1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 static unsigned int mptcp_inq_hint(const struct sock *sk); 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/mptcp.h> 35 36 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 37 struct mptcp6_sock { 38 struct mptcp_sock msk; 39 struct ipv6_pinfo np; 40 }; 41 #endif 42 43 enum { 44 MPTCP_CMSG_TS = BIT(0), 45 MPTCP_CMSG_INQ = BIT(1), 46 }; 47 48 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 49 50 static void __mptcp_destroy_sock(struct sock *sk); 51 static void mptcp_check_send_data_fin(struct sock *sk); 52 53 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 54 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 55 }; 56 static struct net_device *mptcp_napi_dev; 57 58 /* Returns end sequence number of the receiver's advertised window */ 59 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 60 { 61 return READ_ONCE(msk->wnd_end); 62 } 63 64 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 65 { 66 unsigned short family = READ_ONCE(sk->sk_family); 67 68 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 69 if (family == AF_INET6) 70 return &inet6_stream_ops; 71 #endif 72 WARN_ON_ONCE(family != AF_INET); 73 return &inet_stream_ops; 74 } 75 76 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 77 { 78 struct net *net = sock_net((struct sock *)msk); 79 80 if (__mptcp_check_fallback(msk)) 81 return true; 82 83 /* The caller possibly is not holding the msk socket lock, but 84 * in the fallback case only the current subflow is touching 85 * the OoO queue. 86 */ 87 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 88 return false; 89 90 spin_lock_bh(&msk->fallback_lock); 91 if (!msk->allow_infinite_fallback) { 92 spin_unlock_bh(&msk->fallback_lock); 93 return false; 94 } 95 96 msk->allow_subflows = false; 97 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 98 __MPTCP_INC_STATS(net, fb_mib); 99 spin_unlock_bh(&msk->fallback_lock); 100 return true; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 111 if (err) 112 return err; 113 114 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 115 WRITE_ONCE(msk->first, ssock->sk); 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 subflow->subflow_id = msk->subflow_id++; 121 122 /* This is the first subflow, always with id 0 */ 123 WRITE_ONCE(subflow->local_id, 0); 124 mptcp_sock_graft(msk->first, sk->sk_socket); 125 iput(SOCK_INODE(ssock)); 126 127 return 0; 128 } 129 130 /* If the MPC handshake is not started, returns the first subflow, 131 * eventually allocating it. 132 */ 133 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 134 { 135 struct sock *sk = (struct sock *)msk; 136 int ret; 137 138 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 139 return ERR_PTR(-EINVAL); 140 141 if (!msk->first) { 142 ret = __mptcp_socket_create(msk); 143 if (ret) 144 return ERR_PTR(ret); 145 } 146 147 return msk->first; 148 } 149 150 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 151 { 152 sk_drops_skbadd(sk, skb); 153 __kfree_skb(skb); 154 } 155 156 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 157 struct sk_buff *from, bool *fragstolen, 158 int *delta) 159 { 160 int limit = READ_ONCE(sk->sk_rcvbuf); 161 162 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 163 MPTCP_SKB_CB(from)->offset || 164 ((to->len + from->len) > (limit >> 3)) || 165 !skb_try_coalesce(to, from, fragstolen, delta)) 166 return false; 167 168 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 169 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 170 to->len, MPTCP_SKB_CB(from)->end_seq); 171 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 172 return true; 173 } 174 175 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 176 struct sk_buff *from) 177 { 178 bool fragstolen; 179 int delta; 180 181 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 182 return false; 183 184 /* note the fwd memory can reach a negative value after accounting 185 * for the delta, but the later skb free will restore a non 186 * negative one 187 */ 188 atomic_add(delta, &sk->sk_rmem_alloc); 189 sk_mem_charge(sk, delta); 190 kfree_skb_partial(from, fragstolen); 191 192 return true; 193 } 194 195 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 196 struct sk_buff *from) 197 { 198 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 199 return false; 200 201 return mptcp_try_coalesce((struct sock *)msk, to, from); 202 } 203 204 /* "inspired" by tcp_rcvbuf_grow(), main difference: 205 * - mptcp does not maintain a msk-level window clamp 206 * - returns true when the receive buffer is actually updated 207 */ 208 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 209 { 210 struct mptcp_sock *msk = mptcp_sk(sk); 211 const struct net *net = sock_net(sk); 212 u32 rcvwin, rcvbuf, cap, oldval; 213 u64 grow; 214 215 oldval = msk->rcvq_space.space; 216 msk->rcvq_space.space = newval; 217 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 218 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 219 return false; 220 221 /* DRS is always one RTT late. */ 222 rcvwin = newval << 1; 223 224 /* slow start: allow the sender to double its rate. */ 225 grow = (u64)rcvwin * (newval - oldval); 226 do_div(grow, oldval); 227 rcvwin += grow << 1; 228 229 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 230 231 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 232 if (rcvbuf > sk->sk_rcvbuf) { 233 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 234 return true; 235 } 236 return false; 237 } 238 239 /* "inspired" by tcp_data_queue_ofo(), main differences: 240 * - use mptcp seqs 241 * - don't cope with sacks 242 */ 243 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 244 { 245 struct sock *sk = (struct sock *)msk; 246 struct rb_node **p, *parent; 247 u64 seq, end_seq, max_seq; 248 struct sk_buff *skb1; 249 250 seq = MPTCP_SKB_CB(skb)->map_seq; 251 end_seq = MPTCP_SKB_CB(skb)->end_seq; 252 max_seq = atomic64_read(&msk->rcv_wnd_sent); 253 254 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 255 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 256 if (after64(end_seq, max_seq)) { 257 /* out of window */ 258 mptcp_drop(sk, skb); 259 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 260 (unsigned long long)end_seq - (unsigned long)max_seq, 261 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 263 return; 264 } 265 266 p = &msk->out_of_order_queue.rb_node; 267 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 268 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 269 rb_link_node(&skb->rbnode, NULL, p); 270 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 271 msk->ooo_last_skb = skb; 272 goto end; 273 } 274 275 /* with 2 subflows, adding at end of ooo queue is quite likely 276 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 277 */ 278 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 279 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 281 return; 282 } 283 284 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 285 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 286 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 287 parent = &msk->ooo_last_skb->rbnode; 288 p = &parent->rb_right; 289 goto insert; 290 } 291 292 /* Find place to insert this segment. Handle overlaps on the way. */ 293 parent = NULL; 294 while (*p) { 295 parent = *p; 296 skb1 = rb_to_skb(parent); 297 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 298 p = &parent->rb_left; 299 continue; 300 } 301 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 302 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 303 /* All the bits are present. Drop. */ 304 mptcp_drop(sk, skb); 305 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 306 return; 307 } 308 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 309 /* partial overlap: 310 * | skb | 311 * | skb1 | 312 * continue traversing 313 */ 314 } else { 315 /* skb's seq == skb1's seq and skb covers skb1. 316 * Replace skb1 with skb. 317 */ 318 rb_replace_node(&skb1->rbnode, &skb->rbnode, 319 &msk->out_of_order_queue); 320 mptcp_drop(sk, skb1); 321 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 322 goto merge_right; 323 } 324 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 326 return; 327 } 328 p = &parent->rb_right; 329 } 330 331 insert: 332 /* Insert segment into RB tree. */ 333 rb_link_node(&skb->rbnode, parent, p); 334 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 335 336 merge_right: 337 /* Remove other segments covered by skb. */ 338 while ((skb1 = skb_rb_next(skb)) != NULL) { 339 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 340 break; 341 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 342 mptcp_drop(sk, skb1); 343 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 344 } 345 /* If there is no skb after us, we are the last_skb ! */ 346 if (!skb1) 347 msk->ooo_last_skb = skb; 348 349 end: 350 skb_condense(skb); 351 skb_set_owner_r(skb, sk); 352 } 353 354 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 355 int copy_len) 356 { 357 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 358 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 369 370 __skb_unlink(skb, &ssk->sk_receive_queue); 371 372 skb_ext_reset(skb); 373 skb_dst_drop(skb); 374 } 375 376 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 377 { 378 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 379 struct mptcp_sock *msk = mptcp_sk(sk); 380 struct sk_buff *tail; 381 382 mptcp_borrow_fwdmem(sk, skb); 383 384 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 385 /* in sequence */ 386 msk->bytes_received += copy_len; 387 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 388 tail = skb_peek_tail(&sk->sk_receive_queue); 389 if (tail && mptcp_try_coalesce(sk, tail, skb)) 390 return true; 391 392 skb_set_owner_r(skb, sk); 393 __skb_queue_tail(&sk->sk_receive_queue, skb); 394 return true; 395 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 396 mptcp_data_queue_ofo(msk, skb); 397 return false; 398 } 399 400 /* old data, keep it simple and drop the whole pkt, sender 401 * will retransmit as needed, if needed. 402 */ 403 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 sk_stop_timer(sk, &sk->mptcp_retransmit_timer); 411 mptcp_sk(sk)->timer_ival = 0; 412 } 413 414 static void mptcp_close_wake_up(struct sock *sk) 415 { 416 if (sock_flag(sk, SOCK_DEAD)) 417 return; 418 419 sk->sk_state_change(sk); 420 if (sk->sk_shutdown == SHUTDOWN_MASK || 421 sk->sk_state == TCP_CLOSE) 422 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 423 else 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 425 } 426 427 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 428 { 429 struct mptcp_subflow_context *subflow; 430 431 mptcp_for_each_subflow(msk, subflow) { 432 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 433 bool slow; 434 435 slow = lock_sock_fast(ssk); 436 tcp_shutdown(ssk, SEND_SHUTDOWN); 437 unlock_sock_fast(ssk, slow); 438 } 439 } 440 441 /* called under the msk socket lock */ 442 static bool mptcp_pending_data_fin_ack(struct sock *sk) 443 { 444 struct mptcp_sock *msk = mptcp_sk(sk); 445 446 return ((1 << sk->sk_state) & 447 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 448 msk->write_seq == READ_ONCE(msk->snd_una); 449 } 450 451 static void mptcp_check_data_fin_ack(struct sock *sk) 452 { 453 struct mptcp_sock *msk = mptcp_sk(sk); 454 455 /* Look for an acknowledged DATA_FIN */ 456 if (mptcp_pending_data_fin_ack(sk)) { 457 WRITE_ONCE(msk->snd_data_fin_enable, 0); 458 459 switch (sk->sk_state) { 460 case TCP_FIN_WAIT1: 461 mptcp_set_state(sk, TCP_FIN_WAIT2); 462 break; 463 case TCP_CLOSING: 464 case TCP_LAST_ACK: 465 mptcp_shutdown_subflows(msk); 466 mptcp_set_state(sk, TCP_CLOSE); 467 break; 468 } 469 470 mptcp_close_wake_up(sk); 471 } 472 } 473 474 /* can be called with no lock acquired */ 475 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 476 { 477 struct mptcp_sock *msk = mptcp_sk(sk); 478 479 if (READ_ONCE(msk->rcv_data_fin) && 480 ((1 << inet_sk_state_load(sk)) & 481 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 482 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 483 484 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 485 if (seq) 486 *seq = rcv_data_fin_seq; 487 488 return true; 489 } 490 } 491 492 return false; 493 } 494 495 static void mptcp_set_datafin_timeout(struct sock *sk) 496 { 497 struct inet_connection_sock *icsk = inet_csk(sk); 498 u32 retransmits; 499 500 retransmits = min_t(u32, icsk->icsk_retransmits, 501 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 502 503 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 504 } 505 506 static void __mptcp_set_timeout(struct sock *sk, long tout) 507 { 508 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 509 } 510 511 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 512 { 513 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 514 515 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 516 tcp_timeout_expires(ssk) - jiffies : 0; 517 } 518 519 static void mptcp_set_timeout(struct sock *sk) 520 { 521 struct mptcp_subflow_context *subflow; 522 long tout = 0; 523 524 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 525 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 526 __mptcp_set_timeout(sk, tout); 527 } 528 529 static inline bool tcp_can_send_ack(const struct sock *ssk) 530 { 531 return !((1 << inet_sk_state_load(ssk)) & 532 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 533 } 534 535 void __mptcp_subflow_send_ack(struct sock *ssk) 536 { 537 if (tcp_can_send_ack(ssk)) 538 tcp_send_ack(ssk); 539 } 540 541 static void mptcp_subflow_send_ack(struct sock *ssk) 542 { 543 bool slow; 544 545 slow = lock_sock_fast(ssk); 546 __mptcp_subflow_send_ack(ssk); 547 unlock_sock_fast(ssk, slow); 548 } 549 550 static void mptcp_send_ack(struct mptcp_sock *msk) 551 { 552 struct mptcp_subflow_context *subflow; 553 554 mptcp_for_each_subflow(msk, subflow) 555 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 556 } 557 558 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 559 { 560 bool slow; 561 562 slow = lock_sock_fast(ssk); 563 if (tcp_can_send_ack(ssk)) 564 tcp_cleanup_rbuf(ssk, copied); 565 unlock_sock_fast(ssk, slow); 566 } 567 568 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 569 { 570 const struct inet_connection_sock *icsk = inet_csk(ssk); 571 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 572 const struct tcp_sock *tp = tcp_sk(ssk); 573 574 return (ack_pending & ICSK_ACK_SCHED) && 575 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 576 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 577 (rx_empty && ack_pending & 578 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 579 } 580 581 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 582 { 583 int old_space = READ_ONCE(msk->old_wspace); 584 struct mptcp_subflow_context *subflow; 585 struct sock *sk = (struct sock *)msk; 586 int space = __mptcp_space(sk); 587 bool cleanup, rx_empty; 588 589 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 590 rx_empty = !sk_rmem_alloc_get(sk) && copied; 591 592 mptcp_for_each_subflow(msk, subflow) { 593 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 594 595 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 596 mptcp_subflow_cleanup_rbuf(ssk, copied); 597 } 598 } 599 600 static void mptcp_check_data_fin(struct sock *sk) 601 { 602 struct mptcp_sock *msk = mptcp_sk(sk); 603 u64 rcv_data_fin_seq; 604 605 /* Need to ack a DATA_FIN received from a peer while this side 606 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 607 * msk->rcv_data_fin was set when parsing the incoming options 608 * at the subflow level and the msk lock was not held, so this 609 * is the first opportunity to act on the DATA_FIN and change 610 * the msk state. 611 * 612 * If we are caught up to the sequence number of the incoming 613 * DATA_FIN, send the DATA_ACK now and do state transition. If 614 * not caught up, do nothing and let the recv code send DATA_ACK 615 * when catching up. 616 */ 617 618 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 619 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 620 WRITE_ONCE(msk->rcv_data_fin, 0); 621 622 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 623 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 624 625 switch (sk->sk_state) { 626 case TCP_ESTABLISHED: 627 mptcp_set_state(sk, TCP_CLOSE_WAIT); 628 break; 629 case TCP_FIN_WAIT1: 630 mptcp_set_state(sk, TCP_CLOSING); 631 break; 632 case TCP_FIN_WAIT2: 633 mptcp_shutdown_subflows(msk); 634 mptcp_set_state(sk, TCP_CLOSE); 635 break; 636 default: 637 /* Other states not expected */ 638 WARN_ON_ONCE(1); 639 break; 640 } 641 642 if (!