xref: /linux/net/mptcp/protocol.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
50 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
51 };
52 static struct net_device *mptcp_napi_dev;
53 
54 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)55 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
56 {
57 	return READ_ONCE(msk->wnd_end);
58 }
59 
mptcp_fallback_tcp_ops(const struct sock * sk)60 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
61 {
62 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
63 	if (sk->sk_prot == &tcpv6_prot)
64 		return &inet6_stream_ops;
65 #endif
66 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
67 	return &inet_stream_ops;
68 }
69 
__mptcp_socket_create(struct mptcp_sock * msk)70 static int __mptcp_socket_create(struct mptcp_sock *msk)
71 {
72 	struct mptcp_subflow_context *subflow;
73 	struct sock *sk = (struct sock *)msk;
74 	struct socket *ssock;
75 	int err;
76 
77 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
78 	if (err)
79 		return err;
80 
81 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
82 	WRITE_ONCE(msk->first, ssock->sk);
83 	subflow = mptcp_subflow_ctx(ssock->sk);
84 	list_add(&subflow->node, &msk->conn_list);
85 	sock_hold(ssock->sk);
86 	subflow->request_mptcp = 1;
87 	subflow->subflow_id = msk->subflow_id++;
88 
89 	/* This is the first subflow, always with id 0 */
90 	WRITE_ONCE(subflow->local_id, 0);
91 	mptcp_sock_graft(msk->first, sk->sk_socket);
92 	iput(SOCK_INODE(ssock));
93 
94 	return 0;
95 }
96 
97 /* If the MPC handshake is not started, returns the first subflow,
98  * eventually allocating it.
99  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)100 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
101 {
102 	struct sock *sk = (struct sock *)msk;
103 	int ret;
104 
105 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
106 		return ERR_PTR(-EINVAL);
107 
108 	if (!msk->first) {
109 		ret = __mptcp_socket_create(msk);
110 		if (ret)
111 			return ERR_PTR(ret);
112 	}
113 
114 	return msk->first;
115 }
116 
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 	sk_drops_add(sk, skb);
120 	__kfree_skb(skb);
121 }
122 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)123 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
124 			       struct sk_buff *from)
125 {
126 	bool fragstolen;
127 	int delta;
128 
129 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
130 	    MPTCP_SKB_CB(from)->offset ||
131 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
132 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
133 		return false;
134 
135 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
136 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
137 		 to->len, MPTCP_SKB_CB(from)->end_seq);
138 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
139 
140 	/* note the fwd memory can reach a negative value after accounting
141 	 * for the delta, but the later skb free will restore a non
142 	 * negative one
143 	 */
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	kfree_skb_partial(from, fragstolen);
147 
148 	return true;
149 }
150 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)151 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
152 				   struct sk_buff *from)
153 {
154 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
155 		return false;
156 
157 	return mptcp_try_coalesce((struct sock *)msk, to, from);
158 }
159 
160 /* "inspired" by tcp_data_queue_ofo(), main differences:
161  * - use mptcp seqs
162  * - don't cope with sacks
163  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)164 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
165 {
166 	struct sock *sk = (struct sock *)msk;
167 	struct rb_node **p, *parent;
168 	u64 seq, end_seq, max_seq;
169 	struct sk_buff *skb1;
170 
171 	seq = MPTCP_SKB_CB(skb)->map_seq;
172 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
173 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
174 
175 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
176 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
177 	if (after64(end_seq, max_seq)) {
178 		/* out of window */
179 		mptcp_drop(sk, skb);
180 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
181 			 (unsigned long long)end_seq - (unsigned long)max_seq,
182 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
183 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
184 		return;
185 	}
186 
187 	p = &msk->out_of_order_queue.rb_node;
188 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
189 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
190 		rb_link_node(&skb->rbnode, NULL, p);
191 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
192 		msk->ooo_last_skb = skb;
193 		goto end;
194 	}
195 
196 	/* with 2 subflows, adding at end of ooo queue is quite likely
197 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
198 	 */
199 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
201 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
202 		return;
203 	}
204 
205 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
206 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
207 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
208 		parent = &msk->ooo_last_skb->rbnode;
209 		p = &parent->rb_right;
210 		goto insert;
211 	}
212 
213 	/* Find place to insert this segment. Handle overlaps on the way. */
214 	parent = NULL;
215 	while (*p) {
216 		parent = *p;
217 		skb1 = rb_to_skb(parent);
218 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
219 			p = &parent->rb_left;
220 			continue;
221 		}
222 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
223 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 				/* All the bits are present. Drop. */
225 				mptcp_drop(sk, skb);
226 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
227 				return;
228 			}
229 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
230 				/* partial overlap:
231 				 *     |     skb      |
232 				 *  |     skb1    |
233 				 * continue traversing
234 				 */
235 			} else {
236 				/* skb's seq == skb1's seq and skb covers skb1.
237 				 * Replace skb1 with skb.
238 				 */
239 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
240 						&msk->out_of_order_queue);
241 				mptcp_drop(sk, skb1);
242 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
243 				goto merge_right;
244 			}
245 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
246 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 			return;
248 		}
249 		p = &parent->rb_right;
250 	}
251 
252 insert:
253 	/* Insert segment into RB tree. */
254 	rb_link_node(&skb->rbnode, parent, p);
255 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
256 
257 merge_right:
258 	/* Remove other segments covered by skb. */
259 	while ((skb1 = skb_rb_next(skb)) != NULL) {
260 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
261 			break;
262 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
263 		mptcp_drop(sk, skb1);
264 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 	}
266 	/* If there is no skb after us, we are the last_skb ! */
267 	if (!skb1)
268 		msk->ooo_last_skb = skb;
269 
270 end:
271 	skb_condense(skb);
272 	skb_set_owner_r(skb, sk);
273 }
274 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)275 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
276 			     struct sk_buff *skb, unsigned int offset,
277 			     size_t copy_len)
278 {
279 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
280 	struct sock *sk = (struct sock *)msk;
281 	struct sk_buff *tail;
282 	bool has_rxtstamp;
283 
284 	__skb_unlink(skb, &ssk->sk_receive_queue);
285 
286 	skb_ext_reset(skb);
287 	skb_orphan(skb);
288 
289 	/* try to fetch required memory from subflow */
290 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
291 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
292 		goto drop;
293 	}
294 
295 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
296 
297 	/* the skb map_seq accounts for the skb offset:
298 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
299 	 * value
300 	 */
301 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
302 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
303 	MPTCP_SKB_CB(skb)->offset = offset;
304 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
305 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
306 
307 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
308 		/* in sequence */
309 		msk->bytes_received += copy_len;
310 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
311 		tail = skb_peek_tail(&sk->sk_receive_queue);
312 		if (tail && mptcp_try_coalesce(sk, tail, skb))
313 			return true;
314 
315 		skb_set_owner_r(skb, sk);
316 		__skb_queue_tail(&sk->sk_receive_queue, skb);
317 		return true;
318 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
319 		mptcp_data_queue_ofo(msk, skb);
320 		return false;
321 	}
322 
323 	/* old data, keep it simple and drop the whole pkt, sender
324 	 * will retransmit as needed, if needed.
325 	 */
326 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327 drop:
328 	mptcp_drop(sk, skb);
329 	return false;
330 }
331 
mptcp_stop_rtx_timer(struct sock * sk)332 static void mptcp_stop_rtx_timer(struct sock *sk)
333 {
334 	struct inet_connection_sock *icsk = inet_csk(sk);
335 
336 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
337 	mptcp_sk(sk)->timer_ival = 0;
338 }
339 
mptcp_close_wake_up(struct sock * sk)340 static void mptcp_close_wake_up(struct sock *sk)
341 {
342 	if (sock_flag(sk, SOCK_DEAD))
343 		return;
344 
345 	sk->sk_state_change(sk);
346 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
347 	    sk->sk_state == TCP_CLOSE)
348 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
349 	else
350 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
351 }
352 
353 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return ((1 << sk->sk_state) &
359 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
360 	       msk->write_seq == READ_ONCE(msk->snd_una);
361 }
362 
mptcp_check_data_fin_ack(struct sock * sk)363 static void mptcp_check_data_fin_ack(struct sock *sk)
364 {
365 	struct mptcp_sock *msk = mptcp_sk(sk);
366 
367 	/* Look for an acknowledged DATA_FIN */
368 	if (mptcp_pending_data_fin_ack(sk)) {
369 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
370 
371 		switch (sk->sk_state) {
372 		case TCP_FIN_WAIT1:
373 			mptcp_set_state(sk, TCP_FIN_WAIT2);
374 			break;
375 		case TCP_CLOSING:
376 		case TCP_LAST_ACK:
377 			mptcp_set_state(sk, TCP_CLOSE);
378 			break;
379 		}
380 
381 		mptcp_close_wake_up(sk);
382 	}
383 }
384 
385 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << inet_sk_state_load(sk)) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
mptcp_set_datafin_timeout(struct sock * sk)406 static void mptcp_set_datafin_timeout(struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 	u32 retransmits;
410 
411 	retransmits = min_t(u32, icsk->icsk_retransmits,
412 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
413 
414 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
415 }
416 
__mptcp_set_timeout(struct sock * sk,long tout)417 static void __mptcp_set_timeout(struct sock *sk, long tout)
418 {
419 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
420 }
421 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)422 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
423 {
424 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
425 
426 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
427 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
428 }
429 
mptcp_set_timeout(struct sock * sk)430 static void mptcp_set_timeout(struct sock *sk)
431 {
432 	struct mptcp_subflow_context *subflow;
433 	long tout = 0;
434 
435 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
436 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
437 	__mptcp_set_timeout(sk, tout);
438 }
439 
tcp_can_send_ack(const struct sock * ssk)440 static inline bool tcp_can_send_ack(const struct sock *ssk)
441 {
442 	return !((1 << inet_sk_state_load(ssk)) &
443 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
444 }
445 
__mptcp_subflow_send_ack(struct sock * ssk)446 void __mptcp_subflow_send_ack(struct sock *ssk)
447 {
448 	if (tcp_can_send_ack(ssk))
449 		tcp_send_ack(ssk);
450 }
451 
mptcp_subflow_send_ack(struct sock * ssk)452 static void mptcp_subflow_send_ack(struct sock *ssk)
453 {
454 	bool slow;
455 
456 	slow = lock_sock_fast(ssk);
457 	__mptcp_subflow_send_ack(ssk);
458 	unlock_sock_fast(ssk, slow);
459 }
460 
mptcp_send_ack(struct mptcp_sock * msk)461 static void mptcp_send_ack(struct mptcp_sock *msk)
462 {
463 	struct mptcp_subflow_context *subflow;
464 
465 	mptcp_for_each_subflow(msk, subflow)
466 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
467 }
468 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)469 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
470 {
471 	bool slow;
472 
473 	slow = lock_sock_fast(ssk);
474 	if (tcp_can_send_ack(ssk))
475 		tcp_cleanup_rbuf(ssk, copied);
476 	unlock_sock_fast(ssk, slow);
477 }
478 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)479 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
480 {
481 	const struct inet_connection_sock *icsk = inet_csk(ssk);
482 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
483 	const struct tcp_sock *tp = tcp_sk(ssk);
484 
485 	return (ack_pending & ICSK_ACK_SCHED) &&
486 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
487 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
488 		 (rx_empty && ack_pending &
489 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
490 }
491 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)492 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
493 {
494 	int old_space = READ_ONCE(msk->old_wspace);
495 	struct mptcp_subflow_context *subflow;
496 	struct sock *sk = (struct sock *)msk;
497 	int space =  __mptcp_space(sk);
498 	bool cleanup, rx_empty;
499 
500 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
501 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
502 
503 	mptcp_for_each_subflow(msk, subflow) {
504 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
505 
506 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
507 			mptcp_subflow_cleanup_rbuf(ssk, copied);
508 	}
509 }
510 
mptcp_check_data_fin(struct sock * sk)511 static bool mptcp_check_data_fin(struct sock *sk)
512 {
513 	struct mptcp_sock *msk = mptcp_sk(sk);
514 	u64 rcv_data_fin_seq;
515 	bool ret = false;
516 
517 	/* Need to ack a DATA_FIN received from a peer while this side
518 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
519 	 * msk->rcv_data_fin was set when parsing the incoming options
520 	 * at the subflow level and the msk lock was not held, so this
521 	 * is the first opportunity to act on the DATA_FIN and change
522 	 * the msk state.
523 	 *
524 	 * If we are caught up to the sequence number of the incoming
525 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
526 	 * not caught up, do nothing and let the recv code send DATA_ACK
527 	 * when catching up.
528 	 */
529 
530 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
531 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
532 		WRITE_ONCE(msk->rcv_data_fin, 0);
533 
534 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
535 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
536 
537 		switch (sk->sk_state) {
538 		case TCP_ESTABLISHED:
539 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
540 			break;
541 		case TCP_FIN_WAIT1:
542 			mptcp_set_state(sk, TCP_CLOSING);
543 			break;
544 		case TCP_FIN_WAIT2:
545 			mptcp_set_state(sk, TCP_CLOSE);
546 			break;
547 		default:
548 			/* Other states not expected */
549 			WARN_ON_ONCE(1);
550 			break;
551 		}
552 
553 		ret = true;
554 		if (!__mptcp_check_fallback(msk))
555 			mptcp_send_ack(msk);
556 		mptcp_close_wake_up(sk);
557 	}
558 	return ret;
559 }
560 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)561 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
562 {
563 	if (READ_ONCE(msk->allow_infinite_fallback)) {
564 		MPTCP_INC_STATS(sock_net(ssk),
565 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
566 		mptcp_do_fallback(ssk);
567 	} else {
568 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
569 		mptcp_subflow_reset(ssk);
570 	}
571 }
572 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)573 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
574 					   struct sock *ssk)
575 {
576 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
577 	struct sock *sk = (struct sock *)msk;
578 	bool more_data_avail;
579 	struct tcp_sock *tp;
580 	bool ret = false;
581 
582 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
583 	tp = tcp_sk(ssk);
584 	do {
585 		u32 map_remaining, offset;
586 		u32 seq = tp->copied_seq;
587 		struct sk_buff *skb;
588 		bool fin;
589 
590 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
591 			break;
592 
593 		/* try to move as much data as available */
594 		map_remaining = subflow->map_data_len -
595 				mptcp_subflow_get_map_offset(subflow);
596 
597 		skb = skb_peek(&ssk->sk_receive_queue);
598 		if (unlikely(!skb))
599 			break;
600 
601 		if (__mptcp_check_fallback(msk)) {
602 			/* Under fallback skbs have no MPTCP extension and TCP could
603 			 * collapse them between the dummy map creation and the
604 			 * current dequeue. Be sure to adjust the map size.
