xref: /linux/kernel/sched/sched.h (revision 36ae1c45b2cede43ab2fc679b450060bbf119f1b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/prandom.h>
9 #include <linux/sched/affinity.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/cpufreq.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/rseq_api.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/smt.h>
19 #include <linux/sched/stat.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/sched/task_flags.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/topology.h>
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/cpuset.h>
34 #include <linux/ctype.h>
35 #include <linux/file.h>
36 #include <linux/fs_api.h>
37 #include <linux/hrtimer_api.h>
38 #include <linux/interrupt.h>
39 #include <linux/irq_work.h>
40 #include <linux/jiffies.h>
41 #include <linux/kref_api.h>
42 #include <linux/kthread.h>
43 #include <linux/ktime_api.h>
44 #include <linux/lockdep_api.h>
45 #include <linux/lockdep.h>
46 #include <linux/memblock.h>
47 #include <linux/memcontrol.h>
48 #include <linux/minmax.h>
49 #include <linux/mm.h>
50 #include <linux/module.h>
51 #include <linux/mutex_api.h>
52 #include <linux/plist.h>
53 #include <linux/poll.h>
54 #include <linux/proc_fs.h>
55 #include <linux/profile.h>
56 #include <linux/psi.h>
57 #include <linux/rcupdate.h>
58 #include <linux/seq_file.h>
59 #include <linux/seqlock.h>
60 #include <linux/softirq.h>
61 #include <linux/spinlock_api.h>
62 #include <linux/static_key.h>
63 #include <linux/stop_machine.h>
64 #include <linux/syscalls_api.h>
65 #include <linux/syscalls.h>
66 #include <linux/tick.h>
67 #include <linux/topology.h>
68 #include <linux/types.h>
69 #include <linux/u64_stats_sync_api.h>
70 #include <linux/uaccess.h>
71 #include <linux/vmstat.h>
72 #include <linux/wait_api.h>
73 #include <linux/wait_bit.h>
74 #include <linux/workqueue_api.h>
75 #include <linux/delayacct.h>
76 #include <linux/mmu_context.h>
77 
78 #include <trace/events/power.h>
79 #include <trace/events/sched.h>
80 
81 #include "../workqueue_internal.h"
82 
83 struct rq;
84 struct cfs_rq;
85 struct rt_rq;
86 struct sched_group;
87 struct cpuidle_state;
88 
89 #ifdef CONFIG_PARAVIRT
90 # include <asm/paravirt.h>
91 # include <asm/paravirt_api_clock.h>
92 #endif
93 
94 #include <asm/barrier.h>
95 
96 #include "cpupri.h"
97 #include "cpudeadline.h"
98 
99 /* task_struct::on_rq states: */
100 #define TASK_ON_RQ_QUEUED	1
101 #define TASK_ON_RQ_MIGRATING	2
102 
103 extern __read_mostly int scheduler_running;
104 
105 extern unsigned long calc_load_update;
106 extern atomic_long_t calc_load_tasks;
107 
108 extern void calc_global_load_tick(struct rq *this_rq);
109 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
110 
111 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
112 
113 extern int sysctl_sched_rt_period;
114 extern int sysctl_sched_rt_runtime;
115 extern int sched_rr_timeslice;
116 
117 /*
118  * Asymmetric CPU capacity bits
119  */
120 struct asym_cap_data {
121 	struct list_head link;
122 	struct rcu_head rcu;
123 	unsigned long capacity;
124 	unsigned long cpus[];
125 };
126 
127 extern struct list_head asym_cap_list;
128 
129 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
130 
131 /*
132  * Helpers for converting nanosecond timing to jiffy resolution
133  */
134 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
135 
136 /*
137  * Increase resolution of nice-level calculations for 64-bit architectures.
138  * The extra resolution improves shares distribution and load balancing of
139  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
140  * hierarchies, especially on larger systems. This is not a user-visible change
141  * and does not change the user-interface for setting shares/weights.
142  *
143  * We increase resolution only if we have enough bits to allow this increased
144  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
145  * are pretty high and the returns do not justify the increased costs.
146  *
147  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
148  * increase coverage and consistency always enable it on 64-bit platforms.
149  */
150 #ifdef CONFIG_64BIT
151 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
152 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load_down(w)					\
154 ({								\
155 	unsigned long __w = (w);				\
156 								\
157 	if (__w)						\
158 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
159 	__w;							\
160 })
161 #else
162 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
163 # define scale_load(w)		(w)
164 # define scale_load_down(w)	(w)
165 #endif
166 
167 /*
168  * Task weight (visible to users) and its load (invisible to users) have
169  * independent resolution, but they should be well calibrated. We use
170  * scale_load() and scale_load_down(w) to convert between them. The
171  * following must be true:
172  *
173  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
174  *
175  */
176 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
177 
178 /*
179  * Single value that decides SCHED_DEADLINE internal math precision.
180  * 10 -> just above 1us
181  * 9  -> just above 0.5us
182  */
183 #define DL_SCALE		10
184 
185 /*
186  * Single value that denotes runtime == period, ie unlimited time.
187  */
188 #define RUNTIME_INF		((u64)~0ULL)
189 
190 static inline int idle_policy(int policy)
191 {
192 	return policy == SCHED_IDLE;
193 }
194 
195 static inline int normal_policy(int policy)
196 {
197 #ifdef CONFIG_SCHED_CLASS_EXT
198 	if (policy == SCHED_EXT)
199 		return true;
200 #endif
201 	return policy == SCHED_NORMAL;
202 }
203 
204 static inline int fair_policy(int policy)
205 {
206 	return normal_policy(policy) || policy == SCHED_BATCH;
207 }
208 
209 static inline int rt_policy(int policy)
210 {
211 	return policy == SCHED_FIFO || policy == SCHED_RR;
212 }
213 
214 static inline int dl_policy(int policy)
215 {
216 	return policy == SCHED_DEADLINE;
217 }
218 
219 static inline bool valid_policy(int policy)
220 {
221 	return idle_policy(policy) || fair_policy(policy) ||
222 		rt_policy(policy) || dl_policy(policy);
223 }
224 
225 static inline int task_has_idle_policy(struct task_struct *p)
226 {
227 	return idle_policy(p->policy);
228 }
229 
230 static inline int task_has_rt_policy(struct task_struct *p)
231 {
232 	return rt_policy(p->policy);
233 }
234 
235 static inline int task_has_dl_policy(struct task_struct *p)
236 {
237 	return dl_policy(p->policy);
238 }
239 
240 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
241 
242 static inline void update_avg(u64 *avg, u64 sample)
243 {
244 	s64 diff = sample - *avg;
245 
246 	*avg += diff / 8;
247 }
248 
249 /*
250  * Shifting a value by an exponent greater *or equal* to the size of said value
251  * is UB; cap at size-1.
252  */
253 #define shr_bound(val, shift)							\
254 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
255 
256 /*
257  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
258  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
259  * maps pretty well onto the shares value used by scheduler and the round-trip
260  * conversions preserve the original value over the entire range.
261  */
262 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
263 {
264 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
265 }
266 
267 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
268 {
269 	return clamp_t(unsigned long,
270 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
271 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
272 }
273 
274 /*
275  * !! For sched_setattr_nocheck() (kernel) only !!
276  *
277  * This is actually gross. :(
278  *
279  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
280  * tasks, but still be able to sleep. We need this on platforms that cannot
281  * atomically change clock frequency. Remove once fast switching will be
282  * available on such platforms.
283  *
284  * SUGOV stands for SchedUtil GOVernor.
285  */
286 #define SCHED_FLAG_SUGOV	0x10000000
287 
288 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
289 
290 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
291 {
292 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
293 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
294 #else
295 	return false;
296 #endif
297 }
298 
299 /*
300  * Tells if entity @a should preempt entity @b.
301  */
302 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
303 				     const struct sched_dl_entity *b)
304 {
305 	return dl_entity_is_special(a) ||
306 	       dl_time_before(a->deadline, b->deadline);
307 }
308 
309 /*
310  * This is the priority-queue data structure of the RT scheduling class:
311  */
312 struct rt_prio_array {
313 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
314 	struct list_head queue[MAX_RT_PRIO];
315 };
316 
317 struct rt_bandwidth {
318 	/* nests inside the rq lock: */
319 	raw_spinlock_t		rt_runtime_lock;
320 	ktime_t			rt_period;
321 	u64			rt_runtime;
322 	struct hrtimer		rt_period_timer;
323 	unsigned int		rt_period_active;
324 };
325 
326 static inline int dl_bandwidth_enabled(void)
327 {
328 	return sysctl_sched_rt_runtime >= 0;
329 }
330 
331 /*
332  * To keep the bandwidth of -deadline tasks under control
333  * we need some place where:
334  *  - store the maximum -deadline bandwidth of each cpu;
335  *  - cache the fraction of bandwidth that is currently allocated in
336  *    each root domain;
337  *
338  * This is all done in the data structure below. It is similar to the
339  * one used for RT-throttling (rt_bandwidth), with the main difference
340  * that, since here we are only interested in admission control, we
341  * do not decrease any runtime while the group "executes", neither we
342  * need a timer to replenish it.
343  *
344  * With respect to SMP, bandwidth is given on a per root domain basis,
345  * meaning that:
346  *  - bw (< 100%) is the deadline bandwidth of each CPU;
347  *  - total_bw is the currently allocated bandwidth in each root domain;
348  */
349 struct dl_bw {
350 	raw_spinlock_t		lock;
351 	u64			bw;
352 	u64			total_bw;
353 };
354 
355 extern void init_dl_bw(struct dl_bw *dl_b);
356 extern int  sched_dl_global_validate(void);
357 extern void sched_dl_do_global(void);
358 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
359 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
360 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
361 extern bool __checkparam_dl(const struct sched_attr *attr);
362 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
363 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
364 extern int  dl_bw_deactivate(int cpu);
365 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
366 /*
367  * SCHED_DEADLINE supports servers (nested scheduling) with the following
368  * interface:
369  *
370  *   dl_se::rq -- runqueue we belong to.
371  *
372  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
373  *                           returns NULL.
374  *
375  *   dl_server_update() -- called from update_curr_common(), propagates runtime
376  *                         to the server.
377  *
378  *   dl_server_start() -- start the server when it has tasks; it will stop
379  *			  automatically when there are no more tasks, per
380  *			  dl_se::server_pick() returning NULL.
381  *
382  *   dl_server_stop() -- (force) stop the server; use when updating
383  *                       parameters.
384  *
385  *   dl_server_init() -- initializes the server.
386  *
387  * When started the dl_server will (per dl_defer) schedule a timer for its
388  * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a
389  * server will run at the very end of its period.
390  *
391  * This is done such that any runtime from the target class can be accounted
392  * against the server -- through dl_server_update() above -- such that when it
393  * becomes time to run, it might already be out of runtime and get deferred
394  * until the next period. In this case dl_server_timer() will alternate
395  * between defer and replenish but never actually enqueue the server.
396  *
397  * Only when the target class does not manage to exhaust the server's runtime
398  * (there's actualy starvation in the given period), will the dl_server get on
399  * the runqueue. Once queued it will pick tasks from the target class and run
400  * them until either its runtime is exhaused, at which point its back to
401  * dl_server_timer, or until there are no more tasks to run, at which point
402  * the dl_server stops itself.
403  *
404  * By stopping at this point the dl_server retains bandwidth, which, if a new
405  * task wakes up imminently (starting the server again), can be used --
406  * subject to CBS wakeup rules -- without having to wait for the next period.
407  *
408  * Additionally, because of the dl_defer behaviour the start/stop behaviour is
409  * naturally thottled to once per period, avoiding high context switch
410  * workloads from spamming the hrtimer program/cancel paths.
411  */
412 extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec);
413 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
414 extern void dl_server_start(struct sched_dl_entity *dl_se);
415 extern void dl_server_stop(struct sched_dl_entity *dl_se);
416 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
417 		    dl_server_pick_f pick_task);
418 extern void sched_init_dl_servers(void);
419 
420 extern void fair_server_init(struct rq *rq);
421 extern void ext_server_init(struct rq *rq);
422 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
423 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
424 		    u64 runtime, u64 period, bool init);
425 
426 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
427 {
428 	return dl_se->dl_server_active;
429 }
430 
431 #ifdef CONFIG_CGROUP_SCHED
432 
433 extern struct list_head task_groups;
434 
435 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
436 extern const u64 max_bw_quota_period_us;
437 
438 /*
439  * default period for group bandwidth.
440  * default: 0.1s, units: microseconds
441  */
442 static inline u64 default_bw_period_us(void)
443 {
444 	return 100000ULL;
445 }
446 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
447 
448 struct cfs_bandwidth {
449 #ifdef CONFIG_CFS_BANDWIDTH
450 	raw_spinlock_t		lock;
451 	ktime_t			period;
452 	u64			quota;
453 	u64			runtime;
454 	u64			burst;
455 	u64			runtime_snap;
456 	s64			hierarchical_quota;
457 
458 	u8			idle;
459 	u8			period_active;
460 	u8			slack_started;
461 	struct hrtimer		period_timer;
462 	struct hrtimer		slack_timer;
463 	struct list_head	throttled_cfs_rq;
464 
465 	/* Statistics: */
466 	int			nr_periods;
467 	int			nr_throttled;
468 	int			nr_burst;
469 	u64			throttled_time;
470 	u64			burst_time;
471 #endif /* CONFIG_CFS_BANDWIDTH */
472 };
473 
474 /* Task group related information */
475 struct task_group {
476 	struct cgroup_subsys_state css;
477 
478 #ifdef CONFIG_GROUP_SCHED_WEIGHT
479 	/* A positive value indicates that this is a SCHED_IDLE group. */
480 	int			idle;
481 #endif
482 
483 #ifdef CONFIG_FAIR_GROUP_SCHED
484 	/* schedulable entities of this group on each CPU */
485 	struct sched_entity	**se;
486 	/* runqueue "owned" by this group on each CPU */
487 	struct cfs_rq		**cfs_rq;
488 	unsigned long		shares;
489 	/*
490 	 * load_avg can be heavily contended at clock tick time, so put
491 	 * it in its own cache-line separated from the fields above which
492 	 * will also be accessed at each tick.
493 	 */
494 	atomic_long_t		load_avg ____cacheline_aligned;
495 #endif /* CONFIG_FAIR_GROUP_SCHED */
496 
497 #ifdef CONFIG_RT_GROUP_SCHED
498 	struct sched_rt_entity	**rt_se;
499 	struct rt_rq		**rt_rq;
500 
501 	struct rt_bandwidth	rt_bandwidth;
502 #endif
503 
504 	struct scx_task_group	scx;
505 
506 	struct rcu_head		rcu;
507 	struct list_head	list;
508 
509 	struct task_group	*parent;
510 	struct list_head	siblings;
511 	struct list_head	children;
512 
513 #ifdef CONFIG_SCHED_AUTOGROUP
514 	struct autogroup	*autogroup;
515 #endif
516 
517 	struct cfs_bandwidth	cfs_bandwidth;
518 
519 #ifdef CONFIG_UCLAMP_TASK_GROUP
520 	/* The two decimal precision [%] value requested from user-space */
521 	unsigned int		uclamp_pct[UCLAMP_CNT];
522 	/* Clamp values requested for a task group */
523 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
524 	/* Effective clamp values used for a task group */
525 	struct uclamp_se	uclamp[UCLAMP_CNT];
526 #endif
527 
528 };
529 
530 #ifdef CONFIG_GROUP_SCHED_WEIGHT
531 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
532 
533 /*
534  * A weight of 0 or 1 can cause arithmetics problems.
535  * A weight of a cfs_rq is the sum of weights of which entities
536  * are queued on this cfs_rq, so a weight of a entity should not be
537  * too large, so as the shares value of a task group.
538  * (The default weight is 1024 - so there's no practical
539  *  limitation from this.)
540  */
541 #define MIN_SHARES		(1UL <<  1)
542 #define MAX_SHARES		(1UL << 18)
543 #endif
544 
545 typedef int (*tg_visitor)(struct task_group *, void *);
546 
547 extern int walk_tg_tree_from(struct task_group *from,
548 			     tg_visitor down, tg_visitor up, void *data);
549 
550 /*
551  * Iterate the full tree, calling @down when first entering a node and @up when
552  * leaving it for the final time.
