xref: /linux/fs/ext4/inode.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <kunit/static_stub.h>
52 
53 #include <trace/events/ext4.h>
54 
55 static void ext4_journalled_zero_new_buffers(handle_t *handle,
56 					    struct inode *inode,
57 					    struct folio *folio,
58 					    unsigned from, unsigned to);
59 
60 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
61 			      struct ext4_inode_info *ei)
62 {
63 	__u32 csum;
64 	__u16 dummy_csum = 0;
65 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
66 	unsigned int csum_size = sizeof(dummy_csum);
67 
68 	csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
69 	csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
70 	offset += csum_size;
71 	csum = ext4_chksum(csum, (__u8 *)raw + offset,
72 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
73 
74 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
75 		offset = offsetof(struct ext4_inode, i_checksum_hi);
76 		csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
77 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
78 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
79 			csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
80 					   csum_size);
81 			offset += csum_size;
82 		}
83 		csum = ext4_chksum(csum, (__u8 *)raw + offset,
84 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
85 	}
86 
87 	return csum;
88 }
89 
90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
91 				  struct ext4_inode_info *ei)
92 {
93 	__u32 provided, calculated;
94 
95 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
96 	    cpu_to_le32(EXT4_OS_LINUX) ||
97 	    !ext4_has_feature_metadata_csum(inode->i_sb))
98 		return 1;
99 
100 	provided = le16_to_cpu(raw->i_checksum_lo);
101 	calculated = ext4_inode_csum(inode, raw, ei);
102 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
103 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
104 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
105 	else
106 		calculated &= 0xFFFF;
107 
108 	return provided == calculated;
109 }
110 
111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
112 			 struct ext4_inode_info *ei)
113 {
114 	__u32 csum;
115 
116 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
117 	    cpu_to_le32(EXT4_OS_LINUX) ||
118 	    !ext4_has_feature_metadata_csum(inode->i_sb))
119 		return;
120 
121 	csum = ext4_inode_csum(inode, raw, ei);
122 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
123 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
124 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
125 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
126 }
127 
128 static inline int ext4_begin_ordered_truncate(struct inode *inode,
129 					      loff_t new_size)
130 {
131 	trace_ext4_begin_ordered_truncate(inode, new_size);
132 	/*
133 	 * If jinode is zero, then we never opened the file for
134 	 * writing, so there's no need to call
135 	 * jbd2_journal_begin_ordered_truncate() since there's no
136 	 * outstanding writes we need to flush.
137 	 */
138 	if (!EXT4_I(inode)->jinode)
139 		return 0;
140 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
141 						   EXT4_I(inode)->jinode,
142 						   new_size);
143 }
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!ext4_has_feature_ea_inode(inode->i_sb)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	dax_break_layout_final(inode);
183 
184 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 		ext4_evict_ea_inode(inode);
186 	if (inode->i_nlink) {
187 		truncate_inode_pages_final(&inode->i_data);
188 
189 		goto no_delete;
190 	}
191 
192 	if (is_bad_inode(inode))
193 		goto no_delete;
194 	dquot_initialize(inode);
195 
196 	if (ext4_should_order_data(inode))
197 		ext4_begin_ordered_truncate(inode, 0);
198 	truncate_inode_pages_final(&inode->i_data);
199 
200 	/*
201 	 * For inodes with journalled data, transaction commit could have
202 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 	 * extents converting worker could merge extents and also have dirtied
204 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 	 * we still need to remove the inode from the writeback lists.
206 	 */
207 	inode_io_list_del(inode);
208 
209 	/*
210 	 * Protect us against freezing - iput() caller didn't have to have any
211 	 * protection against it. When we are in a running transaction though,
212 	 * we are already protected against freezing and we cannot grab further
213 	 * protection due to lock ordering constraints.
214 	 */
215 	if (!ext4_journal_current_handle()) {
216 		sb_start_intwrite(inode->i_sb);
217 		freeze_protected = true;
218 	}
219 
220 	if (!IS_NOQUOTA(inode))
221 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
222 
223 	/*
224 	 * Block bitmap, group descriptor, and inode are accounted in both
225 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
226 	 */
227 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
228 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
229 	if (IS_ERR(handle)) {
230 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
231 		/*
232 		 * If we're going to skip the normal cleanup, we still need to
233 		 * make sure that the in-core orphan linked list is properly
234 		 * cleaned up.
235 		 */
236 		ext4_orphan_del(NULL, inode);
237 		if (freeze_protected)
238 			sb_end_intwrite(inode->i_sb);
239 		goto no_delete;
240 	}
241 
242 	if (IS_SYNC(inode))
243 		ext4_handle_sync(handle);
244 
245 	/*
246 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
247 	 * special handling of symlinks here because i_size is used to
248 	 * determine whether ext4_inode_info->i_data contains symlink data or
249 	 * block mappings. Setting i_size to 0 will remove its fast symlink
250 	 * status. Erase i_data so that it becomes a valid empty block map.
251 	 */
252 	if (ext4_inode_is_fast_symlink(inode))
253 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks) {
262 		err = ext4_truncate(inode);
263 		if (err) {
264 			ext4_error_err(inode->i_sb, -err,
265 				       "couldn't truncate inode %lu (err %d)",
266 				       inode->i_ino, err);
267 			goto stop_handle;
268 		}
269 	}
270 
271 	/* Remove xattr references. */
272 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
273 				      extra_credits);
274 	if (err) {
275 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
276 stop_handle:
277 		ext4_journal_stop(handle);
278 		ext4_orphan_del(NULL, inode);
279 		if (freeze_protected)
280 			sb_end_intwrite(inode->i_sb);
281 		ext4_xattr_inode_array_free(ea_inode_array);
282 		goto no_delete;
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	if (freeze_protected)
310 		sb_end_intwrite(inode->i_sb);
311 	ext4_xattr_inode_array_free(ea_inode_array);
312 	return;
313 no_delete:
314 	/*
315 	 * Check out some where else accidentally dirty the evicting inode,
316 	 * which may probably cause inode use-after-free issues later.
317 	 */
318 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
319 
320 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
321 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&ei->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    !inode_is_open_for_write(inode))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
386 
387 	if (journal && inode == journal->j_inode)
388 		return 0;
389 
390 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 		ext4_error_inode(inode, func, line, map->m_pblk,
392 				 "lblock %lu mapped to illegal pblock %llu "
393 				 "(length %d)", (unsigned long) map->m_lblk,
394 				 map->m_pblk, map->m_len);
395 		return -EFSCORRUPTED;
396 	}
397 	return 0;
398 }
399 
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 		       ext4_lblk_t len)
402 {
403 	int ret;
404 
405 	KUNIT_STATIC_STUB_REDIRECT(ext4_issue_zeroout, inode, lblk, pblk, len);
406 
407 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
408 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
409 
410 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 	if (ret > 0)
412 		ret = 0;
413 
414 	return ret;
415 }
416 
417 /*
418  * For generic regular files, when updating the extent tree, Ext4 should
419  * hold the i_rwsem and invalidate_lock exclusively. This ensures
420  * exclusion against concurrent page faults, as well as reads and writes.
421  */
422 #ifdef CONFIG_EXT4_DEBUG
423 void ext4_check_map_extents_env(struct inode *inode)
424 {
425 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
426 		return;
427 
428 	if (!S_ISREG(inode->i_mode) ||
429 	    IS_NOQUOTA(inode) || IS_VERITY(inode) ||
430 	    is_special_ino(inode->i_sb, inode->i_ino) ||
431 	    (inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) ||
432 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
433 	    ext4_verity_in_progress(inode))
434 		return;
435 
436 	WARN_ON_ONCE(!inode_is_locked(inode) &&
437 		     !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
438 }
439 #else
440 void ext4_check_map_extents_env(struct inode *inode) {}
441 #endif
442 
443 #define check_block_validity(inode, map)	\
444 	__check_block_validity((inode), __func__, __LINE__, (map))
445 
446 #ifdef ES_AGGRESSIVE_TEST
447 static void ext4_map_blocks_es_recheck(handle_t *handle,
448 				       struct inode *inode,
449 				       struct ext4_map_blocks *es_map,
450 				       struct ext4_map_blocks *map,
451 				       int flags)
452 {
453 	int retval;
454 
455 	map->m_flags = 0;
456 	/*
457 	 * There is a race window that the result is not the same.
458 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
459 	 * is that we lookup a block mapping in extent status tree with
460 	 * out taking i_data_sem.  So at the time the unwritten extent
461 	 * could be converted.
462 	 */
463 	down_read(&EXT4_I(inode)->i_data_sem);
464 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
465 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
466 	} else {
467 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
468 	}
469 	up_read((&EXT4_I(inode)->i_data_sem));
470 
471 	/*
472 	 * We don't check m_len because extent will be collpased in status
473 	 * tree.  So the m_len might not equal.
474 	 */
475 	if (es_map->m_lblk != map->m_lblk ||
476 	    es_map->m_flags != map->m_flags ||
477 	    es_map->m_pblk != map->m_pblk) {
478 		printk("ES cache assertion failed for inode: %lu "
479 		       "es_cached ex [%d/%d/%llu/%x] != "
480 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
481 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
482 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
483 		       map->m_len, map->m_pblk, map->m_flags,
484 		       retval, flags);
485 	}
486 }
487 #endif /* ES_AGGRESSIVE_TEST */
488 
489 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
490 			struct inode *inode, struct ext4_map_blocks *map,
491 			unsigned int orig_mlen)
492 {
493 	struct ext4_map_blocks map2;
494 	unsigned int status, status2;
495 	int retval;
496 
497 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
498 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
499 
500 	WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
501 	WARN_ON_ONCE(orig_mlen <= map->m_len);
502 
503 	/* Prepare map2 for lookup in next leaf block */
504 	map2.m_lblk = map->m_lblk + map->m_len;
505 	map2.m_len = orig_mlen - map->m_len;
506 	map2.m_flags = 0;
507 	retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
508 
509 	if (retval <= 0) {
510 		ext4_es_cache_extent(inode, map->m_lblk, map->m_len,
511 				     map->m_pblk, status);
512 		return map->m_len;
513 	}
514 
515 	if (unlikely(retval != map2.m_len)) {
516 		ext4_warning(inode->i_sb,
517 			     "ES len assertion failed for inode "
518 			     "%lu: retval %d != map->m_len %d",
519 			     inode->i_ino, retval, map2.m_len);
520 		WARN_ON(1);
521 	}
522 
523 	status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
524 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
525 
526 	/*
527 	 * If map2 is contiguous with map, then let's insert it as a single
528 	 * extent in es cache and return the combined length of both the maps.
529 	 */
530 	if (map->m_pblk + map->m_len == map2.m_pblk &&
531 			status == status2) {
532 		ext4_es_cache_extent(inode, map->m_lblk,
533 				     map->m_len + map2.m_len, map->m_pblk,
534 				     status);
535 		map->m_len += map2.m_len;
536 	} else {
537 		ext4_es_cache_extent(inode, map->m_lblk, map->m_len,
538 				     map->m_pblk, status);
539 	}
540 
541 	return map->m_len;
542 }
543 
544 int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
545 			  struct ext4_map_blocks *map, int flags)
546 {
547 	unsigned int status;
548 	int retval;
549 	unsigned int orig_mlen = map->m_len;
550 
551 	flags &= EXT4_EX_QUERY_FILTER;
552 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
553 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
554 	else
555 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
556 	if (retval < 0)
557 		return retval;
558 
559 	/* A hole? */
560 	if (retval == 0)
561 		goto out;
562 
563 	if (unlikely(retval != map->m_len)) {
564 		ext4_warning(inode->i_sb,
565 			     "ES len assertion failed for inode "
566 			     "%lu: retval %d != map->m_len %d",
567 			     inode->i_ino, retval, map->m_len);
568 		WARN_ON(1);
569 	}
570 
571 	/*
572 	 * No need to query next in leaf:
573 	 * - if returned extent is not last in leaf or
574 	 * - if the last in leaf is the full requested range
575 	 */
576 	if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
577 			map->m_len == orig_mlen) {
578 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 		ext4_es_cache_extent(inode, map->m_lblk, map->m_len,
581 				     map->m_pblk, status);
582 	} else {
583 		retval = ext4_map_query_blocks_next_in_leaf(handle, inode, map,
584 							    orig_mlen);
585 	}
586 out:
587 	map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
588 	return retval;
589 }
590 
591 int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
592 			   struct ext4_map_blocks *map, int flags)
593 {
594 	unsigned int status;
595 	int err, retval = 0;
596 
597 	/*
598 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
599 	 * indicates that the blocks and quotas has already been
600 	 * checked when the data was copied into the page cache.
601 	 */
602 	if (map->m_flags & EXT4_MAP_DELAYED)
603 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
604 
605 	/*
606 	 * Here we clear m_flags because after allocating an new extent,
607 	 * it will be set again.
608 	 */
609 	map->m_flags &= ~EXT4_MAP_FLAGS;
610 
611 	/*
612 	 * We need to check for EXT4 here because migrate could have
613 	 * changed the inode type in between.
614 	 */
615 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
616 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
617 	} else {
618 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
619 
620 		/*
621 		 * We allocated new blocks which will result in i_data's
622 		 * format changing. Force the migrate to fail by clearing
623 		 * migrate flags.
624 		 */
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
626 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
627 	}
628 	if (retval <= 0)
629 		return retval;
630 
631 	if (unlikely(retval != map->m_len)) {
632 		ext4_warning(inode->i_sb,
633 			     "ES len assertion failed for inode %lu: "
634 			     "retval %d != map->m_len %d",
635 			     inode->i_ino, retval, map->m_len);
636 		WARN_ON(1);
637 	}
638 
639 	/*
640 	 * We have to zeroout blocks before inserting them into extent
641 	 * status tree. Otherwise someone could look them up there and
642 	 * use them before they are really zeroed. We also have to
643 	 * unmap metadata before zeroing as otherwise writeback can
644 	 * overwrite zeros with stale data from block device.
645 	 */
646 	if (flags & EXT4_GET_BLOCKS_ZERO &&
647 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
648 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
649 					 map->m_len);
650 		if (err)
651 			return err;
652 	}
653 
654 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
655 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
656 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
657 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
658 	map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
659 
660 	return retval;
661 }
662 
663 /*
664  * The ext4_map_blocks() function tries to look up the requested blocks,
665  * and returns if the blocks are already mapped.
666  *
667  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
668  * and store the allocated blocks in the result buffer head and mark it
669  * mapped.
670  *
671  * If file type is extents based, it will call ext4_ext_map_blocks(),
672  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
673  * based files
674  *
675  * On success, it returns the number of blocks being mapped or allocated.
676  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
677  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
678  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
679  *
680  * It returns 0 if plain look up failed (blocks have not been allocated), in
681  * that case, @map is returned as unmapped but we still do fill map->m_len to
682  * indicate the length of a hole starting at map->m_lblk.
683  *
684  * It returns the error in case of allocation failure.
685  */
686 int ext4_map_blocks(handle_t *handle, struct inode *inode,
687 		    struct ext4_map_blocks *map, int flags)
688 {
689 	struct extent_status es;
690 	int retval;
691 	int ret = 0;
692 	unsigned int orig_mlen = map->m_len;
693 #ifdef ES_AGGRESSIVE_TEST
694 	struct ext4_map_blocks orig_map;
695 
696 	memcpy(&orig_map, map, sizeof(*map));
697 #endif
698 
699 	map->m_flags = 0;
700 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
701 		  flags, map->m_len, (unsigned long) map->m_lblk);
702 
703 	/*
704 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
705 	 */
706 	if (unlikely(map->m_len > INT_MAX))
707 		map->m_len = INT_MAX;
708 
709 	/* We can handle the block number less than EXT_MAX_BLOCKS */
710 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
711 		return -EFSCORRUPTED;
712 
713 	/*
714 	 * Callers from the context of data submission are the only exceptions
715 	 * for regular files that do not hold the i_rwsem or invalidate_lock.
716 	 * However, caching unrelated ranges is not permitted.
717 	 */
718 	if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
719 		WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
720 	else
721 		ext4_check_map_extents_env(inode);
722 
723 	/* Lookup extent status tree firstly */
724 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) {
725 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
726 			map->m_pblk = ext4_es_pblock(&es) +
727 					map->m_lblk - es.es_lblk;
728 			map->m_flags |= ext4_es_is_written(&es) ?
729 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
730 			retval = es.es_len - (map->m_lblk - es.es_lblk);
731 			if (retval > map->m_len)
732 				retval = map->m_len;
733 			map->m_len = retval;
734 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
735 			map->m_pblk = 0;
736 			map->m_flags |= ext4_es_is_delayed(&es) ?
737 					EXT4_MAP_DELAYED : 0;
738 			retval = es.es_len - (map->m_lblk - es.es_lblk);
739 			if (retval > map->m_len)
740 				retval = map->m_len;
741 			map->m_len = retval;
742 			retval = 0;
743 		} else {
744 			BUG();
745 		}
746 
747 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
748 			return retval;
749 #ifdef ES_AGGRESSIVE_TEST
750 		ext4_map_blocks_es_recheck(handle, inode, map,
751 					   &orig_map, flags);
752 #endif
753 		if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
754 				orig_mlen == map->m_len)
755 			goto found;
756 
757 		map->m_len = orig_mlen;
758 	}
759 	/*
760 	 * In the query cache no-wait mode, nothing we can do more if we
761 	 * cannot find extent in the cache.
762 	 */
763 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
764 		return 0;
765 
766 	/*
767 	 * Try to see if we can get the block without requesting a new
768 	 * file system block.
769 	 */
770 	down_read(&EXT4_I(inode)->i_data_sem);
771 	retval = ext4_map_query_blocks(handle, inode, map, flags);
772 	up_read((&EXT4_I(inode)->i_data_sem));
773 
774 found:
775 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
776 		ret = check_block_validity(inode, map);
777 		if (ret != 0)
778 			return ret;
779 	}
780 
781 	/* If it is only a block(s) look up */
782 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
783 		return retval;
784 
785 	/*
786 	 * Returns if the blocks have already allocated
787 	 *
788 	 * Note that if blocks have been preallocated
789 	 * ext4_ext_map_blocks() returns with buffer head unmapped
790 	 */
791 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
792 		/*
793 		 * If we need to convert extent to unwritten
794 		 * we continue and do the actual work in
795 		 * ext4_ext_map_blocks()
796 		 */
797 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
798 			return retval;
799 
800 
801 	ext4_fc_track_inode(handle, inode);
802 	/*
803 	 * New blocks allocate and/or writing to unwritten extent
804 	 * will possibly result in updating i_data, so we take
805 	 * the write lock of i_data_sem, and call get_block()
806 	 * with create == 1 flag.
807 	 */
808 	down_write(&EXT4_I(inode)->i_data_sem);
809 	retval = ext4_map_create_blocks(handle, inode, map, flags);
810 	up_write((&EXT4_I(inode)->i_data_sem));
811 
812 	if (retval < 0)
813 		ext_debug(inode, "failed with err %d\n", retval);
814 	if (retval <= 0)
815 		return retval;
816 
817 	if (map->m_flags & EXT4_MAP_MAPPED) {
818 		ret = check_block_validity(inode, map);
819 		if (ret != 0)
820 			return ret;
821 
822 		/*
823 		 * Inodes with freshly allocated blocks where contents will be
824 		 * visible after transaction commit must be on transaction's
825 		 * ordered data list.
826 		 */
827 		if (map->m_flags & EXT4_MAP_NEW &&
828 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
829 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
830 		    !ext4_is_quota_file(inode) &&
831 		    ext4_should_order_data(inode)) {
832 			loff_t start_byte = EXT4_LBLK_TO_B(inode, map->m_lblk);
833 			loff_t length = EXT4_LBLK_TO_B(inode, map->m_len);
834 
835 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
836 				ret = ext4_jbd2_inode_add_wait(handle, inode,
837 						start_byte, length);
838 			else
839 				ret = ext4_jbd2_inode_add_write(handle, inode,
840 						start_byte, length);
841 			if (ret)
842 				return ret;
843 		}
844 	}
845 	ext4_fc_track_range(handle, inode, map->m_lblk, map->m_lblk +
846 			    map->m_len - 1);
847 	return retval;
848 }
849 
850 /*
851  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
852  * we have to be careful as someone else may be manipulating b_state as well.
853  */
854 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
855 {
856 	unsigned long old_state;
857 	unsigned long new_state;
858 
859 	flags &= EXT4_MAP_FLAGS;
860 
861 	/* Dummy buffer_head? Set non-atomically. */
862 	if (!bh->b_folio) {
863 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
864 		return;
865 	}
866 	/*
867 	 * Someone else may be modifying b_state. Be careful! This is ugly but
868 	 * once we get rid of using bh as a container for mapping information
869 	 * to pass to / from get_block functions, this can go away.
870 	 */
871 	old_state = READ_ONCE(bh->b_state);
872 	do {
873 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
874 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
875 }
876 
877 /*
878  * Make sure that the current journal transaction has enough credits to map
879  * one extent. Return -EAGAIN if it cannot extend the current running
880  * transaction.
881  */
882 static inline int ext4_journal_ensure_extent_credits(handle_t *handle,
883 						     struct inode *inode)
884 {
885 	int credits;
886 	int ret;
887 
888 	/* Called from ext4_da_write_begin() which has no handle started? */
889 	if (!handle)
890 		return 0;
891 
892 	credits = ext4_chunk_trans_blocks(inode, 1);
893 	ret = __ext4_journal_ensure_credits(handle, credits, credits, 0);
894 	return ret <= 0 ? ret : -EAGAIN;
895 }
896 
897 static int _ext4_get_block(struct inode *inode, sector_t iblock,
898 			   struct buffer_head *bh, int flags)
899 {
900 	struct ext4_map_blocks map;
901 	int ret = 0;
902 
903 	if (ext4_has_inline_data(inode))
904 		return -ERANGE;
905 
906 	map.m_lblk = iblock;
907 	map.m_len = bh->b_size >> inode->i_blkbits;
908 
909 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
910 			      flags);
911 	if (ret > 0) {
912 		map_bh(bh, inode->i_sb, map.m_pblk);
913 		ext4_update_bh_state(bh, map.m_flags);
914 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
915 		ret = 0;
916 	} else if (ret == 0) {
917 		/* hole case, need to fill in bh->b_size */
918 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
919 	}
920 	return ret;
921 }
922 
923 int ext4_get_block(struct inode *inode, sector_t iblock,
924 		   struct buffer_head *bh, int create)
925 {
926 	return _ext4_get_block(inode, iblock, bh,
927 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
928 }
929 
930 /*
931  * Get block function used when preparing for buffered write if we require
932  * creating an unwritten extent if blocks haven't been allocated.  The extent
933  * will be converted to written after the IO is complete.
934  */
935 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
936 			     struct buffer_head *bh_result, int create)
937 {
938 	int ret = 0;
939 
940 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
941 		   inode->i_ino, create);
942 	ret = _ext4_get_block(inode, iblock, bh_result,
943 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
944 
945 	/*
946 	 * If the buffer is marked unwritten, mark it as new to make sure it is
947 	 * zeroed out correctly in case of partial writes. Otherwise, there is
948 	 * a chance of stale data getting exposed.
949 	 */
950 	if (ret == 0 && buffer_unwritten(bh_result))
951 		set_buffer_new(bh_result);
952 
953 	return ret;
954 }
955 
956 /* Maximum number of blocks we map for direct IO at once. */
957 #define DIO_MAX_BLOCKS 4096
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
969 	int err;
970 
971 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
972 		    || handle != NULL || create == 0);
973 	ASSERT(create == 0 || !nowait);
974 
975 	map.m_lblk = block;
976 	map.m_len = 1;
977 	err = ext4_map_blocks(handle, inode, &map, map_flags);
978 
979 	if (err == 0)
980 		return create ? ERR_PTR(-ENOSPC) : NULL;
981 	if (err < 0)
982 		return ERR_PTR(err);
983 
984 	if (nowait)
985 		return sb_find_get_block(inode->i_sb, map.m_pblk);
986 
987 	/*
988 	 * Since bh could introduce extra ref count such as referred by
989 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
990 	 * as it may fail the migration when journal_head remains.
991 	 */
992 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
993 				inode->i_sb->s_blocksize);
994 
995 	if (unlikely(!bh))
996 		return ERR_PTR(-ENOMEM);
997 	if (map.m_flags & EXT4_MAP_NEW) {
998 		ASSERT(create != 0);
999 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1000 			    || (handle != NULL));
1001 
1002 		/*
1003 		 * Now that we do not always journal data, we should
1004 		 * keep in mind whether this should always journal the
1005 		 * new buffer as metadata.  For now, regular file
1006 		 * writes use ext4_get_block instead, so it's not a
1007 		 * problem.
1008 		 */
1009 		lock_buffer(bh);
1010 		BUFFER_TRACE(bh, "call get_create_access");
1011 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
1012 						     EXT4_JTR_NONE);
1013 		if (unlikely(err)) {
1014 			unlock_buffer(bh);
1015 			goto errout;
1016 		}
1017 		if (!buffer_uptodate(bh)) {
1018 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1019 			set_buffer_uptodate(bh);
1020 		}
1021 		unlock_buffer(bh);
1022 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1023 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1024 		if (unlikely(err))
1025 			goto errout;
1026 	} else
1027 		BUFFER_TRACE(bh, "not a new buffer");
1028 	return bh;
1029 errout:
1030 	brelse(bh);
1031 	return ERR_PTR(err);
1032 }
1033 
1034 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1035 			       ext4_lblk_t block, int map_flags)
1036 {
1037 	struct buffer_head *bh;
1038 	int ret;
1039 
1040 	bh = ext4_getblk(handle, inode, block, map_flags);
1041 	if (IS_ERR(bh))
1042 		return bh;
1043 	if (!bh || ext4_buffer_uptodate(bh))
1044 		return bh;
1045 
1046 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1047 	if (ret) {
1048 		put_bh(bh);
1049 		return ERR_PTR(ret);
1050 	}
1051 	return bh;
1052 }
1053 
1054 /* Read a contiguous batch of blocks. */
1055 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1056 		     bool wait, struct buffer_head **bhs)
1057 {
1058 	int i, err;
1059 
1060 	for (i = 0; i < bh_count; i++) {
1061 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1062 		if (IS_ERR(bhs[i])) {
1063 			err = PTR_ERR(bhs[i]);
1064 			bh_count = i;
1065 			goto out_brelse;
1066 		}
1067 	}
1068 
1069 	for (i = 0; i < bh_count; i++)
1070 		/* Note that NULL bhs[i] is valid because of holes. */
1071 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1072 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1073 
1074 	if (!wait)
1075 		return 0;
1076 
1077 	for (i = 0; i < bh_count; i++)
1078 		if (bhs[i])
1079 			wait_on_buffer(bhs[i]);
1080 
1081 	for (i = 0; i < bh_count; i++) {
1082 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1083 			err = -EIO;
1084 			goto out_brelse;
1085 		}
1086 	}
1087 	return 0;
1088 
1089 out_brelse:
1090 	for (i = 0; i < bh_count; i++) {
1091 		brelse(bhs[i]);
1092 		bhs[i] = NULL;
1093 	}
1094 	return err;
1095 }
1096 
1097 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1098 			   struct buffer_head *head,
1099 			   unsigned from,
1100 			   unsigned to,
1101 			   int *partial,
1102 			   int (*fn)(handle_t *handle, struct inode *inode,
1103 				     struct buffer_head *bh))
1104 {
1105 	struct buffer_head *bh;
1106 	unsigned block_start, block_end;
1107 	unsigned blocksize = head->b_size;
1108 	int err, ret = 0;
1109 	struct buffer_head *next;
1110 
1111 	for (bh = head, block_start = 0;
1112 	     ret == 0 && (bh != head || !block_start);
1113 	     block_start = block_end, bh = next) {
1114 		next = bh->b_this_page;
1115 		block_end = block_start + blocksize;
1116 		if (block_end <= from || block_start >= to) {
1117 			if (partial && !buffer_uptodate(bh))
1118 				*partial = 1;
1119 			continue;
1120 		}
1121 		err = (*fn)(handle, inode, bh);
1122 		if (!ret)
1123 			ret = err;
1124 	}
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Helper for handling dirtying of journalled data. We also mark the folio as
1130  * dirty so that writeback code knows about this page (and inode) contains
1131  * dirty data. ext4_writepages() then commits appropriate transaction to
1132  * make data stable.