605 			 */
606 			map_remaining = skb->len;
607 			subflow->map_data_len = skb->len;
608 		}
609 
610 		offset = seq - TCP_SKB_CB(skb)->seq;
611 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
612 		if (fin)
613 			seq++;
614 
615 		if (offset < skb->len) {
616 			size_t len = skb->len - offset;
617 
618 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
619 			seq += len;
620 
621 			if (unlikely(map_remaining < len)) {
622 				DEBUG_NET_WARN_ON_ONCE(1);
623 				mptcp_dss_corruption(msk, ssk);
624 			}
625 		} else {
626 			if (unlikely(!fin)) {
627 				DEBUG_NET_WARN_ON_ONCE(1);
628 				mptcp_dss_corruption(msk, ssk);
629 			}
630 
631 			sk_eat_skb(ssk, skb);
632 		}
633 
634 		WRITE_ONCE(tp->copied_seq, seq);
635 		more_data_avail = mptcp_subflow_data_available(ssk);
636 
637 	} while (more_data_avail);
638 
639 	if (ret)
640 		msk->last_data_recv = tcp_jiffies32;
641 	return ret;
642 }
643 
__mptcp_ofo_queue(struct mptcp_sock * msk)644 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
645 {
646 	struct sock *sk = (struct sock *)msk;
647 	struct sk_buff *skb, *tail;
648 	bool moved = false;
649 	struct rb_node *p;
650 	u64 end_seq;
651 
652 	p = rb_first(&msk->out_of_order_queue);
653 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
654 	while (p) {
655 		skb = rb_to_skb(p);
656 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
657 			break;
658 
659 		p = rb_next(p);
660 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
661 
662 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
663 				      msk->ack_seq))) {
664 			mptcp_drop(sk, skb);
665 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
666 			continue;
667 		}
668 
669 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
670 		tail = skb_peek_tail(&sk->sk_receive_queue);
671 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
672 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
673 
674 			/* skip overlapping data, if any */
675 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
676 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
677 				 delta);
678 			MPTCP_SKB_CB(skb)->offset += delta;
679 			MPTCP_SKB_CB(skb)->map_seq += delta;
680 			__skb_queue_tail(&sk->sk_receive_queue, skb);
681 		}
682 		msk->bytes_received += end_seq - msk->ack_seq;
683 		WRITE_ONCE(msk->ack_seq, end_seq);
684 		moved = true;
685 	}
686 	return moved;
687 }
688 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)689 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
690 {
691 	int err = sock_error(ssk);
692 	int ssk_state;
693 
694 	if (!err)
695 		return false;
696 
697 	/* only propagate errors on fallen-back sockets or
698 	 * on MPC connect
699 	 */
700 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
701 		return false;
702 
703 	/* We need to propagate only transition to CLOSE state.
704 	 * Orphaned socket will see such state change via
705 	 * subflow_sched_work_if_closed() and that path will properly
706 	 * destroy the msk as needed.
707 	 */
708 	ssk_state = inet_sk_state_load(ssk);
709 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
710 		mptcp_set_state(sk, ssk_state);
711 	WRITE_ONCE(sk->sk_err, -err);
712 
713 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
714 	smp_wmb();
715 	sk_error_report(sk);
716 	return true;
717 }
718 
__mptcp_error_report(struct sock * sk)719 void __mptcp_error_report(struct sock *sk)
720 {
721 	struct mptcp_subflow_context *subflow;
722 	struct mptcp_sock *msk = mptcp_sk(sk);
723 
724 	mptcp_for_each_subflow(msk, subflow)
725 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
726 			break;
727 }
728 
729 /* In most cases we will be able to lock the mptcp socket.  If its already
730  * owned, we need to defer to the work queue to avoid ABBA deadlock.
731  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)732 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
733 {
734 	struct sock *sk = (struct sock *)msk;
735 	bool moved;
736 
737 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
738 	__mptcp_ofo_queue(msk);
739 	if (unlikely(ssk->sk_err)) {
740 		if (!sock_owned_by_user(sk))
741 			__mptcp_error_report(sk);
742 		else
743 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
744 	}
745 
746 	/* If the moves have caught up with the DATA_FIN sequence number
747 	 * it's time to ack the DATA_FIN and change socket state, but
748 	 * this is not a good place to change state. Let the workqueue
749 	 * do it.
750 	 */
751 	if (mptcp_pending_data_fin(sk, NULL))
752 		mptcp_schedule_work(sk);
753 	return moved;
754 }
755 
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)756 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
757 {
758 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
759 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
760 }
761 
__mptcp_data_ready(struct sock * sk,struct sock * ssk)762 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
763 {
764 	struct mptcp_sock *msk = mptcp_sk(sk);
765 
766 	__mptcp_rcvbuf_update(sk, ssk);
767 
768 	/* Wake-up the reader only for in-sequence data */
769 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
770 		sk->sk_data_ready(sk);
771 }
772 
mptcp_data_ready(struct sock * sk,struct sock * ssk)773 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
774 {
775 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
776 
777 	/* The peer can send data while we are shutting down this
778 	 * subflow at msk destruction time, but we must avoid enqueuing
779 	 * more data to the msk receive queue
780 	 */
781 	if (unlikely(subflow->disposable))
782 		return;
783 
784 	mptcp_data_lock(sk);
785 	if (!sock_owned_by_user(sk))
786 		__mptcp_data_ready(sk, ssk);
787 	else
788 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
789 	mptcp_data_unlock(sk);
790 }
791 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)792 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
793 {
794 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
795 	WRITE_ONCE(msk->allow_infinite_fallback, false);
796 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
797 }
798 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)799 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
800 {
801 	struct sock *sk = (struct sock *)msk;
802 
803 	if (sk->sk_state != TCP_ESTABLISHED)
804 		return false;
805 
806 	/* attach to msk socket only after we are sure we will deal with it
807 	 * at close time
808 	 */
809 	if (sk->sk_socket && !ssk->sk_socket)
810 		mptcp_sock_graft(ssk, sk->sk_socket);
811 
812 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
813 	mptcp_sockopt_sync_locked(msk, ssk);
814 	mptcp_subflow_joined(msk, ssk);
815 	mptcp_stop_tout_timer(sk);
816 	__mptcp_propagate_sndbuf(sk, ssk);
817 	return true;
818 }
819 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)820 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
821 {
822 	struct mptcp_subflow_context *tmp, *subflow;
823 	struct mptcp_sock *msk = mptcp_sk(sk);
824 
825 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
826 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
827 		bool slow = lock_sock_fast(ssk);
828 
829 		list_move_tail(&subflow->node, &msk->conn_list);
830 		if (!__mptcp_finish_join(msk, ssk))
831 			mptcp_subflow_reset(ssk);
832 		unlock_sock_fast(ssk, slow);
833 	}
834 }
835 
mptcp_rtx_timer_pending(struct sock * sk)836 static bool mptcp_rtx_timer_pending(struct sock *sk)
837 {
838 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
839 }
840 
mptcp_reset_rtx_timer(struct sock * sk)841 static void mptcp_reset_rtx_timer(struct sock *sk)
842 {
843 	struct inet_connection_sock *icsk = inet_csk(sk);
844 	unsigned long tout;
845 
846 	/* prevent rescheduling on close */
847 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
848 		return;
849 
850 	tout = mptcp_sk(sk)->timer_ival;
851 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
852 }
853 
mptcp_schedule_work(struct sock * sk)854 bool mptcp_schedule_work(struct sock *sk)
855 {
856 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
857 	    schedule_work(&mptcp_sk(sk)->work)) {
858 		/* each subflow already holds a reference to the sk, and the
859 		 * workqueue is invoked by a subflow, so sk can't go away here.
860 		 */
861 		sock_hold(sk);
862 		return true;
863 	}
864 	return false;
865 }
866 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)867 static bool mptcp_skb_can_collapse_to(u64 write_seq,
868 				      const struct sk_buff *skb,
869 				      const struct mptcp_ext *mpext)
870 {
871 	if (!tcp_skb_can_collapse_to(skb))
872 		return false;
873 
874 	/* can collapse only if MPTCP level sequence is in order and this
875 	 * mapping has not been xmitted yet
876 	 */
877 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
878 	       !mpext->frozen;
879 }
880 
881 /* we can append data to the given data frag if:
882  * - there is space available in the backing page_frag
883  * - the data frag tail matches the current page_frag free offset
884  * - the data frag end sequence number matches the current write seq
885  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)886 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
887 				       const struct page_frag *pfrag,
888 				       const struct mptcp_data_frag *df)
889 {
890 	return df && pfrag->page == df->page &&
891 		pfrag->size - pfrag->offset > 0 &&
892 		pfrag->offset == (df->offset + df->data_len) &&
893 		df->data_seq + df->data_len == msk->write_seq;
894 }
895 
dfrag_uncharge(struct sock * sk,int len)896 static void dfrag_uncharge(struct sock *sk, int len)
897 {
898 	sk_mem_uncharge(sk, len);
899 	sk_wmem_queued_add(sk, -len);
900 }
901 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)902 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
903 {
904 	int len = dfrag->data_len + dfrag->overhead;
905 
906 	list_del(&dfrag->list);
907 	dfrag_uncharge(sk, len);
908 	put_page(dfrag->page);
909 }
910 
911 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)912 static void __mptcp_clean_una(struct sock *sk)
913 {
914 	struct mptcp_sock *msk = mptcp_sk(sk);
915 	struct mptcp_data_frag *dtmp, *dfrag;
916 	u64 snd_una;
917 
918 	snd_una = msk->snd_una;
919 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
920 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
921 			break;
922 
923 		if (unlikely(dfrag == msk->first_pending)) {
924 			/* in recovery mode can see ack after the current snd head */
925 			if (WARN_ON_ONCE(!msk->recovery))
926 				break;
927 
928 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
929 		}
930 
931 		dfrag_clear(sk, dfrag);
932 	}
933 
934 	dfrag = mptcp_rtx_head(sk);
935 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
936 		u64 delta = snd_una - dfrag->data_seq;
937 
938 		/* prevent wrap around in recovery mode */
939 		if (unlikely(delta > dfrag->already_sent)) {
940 			if (WARN_ON_ONCE(!msk->recovery))
941 				goto out;
942 			if (WARN_ON_ONCE(delta > dfrag->data_len))
943 				goto out;
944 			dfrag->already_sent += delta - dfrag->already_sent;
945 		}
946 
947 		dfrag->data_seq += delta;
948 		dfrag->offset += delta;
949 		dfrag->data_len -= delta;
950 		dfrag->already_sent -= delta;
951 
952 		dfrag_uncharge(sk, delta);
953 	}
954 
955 	/* all retransmitted data acked, recovery completed */
956 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
957 		msk->recovery = false;
958 
959 out:
960 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
961 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
962 			mptcp_stop_rtx_timer(sk);
963 	} else {
964 		mptcp_reset_rtx_timer(sk);
965 	}
966 
967 	if (mptcp_pending_data_fin_ack(sk))
968 		mptcp_schedule_work(sk);
969 }
970 
__mptcp_clean_una_wakeup(struct sock * sk)971 static void __mptcp_clean_una_wakeup(struct sock *sk)
972 {
973 	lockdep_assert_held_once(&sk->sk_lock.slock);
974 
975 	__mptcp_clean_una(sk);
976 	mptcp_write_space(sk);
977 }
978 
mptcp_clean_una_wakeup(struct sock * sk)979 static void mptcp_clean_una_wakeup(struct sock *sk)
980 {
981 	mptcp_data_lock(sk);
982 	__mptcp_clean_una_wakeup(sk);
983 	mptcp_data_unlock(sk);
984 }
985 
mptcp_enter_memory_pressure(struct sock * sk)986 static void mptcp_enter_memory_pressure(struct sock *sk)
987 {
988 	struct mptcp_subflow_context *subflow;
989 	struct mptcp_sock *msk = mptcp_sk(sk);
990 	bool first = true;
991 
992 	mptcp_for_each_subflow(msk, subflow) {
993 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
994 
995 		if (first)
996 			tcp_enter_memory_pressure(ssk);
997 		sk_stream_moderate_sndbuf(ssk);
998 
999 		first = false;
1000 	}
1001 	__mptcp_sync_sndbuf(sk);
1002 }
1003 
1004 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1005  * data
1006  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1007 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1008 {
1009 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1010 					pfrag, sk->sk_allocation)))
1011 		return true;
1012 
1013 	mptcp_enter_memory_pressure(sk);
1014 	return false;
1015 }
1016 
1017 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1018 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1019 		      int orig_offset)
1020 {
1021 	int offset = ALIGN(orig_offset, sizeof(long));
1022 	struct mptcp_data_frag *dfrag;
1023 
1024 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1025 	dfrag->data_len = 0;
1026 	dfrag->data_seq = msk->write_seq;
1027 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1028 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1029 	dfrag->already_sent = 0;
1030 	dfrag->page = pfrag->page;
1031 
1032 	return dfrag;
1033 }
1034 
1035 struct mptcp_sendmsg_info {
1036 	int mss_now;
1037 	int size_goal;
1038 	u16 limit;
1039 	u16 sent;
1040 	unsigned int flags;
1041 	bool data_lock_held;
1042 };
1043 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1044 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1045 				    u64 data_seq, int avail_size)
1046 {
1047 	u64 window_end = mptcp_wnd_end(msk);
1048 	u64 mptcp_snd_wnd;
1049 
1050 	if (__mptcp_check_fallback(msk))
1051 		return avail_size;
1052 
1053 	mptcp_snd_wnd = window_end - data_seq;
1054 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1055 
1056 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1057 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1058 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1059 	}
1060 
1061 	return avail_size;
1062 }
1063 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1064 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1065 {
1066 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1067 
1068 	if (!mpext)
1069 		return false;
1070 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1071 	return true;
1072 }
1073 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1074 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1075 {
1076 	struct sk_buff *skb;
1077 
1078 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1079 	if (likely(skb)) {
1080 		if (likely(__mptcp_add_ext(skb, gfp))) {
1081 			skb_reserve(skb, MAX_TCP_HEADER);
1082 			skb->ip_summed = CHECKSUM_PARTIAL;
1083 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1084 			return skb;
1085 		}
1086 		__kfree_skb(skb);
1087 	} else {
1088 		mptcp_enter_memory_pressure(sk);
1089 	}
1090 	return NULL;
1091 }
1092 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1093 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1094 {
1095 	struct sk_buff *skb;
1096 
1097 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1098 	if (!skb)
1099 		return NULL;
1100 
1101 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1102 		tcp_skb_entail(ssk, skb);
1103 		return skb;
1104 	}
1105 	tcp_skb_tsorted_anchor_cleanup(skb);
1106 	kfree_skb(skb);
1107 	return NULL;
1108 }
1109 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1110 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1111 {
1112 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1113 
1114 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1115 }
1116 
1117 /* note: this always recompute the csum on the whole skb, even
1118  * if we just appended a single frag. More status info needed
1119  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1120 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1121 {
1122 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1123 	__wsum csum = ~csum_unfold(mpext->csum);
1124 	int offset = skb->len - added;
1125 
1126 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1127 }
1128 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1129 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1130 				      struct sock *ssk,
1131 				      struct mptcp_ext *mpext)
1132 {
1133 	if (!mpext)
1134 		return;
1135 
1136 	mpext->infinite_map = 1;
1137 	mpext->data_len = 0;
1138 
1139 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1140 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1141 	pr_fallback(msk);
1142 	mptcp_do_fallback(ssk);
1143 }
1144 
1145 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1146 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1147 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1148 			      struct mptcp_data_frag *dfrag,
1149 			      struct mptcp_sendmsg_info *info)
1150 {
1151 	u64 data_seq = dfrag->data_seq + info->sent;
1152 	int offset = dfrag->offset + info->sent;
1153 	struct mptcp_sock *msk = mptcp_sk(sk);
1154 	bool zero_window_probe = false;
1155 	struct mptcp_ext *mpext = NULL;
1156 	bool can_coalesce = false;
1157 	bool reuse_skb = true;
1158 	struct sk_buff *skb;
1159 	size_t copy;
1160 	int i;
1161 
1162 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1163 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1164 
1165 	if (WARN_ON_ONCE(info->sent > info->limit ||
1166 			 info->limit > dfrag->data_len))
1167 		return 0;
1168 
1169 	if (unlikely(!__tcp_can_send(ssk)))
1170 		return -EAGAIN;
1171 
1172 	/* compute send limit */
1173 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1174 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1175 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1176 	copy = info->size_goal;
1177 
1178 	skb = tcp_write_queue_tail(ssk);
1179 	if (skb && copy > skb->len) {
1180 		/* Limit the write to the size available in the
1181 		 * current skb, if any, so that we create at most a new skb.