__mptcp_check_fallback(msk)) 643 mptcp_send_ack(msk); 644 mptcp_close_wake_up(sk); 645 } 646 } 647 648 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 649 { 650 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 651 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 652 mptcp_subflow_reset(ssk); 653 } 654 } 655 656 static void __mptcp_add_backlog(struct sock *sk, 657 struct mptcp_subflow_context *subflow, 658 struct sk_buff *skb) 659 { 660 struct mptcp_sock *msk = mptcp_sk(sk); 661 struct sk_buff *tail = NULL; 662 struct sock *ssk = skb->sk; 663 bool fragstolen; 664 int delta; 665 666 if (unlikely(sk->sk_state == TCP_CLOSE)) { 667 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 668 return; 669 } 670 671 /* Try to coalesce with the last skb in our backlog */ 672 if (!list_empty(&msk->backlog_list)) 673 tail = list_last_entry(&msk->backlog_list, struct sk_buff, list); 674 675 if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq && 676 ssk == tail->sk && 677 __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) { 678 skb->truesize -= delta; 679 kfree_skb_partial(skb, fragstolen); 680 __mptcp_subflow_lend_fwdmem(subflow, delta); 681 goto account; 682 } 683 684 list_add_tail(&skb->list, &msk->backlog_list); 685 mptcp_subflow_lend_fwdmem(subflow, skb); 686 delta = skb->truesize; 687 688 account: 689 WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta); 690 691 /* Possibly not accept()ed yet, keep track of memory not CG 692 * accounted, mptcp_graft_subflows() will handle it. 693 */ 694 if (!mem_cgroup_from_sk(ssk)) 695 msk->backlog_unaccounted += delta; 696 } 697 698 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 699 struct sock *ssk, bool own_msk) 700 { 701 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 702 struct sock *sk = (struct sock *)msk; 703 bool more_data_avail; 704 struct tcp_sock *tp; 705 bool ret = false; 706 707 pr_debug("msk=%p ssk=%p\n", msk, ssk); 708 tp = tcp_sk(ssk); 709 do { 710 u32 map_remaining, offset; 711 u32 seq = tp->copied_seq; 712 struct sk_buff *skb; 713 bool fin; 714 715 /* try to move as much data as available */ 716 map_remaining = subflow->map_data_len - 717 mptcp_subflow_get_map_offset(subflow); 718 719 skb = skb_peek(&ssk->sk_receive_queue); 720 if (unlikely(!skb)) 721 break; 722 723 if (__mptcp_check_fallback(msk)) { 724 /* Under fallback skbs have no MPTCP extension and TCP could 725 * collapse them between the dummy map creation and the 726 * current dequeue. Be sure to adjust the map size. 727 */ 728 map_remaining = skb->len; 729 subflow->map_data_len = skb->len; 730 } 731 732 offset = seq - TCP_SKB_CB(skb)->seq; 733 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 734 if (fin) 735 seq++; 736 737 if (offset < skb->len) { 738 size_t len = skb->len - offset; 739 740 mptcp_init_skb(ssk, skb, offset, len); 741 742 if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) { 743 mptcp_subflow_lend_fwdmem(subflow, skb); 744 ret |= __mptcp_move_skb(sk, skb); 745 } else { 746 __mptcp_add_backlog(sk, subflow, skb); 747 } 748 seq += len; 749 750 if (unlikely(map_remaining < len)) { 751 DEBUG_NET_WARN_ON_ONCE(1); 752 mptcp_dss_corruption(msk, ssk); 753 } 754 } else { 755 if (unlikely(!fin)) { 756 DEBUG_NET_WARN_ON_ONCE(1); 757 mptcp_dss_corruption(msk, ssk); 758 } 759 760 sk_eat_skb(ssk, skb); 761 } 762 763 WRITE_ONCE(tp->copied_seq, seq); 764 more_data_avail = mptcp_subflow_data_available(ssk); 765 766 } while (more_data_avail); 767 768 if (ret) 769 msk->last_data_recv = tcp_jiffies32; 770 return ret; 771 } 772 773 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 774 { 775 struct sock *sk = (struct sock *)msk; 776 struct sk_buff *skb, *tail; 777 bool moved = false; 778 struct rb_node *p; 779 u64 end_seq; 780 781 p = rb_first(&msk->out_of_order_queue); 782 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 783 while (p) { 784 skb = rb_to_skb(p); 785 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 786 break; 787 788 p = rb_next(p); 789 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 790 791 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 792 msk->ack_seq))) { 793 mptcp_drop(sk, skb); 794 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 795 continue; 796 } 797 798 end_seq = MPTCP_SKB_CB(skb)->end_seq; 799 tail = skb_peek_tail(&sk->sk_receive_queue); 800 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 801 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 802 803 /* skip overlapping data, if any */ 804 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 805 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 806 delta); 807 MPTCP_SKB_CB(skb)->offset += delta; 808 MPTCP_SKB_CB(skb)->map_seq += delta; 809 __skb_queue_tail(&sk->sk_receive_queue, skb); 810 } 811 msk->bytes_received += end_seq - msk->ack_seq; 812 WRITE_ONCE(msk->ack_seq, end_seq); 813 moved = true; 814 } 815 return moved; 816 } 817 818 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 819 { 820 int ssk_state; 821 int err; 822 823 /* only propagate errors on fallen-back sockets or 824 * on MPC connect 825 */ 826 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 827 return false; 828 829 err = sock_error(ssk); 830 if (!err) 831 return false; 832 833 /* We need to propagate only transition to CLOSE state. 834 * Orphaned socket will see such state change via 835 * subflow_sched_work_if_closed() and that path will properly 836 * destroy the msk as needed. 837 */ 838 ssk_state = inet_sk_state_load(ssk); 839 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 840 mptcp_set_state(sk, ssk_state); 841 WRITE_ONCE(sk->sk_err, -err); 842 843 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 844 smp_wmb(); 845 sk_error_report(sk); 846 return true; 847 } 848 849 void __mptcp_error_report(struct sock *sk) 850 { 851 struct mptcp_subflow_context *subflow; 852 struct mptcp_sock *msk = mptcp_sk(sk); 853 854 mptcp_for_each_subflow(msk, subflow) 855 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 856 break; 857 } 858 859 /* In most cases we will be able to lock the mptcp socket. If its already 860 * owned, we need to defer to the work queue to avoid ABBA deadlock. 861 */ 862 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 863 { 864 struct sock *sk = (struct sock *)msk; 865 bool moved; 866 867 moved = __mptcp_move_skbs_from_subflow(msk, ssk, true); 868 __mptcp_ofo_queue(msk); 869 if (unlikely(ssk->sk_err)) 870 __mptcp_subflow_error_report(sk, ssk); 871 872 /* If the moves have caught up with the DATA_FIN sequence number 873 * it's time to ack the DATA_FIN and change socket state, but 874 * this is not a good place to change state. Let the workqueue 875 * do it. 876 */ 877 if (mptcp_pending_data_fin(sk, NULL)) 878 mptcp_schedule_work(sk); 879 return moved; 880 } 881 882 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 883 { 884 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 885 struct mptcp_sock *msk = mptcp_sk(sk); 886 887 /* The peer can send data while we are shutting down this 888 * subflow at subflow destruction time, but we must avoid enqueuing 889 * more data to the msk receive queue 890 */ 891 if (unlikely(subflow->closing)) 892 return; 893 894 mptcp_data_lock(sk); 895 if (!sock_owned_by_user(sk)) { 896 /* Wake-up the reader only for in-sequence data */ 897 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 898 sk->sk_data_ready(sk); 899 } else { 900 __mptcp_move_skbs_from_subflow(msk, ssk, false); 901 } 902 mptcp_data_unlock(sk); 903 } 904 905 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 906 { 907 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 908 msk->allow_infinite_fallback = false; 909 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 910 } 911 912 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 913 { 914 struct sock *sk = (struct sock *)msk; 915 916 if (sk->sk_state != TCP_ESTABLISHED) 917 return false; 918 919 spin_lock_bh(&msk->fallback_lock); 920 if (!msk->allow_subflows) { 921 spin_unlock_bh(&msk->fallback_lock); 922 return false; 923 } 924 mptcp_subflow_joined(msk, ssk); 925 spin_unlock_bh(&msk->fallback_lock); 926 927 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 928 mptcp_sockopt_sync_locked(msk, ssk); 929 mptcp_stop_tout_timer(sk); 930 __mptcp_propagate_sndbuf(sk, ssk); 931 return true; 932 } 933 934 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 935 { 936 struct mptcp_subflow_context *tmp, *subflow; 937 struct mptcp_sock *msk = mptcp_sk(sk); 938 939 list_for_each_entry_safe(subflow, tmp, join_list, node) { 940 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 941 bool slow = lock_sock_fast(ssk); 942 943 list_move_tail(&subflow->node, &msk->conn_list); 944 if (!__mptcp_finish_join(msk, ssk)) 945 mptcp_subflow_reset(ssk); 946 unlock_sock_fast(ssk, slow); 947 } 948 } 949 950 static bool mptcp_rtx_timer_pending(struct sock *sk) 951 { 952 return timer_pending(&sk->mptcp_retransmit_timer); 953 } 954 955 static void mptcp_reset_rtx_timer(struct sock *sk) 956 { 957 unsigned long tout; 958 959 /* prevent rescheduling on close */ 960 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 961 return; 962 963 tout = mptcp_sk(sk)->timer_ival; 964 sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout); 965 } 966 967 bool mptcp_schedule_work(struct sock *sk) 968 { 969 if (inet_sk_state_load(sk) == TCP_CLOSE) 970 return false; 971 972 /* Get a reference on this socket, mptcp_worker() will release it. 973 * As mptcp_worker() might complete before us, we can not avoid 974 * a sock_hold()/sock_put() if schedule_work() returns false. 975 */ 976 sock_hold(sk); 977 978 if (schedule_work(&mptcp_sk(sk)->work)) 979 return true; 980 981 sock_put(sk); 982 return false; 983 } 984 985 static bool mptcp_skb_can_collapse_to(u64 write_seq, 986 const struct sk_buff *skb, 987 const struct mptcp_ext *mpext) 988 { 989 if (!tcp_skb_can_collapse_to(skb)) 990 return false; 991 992 /* can collapse only if MPTCP level sequence is in order and this 993 * mapping has not been xmitted yet 994 */ 995 return mpext && mpext->data_seq + mpext->data_len == write_seq && 996 !mpext->frozen; 997 } 998 999 /* we can append data to the given data frag if: 1000 * - there is space available in the backing page_frag 1001 * - the data frag tail matches the current page_frag free offset 1002 * - the data frag end sequence number matches the current write seq 1003 */ 1004 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 1005 const struct page_frag *pfrag, 1006 const struct mptcp_data_frag *df) 1007 { 1008 return df && pfrag->page == df->page && 1009 pfrag->size - pfrag->offset > 0 && 1010 pfrag->offset == (df->offset + df->data_len) && 1011 df->data_seq + df->data_len == msk->write_seq; 1012 } 1013 1014 static void dfrag_uncharge(struct sock *sk, int len) 1015 { 1016 sk_mem_uncharge(sk, len); 1017 sk_wmem_queued_add(sk, -len); 1018 } 1019 1020 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1021 { 1022 int len = dfrag->data_len + dfrag->overhead; 1023 1024 list_del(&dfrag->list); 1025 dfrag_uncharge(sk, len); 1026 put_page(dfrag->page); 1027 } 1028 1029 /* called under both the msk socket lock and the data lock */ 1030 static void __mptcp_clean_una(struct sock *sk) 1031 { 1032 struct mptcp_sock *msk = mptcp_sk(sk); 1033 struct mptcp_data_frag *dtmp, *dfrag; 1034 u64 snd_una; 1035 1036 snd_una = msk->snd_una; 1037 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1038 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1039 break; 1040 1041 if (unlikely(dfrag == msk->first_pending)) { 1042 /* in recovery mode can see ack after the current snd head */ 1043 if (WARN_ON_ONCE(!msk->recovery)) 1044 break; 1045 1046 msk->first_pending = mptcp_send_next(sk); 1047 } 1048 1049 dfrag_clear(sk, dfrag); 1050 } 1051 1052 dfrag = mptcp_rtx_head(sk); 1053 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1054 u64 delta = snd_una - dfrag->data_seq; 1055 1056 /* prevent wrap around in recovery mode */ 1057 if (unlikely(delta > dfrag->already_sent)) { 1058 if (WARN_ON_ONCE(!msk->recovery)) 1059 goto out; 1060 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1061 goto out; 1062 dfrag->already_sent += delta - dfrag->already_sent; 1063 } 1064 1065 dfrag->data_seq += delta; 1066 dfrag->offset += delta; 1067 dfrag->data_len -= delta; 1068 dfrag->already_sent -= delta; 1069 1070 dfrag_uncharge(sk, delta); 1071 } 1072 1073 /* all retransmitted data acked, recovery completed */ 1074 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1075 msk->recovery = false; 1076 1077 out: 1078 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1079 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1080 mptcp_stop_rtx_timer(sk); 1081 } else { 1082 mptcp_reset_rtx_timer(sk); 1083 } 1084 1085 if (mptcp_pending_data_fin_ack(sk)) 1086 mptcp_schedule_work(sk); 1087 } 1088 1089 static void __mptcp_clean_una_wakeup(struct sock *sk) 1090 { 1091 lockdep_assert_held_once(&sk->sk_lock.slock); 1092 1093 __mptcp_clean_una(sk); 1094 mptcp_write_space(sk); 1095 } 1096 1097 static void mptcp_clean_una_wakeup(struct sock *sk) 1098 { 1099 mptcp_data_lock(sk); 1100 __mptcp_clean_una_wakeup(sk); 1101 mptcp_data_unlock(sk); 1102 } 1103 1104 static void mptcp_enter_memory_pressure(struct sock *sk) 1105 { 1106 struct mptcp_subflow_context *subflow; 1107 struct mptcp_sock *msk = mptcp_sk(sk); 1108 bool first = true; 1109 1110 mptcp_for_each_subflow(msk, subflow) { 1111 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1112 1113 if (first && !ssk->sk_bypass_prot_mem) { 1114 tcp_enter_memory_pressure(ssk); 1115 first = false; 1116 } 1117 1118 sk_stream_moderate_sndbuf(ssk); 1119 } 1120 __mptcp_sync_sndbuf(sk); 1121 } 1122 1123 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1124 * data 1125 */ 1126 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1127 { 1128 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1129 pfrag, sk->sk_allocation))) 1130 return true; 1131 1132 mptcp_enter_memory_pressure(sk); 1133 return false; 1134 } 1135 1136 static struct mptcp_data_frag * 1137 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1138 int orig_offset) 1139 { 1140 int offset = ALIGN(orig_offset, sizeof(long)); 1141 struct mptcp_data_frag *dfrag; 1142 1143 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1144 dfrag->data_len = 0; 1145 dfrag->data_seq = msk->write_seq; 1146 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1147 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1148 dfrag->already_sent = 0; 1149 dfrag->page = pfrag->page; 1150 1151 return dfrag; 1152 } 1153 1154 struct mptcp_sendmsg_info { 1155 int mss_now; 1156 int size_goal; 1157 u16 limit; 1158 u16 sent; 1159 unsigned int flags; 1160 bool data_lock_held; 1161 }; 1162 1163 static size_t mptcp_check_allowed_size(const struct mptcp_sock *msk, 1164 struct sock *ssk, u64 data_seq, 1165 size_t avail_size) 1166 { 1167 u64 window_end = mptcp_wnd_end(msk); 1168 u64 mptcp_snd_wnd; 1169 1170 if (__mptcp_check_fallback(msk)) 1171 return avail_size; 1172 1173 mptcp_snd_wnd = window_end - data_seq; 1174 avail_size = min(mptcp_snd_wnd, avail_size); 1175 1176 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1177 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1178 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1179 } 1180 1181 return avail_size; 1182 } 1183 1184 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1185 { 1186 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1187 1188 if (!mpext) 1189 return false; 1190 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1191 return true; 1192 } 1193 1194 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1195 { 1196 struct sk_buff *skb; 1197 1198 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1199 if (likely(skb)) { 1200 if (likely(__mptcp_add_ext(skb, gfp))) { 1201 skb_reserve(skb, MAX_TCP_HEADER); 1202 skb->ip_summed = CHECKSUM_PARTIAL; 1203 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1204 return skb; 1205 } 1206 __kfree_skb(skb); 1207 } else { 1208 mptcp_enter_memory_pressure(sk); 1209 } 1210 return NULL; 1211 } 1212 1213 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1214 { 1215 struct sk_buff *skb; 1216 1217 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1218 if (!skb) 1219 return NULL; 1220 1221 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1222 tcp_skb_entail(ssk, skb); 1223 return skb; 1224 } 1225 tcp_skb_tsorted_anchor_cleanup(skb); 1226 kfree_skb(skb); 1227 return NULL; 1228 } 1229 1230 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1231 { 1232 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1233 1234 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1235 } 1236 1237 /* note: this always recompute the csum on the whole skb, even 1238 * if we just appended a single frag. More status info needed 1239 */ 1240 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1241 { 1242 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1243 __wsum csum = ~csum_unfold(mpext->csum); 1244 int offset = skb->len - added; 1245 1246 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1247 } 1248 1249 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1250 struct sock *ssk, 1251 struct mptcp_ext *mpext) 1252 { 1253 if (!mpext) 1254 return; 1255 1256 mpext->infinite_map = 1; 1257 mpext->data_len = 0; 1258 1259 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1260 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1261 mptcp_subflow_reset(ssk); 1262 return; 1263 } 1264 1265 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1266 } 1267 1268 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1269 1270 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1271 struct mptcp_data_frag *dfrag, 1272 struct mptcp_sendmsg_info *info) 1273 { 1274 u64 data_seq = dfrag->data_seq + info->sent; 1275 int offset = dfrag->offset + info->sent; 1276 struct mptcp_sock *msk = mptcp_sk(sk); 1277 bool zero_window_probe = false; 1278 struct mptcp_ext *mpext = NULL; 1279 bool can_coalesce = false; 1280 bool reuse_skb = true; 1281 struct sk_buff *skb; 1282 size_t copy; 1283 int i; 1284 1285 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1286 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1287 1288 if (WARN_ON_ONCE(info->sent > info->limit || 1289 info->limit > dfrag->data_len)) 1290 return 0; 1291 1292 if (unlikely(!