1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device *mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110 }
111
112 return msk->first;
113 }
114
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 sk_drops_add(sk, skb);
118 __kfree_skb(skb);
119 }
120
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
122 struct sk_buff *from)
123 {
124 bool fragstolen;
125 int delta;
126
127 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
128 MPTCP_SKB_CB(from)->offset ||
129 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
130 !skb_try_coalesce(to, from, &fragstolen, &delta))
131 return false;
132
133 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
134 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
135 to->len, MPTCP_SKB_CB(from)->end_seq);
136 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
137
138 /* note the fwd memory can reach a negative value after accounting
139 * for the delta, but the later skb free will restore a non
140 * negative one
141 */
142 atomic_add(delta, &sk->sk_rmem_alloc);
143 sk_mem_charge(sk, delta);
144 kfree_skb_partial(from, fragstolen);
145
146 return true;
147 }
148
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 struct sk_buff *from)
151 {
152 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 return false;
154
155 return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159 * - use mptcp seqs
160 * - don't cope with sacks
161 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 struct sock *sk = (struct sock *)msk;
165 struct rb_node **p, *parent;
166 u64 seq, end_seq, max_seq;
167 struct sk_buff *skb1;
168
169 seq = MPTCP_SKB_CB(skb)->map_seq;
170 end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 max_seq = atomic64_read(&msk->rcv_wnd_sent);
172
173 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
174 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 if (after64(end_seq, max_seq)) {
176 /* out of window */
177 mptcp_drop(sk, skb);
178 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 (unsigned long long)end_seq - (unsigned long)max_seq,
180 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
181 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 return;
183 }
184
185 p = &msk->out_of_order_queue.rb_node;
186 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 rb_link_node(&skb->rbnode, NULL, p);
189 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 msk->ooo_last_skb = skb;
191 goto end;
192 }
193
194 /* with 2 subflows, adding at end of ooo queue is quite likely
195 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 */
197 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 return;
201 }
202
203 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 parent = &msk->ooo_last_skb->rbnode;
207 p = &parent->rb_right;
208 goto insert;
209 }
210
211 /* Find place to insert this segment. Handle overlaps on the way. */
212 parent = NULL;
213 while (*p) {
214 parent = *p;
215 skb1 = rb_to_skb(parent);
216 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 p = &parent->rb_left;
218 continue;
219 }
220 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 /* All the bits are present. Drop. */
223 mptcp_drop(sk, skb);
224 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 return;
226 }
227 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 /* partial overlap:
229 * | skb |
230 * | skb1 |
231 * continue traversing
232 */
233 } else {
234 /* skb's seq == skb1's seq and skb covers skb1.
235 * Replace skb1 with skb.
236 */
237 rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 &msk->out_of_order_queue);
239 mptcp_drop(sk, skb1);
240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 goto merge_right;
242 }
243 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 return;
246 }
247 p = &parent->rb_right;
248 }
249
250 insert:
251 /* Insert segment into RB tree. */
252 rb_link_node(&skb->rbnode, parent, p);
253 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254
255 merge_right:
256 /* Remove other segments covered by skb. */
257 while ((skb1 = skb_rb_next(skb)) != NULL) {
258 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 break;
260 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 mptcp_drop(sk, skb1);
262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 }
264 /* If there is no skb after us, we are the last_skb ! */
265 if (!skb1)
266 msk->ooo_last_skb = skb;
267
268 end:
269 skb_condense(skb);
270 skb_set_owner_r(skb, sk);
271 }
272
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 struct sk_buff *skb, unsigned int offset,
275 size_t copy_len)
276 {
277 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 struct sock *sk = (struct sock *)msk;
279 struct sk_buff *tail;
280 bool has_rxtstamp;
281
282 __skb_unlink(skb, &ssk->sk_receive_queue);
283
284 skb_ext_reset(skb);
285 skb_orphan(skb);
286
287 /* try to fetch required memory from subflow */
288 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
290 goto drop;
291 }
292
293 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
294
295 /* the skb map_seq accounts for the skb offset:
296 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
297 * value
298 */
299 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
300 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
301 MPTCP_SKB_CB(skb)->offset = offset;
302 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
303 MPTCP_SKB_CB(skb)->cant_coalesce = 0;
304
305 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
306 /* in sequence */
307 msk->bytes_received += copy_len;
308 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
309 tail = skb_peek_tail(&sk->sk_receive_queue);
310 if (tail && mptcp_try_coalesce(sk, tail, skb))
311 return true;
312
313 skb_set_owner_r(skb, sk);
314 __skb_queue_tail(&sk->sk_receive_queue, skb);
315 return true;
316 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
317 mptcp_data_queue_ofo(msk, skb);
318 return false;
319 }
320
321 /* old data, keep it simple and drop the whole pkt, sender
322 * will retransmit as needed, if needed.
323 */
324 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
325 drop:
326 mptcp_drop(sk, skb);
327 return false;
328 }
329
mptcp_stop_rtx_timer(struct sock * sk)330 static void mptcp_stop_rtx_timer(struct sock *sk)
331 {
332 struct inet_connection_sock *icsk = inet_csk(sk);
333
334 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
335 mptcp_sk(sk)->timer_ival = 0;
336 }
337
mptcp_close_wake_up(struct sock * sk)338 static void mptcp_close_wake_up(struct sock *sk)
339 {
340 if (sock_flag(sk, SOCK_DEAD))
341 return;
342
343 sk->sk_state_change(sk);
344 if (sk->sk_shutdown == SHUTDOWN_MASK ||
345 sk->sk_state == TCP_CLOSE)
346 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
347 else
348 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
349 }
350
351 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)352 static bool mptcp_pending_data_fin_ack(struct sock *sk)
353 {
354 struct mptcp_sock *msk = mptcp_sk(sk);
355
356 return ((1 << sk->sk_state) &
357 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
358 msk->write_seq == READ_ONCE(msk->snd_una);
359 }
360
mptcp_check_data_fin_ack(struct sock * sk)361 static void mptcp_check_data_fin_ack(struct sock *sk)
362 {
363 struct mptcp_sock *msk = mptcp_sk(sk);
364
365 /* Look for an acknowledged DATA_FIN */
366 if (mptcp_pending_data_fin_ack(sk)) {
367 WRITE_ONCE(msk->snd_data_fin_enable, 0);
368
369 switch (sk->sk_state) {
370 case TCP_FIN_WAIT1:
371 mptcp_set_state(sk, TCP_FIN_WAIT2);
372 break;
373 case TCP_CLOSING:
374 case TCP_LAST_ACK:
375 mptcp_set_state(sk, TCP_CLOSE);
376 break;
377 }
378
379 mptcp_close_wake_up(sk);
380 }
381 }
382
383 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)384 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
385 {
386 struct mptcp_sock *msk = mptcp_sk(sk);
387
388 if (READ_ONCE(msk->rcv_data_fin) &&
389 ((1 << inet_sk_state_load(sk)) &
390 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
391 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
392
393 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
394 if (seq)
395 *seq = rcv_data_fin_seq;
396
397 return true;
398 }
399 }
400
401 return false;
402 }
403
mptcp_set_datafin_timeout(struct sock * sk)404 static void mptcp_set_datafin_timeout(struct sock *sk)
405 {
406 struct inet_connection_sock *icsk = inet_csk(sk);
407 u32 retransmits;
408
409 retransmits = min_t(u32, icsk->icsk_retransmits,
410 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
411
412 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
413 }
414
__mptcp_set_timeout(struct sock * sk,long tout)415 static void __mptcp_set_timeout(struct sock *sk, long tout)
416 {
417 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
418 }
419
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)420 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
421 {
422 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
423
424 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
425 icsk_timeout(inet_csk(ssk)) - jiffies : 0;
426 }
427
mptcp_set_timeout(struct sock * sk)428 static void mptcp_set_timeout(struct sock *sk)
429 {
430 struct mptcp_subflow_context *subflow;
431 long tout = 0;
432
433 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
434 tout = max(tout, mptcp_timeout_from_subflow(subflow));
435 __mptcp_set_timeout(sk, tout);
436 }
437
tcp_can_send_ack(const struct sock * ssk)438 static inline bool tcp_can_send_ack(const struct sock *ssk)
439 {
440 return !((1 << inet_sk_state_load(ssk)) &
441 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
442 }
443
__mptcp_subflow_send_ack(struct sock * ssk)444 void __mptcp_subflow_send_ack(struct sock *ssk)
445 {
446 if (tcp_can_send_ack(ssk))
447 tcp_send_ack(ssk);
448 }
449
mptcp_subflow_send_ack(struct sock * ssk)450 static void mptcp_subflow_send_ack(struct sock *ssk)
451 {
452 bool slow;
453
454 slow = lock_sock_fast(ssk);
455 __mptcp_subflow_send_ack(ssk);
456 unlock_sock_fast(ssk, slow);
457 }
458
mptcp_send_ack(struct mptcp_sock * msk)459 static void mptcp_send_ack(struct mptcp_sock *msk)
460 {
461 struct mptcp_subflow_context *subflow;
462
463 mptcp_for_each_subflow(msk, subflow)
464 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
465 }
466
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)467 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
468 {
469 bool slow;
470
471 slow = lock_sock_fast(ssk);
472 if (tcp_can_send_ack(ssk))
473 tcp_cleanup_rbuf(ssk, copied);
474 unlock_sock_fast(ssk, slow);
475 }
476
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)477 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
478 {
479 const struct inet_connection_sock *icsk = inet_csk(ssk);
480 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
481 const struct tcp_sock *tp = tcp_sk(ssk);
482
483 return (ack_pending & ICSK_ACK_SCHED) &&
484 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
485 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
486 (rx_empty && ack_pending &
487 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
488 }
489
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)490 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
491 {
492 int old_space = READ_ONCE(msk->old_wspace);
493 struct mptcp_subflow_context *subflow;
494 struct sock *sk = (struct sock *)msk;
495 int space = __mptcp_space(sk);
496 bool cleanup, rx_empty;
497
498 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
499 rx_empty = !sk_rmem_alloc_get(sk) && copied;
500
501 mptcp_for_each_subflow(msk, subflow) {
502 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
503
504 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
505 mptcp_subflow_cleanup_rbuf(ssk, copied);
506 }
507 }
508
mptcp_check_data_fin(struct sock * sk)509 static bool mptcp_check_data_fin(struct sock *sk)
510 {
511 struct mptcp_sock *msk = mptcp_sk(sk);
512 u64 rcv_data_fin_seq;
513 bool ret = false;
514
515 /* Need to ack a DATA_FIN received from a peer while this side
516 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
517 * msk->rcv_data_fin was set when parsing the incoming options
518 * at the subflow level and the msk lock was not held, so this
519 * is the first opportunity to act on the DATA_FIN and change
520 * the msk state.
521 *
522 * If we are caught up to the sequence number of the incoming
523 * DATA_FIN, send the DATA_ACK now and do state transition. If
524 * not caught up, do nothing and let the recv code send DATA_ACK
525 * when catching up.
526 */
527
528 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
529 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
530 WRITE_ONCE(msk->rcv_data_fin, 0);
531
532 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
533 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
534
535 switch (sk->sk_state) {
536 case TCP_ESTABLISHED:
537 mptcp_set_state(sk, TCP_CLOSE_WAIT);
538 break;
539 case TCP_FIN_WAIT1:
540 mptcp_set_state(sk, TCP_CLOSING);
541 break;
542 case TCP_FIN_WAIT2:
543 mptcp_set_state(sk, TCP_CLOSE);
544 break;
545 default:
546 /* Other states not expected */
547 WARN_ON_ONCE(1);
548 break;
549 }
550
551 ret = true;
552 if (!__mptcp_check_fallback(msk))
553 mptcp_send_ack(msk);
554 mptcp_close_wake_up(sk);
555 }
556 return ret;
557 }
558
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)559 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
560 {
561 if (READ_ONCE(msk->allow_infinite_fallback)) {
562 MPTCP_INC_STATS(sock_net(ssk),
563 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
564 mptcp_do_fallback(ssk);
565 } else {
566 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
567 mptcp_subflow_reset(ssk);
568 }
569 }
570
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)571 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
572 struct sock *ssk)
573 {
574 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
575 struct sock *sk = (struct sock *)msk;
576 bool more_data_avail;
577 struct tcp_sock *tp;
578 bool ret = false;
579
580 pr_debug("msk=%p ssk=%p\n", msk, ssk);
581 tp = tcp_sk(ssk);
582 do {
583 u32 map_remaining, offset;
584 u32 seq = tp->copied_seq;
585 struct sk_buff *skb;
586 bool fin;
587
588 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
589 break;
590
591 /* try to move as much data as available */
592 map_remaining = subflow->map_data_len -
593 mptcp_subflow_get_map_offset(subflow);
594
595 skb = skb_peek(&ssk->sk_receive_queue);
596 if (unlikely(!skb))
597 break;
598
599 if (__mptcp_check_fallback(msk)) {
600 /* Under fallback skbs have no MPTCP extension and TCP could
601 * collapse them between the dummy map creation and the
602 * current dequeue. Be sure to adjust the map size.
603 */
604 map_remaining = skb->len;
605 subflow->map_data_len = skb->len;
606 }
607
608 offset = seq - TCP_SKB_CB(skb)->seq;
609 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
610 if (fin)
611 seq++;
612
613 if (offset < skb->len) {
614 size_t len = skb->len - offset;
615
616 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
617 seq += len;
618
619 if (unlikely(map_remaining < len)) {
620 DEBUG_NET_WARN_ON_ONCE(1);
621 mptcp_dss_corruption(msk, ssk);
622 }
623 } else {
624 if (unlikely(!fin)) {
625 DEBUG_NET_WARN_ON_ONCE(1);
626 mptcp_dss_corruption(msk, ssk);
627 }
628
629 sk_eat_skb(ssk, skb);
630 }
631
632 WRITE_ONCE(tp->copied_seq, seq);
633 more_data_avail = mptcp_subflow_data_available(ssk);
634
635 } while (more_data_avail);
636
637 if (ret)
638 msk->last_data_recv = tcp_jiffies32;
639 return ret;
640 }
641
__mptcp_ofo_queue(struct mptcp_sock * msk)642 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
643 {
644 struct sock *sk = (struct sock *)msk;
645 struct sk_buff *skb, *tail;
646 bool moved = false;
647 struct rb_node *p;
648 u64 end_seq;
649
650 p = rb_first(&msk->out_of_order_queue);
651 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
652 while (p) {
653 skb = rb_to_skb(p);
654 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
655 break;
656
657 p = rb_next(p);
658 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
659
660 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
661 msk->ack_seq))) {
662 mptcp_drop(sk, skb);
663 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
664 continue;
665 }
666
667 end_seq = MPTCP_SKB_CB(skb)->end_seq;
668 tail = skb_peek_tail(&sk->sk_receive_queue);
669 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
670 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
671
672 /* skip overlapping data, if any */
673 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
674 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
675 delta);
676 MPTCP_SKB_CB(skb)->offset += delta;
677 MPTCP_SKB_CB(skb)->map_seq += delta;
678 __skb_queue_tail(&sk->sk_receive_queue, skb);
679 }
680 msk->bytes_received += end_seq - msk->ack_seq;
681 WRITE_ONCE(msk->ack_seq, end_seq);
682 moved = true;
683 }
684 return moved;
685 }
686
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)687 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
688 {
689 int err = sock_error(ssk);
690 int ssk_state;
691
692 if (!err)
693 return false;
694
695 /* only propagate errors on fallen-back sockets or
696 * on MPC connect
697 */
698 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
699 return false;
700
701 /* We need to propagate only transition to CLOSE state.
