xref: /linux/ipc/mqueue.c (revision abb0434496c4299223f69bcb07174dee2e764bec)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 	bool			 newns;	/* Set if newly created ipc namespace */
49 };
50 
51 #define MQUEUE_MAGIC	0x19800202
52 #define DIRENT_SIZE	20
53 #define FILENT_SIZE	80
54 
55 #define SEND		0
56 #define RECV		1
57 
58 #define STATE_NONE	0
59 #define STATE_READY	1
60 
61 struct posix_msg_tree_node {
62 	struct rb_node		rb_node;
63 	struct list_head	msg_list;
64 	int			priority;
65 };
66 
67 /*
68  * Locking:
69  *
70  * Accesses to a message queue are synchronized by acquiring info->lock.
71  *
72  * There are two notable exceptions:
73  * - The actual wakeup of a sleeping task is performed using the wake_q
74  *   framework. info->lock is already released when wake_up_q is called.
75  * - The exit codepaths after sleeping check ext_wait_queue->state without
76  *   any locks. If it is STATE_READY, then the syscall is completed without
77  *   acquiring info->lock.
78  *
79  * MQ_BARRIER:
80  * To achieve proper release/acquire memory barrier pairing, the state is set to
81  * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82  * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83  *
84  * This prevents the following races:
85  *
86  * 1) With the simple wake_q_add(), the task could be gone already before
87  *    the increase of the reference happens
88  * Thread A
89  *				Thread B
90  * WRITE_ONCE(wait.state, STATE_NONE);
91  * schedule_hrtimeout()
92  *				wake_q_add(A)
93  *				if (cmpxchg()) // success
94  *				   ->state = STATE_READY (reordered)
95  * <timeout returns>
96  * if (wait.state == STATE_READY) return;
97  * sysret to user space
98  * sys_exit()
99  *				get_task_struct() // UaF
100  *
101  * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102  * the smp_store_release() that does ->state = STATE_READY.
103  *
104  * 2) Without proper _release/_acquire barriers, the woken up task
105  *    could read stale data
106  *
107  * Thread A
108  *				Thread B
109  * do_mq_timedreceive
110  * WRITE_ONCE(wait.state, STATE_NONE);
111  * schedule_hrtimeout()
112  *				state = STATE_READY;
113  * <timeout returns>
114  * if (wait.state == STATE_READY) return;
115  * msg_ptr = wait.msg;		// Access to stale data!
116  *				receiver->msg = message; (reordered)
117  *
118  * Solution: use _release and _acquire barriers.
119  *
120  * 3) There is intentionally no barrier when setting current->state
121  *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122  *    release memory barrier, and the wakeup is triggered when holding
123  *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
124  *    acquire memory barrier.
125  */
126 
127 struct ext_wait_queue {		/* queue of sleeping tasks */
128 	struct task_struct *task;
129 	struct list_head list;
130 	struct msg_msg *msg;	/* ptr of loaded message */
131 	int state;		/* one of STATE_* values */
132 };
133 
134 struct mqueue_inode_info {
135 	spinlock_t lock;
136 	struct inode vfs_inode;
137 	wait_queue_head_t wait_q;
138 
139 	struct rb_root msg_tree;
140 	struct rb_node *msg_tree_rightmost;
141 	struct posix_msg_tree_node *node_cache;
142 	struct mq_attr attr;
143 
144 	struct sigevent notify;
145 	struct pid *notify_owner;
146 	u32 notify_self_exec_id;
147 	struct user_namespace *notify_user_ns;
148 	struct ucounts *ucounts;	/* user who created, for accounting */
149 	struct sock *notify_sock;
150 	struct sk_buff *notify_cookie;
151 
152 	/* for tasks waiting for free space and messages, respectively */
153 	struct ext_wait_queue e_wait_q[2];
154 
155 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 };
157 
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
164 
165 static struct kmem_cache *mqueue_inode_cachep;
166 
167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
168 {
169 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
170 }
171 
172 /*
173  * This routine should be called with the mq_lock held.
174  */
175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
176 {
177 	return get_ipc_ns(inode->i_sb->s_fs_info);
178 }
179 
180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
181 {
182 	struct ipc_namespace *ns;
183 
184 	spin_lock(&mq_lock);
185 	ns = __get_ns_from_inode(inode);
186 	spin_unlock(&mq_lock);
187 	return ns;
188 }
189 
190 /* Auxiliary functions to manipulate messages' list */
191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
192 {
193 	struct rb_node **p, *parent = NULL;
194 	struct posix_msg_tree_node *leaf;
195 	bool rightmost = true;
196 
197 	p = &info->msg_tree.rb_node;
198 	while (*p) {
199 		parent = *p;
200 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
201 
202 		if (likely(leaf->priority == msg->m_type))
203 			goto insert_msg;
204 		else if (msg->m_type < leaf->priority) {
205 			p = &(*p)->rb_left;
206 			rightmost = false;
207 		} else
208 			p = &(*p)->rb_right;
209 	}
210 	if (info->node_cache) {
211 		leaf = info->node_cache;
212 		info->node_cache = NULL;
213 	} else {
214 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215 		if (!leaf)
216 			return -ENOMEM;
217 		INIT_LIST_HEAD(&leaf->msg_list);
218 	}
219 	leaf->priority = msg->m_type;
220 
221 	if (rightmost)
222 		info->msg_tree_rightmost = &leaf->rb_node;
223 
224 	rb_link_node(&leaf->rb_node, parent, p);
225 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
226 insert_msg:
227 	info->attr.mq_curmsgs++;
228 	info->qsize += msg->m_ts;
229 	list_add_tail(&msg->m_list, &leaf->msg_list);
230 	return 0;
231 }
232 
233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 				  struct mqueue_inode_info *info)
235 {
236 	struct rb_node *node = &leaf->rb_node;
237 
238 	if (info->msg_tree_rightmost == node)
239 		info->msg_tree_rightmost = rb_prev(node);
240 
241 	rb_erase(node, &info->msg_tree);
242 	if (info->node_cache)
243 		kfree(leaf);
244 	else
245 		info->node_cache = leaf;
246 }
247 
248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
249 {
250 	struct rb_node *parent = NULL;
251 	struct posix_msg_tree_node *leaf;
252 	struct msg_msg *msg;
253 
254 try_again:
255 	/*
256 	 * During insert, low priorities go to the left and high to the
257 	 * right.  On receive, we want the highest priorities first, so
258 	 * walk all the way to the right.