1133  */
1134 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1135 {
1136 	struct folio *folio = bh->b_folio;
1137 	struct inode *inode = folio->mapping->host;
1138 
1139 	/* only regular files have a_ops */
1140 	if (S_ISREG(inode->i_mode))
1141 		folio_mark_dirty(folio);
1142 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1143 }
1144 
1145 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1146 				struct buffer_head *bh)
1147 {
1148 	if (!buffer_mapped(bh) || buffer_freed(bh))
1149 		return 0;
1150 	BUFFER_TRACE(bh, "get write access");
1151 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1152 					    EXT4_JTR_NONE);
1153 }
1154 
1155 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1156 			   loff_t pos, unsigned len,
1157 			   get_block_t *get_block)
1158 {
1159 	unsigned int from = offset_in_folio(folio, pos);
1160 	unsigned to = from + len;
1161 	struct inode *inode = folio->mapping->host;
1162 	unsigned block_start, block_end;
1163 	sector_t block;
1164 	int err = 0;
1165 	unsigned int blocksize = i_blocksize(inode);
1166 	struct buffer_head *bh, *head, *wait[2];
1167 	int nr_wait = 0;
1168 	int i;
1169 	bool should_journal_data = ext4_should_journal_data(inode);
1170 
1171 	BUG_ON(!folio_test_locked(folio));
1172 	BUG_ON(to > folio_size(folio));
1173 	BUG_ON(from > to);
1174 	WARN_ON_ONCE(blocksize > folio_size(folio));
1175 
1176 	head = folio_buffers(folio);
1177 	if (!head)
1178 		head = create_empty_buffers(folio, blocksize, 0);
1179 	block = EXT4_PG_TO_LBLK(inode, folio->index);
1180 
1181 	for (bh = head, block_start = 0; bh != head || !block_start;
1182 	    block++, block_start = block_end, bh = bh->b_this_page) {
1183 		block_end = block_start + blocksize;
1184 		if (block_end <= from || block_start >= to) {
1185 			if (folio_test_uptodate(folio)) {
1186 				set_buffer_uptodate(bh);
1187 			}
1188 			continue;
1189 		}
1190 		if (WARN_ON_ONCE(buffer_new(bh)))
1191 			clear_buffer_new(bh);
1192 		if (!buffer_mapped(bh)) {
1193 			WARN_ON(bh->b_size != blocksize);
1194 			err = ext4_journal_ensure_extent_credits(handle, inode);
1195 			if (!err)
1196 				err = get_block(inode, block, bh, 1);
1197 			if (err)
1198 				break;
1199 			if (buffer_new(bh)) {
1200 				/*
1201 				 * We may be zeroing partial buffers or all new
1202 				 * buffers in case of failure. Prepare JBD2 for
1203 				 * that.
1204 				 */
1205 				if (should_journal_data)
1206 					do_journal_get_write_access(handle,
1207 								    inode, bh);
1208 				if (folio_test_uptodate(folio)) {
1209 					/*
1210 					 * Unlike __block_write_begin() we leave
1211 					 * dirtying of new uptodate buffers to
1212 					 * ->write_end() time or
1213 					 * folio_zero_new_buffers().
1214 					 */
1215 					set_buffer_uptodate(bh);
1216 					continue;
1217 				}
1218 				if (block_end > to || block_start < from)
1219 					folio_zero_segments(folio, to,
1220 							    block_end,
1221 							    block_start, from);
1222 				continue;
1223 			}
1224 		}
1225 		if (folio_test_uptodate(folio)) {
1226 			set_buffer_uptodate(bh);
1227 			continue;
1228 		}
1229 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1230 		    !buffer_unwritten(bh) &&
1231 		    (block_start < from || block_end > to)) {
1232 			ext4_read_bh_lock(bh, 0, false);
1233 			wait[nr_wait++] = bh;
1234 		}
1235 	}
1236 	/*
1237 	 * If we issued read requests, let them complete.
1238 	 */
1239 	for (i = 0; i < nr_wait; i++) {
1240 		wait_on_buffer(wait[i]);
1241 		if (!buffer_uptodate(wait[i]))
1242 			err = -EIO;
1243 	}
1244 	if (unlikely(err)) {
1245 		if (should_journal_data)
1246 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1247 							 from, to);
1248 		else
1249 			folio_zero_new_buffers(folio, from, to);
1250 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1251 		for (i = 0; i < nr_wait; i++) {
1252 			int err2;
1253 
1254 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1255 						blocksize, bh_offset(wait[i]));
1256 			if (err2) {
1257 				clear_buffer_uptodate(wait[i]);
1258 				err = err2;
1259 			}
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /*
1267  * To preserve ordering, it is essential that the hole instantiation and
1268  * the data write be encapsulated in a single transaction.  We cannot
1269  * close off a transaction and start a new one between the ext4_get_block()
1270  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1271  * ext4_write_begin() is the right place.
1272  */
1273 static int ext4_write_begin(const struct kiocb *iocb,
1274 			    struct address_space *mapping,
1275 			    loff_t pos, unsigned len,
1276 			    struct folio **foliop, void **fsdata)
1277 {
1278 	struct inode *inode = mapping->host;
1279 	int ret, needed_blocks;
1280 	handle_t *handle;
1281 	int retries = 0;
1282 	struct folio *folio;
1283 	pgoff_t index;
1284 	unsigned from, to;
1285 
1286 	ret = ext4_emergency_state(inode->i_sb);
1287 	if (unlikely(ret))
1288 		return ret;
1289 
1290 	trace_ext4_write_begin(inode, pos, len);
1291 	/*
1292 	 * Reserve one block more for addition to orphan list in case
1293 	 * we allocate blocks but write fails for some reason
1294 	 */
1295 	needed_blocks = ext4_chunk_trans_extent(inode,
1296 			ext4_journal_blocks_per_folio(inode)) + 1;
1297 	index = pos >> PAGE_SHIFT;
1298 
1299 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1300 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1301 						    foliop);
1302 		if (ret < 0)
1303 			return ret;
1304 		if (ret == 1)
1305 			return 0;
1306 	}
1307 
1308 	/*
1309 	 * write_begin_get_folio() can take a long time if the
1310 	 * system is thrashing due to memory pressure, or if the folio
1311 	 * is being written back.  So grab it first before we start
1312 	 * the transaction handle.  This also allows us to allocate
1313 	 * the folio (if needed) without using GFP_NOFS.
1314 	 */
1315 retry_grab:
1316 	folio = write_begin_get_folio(iocb, mapping, index, len);
1317 	if (IS_ERR(folio))
1318 		return PTR_ERR(folio);
1319 
1320 	if (len > folio_next_pos(folio) - pos)
1321 		len = folio_next_pos(folio) - pos;
1322 
1323 	from = offset_in_folio(folio, pos);
1324 	to = from + len;
1325 
1326 	/*
1327 	 * The same as page allocation, we prealloc buffer heads before
1328 	 * starting the handle.
1329 	 */
1330 	if (!folio_buffers(folio))
1331 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1332 
1333 	folio_unlock(folio);
1334 
1335 retry_journal:
1336 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1337 	if (IS_ERR(handle)) {
1338 		folio_put(folio);
1339 		return PTR_ERR(handle);
1340 	}
1341 
1342 	folio_lock(folio);
1343 	if (folio->mapping != mapping) {
1344 		/* The folio got truncated from under us */
1345 		folio_unlock(folio);
1346 		folio_put(folio);
1347 		ext4_journal_stop(handle);
1348 		goto retry_grab;
1349 	}
1350 	/* In case writeback began while the folio was unlocked */
1351 	folio_wait_stable(folio);
1352 
1353 	if (ext4_should_dioread_nolock(inode))
1354 		ret = ext4_block_write_begin(handle, folio, pos, len,
1355 					     ext4_get_block_unwritten);
1356 	else
1357 		ret = ext4_block_write_begin(handle, folio, pos, len,
1358 					     ext4_get_block);
1359 	if (!ret && ext4_should_journal_data(inode)) {
1360 		ret = ext4_walk_page_buffers(handle, inode,
1361 					     folio_buffers(folio), from, to,
1362 					     NULL, do_journal_get_write_access);
1363 	}
1364 
1365 	if (ret) {
1366 		bool extended = (pos + len > inode->i_size) &&
1367 				!ext4_verity_in_progress(inode);
1368 
1369 		folio_unlock(folio);
1370 		/*
1371 		 * ext4_block_write_begin may have instantiated a few blocks
1372 		 * outside i_size.  Trim these off again. Don't need
1373 		 * i_size_read because we hold i_rwsem.
1374 		 *
1375 		 * Add inode to orphan list in case we crash before
1376 		 * truncate finishes
1377 		 */
1378 		if (extended && ext4_can_truncate(inode))
1379 			ext4_orphan_add(handle, inode);
1380 
1381 		ext4_journal_stop(handle);
1382 		if (extended) {
1383 			ext4_truncate_failed_write(inode);
1384 			/*
1385 			 * If truncate failed early the inode might
1386 			 * still be on the orphan list; we need to
1387 			 * make sure the inode is removed from the
1388 			 * orphan list in that case.
1389 			 */
1390 			if (inode->i_nlink)
1391 				ext4_orphan_del(NULL, inode);
1392 		}
1393 
1394 		if (ret == -EAGAIN ||
1395 		    (ret == -ENOSPC &&
1396 		     ext4_should_retry_alloc(inode->i_sb, &retries)))
1397 			goto retry_journal;
1398 		folio_put(folio);
1399 		return ret;
1400 	}
1401 	*foliop = folio;
1402 	return ret;
1403 }
1404 
1405 /* For write_end() in data=journal mode */
1406 static int write_end_fn(handle_t *handle, struct inode *inode,
1407 			struct buffer_head *bh)
1408 {
1409 	int ret;
1410 	if (!buffer_mapped(bh) || buffer_freed(bh))
1411 		return 0;
1412 	set_buffer_uptodate(bh);
1413 	ret = ext4_dirty_journalled_data(handle, bh);
1414 	clear_buffer_meta(bh);
1415 	clear_buffer_prio(bh);
1416 	clear_buffer_new(bh);
1417 	return ret;
1418 }
1419 
1420 /*
1421  * We need to pick up the new inode size which generic_commit_write gave us
1422  * `iocb` can be NULL - eg, when called from page_symlink().
1423  *
1424  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1425  * buffers are managed internally.
1426  */
1427 static int ext4_write_end(const struct kiocb *iocb,
1428 			  struct address_space *mapping,
1429 			  loff_t pos, unsigned len, unsigned copied,
1430 			  struct folio *folio, void *fsdata)
1431 {
1432 	handle_t *handle = ext4_journal_current_handle();
1433 	struct inode *inode = mapping->host;
1434 	loff_t old_size = inode->i_size;
1435 	int ret = 0, ret2;
1436 	int i_size_changed = 0;
1437 	bool verity = ext4_verity_in_progress(inode);
1438 
1439 	trace_ext4_write_end(inode, pos, len, copied);
1440 
1441 	if (ext4_has_inline_data(inode) &&
1442 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1443 		return ext4_write_inline_data_end(inode, pos, len, copied,
1444 						  folio);
1445 
1446 	copied = block_write_end(pos, len, copied, folio);
1447 	/*
1448 	 * it's important to update i_size while still holding folio lock:
1449 	 * page writeout could otherwise come in and zero beyond i_size.
1450 	 *
1451 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1452 	 * blocks are being written past EOF, so skip the i_size update.
1453 	 */
1454 	if (!verity)
1455 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1456 	folio_unlock(folio);
1457 	folio_put(folio);
1458 
1459 	if (old_size < pos && !verity) {
1460 		pagecache_isize_extended(inode, old_size, pos);
1461 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1462 	}
1463 	/*
1464 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1465 	 * makes the holding time of folio lock longer. Second, it forces lock
1466 	 * ordering of folio lock and transaction start for journaling
1467 	 * filesystems.
1468 	 */
1469 	if (i_size_changed)
1470 		ret = ext4_mark_inode_dirty(handle, inode);
1471 
1472 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1473 		/* if we have allocated more blocks and copied
1474 		 * less. We will have blocks allocated outside
1475 		 * inode->i_size. So truncate them
1476 		 */
1477 		ext4_orphan_add(handle, inode);
1478 
1479 	ret2 = ext4_journal_stop(handle);
1480 	if (!ret)
1481 		ret = ret2;
1482 
1483 	if (pos + len > inode->i_size && !verity) {
1484 		ext4_truncate_failed_write(inode);
1485 		/*
1486 		 * If truncate failed early the inode might still be
1487 		 * on the orphan list; we need to make sure the inode
1488 		 * is removed from the orphan list in that case.
1489 		 */
1490 		if (inode->i_nlink)
1491 			ext4_orphan_del(NULL, inode);
1492 	}
1493 
1494 	return ret ? ret : copied;
1495 }
1496 
1497 /*
1498  * This is a private version of folio_zero_new_buffers() which doesn't
1499  * set the buffer to be dirty, since in data=journalled mode we need
1500  * to call ext4_dirty_journalled_data() instead.
1501  */
1502 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1503 					    struct inode *inode,
1504 					    struct folio *folio,
1505 					    unsigned from, unsigned to)
1506 {
1507 	unsigned int block_start = 0, block_end;
1508 	struct buffer_head *head, *bh;
1509 
1510 	bh = head = folio_buffers(folio);
1511 	do {
1512 		block_end = block_start + bh->b_size;
1513 		if (buffer_new(bh)) {
1514 			if (block_end > from && block_start < to) {
1515 				if (!folio_test_uptodate(folio)) {
1516 					unsigned start, size;
1517 
1518 					start = max(from, block_start);
1519 					size = min(to, block_end) - start;
1520 
1521 					folio_zero_range(folio, start, size);
1522 				}
1523 				clear_buffer_new(bh);
1524 				write_end_fn(handle, inode, bh);
1525 			}
1526 		}
1527 		block_start = block_end;
1528 		bh = bh->b_this_page;
1529 	} while (bh != head);
1530 }
1531 
1532 static int ext4_journalled_write_end(const struct kiocb *iocb,
1533 				     struct address_space *mapping,
1534 				     loff_t pos, unsigned len, unsigned copied,
1535 				     struct folio *folio, void *fsdata)
1536 {
1537 	handle_t *handle = ext4_journal_current_handle();
1538 	struct inode *inode = mapping->host;
1539 	loff_t old_size = inode->i_size;
1540 	int ret = 0, ret2;
1541 	int partial = 0;
1542 	unsigned from, to;
1543 	int size_changed = 0;
1544 	bool verity = ext4_verity_in_progress(inode);
1545 
1546 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1547 	from = pos & (PAGE_SIZE - 1);
1548 	to = from + len;
1549 
1550 	BUG_ON(!ext4_handle_valid(handle));
1551 
1552 	if (ext4_has_inline_data(inode))
1553 		return ext4_write_inline_data_end(inode, pos, len, copied,
1554 						  folio);
1555 
1556 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1557 		copied = 0;
1558 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1559 						 from, to);
1560 	} else {
1561 		if (unlikely(copied < len))
1562 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1563 							 from + copied, to);
1564 		ret = ext4_walk_page_buffers(handle, inode,
1565 					     folio_buffers(folio),
1566 					     from, from + copied, &partial,
1567 					     write_end_fn);
1568 		if (!partial)
1569 			folio_mark_uptodate(folio);
1570 	}
1571 	if (!verity)
1572 		size_changed = ext4_update_inode_size(inode, pos + copied);
1573 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1574 	folio_unlock(folio);
1575 	folio_put(folio);
1576 
1577 	if (old_size < pos && !verity) {
1578 		pagecache_isize_extended(inode, old_size, pos);
1579 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1580 	}
1581 
1582 	if (size_changed) {
1583 		ret2 = ext4_mark_inode_dirty(handle, inode);
1584 		if (!ret)
1585 			ret = ret2;
1586 	}
1587 
1588 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1589 		/* if we have allocated more blocks and copied
1590 		 * less. We will have blocks allocated outside
1591 		 * inode->i_size. So truncate them
1592 		 */
1593 		ext4_orphan_add(handle, inode);
1594 
1595 	ret2 = ext4_journal_stop(handle);
1596 	if (!ret)
1597 		ret = ret2;
1598 	if (pos + len > inode->i_size && !verity) {
1599 		ext4_truncate_failed_write(inode);
1600 		/*
1601 		 * If truncate failed early the inode might still be
1602 		 * on the orphan list; we need to make sure the inode
1603 		 * is removed from the orphan list in that case.
1604 		 */
1605 		if (inode->i_nlink)
1606 			ext4_orphan_del(NULL, inode);
1607 	}
1608 
1609 	return ret ? ret : copied;
1610 }
1611 
1612 /*
1613  * Reserve space for 'nr_resv' clusters
1614  */
1615 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1616 {
1617 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618 	struct ext4_inode_info *ei = EXT4_I(inode);
1619 	int ret;
1620 
1621 	/*
1622 	 * We will charge metadata quota at writeout time; this saves
1623 	 * us from metadata over-estimation, though we may go over by
1624 	 * a small amount in the end.  Here we just reserve for data.
1625 	 */
1626 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1627 	if (ret)
1628 		return ret;
1629 
1630 	spin_lock(&ei->i_block_reservation_lock);
1631 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1632 		spin_unlock(&ei->i_block_reservation_lock);
1633 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1634 		return -ENOSPC;
1635 	}
1636 	ei->i_reserved_data_blocks += nr_resv;
1637 	trace_ext4_da_reserve_space(inode, nr_resv);
1638 	spin_unlock(&ei->i_block_reservation_lock);
1639 
1640 	return 0;       /* success */
1641 }
1642 
1643 void ext4_da_release_space(struct inode *inode, int to_free)
1644 {
1645 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1646 	struct ext4_inode_info *ei = EXT4_I(inode);
1647 
1648 	if (!to_free)
1649 		return;		/* Nothing to release, exit */
1650 
1651 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1652 
1653 	trace_ext4_da_release_space(inode, to_free);
1654 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1655 		/*
1656 		 * if there aren't enough reserved blocks, then the
1657 		 * counter is messed up somewhere.  Since this
1658 		 * function is called from invalidate page, it's
1659 		 * harmless to return without any action.
1660 		 */
1661 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1662 			 "ino %lu, to_free %d with only %d reserved "
1663 			 "data blocks", inode->i_ino, to_free,
1664 			 ei->i_reserved_data_blocks);
1665 		WARN_ON(1);
1666 		to_free = ei->i_reserved_data_blocks;
1667 	}
1668 	ei->i_reserved_data_blocks -= to_free;
1669 
1670 	/* update fs dirty data blocks counter */
1671 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1672 
1673 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1674 
1675 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1676 }
1677 
1678 /*
1679  * Delayed allocation stuff
1680  */
1681 
1682 struct mpage_da_data {
1683 	/* These are input fields for ext4_do_writepages() */
1684 	struct inode *inode;
1685 	struct writeback_control *wbc;
1686 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1687 
1688 	/* These are internal state of ext4_do_writepages() */
1689 	loff_t start_pos;	/* The start pos to write */
1690 	loff_t next_pos;	/* Current pos to examine */
1691 	loff_t end_pos;		/* Last pos to examine */
1692 
1693 	/*
1694 	 * Extent to map - this can be after start_pos because that can be
1695 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1696 	 * is delalloc or unwritten.
1697 	 */
1698 	struct ext4_map_blocks map;
1699 	struct ext4_io_submit io_submit;	/* IO submission data */
1700 	unsigned int do_map:1;
1701 	unsigned int scanned_until_end:1;
1702 	unsigned int journalled_more_data:1;
1703 };
1704 
1705 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1706 				       bool invalidate)
1707 {
1708 	unsigned nr, i;
1709 	pgoff_t index, end;
1710 	struct folio_batch fbatch;
1711 	struct inode *inode = mpd->inode;
1712 	struct address_space *mapping = inode->i_mapping;
1713 
1714 	/* This is necessary when next_pos == 0. */
1715 	if (mpd->start_pos >= mpd->next_pos)
1716 		return;
1717 
1718 	mpd->scanned_until_end = 0;
1719 	if (invalidate) {
1720 		ext4_lblk_t start, last;
1721 		start = EXT4_B_TO_LBLK(inode, mpd->start_pos);
1722 		last = mpd->next_pos >> inode->i_blkbits;
1723 
1724 		/*
1725 		 * avoid racing with extent status tree scans made by
1726 		 * ext4_insert_delayed_block()
1727 		 */
1728 		down_write(&EXT4_I(inode)->i_data_sem);
1729 		ext4_es_remove_extent(inode, start, last - start);
1730 		up_write(&EXT4_I(inode)->i_data_sem);
1731 	}
1732 
1733 	folio_batch_init(&fbatch);
1734 	index = mpd->start_pos >> PAGE_SHIFT;
1735 	end = mpd->next_pos >> PAGE_SHIFT;
1736 	while (index < end) {
1737 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1738 		if (nr == 0)
1739 			break;
1740 		for (i = 0; i < nr; i++) {
1741 			struct folio *folio = fbatch.folios[i];
1742 
1743 			if (folio_pos(folio) < mpd->start_pos)
1744 				continue;
1745 			if (folio_next_index(folio) > end)
1746 				continue;
1747 			BUG_ON(!folio_test_locked(folio));
1748 			BUG_ON(folio_test_writeback(folio));
1749 			if (invalidate) {
1750 				if (folio_mapped(folio))
1751 					folio_clear_dirty_for_io(folio);
1752 				block_invalidate_folio(folio, 0,
1753 						folio_size(folio));
1754 				folio_clear_uptodate(folio);
1755 			}
1756 			folio_unlock(folio);
1757 		}
1758 		folio_batch_release(&fbatch);
1759 	}
1760 }
1761 
1762 static void ext4_print_free_blocks(struct inode *inode)
1763 {
1764 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 	struct super_block *sb = inode->i_sb;
1766 	struct ext4_inode_info *ei = EXT4_I(inode);
1767 
1768 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1769 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1770 			ext4_count_free_clusters(sb)));
1771 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1772 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1773 	       (long long) EXT4_C2B(EXT4_SB(sb),
1774 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1775 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1776 	       (long long) EXT4_C2B(EXT4_SB(sb),
1777 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1778 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1779 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1780 		 ei->i_reserved_data_blocks);
1781 	return;
1782 }
1783 
1784 /*
1785  * Check whether the cluster containing lblk has been allocated or has
1786  * delalloc reservation.
1787  *
1788  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1789  * reservation, 2 if it's already been allocated, negative error code on
1790  * failure.
1791  */
1792 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1793 {
1794 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1795 	int ret;
1796 
1797 	/* Has delalloc reservation? */
1798 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1799 		return 1;
1800 
1801 	/* Already been allocated? */
1802 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1803 		return 2;
1804 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1805 	if (ret < 0)
1806 		return ret;
1807 	if (ret > 0)
1808 		return 2;
1809 
1810 	return 0;
1811 }
1812 
1813 /*
1814  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1815  *                              status tree, incrementing the reserved
1816  *                              cluster/block count or making pending
1817  *                              reservations where needed
1818  *
1819  * @inode - file containing the newly added block
1820  * @lblk - start logical block to be added
1821  * @len - length of blocks to be added
1822  *
1823  * Returns 0 on success, negative error code on failure.
1824  */
1825 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1826 				      ext4_lblk_t len)
1827 {
1828 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1829 	int ret;
1830 	bool lclu_allocated = false;
1831 	bool end_allocated = false;
1832 	ext4_lblk_t resv_clu;
1833 	ext4_lblk_t end = lblk + len - 1;
1834 
1835 	/*
1836 	 * If the cluster containing lblk or end is shared with a delayed,
1837 	 * written, or unwritten extent in a bigalloc file system, it's
1838 	 * already been accounted for and does not need to be reserved.
1839 	 * A pending reservation must be made for the cluster if it's
1840 	 * shared with a written or unwritten extent and doesn't already
1841 	 * have one.  Written and unwritten extents can be purged from the
1842 	 * extents status tree if the system is under memory pressure, so
1843 	 * it's necessary to examine the extent tree if a search of the
1844 	 * extents status tree doesn't get a match.
1845 	 */
1846 	if (sbi->s_cluster_ratio == 1) {
1847 		ret = ext4_da_reserve_space(inode, len);
1848 		if (ret != 0)   /* ENOSPC */
1849 			return ret;
1850 	} else {   /* bigalloc */
1851 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1852 
1853 		ret = ext4_clu_alloc_state(inode, lblk);
1854 		if (ret < 0)
1855 			return ret;
1856 		if (ret > 0) {
1857 			resv_clu--;
1858 			lclu_allocated = (ret == 2);
1859 		}
1860 
1861 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1862 			ret = ext4_clu_alloc_state(inode, end);
1863 			if (ret < 0)
1864 				return ret;
1865 			if (ret > 0) {
1866 				resv_clu--;
1867 				end_allocated = (ret == 2);
1868 			}
1869 		}
1870 
1871 		if (resv_clu) {
1872 			ret = ext4_da_reserve_space(inode, resv_clu);
1873 			if (ret != 0)   /* ENOSPC */
1874 				return ret;
1875 		}
1876 	}
1877 
1878 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1879 				      end_allocated);
1880 	return 0;
1881 }
1882 
1883 /*
1884  * Looks up the requested blocks and sets the delalloc extent map.
1885  * First try to look up for the extent entry that contains the requested
1886  * blocks in the extent status tree without i_data_sem, then try to look
1887  * up for the ondisk extent mapping with i_data_sem in read mode,
1888  * finally hold i_data_sem in write mode, looks up again and add a
1889  * delalloc extent entry if it still couldn't find any extent. Pass out
1890  * the mapped extent through @map and return 0 on success.
