xref: /linux/kernel/module/main.c (revision 8630c59e99363c4b655788fd01134aef9bcd9264)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
174  */
mod_strncmp(const char * str_a,const char * str_b,size_t n)175 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
176 {
177 	for (int i = 0; i < n; i++) {
178 		char a = str_a[i];
179 		char b = str_b[i];
180 		int d;
181 
182 		if (a == '-') a = '_';
183 		if (b == '-') b = '_';
184 
185 		d = a - b;
186 		if (d)
187 			return d;
188 
189 		if (!a)
190 			break;
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * A thread that wants to hold a reference to a module only while it
198  * is running can call this to safely exit.
199  */
__module_put_and_kthread_exit(struct module * mod,long code)200 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
201 {
202 	module_put(mod);
203 	kthread_exit(code);
204 }
205 EXPORT_SYMBOL(__module_put_and_kthread_exit);
206 
207 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)208 static unsigned int find_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int i;
211 
212 	for (i = 1; i < info->hdr->e_shnum; i++) {
213 		Elf_Shdr *shdr = &info->sechdrs[i];
214 		/* Alloc bit cleared means "ignore it." */
215 		if ((shdr->sh_flags & SHF_ALLOC)
216 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
217 			return i;
218 	}
219 	return 0;
220 }
221 
222 /**
223  * find_any_unique_sec() - Find a unique section index by name
224  * @info: Load info for the module to scan
225  * @name: Name of the section we're looking for
226  *
227  * Locates a unique section by name. Ignores SHF_ALLOC.
228  *
229  * Return: Section index if found uniquely, zero if absent, negative count
230  *         of total instances if multiple were found.
231  */
find_any_unique_sec(const struct load_info * info,const char * name)232 static int find_any_unique_sec(const struct load_info *info, const char *name)
233 {
234 	unsigned int idx;
235 	unsigned int count = 0;
236 	int i;
237 
238 	for (i = 1; i < info->hdr->e_shnum; i++) {
239 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
240 			   name) == 0) {
241 			count++;
242 			idx = i;
243 		}
244 	}
245 	if (count == 1) {
246 		return idx;
247 	} else if (count == 0) {
248 		return 0;
249 	} else {
250 		return -count;
251 	}
252 }
253 
254 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)255 static void *section_addr(const struct load_info *info, const char *name)
256 {
257 	/* Section 0 has sh_addr 0. */
258 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
259 }
260 
261 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)262 static void *section_objs(const struct load_info *info,
263 			  const char *name,
264 			  size_t object_size,
265 			  unsigned int *num)
266 {
267 	unsigned int sec = find_sec(info, name);
268 
269 	/* Section 0 has sh_addr 0 and sh_size 0. */
270 	*num = info->sechdrs[sec].sh_size / object_size;
271 	return (void *)info->sechdrs[sec].sh_addr;
272 }
273 
274 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)275 static unsigned int find_any_sec(const struct load_info *info, const char *name)
276 {
277 	unsigned int i;
278 
279 	for (i = 1; i < info->hdr->e_shnum; i++) {
280 		Elf_Shdr *shdr = &info->sechdrs[i];
281 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
282 			return i;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Find a module section, or NULL. Fill in number of "objects" in section.
289  * Ignores SHF_ALLOC flag.
290  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)291 static __maybe_unused void *any_section_objs(const struct load_info *info,
292 					     const char *name,
293 					     size_t object_size,
294 					     unsigned int *num)
295 {
296 	unsigned int sec = find_any_sec(info, name);
297 
298 	/* Section 0 has sh_addr 0 and sh_size 0. */
299 	*num = info->sechdrs[sec].sh_size / object_size;
300 	return (void *)info->sechdrs[sec].sh_addr;
301 }
302 
303 #ifndef CONFIG_MODVERSIONS
304 #define symversion(base, idx) NULL
305 #else
306 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
307 #endif
308 
kernel_symbol_name(const struct kernel_symbol * sym)309 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
310 {
311 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
312 	return offset_to_ptr(&sym->name_offset);
313 #else
314 	return sym->name;
315 #endif
316 }
317 
kernel_symbol_namespace(const struct kernel_symbol * sym)318 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
319 {
320 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
321 	if (!sym->namespace_offset)
322 		return NULL;
323 	return offset_to_ptr(&sym->namespace_offset);
324 #else
325 	return sym->namespace;
326 #endif
327 }
328 
cmp_name(const void * name,const void * sym)329 int cmp_name(const void *name, const void *sym)
330 {
331 	return strcmp(name, kernel_symbol_name(sym));
332 }
333 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)334 static bool find_exported_symbol_in_section(const struct symsearch *syms,
335 					    struct module *owner,
336 					    struct find_symbol_arg *fsa)
337 {
338 	struct kernel_symbol *sym;
339 
340 	if (!fsa->gplok && syms->license == GPL_ONLY)
341 		return false;
342 
343 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
344 			sizeof(struct kernel_symbol), cmp_name);
345 	if (!sym)
346 		return false;
347 
348 	fsa->owner = owner;
349 	fsa->crc = symversion(syms->crcs, sym - syms->start);
350 	fsa->sym = sym;
351 	fsa->license = syms->license;
352 
353 	return true;
354 }
355 
356 /*
357  * Find an exported symbol and return it, along with, (optional) crc and
358  * (optional) module which owns it. Needs RCU or module_mutex.
359  */
find_symbol(struct find_symbol_arg * fsa)360 bool find_symbol(struct find_symbol_arg *fsa)
361 {
362 	static const struct symsearch arr[] = {
363 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
364 		  NOT_GPL_ONLY },
365 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
366 		  __start___kcrctab_gpl,
367 		  GPL_ONLY },
368 	};
369 	struct module *mod;
370 	unsigned int i;
371 
372 	for (i = 0; i < ARRAY_SIZE(arr); i++)
373 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
374 			return true;
375 
376 	list_for_each_entry_rcu(mod, &modules, list,
377 				lockdep_is_held(&module_mutex)) {
378 		struct symsearch arr[] = {
379 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
380 			  NOT_GPL_ONLY },
381 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
382 			  mod->gpl_crcs,
383 			  GPL_ONLY },
384 		};
385 
386 		if (mod->state == MODULE_STATE_UNFORMED)
387 			continue;
388 
389 		for (i = 0; i < ARRAY_SIZE(arr); i++)
390 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
391 				return true;
392 	}
393 
394 	pr_debug("Failed to find symbol %s\n", fsa->name);
395 	return false;
396 }
397 
398 /*
399  * Search for module by name: must hold module_mutex (or RCU for read-only
400  * access).
