return _PAGE_CACHE_MODE_WC;
134 else if (pg_flags == _PGMT_UC_MINUS)
135 return _PAGE_CACHE_MODE_UC_MINUS;
136 else
137 return _PAGE_CACHE_MODE_WT;
138 }
139
set_page_memtype(struct page * pg,enum page_cache_mode memtype)140 static inline void set_page_memtype(struct page *pg,
141 enum page_cache_mode memtype)
142 {
143 unsigned long memtype_flags;
144 unsigned long old_flags;
145 unsigned long new_flags;
146
147 switch (memtype) {
148 case _PAGE_CACHE_MODE_WC:
149 memtype_flags = _PGMT_WC;
150 break;
151 case _PAGE_CACHE_MODE_UC_MINUS:
152 memtype_flags = _PGMT_UC_MINUS;
153 break;
154 case _PAGE_CACHE_MODE_WT:
155 memtype_flags = _PGMT_WT;
156 break;
157 case _PAGE_CACHE_MODE_WB:
158 default:
159 memtype_flags = _PGMT_WB;
160 break;
161 }
162
163 old_flags = READ_ONCE(pg->flags);
164 do {
165 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
166 } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
167 }
168 #else
get_page_memtype(struct page * pg)169 static inline enum page_cache_mode get_page_memtype(struct page *pg)
170 {
171 return -1;
172 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)173 static inline void set_page_memtype(struct page *pg,
174 enum page_cache_mode memtype)
175 {
176 }
177 #endif
178
179 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
180
pat_get_cache_mode(unsigned int pat_val,char * msg)181 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
182 char *msg)
183 {
184 enum page_cache_mode cache;
185 char *cache_mode;
186
187 switch (pat_val) {
188 case X86_MEMTYPE_UC: cache = CM(UC); cache_mode = "UC "; break;
189 case X86_MEMTYPE_WC: cache = CM(WC); cache_mode = "WC "; break;
190 case X86_MEMTYPE_WT: cache = CM(WT); cache_mode = "WT "; break;
191 case X86_MEMTYPE_WP: cache = CM(WP); cache_mode = "WP "; break;
192 case X86_MEMTYPE_WB: cache = CM(WB); cache_mode = "WB "; break;
193 case X86_MEMTYPE_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
194 default: cache = CM(WB); cache_mode = "WB "; break;
195 }
196
197 memcpy(msg, cache_mode, 4);
198
199 return cache;
200 }
201
202 #undef CM
203
204 /*
205 * Update the cache mode to pgprot translation tables according to PAT
206 * configuration.
207 * Using lower indices is preferred, so we start with highest index.
208 */
init_cache_modes(u64 pat)209 static void __init init_cache_modes(u64 pat)
210 {
211 enum page_cache_mode cache;
212 char pat_msg[33];
213 int i;
214
215 pat_msg[32] = 0;
216 for (i = 7; i >= 0; i--) {
217 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
218 pat_msg + 4 * i);
219 update_cache_mode_entry(i, cache);
220 }
221 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
222 }
223
pat_cpu_init(void)224 void pat_cpu_init(void)
225 {
226 if (!boot_cpu_has(X86_FEATURE_PAT)) {
227 /*
228 * If this happens we are on a secondary CPU, but switched to
229 * PAT on the boot CPU. We have no way to undo PAT.
230 */
231 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
232 }
233
234 wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
235
236 __flush_tlb_all();
237 }
238
239 /**
240 * pat_bp_init - Initialize the PAT MSR value and PAT table
241 *
242 * This function initializes PAT MSR value and PAT table with an OS-defined
243 * value to enable additional cache attributes, WC, WT and WP.
244 *
245 * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
246 * on all CPUs.
247 */
pat_bp_init(void)248 void __init pat_bp_init(void)
249 {
250 struct cpuinfo_x86 *c = &boot_cpu_data;
251
252 if (!IS_ENABLED(CONFIG_X86_PAT))
253 pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
254
255 if (!cpu_feature_enabled(X86_FEATURE_PAT))
256 pat_disable("PAT not supported by the CPU.");
257 else
258 rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
259
260 if (!pat_msr_val) {
261 pat_disable("PAT support disabled by the firmware.");
262
263 /*
264 * No PAT. Emulate the PAT table that corresponds to the two
265 * cache bits, PWT (Write Through) and PCD (Cache Disable).