259 	 */
260 	parent = info->msg_tree_rightmost;
261 	if (!parent) {
262 		if (info->attr.mq_curmsgs) {
263 			pr_warn_once("Inconsistency in POSIX message queue, "
264 				     "no tree element, but supposedly messages "
265 				     "should exist!\n");
266 			info->attr.mq_curmsgs = 0;
267 		}
268 		return NULL;
269 	}
270 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271 	if (unlikely(list_empty(&leaf->msg_list))) {
272 		pr_warn_once("Inconsistency in POSIX message queue, "
273 			     "empty leaf node but we haven't implemented "
274 			     "lazy leaf delete!\n");
275 		msg_tree_erase(leaf, info);
276 		goto try_again;
277 	} else {
278 		msg = list_first_entry(&leaf->msg_list,
279 				       struct msg_msg, m_list);
280 		list_del(&msg->m_list);
281 		if (list_empty(&leaf->msg_list)) {
282 			msg_tree_erase(leaf, info);
283 		}
284 	}
285 	info->attr.mq_curmsgs--;
286 	info->qsize -= msg->m_ts;
287 	return msg;
288 }
289 
290 static struct inode *mqueue_get_inode(struct super_block *sb,
291 		struct ipc_namespace *ipc_ns, umode_t mode,
292 		struct mq_attr *attr)
293 {
294 	struct inode *inode;
295 	int ret = -ENOMEM;
296 
297 	inode = new_inode(sb);
298 	if (!inode)
299 		goto err;
300 
301 	inode->i_ino = get_next_ino();
302 	inode->i_mode = mode;
303 	inode->i_uid = current_fsuid();
304 	inode->i_gid = current_fsgid();
305 	simple_inode_init_ts(inode);
306 
307 	if (S_ISREG(mode)) {
308 		struct mqueue_inode_info *info;
309 		unsigned long mq_bytes, mq_treesize;
310 
311 		inode->i_fop = &mqueue_file_operations;
312 		inode->i_size = FILENT_SIZE;
313 		/* mqueue specific info */
314 		info = MQUEUE_I(inode);
315 		spin_lock_init(&info->lock);
316 		init_waitqueue_head(&info->wait_q);
317 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
318 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
319 		info->notify_owner = NULL;
320 		info->notify_user_ns = NULL;
321 		info->qsize = 0;
322 		info->ucounts = NULL;	/* set when all is ok */
323 		info->msg_tree = RB_ROOT;
324 		info->msg_tree_rightmost = NULL;
325 		info->node_cache = NULL;
326 		memset(&info->attr, 0, sizeof(info->attr));
327 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328 					   ipc_ns->mq_msg_default);
329 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330 					    ipc_ns->mq_msgsize_default);
331 		if (attr) {
332 			info->attr.mq_maxmsg = attr->mq_maxmsg;
333 			info->attr.mq_msgsize = attr->mq_msgsize;
334 		}
335 		/*
336 		 * We used to allocate a static array of pointers and account
337 		 * the size of that array as well as one msg_msg struct per
338 		 * possible message into the queue size. That's no longer
339 		 * accurate as the queue is now an rbtree and will grow and
340 		 * shrink depending on usage patterns.  We can, however, still
341 		 * account one msg_msg struct per message, but the nodes are
342 		 * allocated depending on priority usage, and most programs
343 		 * only use one, or a handful, of priorities.  However, since
344 		 * this is pinned memory, we need to assume worst case, so
345 		 * that means the min(mq_maxmsg, max_priorities) * struct
346 		 * posix_msg_tree_node.
347 		 */
348 
349 		ret = -EINVAL;
350 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
351 			goto out_inode;
352 		if (capable(CAP_SYS_RESOURCE)) {
353 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
355 				goto out_inode;
356 		} else {
357 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
359 				goto out_inode;
360 		}
361 		ret = -EOVERFLOW;
362 		/* check for overflow */
363 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
364 			goto out_inode;
365 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367 			sizeof(struct posix_msg_tree_node);
368 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369 		if (mq_bytes + mq_treesize < mq_bytes)
370 			goto out_inode;
371 		mq_bytes += mq_treesize;
372 		info->ucounts = get_ucounts(current_ucounts());
373 		if (info->ucounts) {
374 			long msgqueue;
375 
376 			spin_lock(&mq_lock);
377 			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
378 			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379 				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380 				spin_unlock(&mq_lock);
381 				put_ucounts(info->ucounts);
382 				info->ucounts = NULL;
383 				/* mqueue_evict_inode() releases info->messages */
384 				ret = -EMFILE;
385 				goto out_inode;
386 			}
387 			spin_unlock(&mq_lock);
388 		}
389 	} else if (S_ISDIR(mode)) {
390 		inc_nlink(inode);
391 		/* Some things misbehave if size == 0 on a directory */
392 		inode->i_size = 2 * DIRENT_SIZE;
393 		inode->i_op = &mqueue_dir_inode_operations;
394 		inode->i_fop = &simple_dir_operations;
395 	}
396 
397 	return inode;
398 out_inode:
399 	iput(inode);
400 err:
401 	return ERR_PTR(ret);
402 }
403 
404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
405 {
406 	struct inode *inode;
407 	struct ipc_namespace *ns = sb->s_fs_info;
408 
409 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410 	sb->s_blocksize = PAGE_SIZE;
411 	sb->s_blocksize_bits = PAGE_SHIFT;
412 	sb->s_magic = MQUEUE_MAGIC;
413 	sb->s_op = &mqueue_super_ops;
414 	sb->s_d_flags = DCACHE_DONTCACHE;
415 
416 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
417 	if (IS_ERR(inode))
418 		return PTR_ERR(inode);
419 
420 	sb->s_root = d_make_root(inode);
421 	if (!sb->s_root)
422 		return -ENOMEM;
423 	return 0;
424 }
425 
426 static int mqueue_get_tree(struct fs_context *fc)
427 {
428 	struct mqueue_fs_context *ctx = fc->fs_private;
429 
430 	/*
431 	 * With a newly created ipc namespace, we don't need to do a search
432 	 * for an ipc namespace match, but we still need to set s_fs_info.
433 	 */
434 	if (ctx->newns) {
435 		fc->s_fs_info = ctx->ipc_ns;
436 		return get_tree_nodev(fc, mqueue_fill_super);
437 	}
438 	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
439 }
440 
441 static void mqueue_fs_context_free(struct fs_context *fc)
442 {
443 	struct mqueue_fs_context *ctx = fc->fs_private;
444 
445 	put_ipc_ns(ctx->ipc_ns);
446 	kfree(ctx);
447 }
448 
449 static int mqueue_init_fs_context(struct fs_context *fc)
450 {
451 	struct mqueue_fs_context *ctx;
452 
453 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
454 	if (!ctx)
455 		return -ENOMEM;
456 
457 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
458 	put_user_ns(fc->user_ns);
459 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
460 	fc->fs_private = ctx;
461 	fc->ops = &mqueue_fs_context_ops;
462 	return 0;
463 }
464 
465 /*
466  * mq_init_ns() is currently the only caller of mq_create_mount().