1891  */
1892 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1893 {
1894 	struct extent_status es;
1895 	int retval;
1896 #ifdef ES_AGGRESSIVE_TEST
1897 	struct ext4_map_blocks orig_map;
1898 
1899 	memcpy(&orig_map, map, sizeof(*map));
1900 #endif
1901 
1902 	map->m_flags = 0;
1903 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1904 		  (unsigned long) map->m_lblk);
1905 
1906 	ext4_check_map_extents_env(inode);
1907 
1908 	/* Lookup extent status tree firstly */
1909 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) {
1910 		map->m_len = min_t(unsigned int, map->m_len,
1911 				   es.es_len - (map->m_lblk - es.es_lblk));
1912 
1913 		if (ext4_es_is_hole(&es))
1914 			goto add_delayed;
1915 
1916 found:
1917 		/*
1918 		 * Delayed extent could be allocated by fallocate.
1919 		 * So we need to check it.
1920 		 */
1921 		if (ext4_es_is_delayed(&es)) {
1922 			map->m_flags |= EXT4_MAP_DELAYED;
1923 			return 0;
1924 		}
1925 
1926 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1927 		if (ext4_es_is_written(&es))
1928 			map->m_flags |= EXT4_MAP_MAPPED;
1929 		else if (ext4_es_is_unwritten(&es))
1930 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1931 		else
1932 			BUG();
1933 
1934 #ifdef ES_AGGRESSIVE_TEST
1935 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1936 #endif
1937 		return 0;
1938 	}
1939 
1940 	/*
1941 	 * Try to see if we can get the block without requesting a new
1942 	 * file system block.
1943 	 */
1944 	down_read(&EXT4_I(inode)->i_data_sem);
1945 	if (ext4_has_inline_data(inode))
1946 		retval = 0;
1947 	else
1948 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1949 	up_read(&EXT4_I(inode)->i_data_sem);
1950 	if (retval)
1951 		return retval < 0 ? retval : 0;
1952 
1953 add_delayed:
1954 	down_write(&EXT4_I(inode)->i_data_sem);
1955 	/*
1956 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1957 	 * and fallocate path (no folio lock) can race. Make sure we
1958 	 * lookup the extent status tree here again while i_data_sem
1959 	 * is held in write mode, before inserting a new da entry in
1960 	 * the extent status tree.
1961 	 */
1962 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) {
1963 		map->m_len = min_t(unsigned int, map->m_len,
1964 				   es.es_len - (map->m_lblk - es.es_lblk));
1965 
1966 		if (!ext4_es_is_hole(&es)) {
1967 			up_write(&EXT4_I(inode)->i_data_sem);
1968 			goto found;
1969 		}
1970 	} else if (!ext4_has_inline_data(inode)) {
1971 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1972 		if (retval) {
1973 			up_write(&EXT4_I(inode)->i_data_sem);
1974 			return retval < 0 ? retval : 0;
1975 		}
1976 	}
1977 
1978 	map->m_flags |= EXT4_MAP_DELAYED;
1979 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1980 	if (!retval)
1981 		map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
1982 	up_write(&EXT4_I(inode)->i_data_sem);
1983 
1984 	return retval;
1985 }
1986 
1987 /*
1988  * This is a special get_block_t callback which is used by
1989  * ext4_da_write_begin().  It will either return mapped block or
1990  * reserve space for a single block.
1991  *
1992  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1993  * We also have b_blocknr = -1 and b_bdev initialized properly
1994  *
1995  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1996  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1997  * initialized properly.
1998  */
1999 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2000 			   struct buffer_head *bh, int create)
2001 {
2002 	struct ext4_map_blocks map;
2003 	sector_t invalid_block = ~((sector_t) 0xffff);
2004 	int ret = 0;
2005 
2006 	BUG_ON(create == 0);
2007 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2008 
2009 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2010 		invalid_block = ~0;
2011 
2012 	map.m_lblk = iblock;
2013 	map.m_len = 1;
2014 
2015 	/*
2016 	 * first, we need to know whether the block is allocated already
2017 	 * preallocated blocks are unmapped but should treated
2018 	 * the same as allocated blocks.
2019 	 */
2020 	ret = ext4_da_map_blocks(inode, &map);
2021 	if (ret < 0)
2022 		return ret;
2023 
2024 	if (map.m_flags & EXT4_MAP_DELAYED) {
2025 		map_bh(bh, inode->i_sb, invalid_block);
2026 		set_buffer_new(bh);
2027 		set_buffer_delay(bh);
2028 		return 0;
2029 	}
2030 
2031 	map_bh(bh, inode->i_sb, map.m_pblk);
2032 	ext4_update_bh_state(bh, map.m_flags);
2033 
2034 	if (buffer_unwritten(bh)) {
2035 		/* A delayed write to unwritten bh should be marked
2036 		 * new and mapped.  Mapped ensures that we don't do
2037 		 * get_block multiple times when we write to the same
2038 		 * offset and new ensures that we do proper zero out
2039 		 * for partial write.
2040 		 */
2041 		set_buffer_new(bh);
2042 		set_buffer_mapped(bh);
2043 	}
2044 	return 0;
2045 }
2046 
2047 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2048 {
2049 	mpd->start_pos += folio_size(folio);
2050 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2051 	folio_unlock(folio);
2052 }
2053 
2054 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2055 {
2056 	size_t len;
2057 	loff_t size;
2058 	int err;
2059 
2060 	WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos);
2061 	folio_clear_dirty_for_io(folio);
2062 	/*
2063 	 * We have to be very careful here!  Nothing protects writeback path
2064 	 * against i_size changes and the page can be writeably mapped into
2065 	 * page tables. So an application can be growing i_size and writing
2066 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
2067 	 * write-protects our page in page tables and the page cannot get
2068 	 * written to again until we release folio lock. So only after
2069 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
2070 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2071 	 * on the barrier provided by folio_test_clear_dirty() in
2072 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2073 	 * after page tables are updated.
2074 	 */
2075 	size = i_size_read(mpd->inode);
2076 	len = folio_size(folio);
2077 	if (folio_pos(folio) + len > size &&
2078 	    !ext4_verity_in_progress(mpd->inode))
2079 		len = size & (len - 1);
2080 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2081 
2082 	return err;
2083 }
2084 
2085 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2086 
2087 /*
2088  * mballoc gives us at most this number of blocks...
2089  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2090  * The rest of mballoc seems to handle chunks up to full group size.
2091  */
2092 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2093 
2094 /*
2095  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2096  *
2097  * @mpd - extent of blocks
2098  * @lblk - logical number of the block in the file
2099  * @bh - buffer head we want to add to the extent
2100  *
2101  * The function is used to collect contig. blocks in the same state. If the
2102  * buffer doesn't require mapping for writeback and we haven't started the
2103  * extent of buffers to map yet, the function returns 'true' immediately - the
2104  * caller can write the buffer right away. Otherwise the function returns true
2105  * if the block has been added to the extent, false if the block couldn't be
2106  * added.
2107  */
2108 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2109 				   struct buffer_head *bh)
2110 {
2111 	struct ext4_map_blocks *map = &mpd->map;
2112 
2113 	/* Buffer that doesn't need mapping for writeback? */
2114 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2115 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2116 		/* So far no extent to map => we write the buffer right away */
2117 		if (map->m_len == 0)
2118 			return true;
2119 		return false;
2120 	}
2121 
2122 	/* First block in the extent? */
2123 	if (map->m_len == 0) {
2124 		/* We cannot map unless handle is started... */
2125 		if (!mpd->do_map)
2126 			return false;
2127 		map->m_lblk = lblk;
2128 		map->m_len = 1;
2129 		map->m_flags = bh->b_state & BH_FLAGS;
2130 		return true;
2131 	}
2132 
2133 	/* Don't go larger than mballoc is willing to allocate */
2134 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2135 		return false;
2136 
2137 	/* Can we merge the block to our big extent? */
2138 	if (lblk == map->m_lblk + map->m_len &&
2139 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2140 		map->m_len++;
2141 		return true;
2142 	}
2143 	return false;
2144 }
2145 
2146 /*
2147  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2148  *
2149  * @mpd - extent of blocks for mapping
2150  * @head - the first buffer in the page
2151  * @bh - buffer we should start processing from
2152  * @lblk - logical number of the block in the file corresponding to @bh
2153  *
2154  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2155  * the page for IO if all buffers in this page were mapped and there's no
2156  * accumulated extent of buffers to map or add buffers in the page to the
2157  * extent of buffers to map. The function returns 1 if the caller can continue
2158  * by processing the next page, 0 if it should stop adding buffers to the
2159  * extent to map because we cannot extend it anymore. It can also return value
2160  * < 0 in case of error during IO submission.
2161  */
2162 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2163 				   struct buffer_head *head,
2164 				   struct buffer_head *bh,
2165 				   ext4_lblk_t lblk)
2166 {
2167 	struct inode *inode = mpd->inode;
2168 	int err;
2169 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2170 							>> inode->i_blkbits;
2171 
2172 	if (ext4_verity_in_progress(inode))
2173 		blocks = EXT_MAX_BLOCKS;
2174 
2175 	do {
2176 		BUG_ON(buffer_locked(bh));
2177 
2178 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2179 			/* Found extent to map? */
2180 			if (mpd->map.m_len)
2181 				return 0;
2182 			/* Buffer needs mapping and handle is not started? */
2183 			if (!mpd->do_map)
2184 				return 0;
2185 			/* Everything mapped so far and we hit EOF */
2186 			break;
2187 		}
2188 	} while (lblk++, (bh = bh->b_this_page) != head);
2189 	/* So far everything mapped? Submit the page for IO. */
2190 	if (mpd->map.m_len == 0) {
2191 		err = mpage_submit_folio(mpd, head->b_folio);
2192 		if (err < 0)
2193 			return err;
2194 		mpage_folio_done(mpd, head->b_folio);
2195 	}
2196 	if (lblk >= blocks) {
2197 		mpd->scanned_until_end = 1;
2198 		return 0;
2199 	}
2200 	return 1;
2201 }
2202 
2203 /*
2204  * mpage_process_folio - update folio buffers corresponding to changed extent
2205  *			 and may submit fully mapped page for IO
2206  * @mpd: description of extent to map, on return next extent to map
2207  * @folio: Contains these buffers.
2208  * @m_lblk: logical block mapping.
2209  * @m_pblk: corresponding physical mapping.
2210  * @map_bh: determines on return whether this page requires any further
2211  *		  mapping or not.
2212  *
2213  * Scan given folio buffers corresponding to changed extent and update buffer
2214  * state according to new extent state.
2215  * We map delalloc buffers to their physical location, clear unwritten bits.
2216  * If the given folio is not fully mapped, we update @mpd to the next extent in
2217  * the given folio that needs mapping & return @map_bh as true.
2218  */
2219 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2220 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2221 			      bool *map_bh)
2222 {
2223 	struct buffer_head *head, *bh;
2224 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2225 	ext4_lblk_t lblk = *m_lblk;
2226 	ext4_fsblk_t pblock = *m_pblk;
2227 	int err = 0;
2228 	ssize_t io_end_size = 0;
2229 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2230 
2231 	bh = head = folio_buffers(folio);
2232 	do {
2233 		if (lblk < mpd->map.m_lblk)
2234 			continue;
2235 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2236 			/*
2237 			 * Buffer after end of mapped extent.
2238 			 * Find next buffer in the folio to map.
2239 			 */
2240 			mpd->map.m_len = 0;
2241 			mpd->map.m_flags = 0;
2242 			io_end_vec->size += io_end_size;
2243 
2244 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2245 			if (err > 0)
2246 				err = 0;
2247 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2248 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2249 				if (IS_ERR(io_end_vec)) {
2250 					err = PTR_ERR(io_end_vec);
2251 					goto out;
2252 				}
2253 				io_end_vec->offset = EXT4_LBLK_TO_B(mpd->inode,
2254 								mpd->map.m_lblk);
2255 			}
2256 			*map_bh = true;
2257 			goto out;
2258 		}
2259 		if (buffer_delay(bh)) {
2260 			clear_buffer_delay(bh);
2261 			bh->b_blocknr = pblock++;
2262 		}
2263 		clear_buffer_unwritten(bh);
2264 		io_end_size += i_blocksize(mpd->inode);
2265 	} while (lblk++, (bh = bh->b_this_page) != head);
2266 
2267 	io_end_vec->size += io_end_size;
2268 	*map_bh = false;
2269 out:
2270 	*m_lblk = lblk;
2271 	*m_pblk = pblock;
2272 	return err;
2273 }
2274 
2275 /*
2276  * mpage_map_buffers - update buffers corresponding to changed extent and
2277  *		       submit fully mapped pages for IO
2278  *
2279  * @mpd - description of extent to map, on return next extent to map
2280  *
2281  * Scan buffers corresponding to changed extent (we expect corresponding pages
2282  * to be already locked) and update buffer state according to new extent state.
2283  * We map delalloc buffers to their physical location, clear unwritten bits,
2284  * and mark buffers as uninit when we perform writes to unwritten extents
2285  * and do extent conversion after IO is finished. If the last page is not fully
2286  * mapped, we update @map to the next extent in the last page that needs
2287  * mapping. Otherwise we submit the page for IO.
2288  */
2289 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2290 {
2291 	struct folio_batch fbatch;
2292 	unsigned nr, i;
2293 	struct inode *inode = mpd->inode;
2294 	pgoff_t start, end;
2295 	ext4_lblk_t lblk;
2296 	ext4_fsblk_t pblock;
2297 	int err;
2298 	bool map_bh = false;
2299 
2300 	start = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk);
2301 	end = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk + mpd->map.m_len - 1);
2302 	pblock = mpd->map.m_pblk;
2303 
2304 	folio_batch_init(&fbatch);
2305 	while (start <= end) {
2306 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2307 		if (nr == 0)
2308 			break;
2309 		for (i = 0; i < nr; i++) {
2310 			struct folio *folio = fbatch.folios[i];
2311 
2312 			lblk = EXT4_PG_TO_LBLK(inode, folio->index);
2313 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2314 						 &map_bh);
2315 			/*
2316 			 * If map_bh is true, means page may require further bh
2317 			 * mapping, or maybe the page was submitted for IO.
2318 			 * So we return to call further extent mapping.
2319 			 */
2320 			if (err < 0 || map_bh)
2321 				goto out;
2322 			/* Page fully mapped - let IO run! */
2323 			err = mpage_submit_folio(mpd, folio);
2324 			if (err < 0)
2325 				goto out;
2326 			mpage_folio_done(mpd, folio);
2327 		}
2328 		folio_batch_release(&fbatch);
2329 	}
2330 	/* Extent fully mapped and matches with page boundary. We are done. */
2331 	mpd->map.m_len = 0;
2332 	mpd->map.m_flags = 0;
2333 	return 0;
2334 out:
2335 	folio_batch_release(&fbatch);
2336 	return err;
2337 }
2338 
2339 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2340 {
2341 	struct inode *inode = mpd->inode;
2342 	struct ext4_map_blocks *map = &mpd->map;
2343 	int get_blocks_flags;
2344 	int err, dioread_nolock;
2345 
2346 	/* Make sure transaction has enough credits for this extent */
2347 	err = ext4_journal_ensure_extent_credits(handle, inode);
2348 	if (err < 0)
2349 		return err;
2350 
2351 	trace_ext4_da_write_pages_extent(inode, map);
2352 	/*
2353 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354 	 * to convert an unwritten extent to be initialized (in the case
2355 	 * where we have written into one or more preallocated blocks).  It is
2356 	 * possible that we're going to need more metadata blocks than
2357 	 * previously reserved. However we must not fail because we're in
2358 	 * writeback and there is nothing we can do about it so it might result
2359 	 * in data loss.  So use reserved blocks to allocate metadata if
2360 	 * possible. In addition, do not cache any unrelated extents, as it
2361 	 * only holds the folio lock but does not hold the i_rwsem or
2362 	 * invalidate_lock, which could corrupt the extent status tree.
2363 	 */
2364 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2365 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2366 			   EXT4_GET_BLOCKS_IO_SUBMIT |
2367 			   EXT4_EX_NOCACHE;
2368 
2369 	dioread_nolock = ext4_should_dioread_nolock(inode);
2370 	if (dioread_nolock)
2371 		get_blocks_flags |= EXT4_GET_BLOCKS_UNWRIT_EXT;
2372 
2373 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2374 	if (err < 0)
2375 		return err;
2376 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2377 		if (!mpd->io_submit.io_end->handle &&
2378 		    ext4_handle_valid(handle)) {
2379 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2380 			handle->h_rsv_handle = NULL;
2381 		}
2382 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2383 	}
2384 
2385 	BUG_ON(map->m_len == 0);
2386 	return 0;
2387 }
2388 
2389 /*
2390  * This is used to submit mapped buffers in a single folio that is not fully
2391  * mapped for various reasons, such as insufficient space or journal credits.
2392  */
2393 static int mpage_submit_partial_folio(struct mpage_da_data *mpd)
2394 {
2395 	struct inode *inode = mpd->inode;
2396 	struct folio *folio;
2397 	loff_t pos;
2398 	int ret;
2399 
2400 	folio = filemap_get_folio(inode->i_mapping,
2401 				  mpd->start_pos >> PAGE_SHIFT);
2402 	if (IS_ERR(folio))
2403 		return PTR_ERR(folio);
2404 	/*
2405 	 * The mapped position should be within the current processing folio
2406 	 * but must not be the folio start position.
2407 	 */
2408 	pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits;
2409 	if (WARN_ON_ONCE((folio_pos(folio) == pos) ||
2410 			 !folio_contains(folio, pos >> PAGE_SHIFT)))
2411 		return -EINVAL;
2412 
2413 	ret = mpage_submit_folio(mpd, folio);
2414 	if (ret)
2415 		goto out;
2416 	/*
2417 	 * Update start_pos to prevent this folio from being released in
2418 	 * mpage_release_unused_pages(), it will be reset to the aligned folio
2419 	 * pos when this folio is written again in the next round. Additionally,
2420 	 * do not update wbc->nr_to_write here, as it will be updated once the
2421 	 * entire folio has finished processing.
2422 	 */
2423 	mpd->start_pos = pos;
2424 out:
2425 	folio_unlock(folio);
2426 	folio_put(folio);
2427 	return ret;
2428 }
2429 
2430 /*
2431  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2432  *				 mpd->len and submit pages underlying it for IO
2433  *
2434  * @handle - handle for journal operations
2435  * @mpd - extent to map
2436  * @give_up_on_write - we set this to true iff there is a fatal error and there
2437  *                     is no hope of writing the data. The caller should discard
2438  *                     dirty pages to avoid infinite loops.
2439  *
2440  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2441  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2442  * them to initialized or split the described range from larger unwritten
2443  * extent. Note that we need not map all the described range since allocation
2444  * can return less blocks or the range is covered by more unwritten extents. We
2445  * cannot map more because we are limited by reserved transaction credits. On
2446  * the other hand we always make sure that the last touched page is fully
2447  * mapped so that it can be written out (and thus forward progress is
2448  * guaranteed). After mapping we submit all mapped pages for IO.
2449  */
2450 static int mpage_map_and_submit_extent(handle_t *handle,
2451 				       struct mpage_da_data *mpd,
2452 				       bool *give_up_on_write)
2453 {
2454 	struct inode *inode = mpd->inode;
2455 	struct ext4_map_blocks *map = &mpd->map;
2456 	int err;
2457 	loff_t disksize;
2458 	int progress = 0;
2459 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2460 	struct ext4_io_end_vec *io_end_vec;
2461 
2462 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2463 	if (IS_ERR(io_end_vec))
2464 		return PTR_ERR(io_end_vec);
2465 	io_end_vec->offset = EXT4_LBLK_TO_B(inode, map->m_lblk);
2466 	do {
2467 		err = mpage_map_one_extent(handle, mpd);
2468 		if (err < 0) {
2469 			struct super_block *sb = inode->i_sb;
2470 
2471 			if (ext4_emergency_state(sb))
2472 				goto invalidate_dirty_pages;
2473 			/*
2474 			 * Let the uper layers retry transient errors.
2475 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2476 			 * is non-zero, a commit should free up blocks.
2477 			 */
2478 			if ((err == -ENOMEM) || (err == -EAGAIN) ||
2479 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2480 				/*
2481 				 * We may have already allocated extents for
2482 				 * some bhs inside the folio, issue the
2483 				 * corresponding data to prevent stale data.
2484 				 */
2485 				if (progress) {
2486 					if (mpage_submit_partial_folio(mpd))
2487 						goto invalidate_dirty_pages;
2488 					goto update_disksize;
2489 				}
2490 				return err;
2491 			}
2492 			ext4_msg(sb, KERN_CRIT,
2493 				 "Delayed block allocation failed for "
2494 				 "inode %lu at logical offset %llu with"
2495 				 " max blocks %u with error %d",
2496 				 inode->i_ino,
2497 				 (unsigned long long)map->m_lblk,
2498 				 (unsigned)map->m_len, -err);
2499 			ext4_msg(sb, KERN_CRIT,
2500 				 "This should not happen!! Data will "
2501 				 "be lost\n");
2502 			if (err == -ENOSPC)
2503 				ext4_print_free_blocks(inode);
2504 		invalidate_dirty_pages:
2505 			*give_up_on_write = true;
2506 			return err;
2507 		}
2508 		progress = 1;
2509 		/*
2510 		 * Update buffer state, submit mapped pages, and get us new
2511 		 * extent to map
2512 		 */
2513 		err = mpage_map_and_submit_buffers(mpd);
2514 		if (err < 0)
2515 			goto update_disksize;
2516 	} while (map->m_len);
2517 
2518 update_disksize:
2519 	/*
2520 	 * Update on-disk size after IO is submitted.  Races with
2521 	 * truncate are avoided by checking i_size under i_data_sem.
2522 	 */
2523 	disksize = mpd->start_pos;
2524 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525 		int err2;
2526 		loff_t i_size;
2527 
2528 		down_write(&EXT4_I(inode)->i_data_sem);
2529 		i_size = i_size_read(inode);
2530 		if (disksize > i_size)
2531 			disksize = i_size;
2532 		if (disksize > EXT4_I(inode)->i_disksize)
2533 			EXT4_I(inode)->i_disksize = disksize;
2534 		up_write(&EXT4_I(inode)->i_data_sem);
2535 		err2 = ext4_mark_inode_dirty(handle, inode);
2536 		if (err2) {
2537 			ext4_error_err(inode->i_sb, -err2,
2538 				       "Failed to mark inode %lu dirty",
2539 				       inode->i_ino);
2540 		}
2541 		if (!err)
2542 			err = err2;
2543 	}
2544 	return err;
2545 }
2546 
2547 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2548 				     size_t len)
2549 {
2550 	struct buffer_head *page_bufs = folio_buffers(folio);
2551 	struct inode *inode = folio->mapping->host;
2552 	int ret, err;
2553 
2554 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2555 				     NULL, do_journal_get_write_access);
2556 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2557 				     NULL, write_end_fn);
2558 	if (ret == 0)
2559 		ret = err;
2560 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2561 	if (ret == 0)
2562 		ret = err;
2563 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2564 
2565 	return ret;
2566 }
2567 
2568 static int mpage_journal_page_buffers(handle_t *handle,
2569 				      struct mpage_da_data *mpd,
2570 				      struct folio *folio)
2571 {
2572 	struct inode *inode = mpd->inode;
2573 	loff_t size = i_size_read(inode);
2574 	size_t len = folio_size(folio);
2575 
2576 	folio_clear_checked(folio);
2577 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2578 
2579 	if (folio_pos(folio) + len > size &&
2580 	    !ext4_verity_in_progress(inode))
2581 		len = size & (len - 1);
2582 
2583 	return ext4_journal_folio_buffers(handle, folio, len);
2584 }
2585 
2586 /*
2587  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2588  * 				 needing mapping, submit mapped pages
2589  *
2590  * @mpd - where to look for pages
2591  *
2592  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2593  * IO immediately. If we cannot map blocks, we submit just already mapped
2594  * buffers in the page for IO and keep page dirty. When we can map blocks and
2595  * we find a page which isn't mapped we start accumulating extent of buffers
2596  * underlying these pages that needs mapping (formed by either delayed or
2597  * unwritten buffers). We also lock the pages containing these buffers. The
2598  * extent found is returned in @mpd structure (starting at mpd->lblk with
2599  * length mpd->len blocks).
2600  *
2601  * Note that this function can attach bios to one io_end structure which are
2602  * neither logically nor physically contiguous. Although it may seem as an
2603  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2604  * case as we need to track IO to all buffers underlying a page in one io_end.
2605  */
2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2607 {
2608 	struct address_space *mapping = mpd->inode->i_mapping;
2609 	struct folio_batch fbatch;
2610 	unsigned int nr_folios;
2611 	pgoff_t index = mpd->start_pos >> PAGE_SHIFT;
2612 	pgoff_t end = mpd->end_pos >> PAGE_SHIFT;
2613 	xa_mark_t tag;
2614 	int i, err = 0;
2615 	ext4_lblk_t lblk;
2616 	struct buffer_head *head;
2617 	handle_t *handle = NULL;
2618 	int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2619 
2620 	tag = wbc_to_tag(mpd->wbc);
2621 
2622 	mpd->map.m_len = 0;
2623 	mpd->next_pos = mpd->start_pos;
2624 	if (ext4_should_journal_data(mpd->inode)) {
2625 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2626 					    bpp);
2627 		if (IS_ERR(handle))
2628 			return PTR_ERR(handle);
2629 	}
2630 	folio_batch_init(&fbatch);
2631 	while (index <= end) {
2632 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2633 				tag, &fbatch);
2634 		if (nr_folios == 0)
2635 			break;
2636 
2637 		for (i = 0; i < nr_folios; i++) {
2638 			struct folio *folio = fbatch.folios[i];
2639 
2640 			/*
2641 			 * Accumulated enough dirty pages? This doesn't apply
2642 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 			 * keep going because someone may be concurrently
2644 			 * dirtying pages, and we might have synced a lot of
2645 			 * newly appeared dirty pages, but have not synced all
2646 			 * of the old dirty pages.
2647 			 */
2648 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2649 			    mpd->wbc->nr_to_write <=
2650 			    EXT4_LBLK_TO_PG(mpd->inode, mpd->map.m_len))
2651 				goto out;
2652 
2653 			/* If we can't merge this page, we are done. */
2654 			if (mpd->map.m_len > 0 &&
2655 			    mpd->next_pos != folio_pos(folio))
2656 				goto out;
2657 
2658 			if (handle) {
2659 				err = ext4_journal_ensure_credits(handle, bpp,
2660 								  0);
2661 				if (err < 0)
2662 					goto out;
2663 			}
2664 
2665 			folio_lock(folio);
2666 			/*
2667 			 * If the page is no longer dirty, or its mapping no
2668 			 * longer corresponds to inode we are writing (which
2669 			 * means it has been truncated or invalidated), or the
2670 			 * page is already under writeback and we are not doing
2671 			 * a data integrity writeback, skip the page
2672 			 */
2673 			if (!folio_test_dirty(folio) ||
2674 			    (folio_test_writeback(folio) &&
2675 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2676 			    unlikely(folio->mapping != mapping)) {
2677 				folio_unlock(folio);
2678 				continue;
2679 			}
2680 
2681 			folio_wait_writeback(folio);
2682 			BUG_ON(folio_test_writeback(folio));
2683 
2684 			/*
2685 			 * Should never happen but for buggy code in
2686 			 * other subsystems that call
2687 			 * set_page_dirty() without properly warning
2688 			 * the file system first.  See [1] for more
2689 			 * information.