401  */
find_module_all(const char * name,size_t len,bool even_unformed)402 struct module *find_module_all(const char *name, size_t len,
403 			       bool even_unformed)
404 {
405 	struct module *mod;
406 
407 	list_for_each_entry_rcu(mod, &modules, list,
408 				lockdep_is_held(&module_mutex)) {
409 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
410 			continue;
411 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
412 			return mod;
413 	}
414 	return NULL;
415 }
416 
find_module(const char * name)417 struct module *find_module(const char *name)
418 {
419 	return find_module_all(name, strlen(name), false);
420 }
421 
422 #ifdef CONFIG_SMP
423 
mod_percpu(struct module * mod)424 static inline void __percpu *mod_percpu(struct module *mod)
425 {
426 	return mod->percpu;
427 }
428 
percpu_modalloc(struct module * mod,struct load_info * info)429 static int percpu_modalloc(struct module *mod, struct load_info *info)
430 {
431 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
432 	unsigned long align = pcpusec->sh_addralign;
433 
434 	if (!pcpusec->sh_size)
435 		return 0;
436 
437 	if (align > PAGE_SIZE) {
438 		pr_warn("%s: per-cpu alignment %li > %li\n",
439 			mod->name, align, PAGE_SIZE);
440 		align = PAGE_SIZE;
441 	}
442 
443 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
444 	if (!mod->percpu) {
445 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
446 			mod->name, (unsigned long)pcpusec->sh_size);
447 		return -ENOMEM;
448 	}
449 	mod->percpu_size = pcpusec->sh_size;
450 	return 0;
451 }
452 
percpu_modfree(struct module * mod)453 static void percpu_modfree(struct module *mod)
454 {
455 	free_percpu(mod->percpu);
456 }
457 
find_pcpusec(struct load_info * info)458 static unsigned int find_pcpusec(struct load_info *info)
459 {
460 	return find_sec(info, ".data..percpu");
461 }
462 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)463 static void percpu_modcopy(struct module *mod,
464 			   const void *from, unsigned long size)
465 {
466 	int cpu;
467 
468 	for_each_possible_cpu(cpu)
469 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
470 }
471 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)472 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
473 {
474 	struct module *mod;
475 	unsigned int cpu;
476 
477 	guard(rcu)();
478 	list_for_each_entry_rcu(mod, &modules, list) {
479 		if (mod->state == MODULE_STATE_UNFORMED)
480 			continue;
481 		if (!mod->percpu_size)
482 			continue;
483 		for_each_possible_cpu(cpu) {
484 			void *start = per_cpu_ptr(mod->percpu, cpu);
485 			void *va = (void *)addr;
486 
487 			if (va >= start && va < start + mod->percpu_size) {
488 				if (can_addr) {
489 					*can_addr = (unsigned long) (va - start);
490 					*can_addr += (unsigned long)
491 						per_cpu_ptr(mod->percpu,
492 							    get_boot_cpu_id());
493 				}
494 				return true;
495 			}
496 		}
497 	}
498 	return false;
499 }
500 
501 /**
502  * is_module_percpu_address() - test whether address is from module static percpu
503  * @addr: address to test
504  *
505  * Test whether @addr belongs to module static percpu area.
506  *
507  * Return: %true if @addr is from module static percpu area
508  */
is_module_percpu_address(unsigned long addr)509 bool is_module_percpu_address(unsigned long addr)
510 {
511 	return __is_module_percpu_address(addr, NULL);
512 }
513 
514 #else /* ... !CONFIG_SMP */
515 
mod_percpu(struct module * mod)516 static inline void __percpu *mod_percpu(struct module *mod)
517 {
518 	return NULL;
519 }
percpu_modalloc(struct module * mod,struct load_info * info)520 static int percpu_modalloc(struct module *mod, struct load_info *info)
521 {
522 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
523 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
524 		return -ENOMEM;
525 	return 0;
526 }
percpu_modfree(struct module * mod)527 static inline void percpu_modfree(struct module *mod)
528 {
529 }
find_pcpusec(struct load_info * info)530 static unsigned int find_pcpusec(struct load_info *info)
531 {
532 	return 0;
533 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)534 static inline void percpu_modcopy(struct module *mod,
535 				  const void *from, unsigned long size)
536 {
537 	/* pcpusec should be 0, and size of that section should be 0. */
538 	BUG_ON(size != 0);
539 }
is_module_percpu_address(unsigned long addr)540 bool is_module_percpu_address(unsigned long addr)
541 {
542 	return false;
543 }
544 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)545 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
546 {
547 	return false;
548 }
549 
550 #endif /* CONFIG_SMP */
551 
552 #define MODINFO_ATTR(field)	\
553 static void setup_modinfo_##field(struct module *mod, const char *s)  \
554 {                                                                     \
555 	mod->field = kstrdup(s, GFP_KERNEL);                          \
556 }                                                                     \
557 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
558 			struct module_kobject *mk, char *buffer)      \
559 {                                                                     \
560 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
561 }                                                                     \
562 static int modinfo_##field##_exists(struct module *mod)               \
563 {                                                                     \
564 	return mod->field != NULL;                                    \
565 }                                                                     \
566 static void free_modinfo_##field(struct module *mod)                  \
567 {                                                                     \
568 	kfree(mod->field);                                            \
569 	mod->field = NULL;                                            \
570 }                                                                     \
571 static const struct module_attribute modinfo_##field = {              \
572 	.attr = { .name = __stringify(field), .mode = 0444 },         \
573 	.show = show_modinfo_##field,                                 \
574 	.setup = setup_modinfo_##field,                               \
575 	.test = modinfo_##field##_exists,                             \
576 	.free = free_modinfo_##field,                                 \
577 };
578 
579 MODINFO_ATTR(version);
580 MODINFO_ATTR(srcversion);
581 
582 static struct {
583 	char name[MODULE_NAME_LEN + 1];
584 	char taints[MODULE_FLAGS_BUF_SIZE];
585 } last_unloaded_module;
586 
587 #ifdef CONFIG_MODULE_UNLOAD
588 
589 EXPORT_TRACEPOINT_SYMBOL(module_get);
590 
591 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
592 #define MODULE_REF_BASE	1
593 
594 /* Init the unload section of the module. */
module_unload_init(struct module * mod)595 static int module_unload_init(struct module *mod)
596 {
597 	/*
598 	 * Initialize reference counter to MODULE_REF_BASE.
599 	 * refcnt == 0 means module is going.
600 	 */
601 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
602 
603 	INIT_LIST_HEAD(&mod->source_list);
604 	INIT_LIST_HEAD(&mod->target_list);
605 
606 	/* Hold reference count during initialization. */
607 	atomic_inc(&mod->refcnt);
608 
609 	return 0;
610 }
611 
612 /* Does a already use b? */
already_uses(struct module * a,struct module * b)613 static int already_uses(struct module *a, struct module *b)
614 {
615 	struct module_use *use;
616 
617 	list_for_each_entry(use, &b->source_list, source_list) {
618 		if (use->source == a)
619 			return 1;
620 	}
621 	pr_debug("%s does not use %s!\n", a->name, b->name);
622 	return 0;
623 }
624 
625 /*
626  * Module a uses b
627  *  - we add 'a' as a "source", 'b' as a "target" of module use
628  *  - the module_use is added to the list of 'b' sources (so
629  *    'b' can walk the list to see who sourced them), and of 'a'
630  *    targets (so 'a' can see what modules it targets).