467  * So the ns parameter is always a newly created ipc namespace.
468  */
469 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
470 {
471 	struct mqueue_fs_context *ctx;
472 	struct fs_context *fc;
473 	struct vfsmount *mnt;
474 
475 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
476 	if (IS_ERR(fc))
477 		return ERR_CAST(fc);
478 
479 	ctx = fc->fs_private;
480 	ctx->newns = true;
481 	put_ipc_ns(ctx->ipc_ns);
482 	ctx->ipc_ns = get_ipc_ns(ns);
483 	put_user_ns(fc->user_ns);
484 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
485 
486 	mnt = fc_mount_longterm(fc);
487 	put_fs_context(fc);
488 	return mnt;
489 }
490 
491 static void init_once(void *foo)
492 {
493 	struct mqueue_inode_info *p = foo;
494 
495 	inode_init_once(&p->vfs_inode);
496 }
497 
498 static struct inode *mqueue_alloc_inode(struct super_block *sb)
499 {
500 	struct mqueue_inode_info *ei;
501 
502 	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
503 	if (!ei)
504 		return NULL;
505 	return &ei->vfs_inode;
506 }
507 
508 static void mqueue_free_inode(struct inode *inode)
509 {
510 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
511 }
512 
513 static void mqueue_evict_inode(struct inode *inode)
514 {
515 	struct mqueue_inode_info *info;
516 	struct ipc_namespace *ipc_ns;
517 	struct msg_msg *msg, *nmsg;
518 	LIST_HEAD(tmp_msg);
519 
520 	clear_inode(inode);
521 
522 	if (S_ISDIR(inode->i_mode))
523 		return;
524 
525 	ipc_ns = get_ns_from_inode(inode);
526 	info = MQUEUE_I(inode);
527 	spin_lock(&info->lock);
528 	while ((msg = msg_get(info)) != NULL)
529 		list_add_tail(&msg->m_list, &tmp_msg);
530 	kfree(info->node_cache);
531 	spin_unlock(&info->lock);
532 
533 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
534 		list_del(&msg->m_list);
535 		free_msg(msg);
536 	}
537 
538 	if (info->ucounts) {
539 		unsigned long mq_bytes, mq_treesize;
540 
541 		/* Total amount of bytes accounted for the mqueue */
542 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
543 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
544 			sizeof(struct posix_msg_tree_node);
545 
546 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
547 					  info->attr.mq_msgsize);
548 
549 		spin_lock(&mq_lock);
550 		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
551 		/*
552 		 * get_ns_from_inode() ensures that the
553 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
554 		 * to which we now hold a reference, or it is NULL.
555 		 * We can't put it here under mq_lock, though.
556 		 */
557 		if (ipc_ns)
558 			ipc_ns->mq_queues_count--;
559 		spin_unlock(&mq_lock);
560 		put_ucounts(info->ucounts);
561 		info->ucounts = NULL;
562 	}
563 	if (ipc_ns)
564 		put_ipc_ns(ipc_ns);
565 }
566 
567 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
568 {
569 	struct inode *dir = dentry->d_parent->d_inode;
570 	struct inode *inode;
571 	struct mq_attr *attr = arg;
572 	int error;
573 	struct ipc_namespace *ipc_ns;
574 
575 	spin_lock(&mq_lock);
576 	ipc_ns = __get_ns_from_inode(dir);
577 	if (!ipc_ns) {
578 		error = -EACCES;
579 		goto out_unlock;
580 	}
581 
582 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
583 	    !capable(CAP_SYS_RESOURCE)) {
584 		error = -ENOSPC;
585 		goto out_unlock;
586 	}
587 	ipc_ns->mq_queues_count++;
588 	spin_unlock(&mq_lock);
589 
590 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
591 	if (IS_ERR(inode)) {
592 		error = PTR_ERR(inode);
593 		spin_lock(&mq_lock);
594 		ipc_ns->mq_queues_count--;
595 		goto out_unlock;
596 	}
597 
598 	put_ipc_ns(ipc_ns);
599 	dir->i_size += DIRENT_SIZE;
600 	simple_inode_init_ts(dir);
601 
602 	d_make_persistent(dentry, inode);
603 	return 0;
604 out_unlock:
605 	spin_unlock(&mq_lock);
606 	if (ipc_ns)
607 		put_ipc_ns(ipc_ns);
608 	return error;
609 }
610 
611 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
612 			 struct dentry *dentry, umode_t mode, bool excl)
613 {
614 	return mqueue_create_attr(dentry, mode, NULL);
615 }
616 
617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618 {
619 	dir->i_size -= DIRENT_SIZE;
620 	return simple_unlink(dir, dentry);
621 }
622 
623 /*
624 *	This is routine for system read from queue file.
625 *	To avoid mess with doing here some sort of mq_receive we allow
626 *	to read only queue size & notification info (the only values
627 *	that are interesting from user point of view and aren't accessible
628 *	through std routines)
629 */
630 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
631 				size_t count, loff_t *off)
632 {
633 	struct inode *inode = file_inode(filp);
634 	struct mqueue_inode_info *info = MQUEUE_I(inode);
635 	char buffer[FILENT_SIZE];
636 	ssize_t ret;
637 
638 	spin_lock(&info->lock);
639 	snprintf(buffer, sizeof(buffer),
640 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
641 			info->qsize,
642 			info->notify_owner ? info->notify.sigev_notify : 0,
643 			(info->notify_owner &&
644 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
645 				info->notify.sigev_signo : 0,
646 			pid_vnr(info->notify_owner));
647 	spin_unlock(&info->lock);
648 	buffer[sizeof(buffer)-1] = '\0';
649 
650 	ret = simple_read_from_buffer(u_data, count, off, buffer,
651 				strlen(buffer));
652 	if (ret <= 0)
653 		return ret;
654 
655 	inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
656 	return ret;
657 }
658 
659 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
660 {
661 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
662 
663 	spin_lock(&info->lock);
664 	if (task_tgid(current) == info->notify_owner)
665 		remove_notification(info);
666 
667 	spin_unlock(&info->lock);
668 	return 0;
669 }
670 
671 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
672 {
673 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
674 	__poll_t retval = 0;
675 
676 	poll_wait(filp, &info->wait_q, poll_tab);
677 
678 	spin_lock(&info->lock);
679 	if (info->attr.mq_curmsgs)
680 		retval = EPOLLIN | EPOLLRDNORM;
681 
682 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
683 		retval |= EPOLLOUT | EPOLLWRNORM;
684 	spin_unlock(&info->lock);
685 
686 	return retval;
687 }
688 
689 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
690 static void wq_add(struct mqueue_inode_info *info, int sr,
691 			struct ext_wait_queue *ewp)
692 {
693 	struct ext_wait_queue *walk;
694 
695 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
696 		if (walk->task->prio <= current->prio) {
697 			list_add_tail(&ewp->list, &walk->list);
698 			return;
699 		}
700 	}
701 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
702 }
703 
704 /*
705  * Puts current task to sleep. Caller must hold queue lock. After return
706  * lock isn't held.
