xref: /linux/net/mptcp/protocol.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device *mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
122 			       struct sk_buff *from)
123 {
124 	bool fragstolen;
125 	int delta;
126 
127 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
128 	    MPTCP_SKB_CB(from)->offset ||
129 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
130 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
131 		return false;
132 
133 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
134 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
135 		 to->len, MPTCP_SKB_CB(from)->end_seq);
136 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
137 
138 	/* note the fwd memory can reach a negative value after accounting
139 	 * for the delta, but the later skb free will restore a non
140 	 * negative one
141 	 */
142 	atomic_add(delta, &sk->sk_rmem_alloc);
143 	sk_mem_charge(sk, delta);
144 	kfree_skb_partial(from, fragstolen);
145 
146 	return true;
147 }
148 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
290 		goto drop;
291 	}
292 
293 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
294 
295 	/* the skb map_seq accounts for the skb offset:
296 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
297 	 * value
298 	 */
299 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
300 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
301 	MPTCP_SKB_CB(skb)->offset = offset;
302 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
303 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
304 
305 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
306 		/* in sequence */
307 		msk->bytes_received += copy_len;
308 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
309 		tail = skb_peek_tail(&sk->sk_receive_queue);
310 		if (tail && mptcp_try_coalesce(sk, tail, skb))
311 			return true;
312 
313 		skb_set_owner_r(skb, sk);
314 		__skb_queue_tail(&sk->sk_receive_queue, skb);
315 		return true;
316 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
317 		mptcp_data_queue_ofo(msk, skb);
318 		return false;
319 	}
320 
321 	/* old data, keep it simple and drop the whole pkt, sender
322 	 * will retransmit as needed, if needed.
323 	 */
324 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
325 drop:
326 	mptcp_drop(sk, skb);
327 	return false;
328 }
329 
mptcp_stop_rtx_timer(struct sock * sk)330 static void mptcp_stop_rtx_timer(struct sock *sk)
331 {
332 	struct inet_connection_sock *icsk = inet_csk(sk);
333 
334 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
335 	mptcp_sk(sk)->timer_ival = 0;
336 }
337 
mptcp_close_wake_up(struct sock * sk)338 static void mptcp_close_wake_up(struct sock *sk)
339 {
340 	if (sock_flag(sk, SOCK_DEAD))
341 		return;
342 
343 	sk->sk_state_change(sk);
344 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
345 	    sk->sk_state == TCP_CLOSE)
346 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
347 	else
348 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
349 }
350 
351 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)352 static bool mptcp_pending_data_fin_ack(struct sock *sk)
353 {
354 	struct mptcp_sock *msk = mptcp_sk(sk);
355 
356 	return ((1 << sk->sk_state) &
357 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
358 	       msk->write_seq == READ_ONCE(msk->snd_una);
359 }
360 
mptcp_check_data_fin_ack(struct sock * sk)361 static void mptcp_check_data_fin_ack(struct sock *sk)
362 {
363 	struct mptcp_sock *msk = mptcp_sk(sk);
364 
365 	/* Look for an acknowledged DATA_FIN */
366 	if (mptcp_pending_data_fin_ack(sk)) {
367 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
368 
369 		switch (sk->sk_state) {
370 		case TCP_FIN_WAIT1:
371 			mptcp_set_state(sk, TCP_FIN_WAIT2);
372 			break;
373 		case TCP_CLOSING:
374 		case TCP_LAST_ACK:
375 			mptcp_set_state(sk, TCP_CLOSE);
376 			break;
377 		}
378 
379 		mptcp_close_wake_up(sk);
380 	}
381 }
382 
383 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)384 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
385 {
386 	struct mptcp_sock *msk = mptcp_sk(sk);
387 
388 	if (READ_ONCE(msk->rcv_data_fin) &&
389 	    ((1 << inet_sk_state_load(sk)) &
390 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
391 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
392 
393 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
394 			if (seq)
395 				*seq = rcv_data_fin_seq;
396 
397 			return true;
398 		}
399 	}
400 
401 	return false;
402 }
403 
mptcp_set_datafin_timeout(struct sock * sk)404 static void mptcp_set_datafin_timeout(struct sock *sk)
405 {
406 	struct inet_connection_sock *icsk = inet_csk(sk);
407 	u32 retransmits;
408 
409 	retransmits = min_t(u32, icsk->icsk_retransmits,
410 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
411 
412 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
413 }
414 
__mptcp_set_timeout(struct sock * sk,long tout)415 static void __mptcp_set_timeout(struct sock *sk, long tout)
416 {
417 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
418 }
419 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)420 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
421 {
422 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
423 
424 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
425 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
426 }
427 
mptcp_set_timeout(struct sock * sk)428 static void mptcp_set_timeout(struct sock *sk)
429 {
430 	struct mptcp_subflow_context *subflow;
431 	long tout = 0;
432 
433 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
434 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
435 	__mptcp_set_timeout(sk, tout);
436 }
437 
tcp_can_send_ack(const struct sock * ssk)438 static inline bool tcp_can_send_ack(const struct sock *ssk)
439 {
440 	return !((1 << inet_sk_state_load(ssk)) &
441 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
442 }
443 
__mptcp_subflow_send_ack(struct sock * ssk)444 void __mptcp_subflow_send_ack(struct sock *ssk)
445 {
446 	if (tcp_can_send_ack(ssk))
447 		tcp_send_ack(ssk);
448 }
449 
mptcp_subflow_send_ack(struct sock * ssk)450 static void mptcp_subflow_send_ack(struct sock *ssk)
451 {
452 	bool slow;
453 
454 	slow = lock_sock_fast(ssk);
455 	__mptcp_subflow_send_ack(ssk);
456 	unlock_sock_fast(ssk, slow);
457 }
458 
mptcp_send_ack(struct mptcp_sock * msk)459 static void mptcp_send_ack(struct mptcp_sock *msk)
460 {
461 	struct mptcp_subflow_context *subflow;
462 
463 	mptcp_for_each_subflow(msk, subflow)
464 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
465 }
466 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)467 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
468 {
469 	bool slow;
470 
471 	slow = lock_sock_fast(ssk);
472 	if (tcp_can_send_ack(ssk))
473 		tcp_cleanup_rbuf(ssk, copied);
474 	unlock_sock_fast(ssk, slow);
475 }
476 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)477 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
478 {
479 	const struct inet_connection_sock *icsk = inet_csk(ssk);
480 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
481 	const struct tcp_sock *tp = tcp_sk(ssk);
482 
483 	return (ack_pending & ICSK_ACK_SCHED) &&
484 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
485 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
486 		 (rx_empty && ack_pending &
487 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
488 }
489 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)490 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
491 {
492 	int old_space = READ_ONCE(msk->old_wspace);
493 	struct mptcp_subflow_context *subflow;
494 	struct sock *sk = (struct sock *)msk;
495 	int space =  __mptcp_space(sk);
496 	bool cleanup, rx_empty;
497 
498 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
499 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
500 
501 	mptcp_for_each_subflow(msk, subflow) {
502 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
503 
504 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
505 			mptcp_subflow_cleanup_rbuf(ssk, copied);
506 	}
507 }
508 
mptcp_check_data_fin(struct sock * sk)509 static bool mptcp_check_data_fin(struct sock *sk)
510 {
511 	struct mptcp_sock *msk = mptcp_sk(sk);
512 	u64 rcv_data_fin_seq;
513 	bool ret = false;
514 
515 	/* Need to ack a DATA_FIN received from a peer while this side
516 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
517 	 * msk->rcv_data_fin was set when parsing the incoming options
518 	 * at the subflow level and the msk lock was not held, so this
519 	 * is the first opportunity to act on the DATA_FIN and change
520 	 * the msk state.
521 	 *
522 	 * If we are caught up to the sequence number of the incoming
523 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
524 	 * not caught up, do nothing and let the recv code send DATA_ACK
525 	 * when catching up.
526 	 */
527 
528 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
529 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
530 		WRITE_ONCE(msk->rcv_data_fin, 0);
531 
532 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
533 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
534 
535 		switch (sk->sk_state) {
536 		case TCP_ESTABLISHED:
537 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
538 			break;
539 		case TCP_FIN_WAIT1:
540 			mptcp_set_state(sk, TCP_CLOSING);
541 			break;
542 		case TCP_FIN_WAIT2:
543 			mptcp_set_state(sk, TCP_CLOSE);
544 			break;
545 		default:
546 			/* Other states not expected */
547 			WARN_ON_ONCE(1);
548 			break;
549 		}
550 
551 		ret = true;
552 		if (!__mptcp_check_fallback(msk))
553 			mptcp_send_ack(msk);
554 		mptcp_close_wake_up(sk);
555 	}
556 	return ret;
557 }
558 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)559 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
560 {
561 	if (READ_ONCE(msk->allow_infinite_fallback)) {
562 		MPTCP_INC_STATS(sock_net(ssk),
563 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
564 		mptcp_do_fallback(ssk);
565 	} else {
566 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
567 		mptcp_subflow_reset(ssk);
568 	}
569 }
570 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)571 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
572 					   struct sock *ssk)
573 {
574 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
575 	struct sock *sk = (struct sock *)msk;
576 	bool more_data_avail;
577 	struct tcp_sock *tp;
578 	bool ret = false;
579 
580 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
581 	tp = tcp_sk(ssk);
582 	do {
583 		u32 map_remaining, offset;
584 		u32 seq = tp->copied_seq;
585 		struct sk_buff *skb;
586 		bool fin;
587 
588 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
589 			break;
590 
591 		/* try to move as much data as available */
592 		map_remaining = subflow->map_data_len -
593 				mptcp_subflow_get_map_offset(subflow);
594 
595 		skb = skb_peek(&ssk->sk_receive_queue);
596 		if (unlikely(!skb))
597 			break;
598 
599 		if (__mptcp_check_fallback(msk)) {
600 			/* Under fallback skbs have no MPTCP extension and TCP could
601 			 * collapse them between the dummy map creation and the
602 			 * current dequeue. Be sure to adjust the map size.
603 			 */
604 			map_remaining = skb->len;
605 			subflow->map_data_len = skb->len;
606 		}
607 
608 		offset = seq - TCP_SKB_CB(skb)->seq;
609 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
610 		if (fin)
611 			seq++;
612 
613 		if (offset < skb->len) {
614 			size_t len = skb->len - offset;
615 
616 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
617 			seq += len;
618 
619 			if (unlikely(map_remaining < len)) {
620 				DEBUG_NET_WARN_ON_ONCE(1);
621 				mptcp_dss_corruption(msk, ssk);
622 			}
623 		} else {
624 			if (unlikely(!fin)) {
625 				DEBUG_NET_WARN_ON_ONCE(1);
626 				mptcp_dss_corruption(msk, ssk);
627 			}
628 
629 			sk_eat_skb(ssk, skb);
630 		}
631 
632 		WRITE_ONCE(tp->copied_seq, seq);
633 		more_data_avail = mptcp_subflow_data_available(ssk);
634 
635 	} while (more_data_avail);
636 
637 	if (ret)
638 		msk->last_data_recv = tcp_jiffies32;
639 	return ret;
640 }
641 
__mptcp_ofo_queue(struct mptcp_sock * msk)642 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
643 {
644 	struct sock *sk = (struct sock *)msk;
645 	struct sk_buff *skb, *tail;
646 	bool moved = false;
647 	struct rb_node *p;
648 	u64 end_seq;
649 
650 	p = rb_first(&msk->out_of_order_queue);
651 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
652 	while (p) {
653 		skb = rb_to_skb(p);
654 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
655 			break;
656 
657 		p = rb_next(p);
658 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
659 
660 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
661 				      msk->ack_seq))) {
662 			mptcp_drop(sk, skb);
663 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
664 			continue;
665 		}
666 
667 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
668 		tail = skb_peek_tail(&sk->sk_receive_queue);
669 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
670 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
671 
672 			/* skip overlapping data, if any */
673 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
674 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
675 				 delta);
676 			MPTCP_SKB_CB(skb)->offset += delta;
677 			MPTCP_SKB_CB(skb)->map_seq += delta;
678 			__skb_queue_tail(&sk->sk_receive_queue, skb);
679 		}
680 		msk->bytes_received += end_seq - msk->ack_seq;
681 		WRITE_ONCE(msk->ack_seq, end_seq);
682 		moved = true;
683 	}
684 	return moved;
685 }
686 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)687 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
688 {
689 	int err = sock_error(ssk);
690 	int ssk_state;
691 
692 	if (!err)
693 		return false;
694 
695 	/* only propagate errors on fallen-back sockets or
696 	 * on MPC connect
697 	 */
698 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
699 		return false;
700 
701 	/* We need to propagate only transition to CLOSE state.
702 	 * Orphaned socket will see such state change via
703 	 * subflow_sched_work_if_closed() and that path will properly
704 	 * destroy the msk as needed.
705 	 */
706 	ssk_state = inet_sk_state_load(ssk);
707 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
708 		mptcp_set_state(sk, ssk_state);
709 	WRITE_ONCE(sk->sk_err, -err);
710 
711 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
712 	smp_wmb();
713 	sk_error_report(sk);
714 	return true;
715 }
716 
__mptcp_error_report(struct sock * sk)717 void __mptcp_error_report(struct sock *sk)
718 {
719 	struct mptcp_subflow_context *subflow;
720 	struct mptcp_sock *msk = mptcp_sk(sk);
721 
722 	mptcp_for_each_subflow(msk, subflow)
723 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
724 			break;
725 }
726 
727 /* In most cases we will be able to lock the mptcp socket.  If its already
728  * owned, we need to defer to the work queue to avoid ABBA deadlock.
729  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)730 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
731 {
732 	struct sock *sk = (struct sock *)msk;
733 	bool moved;
734 
735 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
736 	__mptcp_ofo_queue(msk);
737 	if (unlikely(ssk->sk_err)) {
738 		if (!sock_owned_by_user(sk))
739 			__mptcp_error_report(sk);
740 		else
741 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
742 	}
743 
744 	/* If the moves have caught up with the DATA_FIN sequence number
745 	 * it's time to ack the DATA_FIN and change socket state, but
746 	 * this is not a good place to change state. Let the workqueue
747 	 * do it.
