1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 unsigned short family = READ_ONCE(sk->sk_family); 65 66 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 67 if (family == AF_INET6) 68 return &inet6_stream_ops; 69 #endif 70 WARN_ON_ONCE(family != AF_INET); 71 return &inet_stream_ops; 72 } 73 74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 75 { 76 struct net *net = sock_net((struct sock *)msk); 77 78 if (__mptcp_check_fallback(msk)) 79 return true; 80 81 /* The caller possibly is not holding the msk socket lock, but 82 * in the fallback case only the current subflow is touching 83 * the OoO queue. 84 */ 85 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 86 return false; 87 88 spin_lock_bh(&msk->fallback_lock); 89 if (!msk->allow_infinite_fallback) { 90 spin_unlock_bh(&msk->fallback_lock); 91 return false; 92 } 93 94 msk->allow_subflows = false; 95 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 96 __MPTCP_INC_STATS(net, fb_mib); 97 spin_unlock_bh(&msk->fallback_lock); 98 return true; 99 } 100 101 static int __mptcp_socket_create(struct mptcp_sock *msk) 102 { 103 struct mptcp_subflow_context *subflow; 104 struct sock *sk = (struct sock *)msk; 105 struct socket *ssock; 106 int err; 107 108 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 109 if (err) 110 return err; 111 112 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 113 WRITE_ONCE(msk->first, ssock->sk); 114 subflow = mptcp_subflow_ctx(ssock->sk); 115 list_add(&subflow->node, &msk->conn_list); 116 sock_hold(ssock->sk); 117 subflow->request_mptcp = 1; 118 subflow->subflow_id = msk->subflow_id++; 119 120 /* This is the first subflow, always with id 0 */ 121 WRITE_ONCE(subflow->local_id, 0); 122 mptcp_sock_graft(msk->first, sk->sk_socket); 123 iput(SOCK_INODE(ssock)); 124 125 return 0; 126 } 127 128 /* If the MPC handshake is not started, returns the first subflow, 129 * eventually allocating it. 130 */ 131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 132 { 133 struct sock *sk = (struct sock *)msk; 134 int ret; 135 136 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 137 return ERR_PTR(-EINVAL); 138 139 if (!msk->first) { 140 ret = __mptcp_socket_create(msk); 141 if (ret) 142 return ERR_PTR(ret); 143 } 144 145 return msk->first; 146 } 147 148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 149 { 150 sk_drops_skbadd(sk, skb); 151 __kfree_skb(skb); 152 } 153 154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 155 struct sk_buff *from, bool *fragstolen, 156 int *delta) 157 { 158 int limit = READ_ONCE(sk->sk_rcvbuf); 159 160 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 161 MPTCP_SKB_CB(from)->offset || 162 ((to->len + from->len) > (limit >> 3)) || 163 !skb_try_coalesce(to, from, fragstolen, delta)) 164 return false; 165 166 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 167 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 168 to->len, MPTCP_SKB_CB(from)->end_seq); 169 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 170 return true; 171 } 172 173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 bool fragstolen; 177 int delta; 178 179 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 180 return false; 181 182 /* note the fwd memory can reach a negative value after accounting 183 * for the delta, but the later skb free will restore a non 184 * negative one 185 */ 186 atomic_add(delta, &sk->sk_rmem_alloc); 187 sk_mem_charge(sk, delta); 188 kfree_skb_partial(from, fragstolen); 189 190 return true; 191 } 192 193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 194 struct sk_buff *from) 195 { 196 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 197 return false; 198 199 return mptcp_try_coalesce((struct sock *)msk, to, from); 200 } 201 202 /* "inspired" by tcp_rcvbuf_grow(), main difference: 203 * - mptcp does not maintain a msk-level window clamp 204 * - returns true when the receive buffer is actually updated 205 */ 206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 207 { 208 struct mptcp_sock *msk = mptcp_sk(sk); 209 const struct net *net = sock_net(sk); 210 u32 rcvwin, rcvbuf, cap, oldval; 211 u64 grow; 212 213 oldval = msk->rcvq_space.space; 214 msk->rcvq_space.space = newval; 215 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 216 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 217 return false; 218 219 /* DRS is always one RTT late. */ 220 rcvwin = newval << 1; 221 222 /* slow start: allow the sender to double its rate. */ 223 grow = (u64)rcvwin * (newval - oldval); 224 do_div(grow, oldval); 225 rcvwin += grow << 1; 226 227 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 228 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 229 230 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 231 232 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 233 if (rcvbuf > sk->sk_rcvbuf) { 234 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 235 return true; 236 } 237 return false; 238 } 239 240 /* "inspired" by tcp_data_queue_ofo(), main differences: 241 * - use mptcp seqs 242 * - don't cope with sacks 243 */ 244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 245 { 246 struct sock *sk = (struct sock *)msk; 247 struct rb_node **p, *parent; 248 u64 seq, end_seq, max_seq; 249 struct sk_buff *skb1; 250 251 seq = MPTCP_SKB_CB(skb)->map_seq; 252 end_seq = MPTCP_SKB_CB(skb)->end_seq; 253 max_seq = atomic64_read(&msk->rcv_wnd_sent); 254 255 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 256 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 257 if (after64(end_seq, max_seq)) { 258 /* out of window */ 259 mptcp_drop(sk, skb); 260 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 261 (unsigned long long)end_seq - (unsigned long)max_seq, 262 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 264 return; 265 } 266 267 p = &msk->out_of_order_queue.rb_node; 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 269 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 270 rb_link_node(&skb->rbnode, NULL, p); 271 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 272 msk->ooo_last_skb = skb; 273 goto end; 274 } 275 276 /* with 2 subflows, adding at end of ooo queue is quite likely 277 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 278 */ 279 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 282 return; 283 } 284 285 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 286 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 288 parent = &msk->ooo_last_skb->rbnode; 289 p = &parent->rb_right; 290 goto insert; 291 } 292 293 /* Find place to insert this segment. Handle overlaps on the way. */ 294 parent = NULL; 295 while (*p) { 296 parent = *p; 297 skb1 = rb_to_skb(parent); 298 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 299 p = &parent->rb_left; 300 continue; 301 } 302 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 303 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 304 /* All the bits are present. Drop. */ 305 mptcp_drop(sk, skb); 306 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 307 return; 308 } 309 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 310 /* partial overlap: 311 * | skb | 312 * | skb1 | 313 * continue traversing 314 */ 315 } else { 316 /* skb's seq == skb1's seq and skb covers skb1. 317 * Replace skb1 with skb. 318 */ 319 rb_replace_node(&skb1->rbnode, &skb->rbnode, 320 &msk->out_of_order_queue); 321 mptcp_drop(sk, skb1); 322 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 323 goto merge_right; 324 } 325 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 327 return; 328 } 329 p = &parent->rb_right; 330 } 331 332 insert: 333 /* Insert segment into RB tree. */ 334 rb_link_node(&skb->rbnode, parent, p); 335 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 336 337 merge_right: 338 /* Remove other segments covered by skb. */ 339 while ((skb1 = skb_rb_next(skb)) != NULL) { 340 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 341 break; 342 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 343 mptcp_drop(sk, skb1); 344 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 345 } 346 /* If there is no skb after us, we are the last_skb ! */ 347 if (!skb1) 348 msk->ooo_last_skb = skb; 349 350 end: 351 skb_condense(skb); 352 skb_set_owner_r(skb, sk); 353 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 354 if (sk->sk_socket) 355 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 356 } 357 358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 359 int copy_len) 360 { 361 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 362 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 363 364 /* the skb map_seq accounts for the skb offset: 365 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 366 * value 367 */ 368 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 369 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 370 MPTCP_SKB_CB(skb)->offset = offset; 371 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 372 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 373 374 __skb_unlink(skb, &ssk->sk_receive_queue); 375 376 skb_ext_reset(skb); 377 skb_dst_drop(skb); 378 } 379 380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 381 { 382 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 struct sk_buff *tail; 385 386 mptcp_borrow_fwdmem(sk, skb); 387 388 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 389 /* in sequence */ 390 msk->bytes_received += copy_len; 391 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 392 tail = skb_peek_tail(&sk->sk_receive_queue); 393 if (tail && mptcp_try_coalesce(sk, tail, skb)) 394 return true; 395 396 skb_set_owner_r(skb, sk); 397 __skb_queue_tail(&sk->sk_receive_queue, skb); 398 return true; 399 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 400 mptcp_data_queue_ofo(msk, skb); 401 return false; 402 } 403 404 /* old data, keep it simple and drop the whole pkt, sender 405 * will retransmit as needed, if needed. 406 */ 407 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 408 mptcp_drop(sk, skb); 409 return false; 410 } 411 412 static void mptcp_stop_rtx_timer(struct sock *sk) 413 { 414 sk_stop_timer(sk, &sk->mptcp_retransmit_timer); 415 mptcp_sk(sk)->timer_ival = 0; 416 } 417 418 static void mptcp_close_wake_up(struct sock *sk) 419 { 420 if (sock_flag(sk, SOCK_DEAD)) 421 return; 422 423 sk->sk_state_change(sk); 424 if (sk->sk_shutdown == SHUTDOWN_MASK || 425 sk->sk_state == TCP_CLOSE) 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 427 else 428 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 429 } 430 431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 432 { 433 struct mptcp_subflow_context *subflow; 434 435 mptcp_for_each_subflow(msk, subflow) { 436 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 437 bool slow; 438 439 slow = lock_sock_fast(ssk); 440 tcp_shutdown(ssk, SEND_SHUTDOWN); 441 unlock_sock_fast(ssk, slow); 442 } 443 } 444 445 /* called under the msk socket lock */ 446 static bool mptcp_pending_data_fin_ack(struct sock *sk) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 return ((1 << sk->sk_state) & 451 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 452 msk->write_seq == READ_ONCE(msk->snd_una); 453 } 454 455 static void mptcp_check_data_fin_ack(struct sock *sk) 456 { 457 struct mptcp_sock *msk = mptcp_sk(sk); 458 459 /* Look for an acknowledged DATA_FIN */ 460 if (mptcp_pending_data_fin_ack(sk)) { 461 WRITE_ONCE(msk->snd_data_fin_enable, 0); 462 463 switch (sk->sk_state) { 464 case TCP_FIN_WAIT1: 465 mptcp_set_state(sk, TCP_FIN_WAIT2); 466 break; 467 case TCP_CLOSING: 468 case TCP_LAST_ACK: 469 mptcp_shutdown_subflows(msk); 470 mptcp_set_state(sk, TCP_CLOSE); 471 break; 472 } 473 474 mptcp_close_wake_up(sk); 475 } 476 } 477 478 /* can be called with no lock acquired */ 479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 480 { 481 struct mptcp_sock *msk = mptcp_sk(sk); 482 483 if (READ_ONCE(msk->rcv_data_fin) && 484 ((1 << inet_sk_state_load(sk)) & 485 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 486 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 487 488 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 489 if (seq) 490 *seq = rcv_data_fin_seq; 491 492 return true; 493 } 494 } 495 496 return false; 497 } 498 499 static void mptcp_set_datafin_timeout(struct sock *sk) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 u32 retransmits; 503 504 retransmits = min_t(u32, icsk->icsk_retransmits, 505 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 506 507 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 508 } 509 510 static void __mptcp_set_timeout(struct sock *sk, long tout) 511 { 512 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 513 } 514 515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 516 { 517 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 518 519 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 520 tcp_timeout_expires(ssk) - jiffies : 0; 521 } 522 523 static void mptcp_set_timeout(struct sock *sk) 524 { 525 struct mptcp_subflow_context *subflow; 526 long tout = 0; 527 528 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 529 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 530 __mptcp_set_timeout(sk, tout); 531 } 532 533 static inline bool tcp_can_send_ack(const struct sock *ssk) 534 { 535 return !((1 << inet_sk_state_load(ssk)) & 536 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 537 } 538 539 void __mptcp_subflow_send_ack(struct sock *ssk) 540 { 541 if (tcp_can_send_ack(ssk)) 542 tcp_send_ack(ssk); 543 } 544 545 static void mptcp_subflow_send_ack(struct sock *ssk) 546 { 547 bool slow; 548 549 slow = lock_sock_fast(ssk); 550 __mptcp_subflow_send_ack(ssk); 551 unlock_sock_fast(ssk, slow); 552 } 553 554 static void mptcp_send_ack(struct mptcp_sock *msk) 555 { 556 struct mptcp_subflow_context *subflow; 557 558 mptcp_for_each_subflow(msk, subflow) 559 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 560 } 561 562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 563 { 564 bool slow; 565 566 slow = lock_sock_fast(ssk); 567 if (tcp_can_send_ack(ssk)) 568 tcp_cleanup_rbuf(ssk, copied); 569 unlock_sock_fast(ssk, slow); 570 } 571 572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 573 { 574 const struct inet_connection_sock *icsk = inet_csk(ssk); 575 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 576 const struct tcp_sock *tp = tcp_sk(ssk); 577 578 return (ack_pending & ICSK_ACK_SCHED) && 579 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 580 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 581 (rx_empty && ack_pending & 582 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 583 } 584 585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 586 { 587 int old_space = READ_ONCE(msk->old_wspace); 588 struct mptcp_subflow_context *subflow; 589 struct sock *sk = (struct sock *)msk; 590 int space = __mptcp_space(sk); 591 bool cleanup, rx_empty; 592 593 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 594 rx_empty = !sk_rmem_alloc_get(sk) && copied; 595 596 mptcp_for_each_subflow(msk, subflow) { 597 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 598 599 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 600 mptcp_subflow_cleanup_rbuf(ssk, copied); 601 } 602 } 603 604 static void mptcp_check_data_fin(struct sock *sk) 605 { 606 struct mptcp_sock *msk = mptcp_sk(sk); 607 u64 rcv_data_fin_seq; 608 609 /* Need to ack a DATA_FIN received from a peer while this side 610 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 611 * msk->rcv_data_fin was set when parsing the incoming options 612 * at the subflow level and the msk lock was not held, so this 613 * is the first opportunity to act on the DATA_FIN and change 614 * the msk state. 