__tcp_can_send(ssk))) 1293 return -EAGAIN; 1294 1295 /* compute send limit */ 1296 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1297 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1298 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1299 copy = info->size_goal; 1300 1301 skb = tcp_write_queue_tail(ssk); 1302 if (skb && copy > skb->len) { 1303 /* Limit the write to the size available in the 1304 * current skb, if any, so that we create at most a new skb. 1305 * Explicitly tells TCP internals to avoid collapsing on later 1306 * queue management operation, to avoid breaking the ext <-> 1307 * SSN association set here 1308 */ 1309 mpext = mptcp_get_ext(skb); 1310 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1311 TCP_SKB_CB(skb)->eor = 1; 1312 tcp_mark_push(tcp_sk(ssk), skb); 1313 goto alloc_skb; 1314 } 1315 1316 i = skb_shinfo(skb)->nr_frags; 1317 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1318 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1319 tcp_mark_push(tcp_sk(ssk), skb); 1320 goto alloc_skb; 1321 } 1322 1323 copy -= skb->len; 1324 } else { 1325 alloc_skb: 1326 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1327 if (!skb) 1328 return -ENOMEM; 1329 1330 i = skb_shinfo(skb)->nr_frags; 1331 reuse_skb = false; 1332 mpext = mptcp_get_ext(skb); 1333 } 1334 1335 /* Zero window and all data acked? Probe. */ 1336 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1337 if (copy == 0) { 1338 u64 snd_una = READ_ONCE(msk->snd_una); 1339 1340 /* No need for zero probe if there are any data pending 1341 * either at the msk or ssk level; skb is the current write 1342 * queue tail and can be empty at this point. 1343 */ 1344 if (snd_una != msk->snd_nxt || skb->len || 1345 skb != tcp_send_head(ssk)) { 1346 tcp_remove_empty_skb(ssk); 1347 return 0; 1348 } 1349 1350 zero_window_probe = true; 1351 data_seq = snd_una - 1; 1352 copy = 1; 1353 } 1354 1355 copy = min_t(size_t, copy, info->limit - info->sent); 1356 if (!sk_wmem_schedule(ssk, copy)) { 1357 tcp_remove_empty_skb(ssk); 1358 return -ENOMEM; 1359 } 1360 1361 if (can_coalesce) { 1362 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1363 } else { 1364 get_page(dfrag->page); 1365 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1366 } 1367 1368 skb->len += copy; 1369 skb->data_len += copy; 1370 skb->truesize += copy; 1371 sk_wmem_queued_add(ssk, copy); 1372 sk_mem_charge(ssk, copy); 1373 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1374 TCP_SKB_CB(skb)->end_seq += copy; 1375 tcp_skb_pcount_set(skb, 0); 1376 1377 /* on skb reuse we just need to update the DSS len */ 1378 if (reuse_skb) { 1379 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1380 mpext->data_len += copy; 1381 goto out; 1382 } 1383 1384 memset(mpext, 0, sizeof(*mpext)); 1385 mpext->data_seq = data_seq; 1386 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1387 mpext->data_len = copy; 1388 mpext->use_map = 1; 1389 mpext->dsn64 = 1; 1390 1391 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1392 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1393 mpext->dsn64); 1394 1395 if (zero_window_probe) { 1396 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1397 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1398 mpext->frozen = 1; 1399 if (READ_ONCE(msk->csum_enabled)) 1400 mptcp_update_data_checksum(skb, copy); 1401 tcp_push_pending_frames(ssk); 1402 return 0; 1403 } 1404 out: 1405 if (READ_ONCE(msk->csum_enabled)) 1406 mptcp_update_data_checksum(skb, copy); 1407 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1408 mptcp_update_infinite_map(msk, ssk, mpext); 1409 trace_mptcp_sendmsg_frag(mpext); 1410 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1411 return copy; 1412 } 1413 1414 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1415 sizeof(struct tcphdr) - \ 1416 MAX_TCP_OPTION_SPACE - \ 1417 sizeof(struct ipv6hdr) - \ 1418 sizeof(struct frag_hdr)) 1419 1420 struct subflow_send_info { 1421 struct sock *ssk; 1422 u64 linger_time; 1423 }; 1424 1425 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1426 { 1427 if (!subflow->stale) 1428 return; 1429 1430 subflow->stale = 0; 1431 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1432 } 1433 1434 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1435 { 1436 if (unlikely(subflow->stale)) { 1437 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1438 1439 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1440 return false; 1441 1442 mptcp_subflow_set_active(subflow); 1443 } 1444 return __mptcp_subflow_active(subflow); 1445 } 1446 1447 #define SSK_MODE_ACTIVE 0 1448 #define SSK_MODE_BACKUP 1 1449 #define SSK_MODE_MAX 2 1450 1451 /* implement the mptcp packet scheduler; 1452 * returns the subflow that will transmit the next DSS 1453 * additionally updates the rtx timeout 1454 */ 1455 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1456 { 1457 struct subflow_send_info send_info[SSK_MODE_MAX]; 1458 struct mptcp_subflow_context *subflow; 1459 struct sock *sk = (struct sock *)msk; 1460 u32 pace, burst, wmem; 1461 int i, nr_active = 0; 1462 struct sock *ssk; 1463 u64 linger_time; 1464 long tout = 0; 1465 1466 /* pick the subflow with the lower wmem/wspace ratio */ 1467 for (i = 0; i < SSK_MODE_MAX; ++i) { 1468 send_info[i].ssk = NULL; 1469 send_info[i].linger_time = -1; 1470 } 1471 1472 mptcp_for_each_subflow(msk, subflow) { 1473 bool backup = subflow->backup || subflow->request_bkup; 1474 1475 trace_mptcp_subflow_get_send(subflow); 1476 ssk = mptcp_subflow_tcp_sock(subflow); 1477 if (!mptcp_subflow_active(subflow)) 1478 continue; 1479 1480 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1481 nr_active += !backup; 1482 pace = subflow->avg_pacing_rate; 1483 if (unlikely(!pace)) { 1484 /* init pacing rate from socket */ 1485 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1486 pace = subflow->avg_pacing_rate; 1487 if (!pace) 1488 continue; 1489 } 1490 1491 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1492 if (linger_time < send_info[backup].linger_time) { 1493 send_info[backup].ssk = ssk; 1494 send_info[backup].linger_time = linger_time; 1495 } 1496 } 1497 __mptcp_set_timeout(sk, tout); 1498 1499 /* pick the best backup if no other subflow is active */ 1500 if (!nr_active) 1501 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1502 1503 /* According to the blest algorithm, to avoid HoL blocking for the 1504 * faster flow, we need to: 1505 * - estimate the faster flow linger time 1506 * - use the above to estimate the amount of byte transferred 1507 * by the faster flow 1508 * - check that the amount of queued data is greater than the above, 1509 * otherwise do not use the picked, slower, subflow 1510 * We select the subflow with the shorter estimated time to flush 1511 * the queued mem, which basically ensure the above. We just need 1512 * to check that subflow has a non empty cwin. 1513 */ 1514 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1515 if (!ssk || !sk_stream_memory_free(ssk)) 1516 return NULL; 1517 1518 burst = min(MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1519 wmem = READ_ONCE(ssk->sk_wmem_queued); 1520 if (!burst) 1521 return ssk; 1522 1523 subflow = mptcp_subflow_ctx(ssk); 1524 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1525 READ_ONCE(ssk->sk_pacing_rate) * burst, 1526 burst + wmem); 1527 msk->snd_burst = burst; 1528 return ssk; 1529 } 1530 1531 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1532 { 1533 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1534 release_sock(ssk); 1535 } 1536 1537 static void mptcp_update_post_push(struct mptcp_sock *msk, 1538 struct mptcp_data_frag *dfrag, 1539 u32 sent) 1540 { 1541 u64 snd_nxt_new = dfrag->data_seq; 1542 1543 dfrag->already_sent += sent; 1544 1545 msk->snd_burst -= sent; 1546 1547 snd_nxt_new += dfrag->already_sent; 1548 1549 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1550 * is recovering after a failover. In that event, this re-sends 1551 * old segments. 1552 * 1553 * Thus compute snd_nxt_new candidate based on 1554 * the dfrag->data_seq that was sent and the data 1555 * that has been handed to the subflow for transmission 1556 * and skip update in case it was old dfrag. 1557 */ 1558 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1559 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1560 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1561 } 1562 } 1563 1564 void mptcp_check_and_set_pending(struct sock *sk) 1565 { 1566 if (mptcp_send_head(sk)) { 1567 mptcp_data_lock(sk); 1568 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1569 mptcp_data_unlock(sk); 1570 } 1571 } 1572 1573 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1574 struct mptcp_sendmsg_info *info) 1575 { 1576 struct mptcp_sock *msk = mptcp_sk(sk); 1577 struct mptcp_data_frag *dfrag; 1578 int len, copied = 0, err = 0; 1579 1580 while ((dfrag = mptcp_send_head(sk))) { 1581 info->sent = dfrag->already_sent; 1582 info->limit = dfrag->data_len; 1583 len = dfrag->data_len - dfrag->already_sent; 1584 while (len > 0) { 1585 int ret = 0; 1586 1587 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1588 if (ret <= 0) { 1589 err = copied ? : ret; 1590 goto out; 1591 } 1592 1593 info->sent += ret; 1594 copied += ret; 1595 len -= ret; 1596 1597 mptcp_update_post_push(msk, dfrag, ret); 1598 } 1599 msk->first_pending = mptcp_send_next(sk); 1600 1601 if (msk->snd_burst <= 0 || 1602 !sk_stream_memory_free(ssk) || 1603 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1604 err = copied; 1605 goto out; 1606 } 1607 mptcp_set_timeout(sk); 1608 } 1609 err = copied; 1610 1611 out: 1612 if (err > 0) 1613 msk->last_data_sent = tcp_jiffies32; 1614 return err; 1615 } 1616 1617 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1618 { 1619 struct sock *prev_ssk = NULL, *ssk = NULL; 1620 struct mptcp_sock *msk = mptcp_sk(sk); 1621 struct mptcp_sendmsg_info info = { 1622 .flags = flags, 1623 }; 1624 bool copied = false; 1625 int push_count = 1; 1626 1627 while (mptcp_send_head(sk) && (push_count > 0)) { 1628 struct mptcp_subflow_context *subflow; 1629 int ret = 0; 1630 1631 if (mptcp_sched_get_send(msk)) 1632 break; 1633 1634 push_count = 0; 1635 1636 mptcp_for_each_subflow(msk, subflow) { 1637 if (READ_ONCE(subflow->scheduled)) { 1638 mptcp_subflow_set_scheduled(subflow, false); 1639 1640 prev_ssk = ssk; 1641 ssk = mptcp_subflow_tcp_sock(subflow); 1642 if (ssk != prev_ssk) { 1643 /* First check. If the ssk has changed since 1644 * the last round, release prev_ssk 1645 */ 1646 if (prev_ssk) 1647 mptcp_push_release(prev_ssk, &info); 1648 1649 /* Need to lock the new subflow only if different 1650 * from the previous one, otherwise we are still 1651 * helding the relevant lock 1652 */ 1653 lock_sock(ssk); 1654 } 1655 1656 push_count++; 1657 1658 ret = __subflow_push_pending(sk, ssk, &info); 1659 if (ret <= 0) { 1660 if (ret != -EAGAIN || 1661 (1 << ssk->sk_state) & 1662 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1663 push_count--; 1664 continue; 1665 } 1666 copied = true; 1667 } 1668 } 1669 } 1670 1671 /* at this point we held the socket lock for the last subflow we used */ 1672 if (ssk) 1673 mptcp_push_release(ssk, &info); 1674 1675 /* Avoid scheduling the rtx timer if no data has been pushed; the timer 1676 * will be updated on positive acks by __mptcp_cleanup_una(). 1677 */ 1678 if (copied) { 1679 if (!mptcp_rtx_timer_pending(sk)) 1680 mptcp_reset_rtx_timer(sk); 1681 mptcp_check_send_data_fin(sk); 1682 } 1683 } 1684 1685 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1686 { 1687 struct mptcp_sock *msk = mptcp_sk(sk); 1688 struct mptcp_sendmsg_info info = { 1689 .data_lock_held = true, 1690 }; 1691 bool keep_pushing = true; 1692 struct sock *xmit_ssk; 1693 int copied = 0; 1694 1695 info.flags = 0; 1696 while (mptcp_send_head(sk) && keep_pushing) { 1697 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1698 int ret = 0; 1699 1700 /* check for a different subflow usage only after 1701 * spooling the first chunk of data 1702 */ 1703 if (first) { 1704 mptcp_subflow_set_scheduled(subflow, false); 1705 ret = __subflow_push_pending(sk, ssk, &info); 1706 first = false; 1707 if (ret <= 0) 1708 break; 1709 copied += ret; 1710 continue; 1711 } 1712 1713 if (mptcp_sched_get_send(msk)) 1714 goto out; 1715 1716 if (READ_ONCE(subflow->scheduled)) { 1717 mptcp_subflow_set_scheduled(subflow, false); 1718 ret = __subflow_push_pending(sk, ssk, &info); 1719 if (ret <= 0) 1720 keep_pushing = false; 1721 copied += ret; 1722 } 1723 1724 mptcp_for_each_subflow(msk, subflow) { 1725 if (READ_ONCE(subflow->scheduled)) { 1726 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1727 if (xmit_ssk != ssk) { 1728 mptcp_subflow_delegate(subflow, 1729 MPTCP_DELEGATE_SEND); 1730 keep_pushing = false; 1731 } 1732 } 1733 } 1734 } 1735 1736 out: 1737 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1738 * not going to flush it via release_sock() 1739 */ 1740 if (copied) { 1741 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1742 info.size_goal); 1743 if (!mptcp_rtx_timer_pending(sk)) 1744 mptcp_reset_rtx_timer(sk); 1745 1746 if (msk->snd_data_fin_enable && 1747 msk->snd_nxt + 1 == msk->write_seq) 1748 mptcp_schedule_work(sk); 1749 } 1750 } 1751 1752 static int mptcp_disconnect(struct sock *sk, int flags); 1753 1754 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1755 size_t len, int *copied_syn) 1756 { 1757 unsigned int saved_flags = msg->msg_flags; 1758 struct mptcp_sock *msk = mptcp_sk(sk); 1759 struct sock *ssk; 1760 int ret; 1761 1762 /* on flags based fastopen the mptcp is supposed to create the 1763 * first subflow right now. Otherwise we are in the defer_connect 1764 * path, and the first subflow must be already present. 1765 * Since the defer_connect flag is cleared after the first succsful 1766 * fastopen attempt, no need to check for additional subflow status. 