266 * This setup is also the same as the BIOS default setup.
267 *
268 * PTE encoding:
269 *
270 * PCD
271 * |PWT PAT
272 * || slot
273 * 00 0 WB : _PAGE_CACHE_MODE_WB
274 * 01 1 WT : _PAGE_CACHE_MODE_WT
275 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
276 * 11 3 UC : _PAGE_CACHE_MODE_UC
277 *
278 * NOTE: When WC or WP is used, it is redirected to UC- per
279 * the default setup in __cachemode2pte_tbl[].
280 */
281 pat_msr_val = PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
282 }
283
284 /*
285 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
286 * supported.
287 */
288 if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
289 init_cache_modes(pat_msr_val);
290 return;
291 }
292
293 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
294 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
295 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
296 /*
297 * PAT support with the lower four entries. Intel Pentium 2,
298 * 3, M, and 4 are affected by PAT errata, which makes the
299 * upper four entries unusable. To be on the safe side, we don't
300 * use those.
301 *
302 * PTE encoding:
303 * PAT
304 * |PCD
305 * ||PWT PAT
306 * ||| slot
307 * 000 0 WB : _PAGE_CACHE_MODE_WB
308 * 001 1 WC : _PAGE_CACHE_MODE_WC
309 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
310 * 011 3 UC : _PAGE_CACHE_MODE_UC
311 * PAT bit unused
312 *
313 * NOTE: When WT or WP is used, it is redirected to UC- per
314 * the default setup in __cachemode2pte_tbl[].
315 */
316 pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
317 } else {
318 /*
319 * Full PAT support. We put WT in slot 7 to improve
320 * robustness in the presence of errata that might cause
321 * the high PAT bit to be ignored. This way, a buggy slot 7
322 * access will hit slot 3, and slot 3 is UC, so at worst
323 * we lose performance without causing a correctness issue.
324 * Pentium 4 erratum N46 is an example for such an erratum,
325 * although we try not to use PAT at all on affected CPUs.
326 *
327 * PTE encoding:
328 * PAT
329 * |PCD
330 * ||PWT PAT
331 * ||| slot
332 * 000 0 WB : _PAGE_CACHE_MODE_WB
333 * 001 1 WC : _PAGE_CACHE_MODE_WC
334 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
335 * 011 3 UC : _PAGE_CACHE_MODE_UC
336 * 100 4 WB : Reserved
337 * 101 5 WP : _PAGE_CACHE_MODE_WP
338 * 110 6 UC-: Reserved
339 * 111 7 WT : _PAGE_CACHE_MODE_WT
340 *
341 * The reserved slots are unused, but mapped to their
342 * corresponding types in the presence of PAT errata.
343 */
344 pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
345 }
346
347 memory_caching_control |= CACHE_PAT;
348
349 init_cache_modes(pat_msr_val);
350 }
351
352 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
353
354 /*
355 * Does intersection of PAT memory type and MTRR memory type and returns
356 * the resulting memory type as PAT understands it.
357 * (Type in pat and mtrr will not have same value)
358 * The intersection is based on "Effective Memory Type" tables in IA-32
359 * SDM vol 3a
360 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)361 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
362 enum page_cache_mode req_type)
363 {
364 /*
365 * Look for MTRR hint to get the effective type in case where PAT
366 * request is for WB.