631  */
add_module_usage(struct module * a,struct module * b)632 static int add_module_usage(struct module *a, struct module *b)
633 {
634 	struct module_use *use;
635 
636 	pr_debug("Allocating new usage for %s.\n", a->name);
637 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
638 	if (!use)
639 		return -ENOMEM;
640 
641 	use->source = a;
642 	use->target = b;
643 	list_add(&use->source_list, &b->source_list);
644 	list_add(&use->target_list, &a->target_list);
645 	return 0;
646 }
647 
648 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)649 static int ref_module(struct module *a, struct module *b)
650 {
651 	int err;
652 
653 	if (b == NULL || already_uses(a, b))
654 		return 0;
655 
656 	/* If module isn't available, we fail. */
657 	err = strong_try_module_get(b);
658 	if (err)
659 		return err;
660 
661 	err = add_module_usage(a, b);
662 	if (err) {
663 		module_put(b);
664 		return err;
665 	}
666 	return 0;
667 }
668 
669 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)670 static void module_unload_free(struct module *mod)
671 {
672 	struct module_use *use, *tmp;
673 
674 	mutex_lock(&module_mutex);
675 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
676 		struct module *i = use->target;
677 		pr_debug("%s unusing %s\n", mod->name, i->name);
678 		module_put(i);
679 		list_del(&use->source_list);
680 		list_del(&use->target_list);
681 		kfree(use);
682 	}
683 	mutex_unlock(&module_mutex);
684 }
685 
686 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)687 static inline int try_force_unload(unsigned int flags)
688 {
689 	int ret = (flags & O_TRUNC);
690 	if (ret)
691 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
692 	return ret;
693 }
694 #else
try_force_unload(unsigned int flags)695 static inline int try_force_unload(unsigned int flags)
696 {
697 	return 0;
698 }
699 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
700 
701 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)702 static int try_release_module_ref(struct module *mod)
703 {
704 	int ret;
705 
706 	/* Try to decrement refcnt which we set at loading */
707 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
708 	BUG_ON(ret < 0);
709 	if (ret)
710 		/* Someone can put this right now, recover with checking */
711 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
712 
713 	return ret;
714 }
715 
try_stop_module(struct module * mod,int flags,int * forced)716 static int try_stop_module(struct module *mod, int flags, int *forced)
717 {
718 	/* If it's not unused, quit unless we're forcing. */
719 	if (try_release_module_ref(mod) != 0) {
720 		*forced = try_force_unload(flags);
721 		if (!(*forced))
722 			return -EWOULDBLOCK;
723 	}
724 
725 	/* Mark it as dying. */
726 	mod->state = MODULE_STATE_GOING;
727 
728 	return 0;
729 }
730 
731 /**
732  * module_refcount() - return the refcount or -1 if unloading
733  * @mod:	the module we're checking
734  *
735  * Return:
736  *	-1 if the module is in the process of unloading
737  *	otherwise the number of references in the kernel to the module
738  */
module_refcount(struct module * mod)739 int module_refcount(struct module *mod)
740 {
741 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
742 }
743 EXPORT_SYMBOL(module_refcount);
744 
745 /* This exists whether we can unload or not */
746 static void free_module(struct module *mod);
747 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)748 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
749 		unsigned int, flags)
750 {
751 	struct module *mod;
752 	char name[MODULE_NAME_LEN];
753 	char buf[MODULE_FLAGS_BUF_SIZE];
754 	int ret, forced = 0;
755 
756 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
757 		return -EPERM;
758 
759 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
760 		return -EFAULT;
761 	name[MODULE_NAME_LEN-1] = '\0';
762 
763 	audit_log_kern_module(name);
764 
765 	if (mutex_lock_interruptible(&module_mutex) != 0)
766 		return -EINTR;
767 
768 	mod = find_module(name);
769 	if (!mod) {
770 		ret = -ENOENT;
771 		goto out;
772 	}
773 
774 	if (!list_empty(&mod->source_list)) {
775 		/* Other modules depend on us: get rid of them first. */
776 		ret = -EWOULDBLOCK;
777 		goto out;
778 	}
779 
780 	/* Doing init or already dying? */
781 	if (mod->state != MODULE_STATE_LIVE) {
782 		/* FIXME: if (force), slam module count damn the torpedoes */
783 		pr_debug("%s already dying\n", mod->name);
784 		ret = -EBUSY;
785 		goto out;
786 	}
787 
788 	/* If it has an init func, it must have an exit func to unload */
789 	if (mod->init && !mod->exit) {
790 		forced = try_force_unload(flags);
791 		if (!forced) {
792 			/* This module can't be removed */
793 			ret = -EBUSY;
794 			goto out;
795 		}
796 	}
797 
798 	ret = try_stop_module(mod, flags, &forced);
799 	if (ret != 0)
800 		goto out;
801 
802 	mutex_unlock(&module_mutex);
803 	/* Final destruction now no one is using it. */
804 	if (mod->exit != NULL)
805 		mod->exit();
806 	blocking_notifier_call_chain(&module_notify_list,
807 				     MODULE_STATE_GOING, mod);
808 	klp_module_going(mod);
809 	ftrace_release_mod(mod);
810 
811 	async_synchronize_full();
812 
813 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
814 	strscpy(last_unloaded_module.name, mod->name);
815 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
816 
817 	free_module(mod);
818 	/* someone could wait for the module in add_unformed_module() */
819 	wake_up_all(&module_wq);
820 	return 0;
821 out:
822 	mutex_unlock(&module_mutex);
823 	return ret;
824 }
825 
__symbol_put(const char * symbol)826 void __symbol_put(const char *symbol)
827 {
828 	struct find_symbol_arg fsa = {
829 		.name	= symbol,
830 		.gplok	= true,
831 	};
832 
833 	guard(rcu)();
834 	BUG_ON(!find_symbol(&fsa));
835 	module_put(fsa.owner);
836 }
837 EXPORT_SYMBOL(__symbol_put);
838 
839 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)840 void symbol_put_addr(void *addr)
841 {
842 	struct module *modaddr;
843 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
844 
845 	if (core_kernel_text(a))
846 		return;
847 
848 	/*
849 	 * Even though we hold a reference on the module; we still need to
850 	 * RCU read section in order to safely traverse the data structure.
851 	 */
852 	guard(rcu)();
853 	modaddr = __module_text_address(a);
854 	BUG_ON(!modaddr);
855 	module_put(modaddr);
856 }
857 EXPORT_SYMBOL_GPL(symbol_put_addr);
858 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)859 static ssize_t show_refcnt(const struct module_attribute *mattr,
860 			   struct module_kobject *mk, char *buffer)
861 {
862 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
863 }
864 
865 static const struct module_attribute modinfo_refcnt =
866 	__ATTR(refcnt, 0444, show_refcnt, NULL);
867 
__module_get(struct module * module)868 void __module_get(struct module *module)
869 {
870 	if (module) {
871 		atomic_inc(&module->refcnt);
872 		trace_module_get(module, _RET_IP_);
873 	}
874 }
875 EXPORT_SYMBOL(__module_get);
876 
try_module_get(struct module * module)877 bool try_module_get(struct module *module)
878 {
879 	bool ret = true;
880 
881 	if (module) {
882 		/* Note: here, we can fail to get a reference */
883 		if (likely(module_is_live(module) &&
884 			   atomic_inc_not_zero(&module->refcnt) != 0))
885 			trace_module_get(module, _RET_IP_);
886 		else
887 			ret = false;
888 	}
889 	return ret;
890 }
891 EXPORT_SYMBOL(try_module_get);
892 
module_put(struct module * module)893 void module_put(struct module *module)
894 {
895 	int ret;
896 
897 	if (module) {
898 		ret = atomic_dec_if_positive(&module->refcnt);
899 		WARN_ON(ret < 0);	/* Failed to put refcount */
900 		trace_module_put(module, _RET_IP_);
901 	}
902 }
903 EXPORT_SYMBOL(module_put);
904 
905 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)906 static inline void module_unload_free(struct module *mod)
907 {
908 }
909 
ref_module(struct module * a,struct module * b)910 static int ref_module(struct module *a, struct module *b)
911 {
912 	return strong_try_module_get(b);
913 }
914 
module_unload_init(struct module * mod)915 static inline int module_unload_init(struct module *mod)
916 {
917 	return 0;
918 }
919 #endif /* CONFIG_MODULE_UNLOAD */
920 
module_flags_taint(unsigned long taints,char * buf)921 size_t module_flags_taint(unsigned long taints, char *buf)
922 {
923 	size_t l = 0;
924 	int i;
925 
926 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
927 		if (taint_flags[i].module && test_bit(i, &taints))
928 			buf[l++] = taint_flags[i].c_true;
929 	}
930 
931 	return l;
932 }
933 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)934 static ssize_t show_initstate(const struct module_attribute *mattr,