1767 */ 1768 if (msg->msg_flags & MSG_FASTOPEN) { 1769 ssk = __mptcp_nmpc_sk(msk); 1770 if (IS_ERR(ssk)) 1771 return PTR_ERR(ssk); 1772 } 1773 if (!msk->first) 1774 return -EINVAL; 1775 1776 ssk = msk->first; 1777 1778 lock_sock(ssk); 1779 msg->msg_flags |= MSG_DONTWAIT; 1780 msk->fastopening = 1; 1781 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1782 msk->fastopening = 0; 1783 msg->msg_flags = saved_flags; 1784 release_sock(ssk); 1785 1786 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1787 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1788 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1789 msg->msg_namelen, msg->msg_flags, 1); 1790 1791 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1792 * case of any error, except timeout or signal 1793 */ 1794 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1795 *copied_syn = 0; 1796 } else if (ret && ret != -EINPROGRESS) { 1797 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1798 * __inet_stream_connect() can fail, due to looking check, 1799 * see mptcp_disconnect(). 1800 * Attempt it again outside the problematic scope. 1801 */ 1802 if (!mptcp_disconnect(sk, 0)) { 1803 sk->sk_disconnects++; 1804 sk->sk_socket->state = SS_UNCONNECTED; 1805 } 1806 } 1807 inet_clear_bit(DEFER_CONNECT, sk); 1808 1809 return ret; 1810 } 1811 1812 static int do_copy_data_nocache(struct sock *sk, int copy, 1813 struct iov_iter *from, char *to) 1814 { 1815 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1816 if (!copy_from_iter_full_nocache(to, copy, from)) 1817 return -EFAULT; 1818 } else if (!copy_from_iter_full(to, copy, from)) { 1819 return -EFAULT; 1820 } 1821 return 0; 1822 } 1823 1824 /* open-code sk_stream_memory_free() plus sent limit computation to 1825 * avoid indirect calls in fast-path. 1826 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1827 * annotations. 1828 */ 1829 static u32 mptcp_send_limit(const struct sock *sk) 1830 { 1831 const struct mptcp_sock *msk = mptcp_sk(sk); 1832 u32 limit, not_sent; 1833 1834 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1835 return 0; 1836 1837 limit = mptcp_notsent_lowat(sk); 1838 if (limit == UINT_MAX) 1839 return UINT_MAX; 1840 1841 not_sent = msk->write_seq - msk->snd_nxt; 1842 if (not_sent >= limit) 1843 return 0; 1844 1845 return limit - not_sent; 1846 } 1847 1848 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1849 { 1850 struct mptcp_subflow_context *subflow; 1851 1852 if (!rfs_is_needed()) 1853 return; 1854 1855 mptcp_for_each_subflow(msk, subflow) { 1856 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1857 1858 sock_rps_record_flow(ssk); 1859 } 1860 } 1861 1862 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1863 { 1864 struct mptcp_sock *msk = mptcp_sk(sk); 1865 struct page_frag *pfrag; 1866 size_t copied = 0; 1867 int ret = 0; 1868 long timeo; 1869 1870 /* silently ignore everything else */ 1871 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1872 1873 lock_sock(sk); 1874 1875 mptcp_rps_record_subflows(msk); 1876 1877 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1878 msg->msg_flags & MSG_FASTOPEN)) { 1879 int copied_syn = 0; 1880 1881 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1882 copied += copied_syn; 1883 if (ret == -EINPROGRESS && copied_syn > 0) 1884 goto out; 1885 else if (ret) 1886 goto do_error; 1887 } 1888 1889 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1890 1891 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1892 ret = sk_stream_wait_connect(sk, &timeo); 1893 if (ret) 1894 goto do_error; 1895 } 1896 1897 ret = -EPIPE; 1898 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1899 goto do_error; 1900 1901 pfrag = sk_page_frag(sk); 1902 1903 while (msg_data_left(msg)) { 1904 int total_ts, frag_truesize = 0; 1905 struct mptcp_data_frag *dfrag; 1906 bool dfrag_collapsed; 1907 size_t psize, offset; 1908 u32 copy_limit; 1909 1910 /* ensure fitting the notsent_lowat() constraint */ 1911 copy_limit = mptcp_send_limit(sk); 1912 if (!copy_limit) 1913 goto wait_for_memory; 1914 1915 /* reuse tail pfrag, if possible, or carve a new one from the 1916 * page allocator 1917 */ 1918 dfrag = mptcp_pending_tail(sk); 1919 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1920 if (!dfrag_collapsed) { 1921 if (!mptcp_page_frag_refill(sk, pfrag)) 1922 goto wait_for_memory; 1923 1924 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1925 frag_truesize = dfrag->overhead; 1926 } 1927 1928 /* we do not bound vs wspace, to allow a single packet. 1929 * memory accounting will prevent execessive memory usage 1930 * anyway 1931 */ 1932 offset = dfrag->offset + dfrag->data_len; 1933 psize = pfrag->size - offset; 1934 psize = min_t(size_t, psize, msg_data_left(msg)); 1935 psize = min_t(size_t, psize, copy_limit); 1936 total_ts = psize + frag_truesize; 1937 1938 if (!sk_wmem_schedule(sk, total_ts)) 1939 goto wait_for_memory; 1940 1941 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1942 page_address(dfrag->page) + offset); 1943 if (ret) 1944 goto do_error; 1945 1946 /* data successfully copied into the write queue */ 1947 sk_forward_alloc_add(sk, -total_ts); 1948 copied += psize; 1949 dfrag->data_len += psize; 1950 frag_truesize += psize; 1951 pfrag->offset += frag_truesize; 1952 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1953 1954 /* charge data on mptcp pending queue to the msk socket 1955 * Note: we charge such data both to sk and ssk 1956 */ 1957 sk_wmem_queued_add(sk, frag_truesize); 1958 if (!dfrag_collapsed) { 1959 get_page(dfrag->page); 1960 list_add_tail(&dfrag->list, &msk->rtx_queue); 1961 if (!msk->first_pending) 1962 msk->first_pending = dfrag; 1963 } 1964 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1965 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1966 !dfrag_collapsed); 1967 1968 continue; 1969 1970 wait_for_memory: 1971 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1972 __mptcp_push_pending(sk, msg->msg_flags); 1973 ret = sk_stream_wait_memory(sk, &timeo); 1974 if (ret) 1975 goto do_error; 1976 } 1977 1978 if (copied) 1979 __mptcp_push_pending(sk, msg->msg_flags); 1980 1981 out: 1982 release_sock(sk); 1983 return copied; 1984 1985 do_error: 1986 if (copied) 1987 goto out; 1988 1989 copied = sk_stream_error(sk, msg->msg_flags, ret); 1990 goto out; 1991 } 1992 1993 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1994 1995 static void mptcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1996 { 1997 /* avoid the indirect call, we know the destructor is sock_rfree */ 1998 skb->destructor = NULL; 1999 skb->sk = NULL; 2000 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2001 sk_mem_uncharge(sk, skb->truesize); 2002 __skb_unlink(skb, &sk->sk_receive_queue); 2003 skb_attempt_defer_free(skb); 2004 } 2005 2006 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 2007 size_t len, int flags, int copied_total, 2008 struct scm_timestamping_internal *tss, 2009 int *cmsg_flags) 2010 { 2011 struct mptcp_sock *msk = mptcp_sk(sk); 2012 struct sk_buff *skb, *tmp; 2013 int total_data_len = 0; 2014 int copied = 0; 2015 2016 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 2017 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 2018 u32 data_len = skb->len - offset; 2019 u32 count; 2020 int err; 2021 2022 if (flags & MSG_PEEK) { 2023 /* skip already peeked skbs */ 2024 if (total_data_len + data_len <= copied_total) { 2025 total_data_len += data_len; 2026 continue; 2027 } 2028 2029 /* skip the already peeked data in the current skb */ 2030 delta = copied_total - total_data_len; 2031 offset += delta; 2032 data_len -= delta; 2033 } 2034 2035 count = min_t(size_t, len - copied, data_len); 2036 if (!(flags & MSG_TRUNC)) { 2037 err = skb_copy_datagram_msg(skb, offset, msg, count); 2038 if (unlikely(err < 0)) { 2039 if (!copied) 2040 return err; 2041 break; 2042 } 2043 } 2044 2045 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 2046 tcp_update_recv_tstamps(skb, tss); 2047 *cmsg_flags |= MPTCP_CMSG_TS; 2048 } 2049 2050 copied += count; 2051 2052 if (!(flags & MSG_PEEK)) { 2053 msk->bytes_consumed += count; 2054 if (count < data_len) { 2055 MPTCP_SKB_CB(skb)->offset += count; 2056 MPTCP_SKB_CB(skb)->map_seq += count; 2057 break; 2058 } 2059 2060 mptcp_eat_recv_skb(sk, skb); 2061 } 2062 2063 if (copied >= len) 2064 break; 2065 } 2066 2067 mptcp_rcv_space_adjust(msk, copied); 2068 return copied; 2069 } 2070 2071 static void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2072 { 2073 const struct tcp_sock *tp = tcp_sk(ssk); 2074 2075 msk->rcvspace_init = 1; 2076 msk->rcvq_space.copied = 0; 2077 msk->rcvq_space.rtt_us = 0; 2078 2079 /* initial rcv_space offering made to peer */ 2080 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2081 TCP_INIT_CWND * tp->advmss); 2082 if (msk->rcvq_space.space == 0) 2083 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2084 } 2085 2086 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2087 * 2088 * Only difference: Use highest rtt estimate of the subflows in use. 2089 */ 2090 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2091 { 2092 struct mptcp_subflow_context *subflow; 2093 struct sock *sk = (struct sock *)msk; 2094 u8 scaling_ratio = U8_MAX; 2095 u32 time, advmss = 1; 2096 u64 rtt_us, mstamp; 2097 2098 msk_owned_by_me(msk); 2099 2100 if (copied <= 0) 2101 return; 2102 2103 if (!msk->rcvspace_init) 2104 mptcp_rcv_space_init(msk, msk->first); 2105 2106 msk->rcvq_space.copied += copied; 2107 2108 mstamp = mptcp_stamp(); 2109 time = tcp_stamp_us_delta(mstamp, READ_ONCE(msk->rcvq_space.time)); 2110 2111 rtt_us = msk->rcvq_space.rtt_us; 2112 if (rtt_us && time < (rtt_us >> 3)) 2113 return; 2114 2115 rtt_us = 0; 2116 mptcp_for_each_subflow(msk, subflow) { 2117 const struct tcp_sock *tp; 2118 u64 sf_rtt_us; 2119 u32 sf_advmss; 2120 2121 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2122 2123 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2124 sf_advmss = READ_ONCE(tp->advmss); 2125 2126 rtt_us = max(sf_rtt_us, rtt_us); 2127 advmss = max(sf_advmss, advmss); 2128 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2129 } 2130 2131 msk->rcvq_space.rtt_us = rtt_us; 2132 msk->scaling_ratio = scaling_ratio; 2133 if (time < (rtt_us >> 3) || rtt_us == 0) 2134 return; 2135 2136 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2137 goto new_measure; 2138 2139 trace_mptcp_rcvbuf_grow(sk, time); 2140 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2141 /* Make subflows follow along. If we do not do this, we 2142 * get drops at subflow level if skbs can't be moved to 2143 * the mptcp rx queue fast enough (announced rcv_win can 2144 * exceed ssk->sk_rcvbuf). 2145 */ 2146 mptcp_for_each_subflow(msk, subflow) { 2147 struct sock *ssk; 2148 bool slow; 2149 2150 ssk = mptcp_subflow_tcp_sock(subflow); 2151 slow = lock_sock_fast(ssk); 2152 /* subflows can be added before tcp_init_transfer() */ 2153 if (tcp_sk(ssk)->rcvq_space.space) 2154 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2155 unlock_sock_fast(ssk, slow); 2156 } 2157 } 2158 2159 new_measure: 2160 msk->rcvq_space.copied = 0; 2161 msk->rcvq_space.time = mstamp; 2162 } 2163 2164 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta) 2165 { 2166 struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list); 2167 struct mptcp_sock *msk = mptcp_sk(sk); 2168 bool moved = false; 2169 2170 *delta = 0; 2171 while (1) { 2172 /* If the msk recvbuf is full stop, don't drop */ 2173 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2174 break; 2175 2176 prefetch(skb->next); 2177 list_del(&skb->list); 2178 *delta += skb->truesize; 2179 2180 moved |= __mptcp_move_skb(sk, skb); 2181 if (list_empty(skbs)) 2182 break; 2183 2184 skb = list_first_entry(skbs, struct sk_buff, list); 2185 } 2186 2187 __mptcp_ofo_queue(msk); 2188 if (moved) 2189 mptcp_check_data_fin((struct sock *)msk); 2190 return moved; 2191 } 2192 2193 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs) 2194 { 2195 struct mptcp_sock *msk = mptcp_sk(sk); 2196 2197 /* After CG initialization, subflows should never add skb before 2198 * gaining the CG themself. 2199 */ 2200 DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket && 2201 mem_cgroup_from_sk(sk)); 2202 2203 /* Don't spool the backlog if the rcvbuf is full. */ 2204 if (list_empty(&msk->backlog_list) || 2205 sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2206 return false; 2207 2208 INIT_LIST_HEAD(skbs); 2209 list_splice_init(&msk->backlog_list, skbs); 2210 return true; 2211 } 2212 2213 static void mptcp_backlog_spooled(struct sock *sk, u32 moved, 2214 struct list_head *skbs) 2215 { 2216 struct mptcp_sock *msk = mptcp_sk(sk); 2217 2218 WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved); 2219 list_splice(skbs, &msk->backlog_list); 2220 } 2221 2222 static bool mptcp_move_skbs(struct sock *sk) 2223 { 2224 struct list_head skbs; 2225 bool enqueued = false; 2226 u32 moved; 2227 2228 mptcp_data_lock(sk); 2229 while (mptcp_can_spool_backlog(sk, &skbs)) { 2230 mptcp_data_unlock(sk); 2231 enqueued |= __mptcp_move_skbs(sk, &skbs, &moved); 2232 2233 mptcp_data_lock(sk); 2234 mptcp_backlog_spooled(sk, moved, &skbs); 2235 } 2236 mptcp_data_unlock(sk); 2237 return enqueued; 2238 } 2239 2240 static unsigned int mptcp_inq_hint(const struct sock *sk) 2241 { 2242 const struct mptcp_sock *msk = mptcp_sk(sk); 2243 const struct sk_buff *skb; 2244 2245 skb = skb_peek(&sk->sk_receive_queue); 2246 if (skb) { 2247 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2248 2249 if (hint_val >= INT_MAX) 2250 return INT_MAX; 2251 2252 return (unsigned int)hint_val; 2253 } 2254 2255 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2256 return 1; 2257 2258 return 0; 2259 } 2260 2261 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2262 int flags, int *addr_len) 2263 { 2264 struct mptcp_sock *msk = mptcp_sk(sk); 2265 struct scm_timestamping_internal tss; 2266 int copied = 0, cmsg_flags = 0; 2267 int target; 2268 long timeo; 2269 2270 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2271 if (unlikely(flags & MSG_ERRQUEUE)) 2272 return inet_recv_error(sk, msg, len, addr_len); 2273 2274 lock_sock(sk); 2275 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2276 copied = -ENOTCONN; 2277 goto out_err; 2278 } 2279 2280 mptcp_rps_record_subflows(msk); 2281 2282 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2283 2284 len = min_t(size_t, len, INT_MAX); 2285 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2286 2287 if (unlikely(msk->recvmsg_inq)) 2288 cmsg_flags = MPTCP_CMSG_INQ; 2289 2290 while (copied < len) { 2291 int err, bytes_read; 2292 2293 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2294 copied, &tss, &cmsg_flags); 2295 if (unlikely(bytes_read < 0)) { 2296 if (!copied) 2297 copied = bytes_read; 2298 goto out_err; 2299 } 2300 2301 copied += bytes_read; 2302 2303 if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk)) 2304 continue; 2305 2306 /* only the MPTCP socket status is relevant here. The exit 2307 * conditions mirror closely tcp_recvmsg() 2308 */ 2309 if (copied >= target) 2310 break; 2311 2312 if (copied) { 2313 if (sk->sk_err || 2314 sk->sk_state == TCP_CLOSE || 2315 (sk->sk_shutdown & RCV_SHUTDOWN) || 2316 !timeo || 2317 signal_pending(current)) 2318 break; 2319 } else { 2320 if (sk->sk_err) { 2321 copied = sock_error(sk); 2322 break; 2323 } 2324 2325 if (sk->sk_shutdown & RCV_SHUTDOWN) 2326 break; 2327 2328 if (sk->sk_state == TCP_CLOSE) { 2329 copied = -ENOTCONN; 2330 break; 2331 } 2332 2333 if (!timeo) { 2334 copied = -EAGAIN; 2335 break; 2336 } 2337 2338 if (signal_pending(current)) { 2339 copied = sock_intr_errno(timeo); 2340 break; 2341 } 2342 } 2343 2344 pr_debug("block timeout %ld\n", timeo); 2345 mptcp_cleanup_rbuf(msk, copied); 2346 err = sk_wait_data(sk, &timeo, NULL); 2347 if (err < 0) { 2348 err = copied ? : err; 2349 goto out_err; 2350 } 2351 } 2352 2353 mptcp_cleanup_rbuf(msk, copied); 2354 2355 out_err: 2356 if (cmsg_flags && copied >= 0) { 2357 if (cmsg_flags & MPTCP_CMSG_TS) 2358 tcp_recv_timestamp(msg, sk, &tss); 2359 2360 if (cmsg_flags & MPTCP_CMSG_INQ) { 2361 unsigned int inq = mptcp_inq_hint(sk); 2362 2363 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2364 } 2365 } 2366 2367 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2368 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2369 2370 release_sock(sk); 2371 return copied; 2372 } 2373 2374 static void mptcp_retransmit_timer(struct timer_list *t) 2375 { 2376 struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer); 2377 struct mptcp_sock *msk = mptcp_sk(sk); 2378 2379 bh_lock_sock(sk); 2380 if (!sock_owned_by_user(sk)) { 2381 /* we need a process context to retransmit */ 2382 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2383 mptcp_schedule_work(sk); 2384 } else { 2385 /* delegate our work to tcp_release_cb() */ 2386 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2387 } 2388 bh_unlock_sock(sk); 2389 sock_put(sk); 2390 } 2391 2392 static void mptcp_tout_timer(struct timer_list *t) 2393 { 2394 struct inet_connection_sock *icsk = 2395 timer_container_of(icsk, t, mptcp_tout_timer); 2396 struct sock *sk = &icsk->icsk_inet.sk; 2397 2398 mptcp_schedule_work(sk); 2399 sock_put(sk); 2400 } 2401 2402 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2403 * level. 