615 * 616 * If we are caught up to the sequence number of the incoming 617 * DATA_FIN, send the DATA_ACK now and do state transition. If 618 * not caught up, do nothing and let the recv code send DATA_ACK 619 * when catching up. 620 */ 621 622 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 623 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 624 WRITE_ONCE(msk->rcv_data_fin, 0); 625 626 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 627 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 628 629 switch (sk->sk_state) { 630 case TCP_ESTABLISHED: 631 mptcp_set_state(sk, TCP_CLOSE_WAIT); 632 break; 633 case TCP_FIN_WAIT1: 634 mptcp_set_state(sk, TCP_CLOSING); 635 break; 636 case TCP_FIN_WAIT2: 637 mptcp_shutdown_subflows(msk); 638 mptcp_set_state(sk, TCP_CLOSE); 639 break; 640 default: 641 /* Other states not expected */ 642 WARN_ON_ONCE(1); 643 break; 644 } 645 646 if (!__mptcp_check_fallback(msk)) 647 mptcp_send_ack(msk); 648 mptcp_close_wake_up(sk); 649 } 650 } 651 652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 653 { 654 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 655 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 656 mptcp_subflow_reset(ssk); 657 } 658 } 659 660 static void __mptcp_add_backlog(struct sock *sk, 661 struct mptcp_subflow_context *subflow, 662 struct sk_buff *skb) 663 { 664 struct mptcp_sock *msk = mptcp_sk(sk); 665 struct sk_buff *tail = NULL; 666 struct sock *ssk = skb->sk; 667 bool fragstolen; 668 int delta; 669 670 if (unlikely(sk->sk_state == TCP_CLOSE)) { 671 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 672 return; 673 } 674 675 /* Try to coalesce with the last skb in our backlog */ 676 if (!list_empty(&msk->backlog_list)) 677 tail = list_last_entry(&msk->backlog_list, struct sk_buff, list); 678 679 if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq && 680 ssk == tail->sk && 681 __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) { 682 skb->truesize -= delta; 683 kfree_skb_partial(skb, fragstolen); 684 __mptcp_subflow_lend_fwdmem(subflow, delta); 685 goto account; 686 } 687 688 list_add_tail(&skb->list, &msk->backlog_list); 689 mptcp_subflow_lend_fwdmem(subflow, skb); 690 delta = skb->truesize; 691 692 account: 693 WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta); 694 695 /* Possibly not accept()ed yet, keep track of memory not CG 696 * accounted, mptcp_graft_subflows() will handle it. 697 */ 698 if (!mem_cgroup_from_sk(ssk)) 699 msk->backlog_unaccounted += delta; 700 } 701 702 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 703 struct sock *ssk, bool own_msk) 704 { 705 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 706 struct sock *sk = (struct sock *)msk; 707 bool more_data_avail; 708 struct tcp_sock *tp; 709 bool ret = false; 710 711 pr_debug("msk=%p ssk=%p\n", msk, ssk); 712 tp = tcp_sk(ssk); 713 do { 714 u32 map_remaining, offset; 715 u32 seq = tp->copied_seq; 716 struct sk_buff *skb; 717 bool fin; 718 719 /* try to move as much data as available */ 720 map_remaining = subflow->map_data_len - 721 mptcp_subflow_get_map_offset(subflow); 722 723 skb = skb_peek(&ssk->sk_receive_queue); 724 if (unlikely(!skb)) 725 break; 726 727 if (__mptcp_check_fallback(msk)) { 728 /* Under fallback skbs have no MPTCP extension and TCP could 729 * collapse them between the dummy map creation and the 730 * current dequeue. Be sure to adjust the map size. 731 */ 732 map_remaining = skb->len; 733 subflow->map_data_len = skb->len; 734 } 735 736 offset = seq - TCP_SKB_CB(skb)->seq; 737 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 738 if (fin) 739 seq++; 740 741 if (offset < skb->len) { 742 size_t len = skb->len - offset; 743 744 mptcp_init_skb(ssk, skb, offset, len); 745 746 if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) { 747 mptcp_subflow_lend_fwdmem(subflow, skb); 748 ret |= __mptcp_move_skb(sk, skb); 749 } else { 750 __mptcp_add_backlog(sk, subflow, skb); 751 } 752 seq += len; 753 754 if (unlikely(map_remaining < len)) { 755 DEBUG_NET_WARN_ON_ONCE(1); 756 mptcp_dss_corruption(msk, ssk); 757 } 758 } else { 759 if (unlikely(!fin)) { 760 DEBUG_NET_WARN_ON_ONCE(1); 761 mptcp_dss_corruption(msk, ssk); 762 } 763 764 sk_eat_skb(ssk, skb); 765 } 766 767 WRITE_ONCE(tp->copied_seq, seq); 768 more_data_avail = mptcp_subflow_data_available(ssk); 769 770 } while (more_data_avail); 771 772 if (ret) 773 msk->last_data_recv = tcp_jiffies32; 774 return ret; 775 } 776 777 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 778 { 779 struct sock *sk = (struct sock *)msk; 780 struct sk_buff *skb, *tail; 781 bool moved = false; 782 struct rb_node *p; 783 u64 end_seq; 784 785 p = rb_first(&msk->out_of_order_queue); 786 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 787 while (p) { 788 skb = rb_to_skb(p); 789 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 790 break; 791 792 p = rb_next(p); 793 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 794 795 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 796 msk->ack_seq))) { 797 mptcp_drop(sk, skb); 798 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 799 continue; 800 } 801 802 end_seq = MPTCP_SKB_CB(skb)->end_seq; 803 tail = skb_peek_tail(&sk->sk_receive_queue); 804 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 805 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 806 807 /* skip overlapping data, if any */ 808 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 809 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 810 delta); 811 MPTCP_SKB_CB(skb)->offset += delta; 812 MPTCP_SKB_CB(skb)->map_seq += delta; 813 __skb_queue_tail(&sk->sk_receive_queue, skb); 814 } 815 msk->bytes_received += end_seq - msk->ack_seq; 816 WRITE_ONCE(msk->ack_seq, end_seq); 817 moved = true; 818 } 819 return moved; 820 } 821 822 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 823 { 824 int err = sock_error(ssk); 825 int ssk_state; 826 827 if (!err) 828 return false; 829 830 /* only propagate errors on fallen-back sockets or 831 * on MPC connect 832 */ 833 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 834 return false; 835 836 /* We need to propagate only transition to CLOSE state. 837 * Orphaned socket will see such state change via 838 * subflow_sched_work_if_closed() and that path will properly 839 * destroy the msk as needed. 840 */ 841 ssk_state = inet_sk_state_load(ssk); 842 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 843 mptcp_set_state(sk, ssk_state); 844 WRITE_ONCE(sk->sk_err, -err); 845 846 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 847 smp_wmb(); 848 sk_error_report(sk); 849 return true; 850 } 851 852 void __mptcp_error_report(struct sock *sk) 853 { 854 struct mptcp_subflow_context *subflow; 855 struct mptcp_sock *msk = mptcp_sk(sk); 856 857 mptcp_for_each_subflow(msk, subflow) 858 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 859 break; 860 } 861 862 /* In most cases we will be able to lock the mptcp socket. If its already 863 * owned, we need to defer to the work queue to avoid ABBA deadlock. 864 */ 865 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 bool moved; 869 870 moved = __mptcp_move_skbs_from_subflow(msk, ssk, true); 871 __mptcp_ofo_queue(msk); 872 if (unlikely(ssk->sk_err)) 873 __mptcp_subflow_error_report(sk, ssk); 874 875 /* If the moves have caught up with the DATA_FIN sequence number 876 * it's time to ack the DATA_FIN and change socket state, but 877 * this is not a good place to change state. Let the workqueue 878 * do it. 879 */ 880 if (mptcp_pending_data_fin(sk, NULL)) 881 mptcp_schedule_work(sk); 882 return moved; 883 } 884 885 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 886 { 887 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 /* The peer can send data while we are shutting down this 891 * subflow at subflow destruction time, but we must avoid enqueuing 892 * more data to the msk receive queue 893 */ 894 if (unlikely(subflow->closing)) 895 return; 896 897 mptcp_data_lock(sk); 898 if (!sock_owned_by_user(sk)) { 899 /* Wake-up the reader only for in-sequence data */ 900 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 901 sk->sk_data_ready(sk); 902 } else { 903 __mptcp_move_skbs_from_subflow(msk, ssk, false); 904 } 905 mptcp_data_unlock(sk); 906 } 907 908 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 909 { 910 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 911 msk->allow_infinite_fallback = false; 912 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 913 } 914 915 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 916 { 917 struct sock *sk = (struct sock *)msk; 918 919 if (sk->sk_state != TCP_ESTABLISHED) 920 return false; 921 922 spin_lock_bh(&msk->fallback_lock); 923 if (!msk->allow_subflows) { 924 spin_unlock_bh(&msk->fallback_lock); 925 return false; 926 } 927 mptcp_subflow_joined(msk, ssk); 928 spin_unlock_bh(&msk->fallback_lock); 929 930 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 931 mptcp_sockopt_sync_locked(msk, ssk); 932 mptcp_stop_tout_timer(sk); 933 __mptcp_propagate_sndbuf(sk, ssk); 934 return true; 935 } 936 937 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 938 { 939 struct mptcp_subflow_context *tmp, *subflow; 940 struct mptcp_sock *msk = mptcp_sk(sk); 941 942 list_for_each_entry_safe(subflow, tmp, join_list, node) { 943 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 944 bool slow = lock_sock_fast(ssk); 945 946 list_move_tail(&subflow->node, &msk->conn_list); 947 if (!__mptcp_finish_join(msk, ssk)) 948 mptcp_subflow_reset(ssk); 949 unlock_sock_fast(ssk, slow); 950 } 951 } 952 953 static bool mptcp_rtx_timer_pending(struct sock *sk) 954 { 955 return timer_pending(&sk->mptcp_retransmit_timer); 956 } 957 958 static void mptcp_reset_rtx_timer(struct sock *sk) 959 { 960 unsigned long tout; 961 962 /* prevent rescheduling on close */ 963 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 964 return; 965 966 tout = mptcp_sk(sk)->timer_ival; 967 sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout); 968 } 969 970 bool mptcp_schedule_work(struct sock *sk) 971 { 972 if (inet_sk_state_load(sk) == TCP_CLOSE) 973 return false; 974 975 /* Get a reference on this socket, mptcp_worker() will release it. 976 * As mptcp_worker() might complete before us, we can not avoid 977 * a sock_hold()/sock_put() if schedule_work() returns false. 978 */ 979 sock_hold(sk); 980 981 if (schedule_work(&mptcp_sk(sk)->work)) 982 return true; 983 984 sock_put(sk); 985 return false; 986 } 987 988 static bool mptcp_skb_can_collapse_to(u64 write_seq, 989 const struct sk_buff *skb, 990 const struct mptcp_ext *mpext) 991 { 992 if (!tcp_skb_can_collapse_to(skb)) 993 return false; 994 995 /* can collapse only if MPTCP level sequence is in order and this 996 * mapping has not been xmitted yet 997 */ 998 return mpext && mpext->data_seq + mpext->data_len == write_seq && 999 !mpext->frozen; 1000 } 1001 1002 /* we can append data to the given data frag if: 1003 * - there is space available in the backing page_frag 1004 * - the data frag tail matches the current page_frag free offset 1005 * - the data frag end sequence number matches the current write seq 1006 */ 1007 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 1008 const struct page_frag *pfrag, 1009 const struct mptcp_data_frag *df) 1010 { 1011 return df && pfrag->page == df->page && 1012 pfrag->size - pfrag->offset > 0 && 1013 pfrag->offset == (df->offset + df->data_len) && 1014 df->data_seq + df->data_len == msk->write_seq; 1015 } 1016 1017 static void dfrag_uncharge(struct sock *sk, int len) 1018 { 1019 sk_mem_uncharge(sk, len); 1020 sk_wmem_queued_add(sk, -len); 1021 } 1022 1023 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1024 { 1025 int len = dfrag->data_len + dfrag->overhead; 1026 1027 list_del(&dfrag->list); 1028 dfrag_uncharge(sk, len); 1029 put_page(dfrag->page); 1030 } 1031 1032 /* called under both the msk socket lock and the data lock */ 1033 static void __mptcp_clean_una(struct sock *sk) 1034 { 1035 struct mptcp_sock *msk = mptcp_sk(sk); 1036 struct mptcp_data_frag *dtmp, *dfrag; 1037 u64 snd_una; 1038 1039 snd_una = msk->snd_una; 1040 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1041 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1042 break; 1043 1044 if (unlikely(dfrag == msk->first_pending)) { 1045 /* in recovery mode can see ack after the current snd head */ 1046 if (WARN_ON_ONCE(!msk->recovery)) 1047 break; 1048 1049 msk->first_pending = mptcp_send_next(sk); 1050 } 1051 1052 dfrag_clear(sk, dfrag); 1053 } 1054 1055 dfrag = mptcp_rtx_head(sk); 1056 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1057 u64 delta = snd_una - dfrag->data_seq; 1058 1059 /* prevent wrap around in recovery mode */ 1060 if (unlikely(delta > dfrag->already_sent)) { 1061 if (WARN_ON_ONCE(!msk->recovery)) 1062 goto out; 1063 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1064 goto out; 1065 dfrag->already_sent += delta - dfrag->already_sent; 1066 } 1067 1068 dfrag->data_seq += delta; 1069 dfrag->offset += delta; 1070 dfrag->data_len -= delta; 1071 dfrag->already_sent -= delta; 1072 1073 dfrag_uncharge(sk, delta); 1074 } 1075 1076 /* all retransmitted data acked, recovery completed */ 1077 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1078 msk->recovery = false; 1079 1080 out: 1081 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1082 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1083 mptcp_stop_rtx_timer(sk); 1084 } else { 1085 mptcp_reset_rtx_timer(sk); 1086 } 1087 1088 if (mptcp_pending_data_fin_ack(sk)) 1089 mptcp_schedule_work(sk); 1090 } 1091 1092 static void __mptcp_clean_una_wakeup(struct sock *sk) 1093 { 1094 lockdep_assert_held_once(&sk->sk_lock.slock); 1095 1096 __mptcp_clean_una(sk); 1097 mptcp_write_space(sk); 1098 } 1099 1100 static void mptcp_clean_una_wakeup(struct sock *sk) 1101 { 1102 mptcp_data_lock(sk); 1103 __mptcp_clean_una_wakeup(sk); 1104 mptcp_data_unlock(sk); 1105 } 1106 1107 static void mptcp_enter_memory_pressure(struct sock *sk) 1108 { 1109 struct mptcp_subflow_context *subflow; 1110 struct mptcp_sock *msk = mptcp_sk(sk); 1111 bool first = true; 1112 1113 mptcp_for_each_subflow(msk, subflow) { 1114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1115 1116 if (first && !ssk->sk_bypass_prot_mem) { 1117 tcp_enter_memory_pressure(ssk); 1118 first = false; 1119 } 1120 1121 sk_stream_moderate_sndbuf(ssk); 1122 } 1123 __mptcp_sync_sndbuf(sk); 1124 } 1125 1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1127 * data 1128 */ 1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1130 { 1131 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1132 pfrag, sk->sk_allocation))) 1133 return true; 1134 1135 mptcp_enter_memory_pressure(sk); 1136 return false; 1137 } 1138 1139 static struct mptcp_data_frag * 1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1141 int orig_offset) 1142 { 1143 int offset = ALIGN(orig_offset, sizeof(long)); 1144 struct mptcp_data_frag *dfrag; 1145 1146 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1147 dfrag->data_len = 0; 1148 dfrag->data_seq = msk->write_seq; 1149 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1150 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1151 dfrag->already_sent = 0; 1152 dfrag->page = pfrag->page; 1153 1154 return dfrag; 1155 } 1156 1157 struct mptcp_sendmsg_info { 1158 int mss_now; 1159 int size_goal; 1160 u16 limit; 1161 u16 sent; 1162 unsigned int flags; 1163 bool data_lock_held; 1164 }; 1165 1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1167 u64 data_seq, int avail_size) 1168 { 1169 u64 window_end = mptcp_wnd_end(msk); 1170 u64 mptcp_snd_wnd; 1171 1172 if (__mptcp_check_fallback(msk)) 1173 return avail_size; 1174 1175 mptcp_snd_wnd = window_end - data_seq; 1176 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1177 1178 