707  * sr: SEND or RECV
708  */
709 static int wq_sleep(struct mqueue_inode_info *info, int sr,
710 		    ktime_t *timeout, struct ext_wait_queue *ewp)
711 	__releases(&info->lock)
712 {
713 	int retval;
714 	signed long time;
715 
716 	wq_add(info, sr, ewp);
717 
718 	for (;;) {
719 		/* memory barrier not required, we hold info->lock */
720 		__set_current_state(TASK_INTERRUPTIBLE);
721 
722 		spin_unlock(&info->lock);
723 		time = schedule_hrtimeout_range_clock(timeout, 0,
724 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
725 
726 		if (READ_ONCE(ewp->state) == STATE_READY) {
727 			/* see MQ_BARRIER for purpose/pairing */
728 			smp_acquire__after_ctrl_dep();
729 			retval = 0;
730 			goto out;
731 		}
732 		spin_lock(&info->lock);
733 
734 		/* we hold info->lock, so no memory barrier required */
735 		if (READ_ONCE(ewp->state) == STATE_READY) {
736 			retval = 0;
737 			goto out_unlock;
738 		}
739 		if (signal_pending(current)) {
740 			retval = -ERESTARTSYS;
741 			break;
742 		}
743 		if (time == 0) {
744 			retval = -ETIMEDOUT;
745 			break;
746 		}
747 	}
748 	list_del(&ewp->list);
749 out_unlock:
750 	spin_unlock(&info->lock);
751 out:
752 	return retval;
753 }
754 
755 /*
756  * Returns waiting task that should be serviced first or NULL if none exists
757  */
758 static struct ext_wait_queue *wq_get_first_waiter(
759 		struct mqueue_inode_info *info, int sr)
760 {
761 	struct list_head *ptr;
762 
763 	ptr = info->e_wait_q[sr].list.prev;
764 	if (ptr == &info->e_wait_q[sr].list)
765 		return NULL;
766 	return list_entry(ptr, struct ext_wait_queue, list);
767 }
768 
769 
770 static inline void set_cookie(struct sk_buff *skb, char code)
771 {
772 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
773 }
774 
775 /*
776  * The next function is only to split too long sys_mq_timedsend
777  */
778 static void __do_notify(struct mqueue_inode_info *info)
779 {
780 	/* notification
781 	 * invoked when there is registered process and there isn't process
782 	 * waiting synchronously for message AND state of queue changed from
783 	 * empty to not empty. Here we are sure that no one is waiting
784 	 * synchronously. */
785 	if (info->notify_owner &&
786 	    info->attr.mq_curmsgs == 1) {
787 		switch (info->notify.sigev_notify) {
788 		case SIGEV_NONE:
789 			break;
790 		case SIGEV_SIGNAL: {
791 			struct kernel_siginfo sig_i;
792 			struct task_struct *task;
793 
794 			/* do_mq_notify() accepts sigev_signo == 0, why?? */
795 			if (!info->notify.sigev_signo)
796 				break;
797 
798 			clear_siginfo(&sig_i);
799 			sig_i.si_signo = info->notify.sigev_signo;
800 			sig_i.si_errno = 0;
801 			sig_i.si_code = SI_MESGQ;
802 			sig_i.si_value = info->notify.sigev_value;
803 			rcu_read_lock();
804 			/* map current pid/uid into info->owner's namespaces */
805 			sig_i.si_pid = task_tgid_nr_ns(current,
806 						ns_of_pid(info->notify_owner));
807 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
808 						current_uid());
809 			/*
810 			 * We can't use kill_pid_info(), this signal should
811 			 * bypass check_kill_permission(). It is from kernel
812 			 * but si_fromuser() can't know this.
813 			 * We do check the self_exec_id, to avoid sending
814 			 * signals to programs that don't expect them.
815 			 */
816 			task = pid_task(info->notify_owner, PIDTYPE_TGID);
817 			if (task && task->self_exec_id ==
818 						info->notify_self_exec_id) {
819 				do_send_sig_info(info->notify.sigev_signo,
820 						&sig_i, task, PIDTYPE_TGID);
821 			}
822 			rcu_read_unlock();
823 			break;
824 		}
825 		case SIGEV_THREAD:
826 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
827 			netlink_sendskb(info->notify_sock, info->notify_cookie);
828 			break;
829 		}
830 		/* after notification unregisters process */
831 		put_pid(info->notify_owner);
832 		put_user_ns(info->notify_user_ns);
833 		info->notify_owner = NULL;
834 		info->notify_user_ns = NULL;
835 	}
836 	wake_up(&info->wait_q);
837 }
838 
839 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
840 			   struct timespec64 *ts)
841 {
842 	if (get_timespec64(ts, u_abs_timeout))
843 		return -EFAULT;
844 	if (!timespec64_valid(ts))
845 		return -EINVAL;
846 	return 0;
847 }
848 
849 static void remove_notification(struct mqueue_inode_info *info)
850 {
851 	if (info->notify_owner != NULL &&
852 	    info->notify.sigev_notify == SIGEV_THREAD) {
853 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
854 		netlink_sendskb(info->notify_sock, info->notify_cookie);
855 	}
856 	put_pid(info->notify_owner);
857 	put_user_ns(info->notify_user_ns);
858 	info->notify_owner = NULL;
859 	info->notify_user_ns = NULL;
860 }
861 
862 static int prepare_open(struct dentry *dentry, int oflag, int ro,
863 			umode_t mode, struct filename *name,
864 			struct mq_attr *attr)
865 {
866 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
867 						  MAY_READ | MAY_WRITE };
868 	int acc;
869 
870 	if (d_really_is_negative(dentry)) {
871 		if (!(oflag & O_CREAT))
872 			return -ENOENT;
873 		if (ro)
874 			return ro;
875 		audit_inode_parent_hidden(name, dentry->d_parent);
876 		return vfs_mkobj(dentry, mode & ~current_umask(),
877 				  mqueue_create_attr, attr);
878 	}
879 	/* it already existed */
880 	audit_inode(name, dentry, 0);
881 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
882 		return -EEXIST;
883 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
884 		return -EINVAL;
885 	acc = oflag2acc[oflag & O_ACCMODE];
886 	return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
887 }
888 
889 static struct file *mqueue_file_open(struct filename *name,
890 				     struct vfsmount *mnt, int oflag, int ro,
891 				     umode_t mode, struct mq_attr *attr)
892 {
893 	struct dentry *dentry;
894 	struct file *file;
895 	int ret;
896 
897 	dentry = start_creating_noperm(mnt->mnt_root, &QSTR(name->name));
898 	if (IS_ERR(dentry))
899 		return ERR_CAST(dentry);
900 