2404 * 2405 * A backup subflow is returned only if that is the only kind available. 2406 */ 2407 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2408 { 2409 struct sock *backup = NULL, *pick = NULL; 2410 struct mptcp_subflow_context *subflow; 2411 int min_stale_count = INT_MAX; 2412 2413 mptcp_for_each_subflow(msk, subflow) { 2414 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2415 2416 if (!__mptcp_subflow_active(subflow)) 2417 continue; 2418 2419 /* still data outstanding at TCP level? skip this */ 2420 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2421 mptcp_pm_subflow_chk_stale(msk, ssk); 2422 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2423 continue; 2424 } 2425 2426 if (subflow->backup || subflow->request_bkup) { 2427 if (!backup) 2428 backup = ssk; 2429 continue; 2430 } 2431 2432 if (!pick) 2433 pick = ssk; 2434 } 2435 2436 if (pick) 2437 return pick; 2438 2439 /* use backup only if there are no progresses anywhere */ 2440 return min_stale_count > 1 ? backup : NULL; 2441 } 2442 2443 bool __mptcp_retransmit_pending_data(struct sock *sk) 2444 { 2445 struct mptcp_data_frag *cur, *rtx_head; 2446 struct mptcp_sock *msk = mptcp_sk(sk); 2447 2448 if (__mptcp_check_fallback(msk)) 2449 return false; 2450 2451 /* the closing socket has some data untransmitted and/or unacked: 2452 * some data in the mptcp rtx queue has not really xmitted yet. 2453 * keep it simple and re-inject the whole mptcp level rtx queue 2454 */ 2455 mptcp_data_lock(sk); 2456 __mptcp_clean_una_wakeup(sk); 2457 rtx_head = mptcp_rtx_head(sk); 2458 if (!rtx_head) { 2459 mptcp_data_unlock(sk); 2460 return false; 2461 } 2462 2463 msk->recovery_snd_nxt = msk->snd_nxt; 2464 msk->recovery = true; 2465 mptcp_data_unlock(sk); 2466 2467 msk->first_pending = rtx_head; 2468 msk->snd_burst = 0; 2469 2470 /* be sure to clear the "sent status" on all re-injected fragments */ 2471 list_for_each_entry(cur, &msk->rtx_queue, list) { 2472 if (!cur->already_sent) 2473 break; 2474 cur->already_sent = 0; 2475 } 2476 2477 return true; 2478 } 2479 2480 /* flags for __mptcp_close_ssk() */ 2481 #define MPTCP_CF_PUSH BIT(1) 2482 2483 /* be sure to send a reset only if the caller asked for it, also 2484 * clean completely the subflow status when the subflow reaches 2485 * TCP_CLOSE state 2486 */ 2487 static void __mptcp_subflow_disconnect(struct sock *ssk, 2488 struct mptcp_subflow_context *subflow, 2489 bool fastclosing) 2490 { 2491 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2492 fastclosing) { 2493 /* The MPTCP code never wait on the subflow sockets, TCP-level 2494 * disconnect should never fail 2495 */ 2496 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2497 mptcp_subflow_ctx_reset(subflow); 2498 } else { 2499 tcp_shutdown(ssk, SEND_SHUTDOWN); 2500 } 2501 } 2502 2503 /* subflow sockets can be either outgoing (connect) or incoming 2504 * (accept). 2505 * 2506 * Outgoing subflows use in-kernel sockets. 2507 * Incoming subflows do not have their own 'struct socket' allocated, 2508 * so we need to use tcp_close() after detaching them from the mptcp 2509 * parent socket. 2510 */ 2511 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2512 struct mptcp_subflow_context *subflow, 2513 unsigned int flags) 2514 { 2515 struct mptcp_sock *msk = mptcp_sk(sk); 2516 bool dispose_it, need_push = false; 2517 int fwd_remaining; 2518 2519 /* Do not pass RX data to the msk, even if the subflow socket is not 2520 * going to be freed (i.e. even for the first subflow on graceful 2521 * subflow close. 2522 */ 2523 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2524 subflow->closing = 1; 2525 2526 /* Borrow the fwd allocated page left-over; fwd memory for the subflow 2527 * could be negative at this point, but will be reach zero soon - when 2528 * the data allocated using such fragment will be freed. 2529 */ 2530 if (subflow->lent_mem_frag) { 2531 fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag; 2532 sk_forward_alloc_add(sk, fwd_remaining); 2533 sk_forward_alloc_add(ssk, -fwd_remaining); 2534 subflow->lent_mem_frag = 0; 2535 } 2536 2537 /* If the first subflow moved to a close state before accept, e.g. due 2538 * to an incoming reset or listener shutdown, the subflow socket is 2539 * already deleted by inet_child_forget() and the mptcp socket can't 2540 * survive too. 2541 */ 2542 if (msk->in_accept_queue && msk->first == ssk && 2543 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2544 /* ensure later check in mptcp_worker() will dispose the msk */ 2545 sock_set_flag(sk, SOCK_DEAD); 2546 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2547 mptcp_subflow_drop_ctx(ssk); 2548 goto out_release; 2549 } 2550 2551 dispose_it = msk->free_first || ssk != msk->first; 2552 if (dispose_it) 2553 list_del(&subflow->node); 2554 2555 if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE) 2556 tcp_set_state(ssk, TCP_CLOSE); 2557 2558 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2559 if (!dispose_it) { 2560 __mptcp_subflow_disconnect(ssk, subflow, msk->fastclosing); 2561 release_sock(ssk); 2562 2563 goto out; 2564 } 2565 2566 subflow->disposable = 1; 2567 2568 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2569 * the ssk has been already destroyed, we just need to release the 2570 * reference owned by msk; 2571 */ 2572 if (!inet_csk(ssk)->icsk_ulp_ops) { 2573 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2574 kfree_rcu(subflow, rcu); 2575 } else { 2576 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2577 __tcp_close(ssk, 0); 2578 2579 /* close acquired an extra ref */ 2580 __sock_put(ssk); 2581 } 2582 2583 out_release: 2584 __mptcp_subflow_error_report(sk, ssk); 2585 release_sock(ssk); 2586 2587 sock_put(ssk); 2588 2589 if (ssk == msk->first) 2590 WRITE_ONCE(msk->first, NULL); 2591 2592 out: 2593 __mptcp_sync_sndbuf(sk); 2594 if (need_push) 2595 __mptcp_push_pending(sk, 0); 2596 2597 /* Catch every 'all subflows closed' scenario, including peers silently 2598 * closing them, e.g. due to timeout. 2599 * For established sockets, allow an additional timeout before closing, 2600 * as the protocol can still create more subflows. 2601 */ 2602 if (list_is_singular(&msk->conn_list) && msk->first && 2603 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2604 if (sk->sk_state != TCP_ESTABLISHED || 2605 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2606 mptcp_set_state(sk, TCP_CLOSE); 2607 mptcp_close_wake_up(sk); 2608 } else { 2609 mptcp_start_tout_timer(sk); 2610 } 2611 } 2612 } 2613 2614 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2615 struct mptcp_subflow_context *subflow) 2616 { 2617 struct mptcp_sock *msk = mptcp_sk(sk); 2618 struct sk_buff *skb; 2619 2620 /* The first subflow can already be closed or disconnected */ 2621 if (subflow->close_event_done || READ_ONCE(subflow->local_id) < 0) 2622 return; 2623 2624 subflow->close_event_done = true; 2625 2626 if (sk->sk_state == TCP_ESTABLISHED) 2627 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2628 2629 /* Remove any reference from the backlog to this ssk; backlog skbs consume 2630 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc 2631 */ 2632 list_for_each_entry(skb, &msk->backlog_list, list) { 2633 if (skb->sk != ssk) 2634 continue; 2635 2636 atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc); 2637 skb->sk = NULL; 2638 } 2639 2640 /* subflow aborted before reaching the fully_established status 2641 * attempt the creation of the next subflow 2642 */ 2643 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2644 2645 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2646 } 2647 2648 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2649 { 2650 return 0; 2651 } 2652 2653 static void __mptcp_close_subflow(struct sock *sk) 2654 { 2655 struct mptcp_subflow_context *subflow, *tmp; 2656 struct mptcp_sock *msk = mptcp_sk(sk); 2657 2658 might_sleep(); 2659 2660 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2661 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2662 int ssk_state = inet_sk_state_load(ssk); 2663 2664 if (ssk_state != TCP_CLOSE && 2665 (ssk_state != TCP_CLOSE_WAIT || 2666 inet_sk_state_load(sk) != TCP_ESTABLISHED || 2667 __mptcp_check_fallback(msk))) 2668 continue; 2669 2670 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2671 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2672 continue; 2673 2674 mptcp_close_ssk(sk, ssk, subflow); 2675 } 2676 2677 } 2678 2679 static bool mptcp_close_tout_expired(const struct sock *sk) 2680 { 2681 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2682 sk->sk_state == TCP_CLOSE) 2683 return false; 2684 2685 return time_after32(tcp_jiffies32, 2686 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2687 } 2688 2689 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2690 { 2691 struct mptcp_subflow_context *subflow, *tmp; 2692 struct sock *sk = (struct sock *)msk; 2693 2694 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2695 return; 2696 2697 mptcp_token_destroy(msk); 2698 2699 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2700 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2701 bool slow; 2702 2703 slow = lock_sock_fast(tcp_sk); 2704 if (tcp_sk->sk_state != TCP_CLOSE) { 2705 mptcp_send_active_reset_reason(tcp_sk); 2706 tcp_set_state(tcp_sk, TCP_CLOSE); 2707 } 2708 unlock_sock_fast(tcp_sk, slow); 2709 } 2710 2711 /* Mirror the tcp_reset() error propagation */ 2712 switch (sk->sk_state) { 2713 case TCP_SYN_SENT: 2714 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2715 break; 2716 case TCP_CLOSE_WAIT: 2717 WRITE_ONCE(sk->sk_err, EPIPE); 2718 break; 2719 case TCP_CLOSE: 2720 return; 2721 default: 2722 WRITE_ONCE(sk->sk_err, ECONNRESET); 2723 } 2724 2725 mptcp_set_state(sk, TCP_CLOSE); 2726 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2727 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2728 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2729 2730 /* the calling mptcp_worker will properly destroy the socket */ 2731 if (sock_flag(sk, SOCK_DEAD)) 2732 return; 2733 2734 sk->sk_state_change(sk); 2735 sk_error_report(sk); 2736 } 2737 2738 static void __mptcp_retrans(struct sock *sk) 2739 { 2740 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2741 struct mptcp_sock *msk = mptcp_sk(sk); 2742 struct mptcp_subflow_context *subflow; 2743 struct mptcp_data_frag *dfrag; 2744 struct sock *ssk; 2745 int ret, err; 2746 u16 len = 0; 2747 2748 mptcp_clean_una_wakeup(sk); 2749 2750 /* first check ssk: need to kick "stale" logic */ 2751 err = mptcp_sched_get_retrans(msk); 2752 dfrag = mptcp_rtx_head(sk); 2753 if (!dfrag) { 2754 if (mptcp_data_fin_enabled(msk)) { 2755 struct inet_connection_sock *icsk = inet_csk(sk); 2756 2757 WRITE_ONCE(icsk->icsk_retransmits, 2758 icsk->icsk_retransmits + 1); 2759 mptcp_set_datafin_timeout(sk); 2760 mptcp_send_ack(msk); 2761 2762 goto reset_timer; 2763 } 2764 2765 if (!mptcp_send_head(sk)) 2766 goto clear_scheduled; 2767 2768 goto reset_timer; 2769 } 2770 2771 if (err) 2772 goto reset_timer; 2773 2774 mptcp_for_each_subflow(msk, subflow) { 2775 if (READ_ONCE(subflow->scheduled)) { 2776 u16 copied = 0; 2777 2778 mptcp_subflow_set_scheduled(subflow, false); 2779 2780 ssk = mptcp_subflow_tcp_sock(subflow); 2781 2782 lock_sock(ssk); 2783 2784 /* limit retransmission to the bytes already sent on some subflows */ 2785 info.sent = 0; 2786 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2787 dfrag->already_sent; 2788 2789 /* 2790 * make the whole retrans decision, xmit, disallow 2791 * fallback atomic, note that we can't retrans even 2792 * when an infinite fallback is in progress, i.e. new 2793 * subflows are disallowed. 2794 */ 2795 spin_lock_bh(&msk->fallback_lock); 2796 if (__mptcp_check_fallback(msk) || 2797 !msk->allow_subflows) { 2798 spin_unlock_bh(&msk->fallback_lock); 2799 release_sock(ssk); 2800 goto clear_scheduled; 2801 } 2802 2803 while (info.sent < info.limit) { 2804 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2805 if (ret <= 0) 2806 break; 2807 2808 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2809 copied += ret; 2810 info.sent += ret; 2811 } 2812 if (copied) { 2813 len = max(copied, len); 2814 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2815 info.size_goal); 2816 msk->allow_infinite_fallback = false; 2817 } 2818 spin_unlock_bh(&msk->fallback_lock); 2819 2820 release_sock(ssk); 2821 } 2822 } 2823 2824 msk->bytes_retrans += len; 2825 dfrag->already_sent = max(dfrag->already_sent, len); 2826 2827 reset_timer: 2828 mptcp_check_and_set_pending(sk); 2829 2830 if (!mptcp_rtx_timer_pending(sk)) 2831 mptcp_reset_rtx_timer(sk); 2832 2833 clear_scheduled: 2834 /* If no rtx data was available or in case of fallback, there 2835 * could be left-over scheduled subflows; clear them all 2836 * or later xmit could use bad ones 2837 */ 2838 mptcp_for_each_subflow(msk, subflow) 2839 if (READ_ONCE(subflow->scheduled)) 2840 mptcp_subflow_set_scheduled(subflow, false); 2841 } 2842 2843 /* schedule the timeout timer for the relevant event: either close timeout 2844 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2845 */ 2846 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2847 { 2848 struct sock *sk = (struct sock *)msk; 2849 unsigned long timeout, close_timeout; 2850 2851 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2852 return; 2853 2854 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2855 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2856 2857 /* the close timeout takes precedence on the fail one, and here at least one of 2858 * them is active 2859 */ 2860 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2861 2862 sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout); 2863 } 2864 2865 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2866 { 2867 struct sock *ssk = msk->first; 2868 bool slow; 2869 2870 if (!ssk) 2871 return; 2872 2873 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2874 2875 slow = lock_sock_fast(ssk); 2876 mptcp_subflow_reset(ssk); 2877 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2878 unlock_sock_fast(ssk, slow); 2879 } 2880 2881 static void mptcp_backlog_purge(struct sock *sk) 2882 { 2883 struct mptcp_sock *msk = mptcp_sk(sk); 2884 struct sk_buff *tmp, *skb; 2885 LIST_HEAD(backlog); 2886 2887 mptcp_data_lock(sk); 2888 list_splice_init(&msk->backlog_list, &backlog); 2889 msk->backlog_len = 0; 2890 mptcp_data_unlock(sk); 2891 2892 list_for_each_entry_safe(skb, tmp, &backlog, list) { 2893 mptcp_borrow_fwdmem(sk, skb); 2894 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 2895 } 2896 sk_mem_reclaim(sk); 2897 } 2898 2899 static void mptcp_do_fastclose(struct sock *sk) 2900 { 2901 struct mptcp_subflow_context *subflow, *tmp; 2902 struct mptcp_sock *msk = mptcp_sk(sk); 2903 2904 mptcp_set_state(sk, TCP_CLOSE); 2905 mptcp_backlog_purge(sk); 2906 msk->fastclosing = 1; 2907 2908 /* Explicitly send the fastclose reset as need */ 2909 if (__mptcp_check_fallback(msk)) 2910 return; 2911 2912 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2913 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2914 2915 lock_sock(ssk); 2916 2917 /* Some subflow socket states don't allow/need a reset.*/ 2918 if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 2919 goto unlock; 2920 2921 subflow->send_fastclose = 1; 2922 2923 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2924 * issue in __tcp_select_window(), see tcp_disconnect(). 