xref: /linux/arch/x86/mm/pat/memtype.c (revision 3efc57369a0ce8f76bf0804f7e673982384e4ac9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/fs.h>
44 #include <linux/rbtree.h>
45 
46 #include <asm/cacheflush.h>
47 #include <asm/cacheinfo.h>
48 #include <asm/processor.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51 #include <asm/fcntl.h>
52 #include <asm/e820/api.h>
53 #include <asm/mtrr.h>
54 #include <asm/page.h>
55 #include <asm/msr.h>
56 #include <asm/memtype.h>
57 #include <asm/io.h>
58 
59 #include "memtype.h"
60 #include "../mm_internal.h"
61 
62 #undef pr_fmt
63 #define pr_fmt(fmt) "" fmt
64 
65 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
66 static u64 __ro_after_init pat_msr_val;
67 
68 /*
69  * PAT support is enabled by default, but can be disabled for
70  * various user-requested or hardware-forced reasons:
71  */
pat_disable(const char * msg_reason)72 static void __init pat_disable(const char *msg_reason)
73 {
74 	if (pat_disabled)
75 		return;
76 
77 	pat_disabled = true;
78 	pr_info("x86/PAT: %s\n", msg_reason);
79 
80 	memory_caching_control &= ~CACHE_PAT;
81 }
82 
nopat(char * str)83 static int __init nopat(char *str)
84 {
85 	pat_disable("PAT support disabled via boot option.");
86 	return 0;
87 }
88 early_param("nopat", nopat);
89 
pat_enabled(void)90 bool pat_enabled(void)
91 {
92 	return !pat_disabled;
93 }
94 EXPORT_SYMBOL_GPL(pat_enabled);
95 
96 int pat_debug_enable;
97 
pat_debug_setup(char * str)98 static int __init pat_debug_setup(char *str)
99 {
100 	pat_debug_enable = 1;
101 	return 1;
102 }
103 __setup("debugpat", pat_debug_setup);
104 
105 #ifdef CONFIG_X86_PAT
106 /*
107  * X86 PAT uses page flags arch_1 and arch_2 together to keep track of
108  * memory type of pages that have backing page struct.
109  *
110  * X86 PAT supports 4 different memory types:
111  *  - _PAGE_CACHE_MODE_WB
112  *  - _PAGE_CACHE_MODE_WC
113  *  - _PAGE_CACHE_MODE_UC_MINUS
114  *  - _PAGE_CACHE_MODE_WT
115  *
116  * _PAGE_CACHE_MODE_WB is the default type.
117  */
118 
119 #define _PGMT_WB		0
120 #define _PGMT_WC		(1UL << PG_arch_1)
121 #define _PGMT_UC_MINUS		(1UL << PG_arch_2)
122 #define _PGMT_WT		(1UL << PG_arch_2 | 1UL << PG_arch_1)
123 #define _PGMT_MASK		(1UL << PG_arch_2 | 1UL << PG_arch_1)
124 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
125 
get_page_memtype(struct page * pg)126 static inline enum page_cache_mode get_page_memtype(struct page *pg)
127 {
128 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
129 
130 	if (pg_flags == _PGMT_WB)
131 		return _PAGE_CACHE_MODE_WB;
132 	else if (pg_flags == _PGMT_WC)
133 		return _PAGE_CACHE_MODE_WC;
134 	else if (pg_flags == _PGMT_UC_MINUS)
135 		return _PAGE_CACHE_MODE_UC_MINUS;
136 	else
137 		return _PAGE_CACHE_MODE_WT;
138 }
139 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)140 static inline void set_page_memtype(struct page *pg,
141 				    enum page_cache_mode memtype)
142 {
143 	unsigned long memtype_flags;
144 	unsigned long old_flags;
145 	unsigned long new_flags;
146 
147 	switch (memtype) {
148 	case _PAGE_CACHE_MODE_WC:
149 		memtype_flags = _PGMT_WC;
150 		break;
151 	case _PAGE_CACHE_MODE_UC_MINUS:
152 		memtype_flags = _PGMT_UC_MINUS;
153 		break;
154 	case _PAGE_CACHE_MODE_WT:
155 		memtype_flags = _PGMT_WT;
156 		break;
157 	case _PAGE_CACHE_MODE_WB:
158 	default:
159 		memtype_flags = _PGMT_WB;
160 		break;
161 	}
162 
163 	old_flags = READ_ONCE(pg->flags);
164 	do {
165 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
166 	} while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
167 }
168 #else
get_page_memtype(struct page * pg)169 static inline enum page_cache_mode get_page_memtype(struct page *pg)
170 {
171 	return -1;
172 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)173 static inline void set_page_memtype(struct page *pg,
174 				    enum page_cache_mode memtype)
175 {
176 }
177 #endif
178 
179 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
180 
pat_get_cache_mode(unsigned int pat_val,char * msg)181 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
182 						      char *msg)
183 {
184 	enum page_cache_mode cache;
185 	char *cache_mode;
186 
187 	switch (pat_val) {
188 	case X86_MEMTYPE_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
189 	case X86_MEMTYPE_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
190 	case X86_MEMTYPE_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
191 	case X86_MEMTYPE_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
192 	case X86_MEMTYPE_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
193 	case X86_MEMTYPE_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
194 	default:                   cache = CM(WB);       cache_mode = "WB  "; break;
195 	}
196 
197 	memcpy(msg, cache_mode, 4);
198 
199 	return cache;
200 }
201 
202 #undef CM
203 
204 /*
205  * Update the cache mode to pgprot translation tables according to PAT
206  * configuration.