2690 			 *
2691 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2692 			 */
2693 			if (!folio_buffers(folio)) {
2694 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2695 				folio_clear_dirty(folio);
2696 				folio_unlock(folio);
2697 				continue;
2698 			}
2699 
2700 			if (mpd->map.m_len == 0)
2701 				mpd->start_pos = folio_pos(folio);
2702 			mpd->next_pos = folio_next_pos(folio);
2703 			/*
2704 			 * Writeout when we cannot modify metadata is simple.
2705 			 * Just submit the page. For data=journal mode we
2706 			 * first handle writeout of the page for checkpoint and
2707 			 * only after that handle delayed page dirtying. This
2708 			 * makes sure current data is checkpointed to the final
2709 			 * location before possibly journalling it again which
2710 			 * is desirable when the page is frequently dirtied
2711 			 * through a pin.
2712 			 */
2713 			if (!mpd->can_map) {
2714 				err = mpage_submit_folio(mpd, folio);
2715 				if (err < 0)
2716 					goto out;
2717 				/* Pending dirtying of journalled data? */
2718 				if (folio_test_checked(folio)) {
2719 					err = mpage_journal_page_buffers(handle,
2720 						mpd, folio);
2721 					if (err < 0)
2722 						goto out;
2723 					mpd->journalled_more_data = 1;
2724 				}
2725 				mpage_folio_done(mpd, folio);
2726 			} else {
2727 				/* Add all dirty buffers to mpd */
2728 				lblk = EXT4_PG_TO_LBLK(mpd->inode, folio->index);
2729 				head = folio_buffers(folio);
2730 				err = mpage_process_page_bufs(mpd, head, head,
2731 						lblk);
2732 				if (err <= 0)
2733 					goto out;
2734 				err = 0;
2735 			}
2736 		}
2737 		folio_batch_release(&fbatch);
2738 		cond_resched();
2739 	}
2740 	mpd->scanned_until_end = 1;
2741 	if (handle)
2742 		ext4_journal_stop(handle);
2743 	return 0;
2744 out:
2745 	folio_batch_release(&fbatch);
2746 	if (handle)
2747 		ext4_journal_stop(handle);
2748 	return err;
2749 }
2750 
2751 static int ext4_do_writepages(struct mpage_da_data *mpd)
2752 {
2753 	struct writeback_control *wbc = mpd->wbc;
2754 	pgoff_t	writeback_index = 0;
2755 	long nr_to_write = wbc->nr_to_write;
2756 	int range_whole = 0;
2757 	int cycled = 1;
2758 	handle_t *handle = NULL;
2759 	struct inode *inode = mpd->inode;
2760 	struct address_space *mapping = inode->i_mapping;
2761 	int needed_blocks, rsv_blocks = 0, ret = 0;
2762 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2763 	struct blk_plug plug;
2764 	bool give_up_on_write = false;
2765 
2766 	trace_ext4_writepages(inode, wbc);
2767 
2768 	/*
2769 	 * No pages to write? This is mainly a kludge to avoid starting
2770 	 * a transaction for special inodes like journal inode on last iput()
2771 	 * because that could violate lock ordering on umount
2772 	 */
2773 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2774 		goto out_writepages;
2775 
2776 	/*
2777 	 * If the filesystem has aborted, it is read-only, so return
2778 	 * right away instead of dumping stack traces later on that
2779 	 * will obscure the real source of the problem.  We test
2780 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2781 	 * the latter could be true if the filesystem is mounted
2782 	 * read-only, and in that case, ext4_writepages should
2783 	 * *never* be called, so if that ever happens, we would want
2784 	 * the stack trace.
2785 	 */
2786 	ret = ext4_emergency_state(mapping->host->i_sb);
2787 	if (unlikely(ret))
2788 		goto out_writepages;
2789 
2790 	/*
2791 	 * If we have inline data and arrive here, it means that
2792 	 * we will soon create the block for the 1st page, so
2793 	 * we'd better clear the inline data here.
2794 	 */
2795 	if (ext4_has_inline_data(inode)) {
2796 		/* Just inode will be modified... */
2797 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2798 		if (IS_ERR(handle)) {
2799 			ret = PTR_ERR(handle);
2800 			goto out_writepages;
2801 		}
2802 		BUG_ON(ext4_test_inode_state(inode,
2803 				EXT4_STATE_MAY_INLINE_DATA));
2804 		ext4_destroy_inline_data(handle, inode);
2805 		ext4_journal_stop(handle);
2806 	}
2807 
2808 	/*
2809 	 * data=journal mode does not do delalloc so we just need to writeout /
2810 	 * journal already mapped buffers. On the other hand we need to commit
2811 	 * transaction to make data stable. We expect all the data to be
2812 	 * already in the journal (the only exception are DMA pinned pages
2813 	 * dirtied behind our back) so we commit transaction here and run the
2814 	 * writeback loop to checkpoint them. The checkpointing is not actually
2815 	 * necessary to make data persistent *but* quite a few places (extent
2816 	 * shifting operations, fsverity, ...) depend on being able to drop
2817 	 * pagecache pages after calling filemap_write_and_wait() and for that
2818 	 * checkpointing needs to happen.
2819 	 */
2820 	if (ext4_should_journal_data(inode)) {
2821 		mpd->can_map = 0;
2822 		if (wbc->sync_mode == WB_SYNC_ALL)
2823 			ext4_fc_commit(sbi->s_journal,
2824 				       EXT4_I(inode)->i_datasync_tid);
2825 	}
2826 	mpd->journalled_more_data = 0;
2827 
2828 	if (ext4_should_dioread_nolock(inode)) {
2829 		int bpf = ext4_journal_blocks_per_folio(inode);
2830 		/*
2831 		 * We may need to convert up to one extent per block in
2832 		 * the folio and we may dirty the inode.
2833 		 */
2834 		rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf);
2835 	}
2836 
2837 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2838 		range_whole = 1;
2839 
2840 	if (wbc->range_cyclic) {
2841 		writeback_index = mapping->writeback_index;
2842 		if (writeback_index)
2843 			cycled = 0;
2844 		mpd->start_pos = writeback_index << PAGE_SHIFT;
2845 		mpd->end_pos = LLONG_MAX;
2846 	} else {
2847 		mpd->start_pos = wbc->range_start;
2848 		mpd->end_pos = wbc->range_end;
2849 	}
2850 
2851 	ext4_io_submit_init(&mpd->io_submit, wbc);
2852 retry:
2853 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2854 		tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT,
2855 					mpd->end_pos >> PAGE_SHIFT);
2856 	blk_start_plug(&plug);
2857 
2858 	/*
2859 	 * First writeback pages that don't need mapping - we can avoid
2860 	 * starting a transaction unnecessarily and also avoid being blocked
2861 	 * in the block layer on device congestion while having transaction
2862 	 * started.
2863 	 */
2864 	mpd->do_map = 0;
2865 	mpd->scanned_until_end = 0;
2866 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2867 	if (!mpd->io_submit.io_end) {
2868 		ret = -ENOMEM;
2869 		goto unplug;
2870 	}
2871 	ret = mpage_prepare_extent_to_map(mpd);
2872 	/* Unlock pages we didn't use */
2873 	mpage_release_unused_pages(mpd, false);
2874 	/* Submit prepared bio */
2875 	ext4_io_submit(&mpd->io_submit);
2876 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2877 	mpd->io_submit.io_end = NULL;
2878 	if (ret < 0)
2879 		goto unplug;
2880 
2881 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2882 		/* For each extent of pages we use new io_end */
2883 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2884 		if (!mpd->io_submit.io_end) {
2885 			ret = -ENOMEM;
2886 			break;
2887 		}
2888 
2889 		WARN_ON_ONCE(!mpd->can_map);
2890 		/*
2891 		 * We have two constraints: We find one extent to map and we
2892 		 * must always write out whole page (makes a difference when
2893 		 * blocksize < pagesize) so that we don't block on IO when we
2894 		 * try to write out the rest of the page. Journalled mode is
2895 		 * not supported by delalloc.
2896 		 */
2897 		BUG_ON(ext4_should_journal_data(inode));
2898 		/*
2899 		 * Calculate the number of credits needed to reserve for one
2900 		 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will
2901 		 * attempt to extend the transaction or start a new iteration
2902 		 * if the reserved credits are insufficient.
2903 		 */
2904 		needed_blocks = ext4_chunk_trans_blocks(inode,
2905 						MAX_WRITEPAGES_EXTENT_LEN);
2906 		/* start a new transaction */
2907 		handle = ext4_journal_start_with_reserve(inode,
2908 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2909 		if (IS_ERR(handle)) {
2910 			ret = PTR_ERR(handle);
2911 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2912 			       "%ld pages, ino %lu; err %d", __func__,
2913 				wbc->nr_to_write, inode->i_ino, ret);
2914 			/* Release allocated io_end */
2915 			ext4_put_io_end(mpd->io_submit.io_end);
2916 			mpd->io_submit.io_end = NULL;
2917 			break;
2918 		}
2919 		mpd->do_map = 1;
2920 
2921 		trace_ext4_da_write_folios_start(inode, mpd->start_pos,
2922 				mpd->next_pos, wbc);
2923 		ret = mpage_prepare_extent_to_map(mpd);
2924 		if (!ret && mpd->map.m_len)
2925 			ret = mpage_map_and_submit_extent(handle, mpd,
2926 					&give_up_on_write);
2927 		/*
2928 		 * Caution: If the handle is synchronous,
2929 		 * ext4_journal_stop() can wait for transaction commit
2930 		 * to finish which may depend on writeback of pages to
2931 		 * complete or on page lock to be released.  In that
2932 		 * case, we have to wait until after we have
2933 		 * submitted all the IO, released page locks we hold,
2934 		 * and dropped io_end reference (for extent conversion
2935 		 * to be able to complete) before stopping the handle.
2936 		 */
2937 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2938 			ext4_journal_stop(handle);
2939 			handle = NULL;
2940 			mpd->do_map = 0;
2941 		}
2942 		/* Unlock pages we didn't use */
2943 		mpage_release_unused_pages(mpd, give_up_on_write);
2944 		/* Submit prepared bio */
2945 		ext4_io_submit(&mpd->io_submit);
2946 
2947 		/*
2948 		 * Drop our io_end reference we got from init. We have
2949 		 * to be careful and use deferred io_end finishing if
2950 		 * we are still holding the transaction as we can
2951 		 * release the last reference to io_end which may end
2952 		 * up doing unwritten extent conversion.
2953 		 */
2954 		if (handle) {
2955 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2956 			ext4_journal_stop(handle);
2957 		} else
2958 			ext4_put_io_end(mpd->io_submit.io_end);
2959 		mpd->io_submit.io_end = NULL;
2960 		trace_ext4_da_write_folios_end(inode, mpd->start_pos,
2961 				mpd->next_pos, wbc, ret);
2962 
2963 		if (ret == -ENOSPC && sbi->s_journal) {
2964 			/*
2965 			 * Commit the transaction which would
2966 			 * free blocks released in the transaction
2967 			 * and try again
2968 			 */
2969 			jbd2_journal_force_commit_nested(sbi->s_journal);
2970 			ret = 0;
2971 			continue;
2972 		}
2973 		if (ret == -EAGAIN)
2974 			ret = 0;
2975 		/* Fatal error - ENOMEM, EIO... */
2976 		if (ret)
2977 			break;
2978 	}
2979 unplug:
2980 	blk_finish_plug(&plug);
2981 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2982 		cycled = 1;
2983 		mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1;
2984 		mpd->start_pos = 0;
2985 		goto retry;
2986 	}
2987 
2988 	/* Update index */
2989 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2990 		/*
2991 		 * Set the writeback_index so that range_cyclic
2992 		 * mode will write it back later
2993 		 */
2994 		mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT;
2995 
2996 out_writepages:
2997 	trace_ext4_writepages_result(inode, wbc, ret,
2998 				     nr_to_write - wbc->nr_to_write);
2999 	return ret;
3000 }
3001 
3002 static int ext4_writepages(struct address_space *mapping,
3003 			   struct writeback_control *wbc)
3004 {
3005 	struct super_block *sb = mapping->host->i_sb;
3006 	struct mpage_da_data mpd = {
3007 		.inode = mapping->host,
3008 		.wbc = wbc,
3009 		.can_map = 1,
3010 	};
3011 	int ret;
3012 	int alloc_ctx;
3013 
3014 	ret = ext4_emergency_state(sb);
3015 	if (unlikely(ret))
3016 		return ret;
3017 
3018 	alloc_ctx = ext4_writepages_down_read(sb);
3019 	ret = ext4_do_writepages(&mpd);
3020 	/*
3021 	 * For data=journal writeback we could have come across pages marked
3022 	 * for delayed dirtying (PageChecked) which were just added to the
3023 	 * running transaction. Try once more to get them to stable storage.
3024 	 */
3025 	if (!ret && mpd.journalled_more_data)
3026 		ret = ext4_do_writepages(&mpd);
3027 	ext4_writepages_up_read(sb, alloc_ctx);
3028 
3029 	return ret;
3030 }
3031 
3032 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
3033 {
3034 	struct writeback_control wbc = {
3035 		.sync_mode = WB_SYNC_ALL,
3036 		.nr_to_write = LONG_MAX,
3037 		.range_start = jinode->i_dirty_start,
3038 		.range_end = jinode->i_dirty_end,
3039 	};
3040 	struct mpage_da_data mpd = {
3041 		.inode = jinode->i_vfs_inode,
3042 		.wbc = &wbc,
3043 		.can_map = 0,
3044 	};
3045 	return ext4_do_writepages(&mpd);
3046 }
3047 
3048 static int ext4_dax_writepages(struct address_space *mapping,
3049 			       struct writeback_control *wbc)
3050 {
3051 	int ret;
3052 	long nr_to_write = wbc->nr_to_write;
3053 	struct inode *inode = mapping->host;
3054 	int alloc_ctx;
3055 
3056 	ret = ext4_emergency_state(inode->i_sb);
3057 	if (unlikely(ret))
3058 		return ret;
3059 
3060 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
3061 	trace_ext4_writepages(inode, wbc);
3062 
3063 	ret = dax_writeback_mapping_range(mapping,
3064 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
3065 	trace_ext4_writepages_result(inode, wbc, ret,
3066 				     nr_to_write - wbc->nr_to_write);
3067 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3068 	return ret;
3069 }
3070 
3071 static int ext4_nonda_switch(struct super_block *sb)
3072 {
3073 	s64 free_clusters, dirty_clusters;
3074 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 
3076 	/*
3077 	 * switch to non delalloc mode if we are running low
3078 	 * on free block. The free block accounting via percpu
3079 	 * counters can get slightly wrong with percpu_counter_batch getting
3080 	 * accumulated on each CPU without updating global counters
3081 	 * Delalloc need an accurate free block accounting. So switch
3082 	 * to non delalloc when we are near to error range.
3083 	 */
3084 	free_clusters =
3085 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3086 	dirty_clusters =
3087 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3088 	/*
3089 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3090 	 */
3091 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3092 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3093 
3094 	if (2 * free_clusters < 3 * dirty_clusters ||
3095 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3096 		/*
3097 		 * free block count is less than 150% of dirty blocks
3098 		 * or free blocks is less than watermark
3099 		 */
3100 		return 1;
3101 	}
3102 	return 0;
3103 }
3104 
3105 static int ext4_da_write_begin(const struct kiocb *iocb,
3106 			       struct address_space *mapping,
3107 			       loff_t pos, unsigned len,
3108 			       struct folio **foliop, void **fsdata)
3109 {
3110 	int ret, retries = 0;
3111 	struct folio *folio;
3112 	pgoff_t index;
3113 	struct inode *inode = mapping->host;
3114 
3115 	ret = ext4_emergency_state(inode->i_sb);
3116 	if (unlikely(ret))
3117 		return ret;
3118 
3119 	index = pos >> PAGE_SHIFT;
3120 
3121 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3122 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3123 		return ext4_write_begin(iocb, mapping, pos,
3124 					len, foliop, fsdata);
3125 	}
3126 	*fsdata = (void *)0;
3127 	trace_ext4_da_write_begin(inode, pos, len);
3128 
3129 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3130 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3131 						     foliop, fsdata, true);
3132 		if (ret < 0)
3133 			return ret;
3134 		if (ret == 1)
3135 			return 0;
3136 	}
3137 
3138 retry:
3139 	folio = write_begin_get_folio(iocb, mapping, index, len);
3140 	if (IS_ERR(folio))
3141 		return PTR_ERR(folio);
3142 
3143 	if (len > folio_next_pos(folio) - pos)
3144 		len = folio_next_pos(folio) - pos;
3145 
3146 	ret = ext4_block_write_begin(NULL, folio, pos, len,
3147 				     ext4_da_get_block_prep);
3148 	if (ret < 0) {
3149 		folio_unlock(folio);
3150 		folio_put(folio);
3151 		/*
3152 		 * ext4_block_write_begin may have instantiated a few blocks
3153 		 * outside i_size.  Trim these off again. Don't need
3154 		 * i_size_read because we hold inode lock.
3155 		 */
3156 		if (pos + len > inode->i_size)
3157 			ext4_truncate_failed_write(inode);
3158 
3159 		if (ret == -ENOSPC &&
3160 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3161 			goto retry;
3162 		return ret;
3163 	}
3164 
3165 	*foliop = folio;
3166 	return ret;
3167 }
3168 
3169 /*
3170  * Check if we should update i_disksize
3171  * when write to the end of file but not require block allocation
3172  */
3173 static int ext4_da_should_update_i_disksize(struct folio *folio,
3174 					    unsigned long offset)
3175 {
3176 	struct buffer_head *bh;
3177 	struct inode *inode = folio->mapping->host;
3178 	unsigned int idx;
3179 	int i;
3180 
3181 	bh = folio_buffers(folio);
3182 	idx = offset >> inode->i_blkbits;
3183 
3184 	for (i = 0; i < idx; i++)
3185 		bh = bh->b_this_page;
3186 
3187 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3188 		return 0;
3189 	return 1;
3190 }
3191 
3192 static int ext4_da_do_write_end(struct address_space *mapping,
3193 			loff_t pos, unsigned len, unsigned copied,
3194 			struct folio *folio)
3195 {
3196 	struct inode *inode = mapping->host;
3197 	loff_t old_size = inode->i_size;
3198 	bool disksize_changed = false;
3199 	loff_t new_i_size, zero_len = 0;
3200 	handle_t *handle;
3201 
3202 	if (unlikely(!folio_buffers(folio))) {
3203 		folio_unlock(folio);
3204 		folio_put(folio);
3205 		return -EIO;
3206 	}
3207 	/*
3208 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3209 	 * flag, which all that's needed to trigger page writeback.
3210 	 */
3211 	copied = block_write_end(pos, len, copied, folio);
3212 	new_i_size = pos + copied;
3213 
3214 	/*
3215 	 * It's important to update i_size while still holding folio lock,
3216 	 * because folio writeout could otherwise come in and zero beyond
3217 	 * i_size.
3218 	 *
3219 	 * Since we are holding inode lock, we are sure i_disksize <=
3220 	 * i_size. We also know that if i_disksize < i_size, there are
3221 	 * delalloc writes pending in the range up to i_size. If the end of
3222 	 * the current write is <= i_size, there's no need to touch
3223 	 * i_disksize since writeback will push i_disksize up to i_size
3224 	 * eventually. If the end of the current write is > i_size and
3225 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3226 	 * checked, we need to update i_disksize here as certain
3227 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3228 	 */
3229 	if (new_i_size > inode->i_size) {
3230 		unsigned long end;
3231 
3232 		i_size_write(inode, new_i_size);
3233 		end = offset_in_folio(folio, new_i_size - 1);
3234 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3235 			ext4_update_i_disksize(inode, new_i_size);
3236 			disksize_changed = true;
3237 		}
3238 	}
3239 
3240 	folio_unlock(folio);
3241 	folio_put(folio);
3242 
3243 	if (pos > old_size) {
3244 		pagecache_isize_extended(inode, old_size, pos);
3245 		zero_len = pos - old_size;
3246 	}
3247 
3248 	if (!disksize_changed && !zero_len)
3249 		return copied;
3250 
3251 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3252 	if (IS_ERR(handle))
3253 		return PTR_ERR(handle);
3254 	if (zero_len)
3255 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3256 	ext4_mark_inode_dirty(handle, inode);
3257 	ext4_journal_stop(handle);
3258 
3259 	return copied;
3260 }
3261 
3262 static int ext4_da_write_end(const struct kiocb *iocb,
3263 			     struct address_space *mapping,
3264 			     loff_t pos, unsigned len, unsigned copied,
3265 			     struct folio *folio, void *fsdata)
3266 {
3267 	struct inode *inode = mapping->host;
3268 	int write_mode = (int)(unsigned long)fsdata;
3269 
3270 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3271 		return ext4_write_end(iocb, mapping, pos,
3272 				      len, copied, folio, fsdata);
3273 
3274 	trace_ext4_da_write_end(inode, pos, len, copied);
3275 
3276 	if (write_mode != CONVERT_INLINE_DATA &&
3277 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3278 	    ext4_has_inline_data(inode))
3279 		return ext4_write_inline_data_end(inode, pos, len, copied,
3280 						  folio);
3281 
3282 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3283 		copied = 0;
3284 
3285 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3286 }
3287 
3288 /*
3289  * Force all delayed allocation blocks to be allocated for a given inode.
3290  */
3291 int ext4_alloc_da_blocks(struct inode *inode)
3292 {
3293 	trace_ext4_alloc_da_blocks(inode);
3294 
3295 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3296 		return 0;
3297 
3298 	/*
3299 	 * We do something simple for now.  The filemap_flush() will
3300 	 * also start triggering a write of the data blocks, which is
3301 	 * not strictly speaking necessary.  However, to do otherwise
3302 	 * would require replicating code paths in:
3303 	 *
3304 	 * ext4_writepages() ->
3305 	 *    write_cache_pages() ---> (via passed in callback function)
3306 	 *        __mpage_da_writepage() -->
3307 	 *           mpage_add_bh_to_extent()
3308 	 *           mpage_da_map_blocks()
3309 	 *
3310 	 * The problem is that write_cache_pages(), located in
3311 	 * mm/page-writeback.c, marks pages clean in preparation for
3312 	 * doing I/O, which is not desirable if we're not planning on
3313 	 * doing I/O at all.
3314 	 *
3315 	 * We could call write_cache_pages(), and then redirty all of
3316 	 * the pages by calling redirty_page_for_writepage() but that
3317 	 * would be ugly in the extreme.  So instead we would need to
3318 	 * replicate parts of the code in the above functions,
3319 	 * simplifying them because we wouldn't actually intend to
3320 	 * write out the pages, but rather only collect contiguous
3321 	 * logical block extents, call the multi-block allocator, and
3322 	 * then update the buffer heads with the block allocations.
3323 	 *
3324 	 * For now, though, we'll cheat by calling filemap_flush(),
3325 	 * which will map the blocks, and start the I/O, but not
3326 	 * actually wait for the I/O to complete.
3327 	 */
3328 	return filemap_flush(inode->i_mapping);
3329 }
3330 
3331 /*
3332  * bmap() is special.  It gets used by applications such as lilo and by
3333  * the swapper to find the on-disk block of a specific piece of data.
3334  *
3335  * Naturally, this is dangerous if the block concerned is still in the
3336  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3337  * filesystem and enables swap, then they may get a nasty shock when the
3338  * data getting swapped to that swapfile suddenly gets overwritten by
3339  * the original zero's written out previously to the journal and
3340  * awaiting writeback in the kernel's buffer cache.
3341  *
3342  * So, if we see any bmap calls here on a modified, data-journaled file,
3343  * take extra steps to flush any blocks which might be in the cache.
3344  */
3345 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3346 {
3347 	struct inode *inode = mapping->host;
3348 	sector_t ret = 0;
3349 
3350 	inode_lock_shared(inode);
3351 	/*
3352 	 * We can get here for an inline file via the FIBMAP ioctl
3353 	 */
3354 	if (ext4_has_inline_data(inode))
3355 		goto out;
3356 
3357 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3358 	    (test_opt(inode->i_sb, DELALLOC) ||
3359 	     ext4_should_journal_data(inode))) {
3360 		/*
3361 		 * With delalloc or journalled data we want to sync the file so
3362 		 * that we can make sure we allocate blocks for file and data
3363 		 * is in place for the user to see it
3364 		 */
3365 		filemap_write_and_wait(mapping);
3366 	}
3367 
3368 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3369 
3370 out:
3371 	inode_unlock_shared(inode);
3372 	return ret;
3373 }
3374 
3375 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3376 				size_t length)
3377 {
3378 	trace_ext4_invalidate_folio(folio, offset, length);
3379 
3380 	/* No journalling happens on data buffers when this function is used */
3381 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3382 
3383 	block_invalidate_folio(folio, offset, length);
3384 }
3385 
3386 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3387 					    size_t offset, size_t length)
3388 {
3389 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3390 
3391 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3392 
3393 	/*
3394 	 * If it's a full truncate we just forget about the pending dirtying
3395 	 */
3396 	if (offset == 0 && length == folio_size(folio))
3397 		folio_clear_checked(folio);
3398 
3399 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3400 }
3401 
3402 /* Wrapper for aops... */
3403 static void ext4_journalled_invalidate_folio(struct folio *folio,
3404 					   size_t offset,
3405 					   size_t length)
3406 {
3407 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3408 }
3409 
3410 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3411 {
3412 	struct inode *inode = folio->mapping->host;
3413 	journal_t *journal = EXT4_JOURNAL(inode);
3414 
3415 	trace_ext4_release_folio(inode, folio);
3416 
3417 	/* Page has dirty journalled data -> cannot release */
3418 	if (folio_test_checked(folio))
3419 		return false;
3420 	if (journal)
3421 		return jbd2_journal_try_to_free_buffers(journal, folio);
3422 	else
3423 		return try_to_free_buffers(folio);
3424 }
3425 
3426 static bool ext4_inode_datasync_dirty(struct inode *inode)
3427 {
3428 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3429 
3430 	if (journal) {
3431 		if (jbd2_transaction_committed(journal,
3432 			EXT4_I(inode)->i_datasync_tid))
3433 			return false;
3434 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3435 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3436 		return true;
3437 	}
3438 
3439 	/* Any metadata buffers to write? */
3440 	if (!list_empty(&inode->i_mapping->i_private_list))
3441 		return true;
3442 	return inode_state_read_once(inode) & I_DIRTY_DATASYNC;
3443 }
3444 
3445 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3446 			   struct ext4_map_blocks *map, loff_t offset,
3447 			   loff_t length, unsigned int flags)
3448 {
3449 	u8 blkbits = inode->i_blkbits;
3450 
3451 	/*
3452 	 * Writes that span EOF might trigger an I/O size update on completion,
3453 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3454 	 * there is no other metadata changes being made or are pending.