748 	 */
749 	if (mptcp_pending_data_fin(sk, NULL))
750 		mptcp_schedule_work(sk);
751 	return moved;
752 }
753 
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)754 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
755 {
756 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
757 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
758 }
759 
__mptcp_data_ready(struct sock * sk,struct sock * ssk)760 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
761 {
762 	struct mptcp_sock *msk = mptcp_sk(sk);
763 
764 	__mptcp_rcvbuf_update(sk, ssk);
765 
766 	/* Wake-up the reader only for in-sequence data */
767 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
768 		sk->sk_data_ready(sk);
769 }
770 
mptcp_data_ready(struct sock * sk,struct sock * ssk)771 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
772 {
773 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
774 
775 	/* The peer can send data while we are shutting down this
776 	 * subflow at msk destruction time, but we must avoid enqueuing
777 	 * more data to the msk receive queue
778 	 */
779 	if (unlikely(subflow->disposable))
780 		return;
781 
782 	mptcp_data_lock(sk);
783 	if (!sock_owned_by_user(sk))
784 		__mptcp_data_ready(sk, ssk);
785 	else
786 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
787 	mptcp_data_unlock(sk);
788 }
789 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)790 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
791 {
792 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
793 	WRITE_ONCE(msk->allow_infinite_fallback, false);
794 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
795 }
796 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)797 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
798 {
799 	struct sock *sk = (struct sock *)msk;
800 
801 	if (sk->sk_state != TCP_ESTABLISHED)
802 		return false;
803 
804 	/* attach to msk socket only after we are sure we will deal with it
805 	 * at close time
806 	 */
807 	if (sk->sk_socket && !ssk->sk_socket)
808 		mptcp_sock_graft(ssk, sk->sk_socket);
809 
810 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
811 	mptcp_sockopt_sync_locked(msk, ssk);
812 	mptcp_subflow_joined(msk, ssk);
813 	mptcp_stop_tout_timer(sk);
814 	__mptcp_propagate_sndbuf(sk, ssk);
815 	return true;
816 }
817 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)818 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
819 {
820 	struct mptcp_subflow_context *tmp, *subflow;
821 	struct mptcp_sock *msk = mptcp_sk(sk);
822 
823 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
824 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
825 		bool slow = lock_sock_fast(ssk);
826 
827 		list_move_tail(&subflow->node, &msk->conn_list);
828 		if (!__mptcp_finish_join(msk, ssk))
829 			mptcp_subflow_reset(ssk);
830 		unlock_sock_fast(ssk, slow);
831 	}
832 }
833 
mptcp_rtx_timer_pending(struct sock * sk)834 static bool mptcp_rtx_timer_pending(struct sock *sk)
835 {
836 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
837 }
838 
mptcp_reset_rtx_timer(struct sock * sk)839 static void mptcp_reset_rtx_timer(struct sock *sk)
840 {
841 	struct inet_connection_sock *icsk = inet_csk(sk);
842 	unsigned long tout;
843 
844 	/* prevent rescheduling on close */
845 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
846 		return;
847 
848 	tout = mptcp_sk(sk)->timer_ival;
849 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
850 }
851 
mptcp_schedule_work(struct sock * sk)852 bool mptcp_schedule_work(struct sock *sk)
853 {
854 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
855 	    schedule_work(&mptcp_sk(sk)->work)) {
856 		/* each subflow already holds a reference to the sk, and the
857 		 * workqueue is invoked by a subflow, so sk can't go away here.
858 		 */
859 		sock_hold(sk);
860 		return true;
861 	}
862 	return false;
863 }
864 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)865 static bool mptcp_skb_can_collapse_to(u64 write_seq,
866 				      const struct sk_buff *skb,
867 				      const struct mptcp_ext *mpext)
868 {
869 	if (!tcp_skb_can_collapse_to(skb))
870 		return false;
871 
872 	/* can collapse only if MPTCP level sequence is in order and this
873 	 * mapping has not been xmitted yet
874 	 */
875 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
876 	       !mpext->frozen;
877 }
878 
879 /* we can append data to the given data frag if:
880  * - there is space available in the backing page_frag
881  * - the data frag tail matches the current page_frag free offset
882  * - the data frag end sequence number matches the current write seq
883  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)884 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
885 				       const struct page_frag *pfrag,
886 				       const struct mptcp_data_frag *df)
887 {
888 	return df && pfrag->page == df->page &&
889 		pfrag->size - pfrag->offset > 0 &&
890 		pfrag->offset == (df->offset + df->data_len) &&
891 		df->data_seq + df->data_len == msk->write_seq;
892 }
893 
dfrag_uncharge(struct sock * sk,int len)894 static void dfrag_uncharge(struct sock *sk, int len)
895 {
896 	sk_mem_uncharge(sk, len);
897 	sk_wmem_queued_add(sk, -len);
898 }
899 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)900 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
901 {
902 	int len = dfrag->data_len + dfrag->overhead;
903 
904 	list_del(&dfrag->list);
905 	dfrag_uncharge(sk, len);
906 	put_page(dfrag->page);
907 }
908 
909 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)910 static void __mptcp_clean_una(struct sock *sk)
911 {
912 	struct mptcp_sock *msk = mptcp_sk(sk);
913 	struct mptcp_data_frag *dtmp, *dfrag;
914 	u64 snd_una;
915 
916 	snd_una = msk->snd_una;
917 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
918 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
919 			break;
920 
921 		if (unlikely(dfrag == msk->first_pending)) {
922 			/* in recovery mode can see ack after the current snd head */
923 			if (WARN_ON_ONCE(!msk->recovery))
924 				break;
925 
926 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
927 		}
928 
929 		dfrag_clear(sk, dfrag);
930 	}
931 
932 	dfrag = mptcp_rtx_head(sk);
933 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
934 		u64 delta = snd_una - dfrag->data_seq;
935 
936 		/* prevent wrap around in recovery mode */
937 		if (unlikely(delta > dfrag->already_sent)) {
938 			if (WARN_ON_ONCE(!msk->recovery))
939 				goto out;
940 			if (WARN_ON_ONCE(delta > dfrag->data_len))
941 				goto out;
942 			dfrag->already_sent += delta - dfrag->already_sent;
943 		}
944 
945 		dfrag->data_seq += delta;
946 		dfrag->offset += delta;
947 		dfrag->data_len -= delta;
948 		dfrag->already_sent -= delta;
949 
950 		dfrag_uncharge(sk, delta);
951 	}
952 
953 	/* all retransmitted data acked, recovery completed */
954 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
955 		msk->recovery = false;
956 
957 out:
958 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
959 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
960 			mptcp_stop_rtx_timer(sk);
961 	} else {
962 		mptcp_reset_rtx_timer(sk);
963 	}
964 
965 	if (mptcp_pending_data_fin_ack(sk))
966 		mptcp_schedule_work(sk);
967 }
968 
__mptcp_clean_una_wakeup(struct sock * sk)969 static void __mptcp_clean_una_wakeup(struct sock *sk)
970 {
971 	lockdep_assert_held_once(&sk->sk_lock.slock);
972 
973 	__mptcp_clean_una(sk);
974 	mptcp_write_space(sk);
975 }
976 
mptcp_clean_una_wakeup(struct sock * sk)977 static void mptcp_clean_una_wakeup(struct sock *sk)
978 {
979 	mptcp_data_lock(sk);
980 	__mptcp_clean_una_wakeup(sk);
981 	mptcp_data_unlock(sk);
982 }
983 
mptcp_enter_memory_pressure(struct sock * sk)984 static void mptcp_enter_memory_pressure(struct sock *sk)
985 {
986 	struct mptcp_subflow_context *subflow;
987 	struct mptcp_sock *msk = mptcp_sk(sk);
988 	bool first = true;
989 
990 	mptcp_for_each_subflow(msk, subflow) {
991 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
992 
993 		if (first)
994 			tcp_enter_memory_pressure(ssk);
995 		sk_stream_moderate_sndbuf(ssk);
996 
997 		first = false;
998 	}
999 	__mptcp_sync_sndbuf(sk);
1000 }
1001 
1002 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1003  * data
1004  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1005 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1006 {
1007 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1008 					pfrag, sk->sk_allocation)))
1009 		return true;
1010 
1011 	mptcp_enter_memory_pressure(sk);
1012 	return false;
1013 }
1014 
1015 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1016 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1017 		      int orig_offset)
1018 {
1019 	int offset = ALIGN(orig_offset, sizeof(long));
1020 	struct mptcp_data_frag *dfrag;
1021 
1022 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1023 	dfrag->data_len = 0;
1024 	dfrag->data_seq = msk->write_seq;
1025 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1026 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1027 	dfrag->already_sent = 0;
1028 	dfrag->page = pfrag->page;
1029 
1030 	return dfrag;
1031 }
1032 
1033 struct mptcp_sendmsg_info {
1034 	int mss_now;
1035 	int size_goal;
1036 	u16 limit;
1037 	u16 sent;
1038 	unsigned int flags;
1039 	bool data_lock_held;
1040 };
1041 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1042 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1043 				    u64 data_seq, int avail_size)
1044 {
1045 	u64 window_end = mptcp_wnd_end(msk);
1046 	u64 mptcp_snd_wnd;
1047 
1048 	if (__mptcp_check_fallback(msk))
1049 		return avail_size;
1050 
1051 	mptcp_snd_wnd = window_end - data_seq;
1052 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1053 
1054 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1055 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1056 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1057 	}
1058 
1059 	return avail_size;
1060 }
1061 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1062 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1063 {
1064 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1065 
1066 	if (!mpext)
1067 		return false;
1068 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1069 	return true;
1070 }
1071 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1072 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1073 {
1074 	struct sk_buff *skb;
1075 
1076 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1077 	if (likely(skb)) {
1078 		if (likely(__mptcp_add_ext(skb, gfp))) {
1079 			skb_reserve(skb, MAX_TCP_HEADER);
1080 			skb->ip_summed = CHECKSUM_PARTIAL;
1081 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1082 			return skb;
1083 		}
1084 		__kfree_skb(skb);
1085 	} else {
1086 		mptcp_enter_memory_pressure(sk);
1087 	}
1088 	return NULL;
1089 }
1090 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1091 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1092 {
1093 	struct sk_buff *skb;
1094 
1095 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1096 	if (!skb)
1097 		return NULL;
1098 
1099 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1100 		tcp_skb_entail(ssk, skb);
1101 		return skb;
1102 	}
1103 	tcp_skb_tsorted_anchor_cleanup(skb);
1104 	kfree_skb(skb);
1105 	return NULL;
1106 }
1107 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1108 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1109 {
1110 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1111 
1112 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1113 }
1114 
1115 /* note: this always recompute the csum on the whole skb, even
1116  * if we just appended a single frag. More status info needed
1117  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1118 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1119 {
1120 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1121 	__wsum csum = ~csum_unfold(mpext->csum);
1122 	int offset = skb->len - added;
1123 
1124 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1125 }
1126 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1127 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1128 				      struct sock *ssk,
1129 				      struct mptcp_ext *mpext)
1130 {
1131 	if (!mpext)
1132 		return;
1133 
1134 	mpext->infinite_map = 1;
1135 	mpext->data_len = 0;
1136 
1137 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1138 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1139 	pr_fallback(msk);
1140 	mptcp_do_fallback(ssk);
1141 }
1142 
1143 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1144 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1145 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1146 			      struct mptcp_data_frag *dfrag,
1147 			      struct mptcp_sendmsg_info *info)
1148 {
1149 	u64 data_seq = dfrag->data_seq + info->sent;
1150 	int offset = dfrag->offset + info->sent;
1151 	struct mptcp_sock *msk = mptcp_sk(sk);
1152 	bool zero_window_probe = false;
1153 	struct mptcp_ext *mpext = NULL;
1154 	bool can_coalesce = false;
1155 	bool reuse_skb = true;
1156 	struct sk_buff *skb;
1157 	size_t copy;
1158 	int i;
1159 
1160 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1161 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1162 
1163 	if (WARN_ON_ONCE(info->sent > info->limit ||
1164 			 info->limit > dfrag->data_len))
1165 		return 0;
1166 
1167 	if (unlikely(!__tcp_can_send(ssk)))
1168 		return -EAGAIN;
1169 
1170 	/* compute send limit */
1171 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1172 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1173 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1174 	copy = info->size_goal;
1175 
1176 	skb = tcp_write_queue_tail(ssk);
1177 	if (skb && copy > skb->len) {
1178 		/* Limit the write to the size available in the
1179 		 * current skb, if any, so that we create at most a new skb.
1180 		 * Explicitly tells TCP internals to avoid collapsing on later
1181 		 * queue management operation, to avoid breaking the ext <->
1182 		 * SSN association set here
1183 		 */
1184 		mpext = mptcp_get_ext(skb);
1185 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1186 			TCP_SKB_CB(skb)->eor = 1;
1187 			tcp_mark_push(tcp_sk(ssk), skb);
1188 			goto alloc_skb;
1189 		}
1190 
1191 		i = skb_shinfo(skb)->nr_frags;
1192 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1193 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1194 			tcp_mark_push(tcp_sk(ssk), skb);
1195 			goto alloc_skb;
1196 		}
1197 
1198 		copy -= skb->len;
1199 	} else {
1200 alloc_skb:
1201 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1202 		if (!skb)
1203 			return -ENOMEM;
1204 
1205 		i = skb_shinfo(skb)->nr_frags;
1206 		reuse_skb = false;
1207 		mpext = mptcp_get_ext(skb);
1208 	}
1209 
1210 	/* Zero window and all data acked? Probe. */
1211 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1212 	if (copy == 0) {
1213 		u64 snd_una = READ_ONCE(msk->snd_una);
1214 
1215 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1216 			tcp_remove_empty_skb(ssk);
1217 			return 0;
1218 		}
1219 
1220 		zero_window_probe = true;
1221 		data_seq = snd_una - 1;
1222 		copy = 1;
1223 	}
1224 
1225 	copy = min_t(size_t, copy, info->limit - info->sent);
1226 	if (!sk_wmem_schedule(ssk, copy)) {
1227 		tcp_remove_empty_skb(ssk);
1228 		return -ENOMEM;
1229 	}
1230 
1231 	if (can_coalesce) {
1232 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1233 	} else {
1234 		get_page(dfrag->page);
1235 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1236 	}
1237 
1238 	skb->len += copy;
1239 	skb->data_len += copy;
1240 	skb->truesize += copy;
1241 	sk_wmem_queued_add(ssk, copy);
1242 	sk_mem_charge(ssk, copy);
1243 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1244 	TCP_SKB_CB(skb)->end_seq += copy;
1245 	tcp_skb_pcount_set(skb, 0);
1246 
1247 	/* on skb reuse we just need to update the DSS len */
1248 	if (reuse_skb) {
1249 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1250 		mpext->data_len += copy;
1251 		goto out;
1252 	}
1253 
1254 	memset(mpext, 0, sizeof(*mpext));
1255 	mpext->data_seq = data_seq;
1256 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1257 	mpext->data_len = copy;
1258 	mpext->use_map = 1;
1259 	mpext->dsn64 = 1;
1260 
1261 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1262 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1263 		 mpext->dsn64);
1264 
1265 	if (zero_window_probe) {
1266 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1267 		mpext->frozen = 1;
1268 		if (READ_ONCE(msk->csum_enabled))
1269 			mptcp_update_data_checksum(skb, copy);
1270 		tcp_push_pending_frames(ssk);
1271 		return 0;
1272 	}
1273 out:
1274 	if (READ_ONCE(msk->csum_enabled))
1275 		mptcp_update_data_checksum(skb, copy);
1276 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1277 		mptcp_update_infinite_map(msk, ssk, mpext);
1278 	trace_mptcp_sendmsg_frag(mpext);
1279 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1280 	return copy;
1281 }
1282 
1283 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1284 					 sizeof(struct tcphdr) - \
1285 					 MAX_TCP_OPTION_SPACE - \
1286 					 sizeof(struct ipv6hdr) - \
1287 					 sizeof(struct frag_hdr))
1288 
1289 struct subflow_send_info {
1290 	struct sock *ssk;
1291 	u64 linger_time;
1292 };
1293 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1294 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1295 {
1296 	if (!subflow->stale)
1297 		return;
1298 
1299 	subflow->stale = 0;
1300 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1301 }
1302 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1303 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1304 {
1305 	if (unlikely(subflow->stale)) {
1306 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1307 
1308 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1309 			return false;
1310 
1311 		mptcp_subflow_set_active(subflow);
1312 	}
1313 	return __mptcp_subflow_active(subflow);
1314 }
1315 
1316 #define SSK_MODE_ACTIVE	0
1317 #define SSK_MODE_BACKUP	1
1318 #define SSK_MODE_MAX	2
1319 
1320 /* implement the mptcp packet scheduler;
1321  * returns the subflow that will transmit the next DSS
1322  * additionally updates the rtx timeout
1323  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1324 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1325 {
1326 	struct subflow_send_info send_info[SSK_MODE_MAX];
1327 	struct mptcp_subflow_context *subflow;
1328 	struct sock *sk = (struct sock *)msk;
1329 	u32 pace, burst, wmem;
1330 	int i, nr_active = 0;
1331 	struct sock *ssk;
1332 	u64 linger_time;
1333 	long tout = 0;
1334 
1335 	/* pick the subflow with the lower wmem/wspace ratio */
1336 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1337 		send_info[i].ssk = NULL;
1338 		send_info[i].linger_time = -1;
1339 	}
1340 
1341 	mptcp_for_each_subflow(msk, subflow) {
1342 		bool backup = subflow->backup || subflow->request_bkup;
1343 
1344 		trace_mptcp_subflow_get_send(subflow);
1345 		ssk =  mptcp_subflow_tcp_sock(subflow);
1346 		if (!mptcp_subflow_active(subflow))
1347 			continue;
1348 
1349 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1350 		nr_active += !backup;
1351 		pace = subflow->avg_pacing_rate;
1352 		if (unlikely(!pace)) {
1353 			/* init pacing rate from socket */
1354 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1355 			pace = subflow->avg_pacing_rate;
1356 			if (!pace)
1357 				continue;
1358 		}
1359 
1360 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1361 		if (linger_time < send_info[backup].linger_time) {
1362 			send_info[backup].ssk = ssk;
1363 			send_info[backup].linger_time = linger_time;
1364 		}
1365 	}
1366 	__mptcp_set_timeout(sk, tout);
1367 
1368 	/* pick the best backup if no other subflow is active */
1369 	if (!nr_active)
1370 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1371 
1372 	/* According to the blest algorithm, to avoid HoL blocking for the
1373 	 * faster flow, we need to:
1374 	 * - estimate the faster flow linger time
1375 	 * - use the above to estimate the amount of byte transferred
1376 	 *   by the faster flow
1377 	 * - check that the amount of queued data is greter than the above,
1378 	 *   otherwise do not use the picked, slower, subflow
1379 	 * We select the subflow with the shorter estimated time to flush
1380 	 * the queued mem, which basically ensure the above. We just need
1381 	 * to check that subflow has a non empty cwin.