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1179 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1180 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1181 } 1182 1183 return avail_size; 1184 } 1185 1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1187 { 1188 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1189 1190 if (!mpext) 1191 return false; 1192 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1193 return true; 1194 } 1195 1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1197 { 1198 struct sk_buff *skb; 1199 1200 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1201 if (likely(skb)) { 1202 if (likely(__mptcp_add_ext(skb, gfp))) { 1203 skb_reserve(skb, MAX_TCP_HEADER); 1204 skb->ip_summed = CHECKSUM_PARTIAL; 1205 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1206 return skb; 1207 } 1208 __kfree_skb(skb); 1209 } else { 1210 mptcp_enter_memory_pressure(sk); 1211 } 1212 return NULL; 1213 } 1214 1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1216 { 1217 struct sk_buff *skb; 1218 1219 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1220 if (!skb) 1221 return NULL; 1222 1223 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1224 tcp_skb_entail(ssk, skb); 1225 return skb; 1226 } 1227 tcp_skb_tsorted_anchor_cleanup(skb); 1228 kfree_skb(skb); 1229 return NULL; 1230 } 1231 1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1233 { 1234 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1235 1236 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1237 } 1238 1239 /* note: this always recompute the csum on the whole skb, even 1240 * if we just appended a single frag. More status info needed 1241 */ 1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1243 { 1244 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1245 __wsum csum = ~csum_unfold(mpext->csum); 1246 int offset = skb->len - added; 1247 1248 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1249 } 1250 1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1252 struct sock *ssk, 1253 struct mptcp_ext *mpext) 1254 { 1255 if (!mpext) 1256 return; 1257 1258 mpext->infinite_map = 1; 1259 mpext->data_len = 0; 1260 1261 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1262 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1263 mptcp_subflow_reset(ssk); 1264 return; 1265 } 1266 1267 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1268 } 1269 1270 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1271 1272 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1273 struct mptcp_data_frag *dfrag, 1274 struct mptcp_sendmsg_info *info) 1275 { 1276 u64 data_seq = dfrag->data_seq + info->sent; 1277 int offset = dfrag->offset + info->sent; 1278 struct mptcp_sock *msk = mptcp_sk(sk); 1279 bool zero_window_probe = false; 1280 struct mptcp_ext *mpext = NULL; 1281 bool can_coalesce = false; 1282 bool reuse_skb = true; 1283 struct sk_buff *skb; 1284 size_t copy; 1285 int i; 1286 1287 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1288 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1289 1290 if (WARN_ON_ONCE(info->sent > info->limit || 1291 info->limit > dfrag->data_len)) 1292 return 0; 1293 1294 if (unlikely(!__tcp_can_send(ssk))) 1295 return -EAGAIN; 1296 1297 /* compute send limit */ 1298 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1299 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1300 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1301 copy = info->size_goal; 1302 1303 skb = tcp_write_queue_tail(ssk); 1304 if (skb && copy > skb->len) { 1305 /* Limit the write to the size available in the 1306 * current skb, if any, so that we create at most a new skb. 1307 * Explicitly tells TCP internals to avoid collapsing on later 1308 * queue management operation, to avoid breaking the ext <-> 1309 * SSN association set here 1310 */ 1311 mpext = mptcp_get_ext(skb); 1312 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1313 TCP_SKB_CB(skb)->eor = 1; 1314 tcp_mark_push(tcp_sk(ssk), skb); 1315 goto alloc_skb; 1316 } 1317 1318 i = skb_shinfo(skb)->nr_frags; 1319 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1320 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1321 tcp_mark_push(tcp_sk(ssk), skb); 1322 goto alloc_skb; 1323 } 1324 1325 copy -= skb->len; 1326 } else { 1327 alloc_skb: 1328 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1329 if (!skb) 1330 return -ENOMEM; 1331 1332 i = skb_shinfo(skb)->nr_frags; 1333 reuse_skb = false; 1334 mpext = mptcp_get_ext(skb); 1335 } 1336 1337 /* Zero window and all data acked? Probe. */ 1338 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1339 if (copy == 0) { 1340 u64 snd_una = READ_ONCE(msk->snd_una); 1341 1342 /* No need for zero probe if there are any data pending 1343 * either at the msk or ssk level; skb is the current write 1344 * queue tail and can be empty at this point. 1345 */ 1346 if (snd_una != msk->snd_nxt || skb->len || 1347 skb != tcp_send_head(ssk)) { 1348 tcp_remove_empty_skb(ssk); 1349 return 0; 1350 } 1351 1352 zero_window_probe = true; 1353 data_seq = snd_una - 1; 1354 copy = 1; 1355 } 1356 1357 copy = min_t(size_t, copy, info->limit - info->sent); 1358 if (!sk_wmem_schedule(ssk, copy)) { 1359 tcp_remove_empty_skb(ssk); 1360 return -ENOMEM; 1361 } 1362 1363 if (can_coalesce) { 1364 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1365 } else { 1366 get_page(dfrag->page); 1367 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1368 } 1369 1370 skb->len += copy; 1371 skb->data_len += copy; 1372 skb->truesize += copy; 1373 sk_wmem_queued_add(ssk, copy); 1374 sk_mem_charge(ssk, copy); 1375 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 /* on skb reuse we just need to update the DSS len */ 1380 if (reuse_skb) { 1381 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1382 mpext->data_len += copy; 1383 goto out; 1384 } 1385 1386 memset(mpext, 0, sizeof(*mpext)); 1387 mpext->data_seq = data_seq; 1388 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1389 mpext->data_len = copy; 1390 mpext->use_map = 1; 1391 mpext->dsn64 = 1; 1392 1393 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1394 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1395 mpext->dsn64); 1396 1397 if (zero_window_probe) { 1398 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1399 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1400 mpext->frozen = 1; 1401 if (READ_ONCE(msk->csum_enabled)) 1402 mptcp_update_data_checksum(skb, copy); 1403 tcp_push_pending_frames(ssk); 1404 return 0; 1405 } 1406 out: 1407 if (READ_ONCE(msk->csum_enabled)) 1408 mptcp_update_data_checksum(skb, copy); 1409 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1410 mptcp_update_infinite_map(msk, ssk, mpext); 1411 trace_mptcp_sendmsg_frag(mpext); 1412 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1413 return copy; 1414 } 1415 1416 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1417 sizeof(struct tcphdr) - \ 1418 MAX_TCP_OPTION_SPACE - \ 1419 sizeof(struct ipv6hdr) - \ 1420 sizeof(struct frag_hdr)) 1421 1422 struct subflow_send_info { 1423 struct sock *ssk; 1424 u64 linger_time; 1425 }; 1426 1427 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1428 { 1429 if (!subflow->stale) 1430 return; 1431 1432 subflow->stale = 0; 1433 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1434 } 1435 1436 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1437 { 1438 if (unlikely(subflow->stale)) { 1439 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1440 1441 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1442 return false; 1443 1444 mptcp_subflow_set_active(subflow); 1445 } 1446 return __mptcp_subflow_active(subflow); 1447 } 1448 1449 #define SSK_MODE_ACTIVE 0 1450 #define SSK_MODE_BACKUP 1 1451 #define SSK_MODE_MAX 2 1452 1453 /* implement the mptcp packet scheduler; 1454 * returns the subflow that will transmit the next DSS 1455 * additionally updates the rtx timeout 1456 */ 1457 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1458 { 1459 struct subflow_send_info send_info[SSK_MODE_MAX]; 1460 struct mptcp_subflow_context *subflow; 1461 struct sock *sk = (struct sock *)msk; 1462 u32 pace, burst, wmem; 1463 int i, nr_active = 0; 1464 struct sock *ssk; 1465 u64 linger_time; 1466 long tout = 0; 1467 1468 /* pick the subflow with the lower wmem/wspace ratio */ 1469 for (i = 0; i < SSK_MODE_MAX; ++i) { 1470 send_info[i].ssk = NULL; 1471 send_info[i].linger_time = -1; 1472 } 1473 1474 mptcp_for_each_subflow(msk, subflow) { 1475 bool backup = subflow->backup || subflow->request_bkup; 1476 1477 trace_mptcp_subflow_get_send(subflow); 1478 ssk = mptcp_subflow_tcp_sock(subflow); 1479 if (!mptcp_subflow_active(subflow)) 1480 continue; 1481 1482 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1483 nr_active += !backup; 1484 pace = subflow->avg_pacing_rate; 1485 if (unlikely(!pace)) { 1486 /* init pacing rate from socket */ 1487 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1488 pace = subflow->avg_pacing_rate; 1489 if (!pace) 1490 continue; 1491 } 1492 1493 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1494 if (linger_time < send_info[backup].linger_time) { 1495 send_info[backup].ssk = ssk; 1496 send_info[backup].linger_time = linger_time; 1497 } 1498 } 1499 __mptcp_set_timeout(sk, tout); 1500 1501 /* pick the best backup if no other subflow is active */ 1502 if (!nr_active) 1503 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1504 1505 /* According to the blest algorithm, to avoid HoL blocking for the 1506 * faster flow, we need to: 1507 * - estimate the faster flow linger time 1508 * - use the above to estimate the amount of byte transferred 1509 * by the faster flow 1510 * - check that the amount of queued data is greater than the above, 1511 * otherwise do not use the picked, slower, subflow 1512 * We select the subflow with the shorter estimated time to flush 1513 * the queued mem, which basically ensure the above. We just need 1514 * to check that subflow has a non empty cwin. 1515 */ 1516 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1517 if (!ssk || !sk_stream_memory_free(ssk)) 1518 return NULL; 1519 1520 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1521 wmem = READ_ONCE(ssk->sk_wmem_queued); 1522 if (!burst) 1523 return ssk; 1524 1525 subflow = mptcp_subflow_ctx(ssk); 1526 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1527 READ_ONCE(ssk->sk_pacing_rate) * burst, 1528 burst + wmem); 1529 msk->snd_burst = burst; 1530 return ssk; 1531 } 1532 1533 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1534 { 1535 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1536 release_sock(ssk); 1537 } 1538 1539 static void mptcp_update_post_push(struct mptcp_sock *msk, 1540 struct mptcp_data_frag *dfrag, 1541 u32 sent) 1542 { 1543 u64 snd_nxt_new = dfrag->data_seq; 1544 1545 dfrag->already_sent += sent; 1546 1547 msk->snd_burst -= sent; 1548 1549 snd_nxt_new += dfrag->already_sent; 1550 1551 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1552 * is recovering after a failover. In that event, this re-sends 1553 * old segments. 1554 * 1555 * Thus compute snd_nxt_new candidate based on 1556 * the dfrag->data_seq that was sent and the data 1557 * that has been handed to the subflow for transmission 1558 * and skip update in case it was old dfrag. 1559 */ 1560 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1561 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1562 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1563 } 1564 } 1565 1566 void mptcp_check_and_set_pending(struct sock *sk) 1567 { 1568 if (mptcp_send_head(sk)) { 1569 mptcp_data_lock(sk); 1570 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1571 mptcp_data_unlock(sk); 1572 } 1573 } 1574 1575 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1576 struct mptcp_sendmsg_info *info) 1577 { 1578 struct mptcp_sock *msk = mptcp_sk(sk); 1579 struct mptcp_data_frag *dfrag; 1580 int len, copied = 0, err = 0; 1581 1582 while ((dfrag = mptcp_send_head(sk))) { 1583 info->sent = dfrag->already_sent; 1584 info->limit = dfrag->data_len; 1585 len = dfrag->data_len - dfrag->already_sent; 1586 while (len > 0) { 1587 int ret = 0; 1588 1589 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1590 if (ret <= 0) { 1591 err = copied ? : ret; 1592 goto out; 1593 } 1594 1595 info->sent += ret; 1596 copied += ret; 1597 len -= ret; 1598 1599 mptcp_update_post_push(msk, dfrag, ret); 1600 } 1601 msk->first_pending = mptcp_send_next(sk); 1602 1603 if (msk->snd_burst <= 0 || 1604 !sk_stream_memory_free(ssk) || 1605 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1606 err = copied; 1607 goto out; 1608 } 1609 mptcp_set_timeout(sk); 1610 } 1611 err = copied; 1612 1613 out: 1614 if (err > 0) 1615 msk->last_data_sent = tcp_jiffies32; 1616 return err; 1617 } 1618 1619 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1620 { 1621 struct sock *prev_ssk = NULL, *ssk = NULL; 1622 struct mptcp_sock *msk = mptcp_sk(sk); 1623 struct mptcp_sendmsg_info info = { 1624 .flags = flags, 1625 }; 1626 bool copied = false; 1627 int push_count = 1; 1628 1629 while (mptcp_send_head(sk) && (push_count > 0)) { 1630 struct mptcp_subflow_context *subflow; 1631 int ret = 0; 1632 1633 if (mptcp_sched_get_send(msk)) 1634 break; 1635 1636 push_count = 0; 1637 1638 mptcp_for_each_subflow(msk, subflow) { 1639 if (READ_ONCE(subflow->scheduled)) { 1640 mptcp_subflow_set_scheduled(subflow, false); 1641 1642 prev_ssk = ssk; 1643 ssk = mptcp_subflow_tcp_sock(subflow); 1644 if (ssk != prev_ssk) { 1645 /* First check. If the ssk has changed since 1646 * the last round, release prev_ssk 1647 */ 1648 if (prev_ssk) 1649 mptcp_push_release(prev_ssk, &info); 1650 1651 /* Need to lock the new subflow only if different 1652 * from the previous one, otherwise we are still 1653 * helding the relevant lock 1654 */ 1655 lock_sock(ssk); 1656 } 1657 1658 push_count++; 1659 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) { 1662 if (ret != -EAGAIN || 1663 (1 << ssk->sk_state) & 1664 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1665 push_count--; 1666 continue; 1667 } 1668 copied = true; 1669 } 1670 } 1671 } 1672 1673 /* at this point we held the socket lock for the last subflow we used */ 1674 if (ssk) 1675 mptcp_push_release(ssk, &info); 1676 1677 /* Avoid scheduling the rtx timer if no data has been pushed; the timer 1678 * will be updated on positive acks by __mptcp_cleanup_una(). 1679 */ 1680 if (copied) { 1681 if (!mptcp_rtx_timer_pending(sk)) 1682 mptcp_reset_rtx_timer(sk); 1683 mptcp_check_send_data_fin(sk); 1684 } 1685 } 1686 1687 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1688 { 1689 struct mptcp_sock *msk = mptcp_sk(sk); 1690 struct mptcp_sendmsg_info info = { 1691 .data_lock_held = true, 1692 }; 1693 bool keep_pushing = true; 1694 struct sock *xmit_ssk; 1695 int copied = 0; 1696 1697 info.flags = 0; 1698 while (mptcp_send_head(sk) && keep_pushing) { 1699 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1700 int ret = 0; 1701 1702 /* check for a different subflow usage only after 1703 * spooling the first chunk of data 1704 */ 1705 if (first) { 1706 mptcp_subflow_set_scheduled(subflow, false); 1707 ret = __subflow_push_pending(sk, ssk, &info); 1708 first = false; 1709 if (ret <= 0) 1710 break; 1711 copied += ret; 1712 continue; 1713 } 1714 1715 if (mptcp_sched_get_send(msk)) 1716 goto out; 1717 1718 if (READ_ONCE(subflow->scheduled)) { 1719 mptcp_subflow_set_scheduled(subflow, false); 1720 ret = __subflow_push_pending(sk, ssk, &info); 1721 if (ret <= 0) 1722 keep_pushing = false; 1723 copied += ret; 1724 } 1725 1726 mptcp_for_each_subflow(msk, subflow) { 1727 if (READ_ONCE(subflow->scheduled)) { 1728 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1729 if (xmit_ssk != ssk) { 1730 mptcp_subflow_delegate(subflow, 1731 MPTCP_DELEGATE_SEND); 1732 keep_pushing = false; 1733 } 1734 } 1735 } 1736 } 1737 1738 out: 1739 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1740 * not going to flush it via release_sock() 1741 */ 1742 if (copied) { 1743 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1744 info.size_goal); 1745 if (!mptcp_rtx_timer_pending(sk)) 1746 mptcp_reset_rtx_timer(sk); 1747 1748 if (msk->snd_data_fin_enable && 1749 msk->snd_nxt + 1 == msk->write_seq) 1750 mptcp_schedule_work(sk); 1751 } 1752 } 1753 1754 static int mptcp_disconnect(struct sock *sk, int flags); 1755 1756 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1757 size_t len, int *copied_syn) 1758 { 1759 unsigned int saved_flags = msg->msg_flags; 1760 struct mptcp_sock *msk = mptcp_sk(sk); 1761 struct sock *ssk; 1762 int ret; 1763 1764 /* on flags based fastopen the mptcp is supposed to create the 1765 * first subflow right now. Otherwise we are in the defer_connect 1766 * path, and the first subflow must be already present. 