207  * Using lower indices is preferred, so we start with highest index.
208  */
init_cache_modes(u64 pat)209 static void __init init_cache_modes(u64 pat)
210 {
211 	enum page_cache_mode cache;
212 	char pat_msg[33];
213 	int i;
214 
215 	pat_msg[32] = 0;
216 	for (i = 7; i >= 0; i--) {
217 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
218 					   pat_msg + 4 * i);
219 		update_cache_mode_entry(i, cache);
220 	}
221 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
222 }
223 
pat_cpu_init(void)224 void pat_cpu_init(void)
225 {
226 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
227 		/*
228 		 * If this happens we are on a secondary CPU, but switched to
229 		 * PAT on the boot CPU. We have no way to undo PAT.
230 		 */
231 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
232 	}
233 
234 	wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
235 
236 	__flush_tlb_all();
237 }
238 
239 /**
240  * pat_bp_init - Initialize the PAT MSR value and PAT table
241  *
242  * This function initializes PAT MSR value and PAT table with an OS-defined
243  * value to enable additional cache attributes, WC, WT and WP.
244  *
245  * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
246  * on all CPUs.
247  */
pat_bp_init(void)248 void __init pat_bp_init(void)
249 {
250 	struct cpuinfo_x86 *c = &boot_cpu_data;
251 
252 	if (!IS_ENABLED(CONFIG_X86_PAT))
253 		pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
254 
255 	if (!cpu_feature_enabled(X86_FEATURE_PAT))
256 		pat_disable("PAT not supported by the CPU.");
257 	else
258 		rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
259 
260 	if (!pat_msr_val) {
261 		pat_disable("PAT support disabled by the firmware.");
262 
263 		/*
264 		 * No PAT. Emulate the PAT table that corresponds to the two
265 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
266 		 * This setup is also the same as the BIOS default setup.
267 		 *
268 		 * PTE encoding:
269 		 *
270 		 *       PCD
271 		 *       |PWT  PAT
272 		 *       ||    slot
273 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
274 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
275 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
276 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
277 		 *
278 		 * NOTE: When WC or WP is used, it is redirected to UC- per
279 		 * the default setup in __cachemode2pte_tbl[].
280 		 */
281 		pat_msr_val = PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
282 	}
283 
284 	/*
285 	 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
286 	 * supported.
287 	 */
288 	if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
289 		init_cache_modes(pat_msr_val);
290 		return;
291 	}
292 
293 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
294 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
295 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
296 		/*
297 		 * PAT support with the lower four entries. Intel Pentium 2,
298 		 * 3, M, and 4 are affected by PAT errata, which makes the
299 		 * upper four entries unusable. To be on the safe side, we don't
300 		 * use those.
301 		 *
302 		 *  PTE encoding:
303 		 *      PAT
304 		 *      |PCD
305 		 *      ||PWT  PAT
306 		 *      |||    slot
307 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
308 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
309 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
310 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
311 		 * PAT bit unused
312 		 *
313 		 * NOTE: When WT or WP is used, it is redirected to UC- per
314 		 * the default setup in __cachemode2pte_tbl[].
315 		 */
316 		pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
317 	} else {
318 		/*
319 		 * Full PAT support.  We put WT in slot 7 to improve
320 		 * robustness in the presence of errata that might cause
321 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
322 		 * access will hit slot 3, and slot 3 is UC, so at worst
323 		 * we lose performance without causing a correctness issue.