367 */
368 if (req_type == _PAGE_CACHE_MODE_WB) {
369 u8 mtrr_type, uniform;
370
371 mtrr_type = mtrr_type_lookup(start, end, &uniform);
372 if (mtrr_type != MTRR_TYPE_WRBACK)
373 return _PAGE_CACHE_MODE_UC_MINUS;
374
375 return _PAGE_CACHE_MODE_WB;
376 }
377
378 return req_type;
379 }
380
381 struct pagerange_state {
382 unsigned long cur_pfn;
383 int ram;
384 int not_ram;
385 };
386
387 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)388 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
389 {
390 struct pagerange_state *state = arg;
391
392 state->not_ram |= initial_pfn > state->cur_pfn;
393 state->ram |= total_nr_pages > 0;
394 state->cur_pfn = initial_pfn + total_nr_pages;
395
396 return state->ram && state->not_ram;
397 }
398
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)399 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
400 {
401 int ret = 0;
402 unsigned long start_pfn = start >> PAGE_SHIFT;
403 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
404 struct pagerange_state state = {start_pfn, 0, 0};
405
406 /*
407 * For legacy reasons, physical address range in the legacy ISA
408 * region is tracked as non-RAM. This will allow users of
409 * /dev/mem to map portions of legacy ISA region, even when
410 * some of those portions are listed(or not even listed) with
411 * different e820 types(RAM/reserved/..)
412 */
413 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
414 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
415
416 if (start_pfn < end_pfn) {
417 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
418 &state, pagerange_is_ram_callback);
419 }
420
421 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
422 }
423
424 /*
425 * For RAM pages, we use page flags to mark the pages with appropriate type.
426 * The page flags are limited to four types, WB (default), WC, WT and UC-.
427 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
428 * a new memory type is only allowed for a page mapped with the default WB
429 * type.
430 *
431 * Here we do two passes:
432 * - Find the memtype of all the pages in the range, look for any conflicts.
433 * - In case of no conflicts, set the new memtype for pages in the range.
434 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)435 static int reserve_ram_pages_type(u64 start, u64 end,
436 enum page_cache_mode req_type,
437 enum page_cache_mode *new_type)
438 {
439 struct page *page;
440 u64 pfn;
441
442 if (req_type == _PAGE_CACHE_MODE_WP) {
443 if (new_type)
444 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
445 return -EINVAL;
446 }
447
448 if (req_type == _PAGE_CACHE_MODE_UC) {
449 /* We do not support strong UC */
450 WARN_ON_ONCE(1);
451 req_type = _PAGE_CACHE_MODE_UC_MINUS;
452 }
453
454 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
455 enum page_cache_mode type;
456
457 page = pfn_to_page(pfn);
458 type = get_page_memtype(page);
459 if (type != _PAGE_CACHE_MODE_WB) {
460 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
461 start, end - 1, type, req_type);
462 if (new_type)
463 *new_type = type;
464
465 return -EBUSY;
466 }
467 }
468
469 if (new_type)
470 *new_type = req_type;
471
472 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
473 page = pfn_to_page(pfn);
474 set_page_memtype(page, req_type);
475 }
476 return 0;
477 }
478
free_ram_pages_type(u64 start,u64 end)479 static int free_ram_pages_type(u64 start, u64 end)
480 {
481 struct page *page;
482 u64 pfn;
483
484 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
485 page = pfn_to_page(pfn);
486 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
487 }
488 return 0;
489 }
490
sanitize_phys(u64 address)491 static u64 sanitize_phys(u64 address)
492 {
493 /*
494 * When changing the memtype for pages containing poison allow
495 * for a "decoy" virtual address (bit 63 clear) passed to
496 * set_memory_X(). __pa() on a "decoy" address results in a
497 * physical address with bit 63 set.
498 *
499 * Decoy addresses are not present for 32-bit builds, see
500 * set_mce_nospec().
501 */
502 if (IS_ENABLED(CONFIG_X86_64))
503 return address & __PHYSICAL_MASK;
504 return address;
505 }
506
507 /*
508 * req_type typically has one of the:
509 * - _PAGE_CACHE_MODE_WB
510 * - _PAGE_CACHE_MODE_WC
511 * - _PAGE_CACHE_MODE_UC_MINUS
512 * - _PAGE_CACHE_MODE_UC
513 * - _PAGE_CACHE_MODE_WT
514 *
515 * If new_type is NULL, function will return an error if it cannot reserve the
516 * region with req_type. If new_type is non-NULL, function will return
517 * available type in new_type in case of no error. In case of any error
518 * it will return a negative return value.