1182 		 * Explicitly tells TCP internals to avoid collapsing on later
1183 		 * queue management operation, to avoid breaking the ext <->
1184 		 * SSN association set here
1185 		 */
1186 		mpext = mptcp_get_ext(skb);
1187 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1188 			TCP_SKB_CB(skb)->eor = 1;
1189 			tcp_mark_push(tcp_sk(ssk), skb);
1190 			goto alloc_skb;
1191 		}
1192 
1193 		i = skb_shinfo(skb)->nr_frags;
1194 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1195 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1196 			tcp_mark_push(tcp_sk(ssk), skb);
1197 			goto alloc_skb;
1198 		}
1199 
1200 		copy -= skb->len;
1201 	} else {
1202 alloc_skb:
1203 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1204 		if (!skb)
1205 			return -ENOMEM;
1206 
1207 		i = skb_shinfo(skb)->nr_frags;
1208 		reuse_skb = false;
1209 		mpext = mptcp_get_ext(skb);
1210 	}
1211 
1212 	/* Zero window and all data acked? Probe. */
1213 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1214 	if (copy == 0) {
1215 		u64 snd_una = READ_ONCE(msk->snd_una);
1216 
1217 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1218 			tcp_remove_empty_skb(ssk);
1219 			return 0;
1220 		}
1221 
1222 		zero_window_probe = true;
1223 		data_seq = snd_una - 1;
1224 		copy = 1;
1225 	}
1226 
1227 	copy = min_t(size_t, copy, info->limit - info->sent);
1228 	if (!sk_wmem_schedule(ssk, copy)) {
1229 		tcp_remove_empty_skb(ssk);
1230 		return -ENOMEM;
1231 	}
1232 
1233 	if (can_coalesce) {
1234 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1235 	} else {
1236 		get_page(dfrag->page);
1237 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1238 	}
1239 
1240 	skb->len += copy;
1241 	skb->data_len += copy;
1242 	skb->truesize += copy;
1243 	sk_wmem_queued_add(ssk, copy);
1244 	sk_mem_charge(ssk, copy);
1245 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1246 	TCP_SKB_CB(skb)->end_seq += copy;
1247 	tcp_skb_pcount_set(skb, 0);
1248 
1249 	/* on skb reuse we just need to update the DSS len */
1250 	if (reuse_skb) {
1251 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1252 		mpext->data_len += copy;
1253 		goto out;
1254 	}
1255 
1256 	memset(mpext, 0, sizeof(*mpext));
1257 	mpext->data_seq = data_seq;
1258 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1259 	mpext->data_len = copy;
1260 	mpext->use_map = 1;
1261 	mpext->dsn64 = 1;
1262 
1263 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1264 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1265 		 mpext->dsn64);
1266 
1267 	if (zero_window_probe) {
1268 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1269 		mpext->frozen = 1;
1270 		if (READ_ONCE(msk->csum_enabled))
1271 			mptcp_update_data_checksum(skb, copy);
1272 		tcp_push_pending_frames(ssk);
1273 		return 0;
1274 	}
1275 out:
1276 	if (READ_ONCE(msk->csum_enabled))
1277 		mptcp_update_data_checksum(skb, copy);
1278 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1279 		mptcp_update_infinite_map(msk, ssk, mpext);
1280 	trace_mptcp_sendmsg_frag(mpext);
1281 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1282 	return copy;
1283 }
1284 
1285 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1286 					 sizeof(struct tcphdr) - \
1287 					 MAX_TCP_OPTION_SPACE - \
1288 					 sizeof(struct ipv6hdr) - \
1289 					 sizeof(struct frag_hdr))
1290 
1291 struct subflow_send_info {
1292 	struct sock *ssk;
1293 	u64 linger_time;
1294 };
1295 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1296 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1297 {
1298 	if (!subflow->stale)
1299 		return;
1300 
1301 	subflow->stale = 0;
1302 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1303 }
1304 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1305 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1306 {
1307 	if (unlikely(subflow->stale)) {
1308 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1309 
1310 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1311 			return false;
1312 
1313 		mptcp_subflow_set_active(subflow);
1314 	}
1315 	return __mptcp_subflow_active(subflow);
1316 }
1317 
1318 #define SSK_MODE_ACTIVE	0
1319 #define SSK_MODE_BACKUP	1
1320 #define SSK_MODE_MAX	2
1321 
1322 /* implement the mptcp packet scheduler;
1323  * returns the subflow that will transmit the next DSS
1324  * additionally updates the rtx timeout
1325  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1326 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1327 {
1328 	struct subflow_send_info send_info[SSK_MODE_MAX];
1329 	struct mptcp_subflow_context *subflow;
1330 	struct sock *sk = (struct sock *)msk;
1331 	u32 pace, burst, wmem;
1332 	int i, nr_active = 0;
1333 	struct sock *ssk;
1334 	u64 linger_time;
1335 	long tout = 0;
1336 
1337 	/* pick the subflow with the lower wmem/wspace ratio */
1338 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1339 		send_info[i].ssk = NULL;
1340 		send_info[i].linger_time = -1;
1341 	}
1342 
1343 	mptcp_for_each_subflow(msk, subflow) {
1344 		bool backup = subflow->backup || subflow->request_bkup;
1345 
1346 		trace_mptcp_subflow_get_send(subflow);
1347 		ssk =  mptcp_subflow_tcp_sock(subflow);
1348 		if (!mptcp_subflow_active(subflow))
1349 			continue;
1350 
1351 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1352 		nr_active += !backup;
1353 		pace = subflow->avg_pacing_rate;
1354 		if (unlikely(!pace)) {
1355 			/* init pacing rate from socket */
1356 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1357 			pace = subflow->avg_pacing_rate;
1358 			if (!pace)
1359 				continue;
1360 		}
1361 
1362 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1363 		if (linger_time < send_info[backup].linger_time) {
1364 			send_info[backup].ssk = ssk;
1365 			send_info[backup].linger_time = linger_time;
1366 		}
1367 	}
1368 	__mptcp_set_timeout(sk, tout);
1369 
1370 	/* pick the best backup if no other subflow is active */
1371 	if (!nr_active)
1372 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1373 
1374 	/* According to the blest algorithm, to avoid HoL blocking for the
1375 	 * faster flow, we need to:
1376 	 * - estimate the faster flow linger time
1377 	 * - use the above to estimate the amount of byte transferred
1378 	 *   by the faster flow
1379 	 * - check that the amount of queued data is greter than the above,
1380 	 *   otherwise do not use the picked, slower, subflow
1381 	 * We select the subflow with the shorter estimated time to flush
1382 	 * the queued mem, which basically ensure the above. We just need
1383 	 * to check that subflow has a non empty cwin.
1384 	 */
1385 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1386 	if (!ssk || !sk_stream_memory_free(ssk))
1387 		return NULL;
1388 
1389 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1390 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1391 	if (!burst)
1392 		return ssk;
1393 
1394 	subflow = mptcp_subflow_ctx(ssk);
1395 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1396 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1397 					   burst + wmem);
1398 	msk->snd_burst = burst;
1399 	return ssk;
1400 }
1401 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1402 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1403 {
1404 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1405 	release_sock(ssk);
1406 }
1407 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1408 static void mptcp_update_post_push(struct mptcp_sock *msk,
1409 				   struct mptcp_data_frag *dfrag,
1410 				   u32 sent)
1411 {
1412 	u64 snd_nxt_new = dfrag->data_seq;
1413 
1414 	dfrag->already_sent += sent;
1415 
1416 	msk->snd_burst -= sent;
1417 
1418 	snd_nxt_new += dfrag->already_sent;
1419 
1420 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1421 	 * is recovering after a failover. In that event, this re-sends
1422 	 * old segments.
1423 	 *
1424 	 * Thus compute snd_nxt_new candidate based on
1425 	 * the dfrag->data_seq that was sent and the data
1426 	 * that has been handed to the subflow for transmission
1427 	 * and skip update in case it was old dfrag.
1428 	 */
1429 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1430 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1431 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1432 	}
1433 }
1434 
mptcp_check_and_set_pending(struct sock * sk)1435 void mptcp_check_and_set_pending(struct sock *sk)
1436 {
1437 	if (mptcp_send_head(sk)) {
1438 		mptcp_data_lock(sk);
1439 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1440 		mptcp_data_unlock(sk);
1441 	}
1442 }
1443 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1444 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1445 				  struct mptcp_sendmsg_info *info)
1446 {
1447 	struct mptcp_sock *msk = mptcp_sk(sk);
1448 	struct mptcp_data_frag *dfrag;
1449 	int len, copied = 0, err = 0;
1450 
1451 	while ((dfrag = mptcp_send_head(sk))) {
1452 		info->sent = dfrag->already_sent;
1453 		info->limit = dfrag->data_len;
1454 		len = dfrag->data_len - dfrag->already_sent;
1455 		while (len > 0) {
1456 			int ret = 0;
1457 
1458 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1459 			if (ret <= 0) {
1460 				err = copied ? : ret;
1461 				goto out;
1462 			}
1463 
1464 			info->sent += ret;
1465 			copied += ret;
1466 			len -= ret;
1467 
1468 			mptcp_update_post_push(msk, dfrag, ret);
1469 		}
1470 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1471 
1472 		if (msk->snd_burst <= 0 ||
1473 		    !sk_stream_memory_free(ssk) ||
1474 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1475 			err = copied;
1476 			goto out;
1477 		}
1478 		mptcp_set_timeout(sk);
1479 	}
1480 	err = copied;
1481 
1482 out:
1483 	if (err > 0)
1484 		msk->last_data_sent = tcp_jiffies32;
1485 	return err;
1486 }
1487 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1488 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1489 {
1490 	struct sock *prev_ssk = NULL, *ssk = NULL;
1491 	struct mptcp_sock *msk = mptcp_sk(sk);
1492 	struct mptcp_sendmsg_info info = {
1493 				.flags = flags,
1494 	};
1495 	bool do_check_data_fin = false;
1496 	int push_count = 1;
1497 
1498 	while (mptcp_send_head(sk) && (push_count > 0)) {
1499 		struct mptcp_subflow_context *subflow;
1500 		int ret = 0;
1501 
1502 		if (mptcp_sched_get_send(msk))
1503 			break;
1504 
1505 		push_count = 0;
1506 
1507 		mptcp_for_each_subflow(msk, subflow) {
1508 			if (READ_ONCE(subflow->scheduled)) {
1509 				mptcp_subflow_set_scheduled(subflow, false);
1510 
1511 				prev_ssk = ssk;
1512 				ssk = mptcp_subflow_tcp_sock(subflow);
1513 				if (ssk != prev_ssk) {
1514 					/* First check. If the ssk has changed since
1515 					 * the last round, release prev_ssk
1516 					 */
1517 					if (prev_ssk)
1518 						mptcp_push_release(prev_ssk, &info);
1519 
1520 					/* Need to lock the new subflow only if different
1521 					 * from the previous one, otherwise we are still
1522 					 * helding the relevant lock
1523 					 */
1524 					lock_sock(ssk);
1525 				}
1526 
1527 				push_count++;
1528 
1529 				ret = __subflow_push_pending(sk, ssk, &info);
1530 				if (ret <= 0) {
1531 					if (ret != -EAGAIN ||
1532 					    (1 << ssk->sk_state) &
1533 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1534 						push_count--;
1535 					continue;
1536 				}
1537 				do_check_data_fin = true;
1538 			}
1539 		}
1540 	}
1541 
1542 	/* at this point we held the socket lock for the last subflow we used */
1543 	if (ssk)
1544 		mptcp_push_release(ssk, &info);
1545 
1546 	/* ensure the rtx timer is running */
1547 	if (!mptcp_rtx_timer_pending(sk))
1548 		mptcp_reset_rtx_timer(sk);
1549 	if (do_check_data_fin)
1550 		mptcp_check_send_data_fin(sk);
1551 }
1552 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1553 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1554 {
1555 	struct mptcp_sock *msk = mptcp_sk(sk);
1556 	struct mptcp_sendmsg_info info = {
1557 		.data_lock_held = true,
1558 	};
1559 	bool keep_pushing = true;
1560 	struct sock *xmit_ssk;
1561 	int copied = 0;
1562 
1563 	info.flags = 0;
1564 	while (mptcp_send_head(sk) && keep_pushing) {
1565 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1566 		int ret = 0;
1567 
1568 		/* check for a different subflow usage only after
1569 		 * spooling the first chunk of data
1570 		 */
1571 		if (first) {
1572 			mptcp_subflow_set_scheduled(subflow, false);
1573 			ret = __subflow_push_pending(sk, ssk, &info);
1574 			first = false;
1575 			if (ret <= 0)
1576 				break;
1577 			copied += ret;
1578 			continue;
1579 		}
1580 
1581 		if (mptcp_sched_get_send(msk))
1582 			goto out;
1583 
1584 		if (READ_ONCE(subflow->scheduled)) {
1585 			mptcp_subflow_set_scheduled(subflow, false);
1586 			ret = __subflow_push_pending(sk, ssk, &info);
1587 			if (ret <= 0)
1588 				keep_pushing = false;
1589 			copied += ret;
1590 		}
1591 
1592 		mptcp_for_each_subflow(msk, subflow) {
1593 			if (READ_ONCE(subflow->scheduled)) {
1594 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1595 				if (xmit_ssk != ssk) {
1596 					mptcp_subflow_delegate(subflow,
1597 							       MPTCP_DELEGATE_SEND);
1598 					keep_pushing = false;
1599 				}
1600 			}
1601 		}
1602 	}
1603 
1604 out:
1605 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1606 	 * not going to flush it via release_sock()
1607 	 */
1608 	if (copied) {
1609 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1610 			 info.size_goal);
1611 		if (!mptcp_rtx_timer_pending(sk))
1612 			mptcp_reset_rtx_timer(sk);
1613 
1614 		if (msk->snd_data_fin_enable &&
1615 		    msk->snd_nxt + 1 == msk->write_seq)
1616 			mptcp_schedule_work(sk);
1617 	}
1618 }
1619 
1620 static int mptcp_disconnect(struct sock *sk, int flags);
1621 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1622 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1623 				  size_t len, int *copied_syn)
1624 {
1625 	unsigned int saved_flags = msg->msg_flags;
1626 	struct mptcp_sock *msk = mptcp_sk(sk);
1627 	struct sock *ssk;
1628 	int ret;
1629 
1630 	/* on flags based fastopen the mptcp is supposed to create the
1631 	 * first subflow right now. Otherwise we are in the defer_connect
1632 	 * path, and the first subflow must be already present.
1633 	 * Since the defer_connect flag is cleared after the first succsful
1634 	 * fastopen attempt, no need to check for additional subflow status.
1635 	 */
1636 	if (msg->msg_flags & MSG_FASTOPEN) {
1637 		ssk = __mptcp_nmpc_sk(msk);
1638 		if (IS_ERR(ssk))
1639 			return PTR_ERR(ssk);
1640 	}
1641 	if (!msk->first)
1642 		return -EINVAL;
1643 
1644 	ssk = msk->first;
1645 
1646 	lock_sock(ssk);
1647 	msg->msg_flags |= MSG_DONTWAIT;
1648 	msk->fastopening = 1;
1649 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1650 	msk->fastopening = 0;
1651 	msg->msg_flags = saved_flags;
1652 	release_sock(ssk);
1653 
1654 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1655 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1656 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1657 					    msg->msg_namelen, msg->msg_flags, 1);
1658 
1659 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1660 		 * case of any error, except timeout or signal
1661 		 */
1662 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1663 			*copied_syn = 0;
1664 	} else if (ret && ret != -EINPROGRESS) {
1665 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1666 		 * __inet_stream_connect() can fail, due to looking check,
1667 		 * see mptcp_disconnect().