2925 */ 2926 inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS; 2927 2928 tcp_send_active_reset(ssk, ssk->sk_allocation, 2929 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 2930 unlock: 2931 release_sock(ssk); 2932 } 2933 } 2934 2935 static void mptcp_worker(struct work_struct *work) 2936 { 2937 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2938 struct sock *sk = (struct sock *)msk; 2939 unsigned long fail_tout; 2940 int state; 2941 2942 lock_sock(sk); 2943 state = sk->sk_state; 2944 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2945 goto unlock; 2946 2947 mptcp_check_fastclose(msk); 2948 2949 mptcp_pm_worker(msk); 2950 2951 mptcp_check_send_data_fin(sk); 2952 mptcp_check_data_fin_ack(sk); 2953 mptcp_check_data_fin(sk); 2954 2955 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2956 __mptcp_close_subflow(sk); 2957 2958 if (mptcp_close_tout_expired(sk)) { 2959 struct mptcp_subflow_context *subflow, *tmp; 2960 2961 mptcp_do_fastclose(sk); 2962 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2963 __mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0); 2964 mptcp_close_wake_up(sk); 2965 } 2966 2967 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2968 __mptcp_destroy_sock(sk); 2969 goto unlock; 2970 } 2971 2972 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2973 __mptcp_retrans(sk); 2974 2975 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2976 if (fail_tout && time_after(jiffies, fail_tout)) 2977 mptcp_mp_fail_no_response(msk); 2978 2979 unlock: 2980 release_sock(sk); 2981 sock_put(sk); 2982 } 2983 2984 static void __mptcp_init_sock(struct sock *sk) 2985 { 2986 struct mptcp_sock *msk = mptcp_sk(sk); 2987 2988 INIT_LIST_HEAD(&msk->conn_list); 2989 INIT_LIST_HEAD(&msk->join_list); 2990 INIT_LIST_HEAD(&msk->rtx_queue); 2991 INIT_LIST_HEAD(&msk->backlog_list); 2992 INIT_WORK(&msk->work, mptcp_worker); 2993 msk->out_of_order_queue = RB_ROOT; 2994 msk->first_pending = NULL; 2995 msk->timer_ival = TCP_RTO_MIN; 2996 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2997 msk->backlog_len = 0; 2998 2999 WRITE_ONCE(msk->first, NULL); 3000 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 3001 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3002 msk->allow_infinite_fallback = true; 3003 msk->allow_subflows = true; 3004 msk->recovery = false; 3005 msk->subflow_id = 1; 3006 msk->last_data_sent = tcp_jiffies32; 3007 msk->last_data_recv = tcp_jiffies32; 3008 msk->last_ack_recv = tcp_jiffies32; 3009 3010 mptcp_pm_data_init(msk); 3011 spin_lock_init(&msk->fallback_lock); 3012 3013 /* re-use the csk retrans timer for MPTCP-level retrans */ 3014 timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0); 3015 timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0); 3016 } 3017 3018 static void mptcp_ca_reset(struct sock *sk) 3019 { 3020 struct inet_connection_sock *icsk = inet_csk(sk); 3021 3022 tcp_assign_congestion_control(sk); 3023 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 3024 sizeof(mptcp_sk(sk)->ca_name)); 3025 3026 /* no need to keep a reference to the ops, the name will suffice */ 3027 tcp_cleanup_congestion_control(sk); 3028 icsk->icsk_ca_ops = NULL; 3029 } 3030 3031 static int mptcp_init_sock(struct sock *sk) 3032 { 3033 struct net *net = sock_net(sk); 3034 int ret; 3035 3036 __mptcp_init_sock(sk); 3037 3038 if (!mptcp_is_enabled(net)) 3039 return -ENOPROTOOPT; 3040 3041 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 3042 return -ENOMEM; 3043 3044 rcu_read_lock(); 3045 ret = mptcp_init_sched(mptcp_sk(sk), 3046 mptcp_sched_find(mptcp_get_scheduler(net))); 3047 rcu_read_unlock(); 3048 if (ret) 3049 return ret; 3050 3051 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 3052 3053 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 3054 * propagate the correct value 3055 */ 3056 mptcp_ca_reset(sk); 3057 3058 sk_sockets_allocated_inc(sk); 3059 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 3060 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 3061 sk->sk_write_space = sk_stream_write_space; 3062 3063 return 0; 3064 } 3065 3066 static void __mptcp_clear_xmit(struct sock *sk) 3067 { 3068 struct mptcp_sock *msk = mptcp_sk(sk); 3069 struct mptcp_data_frag *dtmp, *dfrag; 3070 3071 msk->first_pending = NULL; 3072 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 3073 dfrag_clear(sk, dfrag); 3074 } 3075 3076 void mptcp_cancel_work(struct sock *sk) 3077 { 3078 struct mptcp_sock *msk = mptcp_sk(sk); 3079 3080 if (cancel_work_sync(&msk->work)) 3081 __sock_put(sk); 3082 } 3083 3084 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 3085 { 3086 lock_sock(ssk); 3087 3088 switch (ssk->sk_state) { 3089 case TCP_LISTEN: 3090 if (!(how & RCV_SHUTDOWN)) 3091 break; 3092 fallthrough; 3093 case TCP_SYN_SENT: 3094 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 3095 break; 3096 default: 3097 if (__mptcp_check_fallback(mptcp_sk(sk))) { 3098 pr_debug("Fallback\n"); 3099 ssk->sk_shutdown |= how; 3100 tcp_shutdown(ssk, how); 3101 3102 /* simulate the data_fin ack reception to let the state 3103 * machine move forward 3104 */ 3105 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 3106 mptcp_schedule_work(sk); 3107 } else { 3108 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 3109 tcp_send_ack(ssk); 3110 if (!mptcp_rtx_timer_pending(sk)) 3111 mptcp_reset_rtx_timer(sk); 3112 } 3113 break; 3114 } 3115 3116 release_sock(ssk); 3117 } 3118 3119 void mptcp_set_state(struct sock *sk, int state) 3120 { 3121 int oldstate = sk->sk_state; 3122 3123 switch (state) { 3124 case TCP_ESTABLISHED: 3125 if (oldstate != TCP_ESTABLISHED) 3126 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3127 break; 3128 case TCP_CLOSE_WAIT: 3129 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 3130 * MPTCP "accepted" sockets will be created later on. So no 3131 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 3132 */ 3133 break; 3134 default: 3135 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3136 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3137 } 3138 3139 inet_sk_state_store(sk, state); 3140 } 3141 3142 static const unsigned char new_state[16] = { 3143 /* current state: new state: action: */ 3144 [0 /* (Invalid) */] = TCP_CLOSE, 3145 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3146 [TCP_SYN_SENT] = TCP_CLOSE, 3147 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3148 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3149 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3150 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 3151 [TCP_CLOSE] = TCP_CLOSE, 3152 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3153 [TCP_LAST_ACK] = TCP_LAST_ACK, 3154 [TCP_LISTEN] = TCP_CLOSE, 3155 [TCP_CLOSING] = TCP_CLOSING, 3156 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3157 }; 3158 3159 static int mptcp_close_state(struct sock *sk) 3160 { 3161 int next = (int)new_state[sk->sk_state]; 3162 int ns = next & TCP_STATE_MASK; 3163 3164 mptcp_set_state(sk, ns); 3165 3166 return next & TCP_ACTION_FIN; 3167 } 3168 3169 static void mptcp_check_send_data_fin(struct sock *sk) 3170 { 3171 struct mptcp_subflow_context *subflow; 3172 struct mptcp_sock *msk = mptcp_sk(sk); 3173 3174 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3175 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3176 msk->snd_nxt, msk->write_seq); 3177 3178 /* we still need to enqueue subflows or not really shutting down, 3179 * skip this 3180 */ 3181 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3182 mptcp_send_head(sk)) 3183 return; 3184 3185 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3186 3187 mptcp_for_each_subflow(msk, subflow) { 3188 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3189 3190 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3191 } 3192 } 3193 3194 static void __mptcp_wr_shutdown(struct sock *sk) 3195 { 3196 struct mptcp_sock *msk = mptcp_sk(sk); 3197 3198 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3199 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3200 !!mptcp_send_head(sk)); 3201 3202 /* will be ignored by fallback sockets */ 3203 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3204 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3205 3206 mptcp_check_send_data_fin(sk); 3207 } 3208 3209 static void __mptcp_destroy_sock(struct sock *sk) 3210 { 3211 struct mptcp_sock *msk = mptcp_sk(sk); 3212 3213 pr_debug("msk=%p\n", msk); 3214 3215 might_sleep(); 3216 3217 mptcp_stop_rtx_timer(sk); 3218 sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer); 3219 msk->pm.status = 0; 3220 mptcp_release_sched(msk); 3221 3222 sk->sk_prot->destroy(sk); 3223 3224 sk_stream_kill_queues(sk); 3225 xfrm_sk_free_policy(sk); 3226 3227 sock_put(sk); 3228 } 3229 3230 void __mptcp_unaccepted_force_close(struct sock *sk) 3231 { 3232 sock_set_flag(sk, SOCK_DEAD); 3233 mptcp_do_fastclose(sk); 3234 __mptcp_destroy_sock(sk); 3235 } 3236 3237 static __poll_t mptcp_check_readable(struct sock *sk) 3238 { 3239 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3240 } 3241 3242 static void mptcp_check_listen_stop(struct sock *sk) 3243 { 3244 struct sock *ssk; 3245 3246 if (inet_sk_state_load(sk) != TCP_LISTEN) 3247 return; 3248 3249 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3250 ssk = mptcp_sk(sk)->first; 3251 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3252 return; 3253 3254 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3255 tcp_set_state(ssk, TCP_CLOSE); 3256 mptcp_subflow_queue_clean(sk, ssk); 3257 inet_csk_listen_stop(ssk); 3258 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3259 release_sock(ssk); 3260 } 3261 3262 bool __mptcp_close(struct sock *sk, long timeout) 3263 { 3264 struct mptcp_subflow_context *subflow; 3265 struct mptcp_sock *msk = mptcp_sk(sk); 3266 bool do_cancel_work = false; 3267 int subflows_alive = 0; 3268 3269 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3270 3271 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3272 mptcp_check_listen_stop(sk); 3273 mptcp_set_state(sk, TCP_CLOSE); 3274 goto cleanup; 3275 } 3276 3277 if (mptcp_data_avail(msk) || timeout < 0) { 3278 /* If the msk has read data, or the caller explicitly ask it, 3279 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3280 */ 3281 mptcp_do_fastclose(sk); 3282 timeout = 0; 3283 } else if (mptcp_close_state(sk)) { 3284 __mptcp_wr_shutdown(sk); 3285 } 3286 3287 sk_stream_wait_close(sk, timeout); 3288 3289 cleanup: 3290 /* orphan all the subflows */ 3291 mptcp_for_each_subflow(msk, subflow) { 3292 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3293 bool slow = lock_sock_fast_nested(ssk); 3294 3295 subflows_alive += ssk->sk_state != TCP_CLOSE; 3296 3297 /* since the close timeout takes precedence on the fail one, 3298 * cancel the latter 3299 */ 3300 if (ssk == msk->first) 3301 subflow->fail_tout = 0; 3302 3303 /* detach from the parent socket, but allow data_ready to 3304 * push incoming data into the mptcp stack, to properly ack it 3305 */ 3306 ssk->sk_socket = NULL; 3307 ssk->sk_wq = NULL; 3308 unlock_sock_fast(ssk, slow); 3309 } 3310 sock_orphan(sk); 3311 3312 /* all the subflows are closed, only timeout can change the msk 3313 * state, let's not keep resources busy for no reasons 3314 */ 3315 if (subflows_alive == 0) 3316 mptcp_set_state(sk, TCP_CLOSE); 3317 3318 sock_hold(sk); 3319 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3320 mptcp_pm_connection_closed(msk); 3321 3322 if (sk->sk_state == TCP_CLOSE) { 3323 __mptcp_destroy_sock(sk); 3324 do_cancel_work = true; 3325 } else { 3326 mptcp_start_tout_timer(sk); 3327 } 3328 3329 return do_cancel_work; 3330 } 3331 3332 static void mptcp_close(struct sock *sk, long timeout) 3333 { 3334 bool do_cancel_work; 3335 3336 lock_sock(sk); 3337 3338 do_cancel_work = __mptcp_close(sk, timeout); 3339 release_sock(sk); 3340 if (do_cancel_work) 3341 mptcp_cancel_work(sk); 3342 3343 sock_put(sk); 3344 } 3345 3346 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3347 { 3348 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3349 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3350 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3351 3352 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3353 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3354 3355 if (msk6 && ssk6) { 3356 msk6->saddr = ssk6->saddr; 3357 msk6->flow_label = ssk6->flow_label; 3358 } 3359 #endif 3360 3361 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3362 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3363 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3364 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3365 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3366 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3367 } 3368 3369 static void mptcp_destroy_common(struct mptcp_sock *msk) 3370 { 3371 struct mptcp_subflow_context *subflow, *tmp; 3372 struct sock *sk = (struct sock *)msk; 3373 3374 __mptcp_clear_xmit(sk); 3375 mptcp_backlog_purge(sk); 3376 3377 /* join list will be eventually flushed (with rst) at sock lock release time */ 3378 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3379 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0); 3380 3381 __skb_queue_purge(&sk->sk_receive_queue); 3382 skb_rbtree_purge(&msk->out_of_order_queue); 3383 3384 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3385 * inet_sock_destruct() will dispose it 3386 */ 3387 mptcp_token_destroy(msk); 3388 mptcp_pm_destroy(msk); 3389 } 3390 3391 static int mptcp_disconnect(struct sock *sk, int flags) 3392 { 3393 struct mptcp_sock *msk = mptcp_sk(sk); 3394 3395 /* We are on the fastopen error path. We can't call straight into the 3396 * subflows cleanup code due to lock nesting (we are already under 3397 * msk->firstsocket lock). 3398 */ 3399 if (msk->fastopening) 3400 return -EBUSY; 3401 3402 mptcp_check_listen_stop(sk); 3403 mptcp_set_state(sk, TCP_CLOSE); 3404 3405 mptcp_stop_rtx_timer(sk); 3406 mptcp_stop_tout_timer(sk); 3407 3408 mptcp_pm_connection_closed(msk); 3409 3410 /* msk->subflow is still intact, the following will not free the first 3411 * subflow 3412 */ 3413 mptcp_do_fastclose(sk); 3414 mptcp_destroy_common(msk); 3415 3416 /* The first subflow is already in TCP_CLOSE status, the following 3417 * can't overlap with a fallback anymore 3418 */ 3419 spin_lock_bh(&msk->fallback_lock); 3420 msk->allow_subflows = true; 3421 msk->allow_infinite_fallback = true; 3422 WRITE_ONCE(msk->flags, 0); 3423 spin_unlock_bh(&msk->fallback_lock); 3424 3425 msk->cb_flags = 0; 3426 msk->recovery = false; 3427 WRITE_ONCE(msk->can_ack, false); 3428 WRITE_ONCE(msk->fully_established, false); 3429 WRITE_ONCE(msk->rcv_data_fin, false); 3430 WRITE_ONCE(msk->snd_data_fin_enable, false); 3431 WRITE_ONCE(msk->rcv_fastclose, false); 3432 WRITE_ONCE(msk->use_64bit_ack, false); 3433 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3434 mptcp_pm_data_reset(msk); 3435 mptcp_ca_reset(sk); 3436 msk->bytes_consumed = 0; 3437 msk->bytes_acked = 0; 3438 msk->bytes_received = 0; 3439 msk->bytes_sent = 0; 3440 msk->bytes_retrans = 0; 3441 msk->rcvspace_init = 0; 3442 msk->fastclosing = 0; 3443 3444 /* for fallback's sake */ 3445 WRITE_ONCE(msk->ack_seq, 0); 3446 3447 WRITE_ONCE(sk->sk_shutdown, 0); 3448 sk_error_report(sk); 3449 return 0; 3450 } 3451 3452 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3453 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3454 { 3455 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3456 3457 return &msk6->np; 3458 } 3459 3460 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3461 { 3462 const struct ipv6_pinfo *np = inet6_sk(sk); 3463 struct ipv6_txoptions *opt; 3464 struct ipv6_pinfo *newnp; 3465 3466 newnp = inet6_sk(newsk); 3467 3468 rcu_read_lock(); 3469 opt = rcu_dereference(np->opt); 3470 if (opt) { 3471 opt = ipv6_dup_options(newsk, opt); 3472 if (!opt) 3473 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3474 } 3475 RCU_INIT_POINTER(newnp->opt, opt); 3476 rcu_read_unlock(); 3477 } 3478 #endif 3479 3480 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3481 { 3482 struct ip_options_rcu *inet_opt, *newopt = NULL; 3483 const struct inet_sock *inet = inet_sk(sk); 3484 struct inet_sock *newinet; 3485 3486 newinet = inet_sk(newsk); 3487 3488 rcu_read_lock(); 3489 inet_opt = rcu_dereference(inet->inet_opt); 3490 if (inet_opt) { 3491 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3492 inet_opt->opt.optlen, GFP_ATOMIC); 3493 if (!newopt) 3494 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3495 } 3496 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3497 rcu_read_unlock(); 3498 } 3499 3500 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3501 const struct mptcp_options_received *mp_opt, 3502 struct sock *ssk, 3503 struct request_sock *req) 3504 { 3505 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3506 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3507 struct mptcp_subflow_context *subflow; 3508 struct mptcp_sock *msk; 3509 3510 if (!nsk) 3511 return NULL; 3512 3513 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3514 if (nsk->sk_family == AF_INET6) 3515 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3516 #endif 3517 3518 __mptcp_init_sock(nsk); 