519 */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)520 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
521 enum page_cache_mode *new_type)
522 {
523 struct memtype *entry_new;
524 enum page_cache_mode actual_type;
525 int is_range_ram;
526 int err = 0;
527
528 start = sanitize_phys(start);
529
530 /*
531 * The end address passed into this function is exclusive, but
532 * sanitize_phys() expects an inclusive address.
533 */
534 end = sanitize_phys(end - 1) + 1;
535 if (start >= end) {
536 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
537 start, end - 1, cattr_name(req_type));
538 return -EINVAL;
539 }
540
541 if (!pat_enabled()) {
542 /* This is identical to page table setting without PAT */
543 if (new_type)
544 *new_type = req_type;
545 return 0;
546 }
547
548 /* Low ISA region is always mapped WB in page table. No need to track */
549 if (x86_platform.is_untracked_pat_range(start, end)) {
550 if (new_type)
551 *new_type = _PAGE_CACHE_MODE_WB;
552 return 0;
553 }
554
555 /*
556 * Call mtrr_lookup to get the type hint. This is an
557 * optimization for /dev/mem mmap'ers into WB memory (BIOS
558 * tools and ACPI tools). Use WB request for WB memory and use
559 * UC_MINUS otherwise.
560 */
561 actual_type = pat_x_mtrr_type(start, end, req_type);
562
563 if (new_type)
564 *new_type = actual_type;
565
566 is_range_ram = pat_pagerange_is_ram(start, end);
567 if (is_range_ram == 1) {
568
569 err = reserve_ram_pages_type(start, end, req_type, new_type);
570
571 return err;
572 } else if (is_range_ram < 0) {
573 return -EINVAL;
574 }
575
576 entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
577 if (!entry_new)
578 return -ENOMEM;
579
580 entry_new->start = start;
581 entry_new->end = end;
582 entry_new->type = actual_type;
583
584 spin_lock(&memtype_lock);
585
586 err = memtype_check_insert(entry_new, new_type);
587 if (err) {
588 pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
589 start, end - 1,
590 cattr_name(entry_new->type), cattr_name(req_type));
591 kfree(entry_new);
592 spin_unlock(&memtype_lock);
593
594 return err;
595 }
596
597 spin_unlock(&memtype_lock);
598
599 dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
600 start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
601 new_type ? cattr_name(*new_type) : "-");
602
603 return err;
604 }
605
memtype_free(u64 start,u64 end)606 int memtype_free(u64 start, u64 end)
607 {
608 int is_range_ram;
609 struct memtype *entry_old;
610
611 if (!pat_enabled())
612 return 0;
613
614 start = sanitize_phys(start);
615 end = sanitize_phys(end);
616
617 /* Low ISA region is always mapped WB. No need to track */
618 if (x86_platform.is_untracked_pat_range(start, end))
619 return 0;
620
621 is_range_ram = pat_pagerange_is_ram(start, end);
622 if (is_range_ram == 1)
623 return free_ram_pages_type(start, end);
624 if (is_range_ram < 0)
625 return -EINVAL;
626
627 spin_lock(&memtype_lock);
628 entry_old = memtype_erase(start, end);
629 spin_unlock(&memtype_lock);
630
631 if (IS_ERR(entry_old)) {
632 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
633 current->comm, current->pid, start, end - 1);
634 return -EINVAL;
635 }
636
637 kfree(entry_old);
638
639 dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
640
641 return 0;
642 }
643
644
645 /**
646 * lookup_memtype - Looks up the memory type for a physical address
647 * @paddr: physical address of which memory type needs to be looked up
648 *
649 * Only to be called when PAT is enabled
650 *
651 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
652 * or _PAGE_CACHE_MODE_WT.
653 */
lookup_memtype(u64 paddr)654 static enum page_cache_mode lookup_memtype(u64 paddr)
655 {
656 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
657 struct memtype *entry;
658
659 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
660 return rettype;
661
662 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
663 struct page *page;
664
665 page = pfn_to_page(paddr >> PAGE_SHIFT);
666 return get_page_memtype(page);
667 }
668
669 spin_lock(&memtype_lock);
670
671 entry = memtype_lookup(paddr);
672 if (entry != NULL)
673 rettype = entry->type;
674 else
675 rettype = _PAGE_CACHE_MODE_UC_MINUS;
676
677 spin_unlock(&memtype_lock);
678
679 return rettype;
680 }
681
682 /**
683 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
684 * of @pfn cannot be overridden by UC MTRR memory type.