324 		 * Pentium 4 erratum N46 is an example for such an erratum,
325 		 * although we try not to use PAT at all on affected CPUs.
326 		 *
327 		 *  PTE encoding:
328 		 *      PAT
329 		 *      |PCD
330 		 *      ||PWT  PAT
331 		 *      |||    slot
332 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
333 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
334 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
335 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
336 		 *      100    4    WB : Reserved
337 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
338 		 *      110    6    UC-: Reserved
339 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
340 		 *
341 		 * The reserved slots are unused, but mapped to their
342 		 * corresponding types in the presence of PAT errata.
343 		 */
344 		pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
345 	}
346 
347 	memory_caching_control |= CACHE_PAT;
348 
349 	init_cache_modes(pat_msr_val);
350 }
351 
352 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
353 
354 /*
355  * Does intersection of PAT memory type and MTRR memory type and returns
356  * the resulting memory type as PAT understands it.
357  * (Type in pat and mtrr will not have same value)
358  * The intersection is based on "Effective Memory Type" tables in IA-32
359  * SDM vol 3a
360  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)361 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
362 				     enum page_cache_mode req_type)
363 {
364 	/*
365 	 * Look for MTRR hint to get the effective type in case where PAT
366 	 * request is for WB.
367 	 */
368 	if (req_type == _PAGE_CACHE_MODE_WB) {
369 		u8 mtrr_type, uniform;
370 
371 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
372 		if (mtrr_type != MTRR_TYPE_WRBACK)
373 			return _PAGE_CACHE_MODE_UC_MINUS;
374 
375 		return _PAGE_CACHE_MODE_WB;
376 	}
377 
378 	return req_type;
379 }
380 
381 struct pagerange_state {
382 	unsigned long		cur_pfn;
383 	int			ram;
384 	int			not_ram;
385 };
386 
387 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)388 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
389 {
390 	struct pagerange_state *state = arg;
391 
392 	state->not_ram	|= initial_pfn > state->cur_pfn;
393 	state->ram	|= total_nr_pages > 0;
394 	state->cur_pfn	 = initial_pfn + total_nr_pages;
395 
396 	return state->ram && state->not_ram;
397 }
398 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)399 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
400 {
401 	int ret = 0;
402 	unsigned long start_pfn = start >> PAGE_SHIFT;
403 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
404 	struct pagerange_state state = {start_pfn, 0, 0};
405 
406 	/*
407 	 * For legacy reasons, physical address range in the legacy ISA
408 	 * region is tracked as non-RAM. This will allow users of
409 	 * /dev/mem to map portions of legacy ISA region, even when
410 	 * some of those portions are listed(or not even listed) with
411 	 * different e820 types(RAM/reserved/..)
412 	 */
413 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
414 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
415 
416 	if (start_pfn < end_pfn) {
417 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
418 				&state, pagerange_is_ram_callback);
419 	}
420 
421 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
422 }
423 
424 /*
425  * For RAM pages, we use page flags to mark the pages with appropriate type.
426  * The page flags are limited to four types, WB (default), WC, WT and UC-.
427  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
428  * a new memory type is only allowed for a page mapped with the default WB
429  * type.
430  *
431  * Here we do two passes:
432  * - Find the memtype of all the pages in the range, look for any conflicts.
433  * - In case of no conflicts, set the new memtype for pages in the range.
434  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)435 static int reserve_ram_pages_type(u64 start, u64 end,
436 				  enum page_cache_mode req_type,
437 				  enum page_cache_mode *new_type)
438 {
439 	struct page *page;
440 	u64 pfn;
441 
442 	if (req_type == _PAGE_CACHE_MODE_WP) {
443 		if (new_type)
444 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
445 		return -EINVAL;
446 	}
447 
448 	if (req_type == _PAGE_CACHE_MODE_UC) {
449 		/* We do not support strong UC */
450 		WARN_ON_ONCE(1);
451 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
452 	}
453 
454 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
455 		enum page_cache_mode type;
456 
457 		page = pfn_to_page(pfn);
458 		type = get_page_memtype(page);
459 		if (type != _PAGE_CACHE_MODE_WB) {
460 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
461 				start, end - 1, type, req_type);
462 			if (new_type)
463 				*new_type = type;
464 
465 			return -EBUSY;
466 		}
467 	}
468 
469 	if (new_type)
470 		*new_type = req_type;
471 
472 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
473 		page = pfn_to_page(pfn);
474 		set_page_memtype(page, req_type);
475 	}
476 	return 0;
477 }
478 
free_ram_pages_type(u64 start,u64 end)479 static int free_ram_pages_type(u64 start, u64 end)
480 {
481 	struct page *page;
482 	u64 pfn;
483 
484 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
485 		page = pfn_to_page(pfn);
486 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
487 	}
488 	return 0;
489 }
490 
sanitize_phys(u64 address)491 static u64 sanitize_phys(u64 address)
492 {
493 	/*
494 	 * When changing the memtype for pages containing poison allow
495 	 * for a "decoy" virtual address (bit 63 clear) passed to
496 	 * set_memory_X(). __pa() on a "decoy" address results in a
497 	 * physical address with bit 63 set.