553  *
554  * Caller must hold rcu_lock or sufficient equivalent.
555  */
556 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
557 {
558 	return walk_tg_tree_from(&root_task_group, down, up, data);
559 }
560 
561 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
562 {
563 	return css ? container_of(css, struct task_group, css) : NULL;
564 }
565 
566 extern int tg_nop(struct task_group *tg, void *data);
567 
568 #ifdef CONFIG_FAIR_GROUP_SCHED
569 extern void free_fair_sched_group(struct task_group *tg);
570 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
571 extern void online_fair_sched_group(struct task_group *tg);
572 extern void unregister_fair_sched_group(struct task_group *tg);
573 #else /* !CONFIG_FAIR_GROUP_SCHED: */
574 static inline void free_fair_sched_group(struct task_group *tg) { }
575 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
576 {
577        return 1;
578 }
579 static inline void online_fair_sched_group(struct task_group *tg) { }
580 static inline void unregister_fair_sched_group(struct task_group *tg) { }
581 #endif /* !CONFIG_FAIR_GROUP_SCHED */
582 
583 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
584 			struct sched_entity *se, int cpu,
585 			struct sched_entity *parent);
586 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
587 
588 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
589 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
590 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
591 extern bool cfs_task_bw_constrained(struct task_struct *p);
592 
593 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
594 		struct sched_rt_entity *rt_se, int cpu,
595 		struct sched_rt_entity *parent);
596 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
597 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
598 extern long sched_group_rt_runtime(struct task_group *tg);
599 extern long sched_group_rt_period(struct task_group *tg);
600 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
601 
602 extern struct task_group *sched_create_group(struct task_group *parent);
603 extern void sched_online_group(struct task_group *tg,
604 			       struct task_group *parent);
605 extern void sched_destroy_group(struct task_group *tg);
606 extern void sched_release_group(struct task_group *tg);
607 
608 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
609 
610 #ifdef CONFIG_FAIR_GROUP_SCHED
611 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
612 
613 extern int sched_group_set_idle(struct task_group *tg, long idle);
614 
615 extern void set_task_rq_fair(struct sched_entity *se,
616 			     struct cfs_rq *prev, struct cfs_rq *next);
617 #else /* !CONFIG_FAIR_GROUP_SCHED: */
618 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
619 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
620 #endif /* !CONFIG_FAIR_GROUP_SCHED */
621 
622 #else /* !CONFIG_CGROUP_SCHED: */
623 
624 struct cfs_bandwidth { };
625 
626 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
627 
628 #endif /* !CONFIG_CGROUP_SCHED */
629 
630 extern void unregister_rt_sched_group(struct task_group *tg);
631 extern void free_rt_sched_group(struct task_group *tg);
632 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
633 
634 /*
635  * u64_u32_load/u64_u32_store
636  *
637  * Use a copy of a u64 value to protect against data race. This is only
638  * applicable for 32-bits architectures.
639  */
640 #ifdef CONFIG_64BIT
641 # define u64_u32_load_copy(var, copy)		var
642 # define u64_u32_store_copy(var, copy, val)	(var = val)
643 #else
644 # define u64_u32_load_copy(var, copy)					\
645 ({									\
646 	u64 __val, __val_copy;						\
647 	do {								\
648 		__val_copy = copy;					\
649 		/*							\
650 		 * paired with u64_u32_store_copy(), ordering access	\
651 		 * to var and copy.					\
652 		 */							\
653 		smp_rmb();						\
654 		__val = var;						\
655 	} while (__val != __val_copy);					\
656 	__val;								\
657 })
658 # define u64_u32_store_copy(var, copy, val)				\
659 do {									\
660 	typeof(val) __val = (val);					\
661 	var = __val;							\
662 	/*								\
663 	 * paired with u64_u32_load_copy(), ordering access to var and	\
664 	 * copy.							\
665 	 */								\
666 	smp_wmb();							\
667 	copy = __val;							\
668 } while (0)
669 #endif
670 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
671 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
672 
673 struct balance_callback {
674 	struct balance_callback *next;
675 	void (*func)(struct rq *rq);
676 };
677 
678 /* Fair scheduling SCHED_{NORMAL,BATCH,IDLE} related fields in a runqueue: */
679 struct cfs_rq {
680 	struct load_weight	load;
681 	unsigned int		nr_queued;
682 	unsigned int		h_nr_queued;		/* SCHED_{NORMAL,BATCH,IDLE} */
683 	unsigned int		h_nr_runnable;		/* SCHED_{NORMAL,BATCH,IDLE} */
684 	unsigned int		h_nr_idle;		/* SCHED_IDLE */
685 
686 	s64			sum_w_vruntime;
687 	u64			sum_weight;
688 
689 	u64			zero_vruntime;
690 #ifdef CONFIG_SCHED_CORE
691 	unsigned int		forceidle_seq;
692 	u64			zero_vruntime_fi;
693 #endif
694 
695 	struct rb_root_cached	tasks_timeline;
696 
697 	/*
698 	 * 'curr' points to the currently running entity on this cfs_rq.
699 	 * It is set to NULL otherwise (i.e when none are currently running).
700 	 */
701 	struct sched_entity	*curr;
702 	struct sched_entity	*next;
703 
704 	/*
705 	 * CFS load tracking
706 	 */
707 	struct sched_avg	avg;
708 #ifndef CONFIG_64BIT
709 	u64			last_update_time_copy;
710 #endif
711 	struct {
712 		raw_spinlock_t	lock ____cacheline_aligned;
713 		int		nr;
714 		unsigned long	load_avg;
715 		unsigned long	util_avg;
716 		unsigned long	runnable_avg;
717 	} removed;
718 
719 #ifdef CONFIG_FAIR_GROUP_SCHED
720 	u64			last_update_tg_load_avg;
721 	unsigned long		tg_load_avg_contrib;
722 	long			propagate;
723 	long			prop_runnable_sum;
724 
725 	/*
726 	 *   h_load = weight * f(tg)
727 	 *
728 	 * Where f(tg) is the recursive weight fraction assigned to
729 	 * this group.
730 	 */
731 	unsigned long		h_load;
732 	u64			last_h_load_update;
733 	struct sched_entity	*h_load_next;
734 
735 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
736 
737 	/*
738 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
739 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
740 	 * (like users, containers etc.)
741 	 *
742 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
743 	 * This list is used during load balance.
744 	 */
745 	int			on_list;
746 	struct list_head	leaf_cfs_rq_list;
747 	struct task_group	*tg;	/* Group that "owns" this runqueue */
748 
749 	/* Locally cached copy of our task_group's idle value */
750 	int			idle;
751 
752 # ifdef CONFIG_CFS_BANDWIDTH
753 	int			runtime_enabled;
754 	s64			runtime_remaining;
755 
756 	u64			throttled_pelt_idle;
757 #  ifndef CONFIG_64BIT
758 	u64                     throttled_pelt_idle_copy;
759 #  endif
760 	u64			throttled_clock;
761 	u64			throttled_clock_pelt;
762 	u64			throttled_clock_pelt_time;
763 	u64			throttled_clock_self;
764 	u64			throttled_clock_self_time;
765 	bool			throttled:1;
766 	bool			pelt_clock_throttled:1;
767 	int			throttle_count;
768 	struct list_head	throttled_list;
769 	struct list_head	throttled_csd_list;
770 	struct list_head        throttled_limbo_list;
771 # endif /* CONFIG_CFS_BANDWIDTH */
772 #endif /* CONFIG_FAIR_GROUP_SCHED */
773 };
774 
775 #ifdef CONFIG_SCHED_CLASS_EXT
776 /* scx_rq->flags, protected by the rq lock */
777 enum scx_rq_flags {
778 	/*
779 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
780 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
781 	 * only while the BPF scheduler considers the CPU to be online.
782 	 */
783 	SCX_RQ_ONLINE		= 1 << 0,
784 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
785 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
786 	SCX_RQ_BYPASSING	= 1 << 4,
787 	SCX_RQ_CLK_VALID	= 1 << 5, /* RQ clock is fresh and valid */
788 	SCX_RQ_BAL_CB_PENDING	= 1 << 6, /* must queue a cb after dispatching */
789 
790 	SCX_RQ_IN_WAKEUP	= 1 << 16,
791 	SCX_RQ_IN_BALANCE	= 1 << 17,
792 };
793 
794 struct scx_rq {
795 	struct scx_dispatch_q	local_dsq;
796 	struct list_head	runnable_list;		/* runnable tasks on this rq */
797 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
798 	unsigned long		ops_qseq;
799 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
800 	u32			nr_running;
801 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
802 	bool			cpu_released;
803 	u32			flags;
804 	u64			clock;			/* current per-rq clock -- see scx_bpf_now() */
805 	cpumask_var_t		cpus_to_kick;
806 	cpumask_var_t		cpus_to_kick_if_idle;
807 	cpumask_var_t		cpus_to_preempt;
808 	cpumask_var_t		cpus_to_wait;
809 	unsigned long		kick_sync;
810 	local_t			reenq_local_deferred;
811 	struct balance_callback	deferred_bal_cb;
812 	struct irq_work		deferred_irq_work;
813 	struct irq_work		kick_cpus_irq_work;
814 	struct scx_dispatch_q	bypass_dsq;
815 };
816 #endif /* CONFIG_SCHED_CLASS_EXT */
817 
818 static inline int rt_bandwidth_enabled(void)
819 {
820 	return sysctl_sched_rt_runtime >= 0;
821 }
822 
823 /* RT IPI pull logic requires IRQ_WORK */
824 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
825 # define HAVE_RT_PUSH_IPI
826 #endif
827 
828 /* Real-Time classes' related field in a runqueue: */
829 struct rt_rq {
830 	struct rt_prio_array	active;
831 	unsigned int		rt_nr_running;
832 	unsigned int		rr_nr_running;
833 	struct {
834 		int		curr; /* highest queued rt task prio */
835 		int		next; /* next highest */
836 	} highest_prio;
837 	bool			overloaded;
838 	struct plist_head	pushable_tasks;
839 
840 	int			rt_queued;
841 
842 #ifdef CONFIG_RT_GROUP_SCHED
843 	int			rt_throttled;
844 	u64			rt_time; /* consumed RT time, goes up in update_curr_rt */
845 	u64			rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
846 	/* Nests inside the rq lock: */
847 	raw_spinlock_t		rt_runtime_lock;
848 
849 	unsigned int		rt_nr_boosted;
850 
851 	struct rq		*rq; /* this is always top-level rq, cache? */
852 #endif
853 #ifdef CONFIG_CGROUP_SCHED
854 	struct task_group	*tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
855 #endif
856 };
857 
858 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
859 {
860 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
861 }
862 
863 /* Deadline class' related fields in a runqueue */
864 struct dl_rq {
865 	/* runqueue is an rbtree, ordered by deadline */
866 	struct rb_root_cached	root;
867 
868 	unsigned int		dl_nr_running;
869 
870 	/*
871 	 * Deadline values of the currently executing and the
872 	 * earliest ready task on this rq. Caching these facilitates
873 	 * the decision whether or not a ready but not running task
874 	 * should migrate somewhere else.
875 	 */
876 	struct {
877 		u64		curr;
878 		u64		next;
879 	} earliest_dl;
880 
881 	bool			overloaded;
882 
883 	/*
884 	 * Tasks on this rq that can be pushed away. They are kept in
885 	 * an rb-tree, ordered by tasks' deadlines, with caching
886 	 * of the leftmost (earliest deadline) element.
887 	 */
888 	struct rb_root_cached	pushable_dl_tasks_root;
889 
890 	/*
891 	 * "Active utilization" for this runqueue: increased when a
892 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
893 	 * task blocks
894 	 */
895 	u64			running_bw;
896 
897 	/*
898 	 * Utilization of the tasks "assigned" to this runqueue (including
899 	 * the tasks that are in runqueue and the tasks that executed on this
900 	 * CPU and blocked). Increased when a task moves to this runqueue, and
901 	 * decreased when the task moves away (migrates, changes scheduling
902 	 * policy, or terminates).
903 	 * This is needed to compute the "inactive utilization" for the
904 	 * runqueue (inactive utilization = this_bw - running_bw).
905 	 */
906 	u64			this_bw;
907 	u64			extra_bw;
908 
909 	/*
910 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
911 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
912 	 */
913 	u64			max_bw;
914 
915 	/*
916 	 * Inverse of the fraction of CPU utilization that can be reclaimed
917 	 * by the GRUB algorithm.
918 	 */
919 	u64			bw_ratio;
920 };
921 
922 #ifdef CONFIG_FAIR_GROUP_SCHED
923 
924 /* An entity is a task if it doesn't "own" a runqueue */
925 #define entity_is_task(se)	(!se->my_q)
926 
927 static inline void se_update_runnable(struct sched_entity *se)
928 {
929 	if (!entity_is_task(se))
930 		se->runnable_weight = se->my_q->h_nr_runnable;
931 }
932 
933 static inline long se_runnable(struct sched_entity *se)
934 {
935 	if (se->sched_delayed)
936 		return false;
937 
938 	if (entity_is_task(se))
939 		return !!se->on_rq;
940 	else
941 		return se->runnable_weight;
942 }
943 
944 #else /* !CONFIG_FAIR_GROUP_SCHED: */
945 
946 #define entity_is_task(se)	1
947 
948 static inline void se_update_runnable(struct sched_entity *se) { }
949 
950 static inline long se_runnable(struct sched_entity *se)
951 {
952 	if (se->sched_delayed)
953 		return false;
954 
955 	return !!se->on_rq;
956 }
957 
958 #endif /* !CONFIG_FAIR_GROUP_SCHED */
959 
960 /*
961  * XXX we want to get rid of these helpers and use the full load resolution.
962  */
963 static inline long se_weight(struct sched_entity *se)
964 {
965 	return scale_load_down(se->load.weight);
966 }
967 
968 
969 static inline bool sched_asym_prefer(int a, int b)
970 {
971 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
972 }
973 
974 struct perf_domain {
975 	struct em_perf_domain *em_pd;
976 	struct perf_domain *next;
977 	struct rcu_head rcu;
978 };
979 
980 /*
981  * We add the notion of a root-domain which will be used to define per-domain
982  * variables. Each exclusive cpuset essentially defines an island domain by
983  * fully partitioning the member CPUs from any other cpuset. Whenever a new
984  * exclusive cpuset is created, we also create and attach a new root-domain
985  * object.
986  *
987  */
988 struct root_domain {
989 	atomic_t		refcount;
990 	atomic_t		rto_count;
991 	struct rcu_head		rcu;
992 	cpumask_var_t		span;
993 	cpumask_var_t		online;
994 
995 	/*
996 	 * Indicate pullable load on at least one CPU, e.g:
997 	 * - More than one runnable task
998 	 * - Running task is misfit
999 	 */
1000 	bool			overloaded;
1001 
1002 	/* Indicate one or more CPUs over-utilized (tipping point) */
1003 	bool			overutilized;
1004 
1005 	/*
1006 	 * The bit corresponding to a CPU gets set here if such CPU has more
1007 	 * than one runnable -deadline task (as it is below for RT tasks).
1008 	 */
1009 	cpumask_var_t		dlo_mask;
1010 	atomic_t		dlo_count;
1011 	struct dl_bw		dl_bw;
1012 	struct cpudl		cpudl;
1013 
1014 	/*
1015 	 * Indicate whether a root_domain's dl_bw has been checked or
1016 	 * updated. It's monotonously increasing value.
1017 	 *
1018 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1019 	 * that u64 is 'big enough'. So that shouldn't be a concern.
1020 	 */
1021 	u64 visit_cookie;
1022 
1023 #ifdef HAVE_RT_PUSH_IPI
1024 	/*
1025 	 * For IPI pull requests, loop across the rto_mask.
1026 	 */
1027 	struct irq_work		rto_push_work;
1028 	raw_spinlock_t		rto_lock;
1029 	/* These are only updated and read within rto_lock */
1030 	int			rto_loop;
1031 	int			rto_cpu;
1032 	/* These atomics are updated outside of a lock */
1033 	atomic_t		rto_loop_next;
1034 	atomic_t		rto_loop_start;
1035 #endif /* HAVE_RT_PUSH_IPI */
1036 	/*
1037 	 * The "RT overload" flag: it gets set if a CPU has more than
1038 	 * one runnable RT task.