1382 	 */
1383 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1384 	if (!ssk || !sk_stream_memory_free(ssk))
1385 		return NULL;
1386 
1387 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1388 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1389 	if (!burst)
1390 		return ssk;
1391 
1392 	subflow = mptcp_subflow_ctx(ssk);
1393 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1394 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1395 					   burst + wmem);
1396 	msk->snd_burst = burst;
1397 	return ssk;
1398 }
1399 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1400 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1401 {
1402 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1403 	release_sock(ssk);
1404 }
1405 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1406 static void mptcp_update_post_push(struct mptcp_sock *msk,
1407 				   struct mptcp_data_frag *dfrag,
1408 				   u32 sent)
1409 {
1410 	u64 snd_nxt_new = dfrag->data_seq;
1411 
1412 	dfrag->already_sent += sent;
1413 
1414 	msk->snd_burst -= sent;
1415 
1416 	snd_nxt_new += dfrag->already_sent;
1417 
1418 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1419 	 * is recovering after a failover. In that event, this re-sends
1420 	 * old segments.
1421 	 *
1422 	 * Thus compute snd_nxt_new candidate based on
1423 	 * the dfrag->data_seq that was sent and the data
1424 	 * that has been handed to the subflow for transmission
1425 	 * and skip update in case it was old dfrag.
1426 	 */
1427 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1428 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1429 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1430 	}
1431 }
1432 
mptcp_check_and_set_pending(struct sock * sk)1433 void mptcp_check_and_set_pending(struct sock *sk)
1434 {
1435 	if (mptcp_send_head(sk)) {
1436 		mptcp_data_lock(sk);
1437 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1438 		mptcp_data_unlock(sk);
1439 	}
1440 }
1441 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1442 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1443 				  struct mptcp_sendmsg_info *info)
1444 {
1445 	struct mptcp_sock *msk = mptcp_sk(sk);
1446 	struct mptcp_data_frag *dfrag;
1447 	int len, copied = 0, err = 0;
1448 
1449 	while ((dfrag = mptcp_send_head(sk))) {
1450 		info->sent = dfrag->already_sent;
1451 		info->limit = dfrag->data_len;
1452 		len = dfrag->data_len - dfrag->already_sent;
1453 		while (len > 0) {
1454 			int ret = 0;
1455 
1456 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1457 			if (ret <= 0) {
1458 				err = copied ? : ret;
1459 				goto out;
1460 			}
1461 
1462 			info->sent += ret;
1463 			copied += ret;
1464 			len -= ret;
1465 
1466 			mptcp_update_post_push(msk, dfrag, ret);
1467 		}
1468 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1469 
1470 		if (msk->snd_burst <= 0 ||
1471 		    !sk_stream_memory_free(ssk) ||
1472 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1473 			err = copied;
1474 			goto out;
1475 		}
1476 		mptcp_set_timeout(sk);
1477 	}
1478 	err = copied;
1479 
1480 out:
1481 	if (err > 0)
1482 		msk->last_data_sent = tcp_jiffies32;
1483 	return err;
1484 }
1485 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1486 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1487 {
1488 	struct sock *prev_ssk = NULL, *ssk = NULL;
1489 	struct mptcp_sock *msk = mptcp_sk(sk);
1490 	struct mptcp_sendmsg_info info = {
1491 				.flags = flags,
1492 	};
1493 	bool do_check_data_fin = false;
1494 	int push_count = 1;
1495 
1496 	while (mptcp_send_head(sk) && (push_count > 0)) {
1497 		struct mptcp_subflow_context *subflow;
1498 		int ret = 0;
1499 
1500 		if (mptcp_sched_get_send(msk))
1501 			break;
1502 
1503 		push_count = 0;
1504 
1505 		mptcp_for_each_subflow(msk, subflow) {
1506 			if (READ_ONCE(subflow->scheduled)) {
1507 				mptcp_subflow_set_scheduled(subflow, false);
1508 
1509 				prev_ssk = ssk;
1510 				ssk = mptcp_subflow_tcp_sock(subflow);
1511 				if (ssk != prev_ssk) {
1512 					/* First check. If the ssk has changed since
1513 					 * the last round, release prev_ssk
1514 					 */
1515 					if (prev_ssk)
1516 						mptcp_push_release(prev_ssk, &info);
1517 
1518 					/* Need to lock the new subflow only if different
1519 					 * from the previous one, otherwise we are still
1520 					 * helding the relevant lock
1521 					 */
1522 					lock_sock(ssk);
1523 				}
1524 
1525 				push_count++;
1526 
1527 				ret = __subflow_push_pending(sk, ssk, &info);
1528 				if (ret <= 0) {
1529 					if (ret != -EAGAIN ||
1530 					    (1 << ssk->sk_state) &
1531 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1532 						push_count--;
1533 					continue;
1534 				}
1535 				do_check_data_fin = true;
1536 			}
1537 		}
1538 	}
1539 
1540 	/* at this point we held the socket lock for the last subflow we used */
1541 	if (ssk)
1542 		mptcp_push_release(ssk, &info);
1543 
1544 	/* ensure the rtx timer is running */
1545 	if (!mptcp_rtx_timer_pending(sk))
1546 		mptcp_reset_rtx_timer(sk);
1547 	if (do_check_data_fin)
1548 		mptcp_check_send_data_fin(sk);
1549 }
1550 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1551 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1552 {
1553 	struct mptcp_sock *msk = mptcp_sk(sk);
1554 	struct mptcp_sendmsg_info info = {
1555 		.data_lock_held = true,
1556 	};
1557 	bool keep_pushing = true;
1558 	struct sock *xmit_ssk;
1559 	int copied = 0;
1560 
1561 	info.flags = 0;
1562 	while (mptcp_send_head(sk) && keep_pushing) {
1563 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1564 		int ret = 0;
1565 
1566 		/* check for a different subflow usage only after
1567 		 * spooling the first chunk of data
1568 		 */
1569 		if (first) {
1570 			mptcp_subflow_set_scheduled(subflow, false);
1571 			ret = __subflow_push_pending(sk, ssk, &info);
1572 			first = false;
1573 			if (ret <= 0)
1574 				break;
1575 			copied += ret;
1576 			continue;
1577 		}
1578 
1579 		if (mptcp_sched_get_send(msk))
1580 			goto out;
1581 
1582 		if (READ_ONCE(subflow->scheduled)) {
1583 			mptcp_subflow_set_scheduled(subflow, false);
1584 			ret = __subflow_push_pending(sk, ssk, &info);
1585 			if (ret <= 0)
1586 				keep_pushing = false;
1587 			copied += ret;
1588 		}
1589 
1590 		mptcp_for_each_subflow(msk, subflow) {
1591 			if (READ_ONCE(subflow->scheduled)) {
1592 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1593 				if (xmit_ssk != ssk) {
1594 					mptcp_subflow_delegate(subflow,
1595 							       MPTCP_DELEGATE_SEND);
1596 					keep_pushing = false;
1597 				}
1598 			}
1599 		}
1600 	}
1601 
1602 out:
1603 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1604 	 * not going to flush it via release_sock()
1605 	 */
1606 	if (copied) {
1607 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1608 			 info.size_goal);
1609 		if (!mptcp_rtx_timer_pending(sk))
1610 			mptcp_reset_rtx_timer(sk);
1611 
1612 		if (msk->snd_data_fin_enable &&
1613 		    msk->snd_nxt + 1 == msk->write_seq)
1614 			mptcp_schedule_work(sk);
1615 	}
1616 }
1617 
1618 static int mptcp_disconnect(struct sock *sk, int flags);
1619 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1620 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1621 				  size_t len, int *copied_syn)
1622 {
1623 	unsigned int saved_flags = msg->msg_flags;
1624 	struct mptcp_sock *msk = mptcp_sk(sk);
1625 	struct sock *ssk;
1626 	int ret;
1627 
1628 	/* on flags based fastopen the mptcp is supposed to create the
1629 	 * first subflow right now. Otherwise we are in the defer_connect
1630 	 * path, and the first subflow must be already present.
1631 	 * Since the defer_connect flag is cleared after the first succsful
1632 	 * fastopen attempt, no need to check for additional subflow status.
1633 	 */
1634 	if (msg->msg_flags & MSG_FASTOPEN) {
1635 		ssk = __mptcp_nmpc_sk(msk);
1636 		if (IS_ERR(ssk))
1637 			return PTR_ERR(ssk);
1638 	}
1639 	if (!msk->first)
1640 		return -EINVAL;
1641 
1642 	ssk = msk->first;
1643 
1644 	lock_sock(ssk);
1645 	msg->msg_flags |= MSG_DONTWAIT;
1646 	msk->fastopening = 1;
1647 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1648 	msk->fastopening = 0;
1649 	msg->msg_flags = saved_flags;
1650 	release_sock(ssk);
1651 
1652 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1653 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1654 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1655 					    msg->msg_namelen, msg->msg_flags, 1);
1656 
1657 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1658 		 * case of any error, except timeout or signal
1659 		 */
1660 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1661 			*copied_syn = 0;
1662 	} else if (ret && ret != -EINPROGRESS) {
1663 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1664 		 * __inet_stream_connect() can fail, due to looking check,
1665 		 * see mptcp_disconnect().
1666 		 * Attempt it again outside the problematic scope.
1667 		 */
1668 		if (!mptcp_disconnect(sk, 0)) {
1669 			sk->sk_disconnects++;
1670 			sk->sk_socket->state = SS_UNCONNECTED;
1671 		}
1672 	}
1673 	inet_clear_bit(DEFER_CONNECT, sk);
1674 
1675 	return ret;
1676 }
1677 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1678 static int do_copy_data_nocache(struct sock *sk, int copy,
1679 				struct iov_iter *from, char *to)
1680 {
1681 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1682 		if (!copy_from_iter_full_nocache(to, copy, from))
1683 			return -EFAULT;
1684 	} else if (!copy_from_iter_full(to, copy, from)) {
1685 		return -EFAULT;
1686 	}
1687 	return 0;
1688 }
1689 
1690 /* open-code sk_stream_memory_free() plus sent limit computation to
1691  * avoid indirect calls in fast-path.
1692  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1693  * annotations.
1694  */
mptcp_send_limit(const struct sock * sk)1695 static u32 mptcp_send_limit(const struct sock *sk)
1696 {
1697 	const struct mptcp_sock *msk = mptcp_sk(sk);
1698 	u32 limit, not_sent;
1699 
1700 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1701 		return 0;
1702 
1703 	limit = mptcp_notsent_lowat(sk);
1704 	if (limit == UINT_MAX)
1705 		return UINT_MAX;
1706 
1707 	not_sent = msk->write_seq - msk->snd_nxt;
1708 	if (not_sent >= limit)
1709 		return 0;
1710 
1711 	return limit - not_sent;
1712 }
1713 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1714 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1715 {
1716 	struct mptcp_sock *msk = mptcp_sk(sk);
1717 	struct page_frag *pfrag;
1718 	size_t copied = 0;
1719 	int ret = 0;
1720 	long timeo;
1721 
1722 	/* silently ignore everything else */
1723 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1724 
1725 	lock_sock(sk);
1726 
1727 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1728 		     msg->msg_flags & MSG_FASTOPEN)) {
1729 		int copied_syn = 0;
1730 
1731 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1732 		copied += copied_syn;
1733 		if (ret == -EINPROGRESS && copied_syn > 0)
1734 			goto out;
1735 		else if (ret)
1736 			goto do_error;
1737 	}
1738 
1739 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740 
1741 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1742 		ret = sk_stream_wait_connect(sk, &timeo);
1743 		if (ret)
1744 			goto do_error;
1745 	}
1746 
1747 	ret = -EPIPE;
1748 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1749 		goto do_error;
1750 
1751 	pfrag = sk_page_frag(sk);
1752 
1753 	while (msg_data_left(msg)) {
1754 		int total_ts, frag_truesize = 0;
1755 		struct mptcp_data_frag *dfrag;
1756 		bool dfrag_collapsed;
1757 		size_t psize, offset;
1758 		u32 copy_limit;
1759 
1760 		/* ensure fitting the notsent_lowat() constraint */
1761 		copy_limit = mptcp_send_limit(sk);
1762 		if (!copy_limit)
1763 			goto wait_for_memory;
1764 
1765 		/* reuse tail pfrag, if possible, or carve a new one from the
1766 		 * page allocator
1767 		 */
1768 		dfrag = mptcp_pending_tail(sk);
1769 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1770 		if (!dfrag_collapsed) {
1771 			if (!mptcp_page_frag_refill(sk, pfrag))
1772 				goto wait_for_memory;
1773 
1774 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1775 			frag_truesize = dfrag->overhead;
1776 		}
1777 
1778 		/* we do not bound vs wspace, to allow a single packet.