3455 	 */
3456 	iomap->flags = 0;
3457 	if (ext4_inode_datasync_dirty(inode) ||
3458 	    offset + length > i_size_read(inode))
3459 		iomap->flags |= IOMAP_F_DIRTY;
3460 
3461 	if (map->m_flags & EXT4_MAP_NEW)
3462 		iomap->flags |= IOMAP_F_NEW;
3463 
3464 	/* HW-offload atomics are always used */
3465 	if (flags & IOMAP_ATOMIC)
3466 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3467 
3468 	if (flags & IOMAP_DAX)
3469 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3470 	else
3471 		iomap->bdev = inode->i_sb->s_bdev;
3472 	iomap->offset = EXT4_LBLK_TO_B(inode, map->m_lblk);
3473 	iomap->length = EXT4_LBLK_TO_B(inode, map->m_len);
3474 
3475 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3476 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3477 		iomap->flags |= IOMAP_F_MERGED;
3478 
3479 	/*
3480 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3481 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3482 	 * set. In order for any allocated unwritten extents to be converted
3483 	 * into written extents correctly within the ->end_io() handler, we
3484 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3485 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3486 	 * been set first.
3487 	 */
3488 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3489 		iomap->type = IOMAP_UNWRITTEN;
3490 		iomap->addr = (u64) map->m_pblk << blkbits;
3491 		if (flags & IOMAP_DAX)
3492 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3493 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3494 		iomap->type = IOMAP_MAPPED;
3495 		iomap->addr = (u64) map->m_pblk << blkbits;
3496 		if (flags & IOMAP_DAX)
3497 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3498 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3499 		iomap->type = IOMAP_DELALLOC;
3500 		iomap->addr = IOMAP_NULL_ADDR;
3501 	} else {
3502 		iomap->type = IOMAP_HOLE;
3503 		iomap->addr = IOMAP_NULL_ADDR;
3504 	}
3505 }
3506 
3507 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3508 			struct inode *inode, struct ext4_map_blocks *map)
3509 {
3510 	ext4_lblk_t m_lblk = map->m_lblk;
3511 	unsigned int m_len = map->m_len;
3512 	unsigned int mapped_len = 0, m_flags = 0;
3513 	ext4_fsblk_t next_pblk = 0;
3514 	bool check_next_pblk = false;
3515 	int ret = 0;
3516 
3517 	WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3518 
3519 	/*
3520 	 * This is a slow path in case of mixed mapping. We use
3521 	 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3522 	 * contiguous mapped mapping. This will ensure any unwritten or hole
3523 	 * regions within the requested range is zeroed out and we return
3524 	 * a single contiguous mapped extent.
3525 	 */
3526 	m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3527 
3528 	do {
3529 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3530 		if (ret < 0 && ret != -ENOSPC)
3531 			goto out_err;
3532 		/*
3533 		 * This should never happen, but let's return an error code to
3534 		 * avoid an infinite loop in here.
3535 		 */
3536 		if (ret == 0) {
3537 			ret = -EFSCORRUPTED;
3538 			ext4_warning_inode(inode,
3539 				"ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3540 				m_flags, ret);
3541 			goto out_err;
3542 		}
3543 		/*
3544 		 * With bigalloc we should never get ENOSPC nor discontiguous
3545 		 * physical extents.
3546 		 */
3547 		if ((check_next_pblk && next_pblk != map->m_pblk) ||
3548 				ret == -ENOSPC) {
3549 			ext4_warning_inode(inode,
3550 				"Non-contiguous allocation detected: expected %llu, got %llu, "
3551 				"or ext4_map_blocks() returned out of space ret: %d",
3552 				next_pblk, map->m_pblk, ret);
3553 			ret = -EFSCORRUPTED;
3554 			goto out_err;
3555 		}
3556 		next_pblk = map->m_pblk + map->m_len;
3557 		check_next_pblk = true;
3558 
3559 		mapped_len += map->m_len;
3560 		map->m_lblk += map->m_len;
3561 		map->m_len = m_len - mapped_len;
3562 	} while (mapped_len < m_len);
3563 
3564 	/*
3565 	 * We might have done some work in above loop, so we need to query the
3566 	 * start of the physical extent, based on the origin m_lblk and m_len.
3567 	 * Let's also ensure we were able to allocate the required range for
3568 	 * mixed mapping case.
3569 	 */
3570 	map->m_lblk = m_lblk;
3571 	map->m_len = m_len;
3572 	map->m_flags = 0;
3573 
3574 	ret = ext4_map_blocks(handle, inode, map,
3575 			      EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3576 	if (ret != m_len) {
3577 		ext4_warning_inode(inode,
3578 			"allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3579 			m_lblk, m_len, ret);
3580 		ret = -EINVAL;
3581 	}
3582 	return ret;
3583 
3584 out_err:
3585 	/* reset map before returning an error */
3586 	map->m_lblk = m_lblk;
3587 	map->m_len = m_len;
3588 	map->m_flags = 0;
3589 	return ret;
3590 }
3591 
3592 /*
3593  * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3594  * range in @map [lblk, lblk + len) is one single contiguous extent with no
3595  * mixed mappings.
3596  *
3597  * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3598  * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3599  * physical extent for the requested range does not have a single contiguous
3600  * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3601  * In that case we will loop over the requested range to allocate and zero out
3602  * the unwritten / holes in between, to get a single mapped extent from
3603  * [m_lblk, m_lblk +  m_len). Note that this is only possible because we know
3604  * this can be called only with bigalloc enabled filesystem where the underlying
3605  * cluster is already allocated. This avoids allocating discontiguous extents
3606  * in the slow path due to multiple calls to ext4_map_blocks().
3607  * The slow path is mostly non-performance critical path, so it should be ok to
3608  * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3609  * underlying short holes/unwritten extents within the requested range.
3610  */
3611 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3612 				struct ext4_map_blocks *map, int m_flags,
3613 				bool *force_commit)
3614 {
3615 	ext4_lblk_t m_lblk = map->m_lblk;
3616 	unsigned int m_len = map->m_len;
3617 	int ret = 0;
3618 
3619 	WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3620 
3621 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3622 	if (ret < 0 || ret == m_len)
3623 		goto out;
3624 	/*
3625 	 * This is a mixed mapping case where we were not able to allocate
3626 	 * a single contiguous extent. In that case let's reset requested
3627 	 * mapping and call the slow path.
3628 	 */
3629 	map->m_lblk = m_lblk;
3630 	map->m_len = m_len;
3631 	map->m_flags = 0;
3632 
3633 	/*
3634 	 * slow path means we have mixed mapping, that means we will need
3635 	 * to force txn commit.
3636 	 */
3637 	*force_commit = true;
3638 	return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3639 out:
3640 	return ret;
3641 }
3642 
3643 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3644 			    unsigned int flags)
3645 {
3646 	handle_t *handle;
3647 	int ret, dio_credits, m_flags = 0, retries = 0;
3648 	bool force_commit = false;
3649 
3650 	/*
3651 	 * Trim the mapping request to the maximum value that we can map at
3652 	 * once for direct I/O.
3653 	 */
3654 	if (map->m_len > DIO_MAX_BLOCKS)
3655 		map->m_len = DIO_MAX_BLOCKS;
3656 
3657 	/*
3658 	 * journal credits estimation for atomic writes. We call
3659 	 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3660 	 * then let's assume the no. of pextents required can be m_len i.e.
3661 	 * every alternate block can be unwritten and hole.
3662 	 */
3663 	if (flags & IOMAP_ATOMIC) {
3664 		unsigned int orig_mlen = map->m_len;
3665 
3666 		ret = ext4_map_blocks(NULL, inode, map, 0);
3667 		if (ret < 0)
3668 			return ret;
3669 		if (map->m_len < orig_mlen) {
3670 			map->m_len = orig_mlen;
3671 			dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3672 							     map->m_len);
3673 		} else {
3674 			dio_credits = ext4_chunk_trans_blocks(inode,
3675 							      map->m_len);
3676 		}
3677 	} else {
3678 		dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3679 	}
3680 
3681 retry:
3682 	/*
3683 	 * Either we allocate blocks and then don't get an unwritten extent, so
3684 	 * in that case we have reserved enough credits. Or, the blocks are
3685 	 * already allocated and unwritten. In that case, the extent conversion
3686 	 * fits into the credits as well.
3687 	 */
3688 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3689 	if (IS_ERR(handle))
3690 		return PTR_ERR(handle);
3691 
3692 	/*
3693 	 * DAX and direct I/O are the only two operations that are currently
3694 	 * supported with IOMAP_WRITE.
3695 	 */
3696 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3697 	if (flags & IOMAP_DAX)
3698 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3699 	/*
3700 	 * We use i_size instead of i_disksize here because delalloc writeback
3701 	 * can complete at any point during the I/O and subsequently push the
3702 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3703 	 * happening and thus expose allocated blocks to direct I/O reads.
3704 	 */
3705 	else if (EXT4_LBLK_TO_B(inode, map->m_lblk) >= i_size_read(inode))
3706 		m_flags = EXT4_GET_BLOCKS_CREATE;
3707 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3708 		m_flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
3709 
3710 	if (flags & IOMAP_ATOMIC)
3711 		ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3712 						   &force_commit);
3713 	else
3714 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3715 
3716 	/*
3717 	 * We cannot fill holes in indirect tree based inodes as that could
3718 	 * expose stale data in the case of a crash. Use the magic error code
3719 	 * to fallback to buffered I/O.
3720 	 */
3721 	if (!m_flags && !ret)
3722 		ret = -ENOTBLK;
3723 
3724 	ext4_journal_stop(handle);
3725 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3726 		goto retry;
3727 
3728 	/*
3729 	 * Force commit the current transaction if the allocation spans a mixed
3730 	 * mapping range. This ensures any pending metadata updates (like
3731 	 * unwritten to written extents conversion) in this range are in
3732 	 * consistent state with the file data blocks, before performing the
3733 	 * actual write I/O. If the commit fails, the whole I/O must be aborted
3734 	 * to prevent any possible torn writes.
3735 	 */
3736 	if (ret > 0 && force_commit) {
3737 		int ret2;
3738 
3739 		ret2 = ext4_force_commit(inode->i_sb);
3740 		if (ret2)
3741 			return ret2;
3742 	}
3743 
3744 	return ret;
3745 }
3746 
3747 
3748 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3749 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3750 {
3751 	int ret;
3752 	struct ext4_map_blocks map;
3753 	u8 blkbits = inode->i_blkbits;
3754 	unsigned int orig_mlen;
3755 
3756 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3757 		return -EINVAL;
3758 
3759 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3760 		return -ERANGE;
3761 
3762 	/*
3763 	 * Calculate the first and last logical blocks respectively.
3764 	 */
3765 	map.m_lblk = offset >> blkbits;
3766 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3767 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3768 	orig_mlen = map.m_len;
3769 
3770 	if (flags & IOMAP_WRITE) {
3771 		/*
3772 		 * We check here if the blocks are already allocated, then we
3773 		 * don't need to start a journal txn and we can directly return
3774 		 * the mapping information. This could boost performance
3775 		 * especially in multi-threaded overwrite requests.
3776 		 */
3777 		if (offset + length <= i_size_read(inode)) {
3778 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3779 			/*
3780 			 * For DAX we convert extents to initialized ones before
3781 			 * copying the data, otherwise we do it after I/O so
3782 			 * there's no need to call into ext4_iomap_alloc().
3783 			 */
3784 			if ((map.m_flags & EXT4_MAP_MAPPED) ||
3785 			    (!(flags & IOMAP_DAX) &&
3786 			     (map.m_flags & EXT4_MAP_UNWRITTEN))) {
3787 				/*
3788 				 * For atomic writes the entire requested
3789 				 * length should be mapped.
3790 				 */
3791 				if (ret == orig_mlen ||
3792 				    (!(flags & IOMAP_ATOMIC) && ret > 0))
3793 					goto out;
3794 			}
3795 			map.m_len = orig_mlen;
3796 		}
3797 		ret = ext4_iomap_alloc(inode, &map, flags);
3798 	} else {
3799 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3800 	}
3801 
3802 	if (ret < 0)
3803 		return ret;
3804 out:
3805 	/*
3806 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3807 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3808 	 * limiting the length of the mapping returned.
3809 	 */
3810 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3811 
3812 	/*
3813 	 * Before returning to iomap, let's ensure the allocated mapping
3814 	 * covers the entire requested length for atomic writes.
3815 	 */
3816 	if (flags & IOMAP_ATOMIC) {
3817 		if (map.m_len < (length >> blkbits)) {
3818 			WARN_ON_ONCE(1);
3819 			return -EINVAL;
3820 		}
3821 	}
3822 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3823 
3824 	return 0;
3825 }
3826 
3827 const struct iomap_ops ext4_iomap_ops = {
3828 	.iomap_begin		= ext4_iomap_begin,
3829 };
3830 
3831 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3832 				   loff_t length, unsigned int flags,
3833 				   struct iomap *iomap, struct iomap *srcmap)
3834 {
3835 	int ret;
3836 	struct ext4_map_blocks map;
3837 	u8 blkbits = inode->i_blkbits;
3838 
3839 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3840 		return -EINVAL;
3841 
3842 	if (ext4_has_inline_data(inode)) {
3843 		ret = ext4_inline_data_iomap(inode, iomap);
3844 		if (ret != -EAGAIN) {
3845 			if (ret == 0 && offset >= iomap->length)
3846 				ret = -ENOENT;
3847 			return ret;
3848 		}
3849 	}
3850 
3851 	/*
3852 	 * Calculate the first and last logical block respectively.
3853 	 */
3854 	map.m_lblk = offset >> blkbits;
3855 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3856 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3857 
3858 	/*
3859 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3860 	 * So handle it here itself instead of querying ext4_map_blocks().
3861 	 * Since ext4_map_blocks() will warn about it and will return
3862 	 * -EIO error.
3863 	 */
3864 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3865 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3866 
3867 		if (offset >= sbi->s_bitmap_maxbytes) {
3868 			map.m_flags = 0;
3869 			goto set_iomap;
3870 		}
3871 	}
3872 
3873 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3874 	if (ret < 0)
3875 		return ret;
3876 set_iomap:
3877 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3878 
3879 	return 0;
3880 }
3881 
3882 const struct iomap_ops ext4_iomap_report_ops = {
3883 	.iomap_begin = ext4_iomap_begin_report,
3884 };
3885 
3886 /*
3887  * For data=journal mode, folio should be marked dirty only when it was
3888  * writeably mapped. When that happens, it was already attached to the
3889  * transaction and marked as jbddirty (we take care of this in
3890  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3891  * so we should have nothing to do here, except for the case when someone
3892  * had the page pinned and dirtied the page through this pin (e.g. by doing
3893  * direct IO to it). In that case we'd need to attach buffers here to the
3894  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3895  * folio and leave attached buffers clean, because the buffers' dirty state is
3896  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3897  * the journalling code will explode.  So what we do is to mark the folio
3898  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3899  * to the transaction appropriately.
3900  */
3901 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3902 		struct folio *folio)
3903 {
3904 	WARN_ON_ONCE(!folio_buffers(folio));
3905 	if (folio_maybe_dma_pinned(folio))
3906 		folio_set_checked(folio);
3907 	return filemap_dirty_folio(mapping, folio);
3908 }
3909 
3910 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3911 {
3912 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3913 	WARN_ON_ONCE(!folio_buffers(folio));
3914 	return block_dirty_folio(mapping, folio);
3915 }
3916 
3917 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3918 				    struct file *file, sector_t *span)
3919 {
3920 	return iomap_swapfile_activate(sis, file, span,
3921 				       &ext4_iomap_report_ops);
3922 }
3923 
3924 static const struct address_space_operations ext4_aops = {
3925 	.read_folio		= ext4_read_folio,
3926 	.readahead		= ext4_readahead,
3927 	.writepages		= ext4_writepages,
3928 	.write_begin		= ext4_write_begin,
3929 	.write_end		= ext4_write_end,
3930 	.dirty_folio		= ext4_dirty_folio,
3931 	.bmap			= ext4_bmap,
3932 	.invalidate_folio	= ext4_invalidate_folio,
3933 	.release_folio		= ext4_release_folio,
3934 	.migrate_folio		= buffer_migrate_folio,
3935 	.is_partially_uptodate  = block_is_partially_uptodate,
3936 	.error_remove_folio	= generic_error_remove_folio,
3937 	.swap_activate		= ext4_iomap_swap_activate,
3938 };
3939 
3940 static const struct address_space_operations ext4_journalled_aops = {
3941 	.read_folio		= ext4_read_folio,
3942 	.readahead		= ext4_readahead,
3943 	.writepages		= ext4_writepages,
3944 	.write_begin		= ext4_write_begin,
3945 	.write_end		= ext4_journalled_write_end,
3946 	.dirty_folio		= ext4_journalled_dirty_folio,
3947 	.bmap			= ext4_bmap,
3948 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3949 	.release_folio		= ext4_release_folio,
3950 	.migrate_folio		= buffer_migrate_folio_norefs,
3951 	.is_partially_uptodate  = block_is_partially_uptodate,
3952 	.error_remove_folio	= generic_error_remove_folio,
3953 	.swap_activate		= ext4_iomap_swap_activate,
3954 };
3955 
3956 static const struct address_space_operations ext4_da_aops = {
3957 	.read_folio		= ext4_read_folio,
3958 	.readahead		= ext4_readahead,
3959 	.writepages		= ext4_writepages,
3960 	.write_begin		= ext4_da_write_begin,
3961 	.write_end		= ext4_da_write_end,
3962 	.dirty_folio		= ext4_dirty_folio,
3963 	.bmap			= ext4_bmap,
3964 	.invalidate_folio	= ext4_invalidate_folio,
3965 	.release_folio		= ext4_release_folio,
3966 	.migrate_folio		= buffer_migrate_folio,
3967 	.is_partially_uptodate  = block_is_partially_uptodate,
3968 	.error_remove_folio	= generic_error_remove_folio,
3969 	.swap_activate		= ext4_iomap_swap_activate,
3970 };
3971 
3972 static const struct address_space_operations ext4_dax_aops = {
3973 	.writepages		= ext4_dax_writepages,
3974 	.dirty_folio		= noop_dirty_folio,
3975 	.bmap			= ext4_bmap,
3976 	.swap_activate		= ext4_iomap_swap_activate,
3977 };
3978 
3979 void ext4_set_aops(struct inode *inode)
3980 {
3981 	switch (ext4_inode_journal_mode(inode)) {
3982 	case EXT4_INODE_ORDERED_DATA_MODE:
3983 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3984 		break;
3985 	case EXT4_INODE_JOURNAL_DATA_MODE:
3986 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3987 		return;
3988 	default:
3989 		BUG();
3990 	}
3991 	if (IS_DAX(inode))
3992 		inode->i_mapping->a_ops = &ext4_dax_aops;
3993 	else if (test_opt(inode->i_sb, DELALLOC))
3994 		inode->i_mapping->a_ops = &ext4_da_aops;
3995 	else
3996 		inode->i_mapping->a_ops = &ext4_aops;
3997 }
3998 
3999 /*
4000  * Here we can't skip an unwritten buffer even though it usually reads zero
4001  * because it might have data in pagecache (eg, if called from ext4_zero_range,
4002  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4003  * racing writeback can come later and flush the stale pagecache to disk.
4004  */
4005 static int __ext4_block_zero_page_range(handle_t *handle,
4006 		struct address_space *mapping, loff_t from, loff_t length)
4007 {
4008 	unsigned int offset, blocksize, pos;
4009 	ext4_lblk_t iblock;
4010 	struct inode *inode = mapping->host;
4011 	struct buffer_head *bh;
4012 	struct folio *folio;
4013 	int err = 0;
4014 
4015 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4016 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4017 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
4018 	if (IS_ERR(folio))
4019 		return PTR_ERR(folio);
4020 
4021 	blocksize = inode->i_sb->s_blocksize;
4022 
4023 	iblock = EXT4_PG_TO_LBLK(inode, folio->index);
4024 
4025 	bh = folio_buffers(folio);
4026 	if (!bh)
4027 		bh = create_empty_buffers(folio, blocksize, 0);
4028 
4029 	/* Find the buffer that contains "offset" */
4030 	offset = offset_in_folio(folio, from);
4031 	pos = blocksize;
4032 	while (offset >= pos) {
4033 		bh = bh->b_this_page;
4034 		iblock++;
4035 		pos += blocksize;
4036 	}
4037 	if (buffer_freed(bh)) {
4038 		BUFFER_TRACE(bh, "freed: skip");
4039 		goto unlock;
4040 	}
4041 	if (!buffer_mapped(bh)) {
4042 		BUFFER_TRACE(bh, "unmapped");
4043 		ext4_get_block(inode, iblock, bh, 0);
4044 		/* unmapped? It's a hole - nothing to do */
4045 		if (!buffer_mapped(bh)) {
4046 			BUFFER_TRACE(bh, "still unmapped");
4047 			goto unlock;
4048 		}
4049 	}
4050 
4051 	/* Ok, it's mapped. Make sure it's up-to-date */
4052 	if (folio_test_uptodate(folio))
4053 		set_buffer_uptodate(bh);
4054 
4055 	if (!buffer_uptodate(bh)) {
4056 		err = ext4_read_bh_lock(bh, 0, true);
4057 		if (err)
4058 			goto unlock;
4059 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4060 			/* We expect the key to be set. */
4061 			BUG_ON(!fscrypt_has_encryption_key(inode));
4062 			err = fscrypt_decrypt_pagecache_blocks(folio,
4063 							       blocksize,
4064 							       bh_offset(bh));
4065 			if (err) {
4066 				clear_buffer_uptodate(bh);
4067 				goto unlock;
4068 			}
4069 		}
4070 	}
4071 	if (ext4_should_journal_data(inode)) {
4072 		BUFFER_TRACE(bh, "get write access");
4073 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4074 						    EXT4_JTR_NONE);
4075 		if (err)
4076 			goto unlock;
4077 	}
4078 	folio_zero_range(folio, offset, length);
4079 	BUFFER_TRACE(bh, "zeroed end of block");
4080 
4081 	if (ext4_should_journal_data(inode)) {
4082 		err = ext4_dirty_journalled_data(handle, bh);
4083 	} else {
4084 		mark_buffer_dirty(bh);
4085 		/*
4086 		 * Only the written block requires ordered data to prevent
4087 		 * exposing stale data.
4088 		 */
4089 		if (!buffer_unwritten(bh) && !buffer_delay(bh) &&
4090 		    ext4_should_order_data(inode))
4091 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4092 					length);
4093 	}
4094 
4095 unlock:
4096 	folio_unlock(folio);
4097 	folio_put(folio);
4098 	return err;
4099 }
4100 
4101 /*
4102  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4103  * starting from file offset 'from'.  The range to be zero'd must
4104  * be contained with in one block.  If the specified range exceeds
4105  * the end of the block it will be shortened to end of the block
4106  * that corresponds to 'from'
4107  */
4108 static int ext4_block_zero_page_range(handle_t *handle,
4109 		struct address_space *mapping, loff_t from, loff_t length)
4110 {
4111 	struct inode *inode = mapping->host;
4112 	unsigned blocksize = inode->i_sb->s_blocksize;
4113 	unsigned int max = blocksize - (from & (blocksize - 1));
4114 
4115 	/*
4116 	 * correct length if it does not fall between
4117 	 * 'from' and the end of the block
4118 	 */
4119 	if (length > max || length < 0)
4120 		length = max;
4121 
4122 	if (IS_DAX(inode)) {
4123 		return dax_zero_range(inode, from, length, NULL,
4124 				      &ext4_iomap_ops);
4125 	}
4126 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4127 }
4128 
4129 /*
4130  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4131  * up to the end of the block which corresponds to `from'.
4132  * This required during truncate. We need to physically zero the tail end
4133  * of that block so it doesn't yield old data if the file is later grown.
4134  */
4135 static int ext4_block_truncate_page(handle_t *handle,
4136 		struct address_space *mapping, loff_t from)
4137 {
4138 	unsigned length;
4139 	unsigned blocksize;
4140 	struct inode *inode = mapping->host;
4141 
4142 	/* If we are processing an encrypted inode during orphan list handling */
4143 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4144 		return 0;
4145 
4146 	blocksize = i_blocksize(inode);
4147 	length = blocksize - (from & (blocksize - 1));
4148 
4149 	return ext4_block_zero_page_range(handle, mapping, from, length);
4150 }
4151 
4152 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4153 			     loff_t lstart, loff_t length)
4154 {
4155 	struct super_block *sb = inode->i_sb;
4156 	struct address_space *mapping = inode->i_mapping;
4157 	unsigned partial_start, partial_end;
4158 	ext4_fsblk_t start, end;
4159 	loff_t byte_end = (lstart + length - 1);
4160 	int err = 0;
4161 
4162 	partial_start = lstart & (sb->s_blocksize - 1);
4163 	partial_end = byte_end & (sb->s_blocksize - 1);
4164 
4165 	start = lstart >> sb->s_blocksize_bits;
4166 	end = byte_end >> sb->s_blocksize_bits;
4167 
4168 	/* Handle partial zero within the single block */
4169 	if (start == end &&
4170 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4171 		err = ext4_block_zero_page_range(handle, mapping,
4172 						 lstart, length);
4173 		return err;
4174 	}
4175 	/* Handle partial zero out on the start of the range */
4176 	if (partial_start) {
4177 		err = ext4_block_zero_page_range(handle, mapping,
4178 						 lstart, sb->s_blocksize);
4179 		if (err)
4180 			return err;
4181 	}
4182 	/* Handle partial zero out on the end of the range */
4183 	if (partial_end != sb->s_blocksize - 1)
4184 		err = ext4_block_zero_page_range(handle, mapping,
4185 						 byte_end - partial_end,
4186 						 partial_end + 1);
4187 	return err;
4188 }
4189 
4190 int ext4_can_truncate(struct inode *inode)
4191 {
4192 	if (S_ISREG(inode->i_mode))
4193 		return 1;
4194 	if (S_ISDIR(inode->i_mode))
4195 		return 1;
4196 	if (S_ISLNK(inode->i_mode))
4197 		return !ext4_inode_is_fast_symlink(inode);
4198 	return 0;
4199 }
4200 
4201 /*
4202  * We have to make sure i_disksize gets properly updated before we truncate
4203  * page cache due to hole punching or zero range. Otherwise i_disksize update
4204  * can get lost as it may have been postponed to submission of writeback but
4205  * that will never happen if we remove the folio containing i_size from the
4206  * page cache. Also if we punch hole within i_size but above i_disksize,
4207  * following ext4_page_mkwrite() may mistakenly allocate written blocks over
4208  * the hole and thus introduce allocated blocks beyond i_disksize which is
4209  * not allowed (e2fsck would complain in case of crash).