901 	ret = prepare_open(dentry, oflag, ro, mode, name, attr);
902 	file = ERR_PTR(ret);
903 	if (!ret) {
904 		const struct path path = { .mnt = mnt, .dentry = dentry };
905 		file = dentry_open(&path, oflag, current_cred());
906 	}
907 
908 	end_creating(dentry);
909 	return file;
910 }
911 
912 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
913 		      struct mq_attr *attr)
914 {
915 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
916 	int fd, ro;
917 
918 	audit_mq_open(oflag, mode, attr);
919 
920 	CLASS(filename, name)(u_name);
921 	if (IS_ERR(name))
922 		return PTR_ERR(name);
923 
924 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
925 	fd = FD_ADD(O_CLOEXEC, mqueue_file_open(name, mnt, oflag, ro, mode, attr));
926 	if (!ro)
927 		mnt_drop_write(mnt);
928 	return fd;
929 }
930 
931 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
932 		struct mq_attr __user *, u_attr)
933 {
934 	struct mq_attr attr;
935 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
936 		return -EFAULT;
937 
938 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
939 }
940 
941 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
942 {
943 	int err;
944 	struct dentry *dentry;
945 	struct inode *inode;
946 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
947 	struct vfsmount *mnt = ipc_ns->mq_mnt;
948 	CLASS(filename, name)(u_name);
949 
950 	if (IS_ERR(name))
951 		return PTR_ERR(name);
952 
953 	audit_inode_parent_hidden(name, mnt->mnt_root);
954 	err = mnt_want_write(mnt);
955 	if (err)
956 		return err;
957 	dentry = start_removing_noperm(mnt->mnt_root, &QSTR(name->name));
958 	if (IS_ERR(dentry)) {
959 		err = PTR_ERR(dentry);
960 		goto out_drop_write;
961 	}
962 
963 	inode = d_inode(dentry);
964 	ihold(inode);
965 	err = vfs_unlink(&nop_mnt_idmap, d_inode(mnt->mnt_root),
966 			 dentry, NULL);
967 	end_removing(dentry);
968 	iput(inode);
969 
970 out_drop_write:
971 	mnt_drop_write(mnt);
972 	return err;
973 }
974 
975 /* Pipelined send and receive functions.
976  *
977  * If a receiver finds no waiting message, then it registers itself in the
978  * list of waiting receivers. A sender checks that list before adding the new
979  * message into the message array. If there is a waiting receiver, then it
980  * bypasses the message array and directly hands the message over to the
981  * receiver. The receiver accepts the message and returns without grabbing the
982  * queue spinlock:
983  *
984  * - Set pointer to message.
985  * - Queue the receiver task for later wakeup (without the info->lock).
986  * - Update its state to STATE_READY. Now the receiver can continue.
987  * - Wake up the process after the lock is dropped. Should the process wake up
988  *   before this wakeup (due to a timeout or a signal) it will either see
989  *   STATE_READY and continue or acquire the lock to check the state again.
990  *
991  * The same algorithm is used for senders.
992  */
993 
994 static inline void __pipelined_op(struct wake_q_head *wake_q,
995 				  struct mqueue_inode_info *info,
996 				  struct ext_wait_queue *this)
997 {
998 	struct task_struct *task;
999 
1000 	list_del(&this->list);
1001 	task = get_task_struct(this->task);
1002 
1003 	/* see MQ_BARRIER for purpose/pairing */
1004 	smp_store_release(&this->state, STATE_READY);
1005 	wake_q_add_safe(wake_q, task);
1006 }
1007 
1008 /* pipelined_send() - send a message directly to the task waiting in
1009  * sys_mq_timedreceive() (without inserting message into a queue).
1010  */
1011 static inline void pipelined_send(struct wake_q_head *wake_q,
1012 				  struct mqueue_inode_info *info,
1013 				  struct msg_msg *message,
1014 				  struct ext_wait_queue *receiver)
1015 {
1016 	receiver->msg = message;
1017 	__pipelined_op(wake_q, info, receiver);
1018 }
1019 
1020 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1021  * gets its message and put to the queue (we have one free place for sure). */
1022 static inline void pipelined_receive(struct wake_q_head *wake_q,
1023 				     struct mqueue_inode_info *info)
1024 {
1025 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1026 
1027 	if (!sender) {
1028 		/* for poll */
1029 		wake_up_interruptible(&info->wait_q);
1030 		return;
1031 	}
1032 	if (msg_insert(sender->msg, info))
1033 		return;
1034 
1035 	__pipelined_op(wake_q, info, sender);
1036 }
1037 
1038 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1039 		size_t msg_len, unsigned int msg_prio,
1040 		struct timespec64 *ts)
1041 {
1042 	struct inode *inode;
1043 	struct ext_wait_queue wait;
1044 	struct ext_wait_queue *receiver;
1045 	struct msg_msg *msg_ptr;
1046 	struct mqueue_inode_info *info;
1047 	ktime_t expires, *timeout = NULL;
1048 	struct posix_msg_tree_node *new_leaf = NULL;
1049 	int ret = 0;
1050 	DEFINE_WAKE_Q(wake_q);
1051 
1052 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1053 		return -EINVAL;
1054 
1055 	if (ts) {
1056 		expires = timespec64_to_ktime(*ts);
1057 		timeout = &expires;
1058 	}
1059 
1060 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1061 
1062 	CLASS(fd, f)(mqdes);
1063 	if (fd_empty(f))
1064 		return -EBADF;
1065 
1066 	inode = file_inode(fd_file(f));
1067 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1068 		return -EBADF;
1069 	info = MQUEUE_I(inode);
1070 	audit_file(fd_file(f));
1071 
1072 	if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE)))
1073 		return -EBADF;
1074 
1075 	if (unlikely(msg_len > info->attr.mq_msgsize))
1076 		return -EMSGSIZE;
1077 
1078 	/* First try to allocate memory, before doing anything with
1079 	 * existing queues. */
1080 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1081 	if (IS_ERR(msg_ptr))
1082 		return PTR_ERR(msg_ptr);
1083 	msg_ptr->m_ts = msg_len;
1084 	msg_ptr->m_type = msg_prio;
1085 
1086 	/*
1087 	 * msg_insert really wants us to have a valid, spare node struct so
1088 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1089 	 * fall back to that if necessary.