1779 		 * memory accounting will prevent execessive memory usage
1780 		 * anyway
1781 		 */
1782 		offset = dfrag->offset + dfrag->data_len;
1783 		psize = pfrag->size - offset;
1784 		psize = min_t(size_t, psize, msg_data_left(msg));
1785 		psize = min_t(size_t, psize, copy_limit);
1786 		total_ts = psize + frag_truesize;
1787 
1788 		if (!sk_wmem_schedule(sk, total_ts))
1789 			goto wait_for_memory;
1790 
1791 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1792 					   page_address(dfrag->page) + offset);
1793 		if (ret)
1794 			goto do_error;
1795 
1796 		/* data successfully copied into the write queue */
1797 		sk_forward_alloc_add(sk, -total_ts);
1798 		copied += psize;
1799 		dfrag->data_len += psize;
1800 		frag_truesize += psize;
1801 		pfrag->offset += frag_truesize;
1802 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1803 
1804 		/* charge data on mptcp pending queue to the msk socket
1805 		 * Note: we charge such data both to sk and ssk
1806 		 */
1807 		sk_wmem_queued_add(sk, frag_truesize);
1808 		if (!dfrag_collapsed) {
1809 			get_page(dfrag->page);
1810 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1811 			if (!msk->first_pending)
1812 				WRITE_ONCE(msk->first_pending, dfrag);
1813 		}
1814 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1815 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1816 			 !dfrag_collapsed);
1817 
1818 		continue;
1819 
1820 wait_for_memory:
1821 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1822 		__mptcp_push_pending(sk, msg->msg_flags);
1823 		ret = sk_stream_wait_memory(sk, &timeo);
1824 		if (ret)
1825 			goto do_error;
1826 	}
1827 
1828 	if (copied)
1829 		__mptcp_push_pending(sk, msg->msg_flags);
1830 
1831 out:
1832 	release_sock(sk);
1833 	return copied;
1834 
1835 do_error:
1836 	if (copied)
1837 		goto out;
1838 
1839 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1840 	goto out;
1841 }
1842 
1843 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1844 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1845 static int __mptcp_recvmsg_mskq(struct sock *sk,
1846 				struct msghdr *msg,
1847 				size_t len, int flags,
1848 				struct scm_timestamping_internal *tss,
1849 				int *cmsg_flags)
1850 {
1851 	struct mptcp_sock *msk = mptcp_sk(sk);
1852 	struct sk_buff *skb, *tmp;
1853 	int copied = 0;
1854 
1855 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1856 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1857 		u32 data_len = skb->len - offset;
1858 		u32 count = min_t(size_t, len - copied, data_len);
1859 		int err;
1860 
1861 		if (!(flags & MSG_TRUNC)) {
1862 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1863 			if (unlikely(err < 0)) {
1864 				if (!copied)
1865 					return err;
1866 				break;
1867 			}
1868 		}
1869 
1870 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1871 			tcp_update_recv_tstamps(skb, tss);
1872 			*cmsg_flags |= MPTCP_CMSG_TS;
1873 		}
1874 
1875 		copied += count;
1876 
1877 		if (count < data_len) {
1878 			if (!(flags & MSG_PEEK)) {
1879 				MPTCP_SKB_CB(skb)->offset += count;
1880 				MPTCP_SKB_CB(skb)->map_seq += count;
1881 				msk->bytes_consumed += count;
1882 			}
1883 			break;
1884 		}
1885 
1886 		if (!(flags & MSG_PEEK)) {
1887 			/* avoid the indirect call, we know the destructor is sock_wfree */
1888 			skb->destructor = NULL;
1889 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1890 			sk_mem_uncharge(sk, skb->truesize);
1891 			__skb_unlink(skb, &sk->sk_receive_queue);
1892 			__kfree_skb(skb);
1893 			msk->bytes_consumed += count;
1894 		}
1895 
1896 		if (copied >= len)
1897 			break;
1898 	}
1899 
1900 	mptcp_rcv_space_adjust(msk, copied);
1901 	return copied;
1902 }
1903 
1904 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1905  *
1906  * Only difference: Use highest rtt estimate of the subflows in use.
1907  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1909 {
1910 	struct mptcp_subflow_context *subflow;
1911 	struct sock *sk = (struct sock *)msk;
1912 	u8 scaling_ratio = U8_MAX;
1913 	u32 time, advmss = 1;
1914 	u64 rtt_us, mstamp;
1915 
1916 	msk_owned_by_me(msk);
1917 
1918 	if (copied <= 0)
1919 		return;
1920 
1921 	if (!msk->rcvspace_init)
1922 		mptcp_rcv_space_init(msk, msk->first);
1923 
1924 	msk->rcvq_space.copied += copied;
1925 
1926 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1927 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1928 
1929 	rtt_us = msk->rcvq_space.rtt_us;
1930 	if (rtt_us && time < (rtt_us >> 3))
1931 		return;
1932 
1933 	rtt_us = 0;
1934 	mptcp_for_each_subflow(msk, subflow) {
1935 		const struct tcp_sock *tp;
1936 		u64 sf_rtt_us;
1937 		u32 sf_advmss;
1938 
1939 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1940 
1941 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1942 		sf_advmss = READ_ONCE(tp->advmss);
1943 
1944 		rtt_us = max(sf_rtt_us, rtt_us);
1945 		advmss = max(sf_advmss, advmss);
1946 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1947 	}
1948 
1949 	msk->rcvq_space.rtt_us = rtt_us;
1950 	msk->scaling_ratio = scaling_ratio;
1951 	if (time < (rtt_us >> 3) || rtt_us == 0)
1952 		return;
1953 
1954 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1955 		goto new_measure;
1956 
1957 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1958 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1959 		u64 rcvwin, grow;
1960 		int rcvbuf;
1961 
1962 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1963 
1964 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1965 
1966 		do_div(grow, msk->rcvq_space.space);
1967 		rcvwin += (grow << 1);
1968 
1969 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1970 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1971 
1972 		if (rcvbuf > sk->sk_rcvbuf) {
1973 			u32 window_clamp;
1974 
1975 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
1976 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1977 
1978 			/* Make subflows follow along.  If we do not do this, we
1979 			 * get drops at subflow level if skbs can't be moved to
1980 			 * the mptcp rx queue fast enough (announced rcv_win can
1981 			 * exceed ssk->sk_rcvbuf).
1982 			 */
1983 			mptcp_for_each_subflow(msk, subflow) {
1984 				struct sock *ssk;
1985 				bool slow;
1986 
1987 				ssk = mptcp_subflow_tcp_sock(subflow);
1988 				slow = lock_sock_fast(ssk);
1989 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1990 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
1991 				if (tcp_can_send_ack(ssk))
1992 					tcp_cleanup_rbuf(ssk, 1);
1993 				unlock_sock_fast(ssk, slow);
1994 			}
1995 		}
1996 	}
1997 
1998 	msk->rcvq_space.space = msk->rcvq_space.copied;
1999 new_measure:
2000 	msk->rcvq_space.copied = 0;
2001 	msk->rcvq_space.time = mstamp;
2002 }
2003 
2004 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2005 __mptcp_first_ready_from(struct mptcp_sock *msk,
2006 			 struct mptcp_subflow_context *subflow)
2007 {
2008 	struct mptcp_subflow_context *start_subflow = subflow;
2009 
2010 	while (!READ_ONCE(subflow->data_avail)) {
2011 		subflow = mptcp_next_subflow(msk, subflow);
2012 		if (subflow == start_subflow)
2013 			return NULL;
2014 	}
2015 	return subflow;
2016 }
2017 
__mptcp_move_skbs(struct sock * sk)2018 static bool __mptcp_move_skbs(struct sock *sk)
2019 {
2020 	struct mptcp_subflow_context *subflow;
2021 	struct mptcp_sock *msk = mptcp_sk(sk);
2022 	bool ret = false;
2023 
2024 	if (list_empty(&msk->conn_list))
2025 		return false;
2026 
2027 	/* verify we can move any data from the subflow, eventually updating */
2028 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2029 		mptcp_for_each_subflow(msk, subflow)
2030 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2031 
2032 	subflow = list_first_entry(&msk->conn_list,
2033 				   struct mptcp_subflow_context, node);
2034 	for (;;) {
2035 		struct sock *ssk;
2036 		bool slowpath;
2037 
2038 		/*
2039 		 * As an optimization avoid traversing the subflows list
2040 		 * and ev. acquiring the subflow socket lock before baling out
2041 		 */
2042 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2043 			break;
2044 
2045 		subflow = __mptcp_first_ready_from(msk, subflow);
2046 		if (!subflow)
2047 			break;
2048 
2049 		ssk = mptcp_subflow_tcp_sock(subflow);
2050 		slowpath = lock_sock_fast(ssk);
2051 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2052 		if (unlikely(ssk->sk_err))
2053 			__mptcp_error_report(sk);
2054 		unlock_sock_fast(ssk, slowpath);
2055 
2056 		subflow = mptcp_next_subflow(msk, subflow);
2057 	}
2058 
2059 	__mptcp_ofo_queue(msk);
2060 	if (ret)
2061 		mptcp_check_data_fin((struct sock *)msk);
2062 	return ret;
2063 }
2064 
mptcp_inq_hint(const struct sock * sk)2065 static unsigned int mptcp_inq_hint(const struct sock *sk)
2066 {
2067 	const struct mptcp_sock *msk = mptcp_sk(sk);
2068 	const struct sk_buff *skb;
2069 
2070 	skb = skb_peek(&sk->sk_receive_queue);
2071 	if (skb) {
2072 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2073 
2074 		if (hint_val >= INT_MAX)
2075 			return INT_MAX;
2076 
2077 		return (unsigned int)hint_val;
2078 	}
2079 
2080 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2081 		return 1;
2082 
2083 	return 0;
2084 }
2085 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2086 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 			 int flags, int *addr_len)
2088 {
2089 	struct mptcp_sock *msk = mptcp_sk(sk);
2090 	struct scm_timestamping_internal tss;
2091 	int copied = 0, cmsg_flags = 0;
2092 	int target;
2093 	long timeo;
2094 
2095 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2096 	if (unlikely(flags & MSG_ERRQUEUE))
2097 		return inet_recv_error(sk, msg, len, addr_len);
2098 
2099 	lock_sock(sk);
2100 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2101 		copied = -ENOTCONN;
2102 		goto out_err;
2103 	}
2104 
2105 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2106 
2107 	len = min_t(size_t, len, INT_MAX);
2108 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2109 
2110 	if (unlikely(msk->recvmsg_inq))
2111 		cmsg_flags = MPTCP_CMSG_INQ;
2112 
2113 	while (copied < len) {
2114 		int err, bytes_read;
2115 
2116 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2117 		if (unlikely(bytes_read < 0)) {
2118 			if (!copied)
2119 				copied = bytes_read;
2120 			goto out_err;
2121 		}
2122 
2123 		copied += bytes_read;
2124 
2125 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2126 			continue;
2127 
2128 		/* only the MPTCP socket status is relevant here. The exit
2129 		 * conditions mirror closely tcp_recvmsg()
2130 		 */
2131 		if (copied >= target)
2132 			break;
2133 
2134 		if (copied) {
2135 			if (sk->sk_err ||
2136 			    sk->sk_state == TCP_CLOSE ||
2137 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2138 			    !timeo ||
2139 			    signal_pending(current))
2140 				break;
2141 		} else {
2142 			if (sk->sk_err) {
2143 				copied = sock_error(sk);
2144 				break;
2145 			}
2146 
2147 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2148 				/* race breaker: the shutdown could be after the
2149 				 * previous receive queue check
2150 				 */
2151 				if (__mptcp_move_skbs(sk))
2152 					continue;
2153 				break;
2154 			}
2155 
2156 			if (sk->sk_state == TCP_CLOSE) {
2157 				copied = -ENOTCONN;
2158 				break;
2159 			}
2160 
2161 			if (!timeo) {
2162 				copied = -EAGAIN;
2163 				break;
2164 			}
2165 
2166 			if (signal_pending(current)) {
2167 				copied = sock_intr_errno(timeo);
2168 				break;
2169 			}
2170 		}
2171 
2172 		pr_debug("block timeout %ld\n", timeo);
2173 		mptcp_cleanup_rbuf(msk, copied);
2174 		err = sk_wait_data(sk, &timeo, NULL);
2175 		if (err < 0) {
2176 			err = copied ? : err;
2177 			goto out_err;
2178 		}
2179 	}
2180 
2181 	mptcp_cleanup_rbuf(msk, copied);
2182 
2183 out_err:
2184 	if (cmsg_flags && copied >= 0) {
2185 		if (cmsg_flags & MPTCP_CMSG_TS)
2186 			tcp_recv_timestamp(msg, sk, &tss);
2187 
2188 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2189 			unsigned int inq = mptcp_inq_hint(sk);
2190 
2191 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2192 		}
2193 	}
2194 
2195 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2196 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2197 
2198 	release_sock(sk);
2199 	return copied;
2200 }
2201 
mptcp_retransmit_timer(struct timer_list * t)2202 static void mptcp_retransmit_timer(struct timer_list *t)
2203 {
2204 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2205 						       icsk_retransmit_timer);
2206 	struct sock *sk = &icsk->icsk_inet.sk;
2207 	struct mptcp_sock *msk = mptcp_sk(sk);
2208 
2209 	bh_lock_sock(sk);
2210 	if (!sock_owned_by_user(sk)) {
2211 		/* we need a process context to retransmit */
2212 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2213 			mptcp_schedule_work(sk);
2214 	} else {
2215 		/* delegate our work to tcp_release_cb() */
2216 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2217 	}
2218 	bh_unlock_sock(sk);
2219 	sock_put(sk);
2220 }
2221 
mptcp_tout_timer(struct timer_list * t)2222 static void mptcp_tout_timer(struct timer_list *t)
2223 {
2224 	struct sock *sk = from_timer(sk, t, sk_timer);
2225 
2226 	mptcp_schedule_work(sk);
2227 	sock_put(sk);
2228 }
2229 
2230 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2231  * level.
2232  *
2233  * A backup subflow is returned only if that is the only kind available.