935 			      struct module_kobject *mk, char *buffer)
936 {
937 	const char *state = "unknown";
938 
939 	switch (mk->mod->state) {
940 	case MODULE_STATE_LIVE:
941 		state = "live";
942 		break;
943 	case MODULE_STATE_COMING:
944 		state = "coming";
945 		break;
946 	case MODULE_STATE_GOING:
947 		state = "going";
948 		break;
949 	default:
950 		BUG();
951 	}
952 	return sprintf(buffer, "%s\n", state);
953 }
954 
955 static const struct module_attribute modinfo_initstate =
956 	__ATTR(initstate, 0444, show_initstate, NULL);
957 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)958 static ssize_t store_uevent(const struct module_attribute *mattr,
959 			    struct module_kobject *mk,
960 			    const char *buffer, size_t count)
961 {
962 	int rc;
963 
964 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
965 	return rc ? rc : count;
966 }
967 
968 const struct module_attribute module_uevent =
969 	__ATTR(uevent, 0200, NULL, store_uevent);
970 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)971 static ssize_t show_coresize(const struct module_attribute *mattr,
972 			     struct module_kobject *mk, char *buffer)
973 {
974 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
975 
976 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
977 		for_class_mod_mem_type(type, core_data)
978 			size += mk->mod->mem[type].size;
979 	}
980 	return sprintf(buffer, "%u\n", size);
981 }
982 
983 static const struct module_attribute modinfo_coresize =
984 	__ATTR(coresize, 0444, show_coresize, NULL);
985 
986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_datasize(const struct module_attribute *mattr,
988 			     struct module_kobject *mk, char *buffer)
989 {
990 	unsigned int size = 0;
991 
992 	for_class_mod_mem_type(type, core_data)
993 		size += mk->mod->mem[type].size;
994 	return sprintf(buffer, "%u\n", size);
995 }
996 
997 static const struct module_attribute modinfo_datasize =
998 	__ATTR(datasize, 0444, show_datasize, NULL);
999 #endif
1000 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_initsize(const struct module_attribute *mattr,
1002 			     struct module_kobject *mk, char *buffer)
1003 {
1004 	unsigned int size = 0;
1005 
1006 	for_class_mod_mem_type(type, init)
1007 		size += mk->mod->mem[type].size;
1008 	return sprintf(buffer, "%u\n", size);
1009 }
1010 
1011 static const struct module_attribute modinfo_initsize =
1012 	__ATTR(initsize, 0444, show_initsize, NULL);
1013 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1014 static ssize_t show_taint(const struct module_attribute *mattr,
1015 			  struct module_kobject *mk, char *buffer)
1016 {
1017 	size_t l;
1018 
1019 	l = module_flags_taint(mk->mod->taints, buffer);
1020 	buffer[l++] = '\n';
1021 	return l;
1022 }
1023 
1024 static const struct module_attribute modinfo_taint =
1025 	__ATTR(taint, 0444, show_taint, NULL);
1026 
1027 const struct module_attribute *const modinfo_attrs[] = {
1028 	&module_uevent,
1029 	&modinfo_version,
1030 	&modinfo_srcversion,
1031 	&modinfo_initstate,
1032 	&modinfo_coresize,
1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1034 	&modinfo_datasize,
1035 #endif
1036 	&modinfo_initsize,
1037 	&modinfo_taint,
1038 #ifdef CONFIG_MODULE_UNLOAD
1039 	&modinfo_refcnt,
1040 #endif
1041 	NULL,
1042 };
1043 
1044 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1045 
1046 static const char vermagic[] = VERMAGIC_STRING;
1047 
try_to_force_load(struct module * mod,const char * reason)1048 int try_to_force_load(struct module *mod, const char *reason)
1049 {
1050 #ifdef CONFIG_MODULE_FORCE_LOAD
1051 	if (!test_taint(TAINT_FORCED_MODULE))
1052 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1053 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1054 	return 0;
1055 #else
1056 	return -ENOEXEC;
1057 #endif
1058 }
1059 
1060 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1061 char *module_next_tag_pair(char *string, unsigned long *secsize)
1062 {
1063 	/* Skip non-zero chars */
1064 	while (string[0]) {
1065 		string++;
1066 		if ((*secsize)-- <= 1)
1067 			return NULL;
1068 	}
1069 
1070 	/* Skip any zero padding. */
1071 	while (!string[0]) {
1072 		string++;
1073 		if ((*secsize)-- <= 1)
1074 			return NULL;
1075 	}
1076 	return string;
1077 }
1078 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1079 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1080 			      char *prev)
1081 {
1082 	char *p;
1083 	unsigned int taglen = strlen(tag);
1084 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1085 	unsigned long size = infosec->sh_size;
1086 
1087 	/*
1088 	 * get_modinfo() calls made before rewrite_section_headers()
1089 	 * must use sh_offset, as sh_addr isn't set!
1090 	 */
1091 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1092 
1093 	if (prev) {
1094 		size -= prev - modinfo;
1095 		modinfo = module_next_tag_pair(prev, &size);
1096 	}
1097 
1098 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1099 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1100 			return p + taglen + 1;
1101 	}
1102 	return NULL;
1103 }
1104 
get_modinfo(const struct load_info * info,const char * tag)1105 static char *get_modinfo(const struct load_info *info, const char *tag)
1106 {
1107 	return get_next_modinfo(info, tag, NULL);
1108 }
1109 
1110 /**
1111  * verify_module_namespace() - does @modname have access to this symbol's @namespace
1112  * @namespace: export symbol namespace
1113  * @modname: module name
1114  *
1115  * If @namespace is prefixed with "module:" to indicate it is a module namespace
1116  * then test if @modname matches any of the comma separated patterns.
1117  *
1118  * The patterns only support tail-glob.
1119  */
verify_module_namespace(const char * namespace,const char * modname)1120 static bool verify_module_namespace(const char *namespace, const char *modname)
1121 {
1122 	size_t len, modlen = strlen(modname);
1123 	const char *prefix = "module:";
1124 	const char *sep;
1125 	bool glob;
1126 
1127 	if (!strstarts(namespace, prefix))
1128 		return false;
1129 
1130 	for (namespace += strlen(prefix); *namespace; namespace = sep) {
1131 		sep = strchrnul(namespace, ',');
1132 		len = sep - namespace;
1133 
1134 		glob = false;
1135 		if (sep[-1] == '*') {
1136 			len--;
1137 			glob = true;
1138 		}
1139 
1140 		if (*sep)
1141 			sep++;
1142 
1143 		if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1144 			return true;
1145 	}
1146 
1147 	return false;
1148 }
1149 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1150 static int verify_namespace_is_imported(const struct load_info *info,
1151 					const struct kernel_symbol *sym,
1152 					struct module *mod)
1153 {
1154 	const char *namespace;
1155 	char *imported_namespace;
1156 
1157 	namespace = kernel_symbol_namespace(sym);
1158 	if (namespace && namespace[0]) {
1159 
1160 		if (verify_module_namespace(namespace, mod->name))
1161 			return 0;
1162 
1163 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1164 			if (strcmp(namespace, imported_namespace) == 0)
1165 				return 0;
1166 		}
1167 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1168 		pr_warn(
1169 #else
1170 		pr_err(
1171 #endif
1172 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1173 			mod->name, kernel_symbol_name(sym), namespace);
1174 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1175 		return -EINVAL;
1176 #endif
1177 	}
1178 	return 0;
1179 }
1180 
inherit_taint(struct module * mod,struct module * owner,const char * name)1181 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1182 {
1183 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1184 		return true;
1185 
1186 	if (mod->using_gplonly_symbols) {
1187 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1188 			mod->name, name, owner->name);
1189 		return false;
1190 	}
1191 
1192 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1193 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1194 			mod->name, name, owner->name);
1195 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1196 	}
1197 	return true;
1198 }
1199 
1200 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1201 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1202 						  const struct load_info *info,
1203 						  const char *name,
1204 						  char ownername[])
1205 {
1206 	struct find_symbol_arg fsa = {
1207 		.name	= name,
1208 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1209 		.warn	= true,
1210 	};
1211 	int err;
1212 
1213 	/*
1214 	 * The module_mutex should not be a heavily contended lock;
1215 	 * if we get the occasional sleep here, we'll go an extra iteration
1216 	 * in the wait_event_interruptible(), which is harmless.