4210  */
4211 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4212 				      loff_t len)
4213 {
4214 	handle_t *handle;
4215 	int ret;
4216 
4217 	loff_t size = i_size_read(inode);
4218 
4219 	WARN_ON(!inode_is_locked(inode));
4220 	if (offset > size)
4221 		return 0;
4222 
4223 	if (offset + len < size)
4224 		size = offset + len;
4225 	if (EXT4_I(inode)->i_disksize >= size)
4226 		return 0;
4227 
4228 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4229 	if (IS_ERR(handle))
4230 		return PTR_ERR(handle);
4231 	ext4_update_i_disksize(inode, size);
4232 	ret = ext4_mark_inode_dirty(handle, inode);
4233 	ext4_journal_stop(handle);
4234 
4235 	return ret;
4236 }
4237 
4238 static inline void ext4_truncate_folio(struct inode *inode,
4239 				       loff_t start, loff_t end)
4240 {
4241 	unsigned long blocksize = i_blocksize(inode);
4242 	struct folio *folio;
4243 
4244 	/* Nothing to be done if no complete block needs to be truncated. */
4245 	if (round_up(start, blocksize) >= round_down(end, blocksize))
4246 		return;
4247 
4248 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4249 	if (IS_ERR(folio))
4250 		return;
4251 
4252 	if (folio_mkclean(folio))
4253 		folio_mark_dirty(folio);
4254 	folio_unlock(folio);
4255 	folio_put(folio);
4256 }
4257 
4258 int ext4_truncate_page_cache_block_range(struct inode *inode,
4259 					 loff_t start, loff_t end)
4260 {
4261 	unsigned long blocksize = i_blocksize(inode);
4262 	int ret;
4263 
4264 	/*
4265 	 * For journalled data we need to write (and checkpoint) pages
4266 	 * before discarding page cache to avoid inconsitent data on disk
4267 	 * in case of crash before freeing or unwritten converting trans
4268 	 * is committed.
4269 	 */
4270 	if (ext4_should_journal_data(inode)) {
4271 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
4272 						   end - 1);
4273 		if (ret)
4274 			return ret;
4275 		goto truncate_pagecache;
4276 	}
4277 
4278 	/*
4279 	 * If the block size is less than the page size, the file's mapped
4280 	 * blocks within one page could be freed or converted to unwritten.
4281 	 * So it's necessary to remove writable userspace mappings, and then
4282 	 * ext4_page_mkwrite() can be called during subsequent write access
4283 	 * to these partial folios.
4284 	 */
4285 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4286 	    blocksize < PAGE_SIZE && start < inode->i_size) {
4287 		loff_t page_boundary = round_up(start, PAGE_SIZE);
4288 
4289 		ext4_truncate_folio(inode, start, min(page_boundary, end));
4290 		if (end > page_boundary)
4291 			ext4_truncate_folio(inode,
4292 					    round_down(end, PAGE_SIZE), end);
4293 	}
4294 
4295 truncate_pagecache:
4296 	truncate_pagecache_range(inode, start, end - 1);
4297 	return 0;
4298 }
4299 
4300 static void ext4_wait_dax_page(struct inode *inode)
4301 {
4302 	filemap_invalidate_unlock(inode->i_mapping);
4303 	schedule();
4304 	filemap_invalidate_lock(inode->i_mapping);
4305 }
4306 
4307 int ext4_break_layouts(struct inode *inode)
4308 {
4309 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4310 		return -EINVAL;
4311 
4312 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
4313 }
4314 
4315 /*
4316  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4317  * associated with the given offset and length
4318  *
4319  * @inode:  File inode
4320  * @offset: The offset where the hole will begin
4321  * @len:    The length of the hole
4322  *
4323  * Returns: 0 on success or negative on failure
4324  */
4325 
4326 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4327 {
4328 	struct inode *inode = file_inode(file);
4329 	struct super_block *sb = inode->i_sb;
4330 	ext4_lblk_t start_lblk, end_lblk;
4331 	loff_t max_end = sb->s_maxbytes;
4332 	loff_t end = offset + length;
4333 	handle_t *handle;
4334 	unsigned int credits;
4335 	int ret;
4336 
4337 	trace_ext4_punch_hole(inode, offset, length, 0);
4338 	WARN_ON_ONCE(!inode_is_locked(inode));
4339 
4340 	/*
4341 	 * For indirect-block based inodes, make sure that the hole within
4342 	 * one block before last range.
4343 	 */
4344 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4345 		max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4346 
4347 	/* No need to punch hole beyond i_size */
4348 	if (offset >= inode->i_size || offset >= max_end)
4349 		return 0;
4350 
4351 	/*
4352 	 * If the hole extends beyond i_size, set the hole to end after
4353 	 * the block that contains i_size to save pointless tail block zeroing.
4354 	 */
4355 	if (end >= inode->i_size)
4356 		end = round_up(inode->i_size, sb->s_blocksize);
4357 	if (end > max_end)
4358 		end = max_end;
4359 	length = end - offset;
4360 
4361 	/*
4362 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4363 	 * block.
4364 	 */
4365 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4366 		ret = ext4_inode_attach_jinode(inode);
4367 		if (ret < 0)
4368 			return ret;
4369 	}
4370 
4371 
4372 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4373 	if (ret)
4374 		return ret;
4375 
4376 	/* Now release the pages and zero block aligned part of pages*/
4377 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4378 	if (ret)
4379 		return ret;
4380 
4381 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382 		credits = ext4_chunk_trans_extent(inode, 2);
4383 	else
4384 		credits = ext4_blocks_for_truncate(inode);
4385 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4386 	if (IS_ERR(handle)) {
4387 		ret = PTR_ERR(handle);
4388 		ext4_std_error(sb, ret);
4389 		return ret;
4390 	}
4391 
4392 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4393 	if (ret)
4394 		goto out_handle;
4395 
4396 	/* If there are blocks to remove, do it */
4397 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4398 	end_lblk = end >> inode->i_blkbits;
4399 
4400 	if (end_lblk > start_lblk) {
4401 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4402 
4403 		ext4_fc_track_inode(handle, inode);
4404 		ext4_check_map_extents_env(inode);
4405 		down_write(&EXT4_I(inode)->i_data_sem);
4406 		ext4_discard_preallocations(inode);
4407 
4408 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4409 
4410 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4411 			ret = ext4_ext_remove_space(inode, start_lblk,
4412 						    end_lblk - 1);
4413 		else
4414 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4415 						    end_lblk);
4416 		if (ret) {
4417 			up_write(&EXT4_I(inode)->i_data_sem);
4418 			goto out_handle;
4419 		}
4420 
4421 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4422 				      EXTENT_STATUS_HOLE, 0);
4423 		up_write(&EXT4_I(inode)->i_data_sem);
4424 	}
4425 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4426 
4427 	ret = ext4_mark_inode_dirty(handle, inode);
4428 	if (unlikely(ret))
4429 		goto out_handle;
4430 
4431 	ext4_update_inode_fsync_trans(handle, inode, 1);
4432 	if (IS_SYNC(inode))
4433 		ext4_handle_sync(handle);
4434 out_handle:
4435 	ext4_journal_stop(handle);
4436 	return ret;
4437 }
4438 
4439 int ext4_inode_attach_jinode(struct inode *inode)
4440 {
4441 	struct ext4_inode_info *ei = EXT4_I(inode);
4442 	struct jbd2_inode *jinode;
4443 
4444 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4445 		return 0;
4446 
4447 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4448 	spin_lock(&inode->i_lock);
4449 	if (!ei->jinode) {
4450 		if (!jinode) {
4451 			spin_unlock(&inode->i_lock);
4452 			return -ENOMEM;
4453 		}
4454 		ei->jinode = jinode;
4455 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4456 		jinode = NULL;
4457 	}
4458 	spin_unlock(&inode->i_lock);
4459 	if (unlikely(jinode != NULL))
4460 		jbd2_free_inode(jinode);
4461 	return 0;
4462 }
4463 
4464 /*
4465  * ext4_truncate()
4466  *
4467  * We block out ext4_get_block() block instantiations across the entire
4468  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4469  * simultaneously on behalf of the same inode.
4470  *
4471  * As we work through the truncate and commit bits of it to the journal there
4472  * is one core, guiding principle: the file's tree must always be consistent on
4473  * disk.  We must be able to restart the truncate after a crash.
4474  *
4475  * The file's tree may be transiently inconsistent in memory (although it
4476  * probably isn't), but whenever we close off and commit a journal transaction,
4477  * the contents of (the filesystem + the journal) must be consistent and
4478  * restartable.  It's pretty simple, really: bottom up, right to left (although
4479  * left-to-right works OK too).
4480  *
4481  * Note that at recovery time, journal replay occurs *before* the restart of
4482  * truncate against the orphan inode list.
4483  *
4484  * The committed inode has the new, desired i_size (which is the same as
4485  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4486  * that this inode's truncate did not complete and it will again call
4487  * ext4_truncate() to have another go.  So there will be instantiated blocks
4488  * to the right of the truncation point in a crashed ext4 filesystem.  But
4489  * that's fine - as long as they are linked from the inode, the post-crash
4490  * ext4_truncate() run will find them and release them.
4491  */
4492 int ext4_truncate(struct inode *inode)
4493 {
4494 	struct ext4_inode_info *ei = EXT4_I(inode);
4495 	unsigned int credits;
4496 	int err = 0, err2;
4497 	handle_t *handle;
4498 	struct address_space *mapping = inode->i_mapping;
4499 
4500 	/*
4501 	 * There is a possibility that we're either freeing the inode
4502 	 * or it's a completely new inode. In those cases we might not
4503 	 * have i_rwsem locked because it's not necessary.
4504 	 */
4505 	if (!(inode_state_read_once(inode) & (I_NEW | I_FREEING)))
4506 		WARN_ON(!inode_is_locked(inode));
4507 	trace_ext4_truncate_enter(inode);
4508 
4509 	if (!ext4_can_truncate(inode))
4510 		goto out_trace;
4511 
4512 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4513 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4514 
4515 	if (ext4_has_inline_data(inode)) {
4516 		int has_inline = 1;
4517 
4518 		err = ext4_inline_data_truncate(inode, &has_inline);
4519 		if (err || has_inline)
4520 			goto out_trace;
4521 	}
4522 
4523 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4524 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4525 		err = ext4_inode_attach_jinode(inode);
4526 		if (err)
4527 			goto out_trace;
4528 	}
4529 
4530 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4531 		credits = ext4_chunk_trans_extent(inode, 1);
4532 	else
4533 		credits = ext4_blocks_for_truncate(inode);
4534 
4535 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4536 	if (IS_ERR(handle)) {
4537 		err = PTR_ERR(handle);
4538 		goto out_trace;
4539 	}
4540 
4541 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4542 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4543 
4544 	/*
4545 	 * We add the inode to the orphan list, so that if this
4546 	 * truncate spans multiple transactions, and we crash, we will
4547 	 * resume the truncate when the filesystem recovers.  It also
4548 	 * marks the inode dirty, to catch the new size.
4549 	 *
4550 	 * Implication: the file must always be in a sane, consistent
4551 	 * truncatable state while each transaction commits.
4552 	 */
4553 	err = ext4_orphan_add(handle, inode);
4554 	if (err)
4555 		goto out_stop;
4556 
4557 	ext4_fc_track_inode(handle, inode);
4558 	ext4_check_map_extents_env(inode);
4559 
4560 	down_write(&EXT4_I(inode)->i_data_sem);
4561 	ext4_discard_preallocations(inode);
4562 
4563 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4564 		err = ext4_ext_truncate(handle, inode);
4565 	else
4566 		ext4_ind_truncate(handle, inode);
4567 
4568 	up_write(&ei->i_data_sem);
4569 	if (err)
4570 		goto out_stop;
4571 
4572 	if (IS_SYNC(inode))
4573 		ext4_handle_sync(handle);
4574 
4575 out_stop:
4576 	/*
4577 	 * If this was a simple ftruncate() and the file will remain alive,
4578 	 * then we need to clear up the orphan record which we created above.
4579 	 * However, if this was a real unlink then we were called by
4580 	 * ext4_evict_inode(), and we allow that function to clean up the
4581 	 * orphan info for us.
4582 	 */
4583 	if (inode->i_nlink)
4584 		ext4_orphan_del(handle, inode);
4585 
4586 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4587 	err2 = ext4_mark_inode_dirty(handle, inode);
4588 	if (unlikely(err2 && !err))
4589 		err = err2;
4590 	ext4_journal_stop(handle);
4591 
4592 out_trace:
4593 	trace_ext4_truncate_exit(inode);
4594 	return err;
4595 }
4596 
4597 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4598 {
4599 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4600 		return inode_peek_iversion_raw(inode);
4601 	else
4602 		return inode_peek_iversion(inode);
4603 }
4604 
4605 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4606 				 struct ext4_inode_info *ei)
4607 {
4608 	struct inode *inode = &(ei->vfs_inode);
4609 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4610 	struct super_block *sb = inode->i_sb;
4611 
4612 	if (i_blocks <= ~0U) {
4613 		/*
4614 		 * i_blocks can be represented in a 32 bit variable
4615 		 * as multiple of 512 bytes
4616 		 */
4617 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4618 		raw_inode->i_blocks_high = 0;
4619 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4620 		return 0;
4621 	}
4622 
4623 	/*
4624 	 * This should never happen since sb->s_maxbytes should not have
4625 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4626 	 * feature in ext4_fill_super().
4627 	 */
4628 	if (!ext4_has_feature_huge_file(sb))
4629 		return -EFSCORRUPTED;
4630 
4631 	if (i_blocks <= 0xffffffffffffULL) {
4632 		/*
4633 		 * i_blocks can be represented in a 48 bit variable
4634 		 * as multiple of 512 bytes
4635 		 */
4636 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4637 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4638 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4639 	} else {
4640 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4641 		/* i_block is stored in file system block size */
4642 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4643 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4644 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4645 	}
4646 	return 0;
4647 }
4648 
4649 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4650 {
4651 	struct ext4_inode_info *ei = EXT4_I(inode);
4652 	uid_t i_uid;
4653 	gid_t i_gid;
4654 	projid_t i_projid;
4655 	int block;
4656 	int err;
4657 
4658 	err = ext4_inode_blocks_set(raw_inode, ei);
4659 
4660 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4661 	i_uid = i_uid_read(inode);
4662 	i_gid = i_gid_read(inode);
4663 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4664 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4665 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4666 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4667 		/*
4668 		 * Fix up interoperability with old kernels. Otherwise,
4669 		 * old inodes get re-used with the upper 16 bits of the
4670 		 * uid/gid intact.
4671 		 */
4672 		if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) {
4673 			raw_inode->i_uid_high = 0;
4674 			raw_inode->i_gid_high = 0;
4675 		} else {
4676 			raw_inode->i_uid_high =
4677 				cpu_to_le16(high_16_bits(i_uid));
4678 			raw_inode->i_gid_high =
4679 				cpu_to_le16(high_16_bits(i_gid));
4680 		}
4681 	} else {
4682 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4683 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4684 		raw_inode->i_uid_high = 0;
4685 		raw_inode->i_gid_high = 0;
4686 	}
4687 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4688 
4689 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4690 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4691 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4692 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4693 
4694 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4695 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4696 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4697 		raw_inode->i_file_acl_high =
4698 			cpu_to_le16(ei->i_file_acl >> 32);
4699 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4700 	ext4_isize_set(raw_inode, ei->i_disksize);
4701 
4702 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4703 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4704 		if (old_valid_dev(inode->i_rdev)) {
4705 			raw_inode->i_block[0] =
4706 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4707 			raw_inode->i_block[1] = 0;
4708 		} else {
4709 			raw_inode->i_block[0] = 0;
4710 			raw_inode->i_block[1] =
4711 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4712 			raw_inode->i_block[2] = 0;
4713 		}
4714 	} else if (!ext4_has_inline_data(inode)) {
4715 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4716 			raw_inode->i_block[block] = ei->i_data[block];
4717 	}
4718 
4719 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4720 		u64 ivers = ext4_inode_peek_iversion(inode);
4721 
4722 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4723 		if (ei->i_extra_isize) {
4724 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4725 				raw_inode->i_version_hi =
4726 					cpu_to_le32(ivers >> 32);
4727 			raw_inode->i_extra_isize =
4728 				cpu_to_le16(ei->i_extra_isize);
4729 		}
4730 	}
4731 
4732 	if (i_projid != EXT4_DEF_PROJID &&
4733 	    !ext4_has_feature_project(inode->i_sb))
4734 		err = err ?: -EFSCORRUPTED;
4735 
4736 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4737 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4738 		raw_inode->i_projid = cpu_to_le32(i_projid);
4739 
4740 	ext4_inode_csum_set(inode, raw_inode, ei);
4741 	return err;
4742 }
4743 
4744 /*
4745  * ext4_get_inode_loc returns with an extra refcount against the inode's
4746  * underlying buffer_head on success. If we pass 'inode' and it does not
4747  * have in-inode xattr, we have all inode data in memory that is needed
4748  * to recreate the on-disk version of this inode.
4749  */
4750 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4751 				struct inode *inode, struct ext4_iloc *iloc,
4752 				ext4_fsblk_t *ret_block)
4753 {
4754 	struct ext4_group_desc	*gdp;
4755 	struct buffer_head	*bh;
4756 	ext4_fsblk_t		block;
4757 	struct blk_plug		plug;
4758 	int			inodes_per_block, inode_offset;
4759 
4760 	iloc->bh = NULL;
4761 	if (ino < EXT4_ROOT_INO ||
4762 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4763 		return -EFSCORRUPTED;
4764 
4765 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4766 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4767 	if (!gdp)
4768 		return -EIO;
4769 
4770 	/*
4771 	 * Figure out the offset within the block group inode table
4772 	 */
4773 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4774 	inode_offset = ((ino - 1) %
4775 			EXT4_INODES_PER_GROUP(sb));
4776 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4777 
4778 	block = ext4_inode_table(sb, gdp);
4779 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4780 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4781 		ext4_error(sb, "Invalid inode table block %llu in "
4782 			   "block_group %u", block, iloc->block_group);
4783 		return -EFSCORRUPTED;
4784 	}
4785 	block += (inode_offset / inodes_per_block);
4786 
4787 	bh = sb_getblk(sb, block);
4788 	if (unlikely(!bh))
4789 		return -ENOMEM;
4790 	if (ext4_buffer_uptodate(bh))
4791 		goto has_buffer;
4792 
4793 	lock_buffer(bh);
4794 	if (ext4_buffer_uptodate(bh)) {
4795 		/* Someone brought it uptodate while we waited */
4796 		unlock_buffer(bh);
4797 		goto has_buffer;
4798 	}
4799 
4800 	/*
4801 	 * If we have all information of the inode in memory and this
4802 	 * is the only valid inode in the block, we need not read the
4803 	 * block.
4804 	 */
4805 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4806 		struct buffer_head *bitmap_bh;
4807 		int i, start;
4808 
4809 		start = inode_offset & ~(inodes_per_block - 1);
4810 
4811 		/* Is the inode bitmap in cache? */
4812 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4813 		if (unlikely(!bitmap_bh))
4814 			goto make_io;
4815 
4816 		/*
4817 		 * If the inode bitmap isn't in cache then the
4818 		 * optimisation may end up performing two reads instead
4819 		 * of one, so skip it.
4820 		 */
4821 		if (!buffer_uptodate(bitmap_bh)) {
4822 			brelse(bitmap_bh);
4823 			goto make_io;
4824 		}
4825 		for (i = start; i < start + inodes_per_block; i++) {
4826 			if (i == inode_offset)
4827 				continue;
4828 			if (ext4_test_bit(i, bitmap_bh->b_data))
4829 				break;
4830 		}
4831 		brelse(bitmap_bh);
4832 		if (i == start + inodes_per_block) {
4833 			struct ext4_inode *raw_inode =
4834 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4835 
4836 			/* all other inodes are free, so skip I/O */
4837 			memset(bh->b_data, 0, bh->b_size);
4838 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4839 				ext4_fill_raw_inode(inode, raw_inode);
4840 			set_buffer_uptodate(bh);
4841 			unlock_buffer(bh);
4842 			goto has_buffer;
4843 		}
4844 	}
4845 
4846 make_io:
4847 	/*
4848 	 * If we need to do any I/O, try to pre-readahead extra
4849 	 * blocks from the inode table.
4850 	 */
4851 	blk_start_plug(&plug);
4852 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4853 		ext4_fsblk_t b, end, table;
4854 		unsigned num;
4855 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4856 
4857 		table = ext4_inode_table(sb, gdp);
4858 		/* s_inode_readahead_blks is always a power of 2 */
4859 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4860 		if (table > b)
4861 			b = table;
4862 		end = b + ra_blks;
4863 		num = EXT4_INODES_PER_GROUP(sb);
4864 		if (ext4_has_group_desc_csum(sb))
4865 			num -= ext4_itable_unused_count(sb, gdp);
4866 		table += num / inodes_per_block;
4867 		if (end > table)
4868 			end = table;
4869 		while (b <= end)
4870 			ext4_sb_breadahead_unmovable(sb, b++);
4871 	}
4872 
4873 	/*
4874 	 * There are other valid inodes in the buffer, this inode
4875 	 * has in-inode xattrs, or we don't have this inode in memory.
4876 	 * Read the block from disk.
4877 	 */
4878 	trace_ext4_load_inode(sb, ino);
4879 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4880 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4881 	blk_finish_plug(&plug);
4882 	wait_on_buffer(bh);
4883 	if (!buffer_uptodate(bh)) {
4884 		if (ret_block)
4885 			*ret_block = block;
4886 		brelse(bh);
4887 		return -EIO;
4888 	}
4889 has_buffer:
4890 	iloc->bh = bh;
4891 	return 0;
4892 }
4893 
4894 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4895 					struct ext4_iloc *iloc)
4896 {
4897 	ext4_fsblk_t err_blk = 0;
4898 	int ret;
4899 
4900 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4901 					&err_blk);
4902 
4903 	if (ret == -EIO)
4904 		ext4_error_inode_block(inode, err_blk, EIO,
4905 					"unable to read itable block");
4906 
4907 	return ret;
4908 }
4909 
4910 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4911 {
4912 	ext4_fsblk_t err_blk = 0;
4913 	int ret;
4914 
4915 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4916 					&err_blk);
4917 
4918 	if (ret == -EIO)
4919 		ext4_error_inode_block(inode, err_blk, EIO,
4920 					"unable to read itable block");
4921 
4922 	return ret;
4923 }
4924 
4925 
4926 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4927 			  struct ext4_iloc *iloc)
4928 {
4929 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4930 }
4931 
4932 static bool ext4_should_enable_dax(struct inode *inode)
4933 {
4934 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4935 
4936 	if (test_opt2(inode->i_sb, DAX_NEVER))
4937 		return false;
4938 	if (!S_ISREG(inode->i_mode))
4939 		return false;
4940 	if (ext4_should_journal_data(inode))
4941 		return false;
4942 	if (ext4_has_inline_data(inode))
4943 		return false;
4944 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4945 		return false;
4946 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4947 		return false;
4948 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4949 		return false;
4950 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4951 		return true;
4952 
4953 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4954 }
4955 
4956 void ext4_set_inode_flags(struct inode *inode, bool init)
4957 {
4958 	unsigned int flags = EXT4_I(inode)->i_flags;
4959 	unsigned int new_fl = 0;
4960 
4961 	WARN_ON_ONCE(IS_DAX(inode) && init);
4962 
4963 	if (flags & EXT4_SYNC_FL)
4964 		new_fl |= S_SYNC;
4965 	if (flags & EXT4_APPEND_FL)
4966 		new_fl |= S_APPEND;
4967 	if (flags & EXT4_IMMUTABLE_FL)
4968 		new_fl |= S_IMMUTABLE;
4969 	if (flags & EXT4_NOATIME_FL)
4970 		new_fl |= S_NOATIME;
4971 	if (flags & EXT4_DIRSYNC_FL)
4972 		new_fl |= S_DIRSYNC;
4973 
4974 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4975 	 * here if already set. */
4976 	new_fl |= (inode->i_flags & S_DAX);
4977 	if (init && ext4_should_enable_dax(inode))
4978 		new_fl |= S_DAX;
4979 
4980 	if (flags & EXT4_ENCRYPT_FL)
4981 		new_fl |= S_ENCRYPTED;
4982 	if (flags & EXT4_CASEFOLD_FL)
4983 		new_fl |= S_CASEFOLD;
4984 	if (flags & EXT4_VERITY_FL)
4985 		new_fl |= S_VERITY;
4986 	inode_set_flags(inode, new_fl,
4987 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4988 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4989 }
4990 
4991 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4992 				  struct ext4_inode_info *ei)
4993 {
4994 	blkcnt_t i_blocks ;
4995 	struct inode *inode = &(ei->vfs_inode);
4996 	struct super_block *sb = inode->i_sb;
4997 
4998 	if (ext4_has_feature_huge_file(sb)) {
4999 		/* we are using combined 48 bit field */
5000 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5001 					le32_to_cpu(raw_inode->i_blocks_lo);
5002 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5003 			/* i_blocks represent file system block size */
5004 			return i_blocks  << (inode->i_blkbits - 9);
5005 		} else {
5006 			return i_blocks;
5007 		}
5008 	} else {
5009 		return le32_to_cpu(raw_inode->i_blocks_lo);
5010 	}
5011 }
5012 
5013 static inline int ext4_iget_extra_inode(struct inode *inode,
5014 					 struct ext4_inode *raw_inode,
5015 					 struct ext4_inode_info *ei)
5016 {
5017 	__le32 *magic = (void *)raw_inode +
5018 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5019 
5020 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
5021 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5022 		int err;
5023 
5024 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5025 					ITAIL(inode, raw_inode));
5026 		if (err)
5027 			return err;
5028 
5029 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5030 		err = ext4_find_inline_data_nolock(inode);
5031 		if (!err && ext4_has_inline_data(inode))
5032 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5033 		return err;
5034 	} else
5035 		EXT4_I(inode)->i_inline_off = 0;
5036 	return 0;
5037 }
5038 
5039 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5040 {
5041 	if (!ext4_has_feature_project(inode->i_sb))
5042 		return -EOPNOTSUPP;
5043 	*projid = EXT4_I(inode)->i_projid;
5044 	return 0;
5045 }
5046 
5047 /*
5048  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5049  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5050  * set.