498 	 *
499 	 * Decoy addresses are not present for 32-bit builds, see
500 	 * set_mce_nospec().
501 	 */
502 	if (IS_ENABLED(CONFIG_X86_64))
503 		return address & __PHYSICAL_MASK;
504 	return address;
505 }
506 
507 /*
508  * req_type typically has one of the:
509  * - _PAGE_CACHE_MODE_WB
510  * - _PAGE_CACHE_MODE_WC
511  * - _PAGE_CACHE_MODE_UC_MINUS
512  * - _PAGE_CACHE_MODE_UC
513  * - _PAGE_CACHE_MODE_WT
514  *
515  * If new_type is NULL, function will return an error if it cannot reserve the
516  * region with req_type. If new_type is non-NULL, function will return
517  * available type in new_type in case of no error. In case of any error
518  * it will return a negative return value.
519  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)520 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
521 		    enum page_cache_mode *new_type)
522 {
523 	struct memtype *entry_new;
524 	enum page_cache_mode actual_type;
525 	int is_range_ram;
526 	int err = 0;
527 
528 	start = sanitize_phys(start);
529 
530 	/*
531 	 * The end address passed into this function is exclusive, but
532 	 * sanitize_phys() expects an inclusive address.
533 	 */
534 	end = sanitize_phys(end - 1) + 1;
535 	if (start >= end) {
536 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
537 				start, end - 1, cattr_name(req_type));
538 		return -EINVAL;
539 	}
540 
541 	if (!pat_enabled()) {
542 		/* This is identical to page table setting without PAT */
543 		if (new_type)
544 			*new_type = req_type;
545 		return 0;
546 	}
547 
548 	/* Low ISA region is always mapped WB in page table. No need to track */
549 	if (x86_platform.is_untracked_pat_range(start, end)) {
550 		if (new_type)
551 			*new_type = _PAGE_CACHE_MODE_WB;
552 		return 0;
553 	}
554 
555 	/*
556 	 * Call mtrr_lookup to get the type hint. This is an
557 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
558 	 * tools and ACPI tools). Use WB request for WB memory and use
559 	 * UC_MINUS otherwise.
560 	 */
561 	actual_type = pat_x_mtrr_type(start, end, req_type);
562 
563 	if (new_type)
564 		*new_type = actual_type;
565 
566 	is_range_ram = pat_pagerange_is_ram(start, end);
567 	if (is_range_ram == 1) {
568 
569 		err = reserve_ram_pages_type(start, end, req_type, new_type);
570 
571 		return err;
572 	} else if (is_range_ram < 0) {
573 		return -EINVAL;
574 	}
575 
576 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
577 	if (!entry_new)
578 		return -ENOMEM;
579 
580 	entry_new->start = start;
581 	entry_new->end	 = end;
582 	entry_new->type	 = actual_type;
583 
584 	spin_lock(&memtype_lock);
585 
586 	err = memtype_check_insert(entry_new, new_type);
587 	if (err) {
588 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
589 			start, end - 1,
590 			cattr_name(entry_new->type), cattr_name(req_type));
591 		kfree(entry_new);
592 		spin_unlock(&memtype_lock);
593 
594 		return err;
595 	}
596 
597 	spin_unlock(&memtype_lock);
598 
599 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
600 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
601 		new_type ? cattr_name(*new_type) : "-");
602 
603 	return err;
604 }
605 
memtype_free(u64 start,u64 end)606 int memtype_free(u64 start, u64 end)
607 {
608 	int is_range_ram;
609 	struct memtype *entry_old;
610 
611 	if (!pat_enabled())
612 		return 0;
613 
614 	start = sanitize_phys(start);
615 	end = sanitize_phys(end);
616 
617 	/* Low ISA region is always mapped WB. No need to track */
618 	if (x86_platform.is_untracked_pat_range(start, end))
619 		return 0;
620 
621 	is_range_ram = pat_pagerange_is_ram(start, end);
622 	if (is_range_ram == 1)
623 		return free_ram_pages_type(start, end);
624 	if (is_range_ram < 0)
625 		return -EINVAL;
626 
627 	spin_lock(&memtype_lock);
628 	entry_old = memtype_erase(start, end);
629 	spin_unlock(&memtype_lock);
630 
631 	if (IS_ERR(entry_old)) {
632 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
633 			current->comm, current->pid, start, end - 1);
634 		return -EINVAL;
635 	}
636 
637 	kfree(entry_old);
638 
639 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
640 
641 	return 0;
642 }
643 
644 
645 /**
646  * lookup_memtype - Looks up the memory type for a physical address
647  * @paddr: physical address of which memory type needs to be looked up
648  *
649  * Only to be called when PAT is enabled
650  *
651  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
652  * or _PAGE_CACHE_MODE_WT.