1090 	 */
1091 	if (!info->node_cache)
1092 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1093 
1094 	spin_lock(&info->lock);
1095 
1096 	if (!info->node_cache && new_leaf) {
1097 		/* Save our speculative allocation into the cache */
1098 		INIT_LIST_HEAD(&new_leaf->msg_list);
1099 		info->node_cache = new_leaf;
1100 		new_leaf = NULL;
1101 	} else {
1102 		kfree(new_leaf);
1103 	}
1104 
1105 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1106 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1107 			ret = -EAGAIN;
1108 		} else {
1109 			wait.task = current;
1110 			wait.msg = (void *) msg_ptr;
1111 
1112 			/* memory barrier not required, we hold info->lock */
1113 			WRITE_ONCE(wait.state, STATE_NONE);
1114 			ret = wq_sleep(info, SEND, timeout, &wait);
1115 			/*
1116 			 * wq_sleep must be called with info->lock held, and
1117 			 * returns with the lock released
1118 			 */
1119 			goto out_free;
1120 		}
1121 	} else {
1122 		receiver = wq_get_first_waiter(info, RECV);
1123 		if (receiver) {
1124 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1125 		} else {
1126 			/* adds message to the queue */
1127 			ret = msg_insert(msg_ptr, info);
1128 			if (ret)
1129 				goto out_unlock;
1130 			__do_notify(info);
1131 		}
1132 		simple_inode_init_ts(inode);
1133 	}
1134 out_unlock:
1135 	spin_unlock(&info->lock);
1136 	wake_up_q(&wake_q);
1137 out_free:
1138 	if (ret)
1139 		free_msg(msg_ptr);
1140 	return ret;
1141 }
1142 
1143 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1144 		size_t msg_len, unsigned int __user *u_msg_prio,
1145 		struct timespec64 *ts)
1146 {
1147 	ssize_t ret;
1148 	struct msg_msg *msg_ptr;
1149 	struct inode *inode;
1150 	struct mqueue_inode_info *info;
1151 	struct ext_wait_queue wait;
1152 	ktime_t expires, *timeout = NULL;
1153 	struct posix_msg_tree_node *new_leaf = NULL;
1154 
1155 	if (ts) {
1156 		expires = timespec64_to_ktime(*ts);
1157 		timeout = &expires;
1158 	}
1159 
1160 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1161 
1162 	CLASS(fd, f)(mqdes);
1163 	if (fd_empty(f))
1164 		return -EBADF;
1165 
1166 	inode = file_inode(fd_file(f));
1167 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1168 		return -EBADF;
1169 	info = MQUEUE_I(inode);
1170 	audit_file(fd_file(f));
1171 
1172 	if (unlikely(!(fd_file(f)->f_mode & FMODE_READ)))
1173 		return -EBADF;
1174 
1175 	/* checks if buffer is big enough */
1176 	if (unlikely(msg_len < info->attr.mq_msgsize))
1177 		return -EMSGSIZE;
1178 
1179 	/*
1180 	 * msg_insert really wants us to have a valid, spare node struct so
1181 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1182 	 * fall back to that if necessary.
1183 	 */
1184 	if (!info->node_cache)
1185 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1186 
1187 	spin_lock(&info->lock);
1188 
1189 	if (!info->node_cache && new_leaf) {
1190 		/* Save our speculative allocation into the cache */
1191 		INIT_LIST_HEAD(&new_leaf->msg_list);
1192 		info->node_cache = new_leaf;
1193 	} else {
1194 		kfree(new_leaf);
1195 	}
1196 
1197 	if (info->attr.mq_curmsgs == 0) {
1198 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1199 			spin_unlock(&info->lock);
1200 			ret = -EAGAIN;
1201 		} else {
1202 			wait.task = current;
1203 
1204 			/* memory barrier not required, we hold info->lock */
1205 			WRITE_ONCE(wait.state, STATE_NONE);
1206 			ret = wq_sleep(info, RECV, timeout, &wait);
1207 			msg_ptr = wait.msg;
1208 		}
1209 	} else {
1210 		DEFINE_WAKE_Q(wake_q);
1211 
1212 		msg_ptr = msg_get(info);
1213 
1214 		simple_inode_init_ts(inode);
1215 
1216 		/* There is now free space in queue. */
1217 		pipelined_receive(&wake_q, info);
1218 		spin_unlock(&info->lock);
1219 		wake_up_q(&wake_q);
1220 		ret = 0;
1221 	}
1222 	if (ret == 0) {
1223 		ret = msg_ptr->m_ts;
1224 
1225 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1226 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1227 			ret = -EFAULT;
1228 		}
1229 		free_msg(msg_ptr);
1230 	}
1231 	return ret;
1232 }
1233 
1234 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1235 		size_t, msg_len, unsigned int, msg_prio,
1236 		const struct __kernel_timespec __user *, u_abs_timeout)
1237 {
1238 	struct timespec64 ts, *p = NULL;
1239 	if (u_abs_timeout) {
1240 		int res = prepare_timeout(u_abs_timeout, &ts);
1241 		if (res)
1242 			return res;
1243 		p = &ts;
1244 	}
1245 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1246 }
1247 
1248 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1249 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1250 		const struct __kernel_timespec __user *, u_abs_timeout)
1251 {
1252 	struct timespec64 ts, *p = NULL;
1253 	if (u_abs_timeout) {
1254 		int res = prepare_timeout(u_abs_timeout, &ts);
1255 		if (res)
1256 			return res;
1257 		p = &ts;
1258 	}
1259 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1260 }
1261 
1262 /*
1263  * Notes: the case when user wants us to deregister (with NULL as pointer)
1264  * and he isn't currently owner of notification, will be silently discarded.
1265  * It isn't explicitly defined in the POSIX.