2234  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2235 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2236 {
2237 	struct sock *backup = NULL, *pick = NULL;
2238 	struct mptcp_subflow_context *subflow;
2239 	int min_stale_count = INT_MAX;
2240 
2241 	mptcp_for_each_subflow(msk, subflow) {
2242 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2243 
2244 		if (!__mptcp_subflow_active(subflow))
2245 			continue;
2246 
2247 		/* still data outstanding at TCP level? skip this */
2248 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2249 			mptcp_pm_subflow_chk_stale(msk, ssk);
2250 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2251 			continue;
2252 		}
2253 
2254 		if (subflow->backup || subflow->request_bkup) {
2255 			if (!backup)
2256 				backup = ssk;
2257 			continue;
2258 		}
2259 
2260 		if (!pick)
2261 			pick = ssk;
2262 	}
2263 
2264 	if (pick)
2265 		return pick;
2266 
2267 	/* use backup only if there are no progresses anywhere */
2268 	return min_stale_count > 1 ? backup : NULL;
2269 }
2270 
__mptcp_retransmit_pending_data(struct sock * sk)2271 bool __mptcp_retransmit_pending_data(struct sock *sk)
2272 {
2273 	struct mptcp_data_frag *cur, *rtx_head;
2274 	struct mptcp_sock *msk = mptcp_sk(sk);
2275 
2276 	if (__mptcp_check_fallback(msk))
2277 		return false;
2278 
2279 	/* the closing socket has some data untransmitted and/or unacked:
2280 	 * some data in the mptcp rtx queue has not really xmitted yet.
2281 	 * keep it simple and re-inject the whole mptcp level rtx queue
2282 	 */
2283 	mptcp_data_lock(sk);
2284 	__mptcp_clean_una_wakeup(sk);
2285 	rtx_head = mptcp_rtx_head(sk);
2286 	if (!rtx_head) {
2287 		mptcp_data_unlock(sk);
2288 		return false;
2289 	}
2290 
2291 	msk->recovery_snd_nxt = msk->snd_nxt;
2292 	msk->recovery = true;
2293 	mptcp_data_unlock(sk);
2294 
2295 	msk->first_pending = rtx_head;
2296 	msk->snd_burst = 0;
2297 
2298 	/* be sure to clear the "sent status" on all re-injected fragments */
2299 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2300 		if (!cur->already_sent)
2301 			break;
2302 		cur->already_sent = 0;
2303 	}
2304 
2305 	return true;
2306 }
2307 
2308 /* flags for __mptcp_close_ssk() */
2309 #define MPTCP_CF_PUSH		BIT(1)
2310 #define MPTCP_CF_FASTCLOSE	BIT(2)
2311 
2312 /* be sure to send a reset only if the caller asked for it, also
2313  * clean completely the subflow status when the subflow reaches
2314  * TCP_CLOSE state
2315  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2316 static void __mptcp_subflow_disconnect(struct sock *ssk,
2317 				       struct mptcp_subflow_context *subflow,
2318 				       unsigned int flags)
2319 {
2320 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2321 	    (flags & MPTCP_CF_FASTCLOSE)) {
2322 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2323 		 * disconnect should never fail
2324 		 */
2325 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2326 		mptcp_subflow_ctx_reset(subflow);
2327 	} else {
2328 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2329 	}
2330 }
2331 
2332 /* subflow sockets can be either outgoing (connect) or incoming
2333  * (accept).
2334  *
2335  * Outgoing subflows use in-kernel sockets.
2336  * Incoming subflows do not have their own 'struct socket' allocated,
2337  * so we need to use tcp_close() after detaching them from the mptcp
2338  * parent socket.
2339  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2340 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2341 			      struct mptcp_subflow_context *subflow,
2342 			      unsigned int flags)
2343 {
2344 	struct mptcp_sock *msk = mptcp_sk(sk);
2345 	bool dispose_it, need_push = false;
2346 
2347 	/* If the first subflow moved to a close state before accept, e.g. due
2348 	 * to an incoming reset or listener shutdown, the subflow socket is
2349 	 * already deleted by inet_child_forget() and the mptcp socket can't
2350 	 * survive too.
2351 	 */
2352 	if (msk->in_accept_queue && msk->first == ssk &&
2353 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2354 		/* ensure later check in mptcp_worker() will dispose the msk */
2355 		sock_set_flag(sk, SOCK_DEAD);
2356 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2357 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2358 		mptcp_subflow_drop_ctx(ssk);
2359 		goto out_release;
2360 	}
2361 
2362 	dispose_it = msk->free_first || ssk != msk->first;
2363 	if (dispose_it)
2364 		list_del(&subflow->node);
2365 
2366 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2367 
2368 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2369 		/* be sure to force the tcp_close path
2370 		 * to generate the egress reset
2371 		 */
2372 		ssk->sk_lingertime = 0;
2373 		sock_set_flag(ssk, SOCK_LINGER);
2374 		subflow->send_fastclose = 1;
2375 	}
2376 
2377 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2378 	if (!dispose_it) {
2379 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2380 		release_sock(ssk);
2381 
2382 		goto out;
2383 	}
2384 
2385 	subflow->disposable = 1;
2386 
2387 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2388 	 * the ssk has been already destroyed, we just need to release the
2389 	 * reference owned by msk;
2390 	 */
2391 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2392 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2393 		kfree_rcu(subflow, rcu);
2394 	} else {
2395 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2396 		__tcp_close(ssk, 0);
2397 
2398 		/* close acquired an extra ref */
2399 		__sock_put(ssk);
2400 	}
2401 
2402 out_release:
2403 	__mptcp_subflow_error_report(sk, ssk);
2404 	release_sock(ssk);
2405 
2406 	sock_put(ssk);
2407 
2408 	if (ssk == msk->first)
2409 		WRITE_ONCE(msk->first, NULL);
2410 
2411 out:
2412 	__mptcp_sync_sndbuf(sk);
2413 	if (need_push)
2414 		__mptcp_push_pending(sk, 0);
2415 
2416 	/* Catch every 'all subflows closed' scenario, including peers silently
2417 	 * closing them, e.g. due to timeout.
2418 	 * For established sockets, allow an additional timeout before closing,
2419 	 * as the protocol can still create more subflows.
2420 	 */
2421 	if (list_is_singular(&msk->conn_list) && msk->first &&
2422 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2423 		if (sk->sk_state != TCP_ESTABLISHED ||
2424 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2425 			mptcp_set_state(sk, TCP_CLOSE);
2426 			mptcp_close_wake_up(sk);
2427 		} else {
2428 			mptcp_start_tout_timer(sk);
2429 		}
2430 	}
2431 }
2432 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2433 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2434 		     struct mptcp_subflow_context *subflow)
2435 {
2436 	/* The first subflow can already be closed and still in the list */
2437 	if (subflow->close_event_done)
2438 		return;
2439 
2440 	subflow->close_event_done = true;
2441 
2442 	if (sk->sk_state == TCP_ESTABLISHED)
2443 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2444 
2445 	/* subflow aborted before reaching the fully_established status
2446 	 * attempt the creation of the next subflow
2447 	 */
2448 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2449 
2450 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2451 }
2452 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2453 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2454 {
2455 	return 0;
2456 }
2457 
__mptcp_close_subflow(struct sock * sk)2458 static void __mptcp_close_subflow(struct sock *sk)
2459 {
2460 	struct mptcp_subflow_context *subflow, *tmp;
2461 	struct mptcp_sock *msk = mptcp_sk(sk);
2462 
2463 	might_sleep();
2464 
2465 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2466 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2467 		int ssk_state = inet_sk_state_load(ssk);
2468 
2469 		if (ssk_state != TCP_CLOSE &&
2470 		    (ssk_state != TCP_CLOSE_WAIT ||
2471 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2472 			continue;
2473 
2474 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2475 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2476 			continue;
2477 
2478 		mptcp_close_ssk(sk, ssk, subflow);
2479 	}
2480 
2481 }
2482 
mptcp_close_tout_expired(const struct sock * sk)2483 static bool mptcp_close_tout_expired(const struct sock *sk)
2484 {
2485 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2486 	    sk->sk_state == TCP_CLOSE)
2487 		return false;
2488 
2489 	return time_after32(tcp_jiffies32,
2490 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2491 }
2492 
mptcp_check_fastclose(struct mptcp_sock * msk)2493 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2494 {
2495 	struct mptcp_subflow_context *subflow, *tmp;
2496 	struct sock *sk = (struct sock *)msk;
2497 
2498 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2499 		return;
2500 
2501 	mptcp_token_destroy(msk);
2502 
2503 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2504 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2505 		bool slow;
2506 
2507 		slow = lock_sock_fast(tcp_sk);
2508 		if (tcp_sk->sk_state != TCP_CLOSE) {
2509 			mptcp_send_active_reset_reason(tcp_sk);
2510 			tcp_set_state(tcp_sk, TCP_CLOSE);
2511 		}
2512 		unlock_sock_fast(tcp_sk, slow);
2513 	}
2514 
2515 	/* Mirror the tcp_reset() error propagation */
2516 	switch (sk->sk_state) {
2517 	case TCP_SYN_SENT:
2518 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2519 		break;
2520 	case TCP_CLOSE_WAIT:
2521 		WRITE_ONCE(sk->sk_err, EPIPE);
2522 		break;
2523 	case TCP_CLOSE:
2524 		return;
2525 	default:
2526 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2527 	}
2528 
2529 	mptcp_set_state(sk, TCP_CLOSE);
2530 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2531 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2532 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2533 
2534 	/* the calling mptcp_worker will properly destroy the socket */
2535 	if (sock_flag(sk, SOCK_DEAD))
2536 		return;
2537 
2538 	sk->sk_state_change(sk);
2539 	sk_error_report(sk);
2540 }
2541 
__mptcp_retrans(struct sock * sk)2542 static void __mptcp_retrans(struct sock *sk)
2543 {
2544 	struct mptcp_sock *msk = mptcp_sk(sk);
2545 	struct mptcp_subflow_context *subflow;
2546 	struct mptcp_sendmsg_info info = {};
2547 	struct mptcp_data_frag *dfrag;
2548 	struct sock *ssk;
2549 	int ret, err;
2550 	u16 len = 0;
2551 
2552 	mptcp_clean_una_wakeup(sk);
2553 
2554 	/* first check ssk: need to kick "stale" logic */
2555 	err = mptcp_sched_get_retrans(msk);
2556 	dfrag = mptcp_rtx_head(sk);
2557 	if (!dfrag) {
2558 		if (mptcp_data_fin_enabled(msk)) {
2559 			struct inet_connection_sock *icsk = inet_csk(sk);
2560 
2561 			icsk->icsk_retransmits++;
2562 			mptcp_set_datafin_timeout(sk);
2563 			mptcp_send_ack(msk);
2564 
2565 			goto reset_timer;
2566 		}
2567 
2568 		if (!mptcp_send_head(sk))
2569 			return;
2570 
2571 		goto reset_timer;
2572 	}
2573 
2574 	if (err)
2575 		goto reset_timer;
2576 
2577 	mptcp_for_each_subflow(msk, subflow) {
2578 		if (READ_ONCE(subflow->scheduled)) {
2579 			u16 copied = 0;
2580 
2581 			mptcp_subflow_set_scheduled(subflow, false);
2582 
2583 			ssk = mptcp_subflow_tcp_sock(subflow);
2584 
2585 			lock_sock(ssk);
2586 
2587 			/* limit retransmission to the bytes already sent on some subflows */
2588 			info.sent = 0;
2589 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2590 								    dfrag->already_sent;
2591 			while (info.sent < info.limit) {
2592 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2593 				if (ret <= 0)
2594 					break;
2595 
2596 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2597 				copied += ret;
2598 				info.sent += ret;
2599 			}
2600 			if (copied) {
2601 				len = max(copied, len);
2602 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2603 					 info.size_goal);
2604 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2605 			}
2606 
2607 			release_sock(ssk);
2608 		}
2609 	}
2610 
2611 	msk->bytes_retrans += len;
2612 	dfrag->already_sent = max(dfrag->already_sent, len);
2613 
2614 reset_timer:
2615 	mptcp_check_and_set_pending(sk);
2616 
2617 	if (!mptcp_rtx_timer_pending(sk))
2618 		mptcp_reset_rtx_timer(sk);
2619 }
2620 
2621 /* schedule the timeout timer for the relevant event: either close timeout
2622  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2623  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2624 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2625 {
2626 	struct sock *sk = (struct sock *)msk;
2627 	unsigned long timeout, close_timeout;
2628 
2629 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2630 		return;
2631 
2632 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2633 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2634 
2635 	/* the close timeout takes precedence on the fail one, and here at least one of
2636 	 * them is active
2637 	 */
2638 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2639 
2640 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2641 }
2642 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2643 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2644 {
2645 	struct sock *ssk = msk->first;
2646 	bool slow;
2647 
2648 	if (!ssk)
2649 		return;
2650 
2651 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2652 
2653 	slow = lock_sock_fast(ssk);
2654 	mptcp_subflow_reset(ssk);
2655 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2656 	unlock_sock_fast(ssk, slow);
2657 }
2658 
mptcp_do_fastclose(struct sock * sk)2659 static void mptcp_do_fastclose(struct sock *sk)
2660 {
2661 	struct mptcp_subflow_context *subflow, *tmp;
2662 	struct mptcp_sock *msk = mptcp_sk(sk);
2663 
2664 	mptcp_set_state(sk, TCP_CLOSE);
2665 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2666 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2667 				  subflow, MPTCP_CF_FASTCLOSE);