1217 	 */
1218 	sched_annotate_sleep();
1219 	mutex_lock(&module_mutex);
1220 	if (!find_symbol(&fsa))
1221 		goto unlock;
1222 
1223 	if (fsa.license == GPL_ONLY)
1224 		mod->using_gplonly_symbols = true;
1225 
1226 	if (!inherit_taint(mod, fsa.owner, name)) {
1227 		fsa.sym = NULL;
1228 		goto getname;
1229 	}
1230 
1231 	if (!check_version(info, name, mod, fsa.crc)) {
1232 		fsa.sym = ERR_PTR(-EINVAL);
1233 		goto getname;
1234 	}
1235 
1236 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1237 	if (err) {
1238 		fsa.sym = ERR_PTR(err);
1239 		goto getname;
1240 	}
1241 
1242 	err = ref_module(mod, fsa.owner);
1243 	if (err) {
1244 		fsa.sym = ERR_PTR(err);
1245 		goto getname;
1246 	}
1247 
1248 getname:
1249 	/* We must make copy under the lock if we failed to get ref. */
1250 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1251 unlock:
1252 	mutex_unlock(&module_mutex);
1253 	return fsa.sym;
1254 }
1255 
1256 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1257 resolve_symbol_wait(struct module *mod,
1258 		    const struct load_info *info,
1259 		    const char *name)
1260 {
1261 	const struct kernel_symbol *ksym;
1262 	char owner[MODULE_NAME_LEN];
1263 
1264 	if (wait_event_interruptible_timeout(module_wq,
1265 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1266 			|| PTR_ERR(ksym) != -EBUSY,
1267 					     30 * HZ) <= 0) {
1268 		pr_warn("%s: gave up waiting for init of module %s.\n",
1269 			mod->name, owner);
1270 	}
1271 	return ksym;
1272 }
1273 
module_arch_cleanup(struct module * mod)1274 void __weak module_arch_cleanup(struct module *mod)
1275 {
1276 }
1277 
module_arch_freeing_init(struct module * mod)1278 void __weak module_arch_freeing_init(struct module *mod)
1279 {
1280 }
1281 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1282 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1283 {
1284 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1285 	enum execmem_type execmem_type;
1286 	void *ptr;
1287 
1288 	mod->mem[type].size = size;
1289 
1290 	if (mod_mem_type_is_data(type))
1291 		execmem_type = EXECMEM_MODULE_DATA;
1292 	else
1293 		execmem_type = EXECMEM_MODULE_TEXT;
1294 
1295 	ptr = execmem_alloc(execmem_type, size);
1296 	if (!ptr)
1297 		return -ENOMEM;
1298 
1299 	if (execmem_is_rox(execmem_type)) {
1300 		int err = execmem_make_temp_rw(ptr, size);
1301 
1302 		if (err) {
1303 			execmem_free(ptr);
1304 			return -ENOMEM;
1305 		}
1306 
1307 		mod->mem[type].is_rox = true;
1308 	}
1309 
1310 	/*
1311 	 * The pointer to these blocks of memory are stored on the module
1312 	 * structure and we keep that around so long as the module is
1313 	 * around. We only free that memory when we unload the module.
1314 	 * Just mark them as not being a leak then. The .init* ELF
1315 	 * sections *do* get freed after boot so we *could* treat them
1316 	 * slightly differently with kmemleak_ignore() and only grey
1317 	 * them out as they work as typical memory allocations which
1318 	 * *do* eventually get freed, but let's just keep things simple
1319 	 * and avoid *any* false positives.
1320 	 */
1321 	if (!mod->mem[type].is_rox)
1322 		kmemleak_not_leak(ptr);
1323 
1324 	memset(ptr, 0, size);
1325 	mod->mem[type].base = ptr;
1326 
1327 	return 0;
1328 }
1329 
module_memory_restore_rox(struct module * mod)1330 static void module_memory_restore_rox(struct module *mod)
1331 {
1332 	for_class_mod_mem_type(type, text) {
1333 		struct module_memory *mem = &mod->mem[type];
1334 
1335 		if (mem->is_rox)
1336 			execmem_restore_rox(mem->base, mem->size);
1337 	}
1338 }
1339 
module_memory_free(struct module * mod,enum mod_mem_type type)1340 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1341 {
1342 	struct module_memory *mem = &mod->mem[type];
1343 
1344 	execmem_free(mem->base);
1345 }
1346 
free_mod_mem(struct module * mod)1347 static void free_mod_mem(struct module *mod)
1348 {
1349 	for_each_mod_mem_type(type) {
1350 		struct module_memory *mod_mem = &mod->mem[type];
1351 
1352 		if (type == MOD_DATA)
1353 			continue;
1354 
1355 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1356 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1357 		if (mod_mem->size)
1358 			module_memory_free(mod, type);
1359 	}
1360 
1361 	/* MOD_DATA hosts mod, so free it at last */
1362 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1363 	module_memory_free(mod, MOD_DATA);
1364 }
1365 
1366 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1367 static void free_module(struct module *mod)
1368 {
1369 	trace_module_free(mod);
1370 
1371 	codetag_unload_module(mod);
1372 
1373 	mod_sysfs_teardown(mod);
1374 
1375 	/*
1376 	 * We leave it in list to prevent duplicate loads, but make sure
1377 	 * that noone uses it while it's being deconstructed.
1378 	 */
1379 	mutex_lock(&module_mutex);
1380 	mod->state = MODULE_STATE_UNFORMED;
1381 	mutex_unlock(&module_mutex);
1382 
1383 	/* Arch-specific cleanup. */
1384 	module_arch_cleanup(mod);
1385 
1386 	/* Module unload stuff */
1387 	module_unload_free(mod);
1388 
1389 	/* Free any allocated parameters. */
1390 	destroy_params(mod->kp, mod->num_kp);
1391 
1392 	if (is_livepatch_module(mod))
1393 		free_module_elf(mod);
1394 
1395 	/* Now we can delete it from the lists */
1396 	mutex_lock(&module_mutex);
1397 	/* Unlink carefully: kallsyms could be walking list. */
1398 	list_del_rcu(&mod->list);
1399 	mod_tree_remove(mod);
1400 	/* Remove this module from bug list, this uses list_del_rcu */
1401 	module_bug_cleanup(mod);
1402 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1403 	synchronize_rcu();
1404 	if (try_add_tainted_module(mod))
1405 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1406 		       mod->name);
1407 	mutex_unlock(&module_mutex);
1408 
1409 	/* This may be empty, but that's OK */
1410 	module_arch_freeing_init(mod);
1411 	kfree(mod->args);
1412 	percpu_modfree(mod);
1413 
1414 	free_mod_mem(mod);
1415 }
1416 
__symbol_get(const char * symbol)1417 void *__symbol_get(const char *symbol)
1418 {
1419 	struct find_symbol_arg fsa = {
1420 		.name	= symbol,
1421 		.gplok	= true,
1422 		.warn	= true,
1423 	};
1424 
1425 	scoped_guard(rcu) {
1426 		if (!find_symbol(&fsa))
1427 			return NULL;
1428 		if (fsa.license != GPL_ONLY) {
1429 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1430 				symbol);
1431 			return NULL;
1432 		}
1433 		if (strong_try_module_get(fsa.owner))
1434 			return NULL;
1435 	}
1436 	return (void *)kernel_symbol_value(fsa.sym);
1437 }
1438 EXPORT_SYMBOL_GPL(__symbol_get);
1439 
1440 /*
1441  * Ensure that an exported symbol [global namespace] does not already exist
1442  * in the kernel or in some other module's exported symbol table.