653  */
lookup_memtype(u64 paddr)654 static enum page_cache_mode lookup_memtype(u64 paddr)
655 {
656 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
657 	struct memtype *entry;
658 
659 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
660 		return rettype;
661 
662 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
663 		struct page *page;
664 
665 		page = pfn_to_page(paddr >> PAGE_SHIFT);
666 		return get_page_memtype(page);
667 	}
668 
669 	spin_lock(&memtype_lock);
670 
671 	entry = memtype_lookup(paddr);
672 	if (entry != NULL)
673 		rettype = entry->type;
674 	else
675 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
676 
677 	spin_unlock(&memtype_lock);
678 
679 	return rettype;
680 }
681 
682 /**
683  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
684  * of @pfn cannot be overridden by UC MTRR memory type.
685  *
686  * Only to be called when PAT is enabled.
687  *
688  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
689  * Returns false in other cases.
690  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)691 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
692 {
693 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
694 
695 	return cm == _PAGE_CACHE_MODE_UC ||
696 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
697 	       cm == _PAGE_CACHE_MODE_WC;
698 }
699 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
700 
701 /**
702  * memtype_reserve_io - Request a memory type mapping for a region of memory
703  * @start: start (physical address) of the region
704  * @end: end (physical address) of the region
705  * @type: A pointer to memtype, with requested type. On success, requested
706  * or any other compatible type that was available for the region is returned
707  *
708  * On success, returns 0
709  * On failure, returns non-zero
710  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)711 int memtype_reserve_io(resource_size_t start, resource_size_t end,
712 			enum page_cache_mode *type)
713 {
714 	resource_size_t size = end - start;
715 	enum page_cache_mode req_type = *type;
716 	enum page_cache_mode new_type;
717 	int ret;
718 
719 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
720 
721 	ret = memtype_reserve(start, end, req_type, &new_type);
722 	if (ret)
723 		goto out_err;
724 
725 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
726 		goto out_free;
727 
728 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
729 		goto out_free;
730 
731 	*type = new_type;
732 	return 0;
733 
734 out_free:
735 	memtype_free(start, end);
736 	ret = -EBUSY;
737 out_err:
738 	return ret;
739 }
740 
741 /**
742  * memtype_free_io - Release a memory type mapping for a region of memory
743  * @start: start (physical address) of the region
744  * @end: end (physical address) of the region
745  */
memtype_free_io(resource_size_t start,resource_size_t end)746 void memtype_free_io(resource_size_t start, resource_size_t end)
747 {
748 	memtype_free(start, end);
749 }
750 
751 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)752 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
753 {
754 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
755 
756 	return memtype_reserve_io(start, start + size, &type);
757 }
758 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
759 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)760 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
761 {
762 	memtype_free_io(start, start + size);
763 }
764 EXPORT_SYMBOL(arch_io_free_memtype_wc);
765 #endif
766 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)767 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
768 				unsigned long size, pgprot_t vma_prot)
769 {
770 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
771 		vma_prot = pgprot_decrypted(vma_prot);
772 
773 	return vma_prot;
774 }
775 
776 #ifdef CONFIG_STRICT_DEVMEM
777 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)778 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
779 {
780 	return 1;
781 }
782 #else
783 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)784 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
785 {
786 	u64 from = ((u64)pfn) << PAGE_SHIFT;
787 	u64 to = from + size;
788 	u64 cursor = from;
789 
790 	if (!pat_enabled())
791 		return 1;
792 
793 	while (cursor < to) {
794 		if (!devmem_is_allowed(pfn))
795 			return 0;
796 		cursor += PAGE_SIZE;
797 		pfn++;
798 	}
799 	return 1;
800 }
801 #endif /* CONFIG_STRICT_DEVMEM */
802 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)803 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
804 				unsigned long size, pgprot_t *vma_prot)
805 {
806 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
807 
808 	if (!range_is_allowed(pfn, size))
809 		return 0;
810 
811 	if (file->f_flags & O_DSYNC)
812 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
813 
814 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
815 			     cachemode2protval(pcm));
816 	return 1;
817 }
818 
819 /*
820  * Change the memory type for the physical address range in kernel identity
821  * mapping space if that range is a part of identity map.