1668 		 * Attempt it again outside the problematic scope.
1669 		 */
1670 		if (!mptcp_disconnect(sk, 0)) {
1671 			sk->sk_disconnects++;
1672 			sk->sk_socket->state = SS_UNCONNECTED;
1673 		}
1674 	}
1675 	inet_clear_bit(DEFER_CONNECT, sk);
1676 
1677 	return ret;
1678 }
1679 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1680 static int do_copy_data_nocache(struct sock *sk, int copy,
1681 				struct iov_iter *from, char *to)
1682 {
1683 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1684 		if (!copy_from_iter_full_nocache(to, copy, from))
1685 			return -EFAULT;
1686 	} else if (!copy_from_iter_full(to, copy, from)) {
1687 		return -EFAULT;
1688 	}
1689 	return 0;
1690 }
1691 
1692 /* open-code sk_stream_memory_free() plus sent limit computation to
1693  * avoid indirect calls in fast-path.
1694  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1695  * annotations.
1696  */
mptcp_send_limit(const struct sock * sk)1697 static u32 mptcp_send_limit(const struct sock *sk)
1698 {
1699 	const struct mptcp_sock *msk = mptcp_sk(sk);
1700 	u32 limit, not_sent;
1701 
1702 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1703 		return 0;
1704 
1705 	limit = mptcp_notsent_lowat(sk);
1706 	if (limit == UINT_MAX)
1707 		return UINT_MAX;
1708 
1709 	not_sent = msk->write_seq - msk->snd_nxt;
1710 	if (not_sent >= limit)
1711 		return 0;
1712 
1713 	return limit - not_sent;
1714 }
1715 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1716 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1717 {
1718 	struct mptcp_sock *msk = mptcp_sk(sk);
1719 	struct page_frag *pfrag;
1720 	size_t copied = 0;
1721 	int ret = 0;
1722 	long timeo;
1723 
1724 	/* silently ignore everything else */
1725 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1726 
1727 	lock_sock(sk);
1728 
1729 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1730 		     msg->msg_flags & MSG_FASTOPEN)) {
1731 		int copied_syn = 0;
1732 
1733 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1734 		copied += copied_syn;
1735 		if (ret == -EINPROGRESS && copied_syn > 0)
1736 			goto out;
1737 		else if (ret)
1738 			goto do_error;
1739 	}
1740 
1741 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1742 
1743 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1744 		ret = sk_stream_wait_connect(sk, &timeo);
1745 		if (ret)
1746 			goto do_error;
1747 	}
1748 
1749 	ret = -EPIPE;
1750 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1751 		goto do_error;
1752 
1753 	pfrag = sk_page_frag(sk);
1754 
1755 	while (msg_data_left(msg)) {
1756 		int total_ts, frag_truesize = 0;
1757 		struct mptcp_data_frag *dfrag;
1758 		bool dfrag_collapsed;
1759 		size_t psize, offset;
1760 		u32 copy_limit;
1761 
1762 		/* ensure fitting the notsent_lowat() constraint */
1763 		copy_limit = mptcp_send_limit(sk);
1764 		if (!copy_limit)
1765 			goto wait_for_memory;
1766 
1767 		/* reuse tail pfrag, if possible, or carve a new one from the
1768 		 * page allocator
1769 		 */
1770 		dfrag = mptcp_pending_tail(sk);
1771 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1772 		if (!dfrag_collapsed) {
1773 			if (!mptcp_page_frag_refill(sk, pfrag))
1774 				goto wait_for_memory;
1775 
1776 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1777 			frag_truesize = dfrag->overhead;
1778 		}
1779 
1780 		/* we do not bound vs wspace, to allow a single packet.
1781 		 * memory accounting will prevent execessive memory usage
1782 		 * anyway
1783 		 */
1784 		offset = dfrag->offset + dfrag->data_len;
1785 		psize = pfrag->size - offset;
1786 		psize = min_t(size_t, psize, msg_data_left(msg));
1787 		psize = min_t(size_t, psize, copy_limit);
1788 		total_ts = psize + frag_truesize;
1789 
1790 		if (!sk_wmem_schedule(sk, total_ts))
1791 			goto wait_for_memory;
1792 
1793 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1794 					   page_address(dfrag->page) + offset);
1795 		if (ret)
1796 			goto do_error;
1797 
1798 		/* data successfully copied into the write queue */
1799 		sk_forward_alloc_add(sk, -total_ts);
1800 		copied += psize;
1801 		dfrag->data_len += psize;
1802 		frag_truesize += psize;
1803 		pfrag->offset += frag_truesize;
1804 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1805 
1806 		/* charge data on mptcp pending queue to the msk socket
1807 		 * Note: we charge such data both to sk and ssk
1808 		 */
1809 		sk_wmem_queued_add(sk, frag_truesize);
1810 		if (!dfrag_collapsed) {
1811 			get_page(dfrag->page);
1812 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1813 			if (!msk->first_pending)
1814 				WRITE_ONCE(msk->first_pending, dfrag);
1815 		}
1816 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1817 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1818 			 !dfrag_collapsed);
1819 
1820 		continue;
1821 
1822 wait_for_memory:
1823 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1824 		__mptcp_push_pending(sk, msg->msg_flags);
1825 		ret = sk_stream_wait_memory(sk, &timeo);
1826 		if (ret)
1827 			goto do_error;
1828 	}
1829 
1830 	if (copied)
1831 		__mptcp_push_pending(sk, msg->msg_flags);
1832 
1833 out:
1834 	release_sock(sk);
1835 	return copied;
1836 
1837 do_error:
1838 	if (copied)
1839 		goto out;
1840 
1841 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1842 	goto out;
1843 }
1844 
1845 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1846 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1847 static int __mptcp_recvmsg_mskq(struct sock *sk,
1848 				struct msghdr *msg,
1849 				size_t len, int flags,
1850 				struct scm_timestamping_internal *tss,
1851 				int *cmsg_flags)
1852 {
1853 	struct mptcp_sock *msk = mptcp_sk(sk);
1854 	struct sk_buff *skb, *tmp;
1855 	int copied = 0;
1856 
1857 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1858 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1859 		u32 data_len = skb->len - offset;
1860 		u32 count = min_t(size_t, len - copied, data_len);
1861 		int err;
1862 
1863 		if (!(flags & MSG_TRUNC)) {
1864 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1865 			if (unlikely(err < 0)) {
1866 				if (!copied)
1867 					return err;
1868 				break;
1869 			}
1870 		}
1871 
1872 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1873 			tcp_update_recv_tstamps(skb, tss);
1874 			*cmsg_flags |= MPTCP_CMSG_TS;
1875 		}
1876 
1877 		copied += count;
1878 
1879 		if (count < data_len) {
1880 			if (!(flags & MSG_PEEK)) {
1881 				MPTCP_SKB_CB(skb)->offset += count;
1882 				MPTCP_SKB_CB(skb)->map_seq += count;
1883 				msk->bytes_consumed += count;
1884 			}
1885 			break;
1886 		}
1887 
1888 		if (!(flags & MSG_PEEK)) {
1889 			/* avoid the indirect call, we know the destructor is sock_wfree */
1890 			skb->destructor = NULL;
1891 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1892 			sk_mem_uncharge(sk, skb->truesize);
1893 			__skb_unlink(skb, &sk->sk_receive_queue);
1894 			__kfree_skb(skb);
1895 			msk->bytes_consumed += count;
1896 		}
1897 
1898 		if (copied >= len)
1899 			break;
1900 	}
1901 
1902 	mptcp_rcv_space_adjust(msk, copied);
1903 	return copied;
1904 }
1905 
1906 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1907  *
1908  * Only difference: Use highest rtt estimate of the subflows in use.
1909  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1910 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1911 {
1912 	struct mptcp_subflow_context *subflow;
1913 	struct sock *sk = (struct sock *)msk;
1914 	u8 scaling_ratio = U8_MAX;
1915 	u32 time, advmss = 1;
1916 	u64 rtt_us, mstamp;
1917 
1918 	msk_owned_by_me(msk);
1919 
1920 	if (copied <= 0)
1921 		return;
1922 
1923 	if (!msk->rcvspace_init)
1924 		mptcp_rcv_space_init(msk, msk->first);
1925 
1926 	msk->rcvq_space.copied += copied;
1927 
1928 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1929 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1930 
1931 	rtt_us = msk->rcvq_space.rtt_us;
1932 	if (rtt_us && time < (rtt_us >> 3))
1933 		return;
1934 
1935 	rtt_us = 0;
1936 	mptcp_for_each_subflow(msk, subflow) {
1937 		const struct tcp_sock *tp;
1938 		u64 sf_rtt_us;
1939 		u32 sf_advmss;
1940 
1941 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1942 
1943 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1944 		sf_advmss = READ_ONCE(tp->advmss);
1945 
1946 		rtt_us = max(sf_rtt_us, rtt_us);
1947 		advmss = max(sf_advmss, advmss);
1948 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1949 	}
1950 
1951 	msk->rcvq_space.rtt_us = rtt_us;
1952 	msk->scaling_ratio = scaling_ratio;
1953 	if (time < (rtt_us >> 3) || rtt_us == 0)
1954 		return;
1955 
1956 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1957 		goto new_measure;
1958 
1959 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1960 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1961 		u64 rcvwin, grow;
1962 		int rcvbuf;
1963 
1964 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1965 
1966 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1967 
1968 		do_div(grow, msk->rcvq_space.space);
1969 		rcvwin += (grow << 1);
1970 
1971 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1972 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1973 
1974 		if (rcvbuf > sk->sk_rcvbuf) {
1975 			u32 window_clamp;
1976 
1977 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
1978 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1979 
1980 			/* Make subflows follow along.  If we do not do this, we
1981 			 * get drops at subflow level if skbs can't be moved to
1982 			 * the mptcp rx queue fast enough (announced rcv_win can
1983 			 * exceed ssk->sk_rcvbuf).
1984 			 */
1985 			mptcp_for_each_subflow(msk, subflow) {
1986 				struct sock *ssk;
1987 				bool slow;
1988 
1989 				ssk = mptcp_subflow_tcp_sock(subflow);
1990 				slow = lock_sock_fast(ssk);
1991 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1992 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
1993 				if (tcp_can_send_ack(ssk))
1994 					tcp_cleanup_rbuf(ssk, 1);
1995 				unlock_sock_fast(ssk, slow);
1996 			}
1997 		}
1998 	}
1999 
2000 	msk->rcvq_space.space = msk->rcvq_space.copied;
2001 new_measure:
2002 	msk->rcvq_space.copied = 0;
2003 	msk->rcvq_space.time = mstamp;
2004 }
2005 
2006 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2007 __mptcp_first_ready_from(struct mptcp_sock *msk,
2008 			 struct mptcp_subflow_context *subflow)
2009 {
2010 	struct mptcp_subflow_context *start_subflow = subflow;
2011 
2012 	while (!READ_ONCE(subflow->data_avail)) {
2013 		subflow = mptcp_next_subflow(msk, subflow);
2014 		if (subflow == start_subflow)
2015 			return NULL;
2016 	}
2017 	return subflow;
2018 }
2019 
__mptcp_move_skbs(struct sock * sk)2020 static bool __mptcp_move_skbs(struct sock *sk)
2021 {
2022 	struct mptcp_subflow_context *subflow;
2023 	struct mptcp_sock *msk = mptcp_sk(sk);
2024 	bool ret = false;
2025 
2026 	if (list_empty(&msk->conn_list))
2027 		return false;
2028 
2029 	/* verify we can move any data from the subflow, eventually updating */
2030 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2031 		mptcp_for_each_subflow(msk, subflow)
2032 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2033 
2034 	subflow = list_first_entry(&msk->conn_list,
2035 				   struct mptcp_subflow_context, node);
2036 	for (;;) {
2037 		struct sock *ssk;
2038 		bool slowpath;
2039 
2040 		/*
2041 		 * As an optimization avoid traversing the subflows list
2042 		 * and ev. acquiring the subflow socket lock before baling out
2043 		 */
2044 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2045 			break;
2046 
2047 		subflow = __mptcp_first_ready_from(msk, subflow);
2048 		if (!subflow)
2049 			break;
2050 
2051 		ssk = mptcp_subflow_tcp_sock(subflow);
2052 		slowpath = lock_sock_fast(ssk);
2053 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2054 		if (unlikely(ssk->sk_err))
2055 			__mptcp_error_report(sk);
2056 		unlock_sock_fast(ssk, slowpath);
2057 
2058 		subflow = mptcp_next_subflow(msk, subflow);
2059 	}
2060 
2061 	__mptcp_ofo_queue(msk);
2062 	if (ret)
2063 		mptcp_check_data_fin((struct sock *)msk);
2064 	return ret;
2065 }
2066 
mptcp_inq_hint(const struct sock * sk)2067 static unsigned int mptcp_inq_hint(const struct sock *sk)
2068 {
2069 	const struct mptcp_sock *msk = mptcp_sk(sk);
2070 	const struct sk_buff *skb;
2071 
2072 	skb = skb_peek(&sk->sk_receive_queue);
2073 	if (skb) {
2074 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2075 
2076 		if (hint_val >= INT_MAX)
2077 			return INT_MAX;
2078 
2079 		return (unsigned int)hint_val;
2080 	}
2081 
2082 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2083 		return 1;
2084 
2085 	return 0;
2086 }
2087 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2088 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2089 			 int flags, int *addr_len)
2090 {
2091 	struct mptcp_sock *msk = mptcp_sk(sk);
2092 	struct scm_timestamping_internal tss;
2093 	int copied = 0, cmsg_flags = 0;
2094 	int target;
2095 	long timeo;
2096 
2097 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2098 	if (unlikely(flags & MSG_ERRQUEUE))
2099 		return inet_recv_error(sk, msg, len, addr_len);
2100 
2101 	lock_sock(sk);
2102 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2103 		copied = -ENOTCONN;
2104 		goto out_err;
2105 	}
2106 
2107 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2108 
2109 	len = min_t(size_t, len, INT_MAX);
2110 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2111 
2112 	if (unlikely(msk->recvmsg_inq))
2113 		cmsg_flags = MPTCP_CMSG_INQ;
2114 
2115 	while (copied < len) {
2116 		int err, bytes_read;
2117 
2118 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2119 		if (unlikely(bytes_read < 0)) {
2120 			if (!copied)
2121 				copied = bytes_read;
2122 			goto out_err;
2123 		}
2124 
2125 		copied += bytes_read;
2126 
2127 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2128 			continue;
2129 
2130 		/* only the MPTCP socket status is relevant here. The exit
2131 		 * conditions mirror closely tcp_recvmsg()
2132 		 */
2133 		if (copied >= target)
2134 			break;
2135 
2136 		if (copied) {
2137 			if (sk->sk_err ||
2138 			    sk->sk_state == TCP_CLOSE ||
2139 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2140 			    !timeo ||
2141 			    signal_pending(current))
2142 				break;
2143 		} else {
2144 			if (sk->sk_err) {
2145 				copied = sock_error(sk);
2146 				break;
2147 			}
2148 
2149 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2150 				/* race breaker: the shutdown could be after the
2151 				 * previous receive queue check
2152 				 */
2153 				if (__mptcp_move_skbs(sk))
2154 					continue;
2155 				break;
2156 			}
2157 
2158 			if (sk->sk_state == TCP_CLOSE) {
2159 				copied = -ENOTCONN;
2160 				break;
2161 			}
2162 
2163 			if (!timeo) {
2164 				copied = -EAGAIN;
2165 				break;
2166 			}
2167 
2168 			if (signal_pending(current)) {
2169 				copied = sock_intr_errno(timeo);
2170 				break;
2171 			}
2172 		}
2173 
2174 		pr_debug("block timeout %ld\n", timeo);
2175 		mptcp_cleanup_rbuf(msk, copied);
2176 		err = sk_wait_data(sk, &timeo, NULL);
2177 		if (err < 0) {
2178 			err = copied ? : err;
2179 			goto out_err;
2180 		}
2181 	}
2182 
2183 	mptcp_cleanup_rbuf(msk, copied);
2184 
2185 out_err:
2186 	if (cmsg_flags && copied >= 0) {
2187 		if (cmsg_flags & MPTCP_CMSG_TS)
2188 			tcp_recv_timestamp(msg, sk, &tss);
2189 
2190 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2191 			unsigned int inq = mptcp_inq_hint(sk);
2192 
2193 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2194 		}
2195 	}
2196 
2197 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2198 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2199 
2200 	release_sock(sk);
2201 	return copied;
2202 }
2203 
mptcp_retransmit_timer(struct timer_list * t)2204 static void mptcp_retransmit_timer(struct timer_list *t)
2205 {
2206 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2207 							       icsk_retransmit_timer);
2208 	struct sock *sk = &icsk->icsk_inet.sk;
2209 	struct mptcp_sock *msk = mptcp_sk(sk);
2210 
2211 	bh_lock_sock(sk);
2212 	if (!sock_owned_by_user(sk)) {
2213 		/* we need a process context to retransmit */
2214 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2215 			mptcp_schedule_work(sk);
2216 	} else {
2217 		/* delegate our work to tcp_release_cb() */
2218 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2219 	}
2220 	bh_unlock_sock(sk);
2221 	sock_put(sk);
2222 }
2223 
mptcp_tout_timer(struct timer_list * t)2224 static void mptcp_tout_timer(struct timer_list *t)
2225 {
2226 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2227 
2228 	mptcp_schedule_work(sk);
2229 	sock_put(sk);
2230 }
2231 
2232 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2233  * level.