1767 * Since the defer_connect flag is cleared after the first succsful 1768 * fastopen attempt, no need to check for additional subflow status. 1769 */ 1770 if (msg->msg_flags & MSG_FASTOPEN) { 1771 ssk = __mptcp_nmpc_sk(msk); 1772 if (IS_ERR(ssk)) 1773 return PTR_ERR(ssk); 1774 } 1775 if (!msk->first) 1776 return -EINVAL; 1777 1778 ssk = msk->first; 1779 1780 lock_sock(ssk); 1781 msg->msg_flags |= MSG_DONTWAIT; 1782 msk->fastopening = 1; 1783 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1784 msk->fastopening = 0; 1785 msg->msg_flags = saved_flags; 1786 release_sock(ssk); 1787 1788 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1789 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1790 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1791 msg->msg_namelen, msg->msg_flags, 1); 1792 1793 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1794 * case of any error, except timeout or signal 1795 */ 1796 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1797 *copied_syn = 0; 1798 } else if (ret && ret != -EINPROGRESS) { 1799 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1800 * __inet_stream_connect() can fail, due to looking check, 1801 * see mptcp_disconnect(). 1802 * Attempt it again outside the problematic scope. 1803 */ 1804 if (!mptcp_disconnect(sk, 0)) { 1805 sk->sk_disconnects++; 1806 sk->sk_socket->state = SS_UNCONNECTED; 1807 } 1808 } 1809 inet_clear_bit(DEFER_CONNECT, sk); 1810 1811 return ret; 1812 } 1813 1814 static int do_copy_data_nocache(struct sock *sk, int copy, 1815 struct iov_iter *from, char *to) 1816 { 1817 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1818 if (!copy_from_iter_full_nocache(to, copy, from)) 1819 return -EFAULT; 1820 } else if (!copy_from_iter_full(to, copy, from)) { 1821 return -EFAULT; 1822 } 1823 return 0; 1824 } 1825 1826 /* open-code sk_stream_memory_free() plus sent limit computation to 1827 * avoid indirect calls in fast-path. 1828 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1829 * annotations. 1830 */ 1831 static u32 mptcp_send_limit(const struct sock *sk) 1832 { 1833 const struct mptcp_sock *msk = mptcp_sk(sk); 1834 u32 limit, not_sent; 1835 1836 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1837 return 0; 1838 1839 limit = mptcp_notsent_lowat(sk); 1840 if (limit == UINT_MAX) 1841 return UINT_MAX; 1842 1843 not_sent = msk->write_seq - msk->snd_nxt; 1844 if (not_sent >= limit) 1845 return 0; 1846 1847 return limit - not_sent; 1848 } 1849 1850 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1851 { 1852 struct mptcp_subflow_context *subflow; 1853 1854 if (!rfs_is_needed()) 1855 return; 1856 1857 mptcp_for_each_subflow(msk, subflow) { 1858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1859 1860 sock_rps_record_flow(ssk); 1861 } 1862 } 1863 1864 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1865 { 1866 struct mptcp_sock *msk = mptcp_sk(sk); 1867 struct page_frag *pfrag; 1868 size_t copied = 0; 1869 int ret = 0; 1870 long timeo; 1871 1872 /* silently ignore everything else */ 1873 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1874 1875 lock_sock(sk); 1876 1877 mptcp_rps_record_subflows(msk); 1878 1879 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1880 msg->msg_flags & MSG_FASTOPEN)) { 1881 int copied_syn = 0; 1882 1883 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1884 copied += copied_syn; 1885 if (ret == -EINPROGRESS && copied_syn > 0) 1886 goto out; 1887 else if (ret) 1888 goto do_error; 1889 } 1890 1891 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1892 1893 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1894 ret = sk_stream_wait_connect(sk, &timeo); 1895 if (ret) 1896 goto do_error; 1897 } 1898 1899 ret = -EPIPE; 1900 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1901 goto do_error; 1902 1903 pfrag = sk_page_frag(sk); 1904 1905 while (msg_data_left(msg)) { 1906 int total_ts, frag_truesize = 0; 1907 struct mptcp_data_frag *dfrag; 1908 bool dfrag_collapsed; 1909 size_t psize, offset; 1910 u32 copy_limit; 1911 1912 /* ensure fitting the notsent_lowat() constraint */ 1913 copy_limit = mptcp_send_limit(sk); 1914 if (!copy_limit) 1915 goto wait_for_memory; 1916 1917 /* reuse tail pfrag, if possible, or carve a new one from the 1918 * page allocator 1919 */ 1920 dfrag = mptcp_pending_tail(sk); 1921 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1922 if (!dfrag_collapsed) { 1923 if (!mptcp_page_frag_refill(sk, pfrag)) 1924 goto wait_for_memory; 1925 1926 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1927 frag_truesize = dfrag->overhead; 1928 } 1929 1930 /* we do not bound vs wspace, to allow a single packet. 1931 * memory accounting will prevent execessive memory usage 1932 * anyway 1933 */ 1934 offset = dfrag->offset + dfrag->data_len; 1935 psize = pfrag->size - offset; 1936 psize = min_t(size_t, psize, msg_data_left(msg)); 1937 psize = min_t(size_t, psize, copy_limit); 1938 total_ts = psize + frag_truesize; 1939 1940 if (!sk_wmem_schedule(sk, total_ts)) 1941 goto wait_for_memory; 1942 1943 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1944 page_address(dfrag->page) + offset); 1945 if (ret) 1946 goto do_error; 1947 1948 /* data successfully copied into the write queue */ 1949 sk_forward_alloc_add(sk, -total_ts); 1950 copied += psize; 1951 dfrag->data_len += psize; 1952 frag_truesize += psize; 1953 pfrag->offset += frag_truesize; 1954 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1955 1956 /* charge data on mptcp pending queue to the msk socket 1957 * Note: we charge such data both to sk and ssk 1958 */ 1959 sk_wmem_queued_add(sk, frag_truesize); 1960 if (!dfrag_collapsed) { 1961 get_page(dfrag->page); 1962 list_add_tail(&dfrag->list, &msk->rtx_queue); 1963 if (!msk->first_pending) 1964 msk->first_pending = dfrag; 1965 } 1966 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1967 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1968 !dfrag_collapsed); 1969 1970 continue; 1971 1972 wait_for_memory: 1973 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1974 __mptcp_push_pending(sk, msg->msg_flags); 1975 ret = sk_stream_wait_memory(sk, &timeo); 1976 if (ret) 1977 goto do_error; 1978 } 1979 1980 if (copied) 1981 __mptcp_push_pending(sk, msg->msg_flags); 1982 1983 out: 1984 release_sock(sk); 1985 return copied; 1986 1987 do_error: 1988 if (copied) 1989 goto out; 1990 1991 copied = sk_stream_error(sk, msg->msg_flags, ret); 1992 goto out; 1993 } 1994 1995 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1996 1997 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1998 size_t len, int flags, int copied_total, 1999 struct scm_timestamping_internal *tss, 2000 int *cmsg_flags) 2001 { 2002 struct mptcp_sock *msk = mptcp_sk(sk); 2003 struct sk_buff *skb, *tmp; 2004 int total_data_len = 0; 2005 int copied = 0; 2006 2007 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 2008 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 2009 u32 data_len = skb->len - offset; 2010 u32 count; 2011 int err; 2012 2013 if (flags & MSG_PEEK) { 2014 /* skip already peeked skbs */ 2015 if (total_data_len + data_len <= copied_total) { 2016 total_data_len += data_len; 2017 continue; 2018 } 2019 2020 /* skip the already peeked data in the current skb */ 2021 delta = copied_total - total_data_len; 2022 offset += delta; 2023 data_len -= delta; 2024 } 2025 2026 count = min_t(size_t, len - copied, data_len); 2027 if (!(flags & MSG_TRUNC)) { 2028 err = skb_copy_datagram_msg(skb, offset, msg, count); 2029 if (unlikely(err < 0)) { 2030 if (!copied) 2031 return err; 2032 break; 2033 } 2034 } 2035 2036 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 2037 tcp_update_recv_tstamps(skb, tss); 2038 *cmsg_flags |= MPTCP_CMSG_TS; 2039 } 2040 2041 copied += count; 2042 2043 if (!(flags & MSG_PEEK)) { 2044 msk->bytes_consumed += count; 2045 if (count < data_len) { 2046 MPTCP_SKB_CB(skb)->offset += count; 2047 MPTCP_SKB_CB(skb)->map_seq += count; 2048 break; 2049 } 2050 2051 /* avoid the indirect call, we know the destructor is sock_rfree */ 2052 skb->destructor = NULL; 2053 skb->sk = NULL; 2054 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2055 sk_mem_uncharge(sk, skb->truesize); 2056 __skb_unlink(skb, &sk->sk_receive_queue); 2057 skb_attempt_defer_free(skb); 2058 } 2059 2060 if (copied >= len) 2061 break; 2062 } 2063 2064 mptcp_rcv_space_adjust(msk, copied); 2065 return copied; 2066 } 2067 2068 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2069 * 2070 * Only difference: Use highest rtt estimate of the subflows in use. 2071 */ 2072 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2073 { 2074 struct mptcp_subflow_context *subflow; 2075 struct sock *sk = (struct sock *)msk; 2076 u8 scaling_ratio = U8_MAX; 2077 u32 time, advmss = 1; 2078 u64 rtt_us, mstamp; 2079 2080 msk_owned_by_me(msk); 2081 2082 if (copied <= 0) 2083 return; 2084 2085 if (!msk->rcvspace_init) 2086 mptcp_rcv_space_init(msk, msk->first); 2087 2088 msk->rcvq_space.copied += copied; 2089 2090 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2091 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2092 2093 rtt_us = msk->rcvq_space.rtt_us; 2094 if (rtt_us && time < (rtt_us >> 3)) 2095 return; 2096 2097 rtt_us = 0; 2098 mptcp_for_each_subflow(msk, subflow) { 2099 const struct tcp_sock *tp; 2100 u64 sf_rtt_us; 2101 u32 sf_advmss; 2102 2103 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2104 2105 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2106 sf_advmss = READ_ONCE(tp->advmss); 2107 2108 rtt_us = max(sf_rtt_us, rtt_us); 2109 advmss = max(sf_advmss, advmss); 2110 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2111 } 2112 2113 msk->rcvq_space.rtt_us = rtt_us; 2114 msk->scaling_ratio = scaling_ratio; 2115 if (time < (rtt_us >> 3) || rtt_us == 0) 2116 return; 2117 2118 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2119 goto new_measure; 2120 2121 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2122 /* Make subflows follow along. If we do not do this, we 2123 * get drops at subflow level if skbs can't be moved to 2124 * the mptcp rx queue fast enough (announced rcv_win can 2125 * exceed ssk->sk_rcvbuf). 2126 */ 2127 mptcp_for_each_subflow(msk, subflow) { 2128 struct sock *ssk; 2129 bool slow; 2130 2131 ssk = mptcp_subflow_tcp_sock(subflow); 2132 slow = lock_sock_fast(ssk); 2133 /* subflows can be added before tcp_init_transfer() */ 2134 if (tcp_sk(ssk)->rcvq_space.space) 2135 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2136 unlock_sock_fast(ssk, slow); 2137 } 2138 } 2139 2140 new_measure: 2141 msk->rcvq_space.copied = 0; 2142 msk->rcvq_space.time = mstamp; 2143 } 2144 2145 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta) 2146 { 2147 struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list); 2148 struct mptcp_sock *msk = mptcp_sk(sk); 2149 bool moved = false; 2150 2151 *delta = 0; 2152 while (1) { 2153 /* If the msk recvbuf is full stop, don't drop */ 2154 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2155 break; 2156 2157 prefetch(skb->next); 2158 list_del(&skb->list); 2159 *delta += skb->truesize; 2160 2161 moved |= __mptcp_move_skb(sk, skb); 2162 if (list_empty(skbs)) 2163 break; 2164 2165 skb = list_first_entry(skbs, struct sk_buff, list); 2166 } 2167 2168 __mptcp_ofo_queue(msk); 2169 if (moved) 2170 mptcp_check_data_fin((struct sock *)msk); 2171 return moved; 2172 } 2173 2174 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs) 2175 { 2176 struct mptcp_sock *msk = mptcp_sk(sk); 2177 2178 /* After CG initialization, subflows should never add skb before 2179 * gaining the CG themself. 2180 */ 2181 DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket && 2182 mem_cgroup_from_sk(sk)); 2183 2184 /* Don't spool the backlog if the rcvbuf is full. */ 2185 if (list_empty(&msk->backlog_list) || 2186 sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2187 return false; 2188 2189 INIT_LIST_HEAD(skbs); 2190 list_splice_init(&msk->backlog_list, skbs); 2191 return true; 2192 } 2193 2194 static void mptcp_backlog_spooled(struct sock *sk, u32 moved, 2195 struct list_head *skbs) 2196 { 2197 struct mptcp_sock *msk = mptcp_sk(sk); 2198 2199 WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved); 2200 list_splice(skbs, &msk->backlog_list); 2201 } 2202 2203 static bool mptcp_move_skbs(struct sock *sk) 2204 { 2205 struct list_head skbs; 2206 bool enqueued = false; 2207 u32 moved; 2208 2209 mptcp_data_lock(sk); 2210 while (mptcp_can_spool_backlog(sk, &skbs)) { 2211 mptcp_data_unlock(sk); 2212 enqueued |= __mptcp_move_skbs(sk, &skbs, &moved); 2213 2214 mptcp_data_lock(sk); 2215 mptcp_backlog_spooled(sk, moved, &skbs); 2216 } 2217 mptcp_data_unlock(sk); 2218 return enqueued; 2219 } 2220 2221 static unsigned int mptcp_inq_hint(const struct sock *sk) 2222 { 2223 const struct mptcp_sock *msk = mptcp_sk(sk); 2224 const struct sk_buff *skb; 2225 2226 skb = skb_peek(&sk->sk_receive_queue); 2227 if (skb) { 2228 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2229 2230 if (hint_val >= INT_MAX) 2231 return INT_MAX; 2232 2233 return (unsigned int)hint_val; 2234 } 2235 2236 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2237 return 1; 2238 2239 return 0; 2240 } 2241 2242 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2243 int flags, int *addr_len) 2244 { 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 struct scm_timestamping_internal tss; 2247 int copied = 0, cmsg_flags = 0; 2248 int target; 2249 long timeo; 2250 2251 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2252 if (unlikely(flags & MSG_ERRQUEUE)) 2253 return inet_recv_error(sk, msg, len, addr_len); 2254 2255 lock_sock(sk); 2256 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2257 copied = -ENOTCONN; 2258 goto out_err; 2259 } 2260 2261 mptcp_rps_record_subflows(msk); 2262 2263 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2264 2265 len = min_t(size_t, len, INT_MAX); 2266 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2267 2268 if (unlikely(msk->recvmsg_inq)) 2269 cmsg_flags = MPTCP_CMSG_INQ; 2270 2271 while (copied < len) { 2272 int err, bytes_read; 2273 2274 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2275 copied, &tss, &cmsg_flags); 2276 if (unlikely(bytes_read < 0)) { 2277 if (!copied) 2278 copied = bytes_read; 2279 goto out_err; 2280 } 2281 2282 copied += bytes_read; 2283 2284 if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk)) 2285 continue; 2286 2287 /* only the MPTCP socket status is relevant here. The exit 2288 * conditions mirror closely tcp_recvmsg() 2289 */ 2290 if (copied >= target) 2291 break; 2292 2293 if (copied) { 2294 if (sk->sk_err || 2295 sk->sk_state == TCP_CLOSE || 2296 (sk->sk_shutdown & RCV_SHUTDOWN) || 2297 !timeo || 2298 signal_pending(current)) 2299 break; 2300 } else { 2301 if (sk->sk_err) { 2302 copied = sock_error(sk); 2303 break; 2304 } 2305 2306 if (sk->sk_shutdown & RCV_SHUTDOWN) 2307 break; 2308 2309 if (sk->sk_state == TCP_CLOSE) { 2310 copied = -ENOTCONN; 2311 break; 2312 } 2313 2314 if (!timeo) { 2315 copied = -EAGAIN; 2316 break; 2317 } 2318 2319 if (signal_pending(current)) { 2320 copied = sock_intr_errno(timeo); 2321 break; 2322 } 2323 } 2324 2325 pr_debug("block timeout %ld\n", timeo); 2326 mptcp_cleanup_rbuf(msk, copied); 2327 err = sk_wait_data(sk, &timeo, NULL); 2328 if (err < 0) { 2329 err = copied ? : err; 2330 goto out_err; 2331 } 2332 } 2333 2334 mptcp_cleanup_rbuf(msk, copied); 2335 2336 out_err: 2337 if (cmsg_flags && copied >= 0) { 2338 if (cmsg_flags & MPTCP_CMSG_TS) 2339 tcp_recv_timestamp(msg, sk, &tss); 2340 2341 if (cmsg_flags & MPTCP_CMSG_INQ) { 2342 unsigned int inq = mptcp_inq_hint(sk); 2343 2344 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2345 } 2346 } 2347 2348 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2349 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2350 2351 release_sock(sk); 2352 return copied; 2353 } 2354 2355 static void mptcp_retransmit_timer(struct timer_list *t) 2356 { 2357 struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer); 2358 struct mptcp_sock *msk = mptcp_sk(sk); 2359 2360 bh_lock_sock(sk); 2361 if (!sock_owned_by_user(sk)) { 2362 /* we need a process context to retransmit */ 2363 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2364 mptcp_schedule_work(sk); 2365 } else { 2366 /* delegate our work to tcp_release_cb() */ 2367 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2368 } 2369 bh_unlock_sock(sk); 2370 sock_put(sk); 2371 } 2372 2373 static void mptcp_tout_timer(struct timer_list *t) 2374 { 2375 struct inet_connection_sock *icsk = 2376 timer_container_of(icsk, t, mptcp_tout_timer); 2377 struct sock *sk = &icsk->icsk_inet.sk; 2378 2379 mptcp_schedule_work(sk); 2380 sock_put(sk); 2381 } 2382 2383 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2384 * level. 