1039 	 */
1040 	cpumask_var_t		rto_mask;
1041 	struct cpupri		cpupri;
1042 
1043 	/*
1044 	 * NULL-terminated list of performance domains intersecting with the
1045 	 * CPUs of the rd. Protected by RCU.
1046 	 */
1047 	struct perf_domain __rcu *pd;
1048 };
1049 
1050 extern void init_defrootdomain(void);
1051 extern int sched_init_domains(const struct cpumask *cpu_map);
1052 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1053 extern void sched_get_rd(struct root_domain *rd);
1054 extern void sched_put_rd(struct root_domain *rd);
1055 
1056 static inline int get_rd_overloaded(struct root_domain *rd)
1057 {
1058 	return READ_ONCE(rd->overloaded);
1059 }
1060 
1061 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1062 {
1063 	if (get_rd_overloaded(rd) != status)
1064 		WRITE_ONCE(rd->overloaded, status);
1065 }
1066 
1067 #ifdef HAVE_RT_PUSH_IPI
1068 extern void rto_push_irq_work_func(struct irq_work *work);
1069 #endif
1070 
1071 #ifdef CONFIG_UCLAMP_TASK
1072 /*
1073  * struct uclamp_bucket - Utilization clamp bucket
1074  * @value: utilization clamp value for tasks on this clamp bucket
1075  * @tasks: number of RUNNABLE tasks on this clamp bucket
1076  *
1077  * Keep track of how many tasks are RUNNABLE for a given utilization
1078  * clamp value.
1079  */
1080 struct uclamp_bucket {
1081 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1082 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1083 };
1084 
1085 /*
1086  * struct uclamp_rq - rq's utilization clamp
1087  * @value: currently active clamp values for a rq
1088  * @bucket: utilization clamp buckets affecting a rq
1089  *
1090  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1091  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1092  * (or actually running) with that value.
1093  *
1094  * There are up to UCLAMP_CNT possible different clamp values, currently there
1095  * are only two: minimum utilization and maximum utilization.
1096  *
1097  * All utilization clamping values are MAX aggregated, since:
1098  * - for util_min: we want to run the CPU at least at the max of the minimum
1099  *   utilization required by its currently RUNNABLE tasks.
1100  * - for util_max: we want to allow the CPU to run up to the max of the
1101  *   maximum utilization allowed by its currently RUNNABLE tasks.
1102  *
1103  * Since on each system we expect only a limited number of different
1104  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1105  * the metrics required to compute all the per-rq utilization clamp values.
1106  */
1107 struct uclamp_rq {
1108 	unsigned int value;
1109 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1110 };
1111 
1112 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1113 #endif /* CONFIG_UCLAMP_TASK */
1114 
1115 /*
1116  * This is the main, per-CPU runqueue data structure.
1117  *
1118  * Locking rule: those places that want to lock multiple runqueues
1119  * (such as the load balancing or the thread migration code), lock
1120  * acquire operations must be ordered by ascending &runqueue.
1121  */
1122 struct rq {
1123 	/*
1124 	 * The following members are loaded together, without holding the
1125 	 * rq->lock, in an extremely hot loop in update_sg_lb_stats()
1126 	 * (called from pick_next_task()). To reduce cache pollution from
1127 	 * this operation, they are placed together on this dedicated cache
1128 	 * line. Even though some of them are frequently modified, they are
1129 	 * loaded much more frequently than they are stored.
1130 	 */
1131 	unsigned int		nr_running;
1132 #ifdef CONFIG_NUMA_BALANCING
1133 	unsigned int		nr_numa_running;
1134 	unsigned int		nr_preferred_running;
1135 #endif
1136 	unsigned int		ttwu_pending;
1137 	unsigned long		cpu_capacity;
1138 #ifdef CONFIG_SCHED_PROXY_EXEC
1139 	struct task_struct __rcu	*donor;  /* Scheduling context */
1140 	struct task_struct __rcu	*curr;   /* Execution context */
1141 #else
1142 	union {
1143 		struct task_struct __rcu *donor; /* Scheduler context */
1144 		struct task_struct __rcu *curr;  /* Execution context */
1145 	};
1146 #endif
1147 	struct task_struct	*idle;
1148 	/* padding left here deliberately */
1149 
1150 	/*
1151 	 * The next cacheline holds the (hot) runqueue lock, as well as
1152 	 * some other less performance-critical fields.
1153 	 */
1154 	u64			nr_switches	____cacheline_aligned;
1155 
1156 	/* runqueue lock: */
1157 	raw_spinlock_t		__lock;
1158 
1159 #ifdef CONFIG_NO_HZ_COMMON
1160 	unsigned int		nohz_tick_stopped;
1161 	atomic_t		nohz_flags;
1162 	unsigned int		has_blocked_load;
1163 	unsigned long		last_blocked_load_update_tick;
1164 	call_single_data_t	nohz_csd;
1165 #endif /* CONFIG_NO_HZ_COMMON */
1166 
1167 #ifdef CONFIG_UCLAMP_TASK
1168 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1169 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1170 	unsigned int		uclamp_flags;
1171 #define UCLAMP_FLAG_IDLE 0x01
1172 #endif
1173 
1174 	struct cfs_rq		cfs;
1175 	struct rt_rq		rt;
1176 	struct dl_rq		dl;
1177 #ifdef CONFIG_SCHED_CLASS_EXT
1178 	struct scx_rq		scx;
1179 	struct sched_dl_entity	ext_server;
1180 #endif
1181 
1182 	struct sched_dl_entity	fair_server;
1183 
1184 #ifdef CONFIG_FAIR_GROUP_SCHED
1185 	/* list of leaf cfs_rq on this CPU: */
1186 	struct list_head	leaf_cfs_rq_list;
1187 	struct list_head	*tmp_alone_branch;
1188 #endif /* CONFIG_FAIR_GROUP_SCHED */
1189 
1190 #ifdef CONFIG_NUMA_BALANCING
1191 	unsigned int		numa_migrate_on;
1192 #endif
1193 	/*
1194 	 * This is part of a global counter where only the total sum
1195 	 * over all CPUs matters. A task can increase this counter on
1196 	 * one CPU and if it got migrated afterwards it may decrease
1197 	 * it on another CPU. Always updated under the runqueue lock:
1198 	 */
1199 	unsigned long		nr_uninterruptible;
1200 
1201 	struct sched_dl_entity	*dl_server;
1202 	struct task_struct	*stop;
1203 	const struct sched_class *next_class;
1204 	unsigned long		next_balance;
1205 	struct mm_struct	*prev_mm;
1206 
1207 	/*
1208 	 * The following fields of clock data are frequently referenced
1209 	 * and updated together, and should go on their own cache line.
1210 	 */
1211 	u64			clock_task ____cacheline_aligned;
1212 	u64			clock_pelt;
1213 	u64			clock;
1214 	unsigned long		lost_idle_time;
1215 	unsigned int		clock_update_flags;
1216 	u64			clock_pelt_idle;
1217 	u64			clock_idle;
1218 
1219 #ifndef CONFIG_64BIT
1220 	u64			clock_pelt_idle_copy;
1221 	u64			clock_idle_copy;
1222 #endif
1223 
1224 	u64 last_seen_need_resched_ns;
1225 	int ticks_without_resched;
1226 
1227 #ifdef CONFIG_MEMBARRIER
1228 	int membarrier_state;
1229 #endif
1230 
1231 	struct root_domain		*rd;
1232 	struct sched_domain __rcu	*sd;
1233 
1234 	struct balance_callback *balance_callback;
1235 
1236 	unsigned char		nohz_idle_balance;
1237 	unsigned char		idle_balance;
1238 
1239 	unsigned long		misfit_task_load;
1240 
1241 	/* For active balancing */
1242 	int			active_balance;
1243 	int			push_cpu;
1244 	struct cpu_stop_work	active_balance_work;
1245 
1246 	/* CPU of this runqueue: */
1247 	int			cpu;
1248 	int			online;
1249 
1250 	struct list_head cfs_tasks;
1251 
1252 	struct sched_avg	avg_rt;
1253 	struct sched_avg	avg_dl;
1254 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1255 	struct sched_avg	avg_irq;
1256 #endif
1257 #ifdef CONFIG_SCHED_HW_PRESSURE
1258 	struct sched_avg	avg_hw;
1259 #endif
1260 	u64			idle_stamp;
1261 	u64			avg_idle;
1262 
1263 	/* This is used to determine avg_idle's max value */
1264 	u64			max_idle_balance_cost;
1265 
1266 #ifdef CONFIG_HOTPLUG_CPU
1267 	struct rcuwait		hotplug_wait;
1268 #endif
1269 
1270 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1271 	u64			prev_irq_time;
1272 	u64			psi_irq_time;
1273 #endif
1274 #ifdef CONFIG_PARAVIRT
1275 	u64			prev_steal_time;
1276 #endif
1277 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1278 	u64			prev_steal_time_rq;
1279 #endif
1280 
1281 	/* calc_load related fields */
1282 	unsigned long		calc_load_update;
1283 	long			calc_load_active;
1284 
1285 #ifdef CONFIG_SCHED_HRTICK
1286 	call_single_data_t	hrtick_csd;
1287 	struct hrtimer		hrtick_timer;
1288 	ktime_t			hrtick_time;
1289 #endif
1290 
1291 #ifdef CONFIG_SCHEDSTATS
1292 	/* latency stats */
1293 	struct sched_info	rq_sched_info;
1294 	unsigned long long	rq_cpu_time;
1295 
1296 	/* sys_sched_yield() stats */
1297 	unsigned int		yld_count;
1298 
1299 	/* schedule() stats */
1300 	unsigned int		sched_count;
1301 	unsigned int		sched_goidle;
1302 
1303 	/* try_to_wake_up() stats */
1304 	unsigned int		ttwu_count;
1305 	unsigned int		ttwu_local;
1306 #endif
1307 
1308 #ifdef CONFIG_CPU_IDLE
1309 	/* Must be inspected within a RCU lock section */
1310 	struct cpuidle_state	*idle_state;
1311 #endif
1312 
1313 	unsigned int		nr_pinned;
1314 	unsigned int		push_busy;
1315 	struct cpu_stop_work	push_work;
1316 
1317 #ifdef CONFIG_SCHED_CORE
1318 	/* per rq */
1319 	struct rq		*core;
1320 	struct task_struct	*core_pick;
1321 	struct sched_dl_entity	*core_dl_server;
1322 	unsigned int		core_enabled;
1323 	unsigned int		core_sched_seq;
1324 	struct rb_root		core_tree;
1325 
1326 	/* shared state -- careful with sched_core_cpu_deactivate() */
1327 	unsigned int		core_task_seq;
1328 	unsigned int		core_pick_seq;
1329 	unsigned long		core_cookie;
1330 	unsigned int		core_forceidle_count;
1331 	unsigned int		core_forceidle_seq;
1332 	unsigned int		core_forceidle_occupation;
1333 	u64			core_forceidle_start;
1334 #endif /* CONFIG_SCHED_CORE */
1335 
1336 	/* Scratch cpumask to be temporarily used under rq_lock */
1337 	cpumask_var_t		scratch_mask;
1338 
1339 #ifdef CONFIG_CFS_BANDWIDTH
1340 	call_single_data_t	cfsb_csd;
1341 	struct list_head	cfsb_csd_list;
1342 #endif
1343 
1344 	atomic_t		nr_iowait;
1345 } __no_randomize_layout;
1346 
1347 #ifdef CONFIG_FAIR_GROUP_SCHED
1348 
1349 /* CPU runqueue to which this cfs_rq is attached */
1350 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1351 {
1352 	return cfs_rq->rq;
1353 }
1354 
1355 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1356 
1357 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1358 {
1359 	return container_of(cfs_rq, struct rq, cfs);
1360 }
1361 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1362 
1363 static inline int cpu_of(struct rq *rq)
1364 {
1365 	return rq->cpu;
1366 }
1367 
1368 #define MDF_PUSH		0x01
1369 
1370 static inline bool is_migration_disabled(struct task_struct *p)
1371 {
1372 	return p->migration_disabled;
1373 }
1374 
1375 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1376 DECLARE_PER_CPU(struct rnd_state, sched_rnd_state);
1377 
1378 static inline u32 sched_rng(void)
1379 {
1380 	return prandom_u32_state(this_cpu_ptr(&sched_rnd_state));
1381 }
1382 
1383 static __always_inline struct rq *__this_rq(void)
1384 {
1385 	return this_cpu_ptr(&runqueues);
1386 }
1387 
1388 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1389 #define this_rq()		__this_rq()
1390 #define task_rq(p)		cpu_rq(task_cpu(p))
1391 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1392 #define raw_rq()		raw_cpu_ptr(&runqueues)
1393 
1394 static inline bool idle_rq(struct rq *rq)
1395 {
1396 	return rq->curr == rq->idle && !rq->nr_running && !rq->ttwu_pending;
1397 }
1398 
1399 /**
1400  * available_idle_cpu - is a given CPU idle for enqueuing work.
1401  * @cpu: the CPU in question.
1402  *
1403  * Return: 1 if the CPU is currently idle. 0 otherwise.
1404  */
1405 static inline bool available_idle_cpu(int cpu)
1406 {
1407 	if (!idle_rq(cpu_rq(cpu)))
1408 		return 0;
1409 
1410 	if (vcpu_is_preempted(cpu))
1411 		return 0;
1412 
1413 	return 1;
1414 }
1415 
1416 #ifdef CONFIG_SCHED_PROXY_EXEC
1417 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1418 {
1419 	rcu_assign_pointer(rq->donor, t);
1420 }
1421 #else
1422 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1423 {
1424 	/* Do nothing */
1425 }
1426 #endif
1427 
1428 #ifdef CONFIG_SCHED_CORE
1429 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1430 
1431 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1432 
1433 static inline bool sched_core_enabled(struct rq *rq)
1434 {
1435 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1436 }
1437 
1438 static inline bool sched_core_disabled(void)
1439 {
1440 	return !static_branch_unlikely(&__sched_core_enabled);
1441 }
1442 
1443 /*
1444  * Be careful with this function; not for general use. The return value isn't
1445  * stable unless you actually hold a relevant rq->__lock.
1446  */
1447 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1448 {
1449 	if (sched_core_enabled(rq))
1450 		return &rq->core->__lock;
1451 
1452 	return &rq->__lock;
1453 }
1454 
1455 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1456 	__returns_ctx_lock(rq_lockp(rq)) /* alias them */
1457 {
1458 	if (rq->core_enabled)
1459 		return &rq->core->__lock;
1460 
1461 	return &rq->__lock;
1462 }
1463 
1464 extern bool
1465 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1466 
1467 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1468 
1469 /*
1470  * Helpers to check if the CPU's core cookie matches with the task's cookie
1471  * when core scheduling is enabled.
1472  * A special case is that the task's cookie always matches with CPU's core
1473  * cookie if the CPU is in an idle core.
1474  */
1475 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1476 {
1477 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1478 	if (!sched_core_enabled(rq))
1479 		return true;
1480 
1481 	return rq->core->core_cookie == p->core_cookie;
1482 }
1483 
1484 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1485 {
1486 	bool idle_core = true;
1487 	int cpu;
1488 
1489 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1490 	if (!sched_core_enabled(rq))
1491 		return true;
1492 
1493 	if (rq->core->core_cookie == p->core_cookie)
1494 		return true;
1495 
1496 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1497 		if (!available_idle_cpu(cpu)) {
1498 			idle_core = false;
1499 			break;
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * A CPU in an idle core is always the best choice for tasks with
1505 	 * cookies.