2234  *
2235  * A backup subflow is returned only if that is the only kind available.
2236  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2237 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2238 {
2239 	struct sock *backup = NULL, *pick = NULL;
2240 	struct mptcp_subflow_context *subflow;
2241 	int min_stale_count = INT_MAX;
2242 
2243 	mptcp_for_each_subflow(msk, subflow) {
2244 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2245 
2246 		if (!__mptcp_subflow_active(subflow))
2247 			continue;
2248 
2249 		/* still data outstanding at TCP level? skip this */
2250 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2251 			mptcp_pm_subflow_chk_stale(msk, ssk);
2252 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2253 			continue;
2254 		}
2255 
2256 		if (subflow->backup || subflow->request_bkup) {
2257 			if (!backup)
2258 				backup = ssk;
2259 			continue;
2260 		}
2261 
2262 		if (!pick)
2263 			pick = ssk;
2264 	}
2265 
2266 	if (pick)
2267 		return pick;
2268 
2269 	/* use backup only if there are no progresses anywhere */
2270 	return min_stale_count > 1 ? backup : NULL;
2271 }
2272 
__mptcp_retransmit_pending_data(struct sock * sk)2273 bool __mptcp_retransmit_pending_data(struct sock *sk)
2274 {
2275 	struct mptcp_data_frag *cur, *rtx_head;
2276 	struct mptcp_sock *msk = mptcp_sk(sk);
2277 
2278 	if (__mptcp_check_fallback(msk))
2279 		return false;
2280 
2281 	/* the closing socket has some data untransmitted and/or unacked:
2282 	 * some data in the mptcp rtx queue has not really xmitted yet.
2283 	 * keep it simple and re-inject the whole mptcp level rtx queue
2284 	 */
2285 	mptcp_data_lock(sk);
2286 	__mptcp_clean_una_wakeup(sk);
2287 	rtx_head = mptcp_rtx_head(sk);
2288 	if (!rtx_head) {
2289 		mptcp_data_unlock(sk);
2290 		return false;
2291 	}
2292 
2293 	msk->recovery_snd_nxt = msk->snd_nxt;
2294 	msk->recovery = true;
2295 	mptcp_data_unlock(sk);
2296 
2297 	msk->first_pending = rtx_head;
2298 	msk->snd_burst = 0;
2299 
2300 	/* be sure to clear the "sent status" on all re-injected fragments */
2301 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2302 		if (!cur->already_sent)
2303 			break;
2304 		cur->already_sent = 0;
2305 	}
2306 
2307 	return true;
2308 }
2309 
2310 /* flags for __mptcp_close_ssk() */
2311 #define MPTCP_CF_PUSH		BIT(1)
2312 #define MPTCP_CF_FASTCLOSE	BIT(2)
2313 
2314 /* be sure to send a reset only if the caller asked for it, also
2315  * clean completely the subflow status when the subflow reaches
2316  * TCP_CLOSE state
2317  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2318 static void __mptcp_subflow_disconnect(struct sock *ssk,
2319 				       struct mptcp_subflow_context *subflow,
2320 				       unsigned int flags)
2321 {
2322 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2323 	    (flags & MPTCP_CF_FASTCLOSE)) {
2324 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2325 		 * disconnect should never fail
2326 		 */
2327 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2328 		mptcp_subflow_ctx_reset(subflow);
2329 	} else {
2330 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2331 	}
2332 }
2333 
2334 /* subflow sockets can be either outgoing (connect) or incoming
2335  * (accept).
2336  *
2337  * Outgoing subflows use in-kernel sockets.
2338  * Incoming subflows do not have their own 'struct socket' allocated,
2339  * so we need to use tcp_close() after detaching them from the mptcp
2340  * parent socket.
2341  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2342 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2343 			      struct mptcp_subflow_context *subflow,
2344 			      unsigned int flags)
2345 {
2346 	struct mptcp_sock *msk = mptcp_sk(sk);
2347 	bool dispose_it, need_push = false;
2348 
2349 	/* If the first subflow moved to a close state before accept, e.g. due
2350 	 * to an incoming reset or listener shutdown, the subflow socket is
2351 	 * already deleted by inet_child_forget() and the mptcp socket can't
2352 	 * survive too.
2353 	 */
2354 	if (msk->in_accept_queue && msk->first == ssk &&
2355 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2356 		/* ensure later check in mptcp_worker() will dispose the msk */
2357 		sock_set_flag(sk, SOCK_DEAD);
2358 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2359 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2360 		mptcp_subflow_drop_ctx(ssk);
2361 		goto out_release;
2362 	}
2363 
2364 	dispose_it = msk->free_first || ssk != msk->first;
2365 	if (dispose_it)
2366 		list_del(&subflow->node);
2367 
2368 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2369 
2370 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2371 		/* be sure to force the tcp_close path
2372 		 * to generate the egress reset
2373 		 */
2374 		ssk->sk_lingertime = 0;
2375 		sock_set_flag(ssk, SOCK_LINGER);
2376 		subflow->send_fastclose = 1;
2377 	}
2378 
2379 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2380 	if (!dispose_it) {
2381 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2382 		release_sock(ssk);
2383 
2384 		goto out;
2385 	}
2386 
2387 	subflow->disposable = 1;
2388 
2389 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2390 	 * the ssk has been already destroyed, we just need to release the
2391 	 * reference owned by msk;
2392 	 */
2393 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2394 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2395 		kfree_rcu(subflow, rcu);
2396 	} else {
2397 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2398 		__tcp_close(ssk, 0);
2399 
2400 		/* close acquired an extra ref */
2401 		__sock_put(ssk);
2402 	}
2403 
2404 out_release:
2405 	__mptcp_subflow_error_report(sk, ssk);
2406 	release_sock(ssk);
2407 
2408 	sock_put(ssk);
2409 
2410 	if (ssk == msk->first)
2411 		WRITE_ONCE(msk->first, NULL);
2412 
2413 out:
2414 	__mptcp_sync_sndbuf(sk);
2415 	if (need_push)
2416 		__mptcp_push_pending(sk, 0);
2417 
2418 	/* Catch every 'all subflows closed' scenario, including peers silently
2419 	 * closing them, e.g. due to timeout.
2420 	 * For established sockets, allow an additional timeout before closing,
2421 	 * as the protocol can still create more subflows.
2422 	 */
2423 	if (list_is_singular(&msk->conn_list) && msk->first &&
2424 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2425 		if (sk->sk_state != TCP_ESTABLISHED ||
2426 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2427 			mptcp_set_state(sk, TCP_CLOSE);
2428 			mptcp_close_wake_up(sk);
2429 		} else {
2430 			mptcp_start_tout_timer(sk);
2431 		}
2432 	}
2433 }
2434 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2435 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2436 		     struct mptcp_subflow_context *subflow)
2437 {
2438 	/* The first subflow can already be closed and still in the list */
2439 	if (subflow->close_event_done)
2440 		return;
2441 
2442 	subflow->close_event_done = true;
2443 
2444 	if (sk->sk_state == TCP_ESTABLISHED)
2445 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2446 
2447 	/* subflow aborted before reaching the fully_established status
2448 	 * attempt the creation of the next subflow
2449 	 */
2450 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2451 
2452 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2453 }
2454 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2455 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2456 {
2457 	return 0;
2458 }
2459 
__mptcp_close_subflow(struct sock * sk)2460 static void __mptcp_close_subflow(struct sock *sk)
2461 {
2462 	struct mptcp_subflow_context *subflow, *tmp;
2463 	struct mptcp_sock *msk = mptcp_sk(sk);
2464 
2465 	might_sleep();
2466 
2467 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2468 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2469 		int ssk_state = inet_sk_state_load(ssk);
2470 
2471 		if (ssk_state != TCP_CLOSE &&
2472 		    (ssk_state != TCP_CLOSE_WAIT ||
2473 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2474 			continue;
2475 
2476 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2477 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2478 			continue;
2479 
2480 		mptcp_close_ssk(sk, ssk, subflow);
2481 	}
2482 
2483 }
2484 
mptcp_close_tout_expired(const struct sock * sk)2485 static bool mptcp_close_tout_expired(const struct sock *sk)
2486 {
2487 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2488 	    sk->sk_state == TCP_CLOSE)
2489 		return false;
2490 
2491 	return time_after32(tcp_jiffies32,
2492 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2493 }
2494 
mptcp_check_fastclose(struct mptcp_sock * msk)2495 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2496 {
2497 	struct mptcp_subflow_context *subflow, *tmp;
2498 	struct sock *sk = (struct sock *)msk;
2499 
2500 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2501 		return;
2502 
2503 	mptcp_token_destroy(msk);
2504 
2505 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2506 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2507 		bool slow;
2508 
2509 		slow = lock_sock_fast(tcp_sk);
2510 		if (tcp_sk->sk_state != TCP_CLOSE) {
2511 			mptcp_send_active_reset_reason(tcp_sk);
2512 			tcp_set_state(tcp_sk, TCP_CLOSE);
2513 		}
2514 		unlock_sock_fast(tcp_sk, slow);
2515 	}
2516 
2517 	/* Mirror the tcp_reset() error propagation */
2518 	switch (sk->sk_state) {
2519 	case TCP_SYN_SENT:
2520 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2521 		break;
2522 	case TCP_CLOSE_WAIT:
2523 		WRITE_ONCE(sk->sk_err, EPIPE);
2524 		break;
2525 	case TCP_CLOSE:
2526 		return;
2527 	default:
2528 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2529 	}
2530 
2531 	mptcp_set_state(sk, TCP_CLOSE);
2532 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2533 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2534 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2535 
2536 	/* the calling mptcp_worker will properly destroy the socket */
2537 	if (sock_flag(sk, SOCK_DEAD))
2538 		return;
2539 
2540 	sk->sk_state_change(sk);
2541 	sk_error_report(sk);
2542 }
2543 
__mptcp_retrans(struct sock * sk)2544 static void __mptcp_retrans(struct sock *sk)
2545 {
2546 	struct mptcp_sock *msk = mptcp_sk(sk);
2547 	struct mptcp_subflow_context *subflow;
2548 	struct mptcp_sendmsg_info info = {};
2549 	struct mptcp_data_frag *dfrag;
2550 	struct sock *ssk;
2551 	int ret, err;
2552 	u16 len = 0;
2553 
2554 	mptcp_clean_una_wakeup(sk);
2555 
2556 	/* first check ssk: need to kick "stale" logic */
2557 	err = mptcp_sched_get_retrans(msk);
2558 	dfrag = mptcp_rtx_head(sk);
2559 	if (!dfrag) {
2560 		if (mptcp_data_fin_enabled(msk)) {
2561 			struct inet_connection_sock *icsk = inet_csk(sk);
2562 
2563 			icsk->icsk_retransmits++;
2564 			mptcp_set_datafin_timeout(sk);
2565 			mptcp_send_ack(msk);
2566 
2567 			goto reset_timer;
2568 		}
2569 
2570 		if (!mptcp_send_head(sk))
2571 			return;
2572 
2573 		goto reset_timer;
2574 	}
2575 
2576 	if (err)
2577 		goto reset_timer;
2578 
2579 	mptcp_for_each_subflow(msk, subflow) {
2580 		if (READ_ONCE(subflow->scheduled)) {
2581 			u16 copied = 0;
2582 
2583 			mptcp_subflow_set_scheduled(subflow, false);
2584 
2585 			ssk = mptcp_subflow_tcp_sock(subflow);
2586 
2587 			lock_sock(ssk);
2588 
2589 			/* limit retransmission to the bytes already sent on some subflows */
2590 			info.sent = 0;
2591 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2592 								    dfrag->already_sent;
2593 			while (info.sent < info.limit) {
2594 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2595 				if (ret <= 0)
2596 					break;
2597 
2598 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2599 				copied += ret;
2600 				info.sent += ret;
2601 			}
2602 			if (copied) {
2603 				len = max(copied, len);
2604 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2605 					 info.size_goal);
2606 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2607 			}
2608 
2609 			release_sock(ssk);
2610 		}
2611 	}
2612 
2613 	msk->bytes_retrans += len;
2614 	dfrag->already_sent = max(dfrag->already_sent, len);
2615 
2616 reset_timer:
2617 	mptcp_check_and_set_pending(sk);
2618 
2619 	if (!mptcp_rtx_timer_pending(sk))
2620 		mptcp_reset_rtx_timer(sk);
2621 }
2622 
2623 /* schedule the timeout timer for the relevant event: either close timeout
2624  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2625  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2626 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2627 {
2628 	struct sock *sk = (struct sock *)msk;
2629 	unsigned long timeout, close_timeout;
2630 
2631 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2632 		return;
2633 
2634 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2635 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2636 
2637 	/* the close timeout takes precedence on the fail one, and here at least one of
2638 	 * them is active
2639 	 */
2640 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2641 
2642 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2643 }
2644 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2645 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2646 {
2647 	struct sock *ssk = msk->first;
2648 	bool slow;
2649 
2650 	if (!ssk)
2651 		return;
2652 
2653 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2654 
2655 	slow = lock_sock_fast(ssk);
2656 	mptcp_subflow_reset(ssk);
2657 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2658 	unlock_sock_fast(ssk, slow);
2659 }
2660 
mptcp_do_fastclose(struct sock * sk)2661 static void mptcp_do_fastclose(struct sock *sk)
2662 {
2663 	struct mptcp_subflow_context *subflow, *tmp;
2664 	struct mptcp_sock *msk = mptcp_sk(sk);
2665 
2666 	mptcp_set_state(sk, TCP_CLOSE);