702 * Orphaned socket will see such state change via
703 * subflow_sched_work_if_closed() and that path will properly
704 * destroy the msk as needed.
705 */
706 ssk_state = inet_sk_state_load(ssk);
707 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
708 mptcp_set_state(sk, ssk_state);
709 WRITE_ONCE(sk->sk_err, -err);
710
711 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
712 smp_wmb();
713 sk_error_report(sk);
714 return true;
715 }
716
__mptcp_error_report(struct sock * sk)717 void __mptcp_error_report(struct sock *sk)
718 {
719 struct mptcp_subflow_context *subflow;
720 struct mptcp_sock *msk = mptcp_sk(sk);
721
722 mptcp_for_each_subflow(msk, subflow)
723 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
724 break;
725 }
726
727 /* In most cases we will be able to lock the mptcp socket. If its already
728 * owned, we need to defer to the work queue to avoid ABBA deadlock.
729 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)730 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
731 {
732 struct sock *sk = (struct sock *)msk;
733 bool moved;
734
735 moved = __mptcp_move_skbs_from_subflow(msk, ssk);
736 __mptcp_ofo_queue(msk);
737 if (unlikely(ssk->sk_err)) {
738 if (!sock_owned_by_user(sk))
739 __mptcp_error_report(sk);
740 else
741 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
742 }
743
744 /* If the moves have caught up with the DATA_FIN sequence number
745 * it's time to ack the DATA_FIN and change socket state, but
746 * this is not a good place to change state. Let the workqueue
747 * do it.
748 */
749 if (mptcp_pending_data_fin(sk, NULL))
750 mptcp_schedule_work(sk);
751 return moved;
752 }
753
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)754 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
755 {
756 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
757 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
758 }
759
__mptcp_data_ready(struct sock * sk,struct sock * ssk)760 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
761 {
762 struct mptcp_sock *msk = mptcp_sk(sk);
763
764 __mptcp_rcvbuf_update(sk, ssk);
765
766 /* Wake-up the reader only for in-sequence data */
767 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
768 sk->sk_data_ready(sk);
769 }
770
mptcp_data_ready(struct sock * sk,struct sock * ssk)771 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
772 {
773 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
774
775 /* The peer can send data while we are shutting down this
776 * subflow at msk destruction time, but we must avoid enqueuing
777 * more data to the msk receive queue
778 */
779 if (unlikely(subflow->disposable))
780 return;
781
782 mptcp_data_lock(sk);
783 if (!sock_owned_by_user(sk))
784 __mptcp_data_ready(sk, ssk);
785 else
786 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
787 mptcp_data_unlock(sk);
788 }
789
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)790 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
791 {
792 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
793 WRITE_ONCE(msk->allow_infinite_fallback, false);
794 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
795 }
796
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)797 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
798 {
799 struct sock *sk = (struct sock *)msk;
800
801 if (sk->sk_state != TCP_ESTABLISHED)
802 return false;
803
804 /* attach to msk socket only after we are sure we will deal with it
805 * at close time
806 */
807 if (sk->sk_socket && !ssk->sk_socket)
808 mptcp_sock_graft(ssk, sk->sk_socket);
809
810 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
811 mptcp_sockopt_sync_locked(msk, ssk);
812 mptcp_subflow_joined(msk, ssk);
813 mptcp_stop_tout_timer(sk);
814 __mptcp_propagate_sndbuf(sk, ssk);
815 return true;
816 }
817
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)818 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
819 {
820 struct mptcp_subflow_context *tmp, *subflow;
821 struct mptcp_sock *msk = mptcp_sk(sk);
822
823 list_for_each_entry_safe(subflow, tmp, join_list, node) {
824 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
825 bool slow = lock_sock_fast(ssk);
826
827 list_move_tail(&subflow->node, &msk->conn_list);
828 if (!__mptcp_finish_join(msk, ssk))
829 mptcp_subflow_reset(ssk);
830 unlock_sock_fast(ssk, slow);
831 }
832 }
833
mptcp_rtx_timer_pending(struct sock * sk)834 static bool mptcp_rtx_timer_pending(struct sock *sk)
835 {
836 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
837 }
838
mptcp_reset_rtx_timer(struct sock * sk)839 static void mptcp_reset_rtx_timer(struct sock *sk)
840 {
841 struct inet_connection_sock *icsk = inet_csk(sk);
842 unsigned long tout;
843
844 /* prevent rescheduling on close */
845 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
846 return;
847
848 tout = mptcp_sk(sk)->timer_ival;
849 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
850 }
851
mptcp_schedule_work(struct sock * sk)852 bool mptcp_schedule_work(struct sock *sk)
853 {
854 if (inet_sk_state_load(sk) != TCP_CLOSE &&
855 schedule_work(&mptcp_sk(sk)->work)) {
856 /* each subflow already holds a reference to the sk, and the
857 * workqueue is invoked by a subflow, so sk can't go away here.
858 */
859 sock_hold(sk);
860 return true;
861 }
862 return false;
863 }
864
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)865 static bool mptcp_skb_can_collapse_to(u64 write_seq,
866 const struct sk_buff *skb,
867 const struct mptcp_ext *mpext)
868 {
869 if (!tcp_skb_can_collapse_to(skb))
870 return false;
871
872 /* can collapse only if MPTCP level sequence is in order and this
873 * mapping has not been xmitted yet
874 */
875 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
876 !mpext->frozen;
877 }
878
879 /* we can append data to the given data frag if:
880 * - there is space available in the backing page_frag
881 * - the data frag tail matches the current page_frag free offset
882 * - the data frag end sequence number matches the current write seq
883 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)884 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
885 const struct page_frag *pfrag,
886 const struct mptcp_data_frag *df)
887 {
888 return df && pfrag->page == df->page &&
889 pfrag->size - pfrag->offset > 0 &&
890 pfrag->offset == (df->offset + df->data_len) &&
891 df->data_seq + df->data_len == msk->write_seq;
892 }
893
dfrag_uncharge(struct sock * sk,int len)894 static void dfrag_uncharge(struct sock *sk, int len)
895 {
896 sk_mem_uncharge(sk, len);
897 sk_wmem_queued_add(sk, -len);
898 }
899
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)900 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
901 {
902 int len = dfrag->data_len + dfrag->overhead;
903
904 list_del(&dfrag->list);
905 dfrag_uncharge(sk, len);
906 put_page(dfrag->page);
907 }
908
909 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)910 static void __mptcp_clean_una(struct sock *sk)
911 {
912 struct mptcp_sock *msk = mptcp_sk(sk);
913 struct mptcp_data_frag *dtmp, *dfrag;
914 u64 snd_una;
915
916 snd_una = msk->snd_una;
917 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
918 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
919 break;
920
921 if (unlikely(dfrag == msk->first_pending)) {
922 /* in recovery mode can see ack after the current snd head */
923 if (WARN_ON_ONCE(!msk->recovery))
924 break;
925
926 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
927 }
928
929 dfrag_clear(sk, dfrag);
930 }
931
932 dfrag = mptcp_rtx_head(sk);
933 if (dfrag && after64(snd_una, dfrag->data_seq)) {
934 u64 delta = snd_una - dfrag->data_seq;
935
936 /* prevent wrap around in recovery mode */
937 if (unlikely(delta > dfrag->already_sent)) {
938 if (WARN_ON_ONCE(!msk->recovery))
939 goto out;
940 if (WARN_ON_ONCE(delta > dfrag->data_len))
941 goto out;
942 dfrag->already_sent += delta - dfrag->already_sent;
943 }
944
945 dfrag->data_seq += delta;
946 dfrag->offset += delta;
947 dfrag->data_len -= delta;
948 dfrag->already_sent -= delta;
949
950 dfrag_uncharge(sk, delta);
951 }
952
953 /* all retransmitted data acked, recovery completed */
954 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
955 msk->recovery = false;
956
957 out:
958 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
959 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
960 mptcp_stop_rtx_timer(sk);
961 } else {
962 mptcp_reset_rtx_timer(sk);
963 }
964
965 if (mptcp_pending_data_fin_ack(sk))
966 mptcp_schedule_work(sk);
967 }
968
__mptcp_clean_una_wakeup(struct sock * sk)969 static void __mptcp_clean_una_wakeup(struct sock *sk)
970 {
971 lockdep_assert_held_once(&sk->sk_lock.slock);
972
973 __mptcp_clean_una(sk);
974 mptcp_write_space(sk);
975 }
976
mptcp_clean_una_wakeup(struct sock * sk)977 static void mptcp_clean_una_wakeup(struct sock *sk)
978 {
979 mptcp_data_lock(sk);
980 __mptcp_clean_una_wakeup(sk);
981 mptcp_data_unlock(sk);
982 }
983
mptcp_enter_memory_pressure(struct sock * sk)984 static void mptcp_enter_memory_pressure(struct sock *sk)
985 {
986 struct mptcp_subflow_context *subflow;
987 struct mptcp_sock *msk = mptcp_sk(sk);
988 bool first = true;
989
990 mptcp_for_each_subflow(msk, subflow) {
991 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
992
993 if (first)
994 tcp_enter_memory_pressure(ssk);
995 sk_stream_moderate_sndbuf(ssk);
996
997 first = false;
998 }
999 __mptcp_sync_sndbuf(sk);
1000 }
1001
1002 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1003 * data
1004 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1005 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1006 {
1007 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1008 pfrag, sk->sk_allocation)))
1009 return true;
1010
1011 mptcp_enter_memory_pressure(sk);
1012 return false;
1013 }
1014
1015 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1016 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1017 int orig_offset)
1018 {
1019 int offset = ALIGN(orig_offset, sizeof(long));
1020 struct mptcp_data_frag *dfrag;
1021
1022 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1023 dfrag->data_len = 0;
1024 dfrag->data_seq = msk->write_seq;
1025 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1026 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1027 dfrag->already_sent = 0;
1028 dfrag->page = pfrag->page;
1029
1030 return dfrag;
1031 }
1032
1033 struct mptcp_sendmsg_info {
1034 int mss_now;
1035 int size_goal;
1036 u16 limit;
1037 u16 sent;
1038 unsigned int flags;
1039 bool data_lock_held;
1040 };
1041
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1042 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1043 u64 data_seq, int avail_size)
1044 {
1045 u64 window_end = mptcp_wnd_end(msk);
1046 u64 mptcp_snd_wnd;
1047
1048 if (__mptcp_check_fallback(msk))
1049 return avail_size;
1050
1051 mptcp_snd_wnd = window_end - data_seq;
1052 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1053
1054 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1055 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1056 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1057 }
1058
1059 return avail_size;
1060 }
1061
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1062 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1063 {
1064 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1065
1066 if (!mpext)
1067 return false;
1068 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1069 return true;
1070 }
1071
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1072 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1073 {
1074 struct sk_buff *skb;
1075
1076 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1077 if (likely(skb)) {
1078 if (likely(__mptcp_add_ext(skb, gfp))) {
1079 skb_reserve(skb, MAX_TCP_HEADER);
1080 skb->ip_summed = CHECKSUM_PARTIAL;
1081 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1082 return skb;
1083 }
1084 __kfree_skb(skb);
1085 } else {
1086 mptcp_enter_memory_pressure(sk);
1087 }
1088 return NULL;
1089 }
1090
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1091 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1092 {
1093 struct sk_buff *skb;
1094
1095 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1096 if (!skb)
1097 return NULL;
1098
1099 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1100 tcp_skb_entail(ssk, skb);
1101 return skb;
1102 }
1103 tcp_skb_tsorted_anchor_cleanup(skb);
1104 kfree_skb(skb);
1105 return NULL;
1106 }
1107
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1108 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1109 {
1110 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1111
1112 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1113 }
1114
1115 /* note: this always recompute the csum on the whole skb, even
1116 * if we just appended a single frag. More status info needed
1117 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1118 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1119 {
1120 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1121 __wsum csum = ~csum_unfold(mpext->csum);
1122 int offset = skb->len - added;
1123
1124 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1125 }
1126
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1127 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1128 struct sock *ssk,
1129 struct mptcp_ext *mpext)
1130 {
1131 if (!mpext)
1132 return;
1133
1134 mpext->infinite_map = 1;
1135 mpext->data_len = 0;
1136
1137 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1138 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1139 pr_fallback(msk);
1140 mptcp_do_fallback(ssk);
1141 }
1142
1143 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1144
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1145 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1146 struct mptcp_data_frag *dfrag,
1147 struct mptcp_sendmsg_info *info)
1148 {
1149 u64 data_seq = dfrag->data_seq + info->sent;
1150 int offset = dfrag->offset + info->sent;
1151 struct mptcp_sock *msk = mptcp_sk(sk);
1152 bool zero_window_probe = false;
1153 struct mptcp_ext *mpext = NULL;
1154 bool can_coalesce = false;
1155 bool reuse_skb = true;
1156 struct sk_buff *skb;
1157 size_t copy;
1158 int i;
1159
1160 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1161 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1162
1163 if (WARN_ON_ONCE(info->sent > info->limit ||
1164 info->limit > dfrag->data_len))
1165 return 0;
1166
1167 if (unlikely(!__tcp_can_send(ssk)))
1168 return -EAGAIN;
1169
1170 /* compute send limit */
1171 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1172 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1173 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1174 copy = info->size_goal;
1175
1176 skb = tcp_write_queue_tail(ssk);
1177 if (skb && copy > skb->len) {
1178 /* Limit the write to the size available in the
1179 * current skb, if any, so that we create at most a new skb.