5051  */
5052 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5053 {
5054 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5055 		inode_set_iversion_raw(inode, val);
5056 	else
5057 		inode_set_iversion_queried(inode, val);
5058 }
5059 
5060 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5061 			    const char *function, unsigned int line)
5062 {
5063 	const char *err_str;
5064 
5065 	if (flags & EXT4_IGET_EA_INODE) {
5066 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5067 			err_str = "missing EA_INODE flag";
5068 			goto error;
5069 		}
5070 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5071 		    EXT4_I(inode)->i_file_acl) {
5072 			err_str = "ea_inode with extended attributes";
5073 			goto error;
5074 		}
5075 	} else {
5076 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5077 			/*
5078 			 * open_by_handle_at() could provide an old inode number
5079 			 * that has since been reused for an ea_inode; this does
5080 			 * not indicate filesystem corruption
5081 			 */
5082 			if (flags & EXT4_IGET_HANDLE)
5083 				return -ESTALE;
5084 			err_str = "unexpected EA_INODE flag";
5085 			goto error;
5086 		}
5087 	}
5088 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5089 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5090 		goto error;
5091 	}
5092 	return 0;
5093 
5094 error:
5095 	ext4_error_inode(inode, function, line, 0, "%s", err_str);
5096 	return -EFSCORRUPTED;
5097 }
5098 
5099 void ext4_set_inode_mapping_order(struct inode *inode)
5100 {
5101 	struct super_block *sb = inode->i_sb;
5102 	u16 min_order, max_order;
5103 
5104 	max_order = EXT4_SB(sb)->s_max_folio_order;
5105 	if (!max_order)
5106 		return;
5107 
5108 	min_order = EXT4_SB(sb)->s_min_folio_order;
5109 	if (!min_order && !S_ISREG(inode->i_mode))
5110 		return;
5111 
5112 	if (ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5113 		max_order = min_order;
5114 
5115 	mapping_set_folio_order_range(inode->i_mapping, min_order, max_order);
5116 }
5117 
5118 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5119 			  ext4_iget_flags flags, const char *function,
5120 			  unsigned int line)
5121 {
5122 	struct ext4_iloc iloc;
5123 	struct ext4_inode *raw_inode;
5124 	struct ext4_inode_info *ei;
5125 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5126 	struct inode *inode;
5127 	journal_t *journal = EXT4_SB(sb)->s_journal;
5128 	long ret;
5129 	loff_t size;
5130 	int block;
5131 	uid_t i_uid;
5132 	gid_t i_gid;
5133 	projid_t i_projid;
5134 
5135 	if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5136 	    (ino < EXT4_ROOT_INO) ||
5137 	    (ino > le32_to_cpu(es->s_inodes_count))) {
5138 		if (flags & EXT4_IGET_HANDLE)
5139 			return ERR_PTR(-ESTALE);
5140 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5141 			     "inode #%lu: comm %s: iget: illegal inode #",
5142 			     ino, current->comm);
5143 		return ERR_PTR(-EFSCORRUPTED);
5144 	}
5145 
5146 	inode = iget_locked(sb, ino);
5147 	if (!inode)
5148 		return ERR_PTR(-ENOMEM);
5149 	if (!(inode_state_read_once(inode) & I_NEW)) {
5150 		ret = check_igot_inode(inode, flags, function, line);
5151 		if (ret) {
5152 			iput(inode);
5153 			return ERR_PTR(ret);
5154 		}
5155 		return inode;
5156 	}
5157 
5158 	ei = EXT4_I(inode);
5159 	iloc.bh = NULL;
5160 
5161 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5162 	if (ret < 0)
5163 		goto bad_inode;
5164 	raw_inode = ext4_raw_inode(&iloc);
5165 
5166 	if ((flags & EXT4_IGET_HANDLE) &&
5167 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5168 		ret = -ESTALE;
5169 		goto bad_inode;
5170 	}
5171 
5172 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5173 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5174 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5175 			EXT4_INODE_SIZE(inode->i_sb) ||
5176 		    (ei->i_extra_isize & 3)) {
5177 			ext4_error_inode(inode, function, line, 0,
5178 					 "iget: bad extra_isize %u "
5179 					 "(inode size %u)",
5180 					 ei->i_extra_isize,
5181 					 EXT4_INODE_SIZE(inode->i_sb));
5182 			ret = -EFSCORRUPTED;
5183 			goto bad_inode;
5184 		}
5185 	} else
5186 		ei->i_extra_isize = 0;
5187 
5188 	/* Precompute checksum seed for inode metadata */
5189 	if (ext4_has_feature_metadata_csum(sb)) {
5190 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5191 		__u32 csum;
5192 		__le32 inum = cpu_to_le32(inode->i_ino);
5193 		__le32 gen = raw_inode->i_generation;
5194 		csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5195 				   sizeof(inum));
5196 		ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5197 	}
5198 
5199 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5200 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5201 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5202 		ext4_error_inode_err(inode, function, line, 0,
5203 				EFSBADCRC, "iget: checksum invalid");
5204 		ret = -EFSBADCRC;
5205 		goto bad_inode;
5206 	}
5207 
5208 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5209 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5210 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5211 	if (ext4_has_feature_project(sb) &&
5212 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5213 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5214 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5215 	else
5216 		i_projid = EXT4_DEF_PROJID;
5217 
5218 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5219 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5220 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5221 	}
5222 	i_uid_write(inode, i_uid);
5223 	i_gid_write(inode, i_gid);
5224 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5225 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5226 
5227 	ei->i_inline_off = 0;
5228 	ei->i_dir_start_lookup = 0;
5229 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5230 	/* We now have enough fields to check if the inode was active or not.
5231 	 * This is needed because nfsd might try to access dead inodes
5232 	 * the test is that same one that e2fsck uses
5233 	 * NeilBrown 1999oct15
5234 	 */
5235 	if (inode->i_nlink == 0) {
5236 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5237 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5238 		    ino != EXT4_BOOT_LOADER_INO) {
5239 			/* this inode is deleted or unallocated */
5240 			if (flags & EXT4_IGET_SPECIAL) {
5241 				ext4_error_inode(inode, function, line, 0,
5242 						 "iget: special inode unallocated");
5243 				ret = -EFSCORRUPTED;
5244 			} else
5245 				ret = -ESTALE;
5246 			goto bad_inode;
5247 		}
5248 		/* The only unlinked inodes we let through here have
5249 		 * valid i_mode and are being read by the orphan
5250 		 * recovery code: that's fine, we're about to complete
5251 		 * the process of deleting those.
5252 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5253 		 * not initialized on a new filesystem. */
5254 	}
5255 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5256 	ext4_set_inode_flags(inode, true);
5257 	/* Detect invalid flag combination - can't have both inline data and extents */
5258 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) &&
5259 	    ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5260 		ext4_error_inode(inode, function, line, 0,
5261 			"inode has both inline data and extents flags");
5262 		ret = -EFSCORRUPTED;
5263 		goto bad_inode;
5264 	}
5265 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5266 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5267 	if (ext4_has_feature_64bit(sb))
5268 		ei->i_file_acl |=
5269 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5270 	inode->i_size = ext4_isize(sb, raw_inode);
5271 	size = i_size_read(inode);
5272 	if (size < 0 || size > ext4_get_maxbytes(inode)) {
5273 		ext4_error_inode(inode, function, line, 0,
5274 				 "iget: bad i_size value: %lld", size);
5275 		ret = -EFSCORRUPTED;
5276 		goto bad_inode;
5277 	}
5278 	/*
5279 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5280 	 * we'd normally treat htree data as empty space. But with metadata
5281 	 * checksumming that corrupts checksums so forbid that.
5282 	 */
5283 	if (!ext4_has_feature_dir_index(sb) &&
5284 	    ext4_has_feature_metadata_csum(sb) &&
5285 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5286 		ext4_error_inode(inode, function, line, 0,
5287 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5288 		ret = -EFSCORRUPTED;
5289 		goto bad_inode;
5290 	}
5291 	ei->i_disksize = inode->i_size;
5292 #ifdef CONFIG_QUOTA
5293 	ei->i_reserved_quota = 0;
5294 #endif
5295 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5296 	ei->i_block_group = iloc.block_group;
5297 	ei->i_last_alloc_group = ~0;
5298 	/*
5299 	 * NOTE! The in-memory inode i_data array is in little-endian order
5300 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5301 	 */
5302 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5303 		ei->i_data[block] = raw_inode->i_block[block];
5304 	INIT_LIST_HEAD(&ei->i_orphan);
5305 	ext4_fc_init_inode(&ei->vfs_inode);
5306 
5307 	/*
5308 	 * Set transaction id's of transactions that have to be committed
5309 	 * to finish f[data]sync. We set them to currently running transaction
5310 	 * as we cannot be sure that the inode or some of its metadata isn't
5311 	 * part of the transaction - the inode could have been reclaimed and
5312 	 * now it is reread from disk.
5313 	 */
5314 	if (journal) {
5315 		transaction_t *transaction;
5316 		tid_t tid;
5317 
5318 		read_lock(&journal->j_state_lock);
5319 		if (journal->j_running_transaction)
5320 			transaction = journal->j_running_transaction;
5321 		else
5322 			transaction = journal->j_committing_transaction;
5323 		if (transaction)
5324 			tid = transaction->t_tid;
5325 		else
5326 			tid = journal->j_commit_sequence;
5327 		read_unlock(&journal->j_state_lock);
5328 		ei->i_sync_tid = tid;
5329 		ei->i_datasync_tid = tid;
5330 	}
5331 
5332 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5333 		if (ei->i_extra_isize == 0) {
5334 			/* The extra space is currently unused. Use it. */
5335 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5336 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5337 					    EXT4_GOOD_OLD_INODE_SIZE;
5338 		} else {
5339 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5340 			if (ret)
5341 				goto bad_inode;
5342 		}
5343 	}
5344 
5345 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5346 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5347 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5348 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5349 
5350 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5351 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5352 
5353 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5354 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5355 				ivers |=
5356 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5357 		}
5358 		ext4_inode_set_iversion_queried(inode, ivers);
5359 	}
5360 
5361 	ret = 0;
5362 	if (ei->i_file_acl &&
5363 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5364 		ext4_error_inode(inode, function, line, 0,
5365 				 "iget: bad extended attribute block %llu",
5366 				 ei->i_file_acl);
5367 		ret = -EFSCORRUPTED;
5368 		goto bad_inode;
5369 	} else if (!ext4_has_inline_data(inode)) {
5370 		/* validate the block references in the inode */
5371 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5372 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5373 			(S_ISLNK(inode->i_mode) &&
5374 			!ext4_inode_is_fast_symlink(inode)))) {
5375 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5376 				ret = ext4_ext_check_inode(inode);
5377 			else
5378 				ret = ext4_ind_check_inode(inode);
5379 		}
5380 	}
5381 	if (ret)
5382 		goto bad_inode;
5383 
5384 	if (S_ISREG(inode->i_mode)) {
5385 		inode->i_op = &ext4_file_inode_operations;
5386 		inode->i_fop = &ext4_file_operations;
5387 		ext4_set_aops(inode);
5388 	} else if (S_ISDIR(inode->i_mode)) {
5389 		inode->i_op = &ext4_dir_inode_operations;
5390 		inode->i_fop = &ext4_dir_operations;
5391 	} else if (S_ISLNK(inode->i_mode)) {
5392 		/* VFS does not allow setting these so must be corruption */
5393 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5394 			ext4_error_inode(inode, function, line, 0,
5395 					 "iget: immutable or append flags "
5396 					 "not allowed on symlinks");
5397 			ret = -EFSCORRUPTED;
5398 			goto bad_inode;
5399 		}
5400 		if (IS_ENCRYPTED(inode)) {
5401 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5402 		} else if (ext4_inode_is_fast_symlink(inode)) {
5403 			inode->i_op = &ext4_fast_symlink_inode_operations;
5404 			if (inode->i_size == 0 ||
5405 			    inode->i_size >= sizeof(ei->i_data) ||
5406 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5407 								inode->i_size) {
5408 				ext4_error_inode(inode, function, line, 0,
5409 					"invalid fast symlink length %llu",
5410 					 (unsigned long long)inode->i_size);
5411 				ret = -EFSCORRUPTED;
5412 				goto bad_inode;
5413 			}
5414 			inode_set_cached_link(inode, (char *)ei->i_data,
5415 					      inode->i_size);
5416 		} else {
5417 			inode->i_op = &ext4_symlink_inode_operations;
5418 		}
5419 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5420 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5421 		inode->i_op = &ext4_special_inode_operations;
5422 		if (raw_inode->i_block[0])
5423 			init_special_inode(inode, inode->i_mode,
5424 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5425 		else
5426 			init_special_inode(inode, inode->i_mode,
5427 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5428 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5429 		make_bad_inode(inode);
5430 	} else {
5431 		ret = -EFSCORRUPTED;
5432 		ext4_error_inode(inode, function, line, 0,
5433 				 "iget: bogus i_mode (%o)", inode->i_mode);
5434 		goto bad_inode;
5435 	}
5436 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5437 		ext4_error_inode(inode, function, line, 0,
5438 				 "casefold flag without casefold feature");
5439 		ret = -EFSCORRUPTED;
5440 		goto bad_inode;
5441 	}
5442 
5443 	ext4_set_inode_mapping_order(inode);
5444 
5445 	ret = check_igot_inode(inode, flags, function, line);
5446 	/*
5447 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5448 	 * it's just not an inode we can return for an fhandle lookup.
5449 	 */
5450 	if (ret == -ESTALE) {
5451 		brelse(iloc.bh);
5452 		unlock_new_inode(inode);
5453 		iput(inode);
5454 		return ERR_PTR(-ESTALE);
5455 	}
5456 	if (ret)
5457 		goto bad_inode;
5458 	brelse(iloc.bh);
5459 	/* Initialize the "no ACL's" state for the simple cases */
5460 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) && !ei->i_file_acl)
5461 		cache_no_acl(inode);
5462 	unlock_new_inode(inode);
5463 	return inode;
5464 
5465 bad_inode:
5466 	brelse(iloc.bh);
5467 	iget_failed(inode);
5468 	return ERR_PTR(ret);
5469 }
5470 
5471 static void __ext4_update_other_inode_time(struct super_block *sb,
5472 					   unsigned long orig_ino,
5473 					   unsigned long ino,
5474 					   struct ext4_inode *raw_inode)
5475 {
5476 	struct inode *inode;
5477 
5478 	inode = find_inode_by_ino_rcu(sb, ino);
5479 	if (!inode)
5480 		return;
5481 
5482 	if (!inode_is_dirtytime_only(inode))
5483 		return;
5484 
5485 	spin_lock(&inode->i_lock);
5486 	if (inode_is_dirtytime_only(inode)) {
5487 		struct ext4_inode_info	*ei = EXT4_I(inode);
5488 
5489 		inode_state_clear(inode, I_DIRTY_TIME);
5490 		spin_unlock(&inode->i_lock);
5491 
5492 		spin_lock(&ei->i_raw_lock);
5493 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5494 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5495 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5496 		ext4_inode_csum_set(inode, raw_inode, ei);
5497 		spin_unlock(&ei->i_raw_lock);
5498 		trace_ext4_other_inode_update_time(inode, orig_ino);
5499 		return;
5500 	}
5501 	spin_unlock(&inode->i_lock);
5502 }
5503 
5504 /*
5505  * Opportunistically update the other time fields for other inodes in
5506  * the same inode table block.
5507  */
5508 static void ext4_update_other_inodes_time(struct super_block *sb,
5509 					  unsigned long orig_ino, char *buf)
5510 {
5511 	unsigned long ino;
5512 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5513 	int inode_size = EXT4_INODE_SIZE(sb);
5514 
5515 	/*
5516 	 * Calculate the first inode in the inode table block.  Inode
5517 	 * numbers are one-based.  That is, the first inode in a block
5518 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5519 	 */
5520 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5521 	rcu_read_lock();
5522 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5523 		if (ino == orig_ino)
5524 			continue;
5525 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5526 					       (struct ext4_inode *)buf);
5527 	}
5528 	rcu_read_unlock();
5529 }
5530 
5531 /*
5532  * Post the struct inode info into an on-disk inode location in the
5533  * buffer-cache.  This gobbles the caller's reference to the
5534  * buffer_head in the inode location struct.
5535  *
5536  * The caller must have write access to iloc->bh.
5537  */
5538 static int ext4_do_update_inode(handle_t *handle,
5539 				struct inode *inode,
5540 				struct ext4_iloc *iloc)
5541 {
5542 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5543 	struct ext4_inode_info *ei = EXT4_I(inode);
5544 	struct buffer_head *bh = iloc->bh;
5545 	struct super_block *sb = inode->i_sb;
5546 	int err;
5547 	int need_datasync = 0, set_large_file = 0;
5548 
5549 	spin_lock(&ei->i_raw_lock);
5550 
5551 	/*
5552 	 * For fields not tracked in the in-memory inode, initialise them
5553 	 * to zero for new inodes.
5554 	 */
5555 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5556 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5557 
5558 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5559 		need_datasync = 1;
5560 	if (ei->i_disksize > 0x7fffffffULL) {
5561 		if (!ext4_has_feature_large_file(sb) ||
5562 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5563 			set_large_file = 1;
5564 	}
5565 
5566 	err = ext4_fill_raw_inode(inode, raw_inode);
5567 	spin_unlock(&ei->i_raw_lock);
5568 	if (err) {
5569 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5570 		goto out_brelse;
5571 	}
5572 
5573 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5574 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5575 					      bh->b_data);
5576 
5577 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5578 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5579 	if (err)
5580 		goto out_error;
5581 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5582 	if (set_large_file) {
5583 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5584 		err = ext4_journal_get_write_access(handle, sb,
5585 						    EXT4_SB(sb)->s_sbh,
5586 						    EXT4_JTR_NONE);
5587 		if (err)
5588 			goto out_error;
5589 		lock_buffer(EXT4_SB(sb)->s_sbh);
5590 		ext4_set_feature_large_file(sb);
5591 		ext4_superblock_csum_set(sb);
5592 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5593 		ext4_handle_sync(handle);
5594 		err = ext4_handle_dirty_metadata(handle, NULL,
5595 						 EXT4_SB(sb)->s_sbh);
5596 	}
5597 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5598 out_error:
5599 	ext4_std_error(inode->i_sb, err);
5600 out_brelse:
5601 	brelse(bh);
5602 	return err;
5603 }
5604 
5605 /*
5606  * ext4_write_inode()
5607  *
5608  * We are called from a few places:
5609  *
5610  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5611  *   Here, there will be no transaction running. We wait for any running
5612  *   transaction to commit.
5613  *
5614  * - Within flush work (sys_sync(), kupdate and such).
5615  *   We wait on commit, if told to.
5616  *
5617  * - Within iput_final() -> write_inode_now()
5618  *   We wait on commit, if told to.
5619  *
5620  * In all cases it is actually safe for us to return without doing anything,
5621  * because the inode has been copied into a raw inode buffer in
5622  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5623  * writeback.
5624  *
5625  * Note that we are absolutely dependent upon all inode dirtiers doing the
5626  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5627  * which we are interested.
5628  *
5629  * It would be a bug for them to not do this.  The code:
5630  *
5631  *	mark_inode_dirty(inode)
5632  *	stuff();
5633  *	inode->i_size = expr;
5634  *
5635  * is in error because write_inode() could occur while `stuff()' is running,
5636  * and the new i_size will be lost.  Plus the inode will no longer be on the
5637  * superblock's dirty inode list.
5638  */
5639 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5640 {
5641 	int err;
5642 
5643 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5644 		return 0;
5645 
5646 	err = ext4_emergency_state(inode->i_sb);
5647 	if (unlikely(err))
5648 		return err;
5649 
5650 	if (EXT4_SB(inode->i_sb)->s_journal) {
5651 		if (ext4_journal_current_handle()) {
5652 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5653 			dump_stack();
5654 			return -EIO;
5655 		}
5656 
5657 		/*
5658 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5659 		 * ext4_sync_fs() will force the commit after everything is
5660 		 * written.
5661 		 */
5662 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5663 			return 0;
5664 
5665 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5666 						EXT4_I(inode)->i_sync_tid);
5667 	} else {
5668 		struct ext4_iloc iloc;
5669 
5670 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5671 		if (err)
5672 			return err;
5673 		/*
5674 		 * sync(2) will flush the whole buffer cache. No need to do
5675 		 * it here separately for each inode.
5676 		 */
5677 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5678 			sync_dirty_buffer(iloc.bh);
5679 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5680 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5681 					       "IO error syncing inode");
5682 			err = -EIO;
5683 		}
5684 		brelse(iloc.bh);
5685 	}
5686 	return err;
5687 }
5688 
5689 /*
5690  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5691  * buffers that are attached to a folio straddling i_size and are undergoing
5692  * commit. In that case we have to wait for commit to finish and try again.
5693  */
5694 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5695 {
5696 	unsigned offset;
5697 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5698 	tid_t commit_tid;
5699 	int ret;
5700 	bool has_transaction;
5701 
5702 	offset = inode->i_size & (PAGE_SIZE - 1);
5703 	/*
5704 	 * If the folio is fully truncated, we don't need to wait for any commit
5705 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5706 	 * strip all buffers from the folio but keep the folio dirty which can then
5707 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5708 	 * buffers). Also we don't need to wait for any commit if all buffers in
5709 	 * the folio remain valid. This is most beneficial for the common case of
5710 	 * blocksize == PAGESIZE.
5711 	 */
5712 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5713 		return;
5714 	while (1) {
5715 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5716 				      inode->i_size >> PAGE_SHIFT);
5717 		if (IS_ERR(folio))
5718 			return;
5719 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5720 						folio_size(folio) - offset);
5721 		folio_unlock(folio);
5722 		folio_put(folio);
5723 		if (ret != -EBUSY)
5724 			return;
5725 		has_transaction = false;
5726 		read_lock(&journal->j_state_lock);
5727 		if (journal->j_committing_transaction) {
5728 			commit_tid = journal->j_committing_transaction->t_tid;
5729 			has_transaction = true;
5730 		}
5731 		read_unlock(&journal->j_state_lock);
5732 		if (has_transaction)
5733 			jbd2_log_wait_commit(journal, commit_tid);
5734 	}
5735 }
5736 
5737 /*
5738  * ext4_setattr()
5739  *
5740  * Called from notify_change.
5741  *
5742  * We want to trap VFS attempts to truncate the file as soon as
5743  * possible.  In particular, we want to make sure that when the VFS
5744  * shrinks i_size, we put the inode on the orphan list and modify
5745  * i_disksize immediately, so that during the subsequent flushing of
5746  * dirty pages and freeing of disk blocks, we can guarantee that any
5747  * commit will leave the blocks being flushed in an unused state on
5748  * disk.  (On recovery, the inode will get truncated and the blocks will
5749  * be freed, so we have a strong guarantee that no future commit will
5750  * leave these blocks visible to the user.)
5751  *
5752  * Another thing we have to assure is that if we are in ordered mode
5753  * and inode is still attached to the committing transaction, we must
5754  * we start writeout of all the dirty pages which are being truncated.
5755  * This way we are sure that all the data written in the previous
5756  * transaction are already on disk (truncate waits for pages under
5757  * writeback).
5758  *
5759  * Called with inode->i_rwsem down.
5760  */
5761 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5762 		 struct iattr *attr)
5763 {
5764 	struct inode *inode = d_inode(dentry);
5765 	int error, rc = 0;
5766 	int orphan = 0;
5767 	const unsigned int ia_valid = attr->ia_valid;
5768 	bool inc_ivers = true;
5769 
5770 	error = ext4_emergency_state(inode->i_sb);
5771 	if (unlikely(error))
5772 		return error;
5773 
5774 	if (unlikely(IS_IMMUTABLE(inode)))
5775 		return -EPERM;
5776 
5777 	if (unlikely(IS_APPEND(inode) &&
5778 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5779 				  ATTR_GID | ATTR_TIMES_SET))))
5780 		return -EPERM;
5781 
5782 	error = setattr_prepare(idmap, dentry, attr);
5783 	if (error)
5784 		return error;
5785 
5786 	error = fscrypt_prepare_setattr(dentry, attr);
5787 	if (error)
5788 		return error;
5789 
5790 	if (is_quota_modification(idmap, inode, attr)) {
5791 		error = dquot_initialize(inode);
5792 		if (error)
5793 			return error;
5794 	}
5795 
5796 	if (i_uid_needs_update(idmap, attr, inode) ||
5797 	    i_gid_needs_update(idmap, attr, inode)) {
5798 		handle_t *handle;
5799 
5800 		/* (user+group)*(old+new) structure, inode write (sb,
5801 		 * inode block, ? - but truncate inode update has it) */
5802 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5803 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5804 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5805 		if (IS_ERR(handle)) {
5806 			error = PTR_ERR(handle);
5807 			goto err_out;
5808 		}
5809 
5810 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5811 		 * counts xattr inode references.
5812 		 */
5813 		down_read(&EXT4_I(inode)->xattr_sem);
5814 		error = dquot_transfer(idmap, inode, attr);
5815 		up_read(&EXT4_I(inode)->xattr_sem);
5816 
5817 		if (error) {
5818 			ext4_journal_stop(handle);
5819 			return error;
5820 		}
5821 		/* Update corresponding info in inode so that everything is in
5822 		 * one transaction */
5823 		i_uid_update(idmap, attr, inode);
5824 		i_gid_update(idmap, attr, inode);
5825 		error = ext4_mark_inode_dirty(handle, inode);
5826 		ext4_journal_stop(handle);
5827 		if (unlikely(error)) {
5828 			return error;
5829 		}
5830 	}
5831 
5832 	if (attr->ia_valid & ATTR_SIZE) {
5833 		handle_t *handle;
5834 		loff_t oldsize = inode->i_size;
5835 		loff_t old_disksize;
5836 		int shrink = (attr->ia_size < inode->i_size);
5837 
5838 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5839 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840 
5841 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5842 				return -EFBIG;
5843 			}
5844 		}
5845 		if (!S_ISREG(inode->i_mode)) {
5846 			return -EINVAL;
5847 		}
5848 
5849 		if (attr->ia_size == inode->i_size)
5850 			inc_ivers = false;
5851 
5852 		if (shrink) {
5853 			if (ext4_should_order_data(inode)) {
5854 				error = ext4_begin_ordered_truncate(inode,
5855 							    attr->ia_size);
5856 				if (error)
5857 					goto err_out;
5858 			}
5859 			/*
5860 			 * Blocks are going to be removed from the inode. Wait
5861 			 * for dio in flight.
5862 			 */
5863 			inode_dio_wait(inode);
5864 		}
5865 
5866 		filemap_invalidate_lock(inode->i_mapping);
5867 
5868 		rc = ext4_break_layouts(inode);
5869 		if (rc) {
5870 			filemap_invalidate_unlock(inode->i_mapping);
5871 			goto err_out;
5872 		}
5873 
5874 		if (attr->ia_size != inode->i_size) {
5875 			/* attach jbd2 jinode for EOF folio tail zeroing */
5876 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5877 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5878 				error = ext4_inode_attach_jinode(inode);
5879 				if (error)
5880 					goto out_mmap_sem;
5881 			}
5882 
5883 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5884 			if (IS_ERR(handle)) {
5885 				error = PTR_ERR(handle);
5886 				goto out_mmap_sem;
5887 			}
5888 			if (ext4_handle_valid(handle) && shrink) {
5889 				error = ext4_orphan_add(handle, inode);
5890 				orphan = 1;
5891 			}
5892 			/*
5893 			 * Update c/mtime and tail zero the EOF folio on
5894 			 * truncate up. ext4_truncate() handles the shrink case
5895 			 * below.