2667 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2668 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2669 				  subflow, MPTCP_CF_FASTCLOSE);
2670 }
2671 
mptcp_worker(struct work_struct * work)2672 static void mptcp_worker(struct work_struct *work)
2673 {
2674 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2675 	struct sock *sk = (struct sock *)msk;
2676 	unsigned long fail_tout;
2677 	int state;
2678 
2679 	lock_sock(sk);
2680 	state = sk->sk_state;
2681 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2682 		goto unlock;
2683 
2684 	mptcp_check_fastclose(msk);
2685 
2686 	mptcp_pm_worker(msk);
2687 
2688 	mptcp_check_send_data_fin(sk);
2689 	mptcp_check_data_fin_ack(sk);
2690 	mptcp_check_data_fin(sk);
2691 
2692 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2693 		__mptcp_close_subflow(sk);
2694 
2695 	if (mptcp_close_tout_expired(sk)) {
2696 		mptcp_do_fastclose(sk);
2697 		mptcp_close_wake_up(sk);
2698 	}
2699 
2700 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2701 		__mptcp_destroy_sock(sk);
2702 		goto unlock;
2703 	}
2704 
2705 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2706 		__mptcp_retrans(sk);
2707 
2708 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2709 	if (fail_tout && time_after(jiffies, fail_tout))
2710 		mptcp_mp_fail_no_response(msk);
2711 
2712 unlock:
2713 	release_sock(sk);
2714 	sock_put(sk);
2715 }
2716 
__mptcp_init_sock(struct sock * sk)2717 static void __mptcp_init_sock(struct sock *sk)
2718 {
2719 	struct mptcp_sock *msk = mptcp_sk(sk);
2720 
2721 	INIT_LIST_HEAD(&msk->conn_list);
2722 	INIT_LIST_HEAD(&msk->join_list);
2723 	INIT_LIST_HEAD(&msk->rtx_queue);
2724 	INIT_WORK(&msk->work, mptcp_worker);
2725 	msk->out_of_order_queue = RB_ROOT;
2726 	msk->first_pending = NULL;
2727 	msk->timer_ival = TCP_RTO_MIN;
2728 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2729 
2730 	WRITE_ONCE(msk->first, NULL);
2731 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2732 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2733 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2734 	msk->recovery = false;
2735 	msk->subflow_id = 1;
2736 	msk->last_data_sent = tcp_jiffies32;
2737 	msk->last_data_recv = tcp_jiffies32;
2738 	msk->last_ack_recv = tcp_jiffies32;
2739 
2740 	mptcp_pm_data_init(msk);
2741 
2742 	/* re-use the csk retrans timer for MPTCP-level retrans */
2743 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2744 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2745 }
2746 
mptcp_ca_reset(struct sock * sk)2747 static void mptcp_ca_reset(struct sock *sk)
2748 {
2749 	struct inet_connection_sock *icsk = inet_csk(sk);
2750 
2751 	tcp_assign_congestion_control(sk);
2752 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2753 		sizeof(mptcp_sk(sk)->ca_name));
2754 
2755 	/* no need to keep a reference to the ops, the name will suffice */
2756 	tcp_cleanup_congestion_control(sk);
2757 	icsk->icsk_ca_ops = NULL;
2758 }
2759 
mptcp_init_sock(struct sock * sk)2760 static int mptcp_init_sock(struct sock *sk)
2761 {
2762 	struct net *net = sock_net(sk);
2763 	int ret;
2764 
2765 	__mptcp_init_sock(sk);
2766 
2767 	if (!mptcp_is_enabled(net))
2768 		return -ENOPROTOOPT;
2769 
2770 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2771 		return -ENOMEM;
2772 
2773 	rcu_read_lock();
2774 	ret = mptcp_init_sched(mptcp_sk(sk),
2775 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2776 	rcu_read_unlock();
2777 	if (ret)
2778 		return ret;
2779 
2780 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2781 
2782 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2783 	 * propagate the correct value
2784 	 */
2785 	mptcp_ca_reset(sk);
2786 
2787 	sk_sockets_allocated_inc(sk);
2788 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2789 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2790 
2791 	return 0;
2792 }
2793 
__mptcp_clear_xmit(struct sock * sk)2794 static void __mptcp_clear_xmit(struct sock *sk)
2795 {
2796 	struct mptcp_sock *msk = mptcp_sk(sk);
2797 	struct mptcp_data_frag *dtmp, *dfrag;
2798 
2799 	WRITE_ONCE(msk->first_pending, NULL);
2800 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2801 		dfrag_clear(sk, dfrag);
2802 }
2803 
mptcp_cancel_work(struct sock * sk)2804 void mptcp_cancel_work(struct sock *sk)
2805 {
2806 	struct mptcp_sock *msk = mptcp_sk(sk);
2807 
2808 	if (cancel_work_sync(&msk->work))
2809 		__sock_put(sk);
2810 }
2811 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2812 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2813 {
2814 	lock_sock(ssk);
2815 
2816 	switch (ssk->sk_state) {
2817 	case TCP_LISTEN:
2818 		if (!(how & RCV_SHUTDOWN))
2819 			break;
2820 		fallthrough;
2821 	case TCP_SYN_SENT:
2822 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2823 		break;
2824 	default:
2825 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2826 			pr_debug("Fallback\n");
2827 			ssk->sk_shutdown |= how;
2828 			tcp_shutdown(ssk, how);
2829 
2830 			/* simulate the data_fin ack reception to let the state
2831 			 * machine move forward
2832 			 */
2833 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2834 			mptcp_schedule_work(sk);
2835 		} else {
2836 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2837 			tcp_send_ack(ssk);
2838 			if (!mptcp_rtx_timer_pending(sk))
2839 				mptcp_reset_rtx_timer(sk);
2840 		}
2841 		break;
2842 	}
2843 
2844 	release_sock(ssk);
2845 }
2846 
mptcp_set_state(struct sock * sk,int state)2847 void mptcp_set_state(struct sock *sk, int state)
2848 {
2849 	int oldstate = sk->sk_state;
2850 
2851 	switch (state) {
2852 	case TCP_ESTABLISHED:
2853 		if (oldstate != TCP_ESTABLISHED)
2854 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2855 		break;
2856 	case TCP_CLOSE_WAIT:
2857 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2858 		 * MPTCP "accepted" sockets will be created later on. So no
2859 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2860 		 */
2861 		break;
2862 	default:
2863 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2864 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2865 	}
2866 
2867 	inet_sk_state_store(sk, state);
2868 }
2869 
2870 static const unsigned char new_state[16] = {
2871 	/* current state:     new state:      action:	*/
2872 	[0 /* (Invalid) */] = TCP_CLOSE,
2873 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2874 	[TCP_SYN_SENT]      = TCP_CLOSE,
2875 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2876 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2877 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2878 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2879 	[TCP_CLOSE]         = TCP_CLOSE,
2880 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2881 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2882 	[TCP_LISTEN]        = TCP_CLOSE,
2883 	[TCP_CLOSING]       = TCP_CLOSING,
2884 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2885 };
2886 
mptcp_close_state(struct sock * sk)2887 static int mptcp_close_state(struct sock *sk)
2888 {
2889 	int next = (int)new_state[sk->sk_state];
2890 	int ns = next & TCP_STATE_MASK;
2891 
2892 	mptcp_set_state(sk, ns);
2893 
2894 	return next & TCP_ACTION_FIN;
2895 }
2896 
mptcp_check_send_data_fin(struct sock * sk)2897 static void mptcp_check_send_data_fin(struct sock *sk)
2898 {
2899 	struct mptcp_subflow_context *subflow;
2900 	struct mptcp_sock *msk = mptcp_sk(sk);
2901 
2902 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2903 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2904 		 msk->snd_nxt, msk->write_seq);
2905 
2906 	/* we still need to enqueue subflows or not really shutting down,
2907 	 * skip this
2908 	 */
2909 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2910 	    mptcp_send_head(sk))
2911 		return;
2912 
2913 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2914 
2915 	mptcp_for_each_subflow(msk, subflow) {
2916 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2917 
2918 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2919 	}
2920 }
2921 
__mptcp_wr_shutdown(struct sock * sk)2922 static void __mptcp_wr_shutdown(struct sock *sk)
2923 {
2924 	struct mptcp_sock *msk = mptcp_sk(sk);
2925 
2926 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2927 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2928 		 !!mptcp_send_head(sk));
2929 
2930 	/* will be ignored by fallback sockets */
2931 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2932 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2933 
2934 	mptcp_check_send_data_fin(sk);
2935 }
2936 
__mptcp_destroy_sock(struct sock * sk)2937 static void __mptcp_destroy_sock(struct sock *sk)
2938 {
2939 	struct mptcp_sock *msk = mptcp_sk(sk);
2940 
2941 	pr_debug("msk=%p\n", msk);
2942 
2943 	might_sleep();
2944 
2945 	mptcp_stop_rtx_timer(sk);
2946 	sk_stop_timer(sk, &sk->sk_timer);
2947 	msk->pm.status = 0;
2948 	mptcp_release_sched(msk);
2949 
2950 	sk->sk_prot->destroy(sk);
2951 
2952 	sk_stream_kill_queues(sk);
2953 	xfrm_sk_free_policy(sk);
2954 
2955 	sock_put(sk);
2956 }
2957 
__mptcp_unaccepted_force_close(struct sock * sk)2958 void __mptcp_unaccepted_force_close(struct sock *sk)
2959 {
2960 	sock_set_flag(sk, SOCK_DEAD);
2961 	mptcp_do_fastclose(sk);
2962 	__mptcp_destroy_sock(sk);
2963 }
2964 
mptcp_check_readable(struct sock * sk)2965 static __poll_t mptcp_check_readable(struct sock *sk)
2966 {
2967 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2968 }
2969 
mptcp_check_listen_stop(struct sock * sk)2970 static void mptcp_check_listen_stop(struct sock *sk)
2971 {
2972 	struct sock *ssk;
2973 
2974 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2975 		return;
2976 
2977 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2978 	ssk = mptcp_sk(sk)->first;
2979 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2980 		return;
2981 
2982 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2983 	tcp_set_state(ssk, TCP_CLOSE);
2984 	mptcp_subflow_queue_clean(sk, ssk);
2985 	inet_csk_listen_stop(ssk);
2986 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2987 	release_sock(ssk);
2988 }
2989 
__mptcp_close(struct sock * sk,long timeout)2990 bool __mptcp_close(struct sock *sk, long timeout)
2991 {
2992 	struct mptcp_subflow_context *subflow;
2993 	struct mptcp_sock *msk = mptcp_sk(sk);
2994 	bool do_cancel_work = false;
2995 	int subflows_alive = 0;
2996 
2997 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2998 
2999 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3000 		mptcp_check_listen_stop(sk);
3001 		mptcp_set_state(sk, TCP_CLOSE);
3002 		goto cleanup;
3003 	}
3004 
3005 	if (mptcp_data_avail(msk) || timeout < 0) {
3006 		/* If the msk has read data, or the caller explicitly ask it,
3007 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3008 		 */
3009 		mptcp_do_fastclose(sk);
3010 		timeout = 0;
3011 	} else if (mptcp_close_state(sk)) {
3012 		__mptcp_wr_shutdown(sk);
3013 	}
3014 
3015 	sk_stream_wait_close(sk, timeout);
3016 
3017 cleanup:
3018 	/* orphan all the subflows */
3019 	mptcp_for_each_subflow(msk, subflow) {
3020 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3021 		bool slow = lock_sock_fast_nested(ssk);
3022 
3023 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3024 
3025 		/* since the close timeout takes precedence on the fail one,
3026 		 * cancel the latter
3027 		 */
3028 		if (ssk == msk->first)
3029 			subflow->fail_tout = 0;
3030 
3031 		/* detach from the parent socket, but allow data_ready to
3032 		 * push incoming data into the mptcp stack, to properly ack it
3033 		 */
3034 		ssk->sk_socket = NULL;
3035 		ssk->sk_wq = NULL;
3036 		unlock_sock_fast(ssk, slow);
3037 	}
3038 	sock_orphan(sk);
3039 
3040 	/* all the subflows are closed, only timeout can change the msk
3041 	 * state, let's not keep resources busy for no reasons
3042 	 */
3043 	if (subflows_alive == 0)
3044 		mptcp_set_state(sk, TCP_CLOSE);
3045 
3046 	sock_hold(sk);
3047 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3048 	mptcp_pm_connection_closed(msk);
3049 
3050 	if (sk->sk_state == TCP_CLOSE) {
3051 		__mptcp_destroy_sock(sk);
3052 		do_cancel_work = true;
3053 	} else {
3054 		mptcp_start_tout_timer(sk);
3055 	}
3056 
3057 	return do_cancel_work;
3058 }
3059 
mptcp_close(struct sock * sk,long timeout)3060 static void mptcp_close(struct sock *sk, long timeout)
3061 {
3062 	bool do_cancel_work;
3063 
3064 	lock_sock(sk);
3065 
3066 	do_cancel_work = __mptcp_close(sk, timeout);
3067 	release_sock(sk);
3068 	if (do_cancel_work)
3069 		mptcp_cancel_work(sk);
3070 
3071 	sock_put(sk);
3072 }
3073 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3074 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3075 {
3076 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3077 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3078 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3079 
3080 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3081 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3082 
3083 	if (msk6 && ssk6) {
3084 		msk6->saddr = ssk6->saddr;
3085 		msk6->flow_label = ssk6->flow_label;
3086 	}
3087 #endif
3088 
3089 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3090 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3091 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3092 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3093 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3094 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3095 }
3096 
mptcp_disconnect(struct sock * sk,int flags)3097 static int mptcp_disconnect(struct sock *sk, int flags)
3098 {
3099 	struct mptcp_sock *msk = mptcp_sk(sk);
3100 
3101 	/* We are on the fastopen error path. We can't call straight into the
3102 	 * subflows cleanup code due to lock nesting (we are already under
3103 	 * msk->firstsocket lock).