1180 * Explicitly tells TCP internals to avoid collapsing on later
1181 * queue management operation, to avoid breaking the ext <->
1182 * SSN association set here
1183 */
1184 mpext = mptcp_get_ext(skb);
1185 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1186 TCP_SKB_CB(skb)->eor = 1;
1187 tcp_mark_push(tcp_sk(ssk), skb);
1188 goto alloc_skb;
1189 }
1190
1191 i = skb_shinfo(skb)->nr_frags;
1192 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1193 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1194 tcp_mark_push(tcp_sk(ssk), skb);
1195 goto alloc_skb;
1196 }
1197
1198 copy -= skb->len;
1199 } else {
1200 alloc_skb:
1201 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1202 if (!skb)
1203 return -ENOMEM;
1204
1205 i = skb_shinfo(skb)->nr_frags;
1206 reuse_skb = false;
1207 mpext = mptcp_get_ext(skb);
1208 }
1209
1210 /* Zero window and all data acked? Probe. */
1211 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1212 if (copy == 0) {
1213 u64 snd_una = READ_ONCE(msk->snd_una);
1214
1215 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1216 tcp_remove_empty_skb(ssk);
1217 return 0;
1218 }
1219
1220 zero_window_probe = true;
1221 data_seq = snd_una - 1;
1222 copy = 1;
1223 }
1224
1225 copy = min_t(size_t, copy, info->limit - info->sent);
1226 if (!sk_wmem_schedule(ssk, copy)) {
1227 tcp_remove_empty_skb(ssk);
1228 return -ENOMEM;
1229 }
1230
1231 if (can_coalesce) {
1232 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1233 } else {
1234 get_page(dfrag->page);
1235 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1236 }
1237
1238 skb->len += copy;
1239 skb->data_len += copy;
1240 skb->truesize += copy;
1241 sk_wmem_queued_add(ssk, copy);
1242 sk_mem_charge(ssk, copy);
1243 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1244 TCP_SKB_CB(skb)->end_seq += copy;
1245 tcp_skb_pcount_set(skb, 0);
1246
1247 /* on skb reuse we just need to update the DSS len */
1248 if (reuse_skb) {
1249 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1250 mpext->data_len += copy;
1251 goto out;
1252 }
1253
1254 memset(mpext, 0, sizeof(*mpext));
1255 mpext->data_seq = data_seq;
1256 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1257 mpext->data_len = copy;
1258 mpext->use_map = 1;
1259 mpext->dsn64 = 1;
1260
1261 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1262 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1263 mpext->dsn64);
1264
1265 if (zero_window_probe) {
1266 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1267 mpext->frozen = 1;
1268 if (READ_ONCE(msk->csum_enabled))
1269 mptcp_update_data_checksum(skb, copy);
1270 tcp_push_pending_frames(ssk);
1271 return 0;
1272 }
1273 out:
1274 if (READ_ONCE(msk->csum_enabled))
1275 mptcp_update_data_checksum(skb, copy);
1276 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1277 mptcp_update_infinite_map(msk, ssk, mpext);
1278 trace_mptcp_sendmsg_frag(mpext);
1279 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1280 return copy;
1281 }
1282
1283 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1284 sizeof(struct tcphdr) - \
1285 MAX_TCP_OPTION_SPACE - \
1286 sizeof(struct ipv6hdr) - \
1287 sizeof(struct frag_hdr))
1288
1289 struct subflow_send_info {
1290 struct sock *ssk;
1291 u64 linger_time;
1292 };
1293
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1294 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1295 {
1296 if (!subflow->stale)
1297 return;
1298
1299 subflow->stale = 0;
1300 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1301 }
1302
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1303 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1304 {
1305 if (unlikely(subflow->stale)) {
1306 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1307
1308 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1309 return false;
1310
1311 mptcp_subflow_set_active(subflow);
1312 }
1313 return __mptcp_subflow_active(subflow);
1314 }
1315
1316 #define SSK_MODE_ACTIVE 0
1317 #define SSK_MODE_BACKUP 1
1318 #define SSK_MODE_MAX 2
1319
1320 /* implement the mptcp packet scheduler;
1321 * returns the subflow that will transmit the next DSS
1322 * additionally updates the rtx timeout
1323 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1324 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1325 {
1326 struct subflow_send_info send_info[SSK_MODE_MAX];
1327 struct mptcp_subflow_context *subflow;
1328 struct sock *sk = (struct sock *)msk;
1329 u32 pace, burst, wmem;
1330 int i, nr_active = 0;
1331 struct sock *ssk;
1332 u64 linger_time;
1333 long tout = 0;
1334
1335 /* pick the subflow with the lower wmem/wspace ratio */
1336 for (i = 0; i < SSK_MODE_MAX; ++i) {
1337 send_info[i].ssk = NULL;
1338 send_info[i].linger_time = -1;
1339 }
1340
1341 mptcp_for_each_subflow(msk, subflow) {
1342 bool backup = subflow->backup || subflow->request_bkup;
1343
1344 trace_mptcp_subflow_get_send(subflow);
1345 ssk = mptcp_subflow_tcp_sock(subflow);
1346 if (!mptcp_subflow_active(subflow))
1347 continue;
1348
1349 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1350 nr_active += !backup;
1351 pace = subflow->avg_pacing_rate;
1352 if (unlikely(!pace)) {
1353 /* init pacing rate from socket */
1354 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1355 pace = subflow->avg_pacing_rate;
1356 if (!pace)
1357 continue;
1358 }
1359
1360 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1361 if (linger_time < send_info[backup].linger_time) {
1362 send_info[backup].ssk = ssk;
1363 send_info[backup].linger_time = linger_time;
1364 }
1365 }
1366 __mptcp_set_timeout(sk, tout);
1367
1368 /* pick the best backup if no other subflow is active */
1369 if (!nr_active)
1370 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1371
1372 /* According to the blest algorithm, to avoid HoL blocking for the
1373 * faster flow, we need to:
1374 * - estimate the faster flow linger time
1375 * - use the above to estimate the amount of byte transferred
1376 * by the faster flow
1377 * - check that the amount of queued data is greter than the above,
1378 * otherwise do not use the picked, slower, subflow
1379 * We select the subflow with the shorter estimated time to flush
1380 * the queued mem, which basically ensure the above. We just need
1381 * to check that subflow has a non empty cwin.
1382 */
1383 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1384 if (!ssk || !sk_stream_memory_free(ssk))
1385 return NULL;
1386
1387 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1388 wmem = READ_ONCE(ssk->sk_wmem_queued);
1389 if (!burst)
1390 return ssk;
1391
1392 subflow = mptcp_subflow_ctx(ssk);
1393 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1394 READ_ONCE(ssk->sk_pacing_rate) * burst,
1395 burst + wmem);
1396 msk->snd_burst = burst;
1397 return ssk;
1398 }
1399
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1400 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1401 {
1402 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1403 release_sock(ssk);
1404 }
1405
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1406 static void mptcp_update_post_push(struct mptcp_sock *msk,
1407 struct mptcp_data_frag *dfrag,
1408 u32 sent)
1409 {
1410 u64 snd_nxt_new = dfrag->data_seq;
1411
1412 dfrag->already_sent += sent;
1413
1414 msk->snd_burst -= sent;
1415
1416 snd_nxt_new += dfrag->already_sent;
1417
1418 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1419 * is recovering after a failover. In that event, this re-sends
1420 * old segments.
1421 *
1422 * Thus compute snd_nxt_new candidate based on
1423 * the dfrag->data_seq that was sent and the data
1424 * that has been handed to the subflow for transmission
1425 * and skip update in case it was old dfrag.
1426 */
1427 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1428 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1429 WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1430 }
1431 }
1432
mptcp_check_and_set_pending(struct sock * sk)1433 void mptcp_check_and_set_pending(struct sock *sk)
1434 {
1435 if (mptcp_send_head(sk)) {
1436 mptcp_data_lock(sk);
1437 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1438 mptcp_data_unlock(sk);
1439 }
1440 }
1441
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1442 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1443 struct mptcp_sendmsg_info *info)
1444 {
1445 struct mptcp_sock *msk = mptcp_sk(sk);
1446 struct mptcp_data_frag *dfrag;
1447 int len, copied = 0, err = 0;
1448
1449 while ((dfrag = mptcp_send_head(sk))) {
1450 info->sent = dfrag->already_sent;
1451 info->limit = dfrag->data_len;
1452 len = dfrag->data_len - dfrag->already_sent;
1453 while (len > 0) {
1454 int ret = 0;
1455
1456 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1457 if (ret <= 0) {
1458 err = copied ? : ret;
1459 goto out;
1460 }
1461
1462 info->sent += ret;
1463 copied += ret;
1464 len -= ret;
1465
1466 mptcp_update_post_push(msk, dfrag, ret);
1467 }
1468 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1469
1470 if (msk->snd_burst <= 0 ||
1471 !sk_stream_memory_free(ssk) ||
1472 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1473 err = copied;
1474 goto out;
1475 }
1476 mptcp_set_timeout(sk);
1477 }
1478 err = copied;
1479
1480 out:
1481 if (err > 0)
1482 msk->last_data_sent = tcp_jiffies32;
1483 return err;
1484 }
1485
__mptcp_push_pending(struct sock * sk,unsigned int flags)1486 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1487 {
1488 struct sock *prev_ssk = NULL, *ssk = NULL;
1489 struct mptcp_sock *msk = mptcp_sk(sk);
1490 struct mptcp_sendmsg_info info = {
1491 .flags = flags,
1492 };
1493 bool do_check_data_fin = false;
1494 int push_count = 1;
1495
1496 while (mptcp_send_head(sk) && (push_count > 0)) {
1497 struct mptcp_subflow_context *subflow;
1498 int ret = 0;
1499
1500 if (mptcp_sched_get_send(msk))
1501 break;
1502
1503 push_count = 0;
1504
1505 mptcp_for_each_subflow(msk, subflow) {
1506 if (READ_ONCE(subflow->scheduled)) {
1507 mptcp_subflow_set_scheduled(subflow, false);
1508
1509 prev_ssk = ssk;
1510 ssk = mptcp_subflow_tcp_sock(subflow);
1511 if (ssk != prev_ssk) {
1512 /* First check. If the ssk has changed since
1513 * the last round, release prev_ssk
1514 */
1515 if (prev_ssk)
1516 mptcp_push_release(prev_ssk, &info);
1517
1518 /* Need to lock the new subflow only if different
1519 * from the previous one, otherwise we are still
1520 * helding the relevant lock
1521 */
1522 lock_sock(ssk);
1523 }
1524
1525 push_count++;
1526
1527 ret = __subflow_push_pending(sk, ssk, &info);
1528 if (ret <= 0) {
1529 if (ret != -EAGAIN ||
1530 (1 << ssk->sk_state) &
1531 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1532 push_count--;
1533 continue;
1534 }
1535 do_check_data_fin = true;
1536 }
1537 }
1538 }
1539
1540 /* at this point we held the socket lock for the last subflow we used */
1541 if (ssk)
1542 mptcp_push_release(ssk, &info);
1543
1544 /* ensure the rtx timer is running */
1545 if (!mptcp_rtx_timer_pending(sk))
1546 mptcp_reset_rtx_timer(sk);
1547 if (do_check_data_fin)
1548 mptcp_check_send_data_fin(sk);
1549 }
1550
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1551 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1552 {
1553 struct mptcp_sock *msk = mptcp_sk(sk);
1554 struct mptcp_sendmsg_info info = {
1555 .data_lock_held = true,
1556 };
1557 bool keep_pushing = true;
1558 struct sock *xmit_ssk;
1559 int copied = 0;
1560
1561 info.flags = 0;
1562 while (mptcp_send_head(sk) && keep_pushing) {
1563 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1564 int ret = 0;
1565
1566 /* check for a different subflow usage only after
1567 * spooling the first chunk of data
1568 */
1569 if (first) {
1570 mptcp_subflow_set_scheduled(subflow, false);
1571 ret = __subflow_push_pending(sk, ssk, &info);
1572 first = false;
1573 if (ret <= 0)
1574 break;
1575 copied += ret;
1576 continue;
1577 }
1578
1579 if (mptcp_sched_get_send(msk))
1580 goto out;
1581
1582 if (READ_ONCE(subflow->scheduled)) {
1583 mptcp_subflow_set_scheduled(subflow, false);
1584 ret = __subflow_push_pending(sk, ssk, &info);
1585 if (ret <= 0)
1586 keep_pushing = false;
1587 copied += ret;
1588 }
1589
1590 mptcp_for_each_subflow(msk, subflow) {
1591 if (READ_ONCE(subflow->scheduled)) {
1592 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1593 if (xmit_ssk != ssk) {
1594 mptcp_subflow_delegate(subflow,
1595 MPTCP_DELEGATE_SEND);
1596 keep_pushing = false;
1597 }
1598 }
1599 }
1600 }
1601
1602 out:
1603 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1604 * not going to flush it via release_sock()
1605 */
1606 if (copied) {
1607 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1608 info.size_goal);
1609 if (!mptcp_rtx_timer_pending(sk))
1610 mptcp_reset_rtx_timer(sk);
1611
1612 if (msk->snd_data_fin_enable &&
1613 msk->snd_nxt + 1 == msk->write_seq)
1614 mptcp_schedule_work(sk);
1615 }
1616 }
1617
1618 static int mptcp_disconnect(struct sock *sk, int flags);
1619
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1620 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1621 size_t len, int *copied_syn)
1622 {
1623 unsigned int saved_flags = msg->msg_flags;
1624 struct mptcp_sock *msk = mptcp_sk(sk);
1625 struct sock *ssk;
1626 int ret;
1627
1628 /* on flags based fastopen the mptcp is supposed to create the
1629 * first subflow right now. Otherwise we are in the defer_connect
1630 * path, and the first subflow must be already present.
1631 * Since the defer_connect flag is cleared after the first succsful
1632 * fastopen attempt, no need to check for additional subflow status.
1633 */
1634 if (msg->msg_flags & MSG_FASTOPEN) {
1635 ssk = __mptcp_nmpc_sk(msk);
1636 if (IS_ERR(ssk))
1637 return PTR_ERR(ssk);
1638 }
1639 if (!msk->first)
1640 return -EINVAL;
1641
1642 ssk = msk->first;
1643
1644 lock_sock(ssk);
1645 msg->msg_flags |= MSG_DONTWAIT;
1646 msk->fastopening = 1;
1647 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1648 msk->fastopening = 0;
1649 msg->msg_flags = saved_flags;
1650 release_sock(ssk);
1651
1652 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1653 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1654 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1655 msg->msg_namelen, msg->msg_flags, 1);
1656
1657 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1658 * case of any error, except timeout or signal
1659 */
1660 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1661 *copied_syn = 0;
1662 } else if (ret && ret != -EINPROGRESS) {
1663 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1664 * __inet_stream_connect() can fail, due to looking check,
1665 * see mptcp_disconnect().
1666 * Attempt it again outside the problematic scope.
1667 */
1668 if (!mptcp_disconnect(sk, 0)) {
1669 sk->sk_disconnects++;
1670 sk->sk_socket->state = SS_UNCONNECTED;
1671 }
1672 }
1673 inet_clear_bit(DEFER_CONNECT, sk);
1674
1675 return ret;
1676 }
1677
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1678 static int do_copy_data_nocache(struct sock *sk, int copy,
1679 struct iov_iter *from, char *to)
1680 {
1681 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1682 if (!copy_from_iter_full_nocache(to, copy, from))
1683 return -EFAULT;
1684 } else if (!copy_from_iter_full(to, copy, from)) {
1685 return -EFAULT;
1686 }
1687 return 0;
1688 }
1689
1690 /* open-code sk_stream_memory_free() plus sent limit computation to
1691 * avoid indirect calls in fast-path.
1692 * Called under the msk socket lock, so we can avoid a bunch of ONCE
1693 * annotations.