1506 	 */
1507 	return idle_core;
1508 }
1509 
1510 static inline bool sched_group_cookie_match(struct rq *rq,
1511 					    struct task_struct *p,
1512 					    struct sched_group *group)
1513 {
1514 	int cpu;
1515 
1516 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1517 	if (!sched_core_enabled(rq))
1518 		return true;
1519 
1520 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1521 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1522 			return true;
1523 	}
1524 	return false;
1525 }
1526 
1527 static inline bool sched_core_enqueued(struct task_struct *p)
1528 {
1529 	return !RB_EMPTY_NODE(&p->core_node);
1530 }
1531 
1532 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1533 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1534 
1535 extern void sched_core_get(void);
1536 extern void sched_core_put(void);
1537 
1538 #else /* !CONFIG_SCHED_CORE: */
1539 
1540 static inline bool sched_core_enabled(struct rq *rq)
1541 {
1542 	return false;
1543 }
1544 
1545 static inline bool sched_core_disabled(void)
1546 {
1547 	return true;
1548 }
1549 
1550 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1551 {
1552 	return &rq->__lock;
1553 }
1554 
1555 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1556 	__returns_ctx_lock(rq_lockp(rq)) /* alias them */
1557 {
1558 	return &rq->__lock;
1559 }
1560 
1561 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1562 {
1563 	return true;
1564 }
1565 
1566 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1567 {
1568 	return true;
1569 }
1570 
1571 static inline bool sched_group_cookie_match(struct rq *rq,
1572 					    struct task_struct *p,
1573 					    struct sched_group *group)
1574 {
1575 	return true;
1576 }
1577 
1578 #endif /* !CONFIG_SCHED_CORE */
1579 
1580 #ifdef CONFIG_RT_GROUP_SCHED
1581 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
1582 DECLARE_STATIC_KEY_FALSE(rt_group_sched);
1583 static inline bool rt_group_sched_enabled(void)
1584 {
1585 	return static_branch_unlikely(&rt_group_sched);
1586 }
1587 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
1588 DECLARE_STATIC_KEY_TRUE(rt_group_sched);
1589 static inline bool rt_group_sched_enabled(void)
1590 {
1591 	return static_branch_likely(&rt_group_sched);
1592 }
1593 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
1594 #else /* !CONFIG_RT_GROUP_SCHED: */
1595 # define rt_group_sched_enabled()	false
1596 #endif /* !CONFIG_RT_GROUP_SCHED */
1597 
1598 static inline void lockdep_assert_rq_held(struct rq *rq)
1599 	__assumes_ctx_lock(__rq_lockp(rq))
1600 {
1601 	lockdep_assert_held(__rq_lockp(rq));
1602 }
1603 
1604 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
1605 	__acquires(__rq_lockp(rq));
1606 
1607 extern bool raw_spin_rq_trylock(struct rq *rq)
1608 	__cond_acquires(true, __rq_lockp(rq));
1609 
1610 extern void raw_spin_rq_unlock(struct rq *rq)
1611 	__releases(__rq_lockp(rq));
1612 
1613 static inline void raw_spin_rq_lock(struct rq *rq)
1614 	__acquires(__rq_lockp(rq))
1615 {
1616 	raw_spin_rq_lock_nested(rq, 0);
1617 }
1618 
1619 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1620 	__acquires(__rq_lockp(rq))
1621 {
1622 	local_irq_disable();
1623 	raw_spin_rq_lock(rq);
1624 }
1625 
1626 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1627 	__releases(__rq_lockp(rq))
1628 {
1629 	raw_spin_rq_unlock(rq);
1630 	local_irq_enable();
1631 }
1632 
1633 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1634 	__acquires(__rq_lockp(rq))
1635 {
1636 	unsigned long flags;
1637 
1638 	local_irq_save(flags);
1639 	raw_spin_rq_lock(rq);
1640 
1641 	return flags;
1642 }
1643 
1644 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1645 	__releases(__rq_lockp(rq))
1646 {
1647 	raw_spin_rq_unlock(rq);
1648 	local_irq_restore(flags);
1649 }
1650 
1651 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1652 do {						\
1653 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1654 } while (0)
1655 
1656 #ifdef CONFIG_SCHED_SMT
1657 extern void __update_idle_core(struct rq *rq);
1658 
1659 static inline void update_idle_core(struct rq *rq)
1660 {
1661 	if (static_branch_unlikely(&sched_smt_present))
1662 		__update_idle_core(rq);
1663 }
1664 
1665 #else /* !CONFIG_SCHED_SMT: */
1666 static inline void update_idle_core(struct rq *rq) { }
1667 #endif /* !CONFIG_SCHED_SMT */
1668 
1669 #ifdef CONFIG_FAIR_GROUP_SCHED
1670 
1671 static inline struct task_struct *task_of(struct sched_entity *se)
1672 {
1673 	WARN_ON_ONCE(!entity_is_task(se));
1674 	return container_of(se, struct task_struct, se);
1675 }
1676 
1677 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1678 {
1679 	return p->se.cfs_rq;
1680 }
1681 
1682 /* runqueue on which this entity is (to be) queued */
1683 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1684 {
1685 	return se->cfs_rq;
1686 }
1687 
1688 /* runqueue "owned" by this group */
1689 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1690 {
1691 	return grp->my_q;
1692 }
1693 
1694 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1695 
1696 #define task_of(_se)		container_of(_se, struct task_struct, se)
1697 
1698 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1699 {
1700 	return &task_rq(p)->cfs;
1701 }
1702 
1703 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1704 {
1705 	const struct task_struct *p = task_of(se);
1706 	struct rq *rq = task_rq(p);
1707 
1708 	return &rq->cfs;
1709 }
1710 
1711 /* runqueue "owned" by this group */
1712 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1713 {
1714 	return NULL;
1715 }
1716 
1717 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1718 
1719 extern void update_rq_avg_idle(struct rq *rq);
1720 extern void update_rq_clock(struct rq *rq);
1721 
1722 /*
1723  * rq::clock_update_flags bits
1724  *
1725  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1726  *  call to __schedule(). This is an optimisation to avoid
1727  *  neighbouring rq clock updates.
1728  *
1729  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1730  *  in effect and calls to update_rq_clock() are being ignored.
1731  *
1732  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1733  *  made to update_rq_clock() since the last time rq::lock was pinned.
1734  *
1735  * If inside of __schedule(), clock_update_flags will have been
1736  * shifted left (a left shift is a cheap operation for the fast path
1737  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1738  *
1739  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1740  *
1741  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1742  * one position though, because the next rq_unpin_lock() will shift it
1743  * back.
1744  */
1745 #define RQCF_REQ_SKIP		0x01
1746 #define RQCF_ACT_SKIP		0x02
1747 #define RQCF_UPDATED		0x04
1748 
1749 static inline void assert_clock_updated(struct rq *rq)
1750 {
1751 	/*
1752 	 * The only reason for not seeing a clock update since the
1753 	 * last rq_pin_lock() is if we're currently skipping updates.
1754 	 */
1755 	WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
1756 }
1757 
1758 static inline u64 rq_clock(struct rq *rq)
1759 {
1760 	lockdep_assert_rq_held(rq);
1761 	assert_clock_updated(rq);
1762 
1763 	return rq->clock;
1764 }
1765 
1766 static inline u64 rq_clock_task(struct rq *rq)
1767 {
1768 	lockdep_assert_rq_held(rq);
1769 	assert_clock_updated(rq);
1770 
1771 	return rq->clock_task;
1772 }
1773 
1774 static inline void rq_clock_skip_update(struct rq *rq)
1775 {
1776 	lockdep_assert_rq_held(rq);
1777 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1778 }
1779 
1780 /*
1781  * See rt task throttling, which is the only time a skip
1782  * request is canceled.
1783  */
1784 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1785 {
1786 	lockdep_assert_rq_held(rq);
1787 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1788 }
1789 
1790 /*
1791  * During cpu offlining and rq wide unthrottling, we can trigger
1792  * an update_rq_clock() for several cfs and rt runqueues (Typically
1793  * when using list_for_each_entry_*)
1794  * rq_clock_start_loop_update() can be called after updating the clock
1795  * once and before iterating over the list to prevent multiple update.
1796  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1797  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1798  */
1799 static inline void rq_clock_start_loop_update(struct rq *rq)
1800 {
1801 	lockdep_assert_rq_held(rq);
1802 	WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
1803 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1804 }
1805 
1806 static inline void rq_clock_stop_loop_update(struct rq *rq)
1807 {
1808 	lockdep_assert_rq_held(rq);
1809 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1810 }
1811 
1812 struct rq_flags {
1813 	unsigned long flags;
1814 	struct pin_cookie cookie;
1815 	/*
1816 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1817 	 * current pin context is stashed here in case it needs to be
1818 	 * restored in rq_repin_lock().
1819 	 */
1820 	unsigned int clock_update_flags;
1821 };
1822 
1823 extern struct balance_callback balance_push_callback;
1824 
1825 #ifdef CONFIG_SCHED_CLASS_EXT
1826 extern const struct sched_class ext_sched_class;
1827 
1828 DECLARE_STATIC_KEY_FALSE(__scx_enabled);	/* SCX BPF scheduler loaded */
1829 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
1830 
1831 #define scx_enabled()		static_branch_unlikely(&__scx_enabled)
1832 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
1833 
1834 static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
1835 {
1836 	if (!scx_enabled())
1837 		return;
1838 	WRITE_ONCE(rq->scx.clock, clock);
1839 	smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
1840 }
1841 
1842 static inline void scx_rq_clock_invalidate(struct rq *rq)
1843 {
1844 	if (!scx_enabled())
1845 		return;
1846 	WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
1847 }
1848 
1849 #else /* !CONFIG_SCHED_CLASS_EXT: */
1850 #define scx_enabled()		false
1851 #define scx_switched_all()	false
1852 
1853 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
1854 static inline void scx_rq_clock_invalidate(struct rq *rq) {}
1855 #endif /* !CONFIG_SCHED_CLASS_EXT */
1856 
1857 /*
1858  * Lockdep annotation that avoids accidental unlocks; it's like a
1859  * sticky/continuous lockdep_assert_held().
1860  *
1861  * This avoids code that has access to 'struct rq *rq' (basically everything in
1862  * the scheduler) from accidentally unlocking the rq if they do not also have a
1863  * copy of the (on-stack) 'struct rq_flags rf'.
1864  *
1865  * Also see Documentation/locking/lockdep-design.rst.
1866  */
1867 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1868 {
1869 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1870 
1871 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1872 	rf->clock_update_flags = 0;
1873 	WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1874 }
1875 
1876 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1877 {
1878 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1879 		rf->clock_update_flags = RQCF_UPDATED;
1880 
1881 	scx_rq_clock_invalidate(rq);
1882 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1883 }
1884 
1885 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1886 {
1887 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1888 
1889 	/*
1890 	 * Restore the value we stashed in @rf for this pin context.
1891 	 */
1892 	rq->clock_update_flags |= rf->clock_update_flags;
1893 }
1894 
1895 #define __task_rq_lock(...) __acquire_ret(___task_rq_lock(__VA_ARGS__), __rq_lockp(__ret))
1896 extern struct rq *___task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires_ret;
1897 
1898 #define task_rq_lock(...) __acquire_ret(_task_rq_lock(__VA_ARGS__), __rq_lockp(__ret))
1899 extern struct rq *_task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1900 	__acquires(&p->pi_lock) __acquires_ret;
1901 
1902 static inline void
1903 __task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1904 	__releases(__rq_lockp(rq))
1905 {
1906 	rq_unpin_lock(rq, rf);
1907 	raw_spin_rq_unlock(rq);
1908 }
1909 
1910 static inline void
1911 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1912 	__releases(__rq_lockp(rq), &p->pi_lock)
1913 {
1914 	__task_rq_unlock(rq, p, rf);
1915 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1916 }
1917 
1918 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1919 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1920 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1921 		    struct rq *rq; struct rq_flags rf)
1922 DECLARE_LOCK_GUARD_1_ATTRS(task_rq_lock, __acquires(_T->pi_lock), __releases((*(struct task_struct **)_T)->pi_lock))
1923 #define class_task_rq_lock_constructor(_T) WITH_LOCK_GUARD_1_ATTRS(task_rq_lock, _T)
1924 
1925 DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct,
1926 		    _T->rq = __task_rq_lock(_T->lock, &_T->rf),
1927 		    __task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1928 		    struct rq *rq; struct rq_flags rf)
1929 
1930 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1931 	__acquires(__rq_lockp(rq))
1932 {
1933 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1934 	rq_pin_lock(rq, rf);
1935 }
1936 
1937 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1938 	__acquires(__rq_lockp(rq))
1939 {
1940 	raw_spin_rq_lock_irq(rq);
1941 	rq_pin_lock(rq, rf);
1942 }
1943 
1944 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1945 	__acquires(__rq_lockp(rq))
1946 {
1947 	raw_spin_rq_lock(rq);
1948 	rq_pin_lock(rq, rf);
1949 }
1950 
1951 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1952 	__releases(__rq_lockp(rq))
1953 {
1954 	rq_unpin_lock(rq, rf);
1955 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1956 }
1957 
1958 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1959 	__releases(__rq_lockp(rq))
1960 {
1961 	rq_unpin_lock(rq, rf);
1962 	raw_spin_rq_unlock_irq(rq);
1963 }
1964 
1965 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1966 	__releases(__rq_lockp(rq))
1967 {
1968 	rq_unpin_lock(rq, rf);
1969 	raw_spin_rq_unlock(rq);
1970 }
1971 
1972 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1973 		    rq_lock(_T->lock, &_T->rf),
1974 		    rq_unlock(_T->lock, &_T->rf),
1975 		    struct rq_flags rf)
1976 
1977 DECLARE_LOCK_GUARD_1_ATTRS(rq_lock, __acquires(__rq_lockp(_T)), __releases(__rq_lockp(*(struct rq **)_T)));
1978 #define class_rq_lock_constructor(_T) WITH_LOCK_GUARD_1_ATTRS(rq_lock, _T)
1979 
1980 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1981 		    rq_lock_irq(_T->lock, &_T->rf),
1982 		    rq_unlock_irq(_T->lock, &_T->rf),
1983 		    struct rq_flags rf)
1984 
1985 DECLARE_LOCK_GUARD_1_ATTRS(rq_lock_irq, __acquires(__rq_lockp(_T)), __releases(__rq_lockp(*(struct rq **)_T)));
1986 #define class_rq_lock_irq_constructor(_T) WITH_LOCK_GUARD_1_ATTRS(rq_lock_irq, _T)
1987 
1988 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1989 		    rq_lock_irqsave(_T->lock, &_T->rf),
1990 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1991 		    struct rq_flags rf)
1992 
1993 DECLARE_LOCK_GUARD_1_ATTRS(rq_lock_irqsave, __acquires(__rq_lockp(_T)), __releases(__rq_lockp(*(struct rq **)_T)));
1994 #define class_rq_lock_irqsave_constructor(_T) WITH_LOCK_GUARD_1_ATTRS(rq_lock_irqsave, _T)
1995 
1996 #define this_rq_lock_irq(...) __acquire_ret(_this_rq_lock_irq(__VA_ARGS__), __rq_lockp(__ret))
1997 static inline struct rq *_this_rq_lock_irq(struct rq_flags *rf) __acquires_ret
1998 {
1999 	struct rq *rq;
2000 
2001 	local_irq_disable();
2002 	rq = this_rq();
2003 	rq_lock(rq, rf);
2004 
2005 	return rq;
2006 }
2007 
2008 #ifdef CONFIG_NUMA
2009 
2010 enum numa_topology_type {
2011 	NUMA_DIRECT,
2012 	NUMA_GLUELESS_MESH,
2013 	NUMA_BACKPLANE,
2014 };
2015 
2016 extern enum numa_topology_type sched_numa_topology_type;
2017 extern int sched_max_numa_distance;
2018 extern bool find_numa_distance(int distance);
2019 extern void sched_init_numa(int offline_node);
2020 extern void sched_update_numa(int cpu, bool online);
2021 extern void sched_domains_numa_masks_set(unsigned int cpu);
2022 extern void sched_domains_numa_masks_clear(unsigned int cpu);
2023 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
2024 
2025 #else /* !CONFIG_NUMA: */
2026 
2027 static inline void sched_init_numa(int offline_node) { }
2028 static inline void sched_update_numa(int cpu, bool online) { }
2029 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
2030 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
2031 
2032 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2033 {
2034 	return nr_cpu_ids;
2035 }
2036 
2037 #endif /* !CONFIG_NUMA */
2038 
2039 #ifdef CONFIG_NUMA_BALANCING
2040 
2041 /* The regions in numa_faults array from task_struct */
2042 enum numa_faults_stats {
2043 	NUMA_MEM = 0,
2044 	NUMA_CPU,
2045 	NUMA_MEMBUF,
2046 	NUMA_CPUBUF
2047 };
2048 
2049 extern void sched_setnuma(struct task_struct *p, int node);
2050 extern int migrate_task_to(struct task_struct *p, int cpu);
2051 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
2052 			int cpu, int scpu);
2053 extern void init_numa_balancing(u64 clone_flags, struct task_struct *p);
2054 
2055 #else /* !CONFIG_NUMA_BALANCING: */
2056 
2057 static inline void
2058 init_numa_balancing(u64 clone_flags, struct task_struct *p)
2059 {
2060 }
2061 
2062 #endif /* !CONFIG_NUMA_BALANCING */
2063 
2064 static inline void
2065 queue_balance_callback(struct rq *rq,
2066 		       struct balance_callback *head,
2067 		       void (*func)(struct rq *rq))
2068 {
2069 	lockdep_assert_rq_held(rq);
2070 
2071 	/*
2072 	 * Don't (re)queue an already queued item; nor queue anything when
2073 	 * balance_push() is active, see the comment with
2074 	 * balance_push_callback.