3104 	 */
3105 	if (msk->fastopening)
3106 		return -EBUSY;
3107 
3108 	mptcp_check_listen_stop(sk);
3109 	mptcp_set_state(sk, TCP_CLOSE);
3110 
3111 	mptcp_stop_rtx_timer(sk);
3112 	mptcp_stop_tout_timer(sk);
3113 
3114 	mptcp_pm_connection_closed(msk);
3115 
3116 	/* msk->subflow is still intact, the following will not free the first
3117 	 * subflow
3118 	 */
3119 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3120 	WRITE_ONCE(msk->flags, 0);
3121 	msk->cb_flags = 0;
3122 	msk->recovery = false;
3123 	WRITE_ONCE(msk->can_ack, false);
3124 	WRITE_ONCE(msk->fully_established, false);
3125 	WRITE_ONCE(msk->rcv_data_fin, false);
3126 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3127 	WRITE_ONCE(msk->rcv_fastclose, false);
3128 	WRITE_ONCE(msk->use_64bit_ack, false);
3129 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3130 	mptcp_pm_data_reset(msk);
3131 	mptcp_ca_reset(sk);
3132 	msk->bytes_consumed = 0;
3133 	msk->bytes_acked = 0;
3134 	msk->bytes_received = 0;
3135 	msk->bytes_sent = 0;
3136 	msk->bytes_retrans = 0;
3137 	msk->rcvspace_init = 0;
3138 
3139 	WRITE_ONCE(sk->sk_shutdown, 0);
3140 	sk_error_report(sk);
3141 	return 0;
3142 }
3143 
3144 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3145 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3146 {
3147 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3148 
3149 	return &msk6->np;
3150 }
3151 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3152 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3153 {
3154 	const struct ipv6_pinfo *np = inet6_sk(sk);
3155 	struct ipv6_txoptions *opt;
3156 	struct ipv6_pinfo *newnp;
3157 
3158 	newnp = inet6_sk(newsk);
3159 
3160 	rcu_read_lock();
3161 	opt = rcu_dereference(np->opt);
3162 	if (opt) {
3163 		opt = ipv6_dup_options(newsk, opt);
3164 		if (!opt)
3165 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3166 	}
3167 	RCU_INIT_POINTER(newnp->opt, opt);
3168 	rcu_read_unlock();
3169 }
3170 #endif
3171 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3172 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3173 {
3174 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3175 	const struct inet_sock *inet = inet_sk(sk);
3176 	struct inet_sock *newinet;
3177 
3178 	newinet = inet_sk(newsk);
3179 
3180 	rcu_read_lock();
3181 	inet_opt = rcu_dereference(inet->inet_opt);
3182 	if (inet_opt) {
3183 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3184 				      inet_opt->opt.optlen, GFP_ATOMIC);
3185 		if (!newopt)
3186 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3187 	}
3188 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3189 	rcu_read_unlock();
3190 }
3191 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3192 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3193 				 const struct mptcp_options_received *mp_opt,
3194 				 struct sock *ssk,
3195 				 struct request_sock *req)
3196 {
3197 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3198 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3199 	struct mptcp_subflow_context *subflow;
3200 	struct mptcp_sock *msk;
3201 
3202 	if (!nsk)
3203 		return NULL;
3204 
3205 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3206 	if (nsk->sk_family == AF_INET6)
3207 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3208 #endif
3209 
3210 	__mptcp_init_sock(nsk);
3211 
3212 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3213 	if (nsk->sk_family == AF_INET6)
3214 		mptcp_copy_ip6_options(nsk, sk);
3215 	else
3216 #endif
3217 		mptcp_copy_ip_options(nsk, sk);
3218 
3219 	msk = mptcp_sk(nsk);
3220 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3221 	WRITE_ONCE(msk->token, subflow_req->token);
3222 	msk->in_accept_queue = 1;
3223 	WRITE_ONCE(msk->fully_established, false);
3224 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3225 		WRITE_ONCE(msk->csum_enabled, true);
3226 
3227 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3228 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3229 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3230 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3231 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3232 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3233 
3234 	/* passive msk is created after the first/MPC subflow */
3235 	msk->subflow_id = 2;
3236 
3237 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3238 	security_inet_csk_clone(nsk, req);
3239 
3240 	/* this can't race with mptcp_close(), as the msk is
3241 	 * not yet exposted to user-space
3242 	 */
3243 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3244 
3245 	/* The msk maintain a ref to each subflow in the connections list */
3246 	WRITE_ONCE(msk->first, ssk);
3247 	subflow = mptcp_subflow_ctx(ssk);
3248 	list_add(&subflow->node, &msk->conn_list);
3249 	sock_hold(ssk);
3250 
3251 	/* new mpc subflow takes ownership of the newly
3252 	 * created mptcp socket
3253 	 */
3254 	mptcp_token_accept(subflow_req, msk);
3255 
3256 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3257 	 * uses the correct data
3258 	 */
3259 	mptcp_copy_inaddrs(nsk, ssk);
3260 	__mptcp_propagate_sndbuf(nsk, ssk);
3261 
3262 	mptcp_rcv_space_init(msk, ssk);
3263 
3264 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3265 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3266 	bh_unlock_sock(nsk);
3267 
3268 	/* note: the newly allocated socket refcount is 2 now */
3269 	return nsk;
3270 }
3271 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3272 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3273 {
3274 	const struct tcp_sock *tp = tcp_sk(ssk);
3275 
3276 	msk->rcvspace_init = 1;
3277 	msk->rcvq_space.copied = 0;
3278 	msk->rcvq_space.rtt_us = 0;
3279 
3280 	msk->rcvq_space.time = tp->tcp_mstamp;
3281 
3282 	/* initial rcv_space offering made to peer */
3283 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3284 				      TCP_INIT_CWND * tp->advmss);
3285 	if (msk->rcvq_space.space == 0)
3286 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3287 }
3288 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3289 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3290 {
3291 	struct mptcp_subflow_context *subflow, *tmp;
3292 	struct sock *sk = (struct sock *)msk;
3293 
3294 	__mptcp_clear_xmit(sk);
3295 
3296 	/* join list will be eventually flushed (with rst) at sock lock release time */
3297 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3298 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3299 
3300 	__skb_queue_purge(&sk->sk_receive_queue);
3301 	skb_rbtree_purge(&msk->out_of_order_queue);
3302 
3303 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3304 	 * inet_sock_destruct() will dispose it
3305 	 */
3306 	mptcp_token_destroy(msk);
3307 	mptcp_pm_destroy(msk);
3308 }
3309 
mptcp_destroy(struct sock * sk)3310 static void mptcp_destroy(struct sock *sk)
3311 {
3312 	struct mptcp_sock *msk = mptcp_sk(sk);
3313 
3314 	/* allow the following to close even the initial subflow */
3315 	msk->free_first = 1;
3316 	mptcp_destroy_common(msk, 0);
3317 	sk_sockets_allocated_dec(sk);
3318 }
3319 
__mptcp_data_acked(struct sock * sk)3320 void __mptcp_data_acked(struct sock *sk)
3321 {
3322 	if (!sock_owned_by_user(sk))
3323 		__mptcp_clean_una(sk);
3324 	else
3325 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3326 }
3327 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3328 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3329 {
3330 	if (!mptcp_send_head(sk))
3331 		return;
3332 
3333 	if (!sock_owned_by_user(sk))
3334 		__mptcp_subflow_push_pending(sk, ssk, false);
3335 	else
3336 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3337 }
3338 
3339 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3340 				      BIT(MPTCP_RETRANSMIT) | \
3341 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3342 				      BIT(MPTCP_DEQUEUE))
3343 
3344 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3345 static void mptcp_release_cb(struct sock *sk)
3346 	__must_hold(&sk->sk_lock.slock)
3347 {
3348 	struct mptcp_sock *msk = mptcp_sk(sk);
3349 
3350 	for (;;) {
3351 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3352 		struct list_head join_list;
3353 
3354 		if (!flags)
3355 			break;
3356 
3357 		INIT_LIST_HEAD(&join_list);
3358 		list_splice_init(&msk->join_list, &join_list);
3359 
3360 		/* the following actions acquire the subflow socket lock
3361 		 *
3362 		 * 1) can't be invoked in atomic scope
3363 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3364 		 *    datapath acquires the msk socket spinlock while helding
3365 		 *    the subflow socket lock
3366 		 */
3367 		msk->cb_flags &= ~flags;
3368 		spin_unlock_bh(&sk->sk_lock.slock);
3369 
3370 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3371 			__mptcp_flush_join_list(sk, &join_list);
3372 		if (flags & BIT(MPTCP_PUSH_PENDING))
3373 			__mptcp_push_pending(sk, 0);
3374 		if (flags & BIT(MPTCP_RETRANSMIT))
3375 			__mptcp_retrans(sk);
3376 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3377 			/* notify ack seq update */
3378 			mptcp_cleanup_rbuf(msk, 0);
3379 			sk->sk_data_ready(sk);
3380 		}
3381 
3382 		cond_resched();
3383 		spin_lock_bh(&sk->sk_lock.slock);
3384 	}
3385 
3386 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3387 		__mptcp_clean_una_wakeup(sk);
3388 	if (unlikely(msk->cb_flags)) {
3389 		/* be sure to sync the msk state before taking actions
3390 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3391 		 * On sk release avoid actions depending on the first subflow
3392 		 */
3393 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3394 			__mptcp_sync_state(sk, msk->pending_state);
3395 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3396 			__mptcp_error_report(sk);
3397 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3398 			__mptcp_sync_sndbuf(sk);
3399 	}
3400 }
3401 
3402 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3403  * TCP can't schedule delack timer before the subflow is fully established.
3404  * MPTCP uses the delack timer to do 3rd ack retransmissions
3405  */
schedule_3rdack_retransmission(struct sock * ssk)3406 static void schedule_3rdack_retransmission(struct sock *ssk)
3407 {
3408 	struct inet_connection_sock *icsk = inet_csk(ssk);
3409 	struct tcp_sock *tp = tcp_sk(ssk);
3410 	unsigned long timeout;
3411 
3412 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3413 		return;
3414 
3415 	/* reschedule with a timeout above RTT, as we must look only for drop */
3416 	if (tp->srtt_us)
3417 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3418 	else
3419 		timeout = TCP_TIMEOUT_INIT;
3420 	timeout += jiffies;
3421 
3422 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3423 	smp_store_release(&icsk->icsk_ack.pending,
3424 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3425 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3426 }
3427 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3428 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3429 {
3430 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3431 	struct sock *sk = subflow->conn;
3432 
3433 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3434 		mptcp_data_lock(sk);
3435 		if (!sock_owned_by_user(sk))
3436 			__mptcp_subflow_push_pending(sk, ssk, true);
3437 		else
3438 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3439 		mptcp_data_unlock(sk);
3440 	}
3441 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3442 		mptcp_data_lock(sk);
3443 		if (!sock_owned_by_user(sk))
3444 			__mptcp_sync_sndbuf(sk);
3445 		else
3446 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3447 		mptcp_data_unlock(sk);
3448 	}
3449 	if (status & BIT(MPTCP_DELEGATE_ACK))
3450 		schedule_3rdack_retransmission(ssk);
3451 }
3452 
mptcp_hash(struct sock * sk)3453 static int mptcp_hash(struct sock *sk)
3454 {
3455 	/* should never be called,
3456 	 * we hash the TCP subflows not the MPTCP socket
3457 	 */
3458 	WARN_ON_ONCE(1);
3459 	return 0;
3460 }
3461 
mptcp_unhash(struct sock * sk)3462 static void mptcp_unhash(struct sock *sk)
3463 {
3464 	/* called from sk_common_release(), but nothing to do here */
3465 }
3466 
mptcp_get_port(struct sock * sk,unsigned short snum)3467 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3468 {
3469 	struct mptcp_sock *msk = mptcp_sk(sk);
3470 
3471 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3472 	if (WARN_ON_ONCE(!msk->first))
3473 		return -EINVAL;
3474 
3475 	return inet_csk_get_port(msk->first, snum);
3476 }
3477 
mptcp_finish_connect(struct sock * ssk)3478 void mptcp_finish_connect(struct sock *ssk)
3479 {
3480 	struct mptcp_subflow_context *subflow;
3481 	struct mptcp_sock *msk;
3482 	struct sock *sk;
3483 
3484 	subflow = mptcp_subflow_ctx(ssk);
3485 	sk = subflow->conn;
3486 	msk = mptcp_sk(sk);
3487 
3488 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3489 
3490 	subflow->map_seq = subflow->iasn;
3491 	subflow->map_subflow_seq = 1;
3492 
3493 	/* the socket is not connected yet, no msk/subflow ops can access/race
3494 	 * accessing the field below
3495 	 */
3496 	WRITE_ONCE(msk->local_key, subflow->local_key);
3497 
3498 	mptcp_pm_new_connection(msk, ssk, 0);
3499 }
3500 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3501 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3502 {
3503 	write_lock_bh(&sk->sk_callback_lock);
3504 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3505 	sk_set_socket(sk, parent);
3506 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3507 	write_unlock_bh(&sk->sk_callback_lock);
3508 }
3509 
mptcp_finish_join(struct sock * ssk)3510 bool mptcp_finish_join(struct sock *ssk)
3511 {
3512 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3513 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3514 	struct sock *parent = (void *)msk;
3515 	bool ret = true;
3516 
3517 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3518 
3519 	/* mptcp socket already closing? */
3520 	if (!mptcp_is_fully_established(parent)) {
3521 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3522 		return false;
3523 	}
3524 
3525 	/* active subflow, already present inside the conn_list */
3526 	if (!list_empty(&subflow->node)) {
3527 		mptcp_subflow_joined(msk, ssk);
3528 		mptcp_propagate_sndbuf(parent, ssk);
3529 		return true;
3530 	}
3531 
3532 	if (!mptcp_pm_allow_new_subflow(msk)) {
3533 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3534 		goto err_prohibited;
3535 	}
3536 
3537 	/* If we can't acquire msk socket lock here, let the release callback
3538 	 * handle it
3539 	 */
3540 	mptcp_data_lock(parent);
3541 	if (!sock_owned_by_user(parent)) {
3542 		ret = __mptcp_finish_join(msk, ssk);
3543 		if (ret) {
3544 			sock_hold(ssk);
3545 			list_add_tail(&subflow->node, &msk->conn_list);
3546 		}
3547 	} else {
3548 		sock_hold(ssk);
3549 		list_add_tail(&subflow->node, &msk->join_list);
3550 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3551 	}
3552 	mptcp_data_unlock(parent);
3553 
3554 	if (!ret) {
3555 err_prohibited:
3556 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3557 		return false;
3558 	}
3559 
3560 	return true;
3561 }
3562 
mptcp_shutdown(struct sock * sk,int how)3563 static void mptcp_shutdown(struct sock *sk, int how)
3564 {
3565 	pr_debug("sk=%p, how=%d\n", sk, how);
3566 
3567 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3568 		__mptcp_wr_shutdown(sk);
3569 }
3570 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3571 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3572 {
3573 	const struct sock *sk = (void *)msk;
3574 	u64 delta;
3575 
3576 	if (sk->sk_state == TCP_LISTEN)
3577 		return -EINVAL;
3578 
3579 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3580 		return 0;
3581 
3582 	delta = msk->write_seq - v;
3583 	if (__mptcp_check_fallback(msk) && msk->first) {
3584 		struct tcp_sock *tp = tcp_sk(msk->first);
3585 
3586 		/* the first subflow is disconnected after close - see
3587 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3588 		 * so ignore that status, too.
3589 		 */
3590 		if (!((1 << msk->first->sk_state) &
3591 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3592 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3593 	}
3594 	if (delta > INT_MAX)
3595 		delta = INT_MAX;
3596 
3597 	return (int)delta;
3598 }
3599 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3600 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3601 {
3602 	struct mptcp_sock *msk = mptcp_sk(sk);
3603 	bool slow;
3604 
3605 	switch (cmd) {
3606 	case SIOCINQ:
3607 		if (sk->sk_state == TCP_LISTEN)
3608 			return -EINVAL;
3609 
3610 		lock_sock(sk);
3611 		if (__mptcp_move_skbs(sk))
3612 			mptcp_cleanup_rbuf(msk, 0);
3613 		*karg = mptcp_inq_hint(sk);
3614 		release_sock(sk);
3615 		break;
3616 	case SIOCOUTQ:
3617 		slow = lock_sock_fast(sk);
3618 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3619 		unlock_sock_fast(sk, slow);
3620 		break;
3621 	case SIOCOUTQNSD:
3622 		slow = lock_sock_fast(sk);
3623 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3624 		unlock_sock_fast(sk, slow);
3625 		break;
3626 	default:
3627 		return -ENOIOCTLCMD;
3628 	}
3629 
3630 	return 0;
3631 }
3632 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3633 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3634 {
3635 	struct mptcp_subflow_context *subflow;
3636 	struct mptcp_sock *msk = mptcp_sk(sk);
3637 	int err = -EINVAL;
3638 	struct sock *ssk;
3639 
3640 	ssk = __mptcp_nmpc_sk(msk);
3641 	if (IS_ERR(ssk))
3642 		return PTR_ERR(ssk);
3643 
3644 	mptcp_set_state(sk, TCP_SYN_SENT);
3645 	subflow = mptcp_subflow_ctx(ssk);
3646 #ifdef CONFIG_TCP_MD5SIG
3647 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3648 	 * TCP option space.
3649 	 */
3650 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3651 		mptcp_subflow_early_fallback(msk, subflow);
3652 #endif
3653 	if (subflow->request_mptcp) {
3654 		if (mptcp_active_should_disable(sk)) {
3655 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3656 			mptcp_subflow_early_fallback(msk, subflow);
3657 		} else if (mptcp_token_new_connect(ssk) < 0) {
3658 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3659 			mptcp_subflow_early_fallback(msk, subflow);
3660 		}
3661 	}
3662 
3663 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3664 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3665 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3666 	if (likely(!__mptcp_check_fallback(msk)))
3667 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3668 
3669 	/* if reaching here via the fastopen/sendmsg path, the caller already
3670 	 * acquired the subflow socket lock, too.