3519 3520 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3521 if (nsk->sk_family == AF_INET6) 3522 mptcp_copy_ip6_options(nsk, sk); 3523 else 3524 #endif 3525 mptcp_copy_ip_options(nsk, sk); 3526 3527 msk = mptcp_sk(nsk); 3528 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3529 WRITE_ONCE(msk->token, subflow_req->token); 3530 msk->in_accept_queue = 1; 3531 WRITE_ONCE(msk->fully_established, false); 3532 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3533 WRITE_ONCE(msk->csum_enabled, true); 3534 3535 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3536 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3537 WRITE_ONCE(msk->snd_una, msk->write_seq); 3538 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3539 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3540 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3541 3542 /* passive msk is created after the first/MPC subflow */ 3543 msk->subflow_id = 2; 3544 3545 sock_reset_flag(nsk, SOCK_RCU_FREE); 3546 security_inet_csk_clone(nsk, req); 3547 3548 /* this can't race with mptcp_close(), as the msk is 3549 * not yet exposted to user-space 3550 */ 3551 mptcp_set_state(nsk, TCP_ESTABLISHED); 3552 3553 /* The msk maintain a ref to each subflow in the connections list */ 3554 WRITE_ONCE(msk->first, ssk); 3555 subflow = mptcp_subflow_ctx(ssk); 3556 list_add(&subflow->node, &msk->conn_list); 3557 sock_hold(ssk); 3558 3559 /* new mpc subflow takes ownership of the newly 3560 * created mptcp socket 3561 */ 3562 mptcp_token_accept(subflow_req, msk); 3563 3564 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3565 * uses the correct data 3566 */ 3567 mptcp_copy_inaddrs(nsk, ssk); 3568 __mptcp_propagate_sndbuf(nsk, ssk); 3569 3570 mptcp_rcv_space_init(msk, ssk); 3571 msk->rcvq_space.time = mptcp_stamp(); 3572 3573 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3574 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3575 bh_unlock_sock(nsk); 3576 3577 /* note: the newly allocated socket refcount is 2 now */ 3578 return nsk; 3579 } 3580 3581 static void mptcp_destroy(struct sock *sk) 3582 { 3583 struct mptcp_sock *msk = mptcp_sk(sk); 3584 3585 /* allow the following to close even the initial subflow */ 3586 msk->free_first = 1; 3587 mptcp_destroy_common(msk); 3588 sk_sockets_allocated_dec(sk); 3589 } 3590 3591 void __mptcp_data_acked(struct sock *sk) 3592 { 3593 if (!sock_owned_by_user(sk)) 3594 __mptcp_clean_una(sk); 3595 else 3596 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3597 } 3598 3599 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3600 { 3601 if (!sock_owned_by_user(sk)) 3602 __mptcp_subflow_push_pending(sk, ssk, false); 3603 else 3604 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3605 } 3606 3607 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3608 BIT(MPTCP_RETRANSMIT) | \ 3609 BIT(MPTCP_FLUSH_JOIN_LIST)) 3610 3611 /* processes deferred events and flush wmem */ 3612 static void mptcp_release_cb(struct sock *sk) 3613 __must_hold(&sk->sk_lock.slock) 3614 { 3615 struct mptcp_sock *msk = mptcp_sk(sk); 3616 3617 for (;;) { 3618 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3619 struct list_head join_list, skbs; 3620 bool spool_bl; 3621 u32 moved; 3622 3623 spool_bl = mptcp_can_spool_backlog(sk, &skbs); 3624 if (!flags && !spool_bl) 3625 break; 3626 3627 INIT_LIST_HEAD(&join_list); 3628 list_splice_init(&msk->join_list, &join_list); 3629 3630 /* the following actions acquire the subflow socket lock 3631 * 3632 * 1) can't be invoked in atomic scope 3633 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3634 * datapath acquires the msk socket spinlock while helding 3635 * the subflow socket lock 3636 */ 3637 msk->cb_flags &= ~flags; 3638 spin_unlock_bh(&sk->sk_lock.slock); 3639 3640 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3641 __mptcp_flush_join_list(sk, &join_list); 3642 if (flags & BIT(MPTCP_PUSH_PENDING)) 3643 __mptcp_push_pending(sk, 0); 3644 if (flags & BIT(MPTCP_RETRANSMIT)) 3645 __mptcp_retrans(sk); 3646 if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) { 3647 /* notify ack seq update */ 3648 mptcp_cleanup_rbuf(msk, 0); 3649 sk->sk_data_ready(sk); 3650 } 3651 3652 cond_resched(); 3653 spin_lock_bh(&sk->sk_lock.slock); 3654 if (spool_bl) 3655 mptcp_backlog_spooled(sk, moved, &skbs); 3656 } 3657 3658 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3659 __mptcp_clean_una_wakeup(sk); 3660 if (unlikely(msk->cb_flags)) { 3661 /* be sure to sync the msk state before taking actions 3662 * depending on sk_state (MPTCP_ERROR_REPORT) 3663 * On sk release avoid actions depending on the first subflow 3664 */ 3665 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3666 __mptcp_sync_state(sk, msk->pending_state); 3667 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3668 __mptcp_error_report(sk); 3669 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3670 __mptcp_sync_sndbuf(sk); 3671 } 3672 } 3673 3674 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3675 * TCP can't schedule delack timer before the subflow is fully established. 3676 * MPTCP uses the delack timer to do 3rd ack retransmissions 3677 */ 3678 static void schedule_3rdack_retransmission(struct sock *ssk) 3679 { 3680 struct inet_connection_sock *icsk = inet_csk(ssk); 3681 struct tcp_sock *tp = tcp_sk(ssk); 3682 unsigned long timeout; 3683 3684 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3685 return; 3686 3687 /* reschedule with a timeout above RTT, as we must look only for drop */ 3688 if (tp->srtt_us) 3689 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3690 else 3691 timeout = TCP_TIMEOUT_INIT; 3692 timeout += jiffies; 3693 3694 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3695 smp_store_release(&icsk->icsk_ack.pending, 3696 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3697 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3698 } 3699 3700 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3701 { 3702 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3703 struct sock *sk = subflow->conn; 3704 3705 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3706 mptcp_data_lock(sk); 3707 if (!sock_owned_by_user(sk)) 3708 __mptcp_subflow_push_pending(sk, ssk, true); 3709 else 3710 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3711 mptcp_data_unlock(sk); 3712 } 3713 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3714 mptcp_data_lock(sk); 3715 if (!sock_owned_by_user(sk)) 3716 __mptcp_sync_sndbuf(sk); 3717 else 3718 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3719 mptcp_data_unlock(sk); 3720 } 3721 if (status & BIT(MPTCP_DELEGATE_ACK)) 3722 schedule_3rdack_retransmission(ssk); 3723 } 3724 3725 static int mptcp_hash(struct sock *sk) 3726 { 3727 /* should never be called, 3728 * we hash the TCP subflows not the MPTCP socket 3729 */ 3730 WARN_ON_ONCE(1); 3731 return 0; 3732 } 3733 3734 static void mptcp_unhash(struct sock *sk) 3735 { 3736 /* called from sk_common_release(), but nothing to do here */ 3737 } 3738 3739 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3740 { 3741 struct mptcp_sock *msk = mptcp_sk(sk); 3742 3743 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3744 if (WARN_ON_ONCE(!msk->first)) 3745 return -EINVAL; 3746 3747 return inet_csk_get_port(msk->first, snum); 3748 } 3749 3750 void mptcp_finish_connect(struct sock *ssk) 3751 { 3752 struct mptcp_subflow_context *subflow; 3753 struct mptcp_sock *msk; 3754 struct sock *sk; 3755 3756 subflow = mptcp_subflow_ctx(ssk); 3757 sk = subflow->conn; 3758 msk = mptcp_sk(sk); 3759 3760 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3761 3762 subflow->map_seq = subflow->iasn; 3763 subflow->map_subflow_seq = 1; 3764 3765 /* the socket is not connected yet, no msk/subflow ops can access/race 3766 * accessing the field below 3767 */ 3768 WRITE_ONCE(msk->local_key, subflow->local_key); 3769 WRITE_ONCE(msk->rcvq_space.time, mptcp_stamp()); 3770 3771 mptcp_pm_new_connection(msk, ssk, 0); 3772 } 3773 3774 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3775 { 3776 write_lock_bh(&sk->sk_callback_lock); 3777 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3778 sk_set_socket(sk, parent); 3779 write_unlock_bh(&sk->sk_callback_lock); 3780 } 3781 3782 /* Can be called without holding the msk socket lock; use the callback lock 3783 * to avoid {READ_,WRITE_}ONCE annotations on sk_socket. 3784 */ 3785 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk) 3786 { 3787 struct socket *sock; 3788 3789 write_lock_bh(&sk->sk_callback_lock); 3790 sock = sk->sk_socket; 3791 write_unlock_bh(&sk->sk_callback_lock); 3792 if (sock) { 3793 mptcp_sock_graft(ssk, sock); 3794 __mptcp_inherit_cgrp_data(sk, ssk); 3795 __mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC); 3796 } 3797 } 3798 3799 bool mptcp_finish_join(struct sock *ssk) 3800 { 3801 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3802 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3803 struct sock *parent = (void *)msk; 3804 bool ret = true; 3805 3806 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3807 3808 /* mptcp socket already closing? */ 3809 if (!mptcp_is_fully_established(parent)) { 3810 subflow->reset_reason = MPTCP_RST_EMPTCP; 3811 return false; 3812 } 3813 3814 /* Active subflow, already present inside the conn_list; is grafted 3815 * either by __mptcp_subflow_connect() or accept. 3816 */ 3817 if (!list_empty(&subflow->node)) { 3818 spin_lock_bh(&msk->fallback_lock); 3819 if (!msk->allow_subflows) { 3820 spin_unlock_bh(&msk->fallback_lock); 3821 return false; 3822 } 3823 mptcp_subflow_joined(msk, ssk); 3824 spin_unlock_bh(&msk->fallback_lock); 3825 mptcp_propagate_sndbuf(parent, ssk); 3826 return true; 3827 } 3828 3829 if (!mptcp_pm_allow_new_subflow(msk)) { 3830 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3831 goto err_prohibited; 3832 } 3833 3834 /* If we can't acquire msk socket lock here, let the release callback 3835 * handle it 3836 */ 3837 mptcp_data_lock(parent); 3838 if (!sock_owned_by_user(parent)) { 3839 ret = __mptcp_finish_join(msk, ssk); 3840 if (ret) { 3841 sock_hold(ssk); 3842 list_add_tail(&subflow->node, &msk->conn_list); 3843 mptcp_sock_check_graft(parent, ssk); 3844 } 3845 } else { 3846 sock_hold(ssk); 3847 list_add_tail(&subflow->node, &msk->join_list); 3848 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3849 3850 /* In case of later failures, __mptcp_flush_join_list() will 3851 * properly orphan the ssk via mptcp_close_ssk(). 3852 */ 3853 mptcp_sock_check_graft(parent, ssk); 3854 } 3855 mptcp_data_unlock(parent); 3856 3857 if (!ret) { 3858 err_prohibited: 3859 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3860 return false; 3861 } 3862 3863 return true; 3864 } 3865 3866 static void mptcp_shutdown(struct sock *sk, int how) 3867 { 3868 pr_debug("sk=%p, how=%d\n", sk, how); 3869 3870 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3871 __mptcp_wr_shutdown(sk); 3872 } 3873 3874 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3875 { 3876 const struct sock *sk = (void *)msk; 3877 u64 delta; 3878 3879 if (sk->sk_state == TCP_LISTEN) 3880 return -EINVAL; 3881 3882 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3883 return 0; 3884 3885 delta = msk->write_seq - v; 3886 if (__mptcp_check_fallback(msk) && msk->first) { 3887 struct tcp_sock *tp = tcp_sk(msk->first); 3888 3889 /* the first subflow is disconnected after close - see 3890 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3891 * so ignore that status, too. 3892 */ 3893 if (!((1 << msk->first->sk_state) & 3894 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3895 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3896 } 3897 if (delta > INT_MAX) 3898 delta = INT_MAX; 3899 3900 return (int)delta; 3901 } 3902 3903 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3904 { 3905 struct mptcp_sock *msk = mptcp_sk(sk); 3906 bool slow; 3907 3908 switch (cmd) { 3909 case SIOCINQ: 3910 if (sk->sk_state == TCP_LISTEN) 3911 return -EINVAL; 3912 3913 lock_sock(sk); 3914 if (mptcp_move_skbs(sk)) 3915 mptcp_cleanup_rbuf(msk, 0); 3916 *karg = mptcp_inq_hint(sk); 3917 release_sock(sk); 3918 break; 3919 case SIOCOUTQ: 3920 slow = lock_sock_fast(sk); 3921 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3922 unlock_sock_fast(sk, slow); 3923 break; 3924 case SIOCOUTQNSD: 3925 slow = lock_sock_fast(sk); 3926 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3927 unlock_sock_fast(sk, slow); 3928 break; 3929 default: 3930 return -ENOIOCTLCMD; 3931 } 3932 3933 return 0; 3934 } 3935 3936 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3937 int addr_len) 3938 { 3939 struct mptcp_subflow_context *subflow; 3940 struct mptcp_sock *msk = mptcp_sk(sk); 3941 int err = -EINVAL; 3942 struct sock *ssk; 3943 3944 ssk = __mptcp_nmpc_sk(msk); 3945 if (IS_ERR(ssk)) 3946 return PTR_ERR(ssk); 3947 3948 mptcp_set_state(sk, TCP_SYN_SENT); 3949 subflow = mptcp_subflow_ctx(ssk); 3950 #ifdef CONFIG_TCP_MD5SIG 3951 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3952 * TCP option space. 3953 */ 3954 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3955 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3956 #endif 3957 if (subflow->request_mptcp) { 3958 if (mptcp_active_should_disable(sk)) 3959 mptcp_early_fallback(msk, subflow, 3960 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3961 else if (mptcp_token_new_connect(ssk) < 0) 3962 mptcp_early_fallback(msk, subflow, 3963 MPTCP_MIB_TOKENFALLBACKINIT); 3964 } 3965 3966 WRITE_ONCE(msk->write_seq, subflow->idsn); 3967 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3968 WRITE_ONCE(msk->snd_una, subflow->idsn); 3969 if (likely(!__mptcp_check_fallback(msk))) 3970 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3971 3972 /* if reaching here via the fastopen/sendmsg path, the caller already 3973 * acquired the subflow socket lock, too. 3974 */ 3975 if (!msk->fastopening) 3976 lock_sock(ssk); 3977 3978 /* the following mirrors closely a very small chunk of code from 3979 * __inet_stream_connect() 3980 */ 3981 if (ssk->sk_state != TCP_CLOSE) 3982 goto out; 3983 3984 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3985 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3986 if (err) 3987 goto out; 3988 } 3989 3990 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3991 if (err < 0) 3992 goto out; 3993 3994 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3995 3996 out: 3997 if (!msk->fastopening) 3998 release_sock(ssk); 3999 4000 /* on successful connect, the msk state will be moved to established by 4001 * subflow_finish_connect() 4002 */ 4003 if (unlikely(err)) { 4004 /* avoid leaving a dangling token in an unconnected socket */ 4005 mptcp_token_destroy(msk); 4006 mptcp_set_state(sk, TCP_CLOSE); 4007 return err; 4008 } 4009 4010 mptcp_copy_inaddrs(sk, ssk); 4011 return 0; 4012 } 4013 4014 static struct proto mptcp_prot = { 4015 .name = "MPTCP", 4016 .owner = THIS_MODULE, 4017 .init = mptcp_init_sock, 4018 .connect = mptcp_connect, 4019 .disconnect = mptcp_disconnect, 4020 .close = mptcp_close, 4021 .setsockopt = mptcp_setsockopt, 4022 .getsockopt = mptcp_getsockopt, 4023 .shutdown = mptcp_shutdown, 4024 .destroy = mptcp_destroy, 4025 .sendmsg = mptcp_sendmsg, 4026 .ioctl = mptcp_ioctl, 4027 .recvmsg = mptcp_recvmsg, 4028 .release_cb = mptcp_release_cb, 4029 .hash = mptcp_hash, 4030 .unhash = mptcp_unhash, 4031 .get_port = mptcp_get_port, 4032 .stream_memory_free = mptcp_stream_memory_free, 4033 .sockets_allocated = &mptcp_sockets_allocated, 4034 4035 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 4036 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 4037 4038 .memory_pressure = &tcp_memory_pressure, 4039 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 4040 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 4041 .sysctl_mem = sysctl_tcp_mem, 4042 .obj_size = sizeof(struct mptcp_sock), 4043 .slab_flags = SLAB_TYPESAFE_BY_RCU, 4044 .no_autobind = true, 4045 }; 4046 4047 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 4048 { 4049 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4050 struct sock *ssk, *sk = sock->sk; 4051 int err = -EINVAL; 4052 4053 lock_sock(sk); 4054 ssk = __mptcp_nmpc_sk(msk); 4055 if (IS_ERR(ssk)) { 4056 err = PTR_ERR(ssk); 4057 goto unlock; 4058 } 4059 4060 if (sk->sk_family == AF_INET) 4061 err = inet_bind_sk(ssk, uaddr, addr_len); 4062 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4063 else if (sk->sk_family == AF_INET6) 4064 err = inet6_bind_sk(ssk, uaddr, addr_len); 4065 #endif 4066 if (!err) 4067 mptcp_copy_inaddrs(sk, ssk); 4068 4069 unlock: 4070 release_sock(sk); 4071 return err; 4072 } 4073 4074 static int mptcp_listen(struct socket *sock, int backlog) 4075 { 4076 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4077 struct sock *sk = sock->sk; 4078 struct sock *ssk; 4079 int err; 4080 4081 pr_debug("msk=%p\n", msk); 4082 4083 lock_sock(sk); 4084 4085 err = -EINVAL; 4086 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 4087 goto unlock; 4088 4089 ssk = __mptcp_nmpc_sk(msk); 4090 if (IS_ERR(ssk)) { 4091 err = PTR_ERR(ssk); 4092 goto unlock; 4093 } 4094 4095 mptcp_set_state(sk, TCP_LISTEN); 4096 sock_set_flag(sk, SOCK_RCU_FREE); 4097 4098 lock_sock(ssk); 4099 err = __inet_listen_sk(ssk, backlog); 4100 release_sock(ssk); 4101 mptcp_set_state(sk, inet_sk_state_load(ssk)); 4102 4103 if (!err) { 4104 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 4105 mptcp_copy_inaddrs(sk, ssk); 4106 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 4107 } 4108 4109 unlock: 4110 release_sock(sk); 4111 return err; 4112 } 4113 4114 static void mptcp_graft_subflows(struct sock *sk) 4115 { 4116 struct mptcp_subflow_context *subflow; 4117 struct mptcp_sock *msk = mptcp_sk(sk); 4118 4119 if (mem_cgroup_sockets_enabled) { 4120 LIST_HEAD(join_list); 4121 4122 /* Subflows joining after __inet_accept() will get the 4123 * mem CG properly initialized at mptcp_finish_join() time, 4124 * but subflows pending in join_list need explicit 4125 * initialization before flushing `backlog_unaccounted` 4126 * or MPTCP can later unexpectedly observe unaccounted memory. 