1694 */
mptcp_send_limit(const struct sock * sk)1695 static u32 mptcp_send_limit(const struct sock *sk)
1696 {
1697 const struct mptcp_sock *msk = mptcp_sk(sk);
1698 u32 limit, not_sent;
1699
1700 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1701 return 0;
1702
1703 limit = mptcp_notsent_lowat(sk);
1704 if (limit == UINT_MAX)
1705 return UINT_MAX;
1706
1707 not_sent = msk->write_seq - msk->snd_nxt;
1708 if (not_sent >= limit)
1709 return 0;
1710
1711 return limit - not_sent;
1712 }
1713
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1714 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1715 {
1716 struct mptcp_sock *msk = mptcp_sk(sk);
1717 struct page_frag *pfrag;
1718 size_t copied = 0;
1719 int ret = 0;
1720 long timeo;
1721
1722 /* silently ignore everything else */
1723 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1724
1725 lock_sock(sk);
1726
1727 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1728 msg->msg_flags & MSG_FASTOPEN)) {
1729 int copied_syn = 0;
1730
1731 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1732 copied += copied_syn;
1733 if (ret == -EINPROGRESS && copied_syn > 0)
1734 goto out;
1735 else if (ret)
1736 goto do_error;
1737 }
1738
1739 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740
1741 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1742 ret = sk_stream_wait_connect(sk, &timeo);
1743 if (ret)
1744 goto do_error;
1745 }
1746
1747 ret = -EPIPE;
1748 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1749 goto do_error;
1750
1751 pfrag = sk_page_frag(sk);
1752
1753 while (msg_data_left(msg)) {
1754 int total_ts, frag_truesize = 0;
1755 struct mptcp_data_frag *dfrag;
1756 bool dfrag_collapsed;
1757 size_t psize, offset;
1758 u32 copy_limit;
1759
1760 /* ensure fitting the notsent_lowat() constraint */
1761 copy_limit = mptcp_send_limit(sk);
1762 if (!copy_limit)
1763 goto wait_for_memory;
1764
1765 /* reuse tail pfrag, if possible, or carve a new one from the
1766 * page allocator
1767 */
1768 dfrag = mptcp_pending_tail(sk);
1769 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1770 if (!dfrag_collapsed) {
1771 if (!mptcp_page_frag_refill(sk, pfrag))
1772 goto wait_for_memory;
1773
1774 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1775 frag_truesize = dfrag->overhead;
1776 }
1777
1778 /* we do not bound vs wspace, to allow a single packet.
1779 * memory accounting will prevent execessive memory usage
1780 * anyway
1781 */
1782 offset = dfrag->offset + dfrag->data_len;
1783 psize = pfrag->size - offset;
1784 psize = min_t(size_t, psize, msg_data_left(msg));
1785 psize = min_t(size_t, psize, copy_limit);
1786 total_ts = psize + frag_truesize;
1787
1788 if (!sk_wmem_schedule(sk, total_ts))
1789 goto wait_for_memory;
1790
1791 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1792 page_address(dfrag->page) + offset);
1793 if (ret)
1794 goto do_error;
1795
1796 /* data successfully copied into the write queue */
1797 sk_forward_alloc_add(sk, -total_ts);
1798 copied += psize;
1799 dfrag->data_len += psize;
1800 frag_truesize += psize;
1801 pfrag->offset += frag_truesize;
1802 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1803
1804 /* charge data on mptcp pending queue to the msk socket
1805 * Note: we charge such data both to sk and ssk
1806 */
1807 sk_wmem_queued_add(sk, frag_truesize);
1808 if (!dfrag_collapsed) {
1809 get_page(dfrag->page);
1810 list_add_tail(&dfrag->list, &msk->rtx_queue);
1811 if (!msk->first_pending)
1812 WRITE_ONCE(msk->first_pending, dfrag);
1813 }
1814 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1815 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1816 !dfrag_collapsed);
1817
1818 continue;
1819
1820 wait_for_memory:
1821 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1822 __mptcp_push_pending(sk, msg->msg_flags);
1823 ret = sk_stream_wait_memory(sk, &timeo);
1824 if (ret)
1825 goto do_error;
1826 }
1827
1828 if (copied)
1829 __mptcp_push_pending(sk, msg->msg_flags);
1830
1831 out:
1832 release_sock(sk);
1833 return copied;
1834
1835 do_error:
1836 if (copied)
1837 goto out;
1838
1839 copied = sk_stream_error(sk, msg->msg_flags, ret);
1840 goto out;
1841 }
1842
1843 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1844
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1845 static int __mptcp_recvmsg_mskq(struct sock *sk,
1846 struct msghdr *msg,
1847 size_t len, int flags,
1848 struct scm_timestamping_internal *tss,
1849 int *cmsg_flags)
1850 {
1851 struct mptcp_sock *msk = mptcp_sk(sk);
1852 struct sk_buff *skb, *tmp;
1853 int copied = 0;
1854
1855 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1856 u32 offset = MPTCP_SKB_CB(skb)->offset;
1857 u32 data_len = skb->len - offset;
1858 u32 count = min_t(size_t, len - copied, data_len);
1859 int err;
1860
1861 if (!(flags & MSG_TRUNC)) {
1862 err = skb_copy_datagram_msg(skb, offset, msg, count);
1863 if (unlikely(err < 0)) {
1864 if (!copied)
1865 return err;
1866 break;
1867 }
1868 }
1869
1870 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1871 tcp_update_recv_tstamps(skb, tss);
1872 *cmsg_flags |= MPTCP_CMSG_TS;
1873 }
1874
1875 copied += count;
1876
1877 if (count < data_len) {
1878 if (!(flags & MSG_PEEK)) {
1879 MPTCP_SKB_CB(skb)->offset += count;
1880 MPTCP_SKB_CB(skb)->map_seq += count;
1881 msk->bytes_consumed += count;
1882 }
1883 break;
1884 }
1885
1886 if (!(flags & MSG_PEEK)) {
1887 /* avoid the indirect call, we know the destructor is sock_wfree */
1888 skb->destructor = NULL;
1889 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1890 sk_mem_uncharge(sk, skb->truesize);
1891 __skb_unlink(skb, &sk->sk_receive_queue);
1892 __kfree_skb(skb);
1893 msk->bytes_consumed += count;
1894 }
1895
1896 if (copied >= len)
1897 break;
1898 }
1899
1900 mptcp_rcv_space_adjust(msk, copied);
1901 return copied;
1902 }
1903
1904 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1905 *
1906 * Only difference: Use highest rtt estimate of the subflows in use.
1907 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1909 {
1910 struct mptcp_subflow_context *subflow;
1911 struct sock *sk = (struct sock *)msk;
1912 u8 scaling_ratio = U8_MAX;
1913 u32 time, advmss = 1;
1914 u64 rtt_us, mstamp;
1915
1916 msk_owned_by_me(msk);
1917
1918 if (copied <= 0)
1919 return;
1920
1921 if (!msk->rcvspace_init)
1922 mptcp_rcv_space_init(msk, msk->first);
1923
1924 msk->rcvq_space.copied += copied;
1925
1926 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1927 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1928
1929 rtt_us = msk->rcvq_space.rtt_us;
1930 if (rtt_us && time < (rtt_us >> 3))
1931 return;
1932
1933 rtt_us = 0;
1934 mptcp_for_each_subflow(msk, subflow) {
1935 const struct tcp_sock *tp;
1936 u64 sf_rtt_us;
1937 u32 sf_advmss;
1938
1939 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1940
1941 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1942 sf_advmss = READ_ONCE(tp->advmss);
1943
1944 rtt_us = max(sf_rtt_us, rtt_us);
1945 advmss = max(sf_advmss, advmss);
1946 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1947 }
1948
1949 msk->rcvq_space.rtt_us = rtt_us;
1950 msk->scaling_ratio = scaling_ratio;
1951 if (time < (rtt_us >> 3) || rtt_us == 0)
1952 return;
1953
1954 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1955 goto new_measure;
1956
1957 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1958 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1959 u64 rcvwin, grow;
1960 int rcvbuf;
1961
1962 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1963
1964 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1965
1966 do_div(grow, msk->rcvq_space.space);
1967 rcvwin += (grow << 1);
1968
1969 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1970 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1971
1972 if (rcvbuf > sk->sk_rcvbuf) {
1973 u32 window_clamp;
1974
1975 window_clamp = mptcp_win_from_space(sk, rcvbuf);
1976 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1977
1978 /* Make subflows follow along. If we do not do this, we
1979 * get drops at subflow level if skbs can't be moved to
1980 * the mptcp rx queue fast enough (announced rcv_win can
1981 * exceed ssk->sk_rcvbuf).
1982 */
1983 mptcp_for_each_subflow(msk, subflow) {
1984 struct sock *ssk;
1985 bool slow;
1986
1987 ssk = mptcp_subflow_tcp_sock(subflow);
1988 slow = lock_sock_fast(ssk);
1989 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1990 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
1991 if (tcp_can_send_ack(ssk))
1992 tcp_cleanup_rbuf(ssk, 1);
1993 unlock_sock_fast(ssk, slow);
1994 }
1995 }
1996 }
1997
1998 msk->rcvq_space.space = msk->rcvq_space.copied;
1999 new_measure:
2000 msk->rcvq_space.copied = 0;
2001 msk->rcvq_space.time = mstamp;
2002 }
2003
2004 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2005 __mptcp_first_ready_from(struct mptcp_sock *msk,
2006 struct mptcp_subflow_context *subflow)
2007 {
2008 struct mptcp_subflow_context *start_subflow = subflow;
2009
2010 while (!READ_ONCE(subflow->data_avail)) {
2011 subflow = mptcp_next_subflow(msk, subflow);
2012 if (subflow == start_subflow)
2013 return NULL;
2014 }
2015 return subflow;
2016 }
2017
__mptcp_move_skbs(struct sock * sk)2018 static bool __mptcp_move_skbs(struct sock *sk)
2019 {
2020 struct mptcp_subflow_context *subflow;
2021 struct mptcp_sock *msk = mptcp_sk(sk);
2022 bool ret = false;
2023
2024 if (list_empty(&msk->conn_list))
2025 return false;
2026
2027 /* verify we can move any data from the subflow, eventually updating */
2028 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2029 mptcp_for_each_subflow(msk, subflow)
2030 __mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2031
2032 subflow = list_first_entry(&msk->conn_list,
2033 struct mptcp_subflow_context, node);
2034 for (;;) {
2035 struct sock *ssk;
2036 bool slowpath;
2037
2038 /*
2039 * As an optimization avoid traversing the subflows list
2040 * and ev. acquiring the subflow socket lock before baling out
2041 */
2042 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2043 break;
2044
2045 subflow = __mptcp_first_ready_from(msk, subflow);
2046 if (!subflow)
2047 break;
2048
2049 ssk = mptcp_subflow_tcp_sock(subflow);
2050 slowpath = lock_sock_fast(ssk);
2051 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2052 if (unlikely(ssk->sk_err))
2053 __mptcp_error_report(sk);
2054 unlock_sock_fast(ssk, slowpath);
2055
2056 subflow = mptcp_next_subflow(msk, subflow);
2057 }
2058
2059 __mptcp_ofo_queue(msk);
2060 if (ret)
2061 mptcp_check_data_fin((struct sock *)msk);
2062 return ret;
2063 }
2064
mptcp_inq_hint(const struct sock * sk)2065 static unsigned int mptcp_inq_hint(const struct sock *sk)
2066 {
2067 const struct mptcp_sock *msk = mptcp_sk(sk);
2068 const struct sk_buff *skb;
2069
2070 skb = skb_peek(&sk->sk_receive_queue);
2071 if (skb) {
2072 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2073
2074 if (hint_val >= INT_MAX)
2075 return INT_MAX;
2076
2077 return (unsigned int)hint_val;
2078 }
2079
2080 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2081 return 1;
2082
2083 return 0;
2084 }
2085
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2086 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 int flags, int *addr_len)
2088 {
2089 struct mptcp_sock *msk = mptcp_sk(sk);
2090 struct scm_timestamping_internal tss;
2091 int copied = 0, cmsg_flags = 0;
2092 int target;
2093 long timeo;
2094
2095 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2096 if (unlikely(flags & MSG_ERRQUEUE))
2097 return inet_recv_error(sk, msg, len, addr_len);
2098
2099 lock_sock(sk);
2100 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2101 copied = -ENOTCONN;
2102 goto out_err;
2103 }
2104
2105 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2106
2107 len = min_t(size_t, len, INT_MAX);
2108 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2109
2110 if (unlikely(msk->recvmsg_inq))
2111 cmsg_flags = MPTCP_CMSG_INQ;
2112
2113 while (copied < len) {
2114 int err, bytes_read;
2115
2116 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2117 if (unlikely(bytes_read < 0)) {
2118 if (!copied)
2119 copied = bytes_read;
2120 goto out_err;
2121 }
2122
2123 copied += bytes_read;
2124
2125 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2126 continue;
2127
2128 /* only the MPTCP socket status is relevant here. The exit
2129 * conditions mirror closely tcp_recvmsg()
2130 */
2131 if (copied >= target)
2132 break;
2133
2134 if (copied) {
2135 if (sk->sk_err ||
2136 sk->sk_state == TCP_CLOSE ||
2137 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2138 !timeo ||
2139 signal_pending(current))
2140 break;
2141 } else {
2142 if (sk->sk_err) {
2143 copied = sock_error(sk);
2144 break;
2145 }
2146
2147 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2148 /* race breaker: the shutdown could be after the
2149 * previous receive queue check
2150 */
2151 if (__mptcp_move_skbs(sk))
2152 continue;
2153 break;
2154 }
2155
2156 if (sk->sk_state == TCP_CLOSE) {
2157 copied = -ENOTCONN;
2158 break;
2159 }
2160
2161 if (!timeo) {
2162 copied = -EAGAIN;
2163 break;
2164 }
2165
2166 if (signal_pending(current)) {
2167 copied = sock_intr_errno(timeo);
2168 break;
2169 }
2170 }
2171
2172 pr_debug("block timeout %ld\n", timeo);
2173 mptcp_cleanup_rbuf(msk, copied);
2174 err = sk_wait_data(sk, &timeo, NULL);
2175 if (err < 0) {
2176 err = copied ? : err;
2177 goto out_err;
2178 }
2179 }
2180
2181 mptcp_cleanup_rbuf(msk, copied);
2182
2183 out_err:
2184 if (cmsg_flags && copied >= 0) {
2185 if (cmsg_flags & MPTCP_CMSG_TS)
2186 tcp_recv_timestamp(msg, sk, &tss);
2187
2188 if (cmsg_flags & MPTCP_CMSG_INQ) {
2189 unsigned int inq = mptcp_inq_hint(sk);
2190
2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2192 }
2193 }
2194
2195 pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2196 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2197
2198 release_sock(sk);
2199 return copied;
2200 }
2201
mptcp_retransmit_timer(struct timer_list * t)2202 static void mptcp_retransmit_timer(struct timer_list *t)
2203 {
2204 struct inet_connection_sock *icsk = from_timer(icsk, t,
2205 icsk_retransmit_timer);
2206 struct sock *sk = &icsk->icsk_inet.sk;
2207 struct mptcp_sock *msk = mptcp_sk(sk);
2208
2209 bh_lock_sock(sk);
2210 if (!sock_owned_by_user(sk)) {
2211 /* we need a process context to retransmit */
2212 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2213 mptcp_schedule_work(sk);
2214 } else {
2215 /* delegate our work to tcp_release_cb() */
2216 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2217 }
2218 bh_unlock_sock(sk);
2219 sock_put(sk);
2220 }
2221
mptcp_tout_timer(struct timer_list * t)2222 static void mptcp_tout_timer(struct timer_list *t)
2223 {
2224 struct sock *sk = from_timer(sk, t, sk_timer);
2225
2226 mptcp_schedule_work(sk);
2227 sock_put(sk);
2228 }
2229
2230 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2231 * level.