3671 	 */
3672 	if (!msk->fastopening)
3673 		lock_sock(ssk);
3674 
3675 	/* the following mirrors closely a very small chunk of code from
3676 	 * __inet_stream_connect()
3677 	 */
3678 	if (ssk->sk_state != TCP_CLOSE)
3679 		goto out;
3680 
3681 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3682 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3683 		if (err)
3684 			goto out;
3685 	}
3686 
3687 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3688 	if (err < 0)
3689 		goto out;
3690 
3691 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3692 
3693 out:
3694 	if (!msk->fastopening)
3695 		release_sock(ssk);
3696 
3697 	/* on successful connect, the msk state will be moved to established by
3698 	 * subflow_finish_connect()
3699 	 */
3700 	if (unlikely(err)) {
3701 		/* avoid leaving a dangling token in an unconnected socket */
3702 		mptcp_token_destroy(msk);
3703 		mptcp_set_state(sk, TCP_CLOSE);
3704 		return err;
3705 	}
3706 
3707 	mptcp_copy_inaddrs(sk, ssk);
3708 	return 0;
3709 }
3710 
3711 static struct proto mptcp_prot = {
3712 	.name		= "MPTCP",
3713 	.owner		= THIS_MODULE,
3714 	.init		= mptcp_init_sock,
3715 	.connect	= mptcp_connect,
3716 	.disconnect	= mptcp_disconnect,
3717 	.close		= mptcp_close,
3718 	.setsockopt	= mptcp_setsockopt,
3719 	.getsockopt	= mptcp_getsockopt,
3720 	.shutdown	= mptcp_shutdown,
3721 	.destroy	= mptcp_destroy,
3722 	.sendmsg	= mptcp_sendmsg,
3723 	.ioctl		= mptcp_ioctl,
3724 	.recvmsg	= mptcp_recvmsg,
3725 	.release_cb	= mptcp_release_cb,
3726 	.hash		= mptcp_hash,
3727 	.unhash		= mptcp_unhash,
3728 	.get_port	= mptcp_get_port,
3729 	.stream_memory_free	= mptcp_stream_memory_free,
3730 	.sockets_allocated	= &mptcp_sockets_allocated,
3731 
3732 	.memory_allocated	= &tcp_memory_allocated,
3733 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3734 
3735 	.memory_pressure	= &tcp_memory_pressure,
3736 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3737 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3738 	.sysctl_mem	= sysctl_tcp_mem,
3739 	.obj_size	= sizeof(struct mptcp_sock),
3740 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3741 	.no_autobind	= true,
3742 };
3743 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3744 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3745 {
3746 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3747 	struct sock *ssk, *sk = sock->sk;
3748 	int err = -EINVAL;
3749 
3750 	lock_sock(sk);
3751 	ssk = __mptcp_nmpc_sk(msk);
3752 	if (IS_ERR(ssk)) {
3753 		err = PTR_ERR(ssk);
3754 		goto unlock;
3755 	}
3756 
3757 	if (sk->sk_family == AF_INET)
3758 		err = inet_bind_sk(ssk, uaddr, addr_len);
3759 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3760 	else if (sk->sk_family == AF_INET6)
3761 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3762 #endif
3763 	if (!err)
3764 		mptcp_copy_inaddrs(sk, ssk);
3765 
3766 unlock:
3767 	release_sock(sk);
3768 	return err;
3769 }
3770 
mptcp_listen(struct socket * sock,int backlog)3771 static int mptcp_listen(struct socket *sock, int backlog)
3772 {
3773 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3774 	struct sock *sk = sock->sk;
3775 	struct sock *ssk;
3776 	int err;
3777 
3778 	pr_debug("msk=%p\n", msk);
3779 
3780 	lock_sock(sk);
3781 
3782 	err = -EINVAL;
3783 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3784 		goto unlock;
3785 
3786 	ssk = __mptcp_nmpc_sk(msk);
3787 	if (IS_ERR(ssk)) {
3788 		err = PTR_ERR(ssk);
3789 		goto unlock;
3790 	}
3791 
3792 	mptcp_set_state(sk, TCP_LISTEN);
3793 	sock_set_flag(sk, SOCK_RCU_FREE);
3794 
3795 	lock_sock(ssk);
3796 	err = __inet_listen_sk(ssk, backlog);
3797 	release_sock(ssk);
3798 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3799 
3800 	if (!err) {
3801 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3802 		mptcp_copy_inaddrs(sk, ssk);
3803 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3804 	}
3805 
3806 unlock:
3807 	release_sock(sk);
3808 	return err;
3809 }
3810 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3811 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3812 			       struct proto_accept_arg *arg)
3813 {
3814 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3815 	struct sock *ssk, *newsk;
3816 
3817 	pr_debug("msk=%p\n", msk);
3818 
3819 	/* Buggy applications can call accept on socket states other then LISTEN
3820 	 * but no need to allocate the first subflow just to error out.
3821 	 */
3822 	ssk = READ_ONCE(msk->first);
3823 	if (!ssk)
3824 		return -EINVAL;
3825 
3826 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3827 	newsk = inet_csk_accept(ssk, arg);
3828 	if (!newsk)
3829 		return arg->err;
3830 
3831 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3832 	if (sk_is_mptcp(newsk)) {
3833 		struct mptcp_subflow_context *subflow;
3834 		struct sock *new_mptcp_sock;
3835 
3836 		subflow = mptcp_subflow_ctx(newsk);
3837 		new_mptcp_sock = subflow->conn;
3838 
3839 		/* is_mptcp should be false if subflow->conn is missing, see
3840 		 * subflow_syn_recv_sock()
3841 		 */
3842 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3843 			tcp_sk(newsk)->is_mptcp = 0;
3844 			goto tcpfallback;
3845 		}
3846 
3847 		newsk = new_mptcp_sock;
3848 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3849 
3850 		newsk->sk_kern_sock = arg->kern;
3851 		lock_sock(newsk);
3852 		__inet_accept(sock, newsock, newsk);
3853 
3854 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3855 		msk = mptcp_sk(newsk);
3856 		msk->in_accept_queue = 0;
3857 
3858 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3859 		 * This is needed so NOSPACE flag can be set from tcp stack.
3860 		 */
3861 		mptcp_for_each_subflow(msk, subflow) {
3862 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3863 
3864 			if (!ssk->sk_socket)
3865 				mptcp_sock_graft(ssk, newsock);
3866 		}
3867 
3868 		/* Do late cleanup for the first subflow as necessary. Also
3869 		 * deal with bad peers not doing a complete shutdown.
3870 		 */
3871 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3872 			__mptcp_close_ssk(newsk, msk->first,
3873 					  mptcp_subflow_ctx(msk->first), 0);
3874 			if (unlikely(list_is_singular(&msk->conn_list)))
3875 				mptcp_set_state(newsk, TCP_CLOSE);
3876 		}
3877 	} else {
3878 tcpfallback:
3879 		newsk->sk_kern_sock = arg->kern;
3880 		lock_sock(newsk);
3881 		__inet_accept(sock, newsock, newsk);
3882 		/* we are being invoked after accepting a non-mp-capable
3883 		 * flow: sk is a tcp_sk, not an mptcp one.
3884 		 *
3885 		 * Hand the socket over to tcp so all further socket ops
3886 		 * bypass mptcp.
3887 		 */
3888 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3889 			   mptcp_fallback_tcp_ops(newsock->sk));
3890 	}
3891 	release_sock(newsk);
3892 
3893 	return 0;
3894 }
3895 
mptcp_check_writeable(struct mptcp_sock * msk)3896 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3897 {
3898 	struct sock *sk = (struct sock *)msk;
3899 
3900 	if (__mptcp_stream_is_writeable(sk, 1))
3901 		return EPOLLOUT | EPOLLWRNORM;
3902 
3903 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3904 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3905 	if (__mptcp_stream_is_writeable(sk, 1))
3906 		return EPOLLOUT | EPOLLWRNORM;
3907 
3908 	return 0;
3909 }
3910 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3911 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3912 			   struct poll_table_struct *wait)
3913 {
3914 	struct sock *sk = sock->sk;
3915 	struct mptcp_sock *msk;
3916 	__poll_t mask = 0;
3917 	u8 shutdown;
3918 	int state;
3919 
3920 	msk = mptcp_sk(sk);
3921 	sock_poll_wait(file, sock, wait);
3922 
3923 	state = inet_sk_state_load(sk);
3924 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3925 	if (state == TCP_LISTEN) {
3926 		struct sock *ssk = READ_ONCE(msk->first);
3927 
3928 		if (WARN_ON_ONCE(!ssk))
3929 			return 0;
3930 
3931 		return inet_csk_listen_poll(ssk);
3932 	}
3933 
3934 	shutdown = READ_ONCE(sk->sk_shutdown);
3935 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3936 		mask |= EPOLLHUP;
3937 	if (shutdown & RCV_SHUTDOWN)
3938 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3939 
3940 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3941 		mask |= mptcp_check_readable(sk);
3942 		if (shutdown & SEND_SHUTDOWN)
3943 			mask |= EPOLLOUT | EPOLLWRNORM;
3944 		else
3945 			mask |= mptcp_check_writeable(msk);
3946 	} else if (state == TCP_SYN_SENT &&
3947 		   inet_test_bit(DEFER_CONNECT, sk)) {
3948 		/* cf tcp_poll() note about TFO */
3949 		mask |= EPOLLOUT | EPOLLWRNORM;
3950 	}
3951 
3952 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3953 	smp_rmb();
3954 	if (READ_ONCE(sk->sk_err))
3955 		mask |= EPOLLERR;
3956 
3957 	return mask;
3958 }
3959 
3960 static const struct proto_ops mptcp_stream_ops = {
3961 	.family		   = PF_INET,
3962 	.owner		   = THIS_MODULE,
3963 	.release	   = inet_release,
3964 	.bind		   = mptcp_bind,
3965 	.connect	   = inet_stream_connect,
3966 	.socketpair	   = sock_no_socketpair,
3967 	.accept		   = mptcp_stream_accept,
3968 	.getname	   = inet_getname,
3969 	.poll		   = mptcp_poll,
3970 	.ioctl		   = inet_ioctl,
3971 	.gettstamp	   = sock_gettstamp,
3972 	.listen		   = mptcp_listen,
3973 	.shutdown	   = inet_shutdown,
3974 	.setsockopt	   = sock_common_setsockopt,
3975 	.getsockopt	   = sock_common_getsockopt,
3976 	.sendmsg	   = inet_sendmsg,
3977 	.recvmsg	   = inet_recvmsg,
3978 	.mmap		   = sock_no_mmap,
3979 	.set_rcvlowat	   = mptcp_set_rcvlowat,
3980 };
3981 
3982 static struct inet_protosw mptcp_protosw = {
3983 	.type		= SOCK_STREAM,
3984 	.protocol	= IPPROTO_MPTCP,
3985 	.prot		= &mptcp_prot,
3986 	.ops		= &mptcp_stream_ops,
3987 	.flags		= INET_PROTOSW_ICSK,
3988 };
3989 
mptcp_napi_poll(struct napi_struct * napi,int budget)3990 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3991 {
3992 	struct mptcp_delegated_action *delegated;
3993 	struct mptcp_subflow_context *subflow;
3994 	int work_done = 0;
3995 
3996 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3997 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3998 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3999 
4000 		bh_lock_sock_nested(ssk);
4001 		if (!sock_owned_by_user(ssk)) {
4002 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4003 		} else {
4004 			/* tcp_release_cb_override already processed
4005 			 * the action or will do at next release_sock().
4006 			 * In both case must dequeue the subflow here - on the same
4007 			 * CPU that scheduled it.
4008 			 */
4009 			smp_wmb();
4010 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4011 		}
4012 		bh_unlock_sock(ssk);
4013 		sock_put(ssk);
4014 
4015 		if (++work_done == budget)
4016 			return budget;
4017 	}
4018 
4019 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4020 	 * will not try accessing the NULL napi->dev ptr
4021 	 */
4022 	napi_complete_done(napi, 0);
4023 	return work_done;
4024 }
4025 
mptcp_proto_init(void)4026 void __init mptcp_proto_init(void)
4027 {
4028 	struct mptcp_delegated_action *delegated;
4029 	int cpu;
4030 
4031 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4032 
4033 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4034 		panic("Failed to allocate MPTCP pcpu counter\n");
4035 
4036 	mptcp_napi_dev = alloc_netdev_dummy(0);
4037 	if (!mptcp_napi_dev)
4038 		panic("Failed to allocate MPTCP dummy netdev\n");
4039 	for_each_possible_cpu(cpu) {
4040 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4041 		INIT_LIST_HEAD(&delegated->head);
4042 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4043 				  mptcp_napi_poll);
4044 		napi_enable(&delegated->napi);
4045 	}
4046 
4047 	mptcp_subflow_init();
4048 	mptcp_pm_init();
4049 	mptcp_sched_init();
4050 	mptcp_token_init();
4051 
4052 	if (proto_register(&mptcp_prot, 1) != 0)
4053 		panic("Failed to register MPTCP proto.\n");
4054 
4055 	inet_register_protosw(&mptcp_protosw);
4056 
4057 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4058 }
4059 
4060 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4061 static const struct proto_ops mptcp_v6_stream_ops = {
4062 	.family		   = PF_INET6,
4063 	.owner		   = THIS_MODULE,
4064 	.release	   = inet6_release,
4065 	.bind		   = mptcp_bind,
4066 	.connect	   = inet_stream_connect,
4067 	.socketpair	   = sock_no_socketpair,
4068 	.accept		   = mptcp_stream_accept,
4069 	.getname	   = inet6_getname,
4070 	.poll		   = mptcp_poll,
4071 	.ioctl		   = inet6_ioctl,
4072 	.gettstamp	   = sock_gettstamp,
4073 	.listen		   = mptcp_listen,
4074 	.shutdown	   = inet_shutdown,
4075 	.setsockopt	   = sock_common_setsockopt,
4076 	.getsockopt	   = sock_common_getsockopt,
4077 	.sendmsg	   = inet6_sendmsg,
4078 	.recvmsg	   = inet6_recvmsg,
4079 	.mmap		   = sock_no_mmap,
4080 #ifdef CONFIG_COMPAT
4081 	.compat_ioctl	   = inet6_compat_ioctl,
4082 #endif
4083 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4084 };
4085 
4086 static struct proto mptcp_v6_prot;
4087 
4088 static struct inet_protosw mptcp_v6_protosw = {
4089 	.type		= SOCK_STREAM,
4090 	.protocol	= IPPROTO_MPTCP,
4091 	.prot		= &mptcp_v6_prot,
4092 	.ops		= &mptcp_v6_stream_ops,
4093 	.flags		= INET_PROTOSW_ICSK,
4094 };
4095 
mptcp_proto_v6_init(void)4096 int __init mptcp_proto_v6_init(void)
4097 {
4098 	int err;
4099 
4100 	mptcp_v6_prot = mptcp_prot;
4101 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4102 	mptcp_v6_prot.slab = NULL;
4103 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4104 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4105 
4106 	err = proto_register(&mptcp_v6_prot, 1);
4107 	if (err)
4108 		return err;
4109 
4110 	err = inet6_register_protosw(&mptcp_v6_protosw);
4111 	if (err)
4112 		proto_unregister(&mptcp_v6_prot);
4113 
4114 	return err;
4115 }
4116 #endif
4117