1443  *
1444  * You must hold the module_mutex.
1445  */
verify_exported_symbols(struct module * mod)1446 static int verify_exported_symbols(struct module *mod)
1447 {
1448 	unsigned int i;
1449 	const struct kernel_symbol *s;
1450 	struct {
1451 		const struct kernel_symbol *sym;
1452 		unsigned int num;
1453 	} arr[] = {
1454 		{ mod->syms, mod->num_syms },
1455 		{ mod->gpl_syms, mod->num_gpl_syms },
1456 	};
1457 
1458 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1459 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1460 			struct find_symbol_arg fsa = {
1461 				.name	= kernel_symbol_name(s),
1462 				.gplok	= true,
1463 			};
1464 			if (find_symbol(&fsa)) {
1465 				pr_err("%s: exports duplicate symbol %s"
1466 				       " (owned by %s)\n",
1467 				       mod->name, kernel_symbol_name(s),
1468 				       module_name(fsa.owner));
1469 				return -ENOEXEC;
1470 			}
1471 		}
1472 	}
1473 	return 0;
1474 }
1475 
ignore_undef_symbol(Elf_Half emachine,const char * name)1476 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1477 {
1478 	/*
1479 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1480 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1481 	 * i386 has a similar problem but may not deserve a fix.
1482 	 *
1483 	 * If we ever have to ignore many symbols, consider refactoring the code to
1484 	 * only warn if referenced by a relocation.
1485 	 */
1486 	if (emachine == EM_386 || emachine == EM_X86_64)
1487 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1488 	return false;
1489 }
1490 
1491 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1492 static int simplify_symbols(struct module *mod, const struct load_info *info)
1493 {
1494 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1495 	Elf_Sym *sym = (void *)symsec->sh_addr;
1496 	unsigned long secbase;
1497 	unsigned int i;
1498 	int ret = 0;
1499 	const struct kernel_symbol *ksym;
1500 
1501 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1502 		const char *name = info->strtab + sym[i].st_name;
1503 
1504 		switch (sym[i].st_shndx) {
1505 		case SHN_COMMON:
1506 			/* Ignore common symbols */
1507 			if (!strncmp(name, "__gnu_lto", 9))
1508 				break;
1509 
1510 			/*
1511 			 * We compiled with -fno-common.  These are not
1512 			 * supposed to happen.
1513 			 */
1514 			pr_debug("Common symbol: %s\n", name);
1515 			pr_warn("%s: please compile with -fno-common\n",
1516 			       mod->name);
1517 			ret = -ENOEXEC;
1518 			break;
1519 
1520 		case SHN_ABS:
1521 			/* Don't need to do anything */
1522 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1523 				 (long)sym[i].st_value, name);
1524 			break;
1525 
1526 		case SHN_LIVEPATCH:
1527 			/* Livepatch symbols are resolved by livepatch */
1528 			break;
1529 
1530 		case SHN_UNDEF:
1531 			ksym = resolve_symbol_wait(mod, info, name);
1532 			/* Ok if resolved.  */
1533 			if (ksym && !IS_ERR(ksym)) {
1534 				sym[i].st_value = kernel_symbol_value(ksym);
1535 				break;
1536 			}
1537 
1538 			/* Ok if weak or ignored.  */
1539 			if (!ksym &&
1540 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1541 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1542 				break;
1543 
1544 			ret = PTR_ERR(ksym) ?: -ENOENT;
1545 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1546 				mod->name, name, ret);
1547 			break;
1548 
1549 		default:
1550 			/* Divert to percpu allocation if a percpu var. */
1551 			if (sym[i].st_shndx == info->index.pcpu)
1552 				secbase = (unsigned long)mod_percpu(mod);
1553 			else
1554 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1555 			sym[i].st_value += secbase;
1556 			break;
1557 		}
1558 	}
1559 
1560 	return ret;
1561 }
1562 
apply_relocations(struct module * mod,const struct load_info * info)1563 static int apply_relocations(struct module *mod, const struct load_info *info)
1564 {
1565 	unsigned int i;
1566 	int err = 0;
1567 
1568 	/* Now do relocations. */
1569 	for (i = 1; i < info->hdr->e_shnum; i++) {
1570 		unsigned int infosec = info->sechdrs[i].sh_info;
1571 
1572 		/* Not a valid relocation section? */
1573 		if (infosec >= info->hdr->e_shnum)
1574 			continue;
1575 
1576 		/* Don't bother with non-allocated sections */
1577 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1578 			continue;
1579 
1580 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1581 			err = klp_apply_section_relocs(mod, info->sechdrs,
1582 						       info->secstrings,
1583 						       info->strtab,
1584 						       info->index.sym, i,
1585 						       NULL);
1586 		else if (info->sechdrs[i].sh_type == SHT_REL)
1587 			err = apply_relocate(info->sechdrs, info->strtab,
1588 					     info->index.sym, i, mod);
1589 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1590 			err = apply_relocate_add(info->sechdrs, info->strtab,
1591 						 info->index.sym, i, mod);
1592 		if (err < 0)
1593 			break;
1594 	}
1595 	return err;
1596 }
1597 
1598 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1599 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1600 					     unsigned int section)
1601 {
1602 	/* default implementation just returns zero */
1603 	return 0;
1604 }
1605 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1606 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1607 				Elf_Shdr *sechdr, unsigned int section)
1608 {
1609 	long offset;
1610 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1611 
1612 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1613 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1614 	mod->mem[type].size = offset + sechdr->sh_size;
1615 
1616 	WARN_ON_ONCE(offset & mask);
1617 	return offset | mask;
1618 }
1619 
module_init_layout_section(const char * sname)1620 bool module_init_layout_section(const char *sname)
1621 {
1622 #ifndef CONFIG_MODULE_UNLOAD
1623 	if (module_exit_section(sname))
1624 		return true;
1625 #endif
1626 	return module_init_section(sname);
1627 }
1628 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1629 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1630 {
1631 	unsigned int m, i;
1632 
1633 	/*
1634 	 * { Mask of required section header flags,
1635 	 *   Mask of excluded section header flags }
1636 	 */
1637 	static const unsigned long masks[][2] = {
1638 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1639 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1640 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1641 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1642 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1643 	};
1644 	static const int core_m_to_mem_type[] = {
1645 		MOD_TEXT,
1646 		MOD_RODATA,
1647 		MOD_RO_AFTER_INIT,
1648 		MOD_DATA,
1649 		MOD_DATA,
1650 	};
1651 	static const int init_m_to_mem_type[] = {
1652 		MOD_INIT_TEXT,
1653 		MOD_INIT_RODATA,
1654 		MOD_INVALID,
1655 		MOD_INIT_DATA,
1656 		MOD_INIT_DATA,
1657 	};
1658 
1659 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1660 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1661 
1662 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1663 			Elf_Shdr *s = &info->sechdrs[i];
1664 			const char *sname = info->secstrings + s->sh_name;
1665 
1666 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1667 			    || (s->sh_flags & masks[m][1])
1668 			    || s->sh_entsize != ~0UL
1669 			    || is_init != module_init_layout_section(sname))
1670 				continue;
1671 
1672 			if (WARN_ON_ONCE(type == MOD_INVALID))
1673 				continue;
1674 
1675 			/*
1676 			 * Do not allocate codetag memory as we load it into
1677 			 * preallocated contiguous memory.
1678 			 */
1679 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1680 				/*
1681 				 * s->sh_entsize won't be used but populate the
1682 				 * type field to avoid confusion.