2075 	 */
2076 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
2077 		return;
2078 
2079 	head->func = func;
2080 	head->next = rq->balance_callback;
2081 	rq->balance_callback = head;
2082 }
2083 
2084 #define rcu_dereference_sched_domain(p) \
2085 	rcu_dereference_all_check((p), lockdep_is_held(&sched_domains_mutex))
2086 
2087 /*
2088  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
2089  * See destroy_sched_domains: call_rcu for details.
2090  *
2091  * The domain tree of any CPU may only be accessed from within
2092  * preempt-disabled sections.
2093  */
2094 #define for_each_domain(cpu, __sd) \
2095 	for (__sd = rcu_dereference_sched_domain(cpu_rq(cpu)->sd); \
2096 			__sd; __sd = __sd->parent)
2097 
2098 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
2099 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
2100 static const unsigned int SD_SHARED_CHILD_MASK =
2101 #include <linux/sched/sd_flags.h>
2102 0;
2103 #undef SD_FLAG
2104 
2105 /**
2106  * highest_flag_domain - Return highest sched_domain containing flag.
2107  * @cpu:	The CPU whose highest level of sched domain is to
2108  *		be returned.
2109  * @flag:	The flag to check for the highest sched_domain
2110  *		for the given CPU.
2111  *
2112  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
2113  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
2114  */
2115 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2116 {
2117 	struct sched_domain *sd, *hsd = NULL;
2118 
2119 	for_each_domain(cpu, sd) {
2120 		if (sd->flags & flag) {
2121 			hsd = sd;
2122 			continue;
2123 		}
2124 
2125 		/*
2126 		 * Stop the search if @flag is known to be shared at lower
2127 		 * levels. It will not be found further up.
2128 		 */
2129 		if (flag & SD_SHARED_CHILD_MASK)
2130 			break;
2131 	}
2132 
2133 	return hsd;
2134 }
2135 
2136 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2137 {
2138 	struct sched_domain *sd;
2139 
2140 	for_each_domain(cpu, sd) {
2141 		if (sd->flags & flag)
2142 			break;
2143 	}
2144 
2145 	return sd;
2146 }
2147 
2148 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2149 DECLARE_PER_CPU(int, sd_llc_size);
2150 DECLARE_PER_CPU(int, sd_llc_id);
2151 DECLARE_PER_CPU(int, sd_share_id);
2152 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2153 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2154 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2155 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2156 
2157 extern struct static_key_false sched_asym_cpucapacity;
2158 extern struct static_key_false sched_cluster_active;
2159 
2160 static __always_inline bool sched_asym_cpucap_active(void)
2161 {
2162 	return static_branch_unlikely(&sched_asym_cpucapacity);
2163 }
2164 
2165 struct sched_group_capacity {
2166 	atomic_t		ref;
2167 	/*
2168 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2169 	 * for a single CPU.
2170 	 */
2171 	unsigned long		capacity;
2172 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2173 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2174 	unsigned long		next_update;
2175 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2176 
2177 	int			id;
2178 
2179 	unsigned long		cpumask[];		/* Balance mask */
2180 };
2181 
2182 struct sched_group {
2183 	struct sched_group	*next;			/* Must be a circular list */
2184 	atomic_t		ref;
2185 
2186 	unsigned int		group_weight;
2187 	unsigned int		cores;
2188 	struct sched_group_capacity *sgc;
2189 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2190 	int			flags;
2191 
2192 	/*
2193 	 * The CPUs this group covers.
2194 	 *
2195 	 * NOTE: this field is variable length. (Allocated dynamically
2196 	 * by attaching extra space to the end of the structure,
2197 	 * depending on how many CPUs the kernel has booted up with)
2198 	 */
2199 	unsigned long		cpumask[];
2200 };
2201 
2202 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2203 {
2204 	return to_cpumask(sg->cpumask);
2205 }
2206 
2207 /*
2208  * See build_balance_mask().
2209  */
2210 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2211 {
2212 	return to_cpumask(sg->sgc->cpumask);
2213 }
2214 
2215 extern int group_balance_cpu(struct sched_group *sg);
2216 
2217 extern void update_sched_domain_debugfs(void);
2218 extern void dirty_sched_domain_sysctl(int cpu);
2219 
2220 extern int sched_update_scaling(void);
2221 
2222 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2223 {
2224 	if (!p->user_cpus_ptr)
2225 		return cpu_possible_mask; /* &init_task.cpus_mask */
2226 	return p->user_cpus_ptr;
2227 }
2228 
2229 #ifdef CONFIG_CGROUP_SCHED
2230 
2231 /*
2232  * Return the group to which this tasks belongs.
2233  *
2234  * We cannot use task_css() and friends because the cgroup subsystem
2235  * changes that value before the cgroup_subsys::attach() method is called,
2236  * therefore we cannot pin it and might observe the wrong value.
2237  *
2238  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2239  * core changes this before calling sched_move_task().
2240  *
2241  * Instead we use a 'copy' which is updated from sched_move_task() while
2242  * holding both task_struct::pi_lock and rq::lock.
2243  */
2244 static inline struct task_group *task_group(struct task_struct *p)
2245 {
2246 	return p->sched_task_group;
2247 }
2248 
2249 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2250 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2251 {
2252 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2253 	struct task_group *tg = task_group(p);
2254 #endif
2255 
2256 #ifdef CONFIG_FAIR_GROUP_SCHED
2257 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2258 	p->se.cfs_rq = tg->cfs_rq[cpu];
2259 	p->se.parent = tg->se[cpu];
2260 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2261 #endif
2262 
2263 #ifdef CONFIG_RT_GROUP_SCHED
2264 	/*
2265 	 * p->rt.rt_rq is NULL initially and it is easier to assign
2266 	 * root_task_group's rt_rq than switching in rt_rq_of_se()
2267 	 * Clobbers tg(!)
2268 	 */
2269 	if (!rt_group_sched_enabled())
2270 		tg = &root_task_group;
2271 	p->rt.rt_rq  = tg->rt_rq[cpu];
2272 	p->rt.parent = tg->rt_se[cpu];
2273 #endif /* CONFIG_RT_GROUP_SCHED */
2274 }
2275 
2276 #else /* !CONFIG_CGROUP_SCHED: */
2277 
2278 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2279 
2280 static inline struct task_group *task_group(struct task_struct *p)
2281 {
2282 	return NULL;
2283 }
2284 
2285 #endif /* !CONFIG_CGROUP_SCHED */
2286 
2287 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2288 {
2289 	set_task_rq(p, cpu);
2290 #ifdef CONFIG_SMP
2291 	/*
2292 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2293 	 * successfully executed on another CPU. We must ensure that updates of
2294 	 * per-task data have been completed by this moment.
2295 	 */
2296 	smp_wmb();
2297 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2298 	p->wake_cpu = cpu;
2299 	rseq_sched_set_ids_changed(p);
2300 #endif /* CONFIG_SMP */
2301 }
2302 
2303 /*
2304  * Tunables:
2305  */
2306 
2307 #define SCHED_FEAT(name, enabled)	\
2308 	__SCHED_FEAT_##name ,
2309 
2310 enum {
2311 #include "features.h"
2312 	__SCHED_FEAT_NR,
2313 };
2314 
2315 #undef SCHED_FEAT
2316 
2317 /*
2318  * To support run-time toggling of sched features, all the translation units
2319  * (but core.c) reference the sysctl_sched_features defined in core.c.
2320  */
2321 extern __read_mostly unsigned int sysctl_sched_features;
2322 
2323 #ifdef CONFIG_JUMP_LABEL
2324 
2325 #define SCHED_FEAT(name, enabled)					\
2326 static __always_inline bool static_branch_##name(struct static_key *key) \
2327 {									\
2328 	return static_key_##enabled(key);				\
2329 }
2330 
2331 #include "features.h"
2332 #undef SCHED_FEAT
2333 
2334 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2335 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2336 
2337 #else /* !CONFIG_JUMP_LABEL: */
2338 
2339 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2340 
2341 #endif /* !CONFIG_JUMP_LABEL */
2342 
2343 extern struct static_key_false sched_numa_balancing;
2344 extern struct static_key_false sched_schedstats;
2345 
2346 static inline u64 global_rt_period(void)
2347 {
2348 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2349 }
2350 
2351 static inline u64 global_rt_runtime(void)
2352 {
2353 	if (sysctl_sched_rt_runtime < 0)
2354 		return RUNTIME_INF;
2355 
2356 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2357 }
2358 
2359 /*
2360  * Is p the current execution context?
2361  */
2362 static inline int task_current(struct rq *rq, struct task_struct *p)
2363 {
2364 	return rq->curr == p;
2365 }
2366 
2367 /*
2368  * Is p the current scheduling context?
2369  *
2370  * Note that it might be the current execution context at the same time if
2371  * rq->curr == rq->donor == p.
2372  */
2373 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2374 {
2375 	return rq->donor == p;
2376 }
2377 
2378 static inline bool task_is_blocked(struct task_struct *p)
2379 {
2380 	if (!sched_proxy_exec())
2381 		return false;
2382 
2383 	return !!p->blocked_on;
2384 }
2385 
2386 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2387 {
2388 	return p->on_cpu;
2389 }
2390 
2391 static inline int task_on_rq_queued(struct task_struct *p)
2392 {
2393 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2394 }
2395 
2396 static inline int task_on_rq_migrating(struct task_struct *p)
2397 {
2398 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2399 }
2400 
2401 /* Wake flags. The first three directly map to some SD flag value */
2402 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2403 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2404 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2405 
2406 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2407 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2408 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2409 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2410 
2411 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2412 static_assert(WF_FORK == SD_BALANCE_FORK);
2413 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2414 
2415 /*
2416  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2417  * of tasks with abnormal "nice" values across CPUs the contribution that
2418  * each task makes to its run queue's load is weighted according to its
2419  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2420  * scaled version of the new time slice allocation that they receive on time
2421  * slice expiry etc.
2422  */
2423 
2424 #define WEIGHT_IDLEPRIO		3
2425 #define WMULT_IDLEPRIO		1431655765
2426 
2427 extern const int		sched_prio_to_weight[40];
2428 extern const u32		sched_prio_to_wmult[40];
2429 
2430 /*
2431  * {de,en}queue flags:
2432  *
2433  * SLEEP/WAKEUP - task is no-longer/just-became runnable
2434  *
2435  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2436  *                are in a known state which allows modification. Such pairs
2437  *                should preserve as much state as possible.
2438  *
2439  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2440  *        in the runqueue. IOW the priority is allowed to change. Callers
2441  *        must expect to deal with balance callbacks.
2442  *
2443  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2444  *
2445  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2446  *
2447  * DELAYED - de/re-queue a sched_delayed task
2448  *
2449  * CLASS - going to update p->sched_class; makes sched_change call the
2450  *         various switch methods.
2451  *
2452  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2453  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2454  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2455  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2456  *
2457  * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but
2458  * SCHED_DEADLINE seems to rely on this for now.