1266  */
1267 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1268 {
1269 	int ret;
1270 	struct sock *sock;
1271 	struct inode *inode;
1272 	struct mqueue_inode_info *info;
1273 	struct sk_buff *nc;
1274 
1275 	audit_mq_notify(mqdes, notification);
1276 
1277 	nc = NULL;
1278 	sock = NULL;
1279 	if (notification != NULL) {
1280 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1281 			     notification->sigev_notify != SIGEV_SIGNAL &&
1282 			     notification->sigev_notify != SIGEV_THREAD))
1283 			return -EINVAL;
1284 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1285 			!valid_signal(notification->sigev_signo)) {
1286 			return -EINVAL;
1287 		}
1288 		if (notification->sigev_notify == SIGEV_THREAD) {
1289 			long timeo;
1290 
1291 			/* create the notify skb */
1292 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1293 			if (!nc)
1294 				return -ENOMEM;
1295 
1296 			if (copy_from_user(nc->data,
1297 					notification->sigev_value.sival_ptr,
1298 					NOTIFY_COOKIE_LEN)) {
1299 				kfree_skb(nc);
1300 				return -EFAULT;
1301 			}
1302 
1303 			/* TODO: add a header? */
1304 			skb_put(nc, NOTIFY_COOKIE_LEN);
1305 			/* and attach it to the socket */
1306 retry:
1307 			sock = netlink_getsockbyfd(notification->sigev_signo);
1308 			if (IS_ERR(sock)) {
1309 				kfree_skb(nc);
1310 				return PTR_ERR(sock);
1311 			}
1312 
1313 			timeo = MAX_SCHEDULE_TIMEOUT;
1314 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1315 			if (ret == 1)
1316 				goto retry;
1317 			if (ret)
1318 				return ret;
1319 		}
1320 	}
1321 
1322 	CLASS(fd, f)(mqdes);
1323 	if (fd_empty(f)) {
1324 		ret = -EBADF;
1325 		goto out;
1326 	}
1327 
1328 	inode = file_inode(fd_file(f));
1329 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1330 		ret = -EBADF;
1331 		goto out;
1332 	}
1333 	info = MQUEUE_I(inode);
1334 
1335 	ret = 0;
1336 	spin_lock(&info->lock);
1337 	if (notification == NULL) {
1338 		if (info->notify_owner == task_tgid(current)) {
1339 			remove_notification(info);
1340 			inode_set_atime_to_ts(inode,
1341 					      inode_set_ctime_current(inode));
1342 		}
1343 	} else if (info->notify_owner != NULL) {
1344 		ret = -EBUSY;
1345 	} else {
1346 		switch (notification->sigev_notify) {
1347 		case SIGEV_NONE:
1348 			info->notify.sigev_notify = SIGEV_NONE;
1349 			break;
1350 		case SIGEV_THREAD:
1351 			info->notify_sock = sock;
1352 			info->notify_cookie = nc;
1353 			sock = NULL;
1354 			nc = NULL;
1355 			info->notify.sigev_notify = SIGEV_THREAD;
1356 			break;
1357 		case SIGEV_SIGNAL:
1358 			info->notify.sigev_signo = notification->sigev_signo;
1359 			info->notify.sigev_value = notification->sigev_value;
1360 			info->notify.sigev_notify = SIGEV_SIGNAL;
1361 			info->notify_self_exec_id = current->self_exec_id;
1362 			break;
1363 		}
1364 
1365 		info->notify_owner = get_pid(task_tgid(current));
1366 		info->notify_user_ns = get_user_ns(current_user_ns());
1367 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1368 	}
1369 	spin_unlock(&info->lock);
1370 out:
1371 	if (sock)
1372 		netlink_detachskb(sock, nc);
1373 	return ret;
1374 }
1375 
1376 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1377 		const struct sigevent __user *, u_notification)
1378 {
1379 	struct sigevent n, *p = NULL;
1380 	if (u_notification) {
1381 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1382 			return -EFAULT;
1383 		p = &n;
1384 	}
1385 	return do_mq_notify(mqdes, p);
1386 }
1387 
1388 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1389 {
1390 	struct inode *inode;
1391 	struct mqueue_inode_info *info;
1392 
1393 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1394 		return -EINVAL;
1395 
1396 	CLASS(fd, f)(mqdes);
1397 	if (fd_empty(f))
1398 		return -EBADF;
1399 
1400 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1401 		return -EBADF;
1402 
1403 	inode = file_inode(fd_file(f));
1404 	info = MQUEUE_I(inode);
1405 
1406 	spin_lock(&info->lock);
1407 
1408 	if (old) {
1409 		*old = info->attr;
1410 		old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK;
1411 	}
1412 	if (new) {
1413 		audit_mq_getsetattr(mqdes, new);
1414 		spin_lock(&fd_file(f)->f_lock);
1415 		if (new->mq_flags & O_NONBLOCK)
1416 			fd_file(f)->f_flags |= O_NONBLOCK;
1417 		else
1418 			fd_file(f)->f_flags &= ~O_NONBLOCK;
1419 		spin_unlock(&fd_file(f)->f_lock);
1420 
1421 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1422 	}
1423 
1424 	spin_unlock(&info->lock);
1425 	return 0;
1426 }
1427 
1428 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1429 		const struct mq_attr __user *, u_mqstat,
1430 		struct mq_attr __user *, u_omqstat)
1431 {
1432 	int ret;
1433 	struct mq_attr mqstat, omqstat;
1434 	struct mq_attr *new = NULL, *old = NULL;
1435 
1436 	if (u_mqstat) {
1437 		new = &mqstat;
1438 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1439 			return -EFAULT;
1440 	}
1441 	if (u_omqstat)
1442 		old = &omqstat;
1443 
1444 	ret = do_mq_getsetattr(mqdes, new, old);
1445 	if (ret || !old)
1446 		return ret;
1447 
1448 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1449 		return -EFAULT;
1450 	return 0;
1451 }
1452 
1453 #ifdef CONFIG_COMPAT
1454 
1455 struct compat_mq_attr {
1456 	compat_long_t mq_flags;      /* message queue flags		     */
1457 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1458 	compat_long_t mq_msgsize;    /* maximum message size		     */
1459 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1460 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1461 };
1462 
1463 static inline int get_compat_mq_attr(struct mq_attr *attr,
1464 			const struct compat_mq_attr __user *uattr)
1465 {
1466 	struct compat_mq_attr v;
1467 
1468 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1469 		return -EFAULT;
1470 
1471 	memset(attr, 0, sizeof(*attr));
1472 	attr->mq_flags = v.mq_flags;
1473 	attr->mq_maxmsg = v.mq_maxmsg;