685 *
686 * Only to be called when PAT is enabled.
687 *
688 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
689 * Returns false in other cases.
690 */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)691 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
692 {
693 enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
694
695 return cm == _PAGE_CACHE_MODE_UC ||
696 cm == _PAGE_CACHE_MODE_UC_MINUS ||
697 cm == _PAGE_CACHE_MODE_WC;
698 }
699 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
700
701 /**
702 * memtype_reserve_io - Request a memory type mapping for a region of memory
703 * @start: start (physical address) of the region
704 * @end: end (physical address) of the region
705 * @type: A pointer to memtype, with requested type. On success, requested
706 * or any other compatible type that was available for the region is returned
707 *
708 * On success, returns 0
709 * On failure, returns non-zero
710 */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)711 int memtype_reserve_io(resource_size_t start, resource_size_t end,
712 enum page_cache_mode *type)
713 {
714 resource_size_t size = end - start;
715 enum page_cache_mode req_type = *type;
716 enum page_cache_mode new_type;
717 int ret;
718
719 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
720
721 ret = memtype_reserve(start, end, req_type, &new_type);
722 if (ret)
723 goto out_err;
724
725 if (!is_new_memtype_allowed(start, size, req_type, new_type))
726 goto out_free;
727
728 if (memtype_kernel_map_sync(start, size, new_type) < 0)
729 goto out_free;
730
731 *type = new_type;
732 return 0;
733
734 out_free:
735 memtype_free(start, end);
736 ret = -EBUSY;
737 out_err:
738 return ret;
739 }
740
741 /**
742 * memtype_free_io - Release a memory type mapping for a region of memory
743 * @start: start (physical address) of the region
744 * @end: end (physical address) of the region
745 */
memtype_free_io(resource_size_t start,resource_size_t end)746 void memtype_free_io(resource_size_t start, resource_size_t end)
747 {
748 memtype_free(start, end);
749 }
750
751 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)752 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
753 {
754 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
755
756 return memtype_reserve_io(start, start + size, &type);
757 }
758 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
759
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)760 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
761 {
762 memtype_free_io(start, start + size);
763 }
764 EXPORT_SYMBOL(arch_io_free_memtype_wc);
765 #endif
766
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)767 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
768 unsigned long size, pgprot_t vma_prot)
769 {
770 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
771 vma_prot = pgprot_decrypted(vma_prot);
772
773 return vma_prot;
774 }
775
776 #ifdef CONFIG_STRICT_DEVMEM
777 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)778 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
779 {
780 return 1;
781 }
782 #else
783 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)784 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
785 {
786 u64 from = ((u64)pfn) << PAGE_SHIFT;
787 u64 to = from + size;
788 u64 cursor = from;
789
790 if (!pat_enabled())
791 return 1;
792
793 while (cursor < to) {
794 if (!devmem_is_allowed(pfn))
795 return 0;
796 cursor += PAGE_SIZE;
797 pfn++;
798 }
799 return 1;
800 }
801 #endif /* CONFIG_STRICT_DEVMEM */
802
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)803 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
804 unsigned long size, pgprot_t *vma_prot)
805 {
806 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
807
808 if (!range_is_allowed(pfn, size))
809 return 0;
810
811 if (file->f_flags & O_DSYNC)
812 pcm = _PAGE_CACHE_MODE_UC_MINUS;
813
814 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
815 cachemode2protval(pcm));
816 return 1;
817 }
818
819 /*
820 * Change the memory type for the physical address range in kernel identity
821 * mapping space if that range is a part of identity map.
822 */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)823 int memtype_kernel_map_sync(u64 base, unsigned long size,
824 enum page_cache_mode pcm)
825 {
826 unsigned long id_sz;
827
828 if (base > __pa(high_memory-1))
829 return 0;
830
831 /*
832 * Some areas in the middle of the kernel identity range
833 * are not mapped, for example the PCI space.