2232 *
2233 * A backup subflow is returned only if that is the only kind available.
2234 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2235 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2236 {
2237 struct sock *backup = NULL, *pick = NULL;
2238 struct mptcp_subflow_context *subflow;
2239 int min_stale_count = INT_MAX;
2240
2241 mptcp_for_each_subflow(msk, subflow) {
2242 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2243
2244 if (!__mptcp_subflow_active(subflow))
2245 continue;
2246
2247 /* still data outstanding at TCP level? skip this */
2248 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2249 mptcp_pm_subflow_chk_stale(msk, ssk);
2250 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2251 continue;
2252 }
2253
2254 if (subflow->backup || subflow->request_bkup) {
2255 if (!backup)
2256 backup = ssk;
2257 continue;
2258 }
2259
2260 if (!pick)
2261 pick = ssk;
2262 }
2263
2264 if (pick)
2265 return pick;
2266
2267 /* use backup only if there are no progresses anywhere */
2268 return min_stale_count > 1 ? backup : NULL;
2269 }
2270
__mptcp_retransmit_pending_data(struct sock * sk)2271 bool __mptcp_retransmit_pending_data(struct sock *sk)
2272 {
2273 struct mptcp_data_frag *cur, *rtx_head;
2274 struct mptcp_sock *msk = mptcp_sk(sk);
2275
2276 if (__mptcp_check_fallback(msk))
2277 return false;
2278
2279 /* the closing socket has some data untransmitted and/or unacked:
2280 * some data in the mptcp rtx queue has not really xmitted yet.
2281 * keep it simple and re-inject the whole mptcp level rtx queue
2282 */
2283 mptcp_data_lock(sk);
2284 __mptcp_clean_una_wakeup(sk);
2285 rtx_head = mptcp_rtx_head(sk);
2286 if (!rtx_head) {
2287 mptcp_data_unlock(sk);
2288 return false;
2289 }
2290
2291 msk->recovery_snd_nxt = msk->snd_nxt;
2292 msk->recovery = true;
2293 mptcp_data_unlock(sk);
2294
2295 msk->first_pending = rtx_head;
2296 msk->snd_burst = 0;
2297
2298 /* be sure to clear the "sent status" on all re-injected fragments */
2299 list_for_each_entry(cur, &msk->rtx_queue, list) {
2300 if (!cur->already_sent)
2301 break;
2302 cur->already_sent = 0;
2303 }
2304
2305 return true;
2306 }
2307
2308 /* flags for __mptcp_close_ssk() */
2309 #define MPTCP_CF_PUSH BIT(1)
2310 #define MPTCP_CF_FASTCLOSE BIT(2)
2311
2312 /* be sure to send a reset only if the caller asked for it, also
2313 * clean completely the subflow status when the subflow reaches
2314 * TCP_CLOSE state
2315 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2316 static void __mptcp_subflow_disconnect(struct sock *ssk,
2317 struct mptcp_subflow_context *subflow,
2318 unsigned int flags)
2319 {
2320 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2321 (flags & MPTCP_CF_FASTCLOSE)) {
2322 /* The MPTCP code never wait on the subflow sockets, TCP-level
2323 * disconnect should never fail
2324 */
2325 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2326 mptcp_subflow_ctx_reset(subflow);
2327 } else {
2328 tcp_shutdown(ssk, SEND_SHUTDOWN);
2329 }
2330 }
2331
2332 /* subflow sockets can be either outgoing (connect) or incoming
2333 * (accept).
2334 *
2335 * Outgoing subflows use in-kernel sockets.
2336 * Incoming subflows do not have their own 'struct socket' allocated,
2337 * so we need to use tcp_close() after detaching them from the mptcp
2338 * parent socket.
2339 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2340 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2341 struct mptcp_subflow_context *subflow,
2342 unsigned int flags)
2343 {
2344 struct mptcp_sock *msk = mptcp_sk(sk);
2345 bool dispose_it, need_push = false;
2346
2347 /* If the first subflow moved to a close state before accept, e.g. due
2348 * to an incoming reset or listener shutdown, the subflow socket is
2349 * already deleted by inet_child_forget() and the mptcp socket can't
2350 * survive too.
2351 */
2352 if (msk->in_accept_queue && msk->first == ssk &&
2353 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2354 /* ensure later check in mptcp_worker() will dispose the msk */
2355 sock_set_flag(sk, SOCK_DEAD);
2356 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2357 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2358 mptcp_subflow_drop_ctx(ssk);
2359 goto out_release;
2360 }
2361
2362 dispose_it = msk->free_first || ssk != msk->first;
2363 if (dispose_it)
2364 list_del(&subflow->node);
2365
2366 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2367
2368 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2369 /* be sure to force the tcp_close path
2370 * to generate the egress reset
2371 */
2372 ssk->sk_lingertime = 0;
2373 sock_set_flag(ssk, SOCK_LINGER);
2374 subflow->send_fastclose = 1;
2375 }
2376
2377 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2378 if (!dispose_it) {
2379 __mptcp_subflow_disconnect(ssk, subflow, flags);
2380 release_sock(ssk);
2381
2382 goto out;
2383 }
2384
2385 subflow->disposable = 1;
2386
2387 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2388 * the ssk has been already destroyed, we just need to release the
2389 * reference owned by msk;
2390 */
2391 if (!inet_csk(ssk)->icsk_ulp_ops) {
2392 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2393 kfree_rcu(subflow, rcu);
2394 } else {
2395 /* otherwise tcp will dispose of the ssk and subflow ctx */
2396 __tcp_close(ssk, 0);
2397
2398 /* close acquired an extra ref */
2399 __sock_put(ssk);
2400 }
2401
2402 out_release:
2403 __mptcp_subflow_error_report(sk, ssk);
2404 release_sock(ssk);
2405
2406 sock_put(ssk);
2407
2408 if (ssk == msk->first)
2409 WRITE_ONCE(msk->first, NULL);
2410
2411 out:
2412 __mptcp_sync_sndbuf(sk);
2413 if (need_push)
2414 __mptcp_push_pending(sk, 0);
2415
2416 /* Catch every 'all subflows closed' scenario, including peers silently
2417 * closing them, e.g. due to timeout.
2418 * For established sockets, allow an additional timeout before closing,
2419 * as the protocol can still create more subflows.
2420 */
2421 if (list_is_singular(&msk->conn_list) && msk->first &&
2422 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2423 if (sk->sk_state != TCP_ESTABLISHED ||
2424 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2425 mptcp_set_state(sk, TCP_CLOSE);
2426 mptcp_close_wake_up(sk);
2427 } else {
2428 mptcp_start_tout_timer(sk);
2429 }
2430 }
2431 }
2432
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2433 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2434 struct mptcp_subflow_context *subflow)
2435 {
2436 /* The first subflow can already be closed and still in the list */
2437 if (subflow->close_event_done)
2438 return;
2439
2440 subflow->close_event_done = true;
2441
2442 if (sk->sk_state == TCP_ESTABLISHED)
2443 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2444
2445 /* subflow aborted before reaching the fully_established status
2446 * attempt the creation of the next subflow
2447 */
2448 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2449
2450 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2451 }
2452
mptcp_sync_mss(struct sock * sk,u32 pmtu)2453 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2454 {
2455 return 0;
2456 }
2457
__mptcp_close_subflow(struct sock * sk)2458 static void __mptcp_close_subflow(struct sock *sk)
2459 {
2460 struct mptcp_subflow_context *subflow, *tmp;
2461 struct mptcp_sock *msk = mptcp_sk(sk);
2462
2463 might_sleep();
2464
2465 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2466 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2467 int ssk_state = inet_sk_state_load(ssk);
2468
2469 if (ssk_state != TCP_CLOSE &&
2470 (ssk_state != TCP_CLOSE_WAIT ||
2471 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2472 continue;
2473
2474 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2475 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2476 continue;
2477
2478 mptcp_close_ssk(sk, ssk, subflow);
2479 }
2480
2481 }
2482
mptcp_close_tout_expired(const struct sock * sk)2483 static bool mptcp_close_tout_expired(const struct sock *sk)
2484 {
2485 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2486 sk->sk_state == TCP_CLOSE)
2487 return false;
2488
2489 return time_after32(tcp_jiffies32,
2490 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2491 }
2492
mptcp_check_fastclose(struct mptcp_sock * msk)2493 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2494 {
2495 struct mptcp_subflow_context *subflow, *tmp;
2496 struct sock *sk = (struct sock *)msk;
2497
2498 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2499 return;
2500
2501 mptcp_token_destroy(msk);
2502
2503 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2504 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2505 bool slow;
2506
2507 slow = lock_sock_fast(tcp_sk);
2508 if (tcp_sk->sk_state != TCP_CLOSE) {
2509 mptcp_send_active_reset_reason(tcp_sk);
2510 tcp_set_state(tcp_sk, TCP_CLOSE);
2511 }
2512 unlock_sock_fast(tcp_sk, slow);
2513 }
2514
2515 /* Mirror the tcp_reset() error propagation */
2516 switch (sk->sk_state) {
2517 case TCP_SYN_SENT:
2518 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2519 break;
2520 case TCP_CLOSE_WAIT:
2521 WRITE_ONCE(sk->sk_err, EPIPE);
2522 break;
2523 case TCP_CLOSE:
2524 return;
2525 default:
2526 WRITE_ONCE(sk->sk_err, ECONNRESET);
2527 }
2528
2529 mptcp_set_state(sk, TCP_CLOSE);
2530 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2531 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2532 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2533
2534 /* the calling mptcp_worker will properly destroy the socket */
2535 if (sock_flag(sk, SOCK_DEAD))
2536 return;
2537
2538 sk->sk_state_change(sk);
2539 sk_error_report(sk);
2540 }
2541
__mptcp_retrans(struct sock * sk)2542 static void __mptcp_retrans(struct sock *sk)
2543 {
2544 struct mptcp_sock *msk = mptcp_sk(sk);
2545 struct mptcp_subflow_context *subflow;
2546 struct mptcp_sendmsg_info info = {};
2547 struct mptcp_data_frag *dfrag;
2548 struct sock *ssk;
2549 int ret, err;
2550 u16 len = 0;
2551
2552 mptcp_clean_una_wakeup(sk);
2553
2554 /* first check ssk: need to kick "stale" logic */
2555 err = mptcp_sched_get_retrans(msk);
2556 dfrag = mptcp_rtx_head(sk);
2557 if (!dfrag) {
2558 if (mptcp_data_fin_enabled(msk)) {
2559 struct inet_connection_sock *icsk = inet_csk(sk);
2560
2561 icsk->icsk_retransmits++;
2562 mptcp_set_datafin_timeout(sk);
2563 mptcp_send_ack(msk);
2564
2565 goto reset_timer;
2566 }
2567
2568 if (!mptcp_send_head(sk))
2569 return;
2570
2571 goto reset_timer;
2572 }
2573
2574 if (err)
2575 goto reset_timer;
2576
2577 mptcp_for_each_subflow(msk, subflow) {
2578 if (READ_ONCE(subflow->scheduled)) {
2579 u16 copied = 0;
2580
2581 mptcp_subflow_set_scheduled(subflow, false);
2582
2583 ssk = mptcp_subflow_tcp_sock(subflow);
2584
2585 lock_sock(ssk);
2586
2587 /* limit retransmission to the bytes already sent on some subflows */
2588 info.sent = 0;
2589 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2590 dfrag->already_sent;
2591 while (info.sent < info.limit) {
2592 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2593 if (ret <= 0)
2594 break;
2595
2596 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2597 copied += ret;
2598 info.sent += ret;
2599 }
2600 if (copied) {
2601 len = max(copied, len);
2602 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2603 info.size_goal);
2604 WRITE_ONCE(msk->allow_infinite_fallback, false);
2605 }
2606
2607 release_sock(ssk);
2608 }
2609 }
2610
2611 msk->bytes_retrans += len;
2612 dfrag->already_sent = max(dfrag->already_sent, len);
2613
2614 reset_timer:
2615 mptcp_check_and_set_pending(sk);
2616
2617 if (!mptcp_rtx_timer_pending(sk))
2618 mptcp_reset_rtx_timer(sk);
2619 }
2620
2621 /* schedule the timeout timer for the relevant event: either close timeout
2622 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2623 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2624 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2625 {
2626 struct sock *sk = (struct sock *)msk;
2627 unsigned long timeout, close_timeout;
2628
2629 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2630 return;
2631
2632 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2633 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2634
2635 /* the close timeout takes precedence on the fail one, and here at least one of
2636 * them is active
2637 */
2638 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2639
2640 sk_reset_timer(sk, &sk->sk_timer, timeout);
2641 }
2642
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2643 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2644 {
2645 struct sock *ssk = msk->first;
2646 bool slow;
2647
2648 if (!ssk)
2649 return;
2650
2651 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2652
2653 slow = lock_sock_fast(ssk);
2654 mptcp_subflow_reset(ssk);
2655 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2656 unlock_sock_fast(ssk, slow);
2657 }
2658
mptcp_do_fastclose(struct sock * sk)2659 static void mptcp_do_fastclose(struct sock *sk)
2660 {
2661 struct mptcp_subflow_context *subflow, *tmp;
2662 struct mptcp_sock *msk = mptcp_sk(sk);
2663
2664 mptcp_set_state(sk, TCP_CLOSE);
2665 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2666 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2667 subflow, MPTCP_CF_FASTCLOSE);