2385 * 2386 * A backup subflow is returned only if that is the only kind available. 2387 */ 2388 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2389 { 2390 struct sock *backup = NULL, *pick = NULL; 2391 struct mptcp_subflow_context *subflow; 2392 int min_stale_count = INT_MAX; 2393 2394 mptcp_for_each_subflow(msk, subflow) { 2395 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2396 2397 if (!__mptcp_subflow_active(subflow)) 2398 continue; 2399 2400 /* still data outstanding at TCP level? skip this */ 2401 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2402 mptcp_pm_subflow_chk_stale(msk, ssk); 2403 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2404 continue; 2405 } 2406 2407 if (subflow->backup || subflow->request_bkup) { 2408 if (!backup) 2409 backup = ssk; 2410 continue; 2411 } 2412 2413 if (!pick) 2414 pick = ssk; 2415 } 2416 2417 if (pick) 2418 return pick; 2419 2420 /* use backup only if there are no progresses anywhere */ 2421 return min_stale_count > 1 ? backup : NULL; 2422 } 2423 2424 bool __mptcp_retransmit_pending_data(struct sock *sk) 2425 { 2426 struct mptcp_data_frag *cur, *rtx_head; 2427 struct mptcp_sock *msk = mptcp_sk(sk); 2428 2429 if (__mptcp_check_fallback(msk)) 2430 return false; 2431 2432 /* the closing socket has some data untransmitted and/or unacked: 2433 * some data in the mptcp rtx queue has not really xmitted yet. 2434 * keep it simple and re-inject the whole mptcp level rtx queue 2435 */ 2436 mptcp_data_lock(sk); 2437 __mptcp_clean_una_wakeup(sk); 2438 rtx_head = mptcp_rtx_head(sk); 2439 if (!rtx_head) { 2440 mptcp_data_unlock(sk); 2441 return false; 2442 } 2443 2444 msk->recovery_snd_nxt = msk->snd_nxt; 2445 msk->recovery = true; 2446 mptcp_data_unlock(sk); 2447 2448 msk->first_pending = rtx_head; 2449 msk->snd_burst = 0; 2450 2451 /* be sure to clear the "sent status" on all re-injected fragments */ 2452 list_for_each_entry(cur, &msk->rtx_queue, list) { 2453 if (!cur->already_sent) 2454 break; 2455 cur->already_sent = 0; 2456 } 2457 2458 return true; 2459 } 2460 2461 /* flags for __mptcp_close_ssk() */ 2462 #define MPTCP_CF_PUSH BIT(1) 2463 2464 /* be sure to send a reset only if the caller asked for it, also 2465 * clean completely the subflow status when the subflow reaches 2466 * TCP_CLOSE state 2467 */ 2468 static void __mptcp_subflow_disconnect(struct sock *ssk, 2469 struct mptcp_subflow_context *subflow, 2470 unsigned int flags) 2471 { 2472 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2473 subflow->send_fastclose) { 2474 /* The MPTCP code never wait on the subflow sockets, TCP-level 2475 * disconnect should never fail 2476 */ 2477 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2478 mptcp_subflow_ctx_reset(subflow); 2479 } else { 2480 tcp_shutdown(ssk, SEND_SHUTDOWN); 2481 } 2482 } 2483 2484 /* subflow sockets can be either outgoing (connect) or incoming 2485 * (accept). 2486 * 2487 * Outgoing subflows use in-kernel sockets. 2488 * Incoming subflows do not have their own 'struct socket' allocated, 2489 * so we need to use tcp_close() after detaching them from the mptcp 2490 * parent socket. 2491 */ 2492 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2493 struct mptcp_subflow_context *subflow, 2494 unsigned int flags) 2495 { 2496 struct mptcp_sock *msk = mptcp_sk(sk); 2497 bool dispose_it, need_push = false; 2498 int fwd_remaining; 2499 2500 /* Do not pass RX data to the msk, even if the subflow socket is not 2501 * going to be freed (i.e. even for the first subflow on graceful 2502 * subflow close. 2503 */ 2504 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2505 subflow->closing = 1; 2506 2507 /* Borrow the fwd allocated page left-over; fwd memory for the subflow 2508 * could be negative at this point, but will be reach zero soon - when 2509 * the data allocated using such fragment will be freed. 2510 */ 2511 if (subflow->lent_mem_frag) { 2512 fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag; 2513 sk_forward_alloc_add(sk, fwd_remaining); 2514 sk_forward_alloc_add(ssk, -fwd_remaining); 2515 subflow->lent_mem_frag = 0; 2516 } 2517 2518 /* If the first subflow moved to a close state before accept, e.g. due 2519 * to an incoming reset or listener shutdown, the subflow socket is 2520 * already deleted by inet_child_forget() and the mptcp socket can't 2521 * survive too. 2522 */ 2523 if (msk->in_accept_queue && msk->first == ssk && 2524 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2525 /* ensure later check in mptcp_worker() will dispose the msk */ 2526 sock_set_flag(sk, SOCK_DEAD); 2527 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2528 mptcp_subflow_drop_ctx(ssk); 2529 goto out_release; 2530 } 2531 2532 dispose_it = msk->free_first || ssk != msk->first; 2533 if (dispose_it) 2534 list_del(&subflow->node); 2535 2536 if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE) 2537 tcp_set_state(ssk, TCP_CLOSE); 2538 2539 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2540 if (!dispose_it) { 2541 __mptcp_subflow_disconnect(ssk, subflow, flags); 2542 release_sock(ssk); 2543 2544 goto out; 2545 } 2546 2547 subflow->disposable = 1; 2548 2549 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2550 * the ssk has been already destroyed, we just need to release the 2551 * reference owned by msk; 2552 */ 2553 if (!inet_csk(ssk)->icsk_ulp_ops) { 2554 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2555 kfree_rcu(subflow, rcu); 2556 } else { 2557 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2558 __tcp_close(ssk, 0); 2559 2560 /* close acquired an extra ref */ 2561 __sock_put(ssk); 2562 } 2563 2564 out_release: 2565 __mptcp_subflow_error_report(sk, ssk); 2566 release_sock(ssk); 2567 2568 sock_put(ssk); 2569 2570 if (ssk == msk->first) 2571 WRITE_ONCE(msk->first, NULL); 2572 2573 out: 2574 __mptcp_sync_sndbuf(sk); 2575 if (need_push) 2576 __mptcp_push_pending(sk, 0); 2577 2578 /* Catch every 'all subflows closed' scenario, including peers silently 2579 * closing them, e.g. due to timeout. 2580 * For established sockets, allow an additional timeout before closing, 2581 * as the protocol can still create more subflows. 2582 */ 2583 if (list_is_singular(&msk->conn_list) && msk->first && 2584 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2585 if (sk->sk_state != TCP_ESTABLISHED || 2586 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2587 mptcp_set_state(sk, TCP_CLOSE); 2588 mptcp_close_wake_up(sk); 2589 } else { 2590 mptcp_start_tout_timer(sk); 2591 } 2592 } 2593 } 2594 2595 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2596 struct mptcp_subflow_context *subflow) 2597 { 2598 struct mptcp_sock *msk = mptcp_sk(sk); 2599 struct sk_buff *skb; 2600 2601 /* The first subflow can already be closed and still in the list */ 2602 if (subflow->close_event_done) 2603 return; 2604 2605 subflow->close_event_done = true; 2606 2607 if (sk->sk_state == TCP_ESTABLISHED) 2608 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2609 2610 /* Remove any reference from the backlog to this ssk; backlog skbs consume 2611 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc 2612 */ 2613 list_for_each_entry(skb, &msk->backlog_list, list) { 2614 if (skb->sk != ssk) 2615 continue; 2616 2617 atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc); 2618 skb->sk = NULL; 2619 } 2620 2621 /* subflow aborted before reaching the fully_established status 2622 * attempt the creation of the next subflow 2623 */ 2624 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2625 2626 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2627 } 2628 2629 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2630 { 2631 return 0; 2632 } 2633 2634 static void __mptcp_close_subflow(struct sock *sk) 2635 { 2636 struct mptcp_subflow_context *subflow, *tmp; 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 2639 might_sleep(); 2640 2641 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2642 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2643 int ssk_state = inet_sk_state_load(ssk); 2644 2645 if (ssk_state != TCP_CLOSE && 2646 (ssk_state != TCP_CLOSE_WAIT || 2647 inet_sk_state_load(sk) != TCP_ESTABLISHED || 2648 __mptcp_check_fallback(msk))) 2649 continue; 2650 2651 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2652 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2653 continue; 2654 2655 mptcp_close_ssk(sk, ssk, subflow); 2656 } 2657 2658 } 2659 2660 static bool mptcp_close_tout_expired(const struct sock *sk) 2661 { 2662 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2663 sk->sk_state == TCP_CLOSE) 2664 return false; 2665 2666 return time_after32(tcp_jiffies32, 2667 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2668 } 2669 2670 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2671 { 2672 struct mptcp_subflow_context *subflow, *tmp; 2673 struct sock *sk = (struct sock *)msk; 2674 2675 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2676 return; 2677 2678 mptcp_token_destroy(msk); 2679 2680 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2681 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2682 bool slow; 2683 2684 slow = lock_sock_fast(tcp_sk); 2685 if (tcp_sk->sk_state != TCP_CLOSE) { 2686 mptcp_send_active_reset_reason(tcp_sk); 2687 tcp_set_state(tcp_sk, TCP_CLOSE); 2688 } 2689 unlock_sock_fast(tcp_sk, slow); 2690 } 2691 2692 /* Mirror the tcp_reset() error propagation */ 2693 switch (sk->sk_state) { 2694 case TCP_SYN_SENT: 2695 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2696 break; 2697 case TCP_CLOSE_WAIT: 2698 WRITE_ONCE(sk->sk_err, EPIPE); 2699 break; 2700 case TCP_CLOSE: 2701 return; 2702 default: 2703 WRITE_ONCE(sk->sk_err, ECONNRESET); 2704 } 2705 2706 mptcp_set_state(sk, TCP_CLOSE); 2707 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2708 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2709 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2710 2711 /* the calling mptcp_worker will properly destroy the socket */ 2712 if (sock_flag(sk, SOCK_DEAD)) 2713 return; 2714 2715 sk->sk_state_change(sk); 2716 sk_error_report(sk); 2717 } 2718 2719 static void __mptcp_retrans(struct sock *sk) 2720 { 2721 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2722 struct mptcp_sock *msk = mptcp_sk(sk); 2723 struct mptcp_subflow_context *subflow; 2724 struct mptcp_data_frag *dfrag; 2725 struct sock *ssk; 2726 int ret, err; 2727 u16 len = 0; 2728 2729 mptcp_clean_una_wakeup(sk); 2730 2731 /* first check ssk: need to kick "stale" logic */ 2732 err = mptcp_sched_get_retrans(msk); 2733 dfrag = mptcp_rtx_head(sk); 2734 if (!dfrag) { 2735 if (mptcp_data_fin_enabled(msk)) { 2736 struct inet_connection_sock *icsk = inet_csk(sk); 2737 2738 WRITE_ONCE(icsk->icsk_retransmits, 2739 icsk->icsk_retransmits + 1); 2740 mptcp_set_datafin_timeout(sk); 2741 mptcp_send_ack(msk); 2742 2743 goto reset_timer; 2744 } 2745 2746 if (!mptcp_send_head(sk)) 2747 goto clear_scheduled; 2748 2749 goto reset_timer; 2750 } 2751 2752 if (err) 2753 goto reset_timer; 2754 2755 mptcp_for_each_subflow(msk, subflow) { 2756 if (READ_ONCE(subflow->scheduled)) { 2757 u16 copied = 0; 2758 2759 mptcp_subflow_set_scheduled(subflow, false); 2760 2761 ssk = mptcp_subflow_tcp_sock(subflow); 2762 2763 lock_sock(ssk); 2764 2765 /* limit retransmission to the bytes already sent on some subflows */ 2766 info.sent = 0; 2767 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2768 dfrag->already_sent; 2769 2770 /* 2771 * make the whole retrans decision, xmit, disallow 2772 * fallback atomic, note that we can't retrans even 2773 * when an infinite fallback is in progress, i.e. new 2774 * subflows are disallowed. 2775 */ 2776 spin_lock_bh(&msk->fallback_lock); 2777 if (__mptcp_check_fallback(msk) || 2778 !msk->allow_subflows) { 2779 spin_unlock_bh(&msk->fallback_lock); 2780 release_sock(ssk); 2781 goto clear_scheduled; 2782 } 2783 2784 while (info.sent < info.limit) { 2785 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2786 if (ret <= 0) 2787 break; 2788 2789 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2790 copied += ret; 2791 info.sent += ret; 2792 } 2793 if (copied) { 2794 len = max(copied, len); 2795 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2796 info.size_goal); 2797 msk->allow_infinite_fallback = false; 2798 } 2799 spin_unlock_bh(&msk->fallback_lock); 2800 2801 release_sock(ssk); 2802 } 2803 } 2804 2805 msk->bytes_retrans += len; 2806 dfrag->already_sent = max(dfrag->already_sent, len); 2807 2808 reset_timer: 2809 mptcp_check_and_set_pending(sk); 2810 2811 if (!mptcp_rtx_timer_pending(sk)) 2812 mptcp_reset_rtx_timer(sk); 2813 2814 clear_scheduled: 2815 /* If no rtx data was available or in case of fallback, there 2816 * could be left-over scheduled subflows; clear them all 2817 * or later xmit could use bad ones 2818 */ 2819 mptcp_for_each_subflow(msk, subflow) 2820 if (READ_ONCE(subflow->scheduled)) 2821 mptcp_subflow_set_scheduled(subflow, false); 2822 } 2823 2824 /* schedule the timeout timer for the relevant event: either close timeout 2825 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2826 */ 2827 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2828 { 2829 struct sock *sk = (struct sock *)msk; 2830 unsigned long timeout, close_timeout; 2831 2832 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2833 return; 2834 2835 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2836 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2837 2838 /* the close timeout takes precedence on the fail one, and here at least one of 2839 * them is active 2840 */ 2841 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2842 2843 sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout); 2844 } 2845 2846 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2847 { 2848 struct sock *ssk = msk->first; 2849 bool slow; 2850 2851 if (!ssk) 2852 return; 2853 2854 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2855 2856 slow = lock_sock_fast(ssk); 2857 mptcp_subflow_reset(ssk); 2858 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2859 unlock_sock_fast(ssk, slow); 2860 } 2861 2862 static void mptcp_backlog_purge(struct sock *sk) 2863 { 2864 struct mptcp_sock *msk = mptcp_sk(sk); 2865 struct sk_buff *tmp, *skb; 2866 LIST_HEAD(backlog); 2867 2868 mptcp_data_lock(sk); 2869 list_splice_init(&msk->backlog_list, &backlog); 2870 msk->backlog_len = 0; 2871 mptcp_data_unlock(sk); 2872 2873 list_for_each_entry_safe(skb, tmp, &backlog, list) { 2874 mptcp_borrow_fwdmem(sk, skb); 2875 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 2876 } 2877 sk_mem_reclaim(sk); 2878 } 2879 2880 static void mptcp_do_fastclose(struct sock *sk) 2881 { 2882 struct mptcp_subflow_context *subflow, *tmp; 2883 struct mptcp_sock *msk = mptcp_sk(sk); 2884 2885 mptcp_set_state(sk, TCP_CLOSE); 2886 mptcp_backlog_purge(sk); 2887 2888 /* Explicitly send the fastclose reset as need */ 2889 if (__mptcp_check_fallback(msk)) 2890 return; 2891 2892 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2893 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2894 2895 lock_sock(ssk); 2896 2897 /* Some subflow socket states don't allow/need a reset.