1474 	attr->mq_msgsize = v.mq_msgsize;
1475 	attr->mq_curmsgs = v.mq_curmsgs;
1476 	return 0;
1477 }
1478 
1479 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1480 			struct compat_mq_attr __user *uattr)
1481 {
1482 	struct compat_mq_attr v;
1483 
1484 	memset(&v, 0, sizeof(v));
1485 	v.mq_flags = attr->mq_flags;
1486 	v.mq_maxmsg = attr->mq_maxmsg;
1487 	v.mq_msgsize = attr->mq_msgsize;
1488 	v.mq_curmsgs = attr->mq_curmsgs;
1489 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1490 		return -EFAULT;
1491 	return 0;
1492 }
1493 
1494 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1495 		       int, oflag, compat_mode_t, mode,
1496 		       struct compat_mq_attr __user *, u_attr)
1497 {
1498 	struct mq_attr attr, *p = NULL;
1499 	if (u_attr && oflag & O_CREAT) {
1500 		p = &attr;
1501 		if (get_compat_mq_attr(&attr, u_attr))
1502 			return -EFAULT;
1503 	}
1504 	return do_mq_open(u_name, oflag, mode, p);
1505 }
1506 
1507 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1508 		       const struct compat_sigevent __user *, u_notification)
1509 {
1510 	struct sigevent n, *p = NULL;
1511 	if (u_notification) {
1512 		if (get_compat_sigevent(&n, u_notification))
1513 			return -EFAULT;
1514 		if (n.sigev_notify == SIGEV_THREAD)
1515 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1516 		p = &n;
1517 	}
1518 	return do_mq_notify(mqdes, p);
1519 }
1520 
1521 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1522 		       const struct compat_mq_attr __user *, u_mqstat,
1523 		       struct compat_mq_attr __user *, u_omqstat)
1524 {
1525 	int ret;
1526 	struct mq_attr mqstat, omqstat;
1527 	struct mq_attr *new = NULL, *old = NULL;
1528 
1529 	if (u_mqstat) {
1530 		new = &mqstat;
1531 		if (get_compat_mq_attr(new, u_mqstat))
1532 			return -EFAULT;
1533 	}
1534 	if (u_omqstat)
1535 		old = &omqstat;
1536 
1537 	ret = do_mq_getsetattr(mqdes, new, old);
1538 	if (ret || !old)
1539 		return ret;
1540 
1541 	if (put_compat_mq_attr(old, u_omqstat))
1542 		return -EFAULT;
1543 	return 0;
1544 }
1545 #endif
1546 
1547 #ifdef CONFIG_COMPAT_32BIT_TIME
1548 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1549 				   struct timespec64 *ts)
1550 {
1551 	if (get_old_timespec32(ts, p))
1552 		return -EFAULT;
1553 	if (!timespec64_valid(ts))
1554 		return -EINVAL;
1555 	return 0;
1556 }
1557 
1558 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1559 		const char __user *, u_msg_ptr,
1560 		unsigned int, msg_len, unsigned int, msg_prio,
1561 		const struct old_timespec32 __user *, u_abs_timeout)
1562 {
1563 	struct timespec64 ts, *p = NULL;
1564 	if (u_abs_timeout) {
1565 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1566 		if (res)
1567 			return res;
1568 		p = &ts;
1569 	}
1570 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1571 }
1572 
1573 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1574 		char __user *, u_msg_ptr,
1575 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1576 		const struct old_timespec32 __user *, u_abs_timeout)
1577 {
1578 	struct timespec64 ts, *p = NULL;
1579 	if (u_abs_timeout) {
1580 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1581 		if (res)
1582 			return res;
1583 		p = &ts;
1584 	}
1585 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1586 }
1587 #endif
1588 
1589 static const struct inode_operations mqueue_dir_inode_operations = {
1590 	.lookup = simple_lookup,
1591 	.create = mqueue_create,
1592 	.unlink = mqueue_unlink,
1593 };
1594 
1595 static const struct file_operations mqueue_file_operations = {
1596 	.flush = mqueue_flush_file,
1597 	.poll = mqueue_poll_file,
1598 	.read = mqueue_read_file,
1599 	.llseek = default_llseek,
1600 };
1601 
1602 static const struct super_operations mqueue_super_ops = {
1603 	.alloc_inode = mqueue_alloc_inode,
1604 	.free_inode = mqueue_free_inode,
1605 	.evict_inode = mqueue_evict_inode,
1606 	.statfs = simple_statfs,
1607 };
1608 
1609 static const struct fs_context_operations mqueue_fs_context_ops = {
1610 	.free		= mqueue_fs_context_free,
1611 	.get_tree	= mqueue_get_tree,
1612 };
1613 
1614 static struct file_system_type mqueue_fs_type = {
1615 	.name			= "mqueue",
1616 	.init_fs_context	= mqueue_init_fs_context,
1617 	.kill_sb		= kill_anon_super,
1618 	.fs_flags		= FS_USERNS_MOUNT,
1619 };
1620 
1621 int mq_init_ns(struct ipc_namespace *ns)
1622 {
1623 	struct vfsmount *m;
1624 
1625 	ns->mq_queues_count  = 0;
1626 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1627 	ns->mq_msg_max       = DFLT_MSGMAX;
1628 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1629 	ns->mq_msg_default   = DFLT_MSG;
1630 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1631 
1632 	m = mq_create_mount(ns);
1633 	if (IS_ERR(m))
1634 		return PTR_ERR(m);
1635 	ns->mq_mnt = m;
1636 	return 0;
1637 }
1638 
1639 void mq_clear_sbinfo(struct ipc_namespace *ns)
1640 {
1641 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1642 }
1643 
1644 static int __init init_mqueue_fs(void)
1645 {
1646 	int error;
1647 
1648 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1649 				sizeof(struct mqueue_inode_info), 0,
1650 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1651 	if (mqueue_inode_cachep == NULL)
1652 		return -ENOMEM;
1653 
1654 	if (!setup_mq_sysctls(&init_ipc_ns)) {
1655 		pr_warn("sysctl registration failed\n");
1656 		error = -ENOMEM;
1657 		goto out_kmem;
1658 	}
1659 
1660 	error = register_filesystem(&mqueue_fs_type);
1661 	if (error)
1662 		goto out_sysctl;
1663 
1664 	spin_lock_init(&mq_lock);
1665 
1666 	error = mq_init_ns(&init_ipc_ns);
1667 	if (error)
1668 		goto out_filesystem;
1669 
1670 	return 0;
1671 
1672 out_filesystem:
1673 	unregister_filesystem(&mqueue_fs_type);
1674 out_sysctl:
1675 	retire_mq_sysctls(&init_ipc_ns);
1676 out_kmem:
1677 	kmem_cache_destroy(mqueue_inode_cachep);
1678 	return error;
1679 }
1680 
1681 device_initcall(init_mqueue_fs);
1682