2668 }
2669
mptcp_worker(struct work_struct * work)2670 static void mptcp_worker(struct work_struct *work)
2671 {
2672 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2673 struct sock *sk = (struct sock *)msk;
2674 unsigned long fail_tout;
2675 int state;
2676
2677 lock_sock(sk);
2678 state = sk->sk_state;
2679 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2680 goto unlock;
2681
2682 mptcp_check_fastclose(msk);
2683
2684 mptcp_pm_worker(msk);
2685
2686 mptcp_check_send_data_fin(sk);
2687 mptcp_check_data_fin_ack(sk);
2688 mptcp_check_data_fin(sk);
2689
2690 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2691 __mptcp_close_subflow(sk);
2692
2693 if (mptcp_close_tout_expired(sk)) {
2694 mptcp_do_fastclose(sk);
2695 mptcp_close_wake_up(sk);
2696 }
2697
2698 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2699 __mptcp_destroy_sock(sk);
2700 goto unlock;
2701 }
2702
2703 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2704 __mptcp_retrans(sk);
2705
2706 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2707 if (fail_tout && time_after(jiffies, fail_tout))
2708 mptcp_mp_fail_no_response(msk);
2709
2710 unlock:
2711 release_sock(sk);
2712 sock_put(sk);
2713 }
2714
__mptcp_init_sock(struct sock * sk)2715 static void __mptcp_init_sock(struct sock *sk)
2716 {
2717 struct mptcp_sock *msk = mptcp_sk(sk);
2718
2719 INIT_LIST_HEAD(&msk->conn_list);
2720 INIT_LIST_HEAD(&msk->join_list);
2721 INIT_LIST_HEAD(&msk->rtx_queue);
2722 INIT_WORK(&msk->work, mptcp_worker);
2723 msk->out_of_order_queue = RB_ROOT;
2724 msk->first_pending = NULL;
2725 msk->timer_ival = TCP_RTO_MIN;
2726 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2727
2728 WRITE_ONCE(msk->first, NULL);
2729 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2730 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2731 WRITE_ONCE(msk->allow_infinite_fallback, true);
2732 msk->recovery = false;
2733 msk->subflow_id = 1;
2734 msk->last_data_sent = tcp_jiffies32;
2735 msk->last_data_recv = tcp_jiffies32;
2736 msk->last_ack_recv = tcp_jiffies32;
2737
2738 mptcp_pm_data_init(msk);
2739
2740 /* re-use the csk retrans timer for MPTCP-level retrans */
2741 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2742 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2743 }
2744
mptcp_ca_reset(struct sock * sk)2745 static void mptcp_ca_reset(struct sock *sk)
2746 {
2747 struct inet_connection_sock *icsk = inet_csk(sk);
2748
2749 tcp_assign_congestion_control(sk);
2750 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2751 sizeof(mptcp_sk(sk)->ca_name));
2752
2753 /* no need to keep a reference to the ops, the name will suffice */
2754 tcp_cleanup_congestion_control(sk);
2755 icsk->icsk_ca_ops = NULL;
2756 }
2757
mptcp_init_sock(struct sock * sk)2758 static int mptcp_init_sock(struct sock *sk)
2759 {
2760 struct net *net = sock_net(sk);
2761 int ret;
2762
2763 __mptcp_init_sock(sk);
2764
2765 if (!mptcp_is_enabled(net))
2766 return -ENOPROTOOPT;
2767
2768 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2769 return -ENOMEM;
2770
2771 rcu_read_lock();
2772 ret = mptcp_init_sched(mptcp_sk(sk),
2773 mptcp_sched_find(mptcp_get_scheduler(net)));
2774 rcu_read_unlock();
2775 if (ret)
2776 return ret;
2777
2778 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2779
2780 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2781 * propagate the correct value
2782 */
2783 mptcp_ca_reset(sk);
2784
2785 sk_sockets_allocated_inc(sk);
2786 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2787 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2788
2789 return 0;
2790 }
2791
__mptcp_clear_xmit(struct sock * sk)2792 static void __mptcp_clear_xmit(struct sock *sk)
2793 {
2794 struct mptcp_sock *msk = mptcp_sk(sk);
2795 struct mptcp_data_frag *dtmp, *dfrag;
2796
2797 WRITE_ONCE(msk->first_pending, NULL);
2798 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2799 dfrag_clear(sk, dfrag);
2800 }
2801
mptcp_cancel_work(struct sock * sk)2802 void mptcp_cancel_work(struct sock *sk)
2803 {
2804 struct mptcp_sock *msk = mptcp_sk(sk);
2805
2806 if (cancel_work_sync(&msk->work))
2807 __sock_put(sk);
2808 }
2809
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2810 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2811 {
2812 lock_sock(ssk);
2813
2814 switch (ssk->sk_state) {
2815 case TCP_LISTEN:
2816 if (!(how & RCV_SHUTDOWN))
2817 break;
2818 fallthrough;
2819 case TCP_SYN_SENT:
2820 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2821 break;
2822 default:
2823 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2824 pr_debug("Fallback\n");
2825 ssk->sk_shutdown |= how;
2826 tcp_shutdown(ssk, how);
2827
2828 /* simulate the data_fin ack reception to let the state
2829 * machine move forward
2830 */
2831 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2832 mptcp_schedule_work(sk);
2833 } else {
2834 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2835 tcp_send_ack(ssk);
2836 if (!mptcp_rtx_timer_pending(sk))
2837 mptcp_reset_rtx_timer(sk);
2838 }
2839 break;
2840 }
2841
2842 release_sock(ssk);
2843 }
2844
mptcp_set_state(struct sock * sk,int state)2845 void mptcp_set_state(struct sock *sk, int state)
2846 {
2847 int oldstate = sk->sk_state;
2848
2849 switch (state) {
2850 case TCP_ESTABLISHED:
2851 if (oldstate != TCP_ESTABLISHED)
2852 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2853 break;
2854 case TCP_CLOSE_WAIT:
2855 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2856 * MPTCP "accepted" sockets will be created later on. So no
2857 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2858 */
2859 break;
2860 default:
2861 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2862 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2863 }
2864
2865 inet_sk_state_store(sk, state);
2866 }
2867
2868 static const unsigned char new_state[16] = {
2869 /* current state: new state: action: */
2870 [0 /* (Invalid) */] = TCP_CLOSE,
2871 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2872 [TCP_SYN_SENT] = TCP_CLOSE,
2873 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2874 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2875 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2876 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2877 [TCP_CLOSE] = TCP_CLOSE,
2878 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2879 [TCP_LAST_ACK] = TCP_LAST_ACK,
2880 [TCP_LISTEN] = TCP_CLOSE,
2881 [TCP_CLOSING] = TCP_CLOSING,
2882 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2883 };
2884
mptcp_close_state(struct sock * sk)2885 static int mptcp_close_state(struct sock *sk)
2886 {
2887 int next = (int)new_state[sk->sk_state];
2888 int ns = next & TCP_STATE_MASK;
2889
2890 mptcp_set_state(sk, ns);
2891
2892 return next & TCP_ACTION_FIN;
2893 }
2894
mptcp_check_send_data_fin(struct sock * sk)2895 static void mptcp_check_send_data_fin(struct sock *sk)
2896 {
2897 struct mptcp_subflow_context *subflow;
2898 struct mptcp_sock *msk = mptcp_sk(sk);
2899
2900 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2901 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2902 msk->snd_nxt, msk->write_seq);
2903
2904 /* we still need to enqueue subflows or not really shutting down,
2905 * skip this
2906 */
2907 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2908 mptcp_send_head(sk))
2909 return;
2910
2911 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2912
2913 mptcp_for_each_subflow(msk, subflow) {
2914 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2915
2916 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2917 }
2918 }
2919
__mptcp_wr_shutdown(struct sock * sk)2920 static void __mptcp_wr_shutdown(struct sock *sk)
2921 {
2922 struct mptcp_sock *msk = mptcp_sk(sk);
2923
2924 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2925 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2926 !!mptcp_send_head(sk));
2927
2928 /* will be ignored by fallback sockets */
2929 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2930 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2931
2932 mptcp_check_send_data_fin(sk);
2933 }
2934
__mptcp_destroy_sock(struct sock * sk)2935 static void __mptcp_destroy_sock(struct sock *sk)
2936 {
2937 struct mptcp_sock *msk = mptcp_sk(sk);
2938
2939 pr_debug("msk=%p\n", msk);
2940
2941 might_sleep();
2942
2943 mptcp_stop_rtx_timer(sk);
2944 sk_stop_timer(sk, &sk->sk_timer);
2945 msk->pm.status = 0;
2946 mptcp_release_sched(msk);
2947
2948 sk->sk_prot->destroy(sk);
2949
2950 sk_stream_kill_queues(sk);
2951 xfrm_sk_free_policy(sk);
2952
2953 sock_put(sk);
2954 }
2955
__mptcp_unaccepted_force_close(struct sock * sk)2956 void __mptcp_unaccepted_force_close(struct sock *sk)
2957 {
2958 sock_set_flag(sk, SOCK_DEAD);
2959 mptcp_do_fastclose(sk);
2960 __mptcp_destroy_sock(sk);
2961 }
2962
mptcp_check_readable(struct sock * sk)2963 static __poll_t mptcp_check_readable(struct sock *sk)
2964 {
2965 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2966 }
2967
mptcp_check_listen_stop(struct sock * sk)2968 static void mptcp_check_listen_stop(struct sock *sk)
2969 {
2970 struct sock *ssk;
2971
2972 if (inet_sk_state_load(sk) != TCP_LISTEN)
2973 return;
2974
2975 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2976 ssk = mptcp_sk(sk)->first;
2977 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2978 return;
2979
2980 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2981 tcp_set_state(ssk, TCP_CLOSE);
2982 mptcp_subflow_queue_clean(sk, ssk);
2983 inet_csk_listen_stop(ssk);
2984 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2985 release_sock(ssk);
2986 }
2987
__mptcp_close(struct sock * sk,long timeout)2988 bool __mptcp_close(struct sock *sk, long timeout)
2989 {
2990 struct mptcp_subflow_context *subflow;
2991 struct mptcp_sock *msk = mptcp_sk(sk);
2992 bool do_cancel_work = false;
2993 int subflows_alive = 0;
2994
2995 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2996
2997 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2998 mptcp_check_listen_stop(sk);
2999 mptcp_set_state(sk, TCP_CLOSE);
3000 goto cleanup;
3001 }
3002
3003 if (mptcp_data_avail(msk) || timeout < 0) {
3004 /* If the msk has read data, or the caller explicitly ask it,
3005 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3006 */
3007 mptcp_do_fastclose(sk);
3008 timeout = 0;
3009 } else if (mptcp_close_state(sk)) {
3010 __mptcp_wr_shutdown(sk);
3011 }
3012
3013 sk_stream_wait_close(sk, timeout);
3014
3015 cleanup:
3016 /* orphan all the subflows */
3017 mptcp_for_each_subflow(msk, subflow) {
3018 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3019 bool slow = lock_sock_fast_nested(ssk);
3020
3021 subflows_alive += ssk->sk_state != TCP_CLOSE;
3022
3023 /* since the close timeout takes precedence on the fail one,
3024 * cancel the latter
3025 */
3026 if (ssk == msk->first)
3027 subflow->fail_tout = 0;
3028
3029 /* detach from the parent socket, but allow data_ready to
3030 * push incoming data into the mptcp stack, to properly ack it
3031 */
3032 ssk->sk_socket = NULL;
3033 ssk->sk_wq = NULL;
3034 unlock_sock_fast(ssk, slow);
3035 }
3036 sock_orphan(sk);
3037
3038 /* all the subflows are closed, only timeout can change the msk
3039 * state, let's not keep resources busy for no reasons
3040 */
3041 if (subflows_alive == 0)
3042 mptcp_set_state(sk, TCP_CLOSE);
3043
3044 sock_hold(sk);
3045 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3046 mptcp_pm_connection_closed(msk);
3047
3048 if (sk->sk_state == TCP_CLOSE) {
3049 __mptcp_destroy_sock(sk);
3050 do_cancel_work = true;
3051 } else {
3052 mptcp_start_tout_timer(sk);
3053 }
3054
3055 return do_cancel_work;
3056 }
3057
mptcp_close(struct sock * sk,long timeout)3058 static void mptcp_close(struct sock *sk, long timeout)
3059 {
3060 bool do_cancel_work;
3061
3062 lock_sock(sk);
3063
3064 do_cancel_work = __mptcp_close(sk, timeout);
3065 release_sock(sk);
3066 if (do_cancel_work)
3067 mptcp_cancel_work(sk);
3068
3069 sock_put(sk);
3070 }
3071
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3072 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3073 {
3074 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3075 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3076 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3077
3078 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3079 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3080
3081 if (msk6 && ssk6) {
3082 msk6->saddr = ssk6->saddr;
3083 msk6->flow_label = ssk6->flow_label;
3084 }
3085 #endif
3086
3087 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3088 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3089 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3090 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3091 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3092 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3093 }
3094
mptcp_disconnect(struct sock * sk,int flags)3095 static int mptcp_disconnect(struct sock *sk, int flags)
3096 {
3097 struct mptcp_sock *msk = mptcp_sk(sk);
3098
3099 /* We are on the fastopen error path. We can't call straight into the
3100 * subflows cleanup code due to lock nesting (we are already under
3101 * msk->firstsocket lock).