4127 */ 4128 mptcp_data_lock(sk); 4129 list_splice_init(&msk->join_list, &join_list); 4130 mptcp_data_unlock(sk); 4131 4132 __mptcp_flush_join_list(sk, &join_list); 4133 } 4134 4135 mptcp_for_each_subflow(msk, subflow) { 4136 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4137 4138 lock_sock(ssk); 4139 4140 /* Set ssk->sk_socket of accept()ed flows to mptcp socket. 4141 * This is needed so NOSPACE flag can be set from tcp stack. 4142 */ 4143 if (!ssk->sk_socket) 4144 mptcp_sock_graft(ssk, sk->sk_socket); 4145 4146 if (!mem_cgroup_sk_enabled(sk)) 4147 goto unlock; 4148 4149 __mptcp_inherit_cgrp_data(sk, ssk); 4150 __mptcp_inherit_memcg(sk, ssk, GFP_KERNEL); 4151 4152 unlock: 4153 release_sock(ssk); 4154 } 4155 4156 if (mem_cgroup_sk_enabled(sk)) { 4157 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 4158 int amt; 4159 4160 /* Account the backlog memory; prior accept() is aware of 4161 * fwd and rmem only. 4162 */ 4163 mptcp_data_lock(sk); 4164 amt = sk_mem_pages(sk->sk_forward_alloc + 4165 msk->backlog_unaccounted + 4166 atomic_read(&sk->sk_rmem_alloc)) - 4167 sk_mem_pages(sk->sk_forward_alloc + 4168 atomic_read(&sk->sk_rmem_alloc)); 4169 msk->backlog_unaccounted = 0; 4170 mptcp_data_unlock(sk); 4171 4172 if (amt) 4173 mem_cgroup_sk_charge(sk, amt, gfp); 4174 } 4175 } 4176 4177 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 4178 struct proto_accept_arg *arg) 4179 { 4180 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4181 struct sock *ssk, *newsk; 4182 4183 pr_debug("msk=%p\n", msk); 4184 4185 /* Buggy applications can call accept on socket states other then LISTEN 4186 * but no need to allocate the first subflow just to error out. 4187 */ 4188 ssk = READ_ONCE(msk->first); 4189 if (!ssk) 4190 return -EINVAL; 4191 4192 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 4193 newsk = inet_csk_accept(ssk, arg); 4194 if (!newsk) 4195 return arg->err; 4196 4197 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 4198 if (sk_is_mptcp(newsk)) { 4199 struct mptcp_subflow_context *subflow; 4200 struct sock *new_mptcp_sock; 4201 4202 subflow = mptcp_subflow_ctx(newsk); 4203 new_mptcp_sock = subflow->conn; 4204 4205 /* is_mptcp should be false if subflow->conn is missing, see 4206 * subflow_syn_recv_sock() 4207 */ 4208 if (WARN_ON_ONCE(!new_mptcp_sock)) { 4209 tcp_sk(newsk)->is_mptcp = 0; 4210 goto tcpfallback; 4211 } 4212 4213 newsk = new_mptcp_sock; 4214 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 4215 4216 newsk->sk_kern_sock = arg->kern; 4217 lock_sock(newsk); 4218 __inet_accept(sock, newsock, newsk); 4219 4220 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 4221 msk = mptcp_sk(newsk); 4222 msk->in_accept_queue = 0; 4223 4224 mptcp_graft_subflows(newsk); 4225 mptcp_rps_record_subflows(msk); 4226 4227 /* Do late cleanup for the first subflow as necessary. Also 4228 * deal with bad peers not doing a complete shutdown. 4229 */ 4230 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 4231 if (unlikely(list_is_singular(&msk->conn_list))) 4232 mptcp_set_state(newsk, TCP_CLOSE); 4233 mptcp_close_ssk(newsk, msk->first, 4234 mptcp_subflow_ctx(msk->first)); 4235 } 4236 } else { 4237 tcpfallback: 4238 newsk->sk_kern_sock = arg->kern; 4239 lock_sock(newsk); 4240 __inet_accept(sock, newsock, newsk); 4241 /* we are being invoked after accepting a non-mp-capable 4242 * flow: sk is a tcp_sk, not an mptcp one. 4243 * 4244 * Hand the socket over to tcp so all further socket ops 4245 * bypass mptcp. 4246 */ 4247 WRITE_ONCE(newsock->sk->sk_socket->ops, 4248 mptcp_fallback_tcp_ops(newsock->sk)); 4249 } 4250 release_sock(newsk); 4251 4252 return 0; 4253 } 4254 4255 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4256 { 4257 struct sock *sk = (struct sock *)msk; 4258 4259 if (__mptcp_stream_is_writeable(sk, 1)) 4260 return EPOLLOUT | EPOLLWRNORM; 4261 4262 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4263 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4264 if (__mptcp_stream_is_writeable(sk, 1)) 4265 return EPOLLOUT | EPOLLWRNORM; 4266 4267 return 0; 4268 } 4269 4270 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4271 struct poll_table_struct *wait) 4272 { 4273 struct sock *sk = sock->sk; 4274 struct mptcp_sock *msk; 4275 __poll_t mask = 0; 4276 u8 shutdown; 4277 int state; 4278 4279 msk = mptcp_sk(sk); 4280 sock_poll_wait(file, sock, wait); 4281 4282 state = inet_sk_state_load(sk); 4283 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4284 if (state == TCP_LISTEN) { 4285 struct sock *ssk = READ_ONCE(msk->first); 4286 4287 if (WARN_ON_ONCE(!ssk)) 4288 return 0; 4289 4290 return inet_csk_listen_poll(ssk); 4291 } 4292 4293 shutdown = READ_ONCE(sk->sk_shutdown); 4294 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4295 mask |= EPOLLHUP; 4296 if (shutdown & RCV_SHUTDOWN) 4297 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4298 4299 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4300 mask |= mptcp_check_readable(sk); 4301 if (shutdown & SEND_SHUTDOWN) 4302 mask |= EPOLLOUT | EPOLLWRNORM; 4303 else 4304 mask |= mptcp_check_writeable(msk); 4305 } else if (state == TCP_SYN_SENT && 4306 inet_test_bit(DEFER_CONNECT, sk)) { 4307 /* cf tcp_poll() note about TFO */ 4308 mask |= EPOLLOUT | EPOLLWRNORM; 4309 } 4310 4311 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4312 smp_rmb(); 4313 if (READ_ONCE(sk->sk_err)) 4314 mask |= EPOLLERR; 4315 4316 return mask; 4317 } 4318 4319 static struct sk_buff *mptcp_recv_skb(struct sock *sk, u32 *off) 4320 { 4321 struct mptcp_sock *msk = mptcp_sk(sk); 4322 struct sk_buff *skb; 4323 u32 offset; 4324 4325 if (!list_empty(&msk->backlog_list)) 4326 mptcp_move_skbs(sk); 4327 4328 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 4329 offset = MPTCP_SKB_CB(skb)->offset; 4330 if (offset < skb->len) { 4331 *off = offset; 4332 return skb; 4333 } 4334 mptcp_eat_recv_skb(sk, skb); 4335 } 4336 return NULL; 4337 } 4338 4339 /* 4340 * Note: 4341 * - It is assumed that the socket was locked by the caller. 4342 */ 4343 static int __mptcp_read_sock(struct sock *sk, read_descriptor_t *desc, 4344 sk_read_actor_t recv_actor, bool noack) 4345 { 4346 struct mptcp_sock *msk = mptcp_sk(sk); 4347 struct sk_buff *skb; 4348 int copied = 0; 4349 u32 offset; 4350 4351 msk_owned_by_me(msk); 4352 4353 if (sk->sk_state == TCP_LISTEN) 4354 return -ENOTCONN; 4355 while ((skb = mptcp_recv_skb(sk, &offset)) != NULL) { 4356 u32 data_len = skb->len - offset; 4357 int count; 4358 u32 size; 4359 4360 size = min_t(size_t, data_len, INT_MAX); 4361 count = recv_actor(desc, skb, offset, size); 4362 if (count <= 0) { 4363 if (!copied) 4364 copied = count; 4365 break; 4366 } 4367 4368 copied += count; 4369 4370 msk->bytes_consumed += count; 4371 if (count < data_len) { 4372 MPTCP_SKB_CB(skb)->offset += count; 4373 MPTCP_SKB_CB(skb)->map_seq += count; 4374 break; 4375 } 4376 4377 mptcp_eat_recv_skb(sk, skb); 4378 } 4379 4380 if (noack) 4381 goto out; 4382 4383 mptcp_rcv_space_adjust(msk, copied); 4384 4385 if (copied > 0) { 4386 mptcp_recv_skb(sk, &offset); 4387 mptcp_cleanup_rbuf(msk, copied); 4388 } 4389 out: 4390 return copied; 4391 } 4392 4393 static int mptcp_read_sock(struct sock *sk, read_descriptor_t *desc, 4394 sk_read_actor_t recv_actor) 4395 { 4396 return __mptcp_read_sock(sk, desc, recv_actor, false); 4397 } 4398 4399 static int __mptcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 4400 { 4401 /* Store TCP splice context information in read_descriptor_t. */ 4402 read_descriptor_t rd_desc = { 4403 .arg.data = tss, 4404 .count = tss->len, 4405 }; 4406 4407 return mptcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 4408 } 4409 4410 /** 4411 * mptcp_splice_read - splice data from MPTCP socket to a pipe 4412 * @sock: socket to splice from 4413 * @ppos: position (not valid) 4414 * @pipe: pipe to splice to 4415 * @len: number of bytes to splice 4416 * @flags: splice modifier flags 4417 * 4418 * Description: 4419 * Will read pages from given socket and fill them into a pipe. 4420 * 4421 * Return: 4422 * Amount of bytes that have been spliced. 4423 * 4424 **/ 4425 static ssize_t mptcp_splice_read(struct socket *sock, loff_t *ppos, 4426 struct pipe_inode_info *pipe, size_t len, 4427 unsigned int flags) 4428 { 4429 struct tcp_splice_state tss = { 4430 .pipe = pipe, 4431 .len = len, 4432 .flags = flags, 4433 }; 4434 struct sock *sk = sock->sk; 4435 ssize_t spliced = 0; 4436 int ret = 0; 4437 long timeo; 4438 4439 /* 4440 * We can't seek on a socket input 4441 */ 4442 if (unlikely(*ppos)) 4443 return -ESPIPE; 4444 4445 lock_sock(sk); 4446 4447 mptcp_rps_record_subflows(mptcp_sk(sk)); 4448 4449 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 4450 while (tss.len) { 4451 ret = __mptcp_splice_read(sk, &tss); 4452 if (ret < 0) { 4453 break; 4454 } else if (!ret) { 4455 if (spliced) 4456 break; 4457 if (sock_flag(sk, SOCK_DONE)) 4458 break; 4459 if (sk->sk_err) { 4460 ret = sock_error(sk); 4461 break; 4462 } 4463 if (sk->sk_shutdown & RCV_SHUTDOWN) 4464 break; 4465 if (sk->sk_state == TCP_CLOSE) { 4466 /* 4467 * This occurs when user tries to read 4468 * from never connected socket. 4469 */ 4470 ret = -ENOTCONN; 4471 break; 4472 } 4473 if (!timeo) { 4474 ret = -EAGAIN; 4475 break; 4476 } 4477 /* if __mptcp_splice_read() got nothing while we have 4478 * an skb in receive queue, we do not want to loop. 4479 * This might happen with URG data. 4480 */ 4481 if (!skb_queue_empty(&sk->sk_receive_queue)) 4482 break; 4483 ret = sk_wait_data(sk, &timeo, NULL); 4484 if (ret < 0) 4485 break; 4486 if (signal_pending(current)) { 4487 ret = sock_intr_errno(timeo); 4488 break; 4489 } 4490 continue; 4491 } 4492 tss.len -= ret; 4493 spliced += ret; 4494 4495 if (!tss.len || !timeo) 4496 break; 4497 release_sock(sk); 4498 lock_sock(sk); 4499 4500 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 4501 (sk->sk_shutdown & RCV_SHUTDOWN) || 4502 signal_pending(current)) 4503 break; 4504 } 4505 4506 release_sock(sk); 4507 4508 if (spliced) 4509 return spliced; 4510 4511 return ret; 4512 } 4513 4514 static const struct proto_ops mptcp_stream_ops = { 4515 .family = PF_INET, 4516 .owner = THIS_MODULE, 4517 .release = inet_release, 4518 .bind = mptcp_bind, 4519 .connect = inet_stream_connect, 4520 .socketpair = sock_no_socketpair, 4521 .accept = mptcp_stream_accept, 4522 .getname = inet_getname, 4523 .poll = mptcp_poll, 4524 .ioctl = inet_ioctl, 4525 .gettstamp = sock_gettstamp, 4526 .listen = mptcp_listen, 4527 .shutdown = inet_shutdown, 4528 .setsockopt = sock_common_setsockopt, 4529 .getsockopt = sock_common_getsockopt, 4530 .sendmsg = inet_sendmsg, 4531 .recvmsg = inet_recvmsg, 4532 .mmap = sock_no_mmap, 4533 .set_rcvlowat = mptcp_set_rcvlowat, 4534 .read_sock = mptcp_read_sock, 4535 .splice_read = mptcp_splice_read, 4536 }; 4537 4538 static struct inet_protosw mptcp_protosw = { 4539 .type = SOCK_STREAM, 4540 .protocol = IPPROTO_MPTCP, 4541 .prot = &mptcp_prot, 4542 .ops = &mptcp_stream_ops, 4543 .flags = INET_PROTOSW_ICSK, 4544 }; 4545 4546 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4547 { 4548 struct mptcp_delegated_action *delegated; 4549 struct mptcp_subflow_context *subflow; 4550 int work_done = 0; 4551 4552 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4553 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4554 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4555 4556 bh_lock_sock_nested(ssk); 4557 if (!sock_owned_by_user(ssk)) { 4558 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4559 } else { 4560 /* tcp_release_cb_override already processed 4561 * the action or will do at next release_sock(). 4562 * In both case must dequeue the subflow here - on the same 4563 * CPU that scheduled it. 4564 */ 4565 smp_wmb(); 4566 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4567 } 4568 bh_unlock_sock(ssk); 4569 sock_put(ssk); 4570 4571 if (++work_done == budget) 4572 return budget; 4573 } 4574 4575 /* always provide a 0 'work_done' argument, so that napi_complete_done 4576 * will not try accessing the NULL napi->dev ptr 4577 */ 4578 napi_complete_done(napi, 0); 4579 return work_done; 4580 } 4581 4582 void __init mptcp_proto_init(void) 4583 { 4584 struct mptcp_delegated_action *delegated; 4585 int cpu; 4586 4587 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4588 4589 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4590 panic("Failed to allocate MPTCP pcpu counter\n"); 4591 4592 mptcp_napi_dev = alloc_netdev_dummy(0); 4593 if (!mptcp_napi_dev) 4594 panic("Failed to allocate MPTCP dummy netdev\n"); 4595 for_each_possible_cpu(cpu) { 4596 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4597 INIT_LIST_HEAD(&delegated->head); 4598 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4599 mptcp_napi_poll); 4600 napi_enable(&delegated->napi); 4601 } 4602 4603 mptcp_subflow_init(); 4604 mptcp_pm_init(); 4605 mptcp_sched_init(); 4606 mptcp_token_init(); 4607 4608 if (proto_register(&mptcp_prot, 1) != 0) 4609 panic("Failed to register MPTCP proto.\n"); 4610 4611 inet_register_protosw(&mptcp_protosw); 4612 4613 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4614 } 4615 4616 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4617 static const struct proto_ops mptcp_v6_stream_ops = { 4618 .family = PF_INET6, 4619 .owner = THIS_MODULE, 4620 .release = inet6_release, 4621 .bind = mptcp_bind, 4622 .connect = inet_stream_connect, 4623 .socketpair = sock_no_socketpair, 4624 .accept = mptcp_stream_accept, 4625 .getname = inet6_getname, 4626 .poll = mptcp_poll, 4627 .ioctl = inet6_ioctl, 4628 .gettstamp = sock_gettstamp, 4629 .listen = mptcp_listen, 4630 .shutdown = inet_shutdown, 4631 .setsockopt = sock_common_setsockopt, 4632 .getsockopt = sock_common_getsockopt, 4633 .sendmsg = inet6_sendmsg, 4634 .recvmsg = inet6_recvmsg, 4635 .mmap = sock_no_mmap, 4636 #ifdef CONFIG_COMPAT 4637 .compat_ioctl = inet6_compat_ioctl, 4638 #endif 4639 .set_rcvlowat = mptcp_set_rcvlowat, 4640 .read_sock = mptcp_read_sock, 4641 .splice_read = mptcp_splice_read, 4642 }; 4643 4644 static struct proto mptcp_v6_prot; 4645 4646 static struct inet_protosw mptcp_v6_protosw = { 4647 .type = SOCK_STREAM, 4648 .protocol = IPPROTO_MPTCP, 4649 .prot = &mptcp_v6_prot, 4650 .ops = &mptcp_v6_stream_ops, 4651 .flags = INET_PROTOSW_ICSK, 4652 }; 4653 4654 int __init mptcp_proto_v6_init(void) 4655 { 4656 int err; 4657 4658 mptcp_v6_prot = mptcp_prot; 4659 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4660 mptcp_v6_prot.slab = NULL; 4661 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4662 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4663 4664 err = proto_register(&mptcp_v6_prot, 1); 4665 if (err) 4666 return err; 4667 4668 err = inet6_register_protosw(&mptcp_v6_protosw); 4669 if (err) 4670 proto_unregister(&mptcp_v6_prot); 4671 4672 return err; 4673 } 4674 #endif 4675