5896 			 */
5897 			if (!shrink) {
5898 				inode_set_mtime_to_ts(inode,
5899 						      inode_set_ctime_current(inode));
5900 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5901 					ext4_block_truncate_page(handle,
5902 							inode->i_mapping, oldsize);
5903 			}
5904 
5905 			if (shrink)
5906 				ext4_fc_track_range(handle, inode,
5907 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5908 					inode->i_sb->s_blocksize_bits,
5909 					EXT_MAX_BLOCKS - 1);
5910 			else
5911 				ext4_fc_track_range(
5912 					handle, inode,
5913 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5914 					inode->i_sb->s_blocksize_bits,
5915 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5916 					inode->i_sb->s_blocksize_bits);
5917 
5918 			down_write(&EXT4_I(inode)->i_data_sem);
5919 			old_disksize = EXT4_I(inode)->i_disksize;
5920 			EXT4_I(inode)->i_disksize = attr->ia_size;
5921 
5922 			/*
5923 			 * We have to update i_size under i_data_sem together
5924 			 * with i_disksize to avoid races with writeback code
5925 			 * running ext4_wb_update_i_disksize().
5926 			 */
5927 			if (!error)
5928 				i_size_write(inode, attr->ia_size);
5929 			else
5930 				EXT4_I(inode)->i_disksize = old_disksize;
5931 			up_write(&EXT4_I(inode)->i_data_sem);
5932 			rc = ext4_mark_inode_dirty(handle, inode);
5933 			if (!error)
5934 				error = rc;
5935 			ext4_journal_stop(handle);
5936 			if (error)
5937 				goto out_mmap_sem;
5938 			if (!shrink) {
5939 				pagecache_isize_extended(inode, oldsize,
5940 							 inode->i_size);
5941 			} else if (ext4_should_journal_data(inode)) {
5942 				ext4_wait_for_tail_page_commit(inode);
5943 			}
5944 		}
5945 
5946 		/*
5947 		 * Truncate pagecache after we've waited for commit
5948 		 * in data=journal mode to make pages freeable.
5949 		 */
5950 		truncate_pagecache(inode, inode->i_size);
5951 		/*
5952 		 * Call ext4_truncate() even if i_size didn't change to
5953 		 * truncate possible preallocated blocks.
5954 		 */
5955 		if (attr->ia_size <= oldsize) {
5956 			rc = ext4_truncate(inode);
5957 			if (rc)
5958 				error = rc;
5959 		}
5960 out_mmap_sem:
5961 		filemap_invalidate_unlock(inode->i_mapping);
5962 	}
5963 
5964 	if (!error) {
5965 		if (inc_ivers)
5966 			inode_inc_iversion(inode);
5967 		setattr_copy(idmap, inode, attr);
5968 		mark_inode_dirty(inode);
5969 	}
5970 
5971 	/*
5972 	 * If the call to ext4_truncate failed to get a transaction handle at
5973 	 * all, we need to clean up the in-core orphan list manually.
5974 	 */
5975 	if (orphan && inode->i_nlink)
5976 		ext4_orphan_del(NULL, inode);
5977 
5978 	if (!error && (ia_valid & ATTR_MODE))
5979 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5980 
5981 err_out:
5982 	if  (error)
5983 		ext4_std_error(inode->i_sb, error);
5984 	if (!error)
5985 		error = rc;
5986 	return error;
5987 }
5988 
5989 u32 ext4_dio_alignment(struct inode *inode)
5990 {
5991 	if (fsverity_active(inode))
5992 		return 0;
5993 	if (ext4_should_journal_data(inode))
5994 		return 0;
5995 	if (ext4_has_inline_data(inode))
5996 		return 0;
5997 	if (IS_ENCRYPTED(inode)) {
5998 		if (!fscrypt_dio_supported(inode))
5999 			return 0;
6000 		return i_blocksize(inode);
6001 	}
6002 	return 1; /* use the iomap defaults */
6003 }
6004 
6005 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6006 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
6007 {
6008 	struct inode *inode = d_inode(path->dentry);
6009 	struct ext4_inode *raw_inode;
6010 	struct ext4_inode_info *ei = EXT4_I(inode);
6011 	unsigned int flags;
6012 
6013 	if ((request_mask & STATX_BTIME) &&
6014 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6015 		stat->result_mask |= STATX_BTIME;
6016 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
6017 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6018 	}
6019 
6020 	/*
6021 	 * Return the DIO alignment restrictions if requested.  We only return
6022 	 * this information when requested, since on encrypted files it might
6023 	 * take a fair bit of work to get if the file wasn't opened recently.
6024 	 */
6025 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6026 		u32 dio_align = ext4_dio_alignment(inode);
6027 
6028 		stat->result_mask |= STATX_DIOALIGN;
6029 		if (dio_align == 1) {
6030 			struct block_device *bdev = inode->i_sb->s_bdev;
6031 
6032 			/* iomap defaults */
6033 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6034 			stat->dio_offset_align = bdev_logical_block_size(bdev);
6035 		} else {
6036 			stat->dio_mem_align = dio_align;
6037 			stat->dio_offset_align = dio_align;
6038 		}
6039 	}
6040 
6041 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6042 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043 		unsigned int awu_min = 0, awu_max = 0;
6044 
6045 		if (ext4_inode_can_atomic_write(inode)) {
6046 			awu_min = sbi->s_awu_min;
6047 			awu_max = sbi->s_awu_max;
6048 		}
6049 
6050 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6051 	}
6052 
6053 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6054 	if (flags & EXT4_APPEND_FL)
6055 		stat->attributes |= STATX_ATTR_APPEND;
6056 	if (flags & EXT4_COMPR_FL)
6057 		stat->attributes |= STATX_ATTR_COMPRESSED;
6058 	if (flags & EXT4_ENCRYPT_FL)
6059 		stat->attributes |= STATX_ATTR_ENCRYPTED;
6060 	if (flags & EXT4_IMMUTABLE_FL)
6061 		stat->attributes |= STATX_ATTR_IMMUTABLE;
6062 	if (flags & EXT4_NODUMP_FL)
6063 		stat->attributes |= STATX_ATTR_NODUMP;
6064 	if (flags & EXT4_VERITY_FL)
6065 		stat->attributes |= STATX_ATTR_VERITY;
6066 
6067 	stat->attributes_mask |= (STATX_ATTR_APPEND |
6068 				  STATX_ATTR_COMPRESSED |
6069 				  STATX_ATTR_ENCRYPTED |
6070 				  STATX_ATTR_IMMUTABLE |
6071 				  STATX_ATTR_NODUMP |
6072 				  STATX_ATTR_VERITY);
6073 
6074 	generic_fillattr(idmap, request_mask, inode, stat);
6075 	return 0;
6076 }
6077 
6078 int ext4_file_getattr(struct mnt_idmap *idmap,
6079 		      const struct path *path, struct kstat *stat,
6080 		      u32 request_mask, unsigned int query_flags)
6081 {
6082 	struct inode *inode = d_inode(path->dentry);
6083 	u64 delalloc_blocks;
6084 
6085 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
6086 
6087 	/*
6088 	 * If there is inline data in the inode, the inode will normally not
6089 	 * have data blocks allocated (it may have an external xattr block).
6090 	 * Report at least one sector for such files, so tools like tar, rsync,
6091 	 * others don't incorrectly think the file is completely sparse.
6092 	 */
6093 	if (unlikely(ext4_has_inline_data(inode)))
6094 		stat->blocks += (stat->size + 511) >> 9;
6095 
6096 	/*
6097 	 * We can't update i_blocks if the block allocation is delayed
6098 	 * otherwise in the case of system crash before the real block
6099 	 * allocation is done, we will have i_blocks inconsistent with
6100 	 * on-disk file blocks.
6101 	 * We always keep i_blocks updated together with real
6102 	 * allocation. But to not confuse with user, stat
6103 	 * will return the blocks that include the delayed allocation
6104 	 * blocks for this file.
6105 	 */
6106 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6107 				   EXT4_I(inode)->i_reserved_data_blocks);
6108 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6109 	return 0;
6110 }
6111 
6112 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6113 				   int pextents)
6114 {
6115 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6116 		return ext4_ind_trans_blocks(inode, lblocks);
6117 	return ext4_ext_index_trans_blocks(inode, pextents);
6118 }
6119 
6120 /*
6121  * Account for index blocks, block groups bitmaps and block group
6122  * descriptor blocks if modify datablocks and index blocks
6123  * worse case, the indexs blocks spread over different block groups
6124  *
6125  * If datablocks are discontiguous, they are possible to spread over
6126  * different block groups too. If they are contiguous, with flexbg,
6127  * they could still across block group boundary.
6128  *
6129  * Also account for superblock, inode, quota and xattr blocks
6130  */
6131 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6132 {
6133 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6134 	int gdpblocks;
6135 	int idxblocks;
6136 	int ret;
6137 
6138 	/*
6139 	 * How many index and leaf blocks need to touch to map @lblocks
6140 	 * logical blocks to @pextents physical extents?
6141 	 */
6142 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6143 
6144 	/*
6145 	 * Now let's see how many group bitmaps and group descriptors need
6146 	 * to account
6147 	 */
6148 	groups = idxblocks + pextents;
6149 	gdpblocks = groups;
6150 	if (groups > ngroups)
6151 		groups = ngroups;
6152 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6153 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6154 
6155 	/* bitmaps and block group descriptor blocks */
6156 	ret = idxblocks + groups + gdpblocks;
6157 
6158 	/* Blocks for super block, inode, quota and xattr blocks */
6159 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6160 
6161 	return ret;
6162 }
6163 
6164 /*
6165  * Calculate the journal credits for modifying the number of blocks
6166  * in a single extent within one transaction. 'nrblocks' is used only
6167  * for non-extent inodes. For extent type inodes, 'nrblocks' can be
6168  * zero if the exact number of blocks is unknown.
6169  */
6170 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks)
6171 {
6172 	int ret;
6173 
6174 	ret = ext4_meta_trans_blocks(inode, nrblocks, 1);
6175 	/* Account for data blocks for journalled mode */
6176 	if (ext4_should_journal_data(inode))
6177 		ret += nrblocks;
6178 	return ret;
6179 }
6180 
6181 /*
6182  * Calculate the journal credits for a chunk of data modification.
6183  *
6184  * This is called from DIO, fallocate or whoever calling
6185  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6186  *
6187  * journal buffers for data blocks are not included here, as DIO
6188  * and fallocate do no need to journal data buffers.
6189  */
6190 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6191 {
6192 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
6193 }
6194 
6195 /*
6196  * The caller must have previously called ext4_reserve_inode_write().
6197  * Give this, we know that the caller already has write access to iloc->bh.
6198  */
6199 int ext4_mark_iloc_dirty(handle_t *handle,
6200 			 struct inode *inode, struct ext4_iloc *iloc)
6201 {
6202 	int err = 0;
6203 
6204 	err = ext4_emergency_state(inode->i_sb);
6205 	if (unlikely(err)) {
6206 		put_bh(iloc->bh);
6207 		return err;
6208 	}
6209 	ext4_fc_track_inode(handle, inode);
6210 
6211 	/* the do_update_inode consumes one bh->b_count */
6212 	get_bh(iloc->bh);
6213 
6214 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6215 	err = ext4_do_update_inode(handle, inode, iloc);
6216 	put_bh(iloc->bh);
6217 	return err;
6218 }
6219 
6220 /*
6221  * On success, We end up with an outstanding reference count against
6222  * iloc->bh.  This _must_ be cleaned up later.
6223  */
6224 
6225 int
6226 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6227 			 struct ext4_iloc *iloc)
6228 {
6229 	int err;
6230 
6231 	err = ext4_emergency_state(inode->i_sb);
6232 	if (unlikely(err))
6233 		return err;
6234 
6235 	err = ext4_get_inode_loc(inode, iloc);
6236 	if (!err) {
6237 		BUFFER_TRACE(iloc->bh, "get_write_access");
6238 		err = ext4_journal_get_write_access(handle, inode->i_sb,
6239 						    iloc->bh, EXT4_JTR_NONE);
6240 		if (err) {
6241 			brelse(iloc->bh);
6242 			iloc->bh = NULL;
6243 		}
6244 		ext4_fc_track_inode(handle, inode);
6245 	}
6246 	ext4_std_error(inode->i_sb, err);
6247 	return err;
6248 }
6249 
6250 static int __ext4_expand_extra_isize(struct inode *inode,
6251 				     unsigned int new_extra_isize,
6252 				     struct ext4_iloc *iloc,
6253 				     handle_t *handle, int *no_expand)
6254 {
6255 	struct ext4_inode *raw_inode;
6256 	struct ext4_xattr_ibody_header *header;
6257 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6258 	struct ext4_inode_info *ei = EXT4_I(inode);
6259 	int error;
6260 
6261 	/* this was checked at iget time, but double check for good measure */
6262 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6263 	    (ei->i_extra_isize & 3)) {
6264 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6265 				 ei->i_extra_isize,
6266 				 EXT4_INODE_SIZE(inode->i_sb));
6267 		return -EFSCORRUPTED;
6268 	}
6269 	if ((new_extra_isize < ei->i_extra_isize) ||
6270 	    (new_extra_isize < 4) ||
6271 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6272 		return -EINVAL;	/* Should never happen */
6273 
6274 	raw_inode = ext4_raw_inode(iloc);
6275 
6276 	header = IHDR(inode, raw_inode);
6277 
6278 	/* No extended attributes present */
6279 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6280 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6281 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6282 		       EXT4_I(inode)->i_extra_isize, 0,
6283 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6284 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6285 		return 0;
6286 	}
6287 
6288 	/*
6289 	 * We may need to allocate external xattr block so we need quotas
6290 	 * initialized. Here we can be called with various locks held so we
6291 	 * cannot affort to initialize quotas ourselves. So just bail.
6292 	 */
6293 	if (dquot_initialize_needed(inode))
6294 		return -EAGAIN;
6295 
6296 	/* try to expand with EAs present */
6297 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6298 					   raw_inode, handle);
6299 	if (error) {
6300 		/*
6301 		 * Inode size expansion failed; don't try again
6302 		 */
6303 		*no_expand = 1;
6304 	}
6305 
6306 	return error;
6307 }
6308 
6309 /*
6310  * Expand an inode by new_extra_isize bytes.
6311  * Returns 0 on success or negative error number on failure.
6312  */
6313 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6314 					  unsigned int new_extra_isize,
6315 					  struct ext4_iloc iloc,
6316 					  handle_t *handle)
6317 {
6318 	int no_expand;
6319 	int error;
6320 
6321 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6322 		return -EOVERFLOW;
6323 
6324 	/*
6325 	 * In nojournal mode, we can immediately attempt to expand
6326 	 * the inode.  When journaled, we first need to obtain extra
6327 	 * buffer credits since we may write into the EA block
6328 	 * with this same handle. If journal_extend fails, then it will
6329 	 * only result in a minor loss of functionality for that inode.
6330 	 * If this is felt to be critical, then e2fsck should be run to
6331 	 * force a large enough s_min_extra_isize.
6332 	 */
6333 	if (ext4_journal_extend(handle,
6334 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6335 		return -ENOSPC;
6336 
6337 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6338 		return -EBUSY;
6339 
6340 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6341 					  handle, &no_expand);
6342 	ext4_write_unlock_xattr(inode, &no_expand);
6343 
6344 	return error;
6345 }
6346 
6347 int ext4_expand_extra_isize(struct inode *inode,
6348 			    unsigned int new_extra_isize,
6349 			    struct ext4_iloc *iloc)
6350 {
6351 	handle_t *handle;
6352 	int no_expand;
6353 	int error, rc;
6354 
6355 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6356 		brelse(iloc->bh);
6357 		return -EOVERFLOW;
6358 	}
6359 
6360 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6361 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6362 	if (IS_ERR(handle)) {
6363 		error = PTR_ERR(handle);
6364 		brelse(iloc->bh);
6365 		return error;
6366 	}
6367 
6368 	ext4_write_lock_xattr(inode, &no_expand);
6369 
6370 	BUFFER_TRACE(iloc->bh, "get_write_access");
6371 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6372 					      EXT4_JTR_NONE);
6373 	if (error) {
6374 		brelse(iloc->bh);
6375 		goto out_unlock;
6376 	}
6377 
6378 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6379 					  handle, &no_expand);
6380 
6381 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6382 	if (!error)
6383 		error = rc;
6384 
6385 out_unlock:
6386 	ext4_write_unlock_xattr(inode, &no_expand);
6387 	ext4_journal_stop(handle);
6388 	return error;
6389 }
6390 
6391 /*
6392  * What we do here is to mark the in-core inode as clean with respect to inode
6393  * dirtiness (it may still be data-dirty).
6394  * This means that the in-core inode may be reaped by prune_icache
6395  * without having to perform any I/O.  This is a very good thing,
6396  * because *any* task may call prune_icache - even ones which
6397  * have a transaction open against a different journal.
6398  *
6399  * Is this cheating?  Not really.  Sure, we haven't written the
6400  * inode out, but prune_icache isn't a user-visible syncing function.
6401  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6402  * we start and wait on commits.
6403  */
6404 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6405 				const char *func, unsigned int line)
6406 {
6407 	struct ext4_iloc iloc;
6408 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6409 	int err;
6410 
6411 	might_sleep();
6412 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6413 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6414 	if (err)
6415 		goto out;
6416 
6417 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6418 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6419 					       iloc, handle);
6420 
6421 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6422 out:
6423 	if (unlikely(err))
6424 		ext4_error_inode_err(inode, func, line, 0, err,
6425 					"mark_inode_dirty error");
6426 	return err;
6427 }
6428 
6429 /*
6430  * ext4_dirty_inode() is called from __mark_inode_dirty()
6431  *
6432  * We're really interested in the case where a file is being extended.
6433  * i_size has been changed by generic_commit_write() and we thus need
6434  * to include the updated inode in the current transaction.
6435  *
6436  * Also, dquot_alloc_block() will always dirty the inode when blocks
6437  * are allocated to the file.
6438  *
6439  * If the inode is marked synchronous, we don't honour that here - doing
6440  * so would cause a commit on atime updates, which we don't bother doing.
6441  * We handle synchronous inodes at the highest possible level.
6442  */
6443 void ext4_dirty_inode(struct inode *inode, int flags)
6444 {
6445 	handle_t *handle;
6446 
6447 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6448 	if (IS_ERR(handle))
6449 		return;
6450 	ext4_mark_inode_dirty(handle, inode);
6451 	ext4_journal_stop(handle);
6452 }
6453 
6454 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6455 {
6456 	journal_t *journal;
6457 	handle_t *handle;
6458 	int err;
6459 	int alloc_ctx;
6460 
6461 	/*
6462 	 * We have to be very careful here: changing a data block's
6463 	 * journaling status dynamically is dangerous.  If we write a
6464 	 * data block to the journal, change the status and then delete
6465 	 * that block, we risk forgetting to revoke the old log record
6466 	 * from the journal and so a subsequent replay can corrupt data.
6467 	 * So, first we make sure that the journal is empty and that
6468 	 * nobody is changing anything.
6469 	 */
6470 
6471 	journal = EXT4_JOURNAL(inode);
6472 	if (!journal)
6473 		return 0;
6474 	if (is_journal_aborted(journal))
6475 		return -EROFS;
6476 
6477 	/* Wait for all existing dio workers */
6478 	inode_dio_wait(inode);
6479 
6480 	/*
6481 	 * Before flushing the journal and switching inode's aops, we have
6482 	 * to flush all dirty data the inode has. There can be outstanding
6483 	 * delayed allocations, there can be unwritten extents created by
6484 	 * fallocate or buffered writes in dioread_nolock mode covered by
6485 	 * dirty data which can be converted only after flushing the dirty
6486 	 * data (and journalled aops don't know how to handle these cases).
6487 	 */
6488 	filemap_invalidate_lock(inode->i_mapping);
6489 	err = filemap_write_and_wait(inode->i_mapping);
6490 	if (err < 0) {
6491 		filemap_invalidate_unlock(inode->i_mapping);
6492 		return err;
6493 	}
6494 	/* Before switch the inode journalling mode evict all the page cache. */
6495 	truncate_pagecache(inode, 0);
6496 
6497 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6498 	jbd2_journal_lock_updates(journal);
6499 
6500 	/*
6501 	 * OK, there are no updates running now, and all cached data is
6502 	 * synced to disk.  We are now in a completely consistent state
6503 	 * which doesn't have anything in the journal, and we know that
6504 	 * no filesystem updates are running, so it is safe to modify
6505 	 * the inode's in-core data-journaling state flag now.
6506 	 */
6507 
6508 	if (val)
6509 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6510 	else {
6511 		err = jbd2_journal_flush(journal, 0);
6512 		if (err < 0) {
6513 			jbd2_journal_unlock_updates(journal);
6514 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6515 			filemap_invalidate_unlock(inode->i_mapping);
6516 			return err;
6517 		}
6518 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6519 	}
6520 	ext4_set_aops(inode);
6521 	ext4_set_inode_mapping_order(inode);
6522 
6523 	jbd2_journal_unlock_updates(journal);
6524 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6525 	filemap_invalidate_unlock(inode->i_mapping);
6526 
6527 	/* Finally we can mark the inode as dirty. */
6528 
6529 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6530 	if (IS_ERR(handle))
6531 		return PTR_ERR(handle);
6532 
6533 	ext4_fc_mark_ineligible(inode->i_sb,
6534 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6535 	err = ext4_mark_inode_dirty(handle, inode);
6536 	ext4_handle_sync(handle);
6537 	ext4_journal_stop(handle);
6538 	ext4_std_error(inode->i_sb, err);
6539 
6540 	return err;
6541 }
6542 
6543 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6544 			    struct buffer_head *bh)
6545 {
6546 	return !buffer_mapped(bh);
6547 }
6548 
6549 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio,
6550 				   get_block_t get_block)
6551 {
6552 	handle_t *handle;
6553 	loff_t size;
6554 	unsigned long len;
6555 	int credits;
6556 	int ret;
6557 
6558 	credits = ext4_chunk_trans_extent(inode,
6559 			ext4_journal_blocks_per_folio(inode));
6560 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits);
6561 	if (IS_ERR(handle))
6562 		return PTR_ERR(handle);
6563 
6564 	folio_lock(folio);
6565 	size = i_size_read(inode);
6566 	/* Page got truncated from under us? */
6567 	if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) {
6568 		ret = -EFAULT;
6569 		goto out_error;
6570 	}
6571 
6572 	len = folio_size(folio);
6573 	if (folio_pos(folio) + len > size)
6574 		len = size - folio_pos(folio);
6575 
6576 	ret = ext4_block_write_begin(handle, folio, 0, len, get_block);
6577 	if (ret)
6578 		goto out_error;
6579 
6580 	if (!ext4_should_journal_data(inode)) {
6581 		block_commit_write(folio, 0, len);
6582 		folio_mark_dirty(folio);
6583 	} else {
6584 		ret = ext4_journal_folio_buffers(handle, folio, len);
6585 		if (ret)
6586 			goto out_error;
6587 	}
6588 	ext4_journal_stop(handle);
6589 	folio_wait_stable(folio);
6590 	return ret;
6591 
6592 out_error:
6593 	folio_unlock(folio);
6594 	ext4_journal_stop(handle);
6595 	return ret;
6596 }
6597 
6598 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6599 {
6600 	struct vm_area_struct *vma = vmf->vma;
6601 	struct folio *folio = page_folio(vmf->page);
6602 	loff_t size;
6603 	unsigned long len;
6604 	int err;
6605 	vm_fault_t ret;
6606 	struct file *file = vma->vm_file;
6607 	struct inode *inode = file_inode(file);
6608 	struct address_space *mapping = inode->i_mapping;
6609 	get_block_t *get_block = ext4_get_block;
6610 	int retries = 0;
6611 
6612 	if (unlikely(IS_IMMUTABLE(inode)))
6613 		return VM_FAULT_SIGBUS;
6614 
6615 	sb_start_pagefault(inode->i_sb);
6616 	file_update_time(vma->vm_file);
6617 
6618 	filemap_invalidate_lock_shared(mapping);
6619 
6620 	err = ext4_convert_inline_data(inode);
6621 	if (err)
6622 		goto out_ret;
6623 
6624 	/*
6625 	 * On data journalling we skip straight to the transaction handle:
6626 	 * there's no delalloc; page truncated will be checked later; the
6627 	 * early return w/ all buffers mapped (calculates size/len) can't
6628 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6629 	 */
6630 	if (ext4_should_journal_data(inode))
6631 		goto retry_alloc;
6632 
6633 	/* Delalloc case is easy... */
6634 	if (test_opt(inode->i_sb, DELALLOC) &&
6635 	    !ext4_nonda_switch(inode->i_sb)) {
6636 		do {
6637 			err = block_page_mkwrite(vma, vmf,
6638 						   ext4_da_get_block_prep);
6639 		} while (err == -ENOSPC &&
6640 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6641 		goto out_ret;
6642 	}
6643 
6644 	folio_lock(folio);
6645 	size = i_size_read(inode);
6646 	/* Page got truncated from under us? */
6647 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6648 		folio_unlock(folio);
6649 		ret = VM_FAULT_NOPAGE;
6650 		goto out;
6651 	}
6652 
6653 	len = folio_size(folio);
6654 	if (folio_pos(folio) + len > size)
6655 		len = size - folio_pos(folio);
6656 	/*
6657 	 * Return if we have all the buffers mapped. This avoids the need to do
6658 	 * journal_start/journal_stop which can block and take a long time
6659 	 *
6660 	 * This cannot be done for data journalling, as we have to add the
6661 	 * inode to the transaction's list to writeprotect pages on commit.
6662 	 */
6663 	if (folio_buffers(folio)) {
6664 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6665 					    0, len, NULL,
6666 					    ext4_bh_unmapped)) {
6667 			/* Wait so that we don't change page under IO */
6668 			folio_wait_stable(folio);
6669 			ret = VM_FAULT_LOCKED;
6670 			goto out;
6671 		}
6672 	}
6673 	folio_unlock(folio);
6674 	/* OK, we need to fill the hole... */
6675 	if (ext4_should_dioread_nolock(inode))
6676 		get_block = ext4_get_block_unwritten;
6677 retry_alloc:
6678 	/* Start journal and allocate blocks */
6679 	err = ext4_block_page_mkwrite(inode, folio, get_block);
6680 	if (err == -EAGAIN ||
6681 	    (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)))
6682 		goto retry_alloc;
6683 out_ret:
6684 	ret = vmf_fs_error(err);
6685 out:
6686 	filemap_invalidate_unlock_shared(mapping);
6687 	sb_end_pagefault(inode->i_sb);
6688 	return ret;
6689 }
6690