3102 */
3103 if (msk->fastopening)
3104 return -EBUSY;
3105
3106 mptcp_check_listen_stop(sk);
3107 mptcp_set_state(sk, TCP_CLOSE);
3108
3109 mptcp_stop_rtx_timer(sk);
3110 mptcp_stop_tout_timer(sk);
3111
3112 mptcp_pm_connection_closed(msk);
3113
3114 /* msk->subflow is still intact, the following will not free the first
3115 * subflow
3116 */
3117 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3118 WRITE_ONCE(msk->flags, 0);
3119 msk->cb_flags = 0;
3120 msk->recovery = false;
3121 WRITE_ONCE(msk->can_ack, false);
3122 WRITE_ONCE(msk->fully_established, false);
3123 WRITE_ONCE(msk->rcv_data_fin, false);
3124 WRITE_ONCE(msk->snd_data_fin_enable, false);
3125 WRITE_ONCE(msk->rcv_fastclose, false);
3126 WRITE_ONCE(msk->use_64bit_ack, false);
3127 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3128 mptcp_pm_data_reset(msk);
3129 mptcp_ca_reset(sk);
3130 msk->bytes_consumed = 0;
3131 msk->bytes_acked = 0;
3132 msk->bytes_received = 0;
3133 msk->bytes_sent = 0;
3134 msk->bytes_retrans = 0;
3135 msk->rcvspace_init = 0;
3136
3137 WRITE_ONCE(sk->sk_shutdown, 0);
3138 sk_error_report(sk);
3139 return 0;
3140 }
3141
3142 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3143 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3144 {
3145 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3146
3147 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3148 }
3149
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3150 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3151 {
3152 const struct ipv6_pinfo *np = inet6_sk(sk);
3153 struct ipv6_txoptions *opt;
3154 struct ipv6_pinfo *newnp;
3155
3156 newnp = inet6_sk(newsk);
3157
3158 rcu_read_lock();
3159 opt = rcu_dereference(np->opt);
3160 if (opt) {
3161 opt = ipv6_dup_options(newsk, opt);
3162 if (!opt)
3163 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3164 }
3165 RCU_INIT_POINTER(newnp->opt, opt);
3166 rcu_read_unlock();
3167 }
3168 #endif
3169
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3170 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3171 {
3172 struct ip_options_rcu *inet_opt, *newopt = NULL;
3173 const struct inet_sock *inet = inet_sk(sk);
3174 struct inet_sock *newinet;
3175
3176 newinet = inet_sk(newsk);
3177
3178 rcu_read_lock();
3179 inet_opt = rcu_dereference(inet->inet_opt);
3180 if (inet_opt) {
3181 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3182 inet_opt->opt.optlen, GFP_ATOMIC);
3183 if (!newopt)
3184 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3185 }
3186 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3187 rcu_read_unlock();
3188 }
3189
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3190 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3191 const struct mptcp_options_received *mp_opt,
3192 struct sock *ssk,
3193 struct request_sock *req)
3194 {
3195 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3196 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3197 struct mptcp_subflow_context *subflow;
3198 struct mptcp_sock *msk;
3199
3200 if (!nsk)
3201 return NULL;
3202
3203 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3204 if (nsk->sk_family == AF_INET6)
3205 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3206 #endif
3207
3208 __mptcp_init_sock(nsk);
3209
3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3211 if (nsk->sk_family == AF_INET6)
3212 mptcp_copy_ip6_options(nsk, sk);
3213 else
3214 #endif
3215 mptcp_copy_ip_options(nsk, sk);
3216
3217 msk = mptcp_sk(nsk);
3218 WRITE_ONCE(msk->local_key, subflow_req->local_key);
3219 WRITE_ONCE(msk->token, subflow_req->token);
3220 msk->in_accept_queue = 1;
3221 WRITE_ONCE(msk->fully_established, false);
3222 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3223 WRITE_ONCE(msk->csum_enabled, true);
3224
3225 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3226 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3227 WRITE_ONCE(msk->snd_una, msk->write_seq);
3228 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3229 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3230 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3231
3232 /* passive msk is created after the first/MPC subflow */
3233 msk->subflow_id = 2;
3234
3235 sock_reset_flag(nsk, SOCK_RCU_FREE);
3236 security_inet_csk_clone(nsk, req);
3237
3238 /* this can't race with mptcp_close(), as the msk is
3239 * not yet exposted to user-space
3240 */
3241 mptcp_set_state(nsk, TCP_ESTABLISHED);
3242
3243 /* The msk maintain a ref to each subflow in the connections list */
3244 WRITE_ONCE(msk->first, ssk);
3245 subflow = mptcp_subflow_ctx(ssk);
3246 list_add(&subflow->node, &msk->conn_list);
3247 sock_hold(ssk);
3248
3249 /* new mpc subflow takes ownership of the newly
3250 * created mptcp socket
3251 */
3252 mptcp_token_accept(subflow_req, msk);
3253
3254 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3255 * uses the correct data
3256 */
3257 mptcp_copy_inaddrs(nsk, ssk);
3258 __mptcp_propagate_sndbuf(nsk, ssk);
3259
3260 mptcp_rcv_space_init(msk, ssk);
3261
3262 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3263 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3264 bh_unlock_sock(nsk);
3265
3266 /* note: the newly allocated socket refcount is 2 now */
3267 return nsk;
3268 }
3269
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3270 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3271 {
3272 const struct tcp_sock *tp = tcp_sk(ssk);
3273
3274 msk->rcvspace_init = 1;
3275 msk->rcvq_space.copied = 0;
3276 msk->rcvq_space.rtt_us = 0;
3277
3278 msk->rcvq_space.time = tp->tcp_mstamp;
3279
3280 /* initial rcv_space offering made to peer */
3281 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3282 TCP_INIT_CWND * tp->advmss);
3283 if (msk->rcvq_space.space == 0)
3284 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3285 }
3286
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3287 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3288 {
3289 struct mptcp_subflow_context *subflow, *tmp;
3290 struct sock *sk = (struct sock *)msk;
3291
3292 __mptcp_clear_xmit(sk);
3293
3294 /* join list will be eventually flushed (with rst) at sock lock release time */
3295 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3296 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3297
3298 __skb_queue_purge(&sk->sk_receive_queue);
3299 skb_rbtree_purge(&msk->out_of_order_queue);
3300
3301 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3302 * inet_sock_destruct() will dispose it
3303 */
3304 mptcp_token_destroy(msk);
3305 mptcp_pm_destroy(msk);
3306 }
3307
mptcp_destroy(struct sock * sk)3308 static void mptcp_destroy(struct sock *sk)
3309 {
3310 struct mptcp_sock *msk = mptcp_sk(sk);
3311
3312 /* allow the following to close even the initial subflow */
3313 msk->free_first = 1;
3314 mptcp_destroy_common(msk, 0);
3315 sk_sockets_allocated_dec(sk);
3316 }
3317
__mptcp_data_acked(struct sock * sk)3318 void __mptcp_data_acked(struct sock *sk)
3319 {
3320 if (!sock_owned_by_user(sk))
3321 __mptcp_clean_una(sk);
3322 else
3323 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3324 }
3325
__mptcp_check_push(struct sock * sk,struct sock * ssk)3326 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3327 {
3328 if (!mptcp_send_head(sk))
3329 return;
3330
3331 if (!sock_owned_by_user(sk))
3332 __mptcp_subflow_push_pending(sk, ssk, false);
3333 else
3334 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3335 }
3336
3337 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3338 BIT(MPTCP_RETRANSMIT) | \
3339 BIT(MPTCP_FLUSH_JOIN_LIST) | \
3340 BIT(MPTCP_DEQUEUE))
3341
3342 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3343 static void mptcp_release_cb(struct sock *sk)
3344 __must_hold(&sk->sk_lock.slock)
3345 {
3346 struct mptcp_sock *msk = mptcp_sk(sk);
3347
3348 for (;;) {
3349 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3350 struct list_head join_list;
3351
3352 if (!flags)
3353 break;
3354
3355 INIT_LIST_HEAD(&join_list);
3356 list_splice_init(&msk->join_list, &join_list);
3357
3358 /* the following actions acquire the subflow socket lock
3359 *
3360 * 1) can't be invoked in atomic scope
3361 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3362 * datapath acquires the msk socket spinlock while helding
3363 * the subflow socket lock
3364 */
3365 msk->cb_flags &= ~flags;
3366 spin_unlock_bh(&sk->sk_lock.slock);
3367
3368 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3369 __mptcp_flush_join_list(sk, &join_list);
3370 if (flags & BIT(MPTCP_PUSH_PENDING))
3371 __mptcp_push_pending(sk, 0);
3372 if (flags & BIT(MPTCP_RETRANSMIT))
3373 __mptcp_retrans(sk);
3374 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3375 /* notify ack seq update */
3376 mptcp_cleanup_rbuf(msk, 0);
3377 sk->sk_data_ready(sk);
3378 }
3379
3380 cond_resched();
3381 spin_lock_bh(&sk->sk_lock.slock);
3382 }
3383
3384 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3385 __mptcp_clean_una_wakeup(sk);
3386 if (unlikely(msk->cb_flags)) {
3387 /* be sure to sync the msk state before taking actions
3388 * depending on sk_state (MPTCP_ERROR_REPORT)
3389 * On sk release avoid actions depending on the first subflow
3390 */
3391 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3392 __mptcp_sync_state(sk, msk->pending_state);
3393 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3394 __mptcp_error_report(sk);
3395 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3396 __mptcp_sync_sndbuf(sk);
3397 }
3398 }
3399
3400 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3401 * TCP can't schedule delack timer before the subflow is fully established.
3402 * MPTCP uses the delack timer to do 3rd ack retransmissions
3403 */
schedule_3rdack_retransmission(struct sock * ssk)3404 static void schedule_3rdack_retransmission(struct sock *ssk)
3405 {
3406 struct inet_connection_sock *icsk = inet_csk(ssk);
3407 struct tcp_sock *tp = tcp_sk(ssk);
3408 unsigned long timeout;
3409
3410 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3411 return;
3412
3413 /* reschedule with a timeout above RTT, as we must look only for drop */
3414 if (tp->srtt_us)
3415 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3416 else
3417 timeout = TCP_TIMEOUT_INIT;
3418 timeout += jiffies;
3419
3420 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3421 smp_store_release(&icsk->icsk_ack.pending,
3422 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3423 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3424 }
3425
mptcp_subflow_process_delegated(struct sock * ssk,long status)3426 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3427 {
3428 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3429 struct sock *sk = subflow->conn;
3430
3431 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3432 mptcp_data_lock(sk);
3433 if (!sock_owned_by_user(sk))
3434 __mptcp_subflow_push_pending(sk, ssk, true);
3435 else
3436 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3437 mptcp_data_unlock(sk);
3438 }
3439 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3440 mptcp_data_lock(sk);
3441 if (!sock_owned_by_user(sk))
3442 __mptcp_sync_sndbuf(sk);
3443 else
3444 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3445 mptcp_data_unlock(sk);
3446 }
3447 if (status & BIT(MPTCP_DELEGATE_ACK))
3448 schedule_3rdack_retransmission(ssk);
3449 }
3450
mptcp_hash(struct sock * sk)3451 static int mptcp_hash(struct sock *sk)
3452 {
3453 /* should never be called,
3454 * we hash the TCP subflows not the MPTCP socket
3455 */
3456 WARN_ON_ONCE(1);
3457 return 0;
3458 }
3459
mptcp_unhash(struct sock * sk)3460 static void mptcp_unhash(struct sock *sk)
3461 {
3462 /* called from sk_common_release(), but nothing to do here */
3463 }
3464
mptcp_get_port(struct sock * sk,unsigned short snum)3465 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3466 {
3467 struct mptcp_sock *msk = mptcp_sk(sk);
3468
3469 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3470 if (WARN_ON_ONCE(!msk->first))
3471 return -EINVAL;
3472
3473 return inet_csk_get_port(msk->first, snum);
3474 }
3475
mptcp_finish_connect(struct sock * ssk)3476 void mptcp_finish_connect(struct sock *ssk)
3477 {
3478 struct mptcp_subflow_context *subflow;
3479 struct mptcp_sock *msk;
3480 struct sock *sk;
3481
3482 subflow = mptcp_subflow_ctx(ssk);
3483 sk = subflow->conn;
3484 msk = mptcp_sk(sk);
3485
3486 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3487
3488 subflow->map_seq = subflow->iasn;
3489 subflow->map_subflow_seq = 1;
3490
3491 /* the socket is not connected yet, no msk/subflow ops can access/race
3492 * accessing the field below
3493 */
3494 WRITE_ONCE(msk->local_key, subflow->local_key);
3495
3496 mptcp_pm_new_connection(msk, ssk, 0);
3497 }
3498
mptcp_sock_graft(struct sock * sk,struct socket * parent)3499 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3500 {
3501 write_lock_bh(&sk->sk_callback_lock);
3502 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3503 sk_set_socket(sk, parent);
3504 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3505 write_unlock_bh(&sk->sk_callback_lock);
3506 }
3507
mptcp_finish_join(struct sock * ssk)3508 bool mptcp_finish_join(struct sock *ssk)
3509 {
3510 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3511 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3512 struct sock *parent = (void *)msk;
3513 bool ret = true;
3514
3515 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3516
3517 /* mptcp socket already closing? */
3518 if (!mptcp_is_fully_established(parent)) {
3519 subflow->reset_reason = MPTCP_RST_EMPTCP;
3520 return false;
3521 }
3522
3523 /* active subflow, already present inside the conn_list */
3524 if (!list_empty(&subflow->node)) {
3525 mptcp_subflow_joined(msk, ssk);
3526 mptcp_propagate_sndbuf(parent, ssk);
3527 return true;
3528 }
3529
3530 if (!mptcp_pm_allow_new_subflow(msk))
3531 goto err_prohibited;
3532
3533 /* If we can't acquire msk socket lock here, let the release callback
3534 * handle it
3535 */
3536 mptcp_data_lock(parent);
3537 if (!sock_owned_by_user(parent)) {
3538 ret = __mptcp_finish_join(msk, ssk);
3539 if (ret) {
3540 sock_hold(ssk);
3541 list_add_tail(&subflow->node, &msk->conn_list);
3542 }
3543 } else {
3544 sock_hold(ssk);
3545 list_add_tail(&subflow->node, &msk->join_list);
3546 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3547 }
3548 mptcp_data_unlock(parent);
3549
3550 if (!ret) {
3551 err_prohibited:
3552 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3553 return false;
3554 }
3555
3556 return true;
3557 }
3558
mptcp_shutdown(struct sock * sk,int how)3559 static void mptcp_shutdown(struct sock *sk, int how)
3560 {
3561 pr_debug("sk=%p, how=%d\n", sk, how);
3562
3563 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3564 __mptcp_wr_shutdown(sk);
3565 }
3566
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3567 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3568 {
3569 const struct sock *sk = (void *)msk;
3570 u64 delta;
3571
3572 if (sk->sk_state == TCP_LISTEN)
3573 return -EINVAL;
3574
3575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3576 return 0;
3577
3578 delta = msk->write_seq - v;
3579 if (__mptcp_check_fallback(msk) && msk->first) {
3580 struct tcp_sock *tp = tcp_sk(msk->first);
3581
3582 /* the first subflow is disconnected after close - see
3583 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3584 * so ignore that status, too.
3585 */
3586 if (!((1 << msk->first->sk_state) &
3587 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3588 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3589 }
3590 if (delta > INT_MAX)
3591 delta = INT_MAX;
3592
3593 return (int)delta;
3594 }
3595
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3596 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3597 {
3598 struct mptcp_sock *msk = mptcp_sk(sk);
3599 bool slow;
3600
3601 switch (cmd) {
3602 case SIOCINQ:
3603 if (sk->sk_state == TCP_LISTEN)
3604 return -EINVAL;
3605
3606 lock_sock(sk);
3607 if (__mptcp_move_skbs(sk))
3608 mptcp_cleanup_rbuf(msk, 0);
3609 *karg = mptcp_inq_hint(sk);
3610 release_sock(sk);
3611 break;
3612 case SIOCOUTQ:
3613 slow = lock_sock_fast(sk);
3614 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3615 unlock_sock_fast(sk, slow);
3616 break;
3617 case SIOCOUTQNSD:
3618 slow = lock_sock_fast(sk);
3619 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3620 unlock_sock_fast(sk, slow);
3621 break;
3622 default:
3623 return -ENOIOCTLCMD;
3624 }
3625
3626 return 0;
3627 }
3628
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3629 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3630 {
3631 struct mptcp_subflow_context *subflow;
3632 struct mptcp_sock *msk = mptcp_sk(sk);
3633 int err = -EINVAL;
3634 struct sock *ssk;
3635
3636 ssk = __mptcp_nmpc_sk(msk);
3637 if (IS_ERR(ssk))
3638 return PTR_ERR(ssk);
3639
3640 mptcp_set_state(sk, TCP_SYN_SENT);
3641 subflow = mptcp_subflow_ctx(ssk);
3642 #ifdef CONFIG_TCP_MD5SIG
3643 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3644 * TCP option space.