2668 }
2669 
mptcp_worker(struct work_struct * work)2670 static void mptcp_worker(struct work_struct *work)
2671 {
2672 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2673 	struct sock *sk = (struct sock *)msk;
2674 	unsigned long fail_tout;
2675 	int state;
2676 
2677 	lock_sock(sk);
2678 	state = sk->sk_state;
2679 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2680 		goto unlock;
2681 
2682 	mptcp_check_fastclose(msk);
2683 
2684 	mptcp_pm_worker(msk);
2685 
2686 	mptcp_check_send_data_fin(sk);
2687 	mptcp_check_data_fin_ack(sk);
2688 	mptcp_check_data_fin(sk);
2689 
2690 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2691 		__mptcp_close_subflow(sk);
2692 
2693 	if (mptcp_close_tout_expired(sk)) {
2694 		mptcp_do_fastclose(sk);
2695 		mptcp_close_wake_up(sk);
2696 	}
2697 
2698 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2699 		__mptcp_destroy_sock(sk);
2700 		goto unlock;
2701 	}
2702 
2703 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2704 		__mptcp_retrans(sk);
2705 
2706 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2707 	if (fail_tout && time_after(jiffies, fail_tout))
2708 		mptcp_mp_fail_no_response(msk);
2709 
2710 unlock:
2711 	release_sock(sk);
2712 	sock_put(sk);
2713 }
2714 
__mptcp_init_sock(struct sock * sk)2715 static void __mptcp_init_sock(struct sock *sk)
2716 {
2717 	struct mptcp_sock *msk = mptcp_sk(sk);
2718 
2719 	INIT_LIST_HEAD(&msk->conn_list);
2720 	INIT_LIST_HEAD(&msk->join_list);
2721 	INIT_LIST_HEAD(&msk->rtx_queue);
2722 	INIT_WORK(&msk->work, mptcp_worker);
2723 	msk->out_of_order_queue = RB_ROOT;
2724 	msk->first_pending = NULL;
2725 	msk->timer_ival = TCP_RTO_MIN;
2726 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2727 
2728 	WRITE_ONCE(msk->first, NULL);
2729 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2730 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2731 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2732 	msk->recovery = false;
2733 	msk->subflow_id = 1;
2734 	msk->last_data_sent = tcp_jiffies32;
2735 	msk->last_data_recv = tcp_jiffies32;
2736 	msk->last_ack_recv = tcp_jiffies32;
2737 
2738 	mptcp_pm_data_init(msk);
2739 
2740 	/* re-use the csk retrans timer for MPTCP-level retrans */
2741 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2742 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2743 }
2744 
mptcp_ca_reset(struct sock * sk)2745 static void mptcp_ca_reset(struct sock *sk)
2746 {
2747 	struct inet_connection_sock *icsk = inet_csk(sk);
2748 
2749 	tcp_assign_congestion_control(sk);
2750 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2751 		sizeof(mptcp_sk(sk)->ca_name));
2752 
2753 	/* no need to keep a reference to the ops, the name will suffice */
2754 	tcp_cleanup_congestion_control(sk);
2755 	icsk->icsk_ca_ops = NULL;
2756 }
2757 
mptcp_init_sock(struct sock * sk)2758 static int mptcp_init_sock(struct sock *sk)
2759 {
2760 	struct net *net = sock_net(sk);
2761 	int ret;
2762 
2763 	__mptcp_init_sock(sk);
2764 
2765 	if (!mptcp_is_enabled(net))
2766 		return -ENOPROTOOPT;
2767 
2768 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2769 		return -ENOMEM;
2770 
2771 	rcu_read_lock();
2772 	ret = mptcp_init_sched(mptcp_sk(sk),
2773 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2774 	rcu_read_unlock();
2775 	if (ret)
2776 		return ret;
2777 
2778 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2779 
2780 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2781 	 * propagate the correct value
2782 	 */
2783 	mptcp_ca_reset(sk);
2784 
2785 	sk_sockets_allocated_inc(sk);
2786 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2787 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2788 
2789 	return 0;
2790 }
2791 
__mptcp_clear_xmit(struct sock * sk)2792 static void __mptcp_clear_xmit(struct sock *sk)
2793 {
2794 	struct mptcp_sock *msk = mptcp_sk(sk);
2795 	struct mptcp_data_frag *dtmp, *dfrag;
2796 
2797 	WRITE_ONCE(msk->first_pending, NULL);
2798 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2799 		dfrag_clear(sk, dfrag);
2800 }
2801 
mptcp_cancel_work(struct sock * sk)2802 void mptcp_cancel_work(struct sock *sk)
2803 {
2804 	struct mptcp_sock *msk = mptcp_sk(sk);
2805 
2806 	if (cancel_work_sync(&msk->work))
2807 		__sock_put(sk);
2808 }
2809 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2810 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2811 {
2812 	lock_sock(ssk);
2813 
2814 	switch (ssk->sk_state) {
2815 	case TCP_LISTEN:
2816 		if (!(how & RCV_SHUTDOWN))
2817 			break;
2818 		fallthrough;
2819 	case TCP_SYN_SENT:
2820 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2821 		break;
2822 	default:
2823 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2824 			pr_debug("Fallback\n");
2825 			ssk->sk_shutdown |= how;
2826 			tcp_shutdown(ssk, how);
2827 
2828 			/* simulate the data_fin ack reception to let the state
2829 			 * machine move forward
2830 			 */
2831 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2832 			mptcp_schedule_work(sk);
2833 		} else {
2834 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2835 			tcp_send_ack(ssk);
2836 			if (!mptcp_rtx_timer_pending(sk))
2837 				mptcp_reset_rtx_timer(sk);
2838 		}
2839 		break;
2840 	}
2841 
2842 	release_sock(ssk);
2843 }
2844 
mptcp_set_state(struct sock * sk,int state)2845 void mptcp_set_state(struct sock *sk, int state)
2846 {
2847 	int oldstate = sk->sk_state;
2848 
2849 	switch (state) {
2850 	case TCP_ESTABLISHED:
2851 		if (oldstate != TCP_ESTABLISHED)
2852 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2853 		break;
2854 	case TCP_CLOSE_WAIT:
2855 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2856 		 * MPTCP "accepted" sockets will be created later on. So no
2857 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2858 		 */
2859 		break;
2860 	default:
2861 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2862 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2863 	}
2864 
2865 	inet_sk_state_store(sk, state);
2866 }
2867 
2868 static const unsigned char new_state[16] = {
2869 	/* current state:     new state:      action:	*/
2870 	[0 /* (Invalid) */] = TCP_CLOSE,
2871 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2872 	[TCP_SYN_SENT]      = TCP_CLOSE,
2873 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2874 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2875 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2876 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2877 	[TCP_CLOSE]         = TCP_CLOSE,
2878 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2879 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2880 	[TCP_LISTEN]        = TCP_CLOSE,
2881 	[TCP_CLOSING]       = TCP_CLOSING,
2882 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2883 };
2884 
mptcp_close_state(struct sock * sk)2885 static int mptcp_close_state(struct sock *sk)
2886 {
2887 	int next = (int)new_state[sk->sk_state];
2888 	int ns = next & TCP_STATE_MASK;
2889 
2890 	mptcp_set_state(sk, ns);
2891 
2892 	return next & TCP_ACTION_FIN;
2893 }
2894 
mptcp_check_send_data_fin(struct sock * sk)2895 static void mptcp_check_send_data_fin(struct sock *sk)
2896 {
2897 	struct mptcp_subflow_context *subflow;
2898 	struct mptcp_sock *msk = mptcp_sk(sk);
2899 
2900 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2901 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2902 		 msk->snd_nxt, msk->write_seq);
2903 
2904 	/* we still need to enqueue subflows or not really shutting down,
2905 	 * skip this
2906 	 */
2907 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2908 	    mptcp_send_head(sk))
2909 		return;
2910 
2911 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2912 
2913 	mptcp_for_each_subflow(msk, subflow) {
2914 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2915 
2916 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2917 	}
2918 }
2919 
__mptcp_wr_shutdown(struct sock * sk)2920 static void __mptcp_wr_shutdown(struct sock *sk)
2921 {
2922 	struct mptcp_sock *msk = mptcp_sk(sk);
2923 
2924 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2925 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2926 		 !!mptcp_send_head(sk));
2927 
2928 	/* will be ignored by fallback sockets */
2929 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2930 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2931 
2932 	mptcp_check_send_data_fin(sk);
2933 }
2934 
__mptcp_destroy_sock(struct sock * sk)2935 static void __mptcp_destroy_sock(struct sock *sk)
2936 {
2937 	struct mptcp_sock *msk = mptcp_sk(sk);
2938 
2939 	pr_debug("msk=%p\n", msk);
2940 
2941 	might_sleep();
2942 
2943 	mptcp_stop_rtx_timer(sk);
2944 	sk_stop_timer(sk, &sk->sk_timer);
2945 	msk->pm.status = 0;
2946 	mptcp_release_sched(msk);
2947 
2948 	sk->sk_prot->destroy(sk);
2949 
2950 	sk_stream_kill_queues(sk);
2951 	xfrm_sk_free_policy(sk);
2952 
2953 	sock_put(sk);
2954 }
2955 
__mptcp_unaccepted_force_close(struct sock * sk)2956 void __mptcp_unaccepted_force_close(struct sock *sk)
2957 {
2958 	sock_set_flag(sk, SOCK_DEAD);
2959 	mptcp_do_fastclose(sk);
2960 	__mptcp_destroy_sock(sk);
2961 }
2962 
mptcp_check_readable(struct sock * sk)2963 static __poll_t mptcp_check_readable(struct sock *sk)
2964 {
2965 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2966 }
2967 
mptcp_check_listen_stop(struct sock * sk)2968 static void mptcp_check_listen_stop(struct sock *sk)
2969 {
2970 	struct sock *ssk;
2971 
2972 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2973 		return;
2974 
2975 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2976 	ssk = mptcp_sk(sk)->first;
2977 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2978 		return;
2979 
2980 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2981 	tcp_set_state(ssk, TCP_CLOSE);
2982 	mptcp_subflow_queue_clean(sk, ssk);
2983 	inet_csk_listen_stop(ssk);
2984 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2985 	release_sock(ssk);
2986 }
2987 
__mptcp_close(struct sock * sk,long timeout)2988 bool __mptcp_close(struct sock *sk, long timeout)
2989 {
2990 	struct mptcp_subflow_context *subflow;
2991 	struct mptcp_sock *msk = mptcp_sk(sk);
2992 	bool do_cancel_work = false;
2993 	int subflows_alive = 0;
2994 
2995 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2996 
2997 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2998 		mptcp_check_listen_stop(sk);
2999 		mptcp_set_state(sk, TCP_CLOSE);
3000 		goto cleanup;
3001 	}
3002 
3003 	if (mptcp_data_avail(msk) || timeout < 0) {
3004 		/* If the msk has read data, or the caller explicitly ask it,
3005 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3006 		 */
3007 		mptcp_do_fastclose(sk);
3008 		timeout = 0;
3009 	} else if (mptcp_close_state(sk)) {
3010 		__mptcp_wr_shutdown(sk);
3011 	}
3012 
3013 	sk_stream_wait_close(sk, timeout);
3014 
3015 cleanup:
3016 	/* orphan all the subflows */
3017 	mptcp_for_each_subflow(msk, subflow) {
3018 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3019 		bool slow = lock_sock_fast_nested(ssk);
3020 
3021 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3022 
3023 		/* since the close timeout takes precedence on the fail one,
3024 		 * cancel the latter
3025 		 */
3026 		if (ssk == msk->first)
3027 			subflow->fail_tout = 0;
3028 
3029 		/* detach from the parent socket, but allow data_ready to
3030 		 * push incoming data into the mptcp stack, to properly ack it
3031 		 */
3032 		ssk->sk_socket = NULL;
3033 		ssk->sk_wq = NULL;
3034 		unlock_sock_fast(ssk, slow);
3035 	}
3036 	sock_orphan(sk);
3037 
3038 	/* all the subflows are closed, only timeout can change the msk
3039 	 * state, let's not keep resources busy for no reasons
3040 	 */
3041 	if (subflows_alive == 0)
3042 		mptcp_set_state(sk, TCP_CLOSE);
3043 
3044 	sock_hold(sk);
3045 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3046 	mptcp_pm_connection_closed(msk);
3047 
3048 	if (sk->sk_state == TCP_CLOSE) {
3049 		__mptcp_destroy_sock(sk);
3050 		do_cancel_work = true;
3051 	} else {
3052 		mptcp_start_tout_timer(sk);
3053 	}
3054 
3055 	return do_cancel_work;
3056 }
3057 
mptcp_close(struct sock * sk,long timeout)3058 static void mptcp_close(struct sock *sk, long timeout)
3059 {
3060 	bool do_cancel_work;
3061 
3062 	lock_sock(sk);
3063 
3064 	do_cancel_work = __mptcp_close(sk, timeout);
3065 	release_sock(sk);
3066 	if (do_cancel_work)
3067 		mptcp_cancel_work(sk);
3068 
3069 	sock_put(sk);
3070 }
3071 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3072 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3073 {
3074 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3075 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3076 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3077 
3078 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3079 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3080 
3081 	if (msk6 && ssk6) {
3082 		msk6->saddr = ssk6->saddr;
3083 		msk6->flow_label = ssk6->flow_label;
3084 	}
3085 #endif
3086 
3087 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3088 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3089 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3090 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3091 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3092 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3093 }
3094 
mptcp_disconnect(struct sock * sk,int flags)3095 static int mptcp_disconnect(struct sock *sk, int flags)
3096 {
3097 	struct mptcp_sock *msk = mptcp_sk(sk);
3098 
3099 	/* We are on the fastopen error path. We can't call straight into the
3100 	 * subflows cleanup code due to lock nesting (we are already under
3101 	 * msk->firstsocket lock).