2459  */
2460 
2461 #define DEQUEUE_SLEEP		0x0001 /* Matches ENQUEUE_WAKEUP */
2462 #define DEQUEUE_SAVE		0x0002 /* Matches ENQUEUE_RESTORE */
2463 #define DEQUEUE_MOVE		0x0004 /* Matches ENQUEUE_MOVE */
2464 #define DEQUEUE_NOCLOCK		0x0008 /* Matches ENQUEUE_NOCLOCK */
2465 
2466 #define DEQUEUE_MIGRATING	0x0010 /* Matches ENQUEUE_MIGRATING */
2467 #define DEQUEUE_DELAYED		0x0020 /* Matches ENQUEUE_DELAYED */
2468 #define DEQUEUE_CLASS		0x0040 /* Matches ENQUEUE_CLASS */
2469 
2470 #define DEQUEUE_SPECIAL		0x00010000
2471 #define DEQUEUE_THROTTLE	0x00020000
2472 
2473 #define ENQUEUE_WAKEUP		0x0001
2474 #define ENQUEUE_RESTORE		0x0002
2475 #define ENQUEUE_MOVE		0x0004
2476 #define ENQUEUE_NOCLOCK		0x0008
2477 
2478 #define ENQUEUE_MIGRATING	0x0010
2479 #define ENQUEUE_DELAYED		0x0020
2480 #define ENQUEUE_CLASS		0x0040
2481 
2482 #define ENQUEUE_HEAD		0x00010000
2483 #define ENQUEUE_REPLENISH	0x00020000
2484 #define ENQUEUE_MIGRATED	0x00040000
2485 #define ENQUEUE_INITIAL		0x00080000
2486 #define ENQUEUE_RQ_SELECTED	0x00100000
2487 
2488 #define RETRY_TASK		((void *)-1UL)
2489 
2490 struct affinity_context {
2491 	const struct cpumask	*new_mask;
2492 	struct cpumask		*user_mask;
2493 	unsigned int		flags;
2494 };
2495 
2496 extern s64 update_curr_common(struct rq *rq);
2497 
2498 struct sched_class {
2499 
2500 #ifdef CONFIG_UCLAMP_TASK
2501 	int uclamp_enabled;
2502 #endif
2503 
2504 	/*
2505 	 * move_queued_task/activate_task/enqueue_task: rq->lock
2506 	 * ttwu_do_activate/activate_task/enqueue_task: rq->lock
2507 	 * wake_up_new_task/activate_task/enqueue_task: task_rq_lock
2508 	 * ttwu_runnable/enqueue_task: task_rq_lock
2509 	 * proxy_task_current: rq->lock
2510 	 * sched_change_end
2511 	 */
2512 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2513 	/*
2514 	 * move_queued_task/deactivate_task/dequeue_task: rq->lock
2515 	 * __schedule/block_task/dequeue_task: rq->lock
2516 	 * proxy_task_current: rq->lock
2517 	 * wait_task_inactive: task_rq_lock
2518 	 * sched_change_begin
2519 	 */
2520 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2521 
2522 	/*
2523 	 * do_sched_yield: rq->lock
2524 	 */
2525 	void (*yield_task)   (struct rq *rq);
2526 	/*
2527 	 * yield_to: rq->lock (double)
2528 	 */
2529 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2530 
2531 	/*
2532 	 * move_queued_task: rq->lock
2533 	 * __migrate_swap_task: rq->lock
2534 	 * ttwu_do_activate: rq->lock
2535 	 * ttwu_runnable: task_rq_lock
2536 	 * wake_up_new_task: task_rq_lock
2537 	 */
2538 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2539 
2540 	/*
2541 	 * schedule/pick_next_task/prev_balance: rq->lock
2542 	 */
2543 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2544 
2545 	/*
2546 	 * schedule/pick_next_task: rq->lock
2547 	 */
2548 	struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf);
2549 	/*
2550 	 * Optional! When implemented pick_next_task() should be equivalent to:
2551 	 *
2552 	 *   next = pick_task();
2553 	 *   if (next) {
2554 	 *       put_prev_task(prev);
2555 	 *       set_next_task_first(next);
2556 	 *   }
2557 	 */
2558 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev,
2559 					      struct rq_flags *rf);
2560 
2561 	/*
2562 	 * sched_change:
2563 	 * __schedule: rq->lock
2564 	 */
2565 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2566 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2567 
2568 	/*
2569 	 * select_task_rq: p->pi_lock
2570 	 * sched_exec: p->pi_lock
2571 	 */
2572 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2573 
2574 	/*
2575 	 * set_task_cpu: p->pi_lock || rq->lock (ttwu like)
2576 	 */
2577 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2578 
2579 	/*
2580 	 * ttwu_do_activate: rq->lock
2581 	 * wake_up_new_task: task_rq_lock
2582 	 */
2583 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2584 
2585 	/*
2586 	 * do_set_cpus_allowed: task_rq_lock + sched_change
2587 	 */
2588 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2589 
2590 	/*
2591 	 * sched_set_rq_{on,off}line: rq->lock
2592 	 */
2593 	void (*rq_online)(struct rq *rq);
2594 	void (*rq_offline)(struct rq *rq);
2595 
2596 	/*
2597 	 * push_cpu_stop: p->pi_lock && rq->lock
2598 	 */
2599 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2600 
2601 	/*
2602 	 * hrtick: rq->lock
2603 	 * sched_tick: rq->lock
2604 	 * sched_tick_remote: rq->lock
2605 	 */
2606 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2607 	/*
2608 	 * sched_cgroup_fork: p->pi_lock
2609 	 */
2610 	void (*task_fork)(struct task_struct *p);
2611 	/*
2612 	 * finish_task_switch: no locks
2613 	 */
2614 	void (*task_dead)(struct task_struct *p);
2615 
2616 	/*
2617 	 * sched_change
2618 	 */
2619 	void (*switching_from)(struct rq *this_rq, struct task_struct *task);
2620 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
2621 	void (*switching_to)  (struct rq *this_rq, struct task_struct *task);
2622 	void (*switched_to)   (struct rq *this_rq, struct task_struct *task);
2623 	u64  (*get_prio)     (struct rq *this_rq, struct task_struct *task);
2624 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2625 			      u64 oldprio);
2626 
2627 	/*
2628 	 * set_load_weight: task_rq_lock + sched_change
2629 	 * __setscheduler_parms: task_rq_lock + sched_change
2630 	 */
2631 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2632 			      const struct load_weight *lw);
2633 
2634 	/*
2635 	 * sched_rr_get_interval: task_rq_lock
2636 	 */
2637 	unsigned int (*get_rr_interval)(struct rq *rq,
2638 					struct task_struct *task);
2639 
2640 	/*
2641 	 * task_sched_runtime: task_rq_lock
2642 	 */
2643 	void (*update_curr)(struct rq *rq);
2644 
2645 #ifdef CONFIG_FAIR_GROUP_SCHED
2646 	/*
2647 	 * sched_change_group: task_rq_lock + sched_change
2648 	 */
2649 	void (*task_change_group)(struct task_struct *p);
2650 #endif
2651 
2652 #ifdef CONFIG_SCHED_CORE
2653 	/*
2654 	 * pick_next_task: rq->lock
2655 	 * try_steal_cookie: rq->lock (double)
2656 	 */
2657 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2658 #endif
2659 };
2660 
2661 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2662 {
2663 	WARN_ON_ONCE(rq->donor != prev);
2664 	prev->sched_class->put_prev_task(rq, prev, NULL);
2665 }
2666 
2667 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2668 {
2669 	next->sched_class->set_next_task(rq, next, false);
2670 }
2671 
2672 static inline void
2673 __put_prev_set_next_dl_server(struct rq *rq,
2674 			      struct task_struct *prev,
2675 			      struct task_struct *next)
2676 {
2677 	prev->dl_server = NULL;
2678 	next->dl_server = rq->dl_server;
2679 	rq->dl_server = NULL;
2680 }
2681 
2682 static inline void put_prev_set_next_task(struct rq *rq,
2683 					  struct task_struct *prev,
2684 					  struct task_struct *next)
2685 {
2686 	WARN_ON_ONCE(rq->donor != prev);
2687 
2688 	__put_prev_set_next_dl_server(rq, prev, next);
2689 
2690 	if (next == prev)
2691 		return;
2692 
2693 	prev->sched_class->put_prev_task(rq, prev, next);
2694 	next->sched_class->set_next_task(rq, next, true);
2695 }
2696 
2697 /*
2698  * Helper to define a sched_class instance; each one is placed in a separate
2699  * section which is ordered by the linker script:
2700  *
2701  *   include/asm-generic/vmlinux.lds.h
2702  *
2703  * *CAREFUL* they are laid out in *REVERSE* order!!!
2704  *
2705  * Also enforce alignment on the instance, not the type, to guarantee layout.
2706  */
2707 #define DEFINE_SCHED_CLASS(name) \
2708 const struct sched_class name##_sched_class \
2709 	__aligned(__alignof__(struct sched_class)) \
2710 	__section("__" #name "_sched_class")
2711 
2712 /* Defined in include/asm-generic/vmlinux.lds.h */
2713 extern struct sched_class __sched_class_highest[];
2714 extern struct sched_class __sched_class_lowest[];
2715 
2716 extern const struct sched_class stop_sched_class;
2717 extern const struct sched_class dl_sched_class;
2718 extern const struct sched_class rt_sched_class;
2719 extern const struct sched_class fair_sched_class;
2720 extern const struct sched_class idle_sched_class;
2721 
2722 /*
2723  * Iterate only active classes. SCX can take over all fair tasks or be
2724  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2725  */
2726 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2727 {
2728 	class++;
2729 #ifdef CONFIG_SCHED_CLASS_EXT
2730 	if (scx_switched_all() && class == &fair_sched_class)
2731 		class++;
2732 	if (!scx_enabled() && class == &ext_sched_class)
2733 		class++;
2734 #endif
2735 	return class;
2736 }
2737 
2738 #define for_class_range(class, _from, _to) \
2739 	for (class = (_from); class < (_to); class++)
2740 
2741 #define for_each_class(class) \
2742 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2743 
2744 #define for_active_class_range(class, _from, _to)				\
2745 	for (class = (_from); class != (_to); class = next_active_class(class))
2746 
2747 #define for_each_active_class(class)						\
2748 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2749 
2750 #define sched_class_above(_a, _b)	((_a) < (_b))
2751 
2752 static inline bool sched_stop_runnable(struct rq *rq)
2753 {
2754 	return rq->stop && task_on_rq_queued(rq->stop);
2755 }
2756 
2757 static inline bool sched_dl_runnable(struct rq *rq)
2758 {
2759 	return rq->dl.dl_nr_running > 0;
2760 }
2761 
2762 static inline bool sched_rt_runnable(struct rq *rq)
2763 {
2764 	return rq->rt.rt_queued > 0;
2765 }
2766 
2767 static inline bool sched_fair_runnable(struct rq *rq)
2768 {
2769 	return rq->cfs.nr_queued > 0;
2770 }
2771 
2772 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev,
2773 					       struct rq_flags *rf);
2774 extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf);
2775 
2776 #define SCA_CHECK		0x01
2777 #define SCA_MIGRATE_DISABLE	0x02
2778 #define SCA_MIGRATE_ENABLE	0x04
2779 #define SCA_USER		0x08
2780 
2781 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2782 
2783 extern void sched_balance_trigger(struct rq *rq);
2784 
2785 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2786 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2787 
2788 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2789 {
2790 	/* When not in the task's cpumask, no point in looking further. */
2791 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2792 		return false;
2793 
2794 	/* Can @cpu run a user thread? */
2795 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2796 		return false;
2797 
2798 	return true;
2799 }
2800 
2801 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2802 {
2803 	/*
2804 	 * See set_cpus_allowed_force() above for the rcu_head usage.
2805 	 */
2806 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2807 
2808 	return kmalloc_node(size, GFP_KERNEL, node);
2809 }
2810 
2811 static inline struct task_struct *get_push_task(struct rq *rq)
2812 {
2813 	struct task_struct *p = rq->donor;
2814 
2815 	lockdep_assert_rq_held(rq);
2816 
2817 	if (rq->push_busy)
2818 		return NULL;
2819 
2820 	if (p->nr_cpus_allowed == 1)
2821 		return NULL;
2822 
2823 	if (p->migration_disabled)
2824 		return NULL;
2825 
2826 	rq->push_busy = true;
2827 	return get_task_struct(p);
2828 }
2829 
2830 extern int push_cpu_stop(void *arg);
2831 
2832 #ifdef CONFIG_CPU_IDLE
2833 
2834 static inline void idle_set_state(struct rq *rq,
2835 				  struct cpuidle_state *idle_state)
2836 {
2837 	rq->idle_state = idle_state;
2838 }
2839 
2840 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2841 {
2842 	WARN_ON_ONCE(!rcu_read_lock_held());
2843 
2844 	return rq->idle_state;
2845 }
2846 
2847 #else /* !CONFIG_CPU_IDLE: */
2848 
2849 static inline void idle_set_state(struct rq *rq,
2850 				  struct cpuidle_state *idle_state)
2851 {
2852 }
2853 
2854 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2855 {
2856 	return NULL;
2857 }
2858 
2859 #endif /* !CONFIG_CPU_IDLE */
2860 
2861 extern void schedule_idle(void);
2862 asmlinkage void schedule_user(void);
2863 
2864 extern void sysrq_sched_debug_show(void);
2865 extern void sched_init_granularity(void);
2866 extern void update_max_interval(void);
2867 
2868 extern void init_sched_dl_class(void);
2869 extern void init_sched_rt_class(void);
2870 extern void init_sched_fair_class(void);
2871 
2872 extern void resched_curr(struct rq *rq);
2873 extern void resched_curr_lazy(struct rq *rq);
2874 extern void resched_cpu(int cpu);
2875 
2876 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2877 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2878 
2879 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2880 
2881 extern void init_cfs_throttle_work(struct task_struct *p);
2882 
2883 #define BW_SHIFT		20
2884 #define BW_UNIT			(1 << BW_SHIFT)
2885 #define RATIO_SHIFT		8
2886 #define MAX_BW_BITS		(64 - BW_SHIFT)
2887 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2888 
2889 extern unsigned long to_ratio(u64 period, u64 runtime);
2890 
2891 extern void init_entity_runnable_average(struct sched_entity *se);
2892 extern void post_init_entity_util_avg(struct task_struct *p);
2893 
2894 #ifdef CONFIG_NO_HZ_FULL
2895 extern bool sched_can_stop_tick(struct rq *rq);
2896 extern int __init sched_tick_offload_init(void);
2897 
2898 /*
2899  * Tick may be needed by tasks in the runqueue depending on their policy and
2900  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2901  * nohz mode if necessary.
2902  */
2903 static inline void sched_update_tick_dependency(struct rq *rq)
2904 {
2905 	int cpu = cpu_of(rq);
2906 
2907 	if (!tick_nohz_full_cpu(cpu))
2908 		return;
2909 
2910 	if (sched_can_stop_tick(rq))
2911 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2912 	else
2913 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2914 }
2915 #else /* !CONFIG_NO_HZ_FULL: */
2916 static inline int sched_tick_offload_init(void) { return 0; }
2917 static inline void sched_update_tick_dependency(struct rq *rq) { }
2918 #endif /* !CONFIG_NO_HZ_FULL */
2919 
2920 static inline void add_nr_running(struct rq *rq, unsigned count)
2921 {
2922 	unsigned prev_nr = rq->nr_running;
2923 
2924 	rq->nr_running = prev_nr + count;
2925 	if (trace_sched_update_nr_running_tp_enabled()) {
2926 		call_trace_sched_update_nr_running(rq, count);
2927 	}
2928 
2929 	if (prev_nr < 2 && rq->nr_running >= 2)
2930 		set_rd_overloaded(rq->rd, 1);
2931 
2932 	sched_update_tick_dependency(rq);
2933 }
2934 
2935 static inline void sub_nr_running(struct rq *rq, unsigned count)
2936 {
2937 	rq->nr_running -= count;
2938 	if (trace_sched_update_nr_running_tp_enabled()) {
2939 		call_trace_sched_update_nr_running(rq, -count);
2940 	}
2941 
2942 	/* Check if we still need preemption */
2943 	sched_update_tick_dependency(rq);
2944 }
2945 
2946 static inline void __block_task(struct rq *rq, struct task_struct *p)
2947 {
2948 	if (p->sched_contributes_to_load)
2949 		rq->nr_uninterruptible++;
2950 
2951 	if (p->in_iowait) {
2952 		atomic_inc(&rq->nr_iowait);
2953 		delayacct_blkio_start();
2954 	}
2955 
2956 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2957 
2958 	/*
2959 	 * The moment this write goes through, ttwu() can swoop in and migrate
2960 	 * this task, rendering our rq->__lock ineffective.
2961 	 *
2962 	 * __schedule()				try_to_wake_up()
2963 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2964 	 *   pick_next_task()
2965 	 *     pick_next_task_fair()
2966 	 *       pick_next_entity()
2967 	 *         dequeue_entities()
2968 	 *           __block_task()
2969 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2970 	 *					    break;
2971 	 *
2972 	 *					  ACQUIRE (after ctrl-dep)
2973 	 *
2974 	 *					  cpu = select_task_rq();
2975 	 *					  set_task_cpu(p, cpu);
2976 	 *					  ttwu_queue()
2977 	 *					    ttwu_do_activate()
2978 	 *					      LOCK rq->__lock
2979 	 *					      activate_task()
2980 	 *					        STORE p->on_rq = 1
2981 	 *   UNLOCK rq->__lock
2982 	 *
2983 	 * Callers must ensure to not reference @p after this -- we no longer
2984 	 * own it.
2985 	 */
2986 	smp_store_release(&p->on_rq, 0);
2987 }
2988 
2989 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2990 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2991 
2992 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2993 
2994 #ifdef CONFIG_PREEMPT_RT
2995 # define SCHED_NR_MIGRATE_BREAK 8
2996 #else
2997 # define SCHED_NR_MIGRATE_BREAK 32
2998 #endif
2999 
3000 extern __read_mostly unsigned int sysctl_sched_nr_migrate;
3001 extern __read_mostly unsigned int sysctl_sched_migration_cost;
3002 
3003 extern unsigned int sysctl_sched_base_slice;
3004 
3005 extern int sysctl_resched_latency_warn_ms;
3006 extern int sysctl_resched_latency_warn_once;
3007 
3008 extern unsigned int sysctl_sched_tunable_scaling;
3009 
3010 extern unsigned int sysctl_numa_balancing_scan_delay;
3011 extern unsigned int sysctl_numa_balancing_scan_period_min;
3012 extern unsigned int sysctl_numa_balancing_scan_period_max;
3013 extern unsigned int sysctl_numa_balancing_scan_size;
3014 extern unsigned int sysctl_numa_balancing_hot_threshold;
3015 
3016 #ifdef CONFIG_SCHED_HRTICK
3017 
3018 /*
3019  * Use hrtick when:
3020  *  - enabled by features
3021  *  - hrtimer is actually high res
3022  */
3023 static inline int hrtick_enabled(struct rq *rq)
3024 {
3025 	if (!cpu_active(cpu_of(rq)))
3026 		return 0;
3027 	return hrtimer_is_hres_active(&rq->hrtick_timer);
3028 }
3029 
3030 static inline int hrtick_enabled_fair(struct rq *rq)
3031 {
3032 	if (!sched_feat(HRTICK))
3033 		return 0;
3034 	return hrtick_enabled(rq);
3035 }
3036 
3037 static inline int hrtick_enabled_dl(struct rq *rq)
3038 {
3039 	if (!sched_feat(HRTICK_DL))
3040 		return 0;
3041 	return hrtick_enabled(rq);
3042 }
3043 
3044 extern void hrtick_start(struct rq *rq, u64 delay);
3045 
3046 #else /* !CONFIG_SCHED_HRTICK: */
3047 
3048 static inline int hrtick_enabled_fair(struct rq *rq)
3049 {
3050 	return 0;
3051 }
3052 
3053 static inline int hrtick_enabled_dl(struct rq *rq)
3054 {
3055 	return 0;
3056 }
3057 
3058 static inline int hrtick_enabled(struct rq *rq)
3059 {
3060 	return 0;
3061 }
3062 
3063 #endif /* !CONFIG_SCHED_HRTICK */
3064 
3065 #ifndef arch_scale_freq_tick
3066 static __always_inline void arch_scale_freq_tick(void) { }
3067 #endif
3068 
3069 #ifndef arch_scale_freq_capacity
3070 /**
3071  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
3072  * @cpu: the CPU in question.