3645 */
3646 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3647 mptcp_subflow_early_fallback(msk, subflow);
3648 #endif
3649 if (subflow->request_mptcp) {
3650 if (mptcp_active_should_disable(sk)) {
3651 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3652 mptcp_subflow_early_fallback(msk, subflow);
3653 } else if (mptcp_token_new_connect(ssk) < 0) {
3654 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3655 mptcp_subflow_early_fallback(msk, subflow);
3656 }
3657 }
3658
3659 WRITE_ONCE(msk->write_seq, subflow->idsn);
3660 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3661 WRITE_ONCE(msk->snd_una, subflow->idsn);
3662 if (likely(!__mptcp_check_fallback(msk)))
3663 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3664
3665 /* if reaching here via the fastopen/sendmsg path, the caller already
3666 * acquired the subflow socket lock, too.
3667 */
3668 if (!msk->fastopening)
3669 lock_sock(ssk);
3670
3671 /* the following mirrors closely a very small chunk of code from
3672 * __inet_stream_connect()
3673 */
3674 if (ssk->sk_state != TCP_CLOSE)
3675 goto out;
3676
3677 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3678 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3679 if (err)
3680 goto out;
3681 }
3682
3683 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3684 if (err < 0)
3685 goto out;
3686
3687 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3688
3689 out:
3690 if (!msk->fastopening)
3691 release_sock(ssk);
3692
3693 /* on successful connect, the msk state will be moved to established by
3694 * subflow_finish_connect()
3695 */
3696 if (unlikely(err)) {
3697 /* avoid leaving a dangling token in an unconnected socket */
3698 mptcp_token_destroy(msk);
3699 mptcp_set_state(sk, TCP_CLOSE);
3700 return err;
3701 }
3702
3703 mptcp_copy_inaddrs(sk, ssk);
3704 return 0;
3705 }
3706
3707 static struct proto mptcp_prot = {
3708 .name = "MPTCP",
3709 .owner = THIS_MODULE,
3710 .init = mptcp_init_sock,
3711 .connect = mptcp_connect,
3712 .disconnect = mptcp_disconnect,
3713 .close = mptcp_close,
3714 .setsockopt = mptcp_setsockopt,
3715 .getsockopt = mptcp_getsockopt,
3716 .shutdown = mptcp_shutdown,
3717 .destroy = mptcp_destroy,
3718 .sendmsg = mptcp_sendmsg,
3719 .ioctl = mptcp_ioctl,
3720 .recvmsg = mptcp_recvmsg,
3721 .release_cb = mptcp_release_cb,
3722 .hash = mptcp_hash,
3723 .unhash = mptcp_unhash,
3724 .get_port = mptcp_get_port,
3725 .stream_memory_free = mptcp_stream_memory_free,
3726 .sockets_allocated = &mptcp_sockets_allocated,
3727
3728 .memory_allocated = &tcp_memory_allocated,
3729 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3730
3731 .memory_pressure = &tcp_memory_pressure,
3732 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3733 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3734 .sysctl_mem = sysctl_tcp_mem,
3735 .obj_size = sizeof(struct mptcp_sock),
3736 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3737 .no_autobind = true,
3738 };
3739
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3740 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3741 {
3742 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3743 struct sock *ssk, *sk = sock->sk;
3744 int err = -EINVAL;
3745
3746 lock_sock(sk);
3747 ssk = __mptcp_nmpc_sk(msk);
3748 if (IS_ERR(ssk)) {
3749 err = PTR_ERR(ssk);
3750 goto unlock;
3751 }
3752
3753 if (sk->sk_family == AF_INET)
3754 err = inet_bind_sk(ssk, uaddr, addr_len);
3755 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3756 else if (sk->sk_family == AF_INET6)
3757 err = inet6_bind_sk(ssk, uaddr, addr_len);
3758 #endif
3759 if (!err)
3760 mptcp_copy_inaddrs(sk, ssk);
3761
3762 unlock:
3763 release_sock(sk);
3764 return err;
3765 }
3766
mptcp_listen(struct socket * sock,int backlog)3767 static int mptcp_listen(struct socket *sock, int backlog)
3768 {
3769 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3770 struct sock *sk = sock->sk;
3771 struct sock *ssk;
3772 int err;
3773
3774 pr_debug("msk=%p\n", msk);
3775
3776 lock_sock(sk);
3777
3778 err = -EINVAL;
3779 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3780 goto unlock;
3781
3782 ssk = __mptcp_nmpc_sk(msk);
3783 if (IS_ERR(ssk)) {
3784 err = PTR_ERR(ssk);
3785 goto unlock;
3786 }
3787
3788 mptcp_set_state(sk, TCP_LISTEN);
3789 sock_set_flag(sk, SOCK_RCU_FREE);
3790
3791 lock_sock(ssk);
3792 err = __inet_listen_sk(ssk, backlog);
3793 release_sock(ssk);
3794 mptcp_set_state(sk, inet_sk_state_load(ssk));
3795
3796 if (!err) {
3797 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3798 mptcp_copy_inaddrs(sk, ssk);
3799 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3800 }
3801
3802 unlock:
3803 release_sock(sk);
3804 return err;
3805 }
3806
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3807 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3808 struct proto_accept_arg *arg)
3809 {
3810 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3811 struct sock *ssk, *newsk;
3812
3813 pr_debug("msk=%p\n", msk);
3814
3815 /* Buggy applications can call accept on socket states other then LISTEN
3816 * but no need to allocate the first subflow just to error out.
3817 */
3818 ssk = READ_ONCE(msk->first);
3819 if (!ssk)
3820 return -EINVAL;
3821
3822 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3823 newsk = inet_csk_accept(ssk, arg);
3824 if (!newsk)
3825 return arg->err;
3826
3827 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3828 if (sk_is_mptcp(newsk)) {
3829 struct mptcp_subflow_context *subflow;
3830 struct sock *new_mptcp_sock;
3831
3832 subflow = mptcp_subflow_ctx(newsk);
3833 new_mptcp_sock = subflow->conn;
3834
3835 /* is_mptcp should be false if subflow->conn is missing, see
3836 * subflow_syn_recv_sock()
3837 */
3838 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3839 tcp_sk(newsk)->is_mptcp = 0;
3840 goto tcpfallback;
3841 }
3842
3843 newsk = new_mptcp_sock;
3844 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3845
3846 newsk->sk_kern_sock = arg->kern;
3847 lock_sock(newsk);
3848 __inet_accept(sock, newsock, newsk);
3849
3850 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3851 msk = mptcp_sk(newsk);
3852 msk->in_accept_queue = 0;
3853
3854 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3855 * This is needed so NOSPACE flag can be set from tcp stack.
3856 */
3857 mptcp_for_each_subflow(msk, subflow) {
3858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3859
3860 if (!ssk->sk_socket)
3861 mptcp_sock_graft(ssk, newsock);
3862 }
3863
3864 /* Do late cleanup for the first subflow as necessary. Also
3865 * deal with bad peers not doing a complete shutdown.
3866 */
3867 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3868 __mptcp_close_ssk(newsk, msk->first,
3869 mptcp_subflow_ctx(msk->first), 0);
3870 if (unlikely(list_is_singular(&msk->conn_list)))
3871 mptcp_set_state(newsk, TCP_CLOSE);
3872 }
3873 } else {
3874 tcpfallback:
3875 newsk->sk_kern_sock = arg->kern;
3876 lock_sock(newsk);
3877 __inet_accept(sock, newsock, newsk);
3878 /* we are being invoked after accepting a non-mp-capable
3879 * flow: sk is a tcp_sk, not an mptcp one.
3880 *
3881 * Hand the socket over to tcp so all further socket ops
3882 * bypass mptcp.
3883 */
3884 WRITE_ONCE(newsock->sk->sk_socket->ops,
3885 mptcp_fallback_tcp_ops(newsock->sk));
3886 }
3887 release_sock(newsk);
3888
3889 return 0;
3890 }
3891
mptcp_check_writeable(struct mptcp_sock * msk)3892 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3893 {
3894 struct sock *sk = (struct sock *)msk;
3895
3896 if (__mptcp_stream_is_writeable(sk, 1))
3897 return EPOLLOUT | EPOLLWRNORM;
3898
3899 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3900 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3901 if (__mptcp_stream_is_writeable(sk, 1))
3902 return EPOLLOUT | EPOLLWRNORM;
3903
3904 return 0;
3905 }
3906
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3907 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3908 struct poll_table_struct *wait)
3909 {
3910 struct sock *sk = sock->sk;
3911 struct mptcp_sock *msk;
3912 __poll_t mask = 0;
3913 u8 shutdown;
3914 int state;
3915
3916 msk = mptcp_sk(sk);
3917 sock_poll_wait(file, sock, wait);
3918
3919 state = inet_sk_state_load(sk);
3920 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3921 if (state == TCP_LISTEN) {
3922 struct sock *ssk = READ_ONCE(msk->first);
3923
3924 if (WARN_ON_ONCE(!ssk))
3925 return 0;
3926
3927 return inet_csk_listen_poll(ssk);
3928 }
3929
3930 shutdown = READ_ONCE(sk->sk_shutdown);
3931 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3932 mask |= EPOLLHUP;
3933 if (shutdown & RCV_SHUTDOWN)
3934 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3935
3936 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3937 mask |= mptcp_check_readable(sk);
3938 if (shutdown & SEND_SHUTDOWN)
3939 mask |= EPOLLOUT | EPOLLWRNORM;
3940 else
3941 mask |= mptcp_check_writeable(msk);
3942 } else if (state == TCP_SYN_SENT &&
3943 inet_test_bit(DEFER_CONNECT, sk)) {
3944 /* cf tcp_poll() note about TFO */
3945 mask |= EPOLLOUT | EPOLLWRNORM;
3946 }
3947
3948 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3949 smp_rmb();
3950 if (READ_ONCE(sk->sk_err))
3951 mask |= EPOLLERR;
3952
3953 return mask;
3954 }
3955
3956 static const struct proto_ops mptcp_stream_ops = {
3957 .family = PF_INET,
3958 .owner = THIS_MODULE,
3959 .release = inet_release,
3960 .bind = mptcp_bind,
3961 .connect = inet_stream_connect,
3962 .socketpair = sock_no_socketpair,
3963 .accept = mptcp_stream_accept,
3964 .getname = inet_getname,
3965 .poll = mptcp_poll,
3966 .ioctl = inet_ioctl,
3967 .gettstamp = sock_gettstamp,
3968 .listen = mptcp_listen,
3969 .shutdown = inet_shutdown,
3970 .setsockopt = sock_common_setsockopt,
3971 .getsockopt = sock_common_getsockopt,
3972 .sendmsg = inet_sendmsg,
3973 .recvmsg = inet_recvmsg,
3974 .mmap = sock_no_mmap,
3975 .set_rcvlowat = mptcp_set_rcvlowat,
3976 };
3977
3978 static struct inet_protosw mptcp_protosw = {
3979 .type = SOCK_STREAM,
3980 .protocol = IPPROTO_MPTCP,
3981 .prot = &mptcp_prot,
3982 .ops = &mptcp_stream_ops,
3983 .flags = INET_PROTOSW_ICSK,
3984 };
3985
mptcp_napi_poll(struct napi_struct * napi,int budget)3986 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3987 {
3988 struct mptcp_delegated_action *delegated;
3989 struct mptcp_subflow_context *subflow;
3990 int work_done = 0;
3991
3992 delegated = container_of(napi, struct mptcp_delegated_action, napi);
3993 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3994 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3995
3996 bh_lock_sock_nested(ssk);
3997 if (!sock_owned_by_user(ssk)) {
3998 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3999 } else {
4000 /* tcp_release_cb_override already processed
4001 * the action or will do at next release_sock().
4002 * In both case must dequeue the subflow here - on the same
4003 * CPU that scheduled it.
4004 */
4005 smp_wmb();
4006 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4007 }
4008 bh_unlock_sock(ssk);
4009 sock_put(ssk);
4010
4011 if (++work_done == budget)
4012 return budget;
4013 }
4014
4015 /* always provide a 0 'work_done' argument, so that napi_complete_done
4016 * will not try accessing the NULL napi->dev ptr
4017 */
4018 napi_complete_done(napi, 0);
4019 return work_done;
4020 }
4021
mptcp_proto_init(void)4022 void __init mptcp_proto_init(void)
4023 {
4024 struct mptcp_delegated_action *delegated;
4025 int cpu;
4026
4027 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4028
4029 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4030 panic("Failed to allocate MPTCP pcpu counter\n");
4031
4032 mptcp_napi_dev = alloc_netdev_dummy(0);
4033 if (!mptcp_napi_dev)
4034 panic("Failed to allocate MPTCP dummy netdev\n");
4035 for_each_possible_cpu(cpu) {
4036 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4037 INIT_LIST_HEAD(&delegated->head);
4038 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4039 mptcp_napi_poll);
4040 napi_enable(&delegated->napi);
4041 }
4042
4043 mptcp_subflow_init();
4044 mptcp_pm_init();
4045 mptcp_sched_init();
4046 mptcp_token_init();
4047
4048 if (proto_register(&mptcp_prot, 1) != 0)
4049 panic("Failed to register MPTCP proto.\n");
4050
4051 inet_register_protosw(&mptcp_protosw);
4052
4053 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4054 }
4055
4056 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4057 static const struct proto_ops mptcp_v6_stream_ops = {
4058 .family = PF_INET6,
4059 .owner = THIS_MODULE,
4060 .release = inet6_release,
4061 .bind = mptcp_bind,
4062 .connect = inet_stream_connect,
4063 .socketpair = sock_no_socketpair,
4064 .accept = mptcp_stream_accept,
4065 .getname = inet6_getname,
4066 .poll = mptcp_poll,
4067 .ioctl = inet6_ioctl,
4068 .gettstamp = sock_gettstamp,
4069 .listen = mptcp_listen,
4070 .shutdown = inet_shutdown,
4071 .setsockopt = sock_common_setsockopt,
4072 .getsockopt = sock_common_getsockopt,
4073 .sendmsg = inet6_sendmsg,
4074 .recvmsg = inet6_recvmsg,
4075 .mmap = sock_no_mmap,
4076 #ifdef CONFIG_COMPAT
4077 .compat_ioctl = inet6_compat_ioctl,
4078 #endif
4079 .set_rcvlowat = mptcp_set_rcvlowat,
4080 };
4081
4082 static struct proto mptcp_v6_prot;
4083
4084 static struct inet_protosw mptcp_v6_protosw = {
4085 .type = SOCK_STREAM,
4086 .protocol = IPPROTO_MPTCP,
4087 .prot = &mptcp_v6_prot,
4088 .ops = &mptcp_v6_stream_ops,
4089 .flags = INET_PROTOSW_ICSK,
4090 };
4091
mptcp_proto_v6_init(void)4092 int __init mptcp_proto_v6_init(void)
4093 {
4094 int err;
4095
4096 mptcp_v6_prot = mptcp_prot;
4097 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4098 mptcp_v6_prot.slab = NULL;
4099 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4100 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4101
4102 err = proto_register(&mptcp_v6_prot, 1);
4103 if (err)
4104 return err;
4105
4106 err = inet6_register_protosw(&mptcp_v6_protosw);
4107 if (err)
4108 proto_unregister(&mptcp_v6_prot);
4109
4110 return err;
4111 }
4112 #endif
4113