822  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)823 int memtype_kernel_map_sync(u64 base, unsigned long size,
824 			    enum page_cache_mode pcm)
825 {
826 	unsigned long id_sz;
827 
828 	if (base > __pa(high_memory-1))
829 		return 0;
830 
831 	/*
832 	 * Some areas in the middle of the kernel identity range
833 	 * are not mapped, for example the PCI space.
834 	 */
835 	if (!page_is_ram(base >> PAGE_SHIFT))
836 		return 0;
837 
838 	id_sz = (__pa(high_memory-1) <= base + size) ?
839 				__pa(high_memory) - base : size;
840 
841 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
842 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
843 			current->comm, current->pid,
844 			cattr_name(pcm),
845 			base, (unsigned long long)(base + size-1));
846 		return -EINVAL;
847 	}
848 	return 0;
849 }
850 
851 /*
852  * Internal interface to reserve a range of physical memory with prot.
853  * Reserved non RAM regions only and after successful memtype_reserve,
854  * this func also keeps identity mapping (if any) in sync with this new prot.
855  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)856 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
857 				int strict_prot)
858 {
859 	int is_ram = 0;
860 	int ret;
861 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
862 	enum page_cache_mode pcm = want_pcm;
863 
864 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
865 
866 	/*
867 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
868 	 * track of number of mappings of RAM pages. We can assert that
869 	 * the type requested matches the type of first page in the range.
870 	 */
871 	if (is_ram) {
872 		if (!pat_enabled())
873 			return 0;
874 
875 		pcm = lookup_memtype(paddr);
876 		if (want_pcm != pcm) {
877 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
878 				current->comm, current->pid,
879 				cattr_name(want_pcm),
880 				(unsigned long long)paddr,
881 				(unsigned long long)(paddr + size - 1),
882 				cattr_name(pcm));
883 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
884 					     (~_PAGE_CACHE_MASK)) |
885 					     cachemode2protval(pcm));
886 		}
887 		return 0;
888 	}
889 
890 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
891 	if (ret)
892 		return ret;
893 
894 	if (pcm != want_pcm) {
895 		if (strict_prot ||
896 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
897 			memtype_free(paddr, paddr + size);
898 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
899 			       current->comm, current->pid,
900 			       cattr_name(want_pcm),
901 			       (unsigned long long)paddr,
902 			       (unsigned long long)(paddr + size - 1),
903 			       cattr_name(pcm));
904 			return -EINVAL;
905 		}
906 		/*
907 		 * We allow returning different type than the one requested in
908 		 * non strict case.
909 		 */
910 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
911 				      (~_PAGE_CACHE_MASK)) |
912 				     cachemode2protval(pcm));
913 	}
914 
915 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
916 		memtype_free(paddr, paddr + size);
917 		return -EINVAL;
918 	}
919 	return 0;
920 }
921 
922 /*
923  * Internal interface to free a range of physical memory.
924  * Frees non RAM regions only.
925  */
free_pfn_range(u64 paddr,unsigned long size)926 static void free_pfn_range(u64 paddr, unsigned long size)
927 {
928 	int is_ram;
929 
930 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
931 	if (is_ram == 0)
932 		memtype_free(paddr, paddr + size);
933 }
934 
follow_phys(struct vm_area_struct * vma,unsigned long * prot,resource_size_t * phys)935 static int follow_phys(struct vm_area_struct *vma, unsigned long *prot,
936 		resource_size_t *phys)
937 {
938 	struct follow_pfnmap_args args = { .vma = vma, .address = vma->vm_start };
939 
940 	if (follow_pfnmap_start(&args))
941 		return -EINVAL;
942 
943 	/* Never return PFNs of anon folios in COW mappings. */
944 	if (!args.special) {
945 		follow_pfnmap_end(&args);
946 		return -EINVAL;
947 	}
948 
949 	*prot = pgprot_val(args.pgprot);
950 	*phys = (resource_size_t)args.pfn << PAGE_SHIFT;
951 	follow_pfnmap_end(&args);
952 	return 0;
953 }
954 
get_pat_info(struct vm_area_struct * vma,resource_size_t * paddr,pgprot_t * pgprot)955 static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
956 		pgprot_t *pgprot)
957 {
958 	unsigned long prot;
959 
960 	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT));
961 
962 	/*
963 	 * We need the starting PFN and cachemode used for track_pfn_remap()
964 	 * that covered the whole VMA. For most mappings, we can obtain that
965 	 * information from the page tables. For COW mappings, we might now
966 	 * suddenly have anon folios mapped and follow_phys() will fail.