3073  *
3074  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
3075  *
3076  *     f_curr
3077  *     ------ * SCHED_CAPACITY_SCALE
3078  *     f_max
3079  */
3080 static __always_inline
3081 unsigned long arch_scale_freq_capacity(int cpu)
3082 {
3083 	return SCHED_CAPACITY_SCALE;
3084 }
3085 #endif
3086 
3087 /*
3088  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
3089  * acquire rq lock instead of rq_lock(). So at the end of these two functions
3090  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
3091  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
3092  */
3093 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
3094 {
3095 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
3096 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
3097 }
3098 
3099 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
3100 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
3101 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
3102 	__no_context_analysis								\
3103 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
3104   _lock; return _t; }
3105 #define DECLARE_LOCK_GUARD_2_ATTRS(_name, _lock, _unlock1, _unlock2)			\
3106 static inline class_##_name##_t class_##_name##_constructor(lock_##_name##_t *_T1,	\
3107 							    lock_##_name##_t *_T2) _lock; \
3108 static __always_inline void __class_##_name##_cleanup_ctx1(class_##_name##_t **_T1)	\
3109 	__no_context_analysis _unlock1 { }						\
3110 static __always_inline void __class_##_name##_cleanup_ctx2(class_##_name##_t **_T2)	\
3111 	__no_context_analysis _unlock2 { }
3112 #define WITH_LOCK_GUARD_2_ATTRS(_name, _T1, _T2)					\
3113 	class_##_name##_constructor(_T1, _T2),						\
3114 	*__UNIQUE_ID(unlock1) __cleanup(__class_##_name##_cleanup_ctx1) = (void *)(_T1),\
3115 	*__UNIQUE_ID(unlock2) __cleanup(__class_##_name##_cleanup_ctx2) = (void *)(_T2)
3116 
3117 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
3118 {
3119 #ifdef CONFIG_SCHED_CORE
3120 	/*
3121 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
3122 	 * order by core-id first and cpu-id second.
3123 	 *
3124 	 * Notably:
3125 	 *
3126 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
3127 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
3128 	 *
3129 	 * when only cpu-id is considered.
3130 	 */
3131 	if (rq1->core->cpu < rq2->core->cpu)
3132 		return true;
3133 	if (rq1->core->cpu > rq2->core->cpu)
3134 		return false;
3135 
3136 	/*
3137 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
3138 	 */
3139 #endif /* CONFIG_SCHED_CORE */
3140 	return rq1->cpu < rq2->cpu;
3141 }
3142 
3143 extern void double_rq_lock(struct rq *rq1, struct rq *rq2)
3144 	__acquires(__rq_lockp(rq1), __rq_lockp(rq2));
3145 
3146 #ifdef CONFIG_PREEMPTION
3147 
3148 /*
3149  * fair double_lock_balance: Safely acquires both rq->locks in a fair
3150  * way at the expense of forcing extra atomic operations in all
3151  * invocations.  This assures that the double_lock is acquired using the
3152  * same underlying policy as the spinlock_t on this architecture, which
3153  * reduces latency compared to the unfair variant below.  However, it
3154  * also adds more overhead and therefore may reduce throughput.
3155  */
3156 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3157 	__must_hold(__rq_lockp(this_rq))
3158 	__acquires(__rq_lockp(busiest))
3159 {
3160 	raw_spin_rq_unlock(this_rq);
3161 	double_rq_lock(this_rq, busiest);
3162 
3163 	return 1;
3164 }
3165 
3166 #else /* !CONFIG_PREEMPTION: */
3167 /*
3168  * Unfair double_lock_balance: Optimizes throughput at the expense of
3169  * latency by eliminating extra atomic operations when the locks are
3170  * already in proper order on entry.  This favors lower CPU-ids and will
3171  * grant the double lock to lower CPUs over higher ids under contention,
3172  * regardless of entry order into the function.
3173  */
3174 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3175 	__must_hold(__rq_lockp(this_rq))
3176 	__acquires(__rq_lockp(busiest))
3177 {
3178 	if (__rq_lockp(this_rq) == __rq_lockp(busiest)) {
3179 		__acquire(__rq_lockp(busiest)); /* already held */
3180 		double_rq_clock_clear_update(this_rq, busiest);
3181 		return 0;
3182 	}
3183 
3184 	if (likely(raw_spin_rq_trylock(busiest))) {
3185 		double_rq_clock_clear_update(this_rq, busiest);
3186 		return 0;
3187 	}
3188 
3189 	if (rq_order_less(this_rq, busiest)) {
3190 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3191 		double_rq_clock_clear_update(this_rq, busiest);
3192 		return 0;
3193 	}
3194 
3195 	raw_spin_rq_unlock(this_rq);
3196 	double_rq_lock(this_rq, busiest);
3197 
3198 	return 1;
3199 }
3200 
3201 #endif /* !CONFIG_PREEMPTION */
3202 
3203 /*
3204  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3205  */
3206 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3207 	__must_hold(__rq_lockp(this_rq))
3208 	__acquires(__rq_lockp(busiest))
3209 {
3210 	lockdep_assert_irqs_disabled();
3211 
3212 	return _double_lock_balance(this_rq, busiest);
3213 }
3214 
3215 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3216 	__releases(__rq_lockp(busiest))
3217 {
3218 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3219 		raw_spin_rq_unlock(busiest);
3220 	else
3221 		__release(__rq_lockp(busiest)); /* fake release */
3222 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3223 }
3224 
3225 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3226 	__acquires(l1, l2)
3227 {
3228 	if (l1 > l2)
3229 		swap(l1, l2);
3230 
3231 	spin_lock(l1);
3232 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3233 }
3234 
3235 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3236 	__acquires(l1, l2)
3237 {
3238 	if (l1 > l2)
3239 		swap(l1, l2);
3240 
3241 	spin_lock_irq(l1);
3242 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3243 }
3244 
3245 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3246 	__acquires(l1, l2)
3247 {
3248 	if (l1 > l2)
3249 		swap(l1, l2);
3250 
3251 	raw_spin_lock(l1);
3252 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3253 }
3254 
3255 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3256 	__releases(l1, l2)
3257 {
3258 	raw_spin_unlock(l1);
3259 	raw_spin_unlock(l2);
3260 }
3261 
3262 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3263 		    double_raw_lock(_T->lock, _T->lock2),
3264 		    double_raw_unlock(_T->lock, _T->lock2))
3265 
3266 DECLARE_LOCK_GUARD_2_ATTRS(double_raw_spinlock,
3267 			   __acquires(_T1, _T2),
3268 			   __releases(*(raw_spinlock_t **)_T1),
3269 			   __releases(*(raw_spinlock_t **)_T2));
3270 #define class_double_raw_spinlock_constructor(_T1, _T2) \
3271 	WITH_LOCK_GUARD_2_ATTRS(double_raw_spinlock, _T1, _T2)
3272 
3273 /*
3274  * double_rq_unlock - safely unlock two runqueues
3275  *
3276  * Note this does not restore interrupts like task_rq_unlock,
3277  * you need to do so manually after calling.
3278  */
3279 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3280 	__releases(__rq_lockp(rq1), __rq_lockp(rq2))
3281 {
3282 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3283 		raw_spin_rq_unlock(rq2);
3284 	else
3285 		__release(__rq_lockp(rq2)); /* fake release */
3286 	raw_spin_rq_unlock(rq1);
3287 }
3288 
3289 extern void set_rq_online (struct rq *rq);
3290 extern void set_rq_offline(struct rq *rq);
3291 
3292 extern bool sched_smp_initialized;
3293 
3294 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3295 		    double_rq_lock(_T->lock, _T->lock2),
3296 		    double_rq_unlock(_T->lock, _T->lock2))
3297 
3298 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3299 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3300 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3301 
3302 extern bool sched_debug_verbose;
3303 
3304 extern void print_cfs_stats(struct seq_file *m, int cpu);
3305 extern void print_rt_stats(struct seq_file *m, int cpu);
3306 extern void print_dl_stats(struct seq_file *m, int cpu);
3307 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3308 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3309 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3310 
3311 extern void resched_latency_warn(int cpu, u64 latency);
3312 
3313 #ifdef CONFIG_NUMA_BALANCING
3314 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3315 extern void
3316 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3317 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3318 #endif /* CONFIG_NUMA_BALANCING */
3319 
3320 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3321 extern void init_rt_rq(struct rt_rq *rt_rq);
3322 extern void init_dl_rq(struct dl_rq *dl_rq);
3323 
3324 extern void cfs_bandwidth_usage_inc(void);
3325 extern void cfs_bandwidth_usage_dec(void);
3326 
3327 #ifdef CONFIG_NO_HZ_COMMON
3328 
3329 #define NOHZ_BALANCE_KICK_BIT	0
3330 #define NOHZ_STATS_KICK_BIT	1
3331 #define NOHZ_NEWILB_KICK_BIT	2
3332 #define NOHZ_NEXT_KICK_BIT	3
3333 
3334 /* Run sched_balance_domains() */
3335 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3336 /* Update blocked load */
3337 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3338 /* Update blocked load when entering idle */
3339 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3340 /* Update nohz.next_balance */
3341 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3342 
3343 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3344 
3345 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3346 
3347 extern void nohz_balance_exit_idle(struct rq *rq);
3348 #else /* !CONFIG_NO_HZ_COMMON: */
3349 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3350 #endif /* !CONFIG_NO_HZ_COMMON */
3351 
3352 #ifdef CONFIG_NO_HZ_COMMON
3353 extern void nohz_run_idle_balance(int cpu);
3354 #else
3355 static inline void nohz_run_idle_balance(int cpu) { }
3356 #endif
3357 
3358 #include "stats.h"
3359 
3360 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3361 
3362 extern void __sched_core_account_forceidle(struct rq *rq);
3363 
3364 static inline void sched_core_account_forceidle(struct rq *rq)
3365 {
3366 	if (schedstat_enabled())
3367 		__sched_core_account_forceidle(rq);
3368 }
3369 
3370 extern void __sched_core_tick(struct rq *rq);
3371 
3372 static inline void sched_core_tick(struct rq *rq)
3373 {
3374 	if (sched_core_enabled(rq) && schedstat_enabled())
3375 		__sched_core_tick(rq);
3376 }
3377 
3378 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3379 
3380 static inline void sched_core_account_forceidle(struct rq *rq) { }
3381 
3382 static inline void sched_core_tick(struct rq *rq) { }
3383 
3384 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3385 
3386 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3387 
3388 struct irqtime {
3389 	u64			total;
3390 	u64			tick_delta;
3391 	u64			irq_start_time;
3392 	struct u64_stats_sync	sync;
3393 };
3394 
3395 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3396 DECLARE_STATIC_KEY_FALSE(sched_clock_irqtime);
3397 
3398 static inline int irqtime_enabled(void)
3399 {
3400 	return static_branch_likely(&sched_clock_irqtime);
3401 }
3402 
3403 /*
3404  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3405  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3406  * and never move forward.
3407  */
3408 static inline u64 irq_time_read(int cpu)
3409 {
3410 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3411 	unsigned int seq;
3412 	u64 total;
3413 
3414 	do {
3415 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3416 		total = irqtime->total;
3417 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3418 
3419 	return total;
3420 }
3421 
3422 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
3423 
3424 static inline int irqtime_enabled(void)
3425 {
3426 	return 0;
3427 }
3428 
3429 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
3430 
3431 #ifdef CONFIG_CPU_FREQ
3432 
3433 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3434 
3435 /**
3436  * cpufreq_update_util - Take a note about CPU utilization changes.
3437  * @rq: Runqueue to carry out the update for.
3438  * @flags: Update reason flags.
3439  *
3440  * This function is called by the scheduler on the CPU whose utilization is
3441  * being updated.
3442  *
3443  * It can only be called from RCU-sched read-side critical sections.
3444  *
3445  * The way cpufreq is currently arranged requires it to evaluate the CPU
3446  * performance state (frequency/voltage) on a regular basis to prevent it from
3447  * being stuck in a completely inadequate performance level for too long.
3448  * That is not guaranteed to happen if the updates are only triggered from CFS
3449  * and DL, though, because they may not be coming in if only RT tasks are
3450  * active all the time (or there are RT tasks only).
3451  *
3452  * As a workaround for that issue, this function is called periodically by the
3453  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3454  * but that really is a band-aid.  Going forward it should be replaced with
3455  * solutions targeted more specifically at RT tasks.
3456  */
3457 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3458 {
3459 	struct update_util_data *data;
3460 
3461 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3462 						  cpu_of(rq)));
3463 	if (data)
3464 		data->func(data, rq_clock(rq), flags);
3465 }
3466 #else /* !CONFIG_CPU_FREQ: */
3467 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3468 #endif /* !CONFIG_CPU_FREQ */
3469 
3470 #ifdef arch_scale_freq_capacity
3471 # ifndef arch_scale_freq_invariant
3472 #  define arch_scale_freq_invariant()	true
3473 # endif
3474 #else
3475 # define arch_scale_freq_invariant()	false
3476 #endif
3477 
3478 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3479 				 unsigned long *min,
3480 				 unsigned long *max);
3481 
3482 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3483 				 unsigned long min,
3484 				 unsigned long max);
3485 
3486 
3487 /*
3488  * Verify the fitness of task @p to run on @cpu taking into account the
3489  * CPU original capacity and the runtime/deadline ratio of the task.
3490  *
3491  * The function will return true if the original capacity of @cpu is
3492  * greater than or equal to task's deadline density right shifted by
3493  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3494  */
3495 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3496 {
3497 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3498 
3499 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3500 }
3501 
3502 static inline unsigned long cpu_bw_dl(struct rq *rq)
3503 {
3504 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3505 }
3506 
3507 static inline unsigned long cpu_util_dl(struct rq *rq)
3508 {
3509 	return READ_ONCE(rq->avg_dl.util_avg);
3510 }
3511 
3512 
3513 extern unsigned long cpu_util_cfs(int cpu);
3514 extern unsigned long cpu_util_cfs_boost(int cpu);
3515 
3516 static inline unsigned long cpu_util_rt(struct rq *rq)
3517 {
3518 	return READ_ONCE(rq->avg_rt.util_avg);
3519 }
3520 
3521 #ifdef CONFIG_UCLAMP_TASK
3522 
3523 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3524 
3525 /*
3526  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3527  * by default in the fast path and only gets turned on once userspace performs
3528  * an operation that requires it.
3529  *
3530  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3531  * hence is active.
3532  */
3533 static inline bool uclamp_is_used(void)
3534 {
3535 	return static_branch_likely(&sched_uclamp_used);
3536 }
3537 
3538 /*
3539  * Enabling static branches would get the cpus_read_lock(),
3540  * check whether uclamp_is_used before enable it to avoid always
3541  * calling cpus_read_lock(). Because we never disable this
3542  * static key once enable it.