834 */
835 if (!page_is_ram(base >> PAGE_SHIFT))
836 return 0;
837
838 id_sz = (__pa(high_memory-1) <= base + size) ?
839 __pa(high_memory) - base : size;
840
841 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
842 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
843 current->comm, current->pid,
844 cattr_name(pcm),
845 base, (unsigned long long)(base + size-1));
846 return -EINVAL;
847 }
848 return 0;
849 }
850
851 /*
852 * Internal interface to reserve a range of physical memory with prot.
853 * Reserved non RAM regions only and after successful memtype_reserve,
854 * this func also keeps identity mapping (if any) in sync with this new prot.
855 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)856 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
857 int strict_prot)
858 {
859 int is_ram = 0;
860 int ret;
861 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
862 enum page_cache_mode pcm = want_pcm;
863
864 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
865
866 /*
867 * reserve_pfn_range() for RAM pages. We do not refcount to keep
868 * track of number of mappings of RAM pages. We can assert that
869 * the type requested matches the type of first page in the range.
870 */
871 if (is_ram) {
872 if (!pat_enabled())
873 return 0;
874
875 pcm = lookup_memtype(paddr);
876 if (want_pcm != pcm) {
877 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
878 current->comm, current->pid,
879 cattr_name(want_pcm),
880 (unsigned long long)paddr,
881 (unsigned long long)(paddr + size - 1),
882 cattr_name(pcm));
883 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
884 (~_PAGE_CACHE_MASK)) |
885 cachemode2protval(pcm));
886 }
887 return 0;
888 }
889
890 ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
891 if (ret)
892 return ret;
893
894 if (pcm != want_pcm) {
895 if (strict_prot ||
896 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
897 memtype_free(paddr, paddr + size);
898 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
899 current->comm, current->pid,
900 cattr_name(want_pcm),
901 (unsigned long long)paddr,
902 (unsigned long long)(paddr + size - 1),
903 cattr_name(pcm));
904 return -EINVAL;
905 }
906 /*
907 * We allow returning different type than the one requested in
908 * non strict case.
909 */
910 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
911 (~_PAGE_CACHE_MASK)) |
912 cachemode2protval(pcm));
913 }
914
915 if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
916 memtype_free(paddr, paddr + size);
917 return -EINVAL;
918 }
919 return 0;
920 }
921
922 /*
923 * Internal interface to free a range of physical memory.
924 * Frees non RAM regions only.
925 */
free_pfn_range(u64 paddr,unsigned long size)926 static void free_pfn_range(u64 paddr, unsigned long size)
927 {
928 int is_ram;
929
930 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
931 if (is_ram == 0)
932 memtype_free(paddr, paddr + size);
933 }
934
follow_phys(struct vm_area_struct * vma,unsigned long * prot,resource_size_t * phys)935 static int follow_phys(struct vm_area_struct *vma, unsigned long *prot,
936 resource_size_t *phys)
937 {
938 struct follow_pfnmap_args args = { .vma = vma, .address = vma->vm_start };
939
940 if (follow_pfnmap_start(&args))
941 return -EINVAL;
942
943 /* Never return PFNs of anon folios in COW mappings. */
944 if (!args.special) {
945 follow_pfnmap_end(&args);
946 return -EINVAL;
947 }
948
949 *prot = pgprot_val(args.pgprot);
950 *phys = (resource_size_t)args.pfn << PAGE_SHIFT;
951 follow_pfnmap_end(&args);
952 return 0;
953 }
954
get_pat_info(struct vm_area_struct * vma,resource_size_t * paddr,pgprot_t * pgprot)955 static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
956 pgprot_t *pgprot)
957 {
958 unsigned long prot;
959
960 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT));
961
962 /*
963 * We need the starting PFN and cachemode used for track_pfn_remap()
964 * that covered the whole VMA. For most mappings, we can obtain that
965 * information from the page tables. For COW mappings, we might now
966 * suddenly have anon folios mapped and follow_phys() will fail.