967 	 *
968 	 * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to
969 	 * detect the PFN. If we need the cachemode as well, we're out of luck
970 	 * for now and have to fail fork().
971 	 */
972 	if (!follow_phys(vma, &prot, paddr)) {
973 		if (pgprot)
974 			*pgprot = __pgprot(prot);
975 		return 0;
976 	}
977 	if (is_cow_mapping(vma->vm_flags)) {
978 		if (pgprot)
979 			return -EINVAL;
980 		*paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
981 		return 0;
982 	}
983 	WARN_ON_ONCE(1);
984 	return -EINVAL;
985 }
986 
987 /*
988  * track_pfn_copy is called when vma that is covering the pfnmap gets
989  * copied through copy_page_range().
990  *
991  * If the vma has a linear pfn mapping for the entire range, we get the prot
992  * from pte and reserve the entire vma range with single reserve_pfn_range call.
993  */
track_pfn_copy(struct vm_area_struct * vma)994 int track_pfn_copy(struct vm_area_struct *vma)
995 {
996 	resource_size_t paddr;
997 	unsigned long vma_size = vma->vm_end - vma->vm_start;
998 	pgprot_t pgprot;
999 
1000 	if (vma->vm_flags & VM_PAT) {
1001 		if (get_pat_info(vma, &paddr, &pgprot))
1002 			return -EINVAL;
1003 		/* reserve the whole chunk covered by vma. */
1004 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * prot is passed in as a parameter for the new mapping. If the vma has
1012  * a linear pfn mapping for the entire range, or no vma is provided,
1013  * reserve the entire pfn + size range with single reserve_pfn_range
1014  * call.
1015  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1016 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1017 		    unsigned long pfn, unsigned long addr, unsigned long size)
1018 {
1019 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1020 	enum page_cache_mode pcm;
1021 
1022 	/* reserve the whole chunk starting from paddr */
1023 	if (!vma || (addr == vma->vm_start
1024 				&& size == (vma->vm_end - vma->vm_start))) {
1025 		int ret;
1026 
1027 		ret = reserve_pfn_range(paddr, size, prot, 0);
1028 		if (ret == 0 && vma)
1029 			vm_flags_set(vma, VM_PAT);
1030 		return ret;
1031 	}
1032 
1033 	if (!pat_enabled())
1034 		return 0;
1035 
1036 	/*
1037 	 * For anything smaller than the vma size we set prot based on the
1038 	 * lookup.
1039 	 */
1040 	pcm = lookup_memtype(paddr);
1041 
1042 	/* Check memtype for the remaining pages */
1043 	while (size > PAGE_SIZE) {
1044 		size -= PAGE_SIZE;
1045 		paddr += PAGE_SIZE;
1046 		if (pcm != lookup_memtype(paddr))
1047 			return -EINVAL;
1048 	}
1049 
1050 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1051 			 cachemode2protval(pcm));
1052 
1053 	return 0;
1054 }
1055 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1056 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1057 {
1058 	enum page_cache_mode pcm;
1059 
1060 	if (!pat_enabled())
1061 		return;
1062 
1063 	/* Set prot based on lookup */
1064 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1065 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1066 			 cachemode2protval(pcm));
1067 }
1068 
1069 /*
1070  * untrack_pfn is called while unmapping a pfnmap for a region.
1071  * untrack can be called for a specific region indicated by pfn and size or
1072  * can be for the entire vma (in which case pfn, size are zero).