1683 				 */
1684 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1685 						<< SH_ENTSIZE_TYPE_SHIFT;
1686 				continue;
1687 			}
1688 
1689 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1690 			pr_debug("\t%s\n", sname);
1691 		}
1692 	}
1693 }
1694 
1695 /*
1696  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1697  * might -- code, read-only data, read-write data, small data.  Tally
1698  * sizes, and place the offsets into sh_entsize fields: high bit means it
1699  * belongs in init.
1700  */
layout_sections(struct module * mod,struct load_info * info)1701 static void layout_sections(struct module *mod, struct load_info *info)
1702 {
1703 	unsigned int i;
1704 
1705 	for (i = 0; i < info->hdr->e_shnum; i++)
1706 		info->sechdrs[i].sh_entsize = ~0UL;
1707 
1708 	pr_debug("Core section allocation order for %s:\n", mod->name);
1709 	__layout_sections(mod, info, false);
1710 
1711 	pr_debug("Init section allocation order for %s:\n", mod->name);
1712 	__layout_sections(mod, info, true);
1713 }
1714 
module_license_taint_check(struct module * mod,const char * license)1715 static void module_license_taint_check(struct module *mod, const char *license)
1716 {
1717 	if (!license)
1718 		license = "unspecified";
1719 
1720 	if (!license_is_gpl_compatible(license)) {
1721 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1722 			pr_warn("%s: module license '%s' taints kernel.\n",
1723 				mod->name, license);
1724 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1725 				 LOCKDEP_NOW_UNRELIABLE);
1726 	}
1727 }
1728 
setup_modinfo(struct module * mod,struct load_info * info)1729 static int setup_modinfo(struct module *mod, struct load_info *info)
1730 {
1731 	const struct module_attribute *attr;
1732 	char *imported_namespace;
1733 	int i;
1734 
1735 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1736 		if (attr->setup)
1737 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1738 	}
1739 
1740 	for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1741 		/*
1742 		 * 'module:' prefixed namespaces are implicit, disallow
1743 		 * explicit imports.
1744 		 */
1745 		if (strstarts(imported_namespace, "module:")) {
1746 			pr_err("%s: module tries to import module namespace: %s\n",
1747 			       mod->name, imported_namespace);
1748 			return -EPERM;
1749 		}
1750 	}
1751 
1752 	return 0;
1753 }
1754 
free_modinfo(struct module * mod)1755 static void free_modinfo(struct module *mod)
1756 {
1757 	const struct module_attribute *attr;
1758 	int i;
1759 
1760 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1761 		if (attr->free)
1762 			attr->free(mod);
1763 	}
1764 }
1765 
module_init_section(const char * name)1766 bool __weak module_init_section(const char *name)
1767 {
1768 	return strstarts(name, ".init");
1769 }
1770 
module_exit_section(const char * name)1771 bool __weak module_exit_section(const char *name)
1772 {
1773 	return strstarts(name, ".exit");
1774 }
1775 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1776 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1777 {
1778 #if defined(CONFIG_64BIT)
1779 	unsigned long long secend;
1780 #else
1781 	unsigned long secend;
1782 #endif
1783 
1784 	/*
1785 	 * Check for both overflow and offset/size being
1786 	 * too large.
1787 	 */
1788 	secend = shdr->sh_offset + shdr->sh_size;
1789 	if (secend < shdr->sh_offset || secend > info->len)
1790 		return -ENOEXEC;
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  * elf_validity_ehdr() - Checks an ELF header for module validity
1797  * @info: Load info containing the ELF header to check
1798  *
1799  * Checks whether an ELF header could belong to a valid module. Checks:
1800  *
1801  * * ELF header is within the data the user provided
1802  * * ELF magic is present
1803  * * It is relocatable (not final linked, not core file, etc.)
1804  * * The header's machine type matches what the architecture expects.
1805  * * Optional arch-specific hook for other properties
1806  *   - module_elf_check_arch() is currently only used by PPC to check
1807  *   ELF ABI version, but may be used by others in the future.
1808  *
1809  * Return: %0 if valid, %-ENOEXEC on failure.
1810  */
elf_validity_ehdr(const struct load_info * info)1811 static int elf_validity_ehdr(const struct load_info *info)
1812 {
1813 	if (info->len < sizeof(*(info->hdr))) {
1814 		pr_err("Invalid ELF header len %lu\n", info->len);
1815 		return -ENOEXEC;
1816 	}
1817 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1818 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1819 		return -ENOEXEC;
1820 	}
1821 	if (info->hdr->e_type != ET_REL) {
1822 		pr_err("Invalid ELF header type: %u != %u\n",
1823 		       info->hdr->e_type, ET_REL);
1824 		return -ENOEXEC;
1825 	}
1826 	if (!elf_check_arch(info->hdr)) {
1827 		pr_err("Invalid architecture in ELF header: %u\n",
1828 		       info->hdr->e_machine);
1829 		return -ENOEXEC;
1830 	}
1831 	if (!module_elf_check_arch(info->hdr)) {
1832 		pr_err("Invalid module architecture in ELF header: %u\n",
1833 		       info->hdr->e_machine);
1834 		return -ENOEXEC;
1835 	}
1836 	return 0;
1837 }
1838 
1839 /**
1840  * elf_validity_cache_sechdrs() - Cache section headers if valid
1841  * @info: Load info to compute section headers from
1842  *
1843  * Checks:
1844  *
1845  * * ELF header is valid (see elf_validity_ehdr())
1846  * * Section headers are the size we expect
1847  * * Section array fits in the user provided data
1848  * * Section index 0 is NULL
1849  * * Section contents are inbounds
1850  *
1851  * Then updates @info with a &load_info->sechdrs pointer if valid.
1852  *
1853  * Return: %0 if valid, negative error code if validation failed.
1854  */
elf_validity_cache_sechdrs(struct load_info * info)1855 static int elf_validity_cache_sechdrs(struct load_info *info)
1856 {
1857 	Elf_Shdr *sechdrs;
1858 	Elf_Shdr *shdr;
1859 	int i;
1860 	int err;
1861 
1862 	err = elf_validity_ehdr(info);
1863 	if (err < 0)
1864 		return err;
1865 
1866 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1867 		pr_err("Invalid ELF section header size\n");
1868 		return -ENOEXEC;
1869 	}
1870 
1871 	/*
1872 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1873 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1874 	 * will not overflow unsigned long on any platform.
1875 	 */
1876 	if (info->hdr->e_shoff >= info->len
1877 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1878 		info->len - info->hdr->e_shoff)) {
1879 		pr_err("Invalid ELF section header overflow\n");
1880 		return -ENOEXEC;
1881 	}
1882 
1883 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1884 
1885 	/*
1886 	 * The code assumes that section 0 has a length of zero and
1887 	 * an addr of zero, so check for it.
1888 	 */
1889 	if (sechdrs[0].sh_type != SHT_NULL
1890 	    || sechdrs[0].sh_size != 0
1891 	    || sechdrs[0].sh_addr != 0) {
1892 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1893 		       sechdrs[0].sh_type);
1894 		return -ENOEXEC;
1895 	}
1896 
1897 	/* Validate contents are inbounds */
1898 	for (i = 1; i < info->hdr->e_shnum; i++) {
1899 		shdr = &sechdrs[i];
1900 		switch (shdr->sh_type) {
1901 		case SHT_NULL:
1902 		case SHT_NOBITS:
1903 			/* No contents, offset/size don't mean anything */
1904 			continue;
1905 		default:
1906 			err = validate_section_offset(info, shdr);
1907 			if (err < 0) {
1908 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1909 				       i, shdr->sh_type);
1910 				return err;
1911 			}
1912 		}
1913 	}
1914 
1915 	info->sechdrs = sechdrs;
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  * elf_validity_cache_secstrings() - Caches section names if valid
1922  * @info: Load info to cache section names from. Must have valid sechdrs.