*/ 2898 if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 2899 goto unlock; 2900 2901 subflow->send_fastclose = 1; 2902 2903 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2904 * issue in __tcp_select_window(), see tcp_disconnect(). 2905 */ 2906 inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS; 2907 2908 tcp_send_active_reset(ssk, ssk->sk_allocation, 2909 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 2910 unlock: 2911 release_sock(ssk); 2912 } 2913 } 2914 2915 static void mptcp_worker(struct work_struct *work) 2916 { 2917 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2918 struct sock *sk = (struct sock *)msk; 2919 unsigned long fail_tout; 2920 int state; 2921 2922 lock_sock(sk); 2923 state = sk->sk_state; 2924 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2925 goto unlock; 2926 2927 mptcp_check_fastclose(msk); 2928 2929 mptcp_pm_worker(msk); 2930 2931 mptcp_check_send_data_fin(sk); 2932 mptcp_check_data_fin_ack(sk); 2933 mptcp_check_data_fin(sk); 2934 2935 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2936 __mptcp_close_subflow(sk); 2937 2938 if (mptcp_close_tout_expired(sk)) { 2939 struct mptcp_subflow_context *subflow, *tmp; 2940 2941 mptcp_do_fastclose(sk); 2942 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2943 __mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0); 2944 mptcp_close_wake_up(sk); 2945 } 2946 2947 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2948 __mptcp_destroy_sock(sk); 2949 goto unlock; 2950 } 2951 2952 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2953 __mptcp_retrans(sk); 2954 2955 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2956 if (fail_tout && time_after(jiffies, fail_tout)) 2957 mptcp_mp_fail_no_response(msk); 2958 2959 unlock: 2960 release_sock(sk); 2961 sock_put(sk); 2962 } 2963 2964 static void __mptcp_init_sock(struct sock *sk) 2965 { 2966 struct mptcp_sock *msk = mptcp_sk(sk); 2967 2968 INIT_LIST_HEAD(&msk->conn_list); 2969 INIT_LIST_HEAD(&msk->join_list); 2970 INIT_LIST_HEAD(&msk->rtx_queue); 2971 INIT_LIST_HEAD(&msk->backlog_list); 2972 INIT_WORK(&msk->work, mptcp_worker); 2973 msk->out_of_order_queue = RB_ROOT; 2974 msk->first_pending = NULL; 2975 msk->timer_ival = TCP_RTO_MIN; 2976 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2977 msk->backlog_len = 0; 2978 2979 WRITE_ONCE(msk->first, NULL); 2980 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2981 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2982 msk->allow_infinite_fallback = true; 2983 msk->allow_subflows = true; 2984 msk->recovery = false; 2985 msk->subflow_id = 1; 2986 msk->last_data_sent = tcp_jiffies32; 2987 msk->last_data_recv = tcp_jiffies32; 2988 msk->last_ack_recv = tcp_jiffies32; 2989 2990 mptcp_pm_data_init(msk); 2991 spin_lock_init(&msk->fallback_lock); 2992 2993 /* re-use the csk retrans timer for MPTCP-level retrans */ 2994 timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0); 2995 timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0); 2996 } 2997 2998 static void mptcp_ca_reset(struct sock *sk) 2999 { 3000 struct inet_connection_sock *icsk = inet_csk(sk); 3001 3002 tcp_assign_congestion_control(sk); 3003 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 3004 sizeof(mptcp_sk(sk)->ca_name)); 3005 3006 /* no need to keep a reference to the ops, the name will suffice */ 3007 tcp_cleanup_congestion_control(sk); 3008 icsk->icsk_ca_ops = NULL; 3009 } 3010 3011 static int mptcp_init_sock(struct sock *sk) 3012 { 3013 struct net *net = sock_net(sk); 3014 int ret; 3015 3016 __mptcp_init_sock(sk); 3017 3018 if (!mptcp_is_enabled(net)) 3019 return -ENOPROTOOPT; 3020 3021 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 3022 return -ENOMEM; 3023 3024 rcu_read_lock(); 3025 ret = mptcp_init_sched(mptcp_sk(sk), 3026 mptcp_sched_find(mptcp_get_scheduler(net))); 3027 rcu_read_unlock(); 3028 if (ret) 3029 return ret; 3030 3031 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 3032 3033 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 3034 * propagate the correct value 3035 */ 3036 mptcp_ca_reset(sk); 3037 3038 sk_sockets_allocated_inc(sk); 3039 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 3040 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 3041 3042 return 0; 3043 } 3044 3045 static void __mptcp_clear_xmit(struct sock *sk) 3046 { 3047 struct mptcp_sock *msk = mptcp_sk(sk); 3048 struct mptcp_data_frag *dtmp, *dfrag; 3049 3050 msk->first_pending = NULL; 3051 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 3052 dfrag_clear(sk, dfrag); 3053 } 3054 3055 void mptcp_cancel_work(struct sock *sk) 3056 { 3057 struct mptcp_sock *msk = mptcp_sk(sk); 3058 3059 if (cancel_work_sync(&msk->work)) 3060 __sock_put(sk); 3061 } 3062 3063 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 3064 { 3065 lock_sock(ssk); 3066 3067 switch (ssk->sk_state) { 3068 case TCP_LISTEN: 3069 if (!(how & RCV_SHUTDOWN)) 3070 break; 3071 fallthrough; 3072 case TCP_SYN_SENT: 3073 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 3074 break; 3075 default: 3076 if (__mptcp_check_fallback(mptcp_sk(sk))) { 3077 pr_debug("Fallback\n"); 3078 ssk->sk_shutdown |= how; 3079 tcp_shutdown(ssk, how); 3080 3081 /* simulate the data_fin ack reception to let the state 3082 * machine move forward 3083 */ 3084 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 3085 mptcp_schedule_work(sk); 3086 } else { 3087 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 3088 tcp_send_ack(ssk); 3089 if (!mptcp_rtx_timer_pending(sk)) 3090 mptcp_reset_rtx_timer(sk); 3091 } 3092 break; 3093 } 3094 3095 release_sock(ssk); 3096 } 3097 3098 void mptcp_set_state(struct sock *sk, int state) 3099 { 3100 int oldstate = sk->sk_state; 3101 3102 switch (state) { 3103 case TCP_ESTABLISHED: 3104 if (oldstate != TCP_ESTABLISHED) 3105 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3106 break; 3107 case TCP_CLOSE_WAIT: 3108 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 3109 * MPTCP "accepted" sockets will be created later on. So no 3110 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 3111 */ 3112 break; 3113 default: 3114 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3115 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3116 } 3117 3118 inet_sk_state_store(sk, state); 3119 } 3120 3121 static const unsigned char new_state[16] = { 3122 /* current state: new state: action: */ 3123 [0 /* (Invalid) */] = TCP_CLOSE, 3124 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3125 [TCP_SYN_SENT] = TCP_CLOSE, 3126 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3127 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3128 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3129 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 3130 [TCP_CLOSE] = TCP_CLOSE, 3131 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3132 [TCP_LAST_ACK] = TCP_LAST_ACK, 3133 [TCP_LISTEN] = TCP_CLOSE, 3134 [TCP_CLOSING] = TCP_CLOSING, 3135 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3136 }; 3137 3138 static int mptcp_close_state(struct sock *sk) 3139 { 3140 int next = (int)new_state[sk->sk_state]; 3141 int ns = next & TCP_STATE_MASK; 3142 3143 mptcp_set_state(sk, ns); 3144 3145 return next & TCP_ACTION_FIN; 3146 } 3147 3148 static void mptcp_check_send_data_fin(struct sock *sk) 3149 { 3150 struct mptcp_subflow_context *subflow; 3151 struct mptcp_sock *msk = mptcp_sk(sk); 3152 3153 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3154 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3155 msk->snd_nxt, msk->write_seq); 3156 3157 /* we still need to enqueue subflows or not really shutting down, 3158 * skip this 3159 */ 3160 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3161 mptcp_send_head(sk)) 3162 return; 3163 3164 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3165 3166 mptcp_for_each_subflow(msk, subflow) { 3167 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3168 3169 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3170 } 3171 } 3172 3173 static void __mptcp_wr_shutdown(struct sock *sk) 3174 { 3175 struct mptcp_sock *msk = mptcp_sk(sk); 3176 3177 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3178 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3179 !!mptcp_send_head(sk)); 3180 3181 /* will be ignored by fallback sockets */ 3182 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3183 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3184 3185 mptcp_check_send_data_fin(sk); 3186 } 3187 3188 static void __mptcp_destroy_sock(struct sock *sk) 3189 { 3190 struct mptcp_sock *msk = mptcp_sk(sk); 3191 3192 pr_debug("msk=%p\n", msk); 3193 3194 might_sleep(); 3195 3196 mptcp_stop_rtx_timer(sk); 3197 sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer); 3198 msk->pm.status = 0; 3199 mptcp_release_sched(msk); 3200 3201 sk->sk_prot->destroy(sk); 3202 3203 sk_stream_kill_queues(sk); 3204 xfrm_sk_free_policy(sk); 3205 3206 sock_put(sk); 3207 } 3208 3209 void __mptcp_unaccepted_force_close(struct sock *sk) 3210 { 3211 sock_set_flag(sk, SOCK_DEAD); 3212 mptcp_do_fastclose(sk); 3213 __mptcp_destroy_sock(sk); 3214 } 3215 3216 static __poll_t mptcp_check_readable(struct sock *sk) 3217 { 3218 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3219 } 3220 3221 static void mptcp_check_listen_stop(struct sock *sk) 3222 { 3223 struct sock *ssk; 3224 3225 if (inet_sk_state_load(sk) != TCP_LISTEN) 3226 return; 3227 3228 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3229 ssk = mptcp_sk(sk)->first; 3230 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3231 return; 3232 3233 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3234 tcp_set_state(ssk, TCP_CLOSE); 3235 mptcp_subflow_queue_clean(sk, ssk); 3236 inet_csk_listen_stop(ssk); 3237 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3238 release_sock(ssk); 3239 } 3240 3241 bool __mptcp_close(struct sock *sk, long timeout) 3242 { 3243 struct mptcp_subflow_context *subflow; 3244 struct mptcp_sock *msk = mptcp_sk(sk); 3245 bool do_cancel_work = false; 3246 int subflows_alive = 0; 3247 3248 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3249 3250 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3251 mptcp_check_listen_stop(sk); 3252 mptcp_set_state(sk, TCP_CLOSE); 3253 goto cleanup; 3254 } 3255 3256 if (mptcp_data_avail(msk) || timeout < 0) { 3257 /* If the msk has read data, or the caller explicitly ask it, 3258 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3259 */ 3260 mptcp_do_fastclose(sk); 3261 timeout = 0; 3262 } else if (mptcp_close_state(sk)) { 3263 __mptcp_wr_shutdown(sk); 3264 } 3265 3266 sk_stream_wait_close(sk, timeout); 3267 3268 cleanup: 3269 /* orphan all the subflows */ 3270 mptcp_for_each_subflow(msk, subflow) { 3271 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3272 bool slow = lock_sock_fast_nested(ssk); 3273 3274 subflows_alive += ssk->sk_state != TCP_CLOSE; 3275 3276 /* since the close timeout takes precedence on the fail one, 3277 * cancel the latter 3278 */ 3279 if (ssk == msk->first) 3280 subflow->fail_tout = 0; 3281 3282 /* detach from the parent socket, but allow data_ready to 3283 * push incoming data into the mptcp stack, to properly ack it 3284 */ 3285 ssk->sk_socket = NULL; 3286 ssk->sk_wq = NULL; 3287 unlock_sock_fast(ssk, slow); 3288 } 3289 sock_orphan(sk); 3290 3291 /* all the subflows are closed, only timeout can change the msk 3292 * state, let's not keep resources busy for no reasons 3293 */ 3294 if (subflows_alive == 0) 3295 mptcp_set_state(sk, TCP_CLOSE); 3296 3297 sock_hold(sk); 3298 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3299 mptcp_pm_connection_closed(msk); 3300 3301 if (sk->sk_state == TCP_CLOSE) { 3302 __mptcp_destroy_sock(sk); 3303 do_cancel_work = true; 3304 } else { 3305 mptcp_start_tout_timer(sk); 3306 } 3307 3308 return do_cancel_work; 3309 } 3310 3311 static void mptcp_close(struct sock *sk, long timeout) 3312 { 3313 bool do_cancel_work; 3314 3315 lock_sock(sk); 3316 3317 do_cancel_work = __mptcp_close(sk, timeout); 3318 release_sock(sk); 3319 if (do_cancel_work) 3320 mptcp_cancel_work(sk); 3321 3322 sock_put(sk); 3323 } 3324 3325 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3326 { 3327 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3328 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3329 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3330 3331 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3332 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3333 3334 if (msk6 && ssk6) { 3335 msk6->saddr = ssk6->saddr; 3336 msk6->flow_label = ssk6->flow_label; 3337 } 3338 #endif 3339 3340 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3341 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3342 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3343 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3344 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3345 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3346 } 3347 3348 static void mptcp_destroy_common(struct mptcp_sock *msk) 3349 { 3350 struct mptcp_subflow_context *subflow, *tmp; 3351 struct sock *sk = (struct sock *)msk; 3352 3353 __mptcp_clear_xmit(sk); 3354 mptcp_backlog_purge(sk); 3355 3356 /* join list will be eventually flushed (with rst) at sock lock release time */ 3357 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3358 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0); 3359 3360 __skb_queue_purge(&sk->sk_receive_queue); 3361 skb_rbtree_purge(&msk->out_of_order_queue); 3362 3363 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3364 * inet_sock_destruct() will dispose it 3365 */ 3366 mptcp_token_destroy(msk); 3367 mptcp_pm_destroy(msk); 3368 } 3369 3370 static int mptcp_disconnect(struct sock *sk, int flags) 3371 { 3372 struct mptcp_sock *msk = mptcp_sk(sk); 3373 3374 /* We are on the fastopen error path. We can't call straight into the 3375 * subflows cleanup code due to lock nesting (we are already under 3376 * msk->firstsocket lock). 