1073  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1074 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1075 		 unsigned long size, bool mm_wr_locked)
1076 {
1077 	resource_size_t paddr;
1078 
1079 	if (vma && !(vma->vm_flags & VM_PAT))
1080 		return;
1081 
1082 	/* free the chunk starting from pfn or the whole chunk */
1083 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1084 	if (!paddr && !size) {
1085 		if (get_pat_info(vma, &paddr, NULL))
1086 			return;
1087 		size = vma->vm_end - vma->vm_start;
1088 	}
1089 	free_pfn_range(paddr, size);
1090 	if (vma) {
1091 		if (mm_wr_locked)
1092 			vm_flags_clear(vma, VM_PAT);
1093 		else
1094 			__vm_flags_mod(vma, 0, VM_PAT);
1095 	}
1096 }
1097 
1098 /*
1099  * untrack_pfn_clear is called if the following situation fits:
1100  *
1101  * 1) while mremapping a pfnmap for a new region,  with the old vma after
1102  * its pfnmap page table has been removed.  The new vma has a new pfnmap
1103  * to the same pfn & cache type with VM_PAT set.
1104  * 2) while duplicating vm area, the new vma fails to copy the pgtable from
1105  * old vma.
1106  */
untrack_pfn_clear(struct vm_area_struct * vma)1107 void untrack_pfn_clear(struct vm_area_struct *vma)
1108 {
1109 	vm_flags_clear(vma, VM_PAT);
1110 }
1111 
pgprot_writecombine(pgprot_t prot)1112 pgprot_t pgprot_writecombine(pgprot_t prot)
1113 {
1114 	return __pgprot(pgprot_val(prot) |
1115 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1116 }
1117 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1118 
pgprot_writethrough(pgprot_t prot)1119 pgprot_t pgprot_writethrough(pgprot_t prot)
1120 {
1121 	return __pgprot(pgprot_val(prot) |
1122 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1123 }
1124 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1125 
1126 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1127 
1128 /*
1129  * We are allocating a temporary printout-entry to be passed
1130  * between seq_start()/next() and seq_show():
1131  */
memtype_get_idx(loff_t pos)1132 static struct memtype *memtype_get_idx(loff_t pos)
1133 {
1134 	struct memtype *entry_print;
1135 	int ret;
1136 
1137 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1138 	if (!entry_print)
1139 		return NULL;
1140 
1141 	spin_lock(&memtype_lock);
1142 	ret = memtype_copy_nth_element(entry_print, pos);
1143 	spin_unlock(&memtype_lock);
1144 
1145 	/* Free it on error: */
1146 	if (ret) {
1147 		kfree(entry_print);
1148 		return NULL;
1149 	}
1150 
1151 	return entry_print;
1152 }
1153 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1154 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1155 {
1156 	if (*pos == 0) {
1157 		++*pos;
1158 		seq_puts(seq, "PAT memtype list:\n");
1159 	}
1160 
1161 	return memtype_get_idx(*pos);
1162 }
1163 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1164 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1165 {
1166 	kfree(v);
1167 	++*pos;
1168 	return memtype_get_idx(*pos);
1169 }
1170 
memtype_seq_stop(struct seq_file * seq,void * v)1171 static void memtype_seq_stop(struct seq_file *seq, void *v)
1172 {
1173 	kfree(v);
1174 }
1175 
memtype_seq_show(struct seq_file * seq,void * v)1176 static int memtype_seq_show(struct seq_file *seq, void *v)
1177 {
1178 	struct memtype *entry_print = (struct memtype *)v;
1179 
1180 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1181 			entry_print->start,
1182 			entry_print->end,
1183 			cattr_name(entry_print->type));
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct seq_operations memtype_seq_ops = {
1189 	.start = memtype_seq_start,
1190 	.next  = memtype_seq_next,
1191 	.stop  = memtype_seq_stop,
1192 	.show  = memtype_seq_show,
1193 };
1194 
memtype_seq_open(struct inode * inode,struct file * file)1195 static int memtype_seq_open(struct inode *inode, struct file *file)
1196 {
1197 	return seq_open(file, &memtype_seq_ops);
1198 }
1199 
1200 static const struct file_operations memtype_fops = {
1201 	.open    = memtype_seq_open,
1202 	.read    = seq_read,
1203 	.llseek  = seq_lseek,
1204 	.release = seq_release,
1205 };
1206 
pat_memtype_list_init(void)1207 static int __init pat_memtype_list_init(void)
1208 {
1209 	if (pat_enabled()) {
1210 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1211 				    arch_debugfs_dir, NULL, &memtype_fops);
1212 	}
1213 	return 0;
1214 }
1215 late_initcall(pat_memtype_list_init);
1216 
1217 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1218