967 *
968 * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to
969 * detect the PFN. If we need the cachemode as well, we're out of luck
970 * for now and have to fail fork().
971 */
972 if (!follow_phys(vma, &prot, paddr)) {
973 if (pgprot)
974 *pgprot = __pgprot(prot);
975 return 0;
976 }
977 if (is_cow_mapping(vma->vm_flags)) {
978 if (pgprot)
979 return -EINVAL;
980 *paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
981 return 0;
982 }
983 WARN_ON_ONCE(1);
984 return -EINVAL;
985 }
986
987 /*
988 * track_pfn_copy is called when vma that is covering the pfnmap gets
989 * copied through copy_page_range().
990 *
991 * If the vma has a linear pfn mapping for the entire range, we get the prot
992 * from pte and reserve the entire vma range with single reserve_pfn_range call.
993 */
track_pfn_copy(struct vm_area_struct * vma)994 int track_pfn_copy(struct vm_area_struct *vma)
995 {
996 resource_size_t paddr;
997 unsigned long vma_size = vma->vm_end - vma->vm_start;
998 pgprot_t pgprot;
999
1000 if (vma->vm_flags & VM_PAT) {
1001 if (get_pat_info(vma, &paddr, &pgprot))
1002 return -EINVAL;
1003 /* reserve the whole chunk covered by vma. */
1004 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1005 }
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * prot is passed in as a parameter for the new mapping. If the vma has
1012 * a linear pfn mapping for the entire range, or no vma is provided,
1013 * reserve the entire pfn + size range with single reserve_pfn_range
1014 * call.
1015 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1016 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1017 unsigned long pfn, unsigned long addr, unsigned long size)
1018 {
1019 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1020 enum page_cache_mode pcm;
1021
1022 /* reserve the whole chunk starting from paddr */
1023 if (!vma || (addr == vma->vm_start
1024 && size == (vma->vm_end - vma->vm_start))) {
1025 int ret;
1026
1027 ret = reserve_pfn_range(paddr, size, prot, 0);
1028 if (ret == 0 && vma)
1029 vm_flags_set(vma, VM_PAT);
1030 return ret;
1031 }
1032
1033 if (!pat_enabled())
1034 return 0;
1035
1036 /*
1037 * For anything smaller than the vma size we set prot based on the
1038 * lookup.
1039 */
1040 pcm = lookup_memtype(paddr);
1041
1042 /* Check memtype for the remaining pages */
1043 while (size > PAGE_SIZE) {
1044 size -= PAGE_SIZE;
1045 paddr += PAGE_SIZE;
1046 if (pcm != lookup_memtype(paddr))
1047 return -EINVAL;
1048 }
1049
1050 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1051 cachemode2protval(pcm));
1052
1053 return 0;
1054 }
1055
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1056 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1057 {
1058 enum page_cache_mode pcm;
1059
1060 if (!pat_enabled())
1061 return;
1062
1063 /* Set prot based on lookup */
1064 pcm = lookup_memtype(pfn_t_to_phys(pfn));
1065 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1066 cachemode2protval(pcm));
1067 }
1068
1069 /*
1070 * untrack_pfn is called while unmapping a pfnmap for a region.
1071 * untrack can be called for a specific region indicated by pfn and size or
1072 * can be for the entire vma (in which case pfn, size are zero).
1073 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1074 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1075 unsigned long size, bool mm_wr_locked)
1076 {
1077 resource_size_t paddr;
1078
1079 if (vma && !(vma->vm_flags & VM_PAT))
1080 return;
1081
1082 /* free the chunk starting from pfn or the whole chunk */
1083 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1084 if (!paddr && !size) {
1085 if (get_pat_info(vma, &paddr, NULL))
1086 return;
1087 size = vma->vm_end - vma->vm_start;
1088 }
1089 free_pfn_range(paddr, size);
1090 if (vma) {
1091 if (mm_wr_locked)
1092 vm_flags_clear(vma, VM_PAT);
1093 else
1094 __vm_flags_mod(vma, 0, VM_PAT);
1095 }
1096 }
1097
1098 /*
1099 * untrack_pfn_clear is called if the following situation fits:
1100 *
1101 * 1) while mremapping a pfnmap for a new region, with the old vma after
1102 * its pfnmap page table has been removed. The new vma has a new pfnmap
1103 * to the same pfn & cache type with VM_PAT set.