3377 */ 3378 if (msk->fastopening) 3379 return -EBUSY; 3380 3381 mptcp_check_listen_stop(sk); 3382 mptcp_set_state(sk, TCP_CLOSE); 3383 3384 mptcp_stop_rtx_timer(sk); 3385 mptcp_stop_tout_timer(sk); 3386 3387 mptcp_pm_connection_closed(msk); 3388 3389 /* msk->subflow is still intact, the following will not free the first 3390 * subflow 3391 */ 3392 mptcp_do_fastclose(sk); 3393 mptcp_destroy_common(msk); 3394 3395 /* The first subflow is already in TCP_CLOSE status, the following 3396 * can't overlap with a fallback anymore 3397 */ 3398 spin_lock_bh(&msk->fallback_lock); 3399 msk->allow_subflows = true; 3400 msk->allow_infinite_fallback = true; 3401 WRITE_ONCE(msk->flags, 0); 3402 spin_unlock_bh(&msk->fallback_lock); 3403 3404 msk->cb_flags = 0; 3405 msk->recovery = false; 3406 WRITE_ONCE(msk->can_ack, false); 3407 WRITE_ONCE(msk->fully_established, false); 3408 WRITE_ONCE(msk->rcv_data_fin, false); 3409 WRITE_ONCE(msk->snd_data_fin_enable, false); 3410 WRITE_ONCE(msk->rcv_fastclose, false); 3411 WRITE_ONCE(msk->use_64bit_ack, false); 3412 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3413 mptcp_pm_data_reset(msk); 3414 mptcp_ca_reset(sk); 3415 msk->bytes_consumed = 0; 3416 msk->bytes_acked = 0; 3417 msk->bytes_received = 0; 3418 msk->bytes_sent = 0; 3419 msk->bytes_retrans = 0; 3420 msk->rcvspace_init = 0; 3421 3422 /* for fallback's sake */ 3423 WRITE_ONCE(msk->ack_seq, 0); 3424 3425 WRITE_ONCE(sk->sk_shutdown, 0); 3426 sk_error_report(sk); 3427 return 0; 3428 } 3429 3430 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3431 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3432 { 3433 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3434 3435 return &msk6->np; 3436 } 3437 3438 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3439 { 3440 const struct ipv6_pinfo *np = inet6_sk(sk); 3441 struct ipv6_txoptions *opt; 3442 struct ipv6_pinfo *newnp; 3443 3444 newnp = inet6_sk(newsk); 3445 3446 rcu_read_lock(); 3447 opt = rcu_dereference(np->opt); 3448 if (opt) { 3449 opt = ipv6_dup_options(newsk, opt); 3450 if (!opt) 3451 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3452 } 3453 RCU_INIT_POINTER(newnp->opt, opt); 3454 rcu_read_unlock(); 3455 } 3456 #endif 3457 3458 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3459 { 3460 struct ip_options_rcu *inet_opt, *newopt = NULL; 3461 const struct inet_sock *inet = inet_sk(sk); 3462 struct inet_sock *newinet; 3463 3464 newinet = inet_sk(newsk); 3465 3466 rcu_read_lock(); 3467 inet_opt = rcu_dereference(inet->inet_opt); 3468 if (inet_opt) { 3469 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3470 inet_opt->opt.optlen, GFP_ATOMIC); 3471 if (!newopt) 3472 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3473 } 3474 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3475 rcu_read_unlock(); 3476 } 3477 3478 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3479 const struct mptcp_options_received *mp_opt, 3480 struct sock *ssk, 3481 struct request_sock *req) 3482 { 3483 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3484 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3485 struct mptcp_subflow_context *subflow; 3486 struct mptcp_sock *msk; 3487 3488 if (!nsk) 3489 return NULL; 3490 3491 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3492 if (nsk->sk_family == AF_INET6) 3493 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3494 #endif 3495 3496 __mptcp_init_sock(nsk); 3497 3498 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3499 if (nsk->sk_family == AF_INET6) 3500 mptcp_copy_ip6_options(nsk, sk); 3501 else 3502 #endif 3503 mptcp_copy_ip_options(nsk, sk); 3504 3505 msk = mptcp_sk(nsk); 3506 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3507 WRITE_ONCE(msk->token, subflow_req->token); 3508 msk->in_accept_queue = 1; 3509 WRITE_ONCE(msk->fully_established, false); 3510 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3511 WRITE_ONCE(msk->csum_enabled, true); 3512 3513 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3514 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3515 WRITE_ONCE(msk->snd_una, msk->write_seq); 3516 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3517 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3518 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3519 3520 /* passive msk is created after the first/MPC subflow */ 3521 msk->subflow_id = 2; 3522 3523 sock_reset_flag(nsk, SOCK_RCU_FREE); 3524 security_inet_csk_clone(nsk, req); 3525 3526 /* this can't race with mptcp_close(), as the msk is 3527 * not yet exposted to user-space 3528 */ 3529 mptcp_set_state(nsk, TCP_ESTABLISHED); 3530 3531 /* The msk maintain a ref to each subflow in the connections list */ 3532 WRITE_ONCE(msk->first, ssk); 3533 subflow = mptcp_subflow_ctx(ssk); 3534 list_add(&subflow->node, &msk->conn_list); 3535 sock_hold(ssk); 3536 3537 /* new mpc subflow takes ownership of the newly 3538 * created mptcp socket 3539 */ 3540 mptcp_token_accept(subflow_req, msk); 3541 3542 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3543 * uses the correct data 3544 */ 3545 mptcp_copy_inaddrs(nsk, ssk); 3546 __mptcp_propagate_sndbuf(nsk, ssk); 3547 3548 mptcp_rcv_space_init(msk, ssk); 3549 3550 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3551 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3552 bh_unlock_sock(nsk); 3553 3554 /* note: the newly allocated socket refcount is 2 now */ 3555 return nsk; 3556 } 3557 3558 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3559 { 3560 const struct tcp_sock *tp = tcp_sk(ssk); 3561 3562 msk->rcvspace_init = 1; 3563 msk->rcvq_space.copied = 0; 3564 msk->rcvq_space.rtt_us = 0; 3565 3566 msk->rcvq_space.time = tp->tcp_mstamp; 3567 3568 /* initial rcv_space offering made to peer */ 3569 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3570 TCP_INIT_CWND * tp->advmss); 3571 if (msk->rcvq_space.space == 0) 3572 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3573 } 3574 3575 static void mptcp_destroy(struct sock *sk) 3576 { 3577 struct mptcp_sock *msk = mptcp_sk(sk); 3578 3579 /* allow the following to close even the initial subflow */ 3580 msk->free_first = 1; 3581 mptcp_destroy_common(msk); 3582 sk_sockets_allocated_dec(sk); 3583 } 3584 3585 void __mptcp_data_acked(struct sock *sk) 3586 { 3587 if (!sock_owned_by_user(sk)) 3588 __mptcp_clean_una(sk); 3589 else 3590 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3591 } 3592 3593 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3594 { 3595 if (!sock_owned_by_user(sk)) 3596 __mptcp_subflow_push_pending(sk, ssk, false); 3597 else 3598 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3599 } 3600 3601 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3602 BIT(MPTCP_RETRANSMIT) | \ 3603 BIT(MPTCP_FLUSH_JOIN_LIST)) 3604 3605 /* processes deferred events and flush wmem */ 3606 static void mptcp_release_cb(struct sock *sk) 3607 __must_hold(&sk->sk_lock.slock) 3608 { 3609 struct mptcp_sock *msk = mptcp_sk(sk); 3610 3611 for (;;) { 3612 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3613 struct list_head join_list, skbs; 3614 bool spool_bl; 3615 u32 moved; 3616 3617 spool_bl = mptcp_can_spool_backlog(sk, &skbs); 3618 if (!flags && !spool_bl) 3619 break; 3620 3621 INIT_LIST_HEAD(&join_list); 3622 list_splice_init(&msk->join_list, &join_list); 3623 3624 /* the following actions acquire the subflow socket lock 3625 * 3626 * 1) can't be invoked in atomic scope 3627 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3628 * datapath acquires the msk socket spinlock while helding 3629 * the subflow socket lock 3630 */ 3631 msk->cb_flags &= ~flags; 3632 spin_unlock_bh(&sk->sk_lock.slock); 3633 3634 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3635 __mptcp_flush_join_list(sk, &join_list); 3636 if (flags & BIT(MPTCP_PUSH_PENDING)) 3637 __mptcp_push_pending(sk, 0); 3638 if (flags & BIT(MPTCP_RETRANSMIT)) 3639 __mptcp_retrans(sk); 3640 if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) { 3641 /* notify ack seq update */ 3642 mptcp_cleanup_rbuf(msk, 0); 3643 sk->sk_data_ready(sk); 3644 } 3645 3646 cond_resched(); 3647 spin_lock_bh(&sk->sk_lock.slock); 3648 if (spool_bl) 3649 mptcp_backlog_spooled(sk, moved, &skbs); 3650 } 3651 3652 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3653 __mptcp_clean_una_wakeup(sk); 3654 if (unlikely(msk->cb_flags)) { 3655 /* be sure to sync the msk state before taking actions 3656 * depending on sk_state (MPTCP_ERROR_REPORT) 3657 * On sk release avoid actions depending on the first subflow 3658 */ 3659 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3660 __mptcp_sync_state(sk, msk->pending_state); 3661 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3662 __mptcp_error_report(sk); 3663 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3664 __mptcp_sync_sndbuf(sk); 3665 } 3666 } 3667 3668 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3669 * TCP can't schedule delack timer before the subflow is fully established. 3670 * MPTCP uses the delack timer to do 3rd ack retransmissions 3671 */ 3672 static void schedule_3rdack_retransmission(struct sock *ssk) 3673 { 3674 struct inet_connection_sock *icsk = inet_csk(ssk); 3675 struct tcp_sock *tp = tcp_sk(ssk); 3676 unsigned long timeout; 3677 3678 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3679 return; 3680 3681 /* reschedule with a timeout above RTT, as we must look only for drop */ 3682 if (tp->srtt_us) 3683 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3684 else 3685 timeout = TCP_TIMEOUT_INIT; 3686 timeout += jiffies; 3687 3688 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3689 smp_store_release(&icsk->icsk_ack.pending, 3690 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3691 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3692 } 3693 3694 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3695 { 3696 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3697 struct sock *sk = subflow->conn; 3698 3699 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3700 mptcp_data_lock(sk); 3701 if (!sock_owned_by_user(sk)) 3702 __mptcp_subflow_push_pending(sk, ssk, true); 3703 else 3704 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3705 mptcp_data_unlock(sk); 3706 } 3707 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3708 mptcp_data_lock(sk); 3709 if (!sock_owned_by_user(sk)) 3710 __mptcp_sync_sndbuf(sk); 3711 else 3712 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3713 mptcp_data_unlock(sk); 3714 } 3715 if (status & BIT(MPTCP_DELEGATE_ACK)) 3716 schedule_3rdack_retransmission(ssk); 3717 } 3718 3719 static int mptcp_hash(struct sock *sk) 3720 { 3721 /* should never be called, 3722 * we hash the TCP subflows not the MPTCP socket 3723 */ 3724 WARN_ON_ONCE(1); 3725 return 0; 3726 } 3727 3728 static void mptcp_unhash(struct sock *sk) 3729 { 3730 /* called from sk_common_release(), but nothing to do here */ 3731 } 3732 3733 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3734 { 3735 struct mptcp_sock *msk = mptcp_sk(sk); 3736 3737 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3738 if (WARN_ON_ONCE(!msk->first)) 3739 return -EINVAL; 3740 3741 return inet_csk_get_port(msk->first, snum); 3742 } 3743 3744 void mptcp_finish_connect(struct sock *ssk) 3745 { 3746 struct mptcp_subflow_context *subflow; 3747 struct mptcp_sock *msk; 3748 struct sock *sk; 3749 3750 subflow = mptcp_subflow_ctx(ssk); 3751 sk = subflow->conn; 3752 msk = mptcp_sk(sk); 3753 3754 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3755 3756 subflow->map_seq = subflow->iasn; 3757 subflow->map_subflow_seq = 1; 3758 3759 /* the socket is not connected yet, no msk/subflow ops can access/race 3760 * accessing the field below 3761 */ 3762 WRITE_ONCE(msk->local_key, subflow->local_key); 3763 3764 mptcp_pm_new_connection(msk, ssk, 0); 3765 } 3766 3767 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3768 { 3769 write_lock_bh(&sk->sk_callback_lock); 3770 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3771 sk_set_socket(sk, parent); 3772 write_unlock_bh(&sk->sk_callback_lock); 3773 } 3774 3775 /* Can be called without holding the msk socket lock; use the callback lock 3776 * to avoid {READ_,WRITE_}ONCE annotations on sk_socket. 3777 */ 3778 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk) 3779 { 3780 struct socket *sock; 3781 3782 write_lock_bh(&sk->sk_callback_lock); 3783 sock = sk->sk_socket; 3784 write_unlock_bh(&sk->sk_callback_lock); 3785 if (sock) { 3786 mptcp_sock_graft(ssk, sock); 3787 __mptcp_inherit_cgrp_data(sk, ssk); 3788 __mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC); 3789 } 3790 } 3791 3792 bool mptcp_finish_join(struct sock *ssk) 3793 { 3794 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3795 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3796 struct sock *parent = (void *)msk; 3797 bool ret = true; 3798 3799 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3800 3801 /* mptcp socket already closing? */ 3802 if (!mptcp_is_fully_established(parent)) { 3803 subflow->reset_reason = MPTCP_RST_EMPTCP; 3804 return false; 3805 } 3806 3807 /* Active subflow, already present inside the conn_list; is grafted 3808 * either by __mptcp_subflow_connect() or accept. 3809 */ 3810 if (!list_empty(&subflow->node)) { 3811 spin_lock_bh(&msk->fallback_lock); 3812 if (!msk->allow_subflows) { 3813 spin_unlock_bh(&msk->fallback_lock); 3814 return false; 3815 } 3816 mptcp_subflow_joined(msk, ssk); 3817 spin_unlock_bh(&msk->fallback_lock); 3818 mptcp_propagate_sndbuf(parent, ssk); 3819 return true; 3820 } 3821 3822 if (!mptcp_pm_allow_new_subflow(msk)) { 3823 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3824 goto err_prohibited; 3825 } 3826 3827 /* If we can't acquire msk socket lock here, let the release callback 3828 * handle it 3829 */ 3830 mptcp_data_lock(parent); 3831 if (!sock_owned_by_user(parent)) { 3832 ret = __mptcp_finish_join(msk, ssk); 3833 if (ret) { 3834 sock_hold(ssk); 3835 list_add_tail(&subflow->node, &msk->conn_list); 3836 mptcp_sock_check_graft(parent, ssk); 3837 } 3838 } else { 3839 sock_hold(ssk); 3840 list_add_tail(&subflow->node, &msk->join_list); 3841 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3842 3843 /* In case of later failures, __mptcp_flush_join_list() will 3844 * properly orphan the ssk via mptcp_close_ssk(). 3845 */ 3846 mptcp_sock_check_graft(parent, ssk); 3847 } 3848 mptcp_data_unlock(parent); 3849 3850 if (!ret) { 3851 err_prohibited: 3852 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3853 return false; 3854 } 3855 3856 return true; 3857 } 3858 3859 static void mptcp_shutdown(struct sock *sk, int how) 3860 { 3861 pr_debug("sk=%p, how=%d\n", sk, how); 3862 3863 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3864 __mptcp_wr_shutdown(sk); 3865 } 3866 3867 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3868 { 3869 const struct sock *sk = (void *)msk; 3870 u64 delta; 3871 3872 if (sk->sk_state == TCP_LISTEN) 3873 return -EINVAL; 3874 3875 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3876 return 0; 3877 3878 delta = msk->write_seq - v; 3879 if (__mptcp_check_fallback(msk) && msk->first) { 3880 struct tcp_sock *tp = tcp_sk(msk->first); 3881 3882 /* the first subflow is disconnected after close - see 3883 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3884 * so ignore that status, too. 3885 */ 3886 if (!((1 << msk->first->sk_state) & 3887 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3888 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3889 } 3890 if (delta > INT_MAX) 3891 delta = INT_MAX; 3892 3893 return (int)delta; 3894 } 3895 3896 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3897 { 3898 struct mptcp_sock *msk = mptcp_sk(sk); 3899 bool slow; 3900 3901 switch (cmd) { 3902 case SIOCINQ: 3903 if (sk->sk_state == TCP_LISTEN) 3904 return -EINVAL; 3905 3906 lock_sock(sk); 3907 if (mptcp_move_skbs(sk)) 3908 mptcp_cleanup_rbuf(msk, 0); 3909 *karg = mptcp_inq_hint(sk); 3910 release_sock(sk); 3911 break; 3912 case SIOCOUTQ: 3913 slow = lock_sock_fast(sk); 3914 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3915 unlock_sock_fast(sk, slow); 3916 break; 3917 case SIOCOUTQNSD: 3918 slow = lock_sock_fast(sk); 3919 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3920 unlock_sock_fast(sk, slow); 3921 break; 3922 default: 3923 return -ENOIOCTLCMD; 3924 } 3925 3926 return 0; 3927 } 3928 3929 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3930 int addr_len) 3931 { 3932 struct mptcp_subflow_context *subflow; 3933 struct mptcp_sock *msk = mptcp_sk(sk); 3934 int err = -EINVAL; 3935 struct sock *ssk; 3936 3937 ssk = __mptcp_nmpc_sk(msk); 3938 if (IS_ERR(ssk)) 3939 return PTR_ERR(ssk); 3940 3941 mptcp_set_state(sk, TCP_SYN_SENT); 3942 subflow = mptcp_subflow_ctx(ssk); 3943 #ifdef CONFIG_TCP_MD5SIG 3944 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3945 * TCP option space. 