3543  */
3544 static inline void sched_uclamp_enable(void)
3545 {
3546 	if (!uclamp_is_used())
3547 		static_branch_enable(&sched_uclamp_used);
3548 }
3549 
3550 static inline unsigned long uclamp_rq_get(struct rq *rq,
3551 					  enum uclamp_id clamp_id)
3552 {
3553 	return READ_ONCE(rq->uclamp[clamp_id].value);
3554 }
3555 
3556 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3557 				 unsigned int value)
3558 {
3559 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3560 }
3561 
3562 static inline bool uclamp_rq_is_idle(struct rq *rq)
3563 {
3564 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3565 }
3566 
3567 /* Is the rq being capped/throttled by uclamp_max? */
3568 static inline bool uclamp_rq_is_capped(struct rq *rq)
3569 {
3570 	unsigned long rq_util;
3571 	unsigned long max_util;
3572 
3573 	if (!uclamp_is_used())
3574 		return false;
3575 
3576 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3577 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3578 
3579 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3580 }
3581 
3582 #define for_each_clamp_id(clamp_id) \
3583 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3584 
3585 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3586 
3587 
3588 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3589 {
3590 	if (clamp_id == UCLAMP_MIN)
3591 		return 0;
3592 	return SCHED_CAPACITY_SCALE;
3593 }
3594 
3595 /* Integer rounded range for each bucket */
3596 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3597 
3598 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3599 {
3600 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3601 }
3602 
3603 static inline void
3604 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3605 {
3606 	uc_se->value = value;
3607 	uc_se->bucket_id = uclamp_bucket_id(value);
3608 	uc_se->user_defined = user_defined;
3609 }
3610 
3611 #else /* !CONFIG_UCLAMP_TASK: */
3612 
3613 static inline unsigned long
3614 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3615 {
3616 	if (clamp_id == UCLAMP_MIN)
3617 		return 0;
3618 
3619 	return SCHED_CAPACITY_SCALE;
3620 }
3621 
3622 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3623 
3624 static inline bool uclamp_is_used(void)
3625 {
3626 	return false;
3627 }
3628 
3629 static inline void sched_uclamp_enable(void) {}
3630 
3631 static inline unsigned long
3632 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3633 {
3634 	if (clamp_id == UCLAMP_MIN)
3635 		return 0;
3636 
3637 	return SCHED_CAPACITY_SCALE;
3638 }
3639 
3640 static inline void
3641 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3642 {
3643 }
3644 
3645 static inline bool uclamp_rq_is_idle(struct rq *rq)
3646 {
3647 	return false;
3648 }
3649 
3650 #endif /* !CONFIG_UCLAMP_TASK */
3651 
3652 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3653 
3654 static inline unsigned long cpu_util_irq(struct rq *rq)
3655 {
3656 	return READ_ONCE(rq->avg_irq.util_avg);
3657 }
3658 
3659 static inline
3660 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3661 {
3662 	util *= (max - irq);
3663 	util /= max;
3664 
3665 	return util;
3666 
3667 }
3668 
3669 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3670 
3671 static inline unsigned long cpu_util_irq(struct rq *rq)
3672 {
3673 	return 0;
3674 }
3675 
3676 static inline
3677 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3678 {
3679 	return util;
3680 }
3681 
3682 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3683 
3684 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3685 
3686 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3687 
3688 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3689 
3690 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3691 
3692 static inline bool sched_energy_enabled(void)
3693 {
3694 	return static_branch_unlikely(&sched_energy_present);
3695 }
3696 
3697 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
3698 
3699 #define perf_domain_span(pd) NULL
3700 
3701 static inline bool sched_energy_enabled(void) { return false; }
3702 
3703 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3704 
3705 #ifdef CONFIG_MEMBARRIER
3706 
3707 /*
3708  * The scheduler provides memory barriers required by membarrier between:
3709  * - prior user-space memory accesses and store to rq->membarrier_state,
3710  * - store to rq->membarrier_state and following user-space memory accesses.
3711  * In the same way it provides those guarantees around store to rq->curr.
3712  */
3713 static inline void membarrier_switch_mm(struct rq *rq,
3714 					struct mm_struct *prev_mm,
3715 					struct mm_struct *next_mm)
3716 {
3717 	int membarrier_state;
3718 
3719 	if (prev_mm == next_mm)
3720 		return;
3721 
3722 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3723 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3724 		return;
3725 
3726 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3727 }
3728 
3729 #else /* !CONFIG_MEMBARRIER: */
3730 
3731 static inline void membarrier_switch_mm(struct rq *rq,
3732 					struct mm_struct *prev_mm,
3733 					struct mm_struct *next_mm)
3734 {
3735 }
3736 
3737 #endif /* !CONFIG_MEMBARRIER */
3738 
3739 static inline bool is_per_cpu_kthread(struct task_struct *p)
3740 {
3741 	if (!(p->flags & PF_KTHREAD))
3742 		return false;
3743 
3744 	if (p->nr_cpus_allowed != 1)
3745 		return false;
3746 
3747 	return true;
3748 }
3749 
3750 extern void swake_up_all_locked(struct swait_queue_head *q);
3751 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3752 
3753 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3754 
3755 #ifdef CONFIG_PREEMPT_DYNAMIC
3756 extern int preempt_dynamic_mode;
3757 extern int sched_dynamic_mode(const char *str);
3758 extern void sched_dynamic_update(int mode);
3759 #endif
3760 extern const char *preempt_modes[];
3761 
3762 #ifdef CONFIG_SCHED_MM_CID
3763 
3764 static __always_inline bool cid_on_cpu(unsigned int cid)
3765 {
3766 	return cid & MM_CID_ONCPU;
3767 }
3768 
3769 static __always_inline bool cid_in_transit(unsigned int cid)
3770 {
3771 	return cid & MM_CID_TRANSIT;
3772 }
3773 
3774 static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid)
3775 {
3776 	return cid & ~MM_CID_ONCPU;
3777 }
3778 
3779 static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid)
3780 {
3781 	return cid | MM_CID_ONCPU;
3782 }
3783 
3784 static __always_inline unsigned int cid_to_transit_cid(unsigned int cid)
3785 {
3786 	return cid | MM_CID_TRANSIT;
3787 }
3788 
3789 static __always_inline unsigned int cid_from_transit_cid(unsigned int cid)
3790 {
3791 	return cid & ~MM_CID_TRANSIT;
3792 }
3793 
3794 static __always_inline bool cid_on_task(unsigned int cid)
3795 {
3796 	/* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */
3797 	return cid < MM_CID_TRANSIT;
3798 }
3799 
3800 static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid)
3801 {
3802 	clear_bit(cid, mm_cidmask(mm));
3803 }
3804 
3805 static __always_inline void mm_unset_cid_on_task(struct task_struct *t)
3806 {
3807 	unsigned int cid = t->mm_cid.cid;
3808 
3809 	t->mm_cid.cid = MM_CID_UNSET;
3810 	if (cid_on_task(cid))
3811 		mm_drop_cid(t->mm, cid);
3812 }
3813 
3814 static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp)
3815 {
3816 	/* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */
3817 	pcp->cid = cpu_cid_to_cid(pcp->cid);
3818 	mm_drop_cid(mm, pcp->cid);
3819 }
3820 
3821 static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids)
3822 {
3823 	unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids);
3824 
3825 	if (cid >= max_cids)
3826 		return MM_CID_UNSET;
3827 	if (test_and_set_bit(cid, mm_cidmask(mm)))
3828 		return MM_CID_UNSET;
3829 	return cid;
3830 }
3831 
3832 static inline unsigned int mm_get_cid(struct mm_struct *mm)
3833 {
3834 	unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids));
3835 
3836 	while (cid == MM_CID_UNSET) {
3837 		cpu_relax();
3838 		cid = __mm_get_cid(mm, num_possible_cpus());
3839 	}
3840 	return cid;
3841 }
3842 
3843 static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid,
3844 					   unsigned int max_cids)
3845 {
3846 	unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid);
3847 
3848 	/* Is it in the optimal CID space? */
3849 	if (likely(cid < max_cids))
3850 		return orig_cid;
3851 
3852 	/* Try to find one in the optimal space. Otherwise keep the provided. */
3853 	new_cid = __mm_get_cid(mm, max_cids);
3854 	if (new_cid != MM_CID_UNSET) {
3855 		mm_drop_cid(mm, cid);
3856 		/* Preserve the ONCPU mode of the original CID */
3857 		return new_cid | (orig_cid & MM_CID_ONCPU);
3858 	}
3859 	return orig_cid;
3860 }
3861 
3862 static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid)
3863 {
3864 	if (t->mm_cid.cid != cid) {
3865 		t->mm_cid.cid = cid;
3866 		rseq_sched_set_ids_changed(t);
3867 	}
3868 }
3869 
3870 static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid)
3871 {
3872 	__this_cpu_write(mm->mm_cid.pcpu->cid, cid);
3873 }
3874 
3875 static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid,
3876 					    unsigned int mode)
3877 {
3878 	unsigned int max_cids, tcid = t->mm_cid.cid;
3879 	struct mm_struct *mm = t->mm;
3880 
3881 	max_cids = READ_ONCE(mm->mm_cid.max_cids);
3882 	/* Optimize for the common case where both have the ONCPU bit set */
3883 	if (likely(cid_on_cpu(cpu_cid & tcid))) {
3884 		if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) {
3885 			mm_cid_update_task_cid(t, cpu_cid);
3886 			return;
3887 		}
3888 		/* Try to converge into the optimal CID space */
3889 		cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids);
3890 	} else {
3891 		/* Hand over or drop the task owned CID */
3892 		if (cid_on_task(tcid)) {
3893 			if (cid_on_cpu(cpu_cid))
3894 				mm_unset_cid_on_task(t);
3895 			else
3896 				cpu_cid = cid_to_cpu_cid(tcid);
3897 		}
3898 		/* Still nothing, allocate a new one */
3899 		if (!cid_on_cpu(cpu_cid))
3900 			cpu_cid = cid_to_cpu_cid(mm_get_cid(mm));
3901 
3902 		/* Handle the transition mode flag if required */
3903 		if (mode & MM_CID_TRANSIT)
3904 			cpu_cid = cpu_cid_to_cid(cpu_cid) | MM_CID_TRANSIT;
3905 	}
3906 	mm_cid_update_pcpu_cid(mm, cpu_cid);
3907 	mm_cid_update_task_cid(t, cpu_cid);
3908 }
3909 
3910 static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid,
3911 					     unsigned int mode)
3912 {
3913 	unsigned int max_cids, tcid = t->mm_cid.cid;
3914 	struct mm_struct *mm = t->mm;
3915 
3916 	max_cids = READ_ONCE(mm->mm_cid.max_cids);
3917 	/* Optimize for the common case, where both have the ONCPU bit clear */
3918 	if (likely(cid_on_task(tcid | cpu_cid))) {
3919 		if (likely(tcid < max_cids)) {
3920 			mm_cid_update_pcpu_cid(mm, tcid);
3921 			return;
3922 		}
3923 		/* Try to converge into the optimal CID space */
3924 		tcid = mm_cid_converge(mm, tcid, max_cids);
3925 	} else {
3926 		/* Hand over or drop the CPU owned CID */
3927 		if (cid_on_cpu(cpu_cid)) {
3928 			if (cid_on_task(tcid))
3929 				mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu));
3930 			else
3931 				tcid = cpu_cid_to_cid(cpu_cid);
3932 		}
3933 		/* Still nothing, allocate a new one */
3934 		if (!cid_on_task(tcid))
3935 			tcid = mm_get_cid(mm);
3936 		/* Set the transition mode flag if required */
3937 		tcid |= mode & MM_CID_TRANSIT;
3938 	}
3939 	mm_cid_update_pcpu_cid(mm, tcid);
3940 	mm_cid_update_task_cid(t, tcid);
3941 }
3942 
3943 static __always_inline void mm_cid_schedin(struct task_struct *next)
3944 {
3945 	struct mm_struct *mm = next->mm;
3946 	unsigned int cpu_cid, mode;
3947 
3948 	if (!next->mm_cid.active)
3949 		return;
3950 
3951 	cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid);
3952 	mode = READ_ONCE(mm->mm_cid.mode);
3953 	if (likely(!cid_on_cpu(mode)))
3954 		mm_cid_from_task(next, cpu_cid, mode);
3955 	else
3956 		mm_cid_from_cpu(next, cpu_cid, mode);
3957 }
3958 
3959 static __always_inline void mm_cid_schedout(struct task_struct *prev)
3960 {
3961 	struct mm_struct *mm = prev->mm;
3962 	unsigned int mode, cid;
3963 
3964 	/* During mode transitions CIDs are temporary and need to be dropped */
3965 	if (likely(!cid_in_transit(prev->mm_cid.cid)))
3966 		return;
3967 
3968 	mode = READ_ONCE(mm->mm_cid.mode);
3969 	cid = cid_from_transit_cid(prev->mm_cid.cid);
3970 
3971 	/*
3972 	 * If transition mode is done, transfer ownership when the CID is
3973 	 * within the convergence range to optimize the next schedule in.
3974 	 */
3975 	if (!cid_in_transit(mode) && cid < READ_ONCE(mm->mm_cid.max_cids)) {
3976 		if (cid_on_cpu(mode))
3977 			cid = cid_to_cpu_cid(cid);
3978 
3979 		/* Update both so that the next schedule in goes into the fast path */
3980 		mm_cid_update_pcpu_cid(mm, cid);
3981 		prev->mm_cid.cid = cid;
3982 	} else {
3983 		mm_drop_cid(mm, cid);
3984 		prev->mm_cid.cid = MM_CID_UNSET;
3985 	}
3986 }
3987 
3988 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next)
3989 {
3990 	mm_cid_schedout(prev);
3991 	mm_cid_schedin(next);
3992 }
3993 
3994 #else /* !CONFIG_SCHED_MM_CID: */
3995 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { }
3996 #endif /* !CONFIG_SCHED_MM_CID */
3997 
3998 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3999 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
4000 static inline
4001 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
4002 {
4003 	lockdep_assert_rq_held(src_rq);
4004 	lockdep_assert_rq_held(dst_rq);
4005 
4006 	deactivate_task(src_rq, task, 0);
4007 	set_task_cpu(task, dst_rq->cpu);
4008 	activate_task(dst_rq, task, 0);
4009 	wakeup_preempt(dst_rq, task, 0);
4010 }
4011 
4012 static inline
4013 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
4014 {
4015 	if (!task_on_cpu(rq, p) &&
4016 	    cpumask_test_cpu(cpu, &p->cpus_mask))
4017 		return true;
4018 
4019 	return false;
4020 }
4021 
4022 #ifdef CONFIG_RT_MUTEXES
4023 
4024 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4025 {
4026 	if (pi_task)
4027 		prio = min(prio, pi_task->prio);
4028 
4029 	return prio;
4030 }
4031 
4032 static inline int rt_effective_prio(struct task_struct *p, int prio)
4033 {
4034 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4035 
4036 	return __rt_effective_prio(pi_task, prio);
4037 }
4038 
4039 #else /* !CONFIG_RT_MUTEXES: */
4040 
4041 static inline int rt_effective_prio(struct task_struct *p, int prio)
4042 {
4043 	return prio;
4044 }
4045 
4046 #endif /* !CONFIG_RT_MUTEXES */
4047 
4048 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
4049 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
4050 extern const struct sched_class *__setscheduler_class(int policy, int prio);
4051 extern void set_load_weight(struct task_struct *p, bool update_load);
4052 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
4053 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
4054 
4055 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
4056 
4057 extern void __balance_callbacks(struct rq *rq, struct rq_flags *rf);
4058 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
4059 
4060 /*
4061  * The 'sched_change' pattern is the safe, easy and slow way of changing a
4062  * task's scheduling properties. It dequeues a task, such that the scheduler
4063  * is fully unaware of it; at which point its properties can be modified;
4064  * after which it is enqueued again.
4065  *
4066  * Typically this must be called while holding task_rq_lock, since most/all
4067  * properties are serialized under those locks. There is currently one
4068  * exception to this rule in sched/ext which only holds rq->lock.
4069  */
4070 
4071 /*
4072  * This structure is a temporary, used to preserve/convey the queueing state
4073  * of the task between sched_change_begin() and sched_change_end(). Ensuring
4074  * the task's queueing state is idempotent across the operation.
4075  */
4076 struct sched_change_ctx {
4077 	u64			prio;
4078 	struct task_struct	*p;
4079 	const struct sched_class *class;
4080 	int			flags;
4081 	bool			queued;
4082 	bool			running;
4083 };
4084 
4085 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags);
4086 void sched_change_end(struct sched_change_ctx *ctx);
4087 
4088 DEFINE_CLASS(sched_change, struct sched_change_ctx *,
4089 	     sched_change_end(_T),
4090 	     sched_change_begin(p, flags),
4091 	     struct task_struct *p, unsigned int flags)
4092 
4093 DEFINE_CLASS_IS_UNCONDITIONAL(sched_change)
4094 
4095 #include "ext.h"
4096 
4097 #endif /* _KERNEL_SCHED_SCHED_H */
4098