1104 * 2) while duplicating vm area, the new vma fails to copy the pgtable from
1105 * old vma.
1106 */
untrack_pfn_clear(struct vm_area_struct * vma)1107 void untrack_pfn_clear(struct vm_area_struct *vma)
1108 {
1109 vm_flags_clear(vma, VM_PAT);
1110 }
1111
pgprot_writecombine(pgprot_t prot)1112 pgprot_t pgprot_writecombine(pgprot_t prot)
1113 {
1114 return __pgprot(pgprot_val(prot) |
1115 cachemode2protval(_PAGE_CACHE_MODE_WC));
1116 }
1117 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1118
pgprot_writethrough(pgprot_t prot)1119 pgprot_t pgprot_writethrough(pgprot_t prot)
1120 {
1121 return __pgprot(pgprot_val(prot) |
1122 cachemode2protval(_PAGE_CACHE_MODE_WT));
1123 }
1124 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1125
1126 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1127
1128 /*
1129 * We are allocating a temporary printout-entry to be passed
1130 * between seq_start()/next() and seq_show():
1131 */
memtype_get_idx(loff_t pos)1132 static struct memtype *memtype_get_idx(loff_t pos)
1133 {
1134 struct memtype *entry_print;
1135 int ret;
1136
1137 entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1138 if (!entry_print)
1139 return NULL;
1140
1141 spin_lock(&memtype_lock);
1142 ret = memtype_copy_nth_element(entry_print, pos);
1143 spin_unlock(&memtype_lock);
1144
1145 /* Free it on error: */
1146 if (ret) {
1147 kfree(entry_print);
1148 return NULL;
1149 }
1150
1151 return entry_print;
1152 }
1153
memtype_seq_start(struct seq_file * seq,loff_t * pos)1154 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1155 {
1156 if (*pos == 0) {
1157 ++*pos;
1158 seq_puts(seq, "PAT memtype list:\n");
1159 }
1160
1161 return memtype_get_idx(*pos);
1162 }
1163
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1164 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1165 {
1166 kfree(v);
1167 ++*pos;
1168 return memtype_get_idx(*pos);
1169 }
1170
memtype_seq_stop(struct seq_file * seq,void * v)1171 static void memtype_seq_stop(struct seq_file *seq, void *v)
1172 {
1173 kfree(v);
1174 }
1175
memtype_seq_show(struct seq_file * seq,void * v)1176 static int memtype_seq_show(struct seq_file *seq, void *v)
1177 {
1178 struct memtype *entry_print = (struct memtype *)v;
1179
1180 seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1181 entry_print->start,
1182 entry_print->end,
1183 cattr_name(entry_print->type));
1184
1185 return 0;
1186 }
1187
1188 static const struct seq_operations memtype_seq_ops = {
1189 .start = memtype_seq_start,
1190 .next = memtype_seq_next,
1191 .stop = memtype_seq_stop,
1192 .show = memtype_seq_show,
1193 };
1194
memtype_seq_open(struct inode * inode,struct file * file)1195 static int memtype_seq_open(struct inode *inode, struct file *file)
1196 {
1197 return seq_open(file, &memtype_seq_ops);
1198 }
1199
1200 static const struct file_operations memtype_fops = {
1201 .open = memtype_seq_open,
1202 .read = seq_read,
1203 .llseek = seq_lseek,
1204 .release = seq_release,
1205 };
1206
pat_memtype_list_init(void)1207 static int __init pat_memtype_list_init(void)
1208 {
1209 if (pat_enabled()) {
1210 debugfs_create_file("pat_memtype_list", S_IRUSR,
1211 arch_debugfs_dir, NULL, &memtype_fops);
1212 }
1213 return 0;
1214 }
1215 late_initcall(pat_memtype_list_init);
1216
1217 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1218