3946 */ 3947 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3948 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3949 #endif 3950 if (subflow->request_mptcp) { 3951 if (mptcp_active_should_disable(sk)) 3952 mptcp_early_fallback(msk, subflow, 3953 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3954 else if (mptcp_token_new_connect(ssk) < 0) 3955 mptcp_early_fallback(msk, subflow, 3956 MPTCP_MIB_TOKENFALLBACKINIT); 3957 } 3958 3959 WRITE_ONCE(msk->write_seq, subflow->idsn); 3960 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3961 WRITE_ONCE(msk->snd_una, subflow->idsn); 3962 if (likely(!__mptcp_check_fallback(msk))) 3963 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3964 3965 /* if reaching here via the fastopen/sendmsg path, the caller already 3966 * acquired the subflow socket lock, too. 3967 */ 3968 if (!msk->fastopening) 3969 lock_sock(ssk); 3970 3971 /* the following mirrors closely a very small chunk of code from 3972 * __inet_stream_connect() 3973 */ 3974 if (ssk->sk_state != TCP_CLOSE) 3975 goto out; 3976 3977 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3978 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3979 if (err) 3980 goto out; 3981 } 3982 3983 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3984 if (err < 0) 3985 goto out; 3986 3987 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3988 3989 out: 3990 if (!msk->fastopening) 3991 release_sock(ssk); 3992 3993 /* on successful connect, the msk state will be moved to established by 3994 * subflow_finish_connect() 3995 */ 3996 if (unlikely(err)) { 3997 /* avoid leaving a dangling token in an unconnected socket */ 3998 mptcp_token_destroy(msk); 3999 mptcp_set_state(sk, TCP_CLOSE); 4000 return err; 4001 } 4002 4003 mptcp_copy_inaddrs(sk, ssk); 4004 return 0; 4005 } 4006 4007 static struct proto mptcp_prot = { 4008 .name = "MPTCP", 4009 .owner = THIS_MODULE, 4010 .init = mptcp_init_sock, 4011 .connect = mptcp_connect, 4012 .disconnect = mptcp_disconnect, 4013 .close = mptcp_close, 4014 .setsockopt = mptcp_setsockopt, 4015 .getsockopt = mptcp_getsockopt, 4016 .shutdown = mptcp_shutdown, 4017 .destroy = mptcp_destroy, 4018 .sendmsg = mptcp_sendmsg, 4019 .ioctl = mptcp_ioctl, 4020 .recvmsg = mptcp_recvmsg, 4021 .release_cb = mptcp_release_cb, 4022 .hash = mptcp_hash, 4023 .unhash = mptcp_unhash, 4024 .get_port = mptcp_get_port, 4025 .stream_memory_free = mptcp_stream_memory_free, 4026 .sockets_allocated = &mptcp_sockets_allocated, 4027 4028 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 4029 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 4030 4031 .memory_pressure = &tcp_memory_pressure, 4032 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 4033 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 4034 .sysctl_mem = sysctl_tcp_mem, 4035 .obj_size = sizeof(struct mptcp_sock), 4036 .slab_flags = SLAB_TYPESAFE_BY_RCU, 4037 .no_autobind = true, 4038 }; 4039 4040 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 4041 { 4042 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4043 struct sock *ssk, *sk = sock->sk; 4044 int err = -EINVAL; 4045 4046 lock_sock(sk); 4047 ssk = __mptcp_nmpc_sk(msk); 4048 if (IS_ERR(ssk)) { 4049 err = PTR_ERR(ssk); 4050 goto unlock; 4051 } 4052 4053 if (sk->sk_family == AF_INET) 4054 err = inet_bind_sk(ssk, uaddr, addr_len); 4055 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4056 else if (sk->sk_family == AF_INET6) 4057 err = inet6_bind_sk(ssk, uaddr, addr_len); 4058 #endif 4059 if (!err) 4060 mptcp_copy_inaddrs(sk, ssk); 4061 4062 unlock: 4063 release_sock(sk); 4064 return err; 4065 } 4066 4067 static int mptcp_listen(struct socket *sock, int backlog) 4068 { 4069 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4070 struct sock *sk = sock->sk; 4071 struct sock *ssk; 4072 int err; 4073 4074 pr_debug("msk=%p\n", msk); 4075 4076 lock_sock(sk); 4077 4078 err = -EINVAL; 4079 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 4080 goto unlock; 4081 4082 ssk = __mptcp_nmpc_sk(msk); 4083 if (IS_ERR(ssk)) { 4084 err = PTR_ERR(ssk); 4085 goto unlock; 4086 } 4087 4088 mptcp_set_state(sk, TCP_LISTEN); 4089 sock_set_flag(sk, SOCK_RCU_FREE); 4090 4091 lock_sock(ssk); 4092 err = __inet_listen_sk(ssk, backlog); 4093 release_sock(ssk); 4094 mptcp_set_state(sk, inet_sk_state_load(ssk)); 4095 4096 if (!err) { 4097 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 4098 mptcp_copy_inaddrs(sk, ssk); 4099 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 4100 } 4101 4102 unlock: 4103 release_sock(sk); 4104 return err; 4105 } 4106 4107 static void mptcp_graft_subflows(struct sock *sk) 4108 { 4109 struct mptcp_subflow_context *subflow; 4110 struct mptcp_sock *msk = mptcp_sk(sk); 4111 4112 if (mem_cgroup_sockets_enabled) { 4113 LIST_HEAD(join_list); 4114 4115 /* Subflows joining after __inet_accept() will get the 4116 * mem CG properly initialized at mptcp_finish_join() time, 4117 * but subflows pending in join_list need explicit 4118 * initialization before flushing `backlog_unaccounted` 4119 * or MPTCP can later unexpectedly observe unaccounted memory. 4120 */ 4121 mptcp_data_lock(sk); 4122 list_splice_init(&msk->join_list, &join_list); 4123 mptcp_data_unlock(sk); 4124 4125 __mptcp_flush_join_list(sk, &join_list); 4126 } 4127 4128 mptcp_for_each_subflow(msk, subflow) { 4129 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4130 4131 lock_sock(ssk); 4132 4133 /* Set ssk->sk_socket of accept()ed flows to mptcp socket. 4134 * This is needed so NOSPACE flag can be set from tcp stack. 4135 */ 4136 if (!ssk->sk_socket) 4137 mptcp_sock_graft(ssk, sk->sk_socket); 4138 4139 if (!mem_cgroup_sk_enabled(sk)) 4140 goto unlock; 4141 4142 __mptcp_inherit_cgrp_data(sk, ssk); 4143 __mptcp_inherit_memcg(sk, ssk, GFP_KERNEL); 4144 4145 unlock: 4146 release_sock(ssk); 4147 } 4148 4149 if (mem_cgroup_sk_enabled(sk)) { 4150 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 4151 int amt; 4152 4153 /* Account the backlog memory; prior accept() is aware of 4154 * fwd and rmem only. 4155 */ 4156 mptcp_data_lock(sk); 4157 amt = sk_mem_pages(sk->sk_forward_alloc + 4158 msk->backlog_unaccounted + 4159 atomic_read(&sk->sk_rmem_alloc)) - 4160 sk_mem_pages(sk->sk_forward_alloc + 4161 atomic_read(&sk->sk_rmem_alloc)); 4162 msk->backlog_unaccounted = 0; 4163 mptcp_data_unlock(sk); 4164 4165 if (amt) 4166 mem_cgroup_sk_charge(sk, amt, gfp); 4167 } 4168 } 4169 4170 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 4171 struct proto_accept_arg *arg) 4172 { 4173 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4174 struct sock *ssk, *newsk; 4175 4176 pr_debug("msk=%p\n", msk); 4177 4178 /* Buggy applications can call accept on socket states other then LISTEN 4179 * but no need to allocate the first subflow just to error out. 4180 */ 4181 ssk = READ_ONCE(msk->first); 4182 if (!ssk) 4183 return -EINVAL; 4184 4185 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 4186 newsk = inet_csk_accept(ssk, arg); 4187 if (!newsk) 4188 return arg->err; 4189 4190 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 4191 if (sk_is_mptcp(newsk)) { 4192 struct mptcp_subflow_context *subflow; 4193 struct sock *new_mptcp_sock; 4194 4195 subflow = mptcp_subflow_ctx(newsk); 4196 new_mptcp_sock = subflow->conn; 4197 4198 /* is_mptcp should be false if subflow->conn is missing, see 4199 * subflow_syn_recv_sock() 4200 */ 4201 if (WARN_ON_ONCE(!new_mptcp_sock)) { 4202 tcp_sk(newsk)->is_mptcp = 0; 4203 goto tcpfallback; 4204 } 4205 4206 newsk = new_mptcp_sock; 4207 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 4208 4209 newsk->sk_kern_sock = arg->kern; 4210 lock_sock(newsk); 4211 __inet_accept(sock, newsock, newsk); 4212 4213 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 4214 msk = mptcp_sk(newsk); 4215 msk->in_accept_queue = 0; 4216 4217 mptcp_graft_subflows(newsk); 4218 mptcp_rps_record_subflows(msk); 4219 4220 /* Do late cleanup for the first subflow as necessary. Also 4221 * deal with bad peers not doing a complete shutdown. 4222 */ 4223 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 4224 if (unlikely(list_is_singular(&msk->conn_list))) 4225 mptcp_set_state(newsk, TCP_CLOSE); 4226 mptcp_close_ssk(newsk, msk->first, 4227 mptcp_subflow_ctx(msk->first)); 4228 } 4229 } else { 4230 tcpfallback: 4231 newsk->sk_kern_sock = arg->kern; 4232 lock_sock(newsk); 4233 __inet_accept(sock, newsock, newsk); 4234 /* we are being invoked after accepting a non-mp-capable 4235 * flow: sk is a tcp_sk, not an mptcp one. 4236 * 4237 * Hand the socket over to tcp so all further socket ops 4238 * bypass mptcp. 4239 */ 4240 WRITE_ONCE(newsock->sk->sk_socket->ops, 4241 mptcp_fallback_tcp_ops(newsock->sk)); 4242 } 4243 release_sock(newsk); 4244 4245 return 0; 4246 } 4247 4248 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4249 { 4250 struct sock *sk = (struct sock *)msk; 4251 4252 if (__mptcp_stream_is_writeable(sk, 1)) 4253 return EPOLLOUT | EPOLLWRNORM; 4254 4255 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4256 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4257 if (__mptcp_stream_is_writeable(sk, 1)) 4258 return EPOLLOUT | EPOLLWRNORM; 4259 4260 return 0; 4261 } 4262 4263 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4264 struct poll_table_struct *wait) 4265 { 4266 struct sock *sk = sock->sk; 4267 struct mptcp_sock *msk; 4268 __poll_t mask = 0; 4269 u8 shutdown; 4270 int state; 4271 4272 msk = mptcp_sk(sk); 4273 sock_poll_wait(file, sock, wait); 4274 4275 state = inet_sk_state_load(sk); 4276 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4277 if (state == TCP_LISTEN) { 4278 struct sock *ssk = READ_ONCE(msk->first); 4279 4280 if (WARN_ON_ONCE(!ssk)) 4281 return 0; 4282 4283 return inet_csk_listen_poll(ssk); 4284 } 4285 4286 shutdown = READ_ONCE(sk->sk_shutdown); 4287 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4288 mask |= EPOLLHUP; 4289 if (shutdown & RCV_SHUTDOWN) 4290 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4291 4292 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4293 mask |= mptcp_check_readable(sk); 4294 if (shutdown & SEND_SHUTDOWN) 4295 mask |= EPOLLOUT | EPOLLWRNORM; 4296 else 4297 mask |= mptcp_check_writeable(msk); 4298 } else if (state == TCP_SYN_SENT && 4299 inet_test_bit(DEFER_CONNECT, sk)) { 4300 /* cf tcp_poll() note about TFO */ 4301 mask |= EPOLLOUT | EPOLLWRNORM; 4302 } 4303 4304 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4305 smp_rmb(); 4306 if (READ_ONCE(sk->sk_err)) 4307 mask |= EPOLLERR; 4308 4309 return mask; 4310 } 4311 4312 static const struct proto_ops mptcp_stream_ops = { 4313 .family = PF_INET, 4314 .owner = THIS_MODULE, 4315 .release = inet_release, 4316 .bind = mptcp_bind, 4317 .connect = inet_stream_connect, 4318 .socketpair = sock_no_socketpair, 4319 .accept = mptcp_stream_accept, 4320 .getname = inet_getname, 4321 .poll = mptcp_poll, 4322 .ioctl = inet_ioctl, 4323 .gettstamp = sock_gettstamp, 4324 .listen = mptcp_listen, 4325 .shutdown = inet_shutdown, 4326 .setsockopt = sock_common_setsockopt, 4327 .getsockopt = sock_common_getsockopt, 4328 .sendmsg = inet_sendmsg, 4329 .recvmsg = inet_recvmsg, 4330 .mmap = sock_no_mmap, 4331 .set_rcvlowat = mptcp_set_rcvlowat, 4332 }; 4333 4334 static struct inet_protosw mptcp_protosw = { 4335 .type = SOCK_STREAM, 4336 .protocol = IPPROTO_MPTCP, 4337 .prot = &mptcp_prot, 4338 .ops = &mptcp_stream_ops, 4339 .flags = INET_PROTOSW_ICSK, 4340 }; 4341 4342 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4343 { 4344 struct mptcp_delegated_action *delegated; 4345 struct mptcp_subflow_context *subflow; 4346 int work_done = 0; 4347 4348 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4349 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4350 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4351 4352 bh_lock_sock_nested(ssk); 4353 if (!sock_owned_by_user(ssk)) { 4354 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4355 } else { 4356 /* tcp_release_cb_override already processed 4357 * the action or will do at next release_sock(). 4358 * In both case must dequeue the subflow here - on the same 4359 * CPU that scheduled it. 4360 */ 4361 smp_wmb(); 4362 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4363 } 4364 bh_unlock_sock(ssk); 4365 sock_put(ssk); 4366 4367 if (++work_done == budget) 4368 return budget; 4369 } 4370 4371 /* always provide a 0 'work_done' argument, so that napi_complete_done 4372 * will not try accessing the NULL napi->dev ptr 4373 */ 4374 napi_complete_done(napi, 0); 4375 return work_done; 4376 } 4377 4378 void __init mptcp_proto_init(void) 4379 { 4380 struct mptcp_delegated_action *delegated; 4381 int cpu; 4382 4383 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4384 4385 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4386 panic("Failed to allocate MPTCP pcpu counter\n"); 4387 4388 mptcp_napi_dev = alloc_netdev_dummy(0); 4389 if (!mptcp_napi_dev) 4390 panic("Failed to allocate MPTCP dummy netdev\n"); 4391 for_each_possible_cpu(cpu) { 4392 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4393 INIT_LIST_HEAD(&delegated->head); 4394 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4395 mptcp_napi_poll); 4396 napi_enable(&delegated->napi); 4397 } 4398 4399 mptcp_subflow_init(); 4400 mptcp_pm_init(); 4401 mptcp_sched_init(); 4402 mptcp_token_init(); 4403 4404 if (proto_register(&mptcp_prot, 1) != 0) 4405 panic("Failed to register MPTCP proto.\n"); 4406 4407 inet_register_protosw(&mptcp_protosw); 4408 4409 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4410 } 4411 4412 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4413 static const struct proto_ops mptcp_v6_stream_ops = { 4414 .family = PF_INET6, 4415 .owner = THIS_MODULE, 4416 .release = inet6_release, 4417 .bind = mptcp_bind, 4418 .connect = inet_stream_connect, 4419 .socketpair = sock_no_socketpair, 4420 .accept = mptcp_stream_accept, 4421 .getname = inet6_getname, 4422 .poll = mptcp_poll, 4423 .ioctl = inet6_ioctl, 4424 .gettstamp = sock_gettstamp, 4425 .listen = mptcp_listen, 4426 .shutdown = inet_shutdown, 4427 .setsockopt = sock_common_setsockopt, 4428 .getsockopt = sock_common_getsockopt, 4429 .sendmsg = inet6_sendmsg, 4430 .recvmsg = inet6_recvmsg, 4431 .mmap = sock_no_mmap, 4432 #ifdef CONFIG_COMPAT 4433 .compat_ioctl = inet6_compat_ioctl, 4434 #endif 4435 .set_rcvlowat = mptcp_set_rcvlowat, 4436 }; 4437 4438 static struct proto mptcp_v6_prot; 4439 4440 static struct inet_protosw mptcp_v6_protosw = { 4441 .type = SOCK_STREAM, 4442 .protocol = IPPROTO_MPTCP, 4443 .prot = &mptcp_v6_prot, 4444 .ops = &mptcp_v6_stream_ops, 4445 .flags = INET_PROTOSW_ICSK, 4446 }; 4447 4448 int __init mptcp_proto_v6_init(void) 4449 { 4450 int err; 4451 4452 mptcp_v6_prot = mptcp_prot; 4453 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4454 mptcp_v6_prot.slab = NULL; 4455 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4456 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4457 4458 err = proto_register(&mptcp_v6_prot, 1); 4459 if (err) 4460 return err; 4461 4462 err = inet6_register_protosw(&mptcp_v6_protosw); 4463 if (err) 4464 proto_unregister(&mptcp_v6_prot); 4465 4466 return err; 4467 } 4468 #endif 4469