3102 	 */
3103 	if (msk->fastopening)
3104 		return -EBUSY;
3105 
3106 	mptcp_check_listen_stop(sk);
3107 	mptcp_set_state(sk, TCP_CLOSE);
3108 
3109 	mptcp_stop_rtx_timer(sk);
3110 	mptcp_stop_tout_timer(sk);
3111 
3112 	mptcp_pm_connection_closed(msk);
3113 
3114 	/* msk->subflow is still intact, the following will not free the first
3115 	 * subflow
3116 	 */
3117 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3118 	WRITE_ONCE(msk->flags, 0);
3119 	msk->cb_flags = 0;
3120 	msk->recovery = false;
3121 	WRITE_ONCE(msk->can_ack, false);
3122 	WRITE_ONCE(msk->fully_established, false);
3123 	WRITE_ONCE(msk->rcv_data_fin, false);
3124 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3125 	WRITE_ONCE(msk->rcv_fastclose, false);
3126 	WRITE_ONCE(msk->use_64bit_ack, false);
3127 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3128 	mptcp_pm_data_reset(msk);
3129 	mptcp_ca_reset(sk);
3130 	msk->bytes_consumed = 0;
3131 	msk->bytes_acked = 0;
3132 	msk->bytes_received = 0;
3133 	msk->bytes_sent = 0;
3134 	msk->bytes_retrans = 0;
3135 	msk->rcvspace_init = 0;
3136 
3137 	WRITE_ONCE(sk->sk_shutdown, 0);
3138 	sk_error_report(sk);
3139 	return 0;
3140 }
3141 
3142 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3143 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3144 {
3145 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3146 
3147 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3148 }
3149 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3150 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3151 {
3152 	const struct ipv6_pinfo *np = inet6_sk(sk);
3153 	struct ipv6_txoptions *opt;
3154 	struct ipv6_pinfo *newnp;
3155 
3156 	newnp = inet6_sk(newsk);
3157 
3158 	rcu_read_lock();
3159 	opt = rcu_dereference(np->opt);
3160 	if (opt) {
3161 		opt = ipv6_dup_options(newsk, opt);
3162 		if (!opt)
3163 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3164 	}
3165 	RCU_INIT_POINTER(newnp->opt, opt);
3166 	rcu_read_unlock();
3167 }
3168 #endif
3169 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3170 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3171 {
3172 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3173 	const struct inet_sock *inet = inet_sk(sk);
3174 	struct inet_sock *newinet;
3175 
3176 	newinet = inet_sk(newsk);
3177 
3178 	rcu_read_lock();
3179 	inet_opt = rcu_dereference(inet->inet_opt);
3180 	if (inet_opt) {
3181 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3182 				      inet_opt->opt.optlen, GFP_ATOMIC);
3183 		if (!newopt)
3184 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3185 	}
3186 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3187 	rcu_read_unlock();
3188 }
3189 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3190 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3191 				 const struct mptcp_options_received *mp_opt,
3192 				 struct sock *ssk,
3193 				 struct request_sock *req)
3194 {
3195 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3196 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3197 	struct mptcp_subflow_context *subflow;
3198 	struct mptcp_sock *msk;
3199 
3200 	if (!nsk)
3201 		return NULL;
3202 
3203 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3204 	if (nsk->sk_family == AF_INET6)
3205 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3206 #endif
3207 
3208 	__mptcp_init_sock(nsk);
3209 
3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3211 	if (nsk->sk_family == AF_INET6)
3212 		mptcp_copy_ip6_options(nsk, sk);
3213 	else
3214 #endif
3215 		mptcp_copy_ip_options(nsk, sk);
3216 
3217 	msk = mptcp_sk(nsk);
3218 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3219 	WRITE_ONCE(msk->token, subflow_req->token);
3220 	msk->in_accept_queue = 1;
3221 	WRITE_ONCE(msk->fully_established, false);
3222 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3223 		WRITE_ONCE(msk->csum_enabled, true);
3224 
3225 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3226 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3227 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3228 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3229 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3230 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3231 
3232 	/* passive msk is created after the first/MPC subflow */
3233 	msk->subflow_id = 2;
3234 
3235 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3236 	security_inet_csk_clone(nsk, req);
3237 
3238 	/* this can't race with mptcp_close(), as the msk is
3239 	 * not yet exposted to user-space
3240 	 */
3241 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3242 
3243 	/* The msk maintain a ref to each subflow in the connections list */
3244 	WRITE_ONCE(msk->first, ssk);
3245 	subflow = mptcp_subflow_ctx(ssk);
3246 	list_add(&subflow->node, &msk->conn_list);
3247 	sock_hold(ssk);
3248 
3249 	/* new mpc subflow takes ownership of the newly
3250 	 * created mptcp socket
3251 	 */
3252 	mptcp_token_accept(subflow_req, msk);
3253 
3254 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3255 	 * uses the correct data
3256 	 */
3257 	mptcp_copy_inaddrs(nsk, ssk);
3258 	__mptcp_propagate_sndbuf(nsk, ssk);
3259 
3260 	mptcp_rcv_space_init(msk, ssk);
3261 
3262 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3263 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3264 	bh_unlock_sock(nsk);
3265 
3266 	/* note: the newly allocated socket refcount is 2 now */
3267 	return nsk;
3268 }
3269 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3270 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3271 {
3272 	const struct tcp_sock *tp = tcp_sk(ssk);
3273 
3274 	msk->rcvspace_init = 1;
3275 	msk->rcvq_space.copied = 0;
3276 	msk->rcvq_space.rtt_us = 0;
3277 
3278 	msk->rcvq_space.time = tp->tcp_mstamp;
3279 
3280 	/* initial rcv_space offering made to peer */
3281 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3282 				      TCP_INIT_CWND * tp->advmss);
3283 	if (msk->rcvq_space.space == 0)
3284 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3285 }
3286 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3287 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3288 {
3289 	struct mptcp_subflow_context *subflow, *tmp;
3290 	struct sock *sk = (struct sock *)msk;
3291 
3292 	__mptcp_clear_xmit(sk);
3293 
3294 	/* join list will be eventually flushed (with rst) at sock lock release time */
3295 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3296 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3297 
3298 	__skb_queue_purge(&sk->sk_receive_queue);
3299 	skb_rbtree_purge(&msk->out_of_order_queue);
3300 
3301 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3302 	 * inet_sock_destruct() will dispose it
3303 	 */
3304 	mptcp_token_destroy(msk);
3305 	mptcp_pm_destroy(msk);
3306 }
3307 
mptcp_destroy(struct sock * sk)3308 static void mptcp_destroy(struct sock *sk)
3309 {
3310 	struct mptcp_sock *msk = mptcp_sk(sk);
3311 
3312 	/* allow the following to close even the initial subflow */
3313 	msk->free_first = 1;
3314 	mptcp_destroy_common(msk, 0);
3315 	sk_sockets_allocated_dec(sk);
3316 }
3317 
__mptcp_data_acked(struct sock * sk)3318 void __mptcp_data_acked(struct sock *sk)
3319 {
3320 	if (!sock_owned_by_user(sk))
3321 		__mptcp_clean_una(sk);
3322 	else
3323 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3324 }
3325 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3326 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3327 {
3328 	if (!mptcp_send_head(sk))
3329 		return;
3330 
3331 	if (!sock_owned_by_user(sk))
3332 		__mptcp_subflow_push_pending(sk, ssk, false);
3333 	else
3334 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3335 }
3336 
3337 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3338 				      BIT(MPTCP_RETRANSMIT) | \
3339 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3340 				      BIT(MPTCP_DEQUEUE))
3341 
3342 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3343 static void mptcp_release_cb(struct sock *sk)
3344 	__must_hold(&sk->sk_lock.slock)
3345 {
3346 	struct mptcp_sock *msk = mptcp_sk(sk);
3347 
3348 	for (;;) {
3349 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3350 		struct list_head join_list;
3351 
3352 		if (!flags)
3353 			break;
3354 
3355 		INIT_LIST_HEAD(&join_list);
3356 		list_splice_init(&msk->join_list, &join_list);
3357 
3358 		/* the following actions acquire the subflow socket lock
3359 		 *
3360 		 * 1) can't be invoked in atomic scope
3361 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3362 		 *    datapath acquires the msk socket spinlock while helding
3363 		 *    the subflow socket lock
3364 		 */
3365 		msk->cb_flags &= ~flags;
3366 		spin_unlock_bh(&sk->sk_lock.slock);
3367 
3368 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3369 			__mptcp_flush_join_list(sk, &join_list);
3370 		if (flags & BIT(MPTCP_PUSH_PENDING))
3371 			__mptcp_push_pending(sk, 0);
3372 		if (flags & BIT(MPTCP_RETRANSMIT))
3373 			__mptcp_retrans(sk);
3374 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3375 			/* notify ack seq update */
3376 			mptcp_cleanup_rbuf(msk, 0);
3377 			sk->sk_data_ready(sk);
3378 		}
3379 
3380 		cond_resched();
3381 		spin_lock_bh(&sk->sk_lock.slock);
3382 	}
3383 
3384 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3385 		__mptcp_clean_una_wakeup(sk);
3386 	if (unlikely(msk->cb_flags)) {
3387 		/* be sure to sync the msk state before taking actions
3388 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3389 		 * On sk release avoid actions depending on the first subflow
3390 		 */
3391 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3392 			__mptcp_sync_state(sk, msk->pending_state);
3393 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3394 			__mptcp_error_report(sk);
3395 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3396 			__mptcp_sync_sndbuf(sk);
3397 	}
3398 }
3399 
3400 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3401  * TCP can't schedule delack timer before the subflow is fully established.
3402  * MPTCP uses the delack timer to do 3rd ack retransmissions
3403  */
schedule_3rdack_retransmission(struct sock * ssk)3404 static void schedule_3rdack_retransmission(struct sock *ssk)
3405 {
3406 	struct inet_connection_sock *icsk = inet_csk(ssk);
3407 	struct tcp_sock *tp = tcp_sk(ssk);
3408 	unsigned long timeout;
3409 
3410 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3411 		return;
3412 
3413 	/* reschedule with a timeout above RTT, as we must look only for drop */
3414 	if (tp->srtt_us)
3415 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3416 	else
3417 		timeout = TCP_TIMEOUT_INIT;
3418 	timeout += jiffies;
3419 
3420 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3421 	smp_store_release(&icsk->icsk_ack.pending,
3422 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3423 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3424 }
3425 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3426 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3427 {
3428 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3429 	struct sock *sk = subflow->conn;
3430 
3431 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3432 		mptcp_data_lock(sk);
3433 		if (!sock_owned_by_user(sk))
3434 			__mptcp_subflow_push_pending(sk, ssk, true);
3435 		else
3436 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3437 		mptcp_data_unlock(sk);
3438 	}
3439 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3440 		mptcp_data_lock(sk);
3441 		if (!sock_owned_by_user(sk))
3442 			__mptcp_sync_sndbuf(sk);
3443 		else
3444 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3445 		mptcp_data_unlock(sk);
3446 	}
3447 	if (status & BIT(MPTCP_DELEGATE_ACK))
3448 		schedule_3rdack_retransmission(ssk);
3449 }
3450 
mptcp_hash(struct sock * sk)3451 static int mptcp_hash(struct sock *sk)
3452 {
3453 	/* should never be called,
3454 	 * we hash the TCP subflows not the MPTCP socket
3455 	 */
3456 	WARN_ON_ONCE(1);
3457 	return 0;
3458 }
3459 
mptcp_unhash(struct sock * sk)3460 static void mptcp_unhash(struct sock *sk)
3461 {
3462 	/* called from sk_common_release(), but nothing to do here */
3463 }
3464 
mptcp_get_port(struct sock * sk,unsigned short snum)3465 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3466 {
3467 	struct mptcp_sock *msk = mptcp_sk(sk);
3468 
3469 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3470 	if (WARN_ON_ONCE(!msk->first))
3471 		return -EINVAL;
3472 
3473 	return inet_csk_get_port(msk->first, snum);
3474 }
3475 
mptcp_finish_connect(struct sock * ssk)3476 void mptcp_finish_connect(struct sock *ssk)
3477 {
3478 	struct mptcp_subflow_context *subflow;
3479 	struct mptcp_sock *msk;
3480 	struct sock *sk;
3481 
3482 	subflow = mptcp_subflow_ctx(ssk);
3483 	sk = subflow->conn;
3484 	msk = mptcp_sk(sk);
3485 
3486 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3487 
3488 	subflow->map_seq = subflow->iasn;
3489 	subflow->map_subflow_seq = 1;
3490 
3491 	/* the socket is not connected yet, no msk/subflow ops can access/race
3492 	 * accessing the field below
3493 	 */
3494 	WRITE_ONCE(msk->local_key, subflow->local_key);
3495 
3496 	mptcp_pm_new_connection(msk, ssk, 0);
3497 }
3498 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3499 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3500 {
3501 	write_lock_bh(&sk->sk_callback_lock);
3502 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3503 	sk_set_socket(sk, parent);
3504 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3505 	write_unlock_bh(&sk->sk_callback_lock);
3506 }
3507 
mptcp_finish_join(struct sock * ssk)3508 bool mptcp_finish_join(struct sock *ssk)
3509 {
3510 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3511 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3512 	struct sock *parent = (void *)msk;
3513 	bool ret = true;
3514 
3515 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3516 
3517 	/* mptcp socket already closing? */
3518 	if (!mptcp_is_fully_established(parent)) {
3519 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3520 		return false;
3521 	}
3522 
3523 	/* active subflow, already present inside the conn_list */
3524 	if (!list_empty(&subflow->node)) {
3525 		mptcp_subflow_joined(msk, ssk);
3526 		mptcp_propagate_sndbuf(parent, ssk);
3527 		return true;
3528 	}
3529 
3530 	if (!mptcp_pm_allow_new_subflow(msk))
3531 		goto err_prohibited;
3532 
3533 	/* If we can't acquire msk socket lock here, let the release callback
3534 	 * handle it
3535 	 */
3536 	mptcp_data_lock(parent);
3537 	if (!sock_owned_by_user(parent)) {
3538 		ret = __mptcp_finish_join(msk, ssk);
3539 		if (ret) {
3540 			sock_hold(ssk);
3541 			list_add_tail(&subflow->node, &msk->conn_list);
3542 		}
3543 	} else {
3544 		sock_hold(ssk);
3545 		list_add_tail(&subflow->node, &msk->join_list);
3546 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3547 	}
3548 	mptcp_data_unlock(parent);
3549 
3550 	if (!ret) {
3551 err_prohibited:
3552 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3553 		return false;
3554 	}
3555 
3556 	return true;
3557 }
3558 
mptcp_shutdown(struct sock * sk,int how)3559 static void mptcp_shutdown(struct sock *sk, int how)
3560 {
3561 	pr_debug("sk=%p, how=%d\n", sk, how);
3562 
3563 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3564 		__mptcp_wr_shutdown(sk);
3565 }
3566 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3567 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3568 {
3569 	const struct sock *sk = (void *)msk;
3570 	u64 delta;
3571 
3572 	if (sk->sk_state == TCP_LISTEN)
3573 		return -EINVAL;
3574 
3575 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3576 		return 0;
3577 
3578 	delta = msk->write_seq - v;
3579 	if (__mptcp_check_fallback(msk) && msk->first) {
3580 		struct tcp_sock *tp = tcp_sk(msk->first);
3581 
3582 		/* the first subflow is disconnected after close - see
3583 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3584 		 * so ignore that status, too.
3585 		 */
3586 		if (!((1 << msk->first->sk_state) &
3587 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3588 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3589 	}
3590 	if (delta > INT_MAX)
3591 		delta = INT_MAX;
3592 
3593 	return (int)delta;
3594 }
3595 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3596 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3597 {
3598 	struct mptcp_sock *msk = mptcp_sk(sk);
3599 	bool slow;
3600 
3601 	switch (cmd) {
3602 	case SIOCINQ:
3603 		if (sk->sk_state == TCP_LISTEN)
3604 			return -EINVAL;
3605 
3606 		lock_sock(sk);
3607 		if (__mptcp_move_skbs(sk))
3608 			mptcp_cleanup_rbuf(msk, 0);
3609 		*karg = mptcp_inq_hint(sk);
3610 		release_sock(sk);
3611 		break;
3612 	case SIOCOUTQ:
3613 		slow = lock_sock_fast(sk);
3614 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3615 		unlock_sock_fast(sk, slow);
3616 		break;
3617 	case SIOCOUTQNSD:
3618 		slow = lock_sock_fast(sk);
3619 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3620 		unlock_sock_fast(sk, slow);
3621 		break;
3622 	default:
3623 		return -ENOIOCTLCMD;
3624 	}
3625 
3626 	return 0;
3627 }
3628 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3629 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3630 {
3631 	struct mptcp_subflow_context *subflow;
3632 	struct mptcp_sock *msk = mptcp_sk(sk);
3633 	int err = -EINVAL;
3634 	struct sock *ssk;
3635 
3636 	ssk = __mptcp_nmpc_sk(msk);
3637 	if (IS_ERR(ssk))
3638 		return PTR_ERR(ssk);
3639 
3640 	mptcp_set_state(sk, TCP_SYN_SENT);
3641 	subflow = mptcp_subflow_ctx(ssk);
3642 #ifdef CONFIG_TCP_MD5SIG
3643 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3644 	 * TCP option space.
3645 	 */
3646 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3647 		mptcp_subflow_early_fallback(msk, subflow);
3648 #endif
3649 	if (subflow->request_mptcp) {
3650 		if (mptcp_active_should_disable(sk)) {
3651 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3652 			mptcp_subflow_early_fallback(msk, subflow);
3653 		} else if (mptcp_token_new_connect(ssk) < 0) {
3654 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3655 			mptcp_subflow_early_fallback(msk, subflow);
3656 		}
3657 	}
3658 
3659 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3660 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3661 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3662 	if (likely(!__mptcp_check_fallback(msk)))
3663 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3664 
3665 	/* if reaching here via the fastopen/sendmsg path, the caller already
3666 	 * acquired the subflow socket lock, too.
3667 	 */
3668 	if (!msk->fastopening)
3669 		lock_sock(ssk);
3670 
3671 	/* the following mirrors closely a very small chunk of code from
3672 	 * __inet_stream_connect()
3673 	 */
3674 	if (ssk->sk_state != TCP_CLOSE)
3675 		goto out;
3676 
3677 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3678 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3679 		if (err)
3680 			goto out;
3681 	}
3682 
3683 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3684 	if (err < 0)
3685 		goto out;
3686 
3687 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3688 
3689 out:
3690 	if (!msk->fastopening)
3691 		release_sock(ssk);
3692 
3693 	/* on successful connect, the msk state will be moved to established by
3694 	 * subflow_finish_connect()
3695 	 */
3696 	if (unlikely(err)) {
3697 		/* avoid leaving a dangling token in an unconnected socket */
3698 		mptcp_token_destroy(msk);
3699 		mptcp_set_state(sk, TCP_CLOSE);
3700 		return err;
3701 	}
3702 
3703 	mptcp_copy_inaddrs(sk, ssk);
3704 	return 0;
3705 }
3706 
3707 static struct proto mptcp_prot = {
3708 	.name		= "MPTCP",
3709 	.owner		= THIS_MODULE,
3710 	.init		= mptcp_init_sock,
3711 	.connect	= mptcp_connect,
3712 	.disconnect	= mptcp_disconnect,
3713 	.close		= mptcp_close,
3714 	.setsockopt	= mptcp_setsockopt,
3715 	.getsockopt	= mptcp_getsockopt,
3716 	.shutdown	= mptcp_shutdown,
3717 	.destroy	= mptcp_destroy,
3718 	.sendmsg	= mptcp_sendmsg,
3719 	.ioctl		= mptcp_ioctl,
3720 	.recvmsg	= mptcp_recvmsg,
3721 	.release_cb	= mptcp_release_cb,
3722 	.hash		= mptcp_hash,
3723 	.unhash		= mptcp_unhash,
3724 	.get_port	= mptcp_get_port,
3725 	.stream_memory_free	= mptcp_stream_memory_free,
3726 	.sockets_allocated	= &mptcp_sockets_allocated,
3727 
3728 	.memory_allocated	= &tcp_memory_allocated,
3729 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3730 
3731 	.memory_pressure	= &tcp_memory_pressure,
3732 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3733 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3734 	.sysctl_mem	= sysctl_tcp_mem,
3735 	.obj_size	= sizeof(struct mptcp_sock),
3736 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3737 	.no_autobind	= true,
3738 };
3739 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3740 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3741 {
3742 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3743 	struct sock *ssk, *sk = sock->sk;
3744 	int err = -EINVAL;
3745 
3746 	lock_sock(sk);
3747 	ssk = __mptcp_nmpc_sk(msk);
3748 	if (IS_ERR(ssk)) {
3749 		err = PTR_ERR(ssk);
3750 		goto unlock;
3751 	}
3752 
3753 	if (sk->sk_family == AF_INET)
3754 		err = inet_bind_sk(ssk, uaddr, addr_len);
3755 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3756 	else if (sk->sk_family == AF_INET6)
3757 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3758 #endif
3759 	if (!err)
3760 		mptcp_copy_inaddrs(sk, ssk);
3761 
3762 unlock:
3763 	release_sock(sk);
3764 	return err;
3765 }
3766 
mptcp_listen(struct socket * sock,int backlog)3767 static int mptcp_listen(struct socket *sock, int backlog)
3768 {
3769 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3770 	struct sock *sk = sock->sk;
3771 	struct sock *ssk;
3772 	int err;
3773 
3774 	pr_debug("msk=%p\n", msk);
3775 
3776 	lock_sock(sk);
3777 
3778 	err = -EINVAL;
3779 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3780 		goto unlock;
3781 
3782 	ssk = __mptcp_nmpc_sk(msk);
3783 	if (IS_ERR(ssk)) {
3784 		err = PTR_ERR(ssk);
3785 		goto unlock;
3786 	}
3787 
3788 	mptcp_set_state(sk, TCP_LISTEN);
3789 	sock_set_flag(sk, SOCK_RCU_FREE);
3790 
3791 	lock_sock(ssk);
3792 	err = __inet_listen_sk(ssk, backlog);
3793 	release_sock(ssk);
3794 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3795 
3796 	if (!err) {
3797 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3798 		mptcp_copy_inaddrs(sk, ssk);
3799 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3800 	}
3801 
3802 unlock:
3803 	release_sock(sk);
3804 	return err;
3805 }
3806 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3807 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3808 			       struct proto_accept_arg *arg)
3809 {
3810 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3811 	struct sock *ssk, *newsk;
3812 
3813 	pr_debug("msk=%p\n", msk);
3814 
3815 	/* Buggy applications can call accept on socket states other then LISTEN
3816 	 * but no need to allocate the first subflow just to error out.
3817 	 */
3818 	ssk = READ_ONCE(msk->first);
3819 	if (!ssk)
3820 		return -EINVAL;
3821 
3822 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3823 	newsk = inet_csk_accept(ssk, arg);
3824 	if (!newsk)
3825 		return arg->err;
3826 
3827 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3828 	if (sk_is_mptcp(newsk)) {
3829 		struct mptcp_subflow_context *subflow;
3830 		struct sock *new_mptcp_sock;
3831 
3832 		subflow = mptcp_subflow_ctx(newsk);
3833 		new_mptcp_sock = subflow->conn;
3834 
3835 		/* is_mptcp should be false if subflow->conn is missing, see
3836 		 * subflow_syn_recv_sock()
3837 		 */
3838 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3839 			tcp_sk(newsk)->is_mptcp = 0;
3840 			goto tcpfallback;
3841 		}
3842 
3843 		newsk = new_mptcp_sock;
3844 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3845 
3846 		newsk->sk_kern_sock = arg->kern;
3847 		lock_sock(newsk);
3848 		__inet_accept(sock, newsock, newsk);
3849 
3850 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3851 		msk = mptcp_sk(newsk);
3852 		msk->in_accept_queue = 0;
3853 
3854 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3855 		 * This is needed so NOSPACE flag can be set from tcp stack.
3856 		 */
3857 		mptcp_for_each_subflow(msk, subflow) {
3858 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3859 
3860 			if (!ssk->sk_socket)
3861 				mptcp_sock_graft(ssk, newsock);
3862 		}
3863 
3864 		/* Do late cleanup for the first subflow as necessary. Also
3865 		 * deal with bad peers not doing a complete shutdown.
3866 		 */
3867 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3868 			__mptcp_close_ssk(newsk, msk->first,
3869 					  mptcp_subflow_ctx(msk->first), 0);
3870 			if (unlikely(list_is_singular(&msk->conn_list)))
3871 				mptcp_set_state(newsk, TCP_CLOSE);
3872 		}
3873 	} else {
3874 tcpfallback:
3875 		newsk->sk_kern_sock = arg->kern;
3876 		lock_sock(newsk);
3877 		__inet_accept(sock, newsock, newsk);
3878 		/* we are being invoked after accepting a non-mp-capable
3879 		 * flow: sk is a tcp_sk, not an mptcp one.
3880 		 *
3881 		 * Hand the socket over to tcp so all further socket ops
3882 		 * bypass mptcp.
3883 		 */
3884 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3885 			   mptcp_fallback_tcp_ops(newsock->sk));
3886 	}
3887 	release_sock(newsk);
3888 
3889 	return 0;
3890 }
3891 
mptcp_check_writeable(struct mptcp_sock * msk)3892 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3893 {
3894 	struct sock *sk = (struct sock *)msk;
3895 
3896 	if (__mptcp_stream_is_writeable(sk, 1))
3897 		return EPOLLOUT | EPOLLWRNORM;
3898 
3899 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3900 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3901 	if (__mptcp_stream_is_writeable(sk, 1))
3902 		return EPOLLOUT | EPOLLWRNORM;
3903 
3904 	return 0;
3905 }
3906 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3907 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3908 			   struct poll_table_struct *wait)
3909 {
3910 	struct sock *sk = sock->sk;
3911 	struct mptcp_sock *msk;
3912 	__poll_t mask = 0;
3913 	u8 shutdown;
3914 	int state;
3915 
3916 	msk = mptcp_sk(sk);
3917 	sock_poll_wait(file, sock, wait);
3918 
3919 	state = inet_sk_state_load(sk);
3920 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3921 	if (state == TCP_LISTEN) {
3922 		struct sock *ssk = READ_ONCE(msk->first);
3923 
3924 		if (WARN_ON_ONCE(!ssk))
3925 			return 0;
3926 
3927 		return inet_csk_listen_poll(ssk);
3928 	}
3929 
3930 	shutdown = READ_ONCE(sk->sk_shutdown);
3931 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3932 		mask |= EPOLLHUP;
3933 	if (shutdown & RCV_SHUTDOWN)
3934 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3935 
3936 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3937 		mask |= mptcp_check_readable(sk);
3938 		if (shutdown & SEND_SHUTDOWN)
3939 			mask |= EPOLLOUT | EPOLLWRNORM;
3940 		else
3941 			mask |= mptcp_check_writeable(msk);
3942 	} else if (state == TCP_SYN_SENT &&
3943 		   inet_test_bit(DEFER_CONNECT, sk)) {
3944 		/* cf tcp_poll() note about TFO */
3945 		mask |= EPOLLOUT | EPOLLWRNORM;
3946 	}
3947 
3948 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3949 	smp_rmb();
3950 	if (READ_ONCE(sk->sk_err))
3951 		mask |= EPOLLERR;
3952 
3953 	return mask;
3954 }
3955 
3956 static const struct proto_ops mptcp_stream_ops = {
3957 	.family		   = PF_INET,
3958 	.owner		   = THIS_MODULE,
3959 	.release	   = inet_release,
3960 	.bind		   = mptcp_bind,
3961 	.connect	   = inet_stream_connect,
3962 	.socketpair	   = sock_no_socketpair,
3963 	.accept		   = mptcp_stream_accept,
3964 	.getname	   = inet_getname,
3965 	.poll		   = mptcp_poll,
3966 	.ioctl		   = inet_ioctl,
3967 	.gettstamp	   = sock_gettstamp,
3968 	.listen		   = mptcp_listen,
3969 	.shutdown	   = inet_shutdown,
3970 	.setsockopt	   = sock_common_setsockopt,
3971 	.getsockopt	   = sock_common_getsockopt,
3972 	.sendmsg	   = inet_sendmsg,
3973 	.recvmsg	   = inet_recvmsg,
3974 	.mmap		   = sock_no_mmap,
3975 	.set_rcvlowat	   = mptcp_set_rcvlowat,
3976 };
3977 
3978 static struct inet_protosw mptcp_protosw = {
3979 	.type		= SOCK_STREAM,
3980 	.protocol	= IPPROTO_MPTCP,
3981 	.prot		= &mptcp_prot,
3982 	.ops		= &mptcp_stream_ops,
3983 	.flags		= INET_PROTOSW_ICSK,
3984 };
3985 
mptcp_napi_poll(struct napi_struct * napi,int budget)3986 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3987 {
3988 	struct mptcp_delegated_action *delegated;
3989 	struct mptcp_subflow_context *subflow;
3990 	int work_done = 0;
3991 
3992 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3993 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3994 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3995 
3996 		bh_lock_sock_nested(ssk);
3997 		if (!sock_owned_by_user(ssk)) {
3998 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3999 		} else {
4000 			/* tcp_release_cb_override already processed
4001 			 * the action or will do at next release_sock().
4002 			 * In both case must dequeue the subflow here - on the same
4003 			 * CPU that scheduled it.
4004 			 */
4005 			smp_wmb();
4006 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4007 		}
4008 		bh_unlock_sock(ssk);
4009 		sock_put(ssk);
4010 
4011 		if (++work_done == budget)
4012 			return budget;
4013 	}
4014 
4015 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4016 	 * will not try accessing the NULL napi->dev ptr
4017 	 */
4018 	napi_complete_done(napi, 0);
4019 	return work_done;
4020 }
4021 
mptcp_proto_init(void)4022 void __init mptcp_proto_init(void)
4023 {
4024 	struct mptcp_delegated_action *delegated;
4025 	int cpu;
4026 
4027 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4028 
4029 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4030 		panic("Failed to allocate MPTCP pcpu counter\n");
4031 
4032 	mptcp_napi_dev = alloc_netdev_dummy(0);
4033 	if (!mptcp_napi_dev)
4034 		panic("Failed to allocate MPTCP dummy netdev\n");
4035 	for_each_possible_cpu(cpu) {
4036 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4037 		INIT_LIST_HEAD(&delegated->head);
4038 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4039 				  mptcp_napi_poll);
4040 		napi_enable(&delegated->napi);
4041 	}
4042 
4043 	mptcp_subflow_init();
4044 	mptcp_pm_init();
4045 	mptcp_sched_init();
4046 	mptcp_token_init();
4047 
4048 	if (proto_register(&mptcp_prot, 1) != 0)
4049 		panic("Failed to register MPTCP proto.\n");
4050 
4051 	inet_register_protosw(&mptcp_protosw);
4052 
4053 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4054 }
4055 
4056 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4057 static const struct proto_ops mptcp_v6_stream_ops = {
4058 	.family		   = PF_INET6,
4059 	.owner		   = THIS_MODULE,
4060 	.release	   = inet6_release,
4061 	.bind		   = mptcp_bind,
4062 	.connect	   = inet_stream_connect,
4063 	.socketpair	   = sock_no_socketpair,
4064 	.accept		   = mptcp_stream_accept,
4065 	.getname	   = inet6_getname,
4066 	.poll		   = mptcp_poll,
4067 	.ioctl		   = inet6_ioctl,
4068 	.gettstamp	   = sock_gettstamp,
4069 	.listen		   = mptcp_listen,
4070 	.shutdown	   = inet_shutdown,
4071 	.setsockopt	   = sock_common_setsockopt,
4072 	.getsockopt	   = sock_common_getsockopt,
4073 	.sendmsg	   = inet6_sendmsg,
4074 	.recvmsg	   = inet6_recvmsg,
4075 	.mmap		   = sock_no_mmap,
4076 #ifdef CONFIG_COMPAT
4077 	.compat_ioctl	   = inet6_compat_ioctl,
4078 #endif
4079 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4080 };
4081 
4082 static struct proto mptcp_v6_prot;
4083 
4084 static struct inet_protosw mptcp_v6_protosw = {
4085 	.type		= SOCK_STREAM,
4086 	.protocol	= IPPROTO_MPTCP,
4087 	.prot		= &mptcp_v6_prot,
4088 	.ops		= &mptcp_v6_stream_ops,
4089 	.flags		= INET_PROTOSW_ICSK,
4090 };
4091 
mptcp_proto_v6_init(void)4092 int __init mptcp_proto_v6_init(void)
4093 {
4094 	int err;
4095 
4096 	mptcp_v6_prot = mptcp_prot;
4097 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4098 	mptcp_v6_prot.slab = NULL;
4099 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4100 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4101 
4102 	err = proto_register(&mptcp_v6_prot, 1);
4103 	if (err)
4104 		return err;
4105 
4106 	err = inet6_register_protosw(&mptcp_v6_protosw);
4107 	if (err)
4108 		proto_unregister(&mptcp_v6_prot);
4109 
4110 	return err;
4111 }
4112 #endif
4113