1923  *
1924  * Specifically checks:
1925  *
1926  * * Section name table index is inbounds of section headers
1927  * * Section name table is not empty
1928  * * Section name table is NUL terminated
1929  * * All section name offsets are inbounds of the section
1930  *
1931  * Then updates @info with a &load_info->secstrings pointer if valid.
1932  *
1933  * Return: %0 if valid, negative error code if validation failed.
1934  */
elf_validity_cache_secstrings(struct load_info * info)1935 static int elf_validity_cache_secstrings(struct load_info *info)
1936 {
1937 	Elf_Shdr *strhdr, *shdr;
1938 	char *secstrings;
1939 	int i;
1940 
1941 	/*
1942 	 * Verify if the section name table index is valid.
1943 	 */
1944 	if (info->hdr->e_shstrndx == SHN_UNDEF
1945 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1946 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1947 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1948 		       info->hdr->e_shnum);
1949 		return -ENOEXEC;
1950 	}
1951 
1952 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1953 
1954 	/*
1955 	 * The section name table must be NUL-terminated, as required
1956 	 * by the spec. This makes strcmp and pr_* calls that access
1957 	 * strings in the section safe.
1958 	 */
1959 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1960 	if (strhdr->sh_size == 0) {
1961 		pr_err("empty section name table\n");
1962 		return -ENOEXEC;
1963 	}
1964 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1965 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1966 		return -ENOEXEC;
1967 	}
1968 
1969 	for (i = 0; i < info->hdr->e_shnum; i++) {
1970 		shdr = &info->sechdrs[i];
1971 		/* SHT_NULL means sh_name has an undefined value */
1972 		if (shdr->sh_type == SHT_NULL)
1973 			continue;
1974 		if (shdr->sh_name >= strhdr->sh_size) {
1975 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1976 			       i, shdr->sh_type);
1977 			return -ENOEXEC;
1978 		}
1979 	}
1980 
1981 	info->secstrings = secstrings;
1982 	return 0;
1983 }
1984 
1985 /**
1986  * elf_validity_cache_index_info() - Validate and cache modinfo section
1987  * @info: Load info to populate the modinfo index on.
1988  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1989  *
1990  * Checks that if there is a .modinfo section, it is unique.
1991  * Then, it caches its index in &load_info->index.info.
1992  * Finally, it tries to populate the name to improve error messages.
1993  *
1994  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1995  */
elf_validity_cache_index_info(struct load_info * info)1996 static int elf_validity_cache_index_info(struct load_info *info)
1997 {
1998 	int info_idx;
1999 
2000 	info_idx = find_any_unique_sec(info, ".modinfo");
2001 
2002 	if (info_idx == 0)
2003 		/* Early return, no .modinfo */
2004 		return 0;
2005 
2006 	if (info_idx < 0) {
2007 		pr_err("Only one .modinfo section must exist.\n");
2008 		return -ENOEXEC;
2009 	}
2010 
2011 	info->index.info = info_idx;
2012 	/* Try to find a name early so we can log errors with a module name */
2013 	info->name = get_modinfo(info, "name");
2014 
2015 	return 0;
2016 }
2017 
2018 /**
2019  * elf_validity_cache_index_mod() - Validates and caches this_module section
2020  * @info: Load info to cache this_module on.
2021  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2022  *
2023  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2024  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2025  * to &__this_module properly. The kernel's modpost declares it on each
2026  * modules's *.mod.c file. If the struct module of the kernel changes a full
2027  * kernel rebuild is required.
2028  *
2029  * We have a few expectations for this special section, this function
2030  * validates all this for us:
2031  *
2032  * * The section has contents
2033  * * The section is unique
2034  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2035  * * The section size must match the kernel's run time's struct module
2036  *   size
2037  *
2038  * If all checks pass, the index will be cached in &load_info->index.mod
2039  *
2040  * Return: %0 on validation success, %-ENOEXEC on failure
2041  */
elf_validity_cache_index_mod(struct load_info * info)2042 static int elf_validity_cache_index_mod(struct load_info *info)
2043 {
2044 	Elf_Shdr *shdr;
2045 	int mod_idx;
2046 
2047 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2048 	if (mod_idx <= 0) {
2049 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2050 		       info->name ?: "(missing .modinfo section or name field)");
2051 		return -ENOEXEC;
2052 	}
2053 
2054 	shdr = &info->sechdrs[mod_idx];
2055 
2056 	if (shdr->sh_type == SHT_NOBITS) {
2057 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2058 		       info->name ?: "(missing .modinfo section or name field)");
2059 		return -ENOEXEC;
2060 	}
2061 
2062 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2063 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2064 		       info->name ?: "(missing .modinfo section or name field)");
2065 		return -ENOEXEC;
2066 	}
2067 
2068 	if (shdr->sh_size != sizeof(struct module)) {
2069 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2070 		       info->name ?: "(missing .modinfo section or name field)");
2071 		return -ENOEXEC;
2072 	}
2073 
2074 	info->index.mod = mod_idx;
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  * elf_validity_cache_index_sym() - Validate and cache symtab index
2081  * @info: Load info to cache symtab index in.
2082  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2083  *
2084  * Checks that there is exactly one symbol table, then caches its index in
2085  * &load_info->index.sym.
2086  *
2087  * Return: %0 if valid, %-ENOEXEC on failure.
2088  */
elf_validity_cache_index_sym(struct load_info * info)2089 static int elf_validity_cache_index_sym(struct load_info *info)
2090 {
2091 	unsigned int sym_idx;
2092 	unsigned int num_sym_secs = 0;
2093 	int i;
2094 
2095 	for (i = 1; i < info->hdr->e_shnum; i++) {
2096 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2097 			num_sym_secs++;
2098 			sym_idx = i;
2099 		}
2100 	}
2101 
2102 	if (num_sym_secs != 1) {
2103 		pr_warn("%s: module has no symbols (stripped?)\n",
2104 			info->name ?: "(missing .modinfo section or name field)");
2105 		return -ENOEXEC;
2106 	}
2107 
2108 	info->index.sym = sym_idx;
2109 
2110 	return 0;
2111 }
2112 
2113 /**
2114  * elf_validity_cache_index_str() - Validate and cache strtab index
2115  * @info: Load info to cache strtab index in.
2116  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2117  *        Must have &load_info->index.sym populated.
2118  *
2119  * Looks at the symbol table's associated string table, makes sure it is
2120  * in-bounds, and caches it.
2121  *
2122  * Return: %0 if valid, %-ENOEXEC on failure.
2123  */
elf_validity_cache_index_str(struct load_info * info)2124 static int elf_validity_cache_index_str(struct load_info *info)
2125 {
2126 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2127 
2128 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2129 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2130 		       str_idx, str_idx, info->hdr->e_shnum);
2131 		return -ENOEXEC;
2132 	}
2133 
2134 	info->index.str = str_idx;
2135 	return 0;
2136 }
2137 
2138 /**
2139  * elf_validity_cache_index_versions() - Validate and cache version indices
2140  * @info:  Load info to cache version indices in.
2141  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2142  * @flags: Load flags, relevant to suppress version loading, see
2143  *         uapi/linux/module.h
2144  *
2145  * If we're ignoring modversions based on @flags, zero all version indices
2146  * and return validity. Othewrise check:
2147  *
2148  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2149  * * There is a name present for every crc
2150  *
2151  * Then populate:
2152  *
2153  * * &load_info->index.vers
2154  * * &load_info->index.vers_ext_crc
2155  * * &load_info->index.vers_ext_names
2156  *
2157  * if present.
2158  *
2159  * Return: %0 if valid, %-ENOEXEC on failure.
2160  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2161 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2162 {
2163 	unsigned int vers_ext_crc;
2164 	unsigned int vers_ext_name;
2165 	size_t crc_count;
2166 	size_t remaining_len;
2167 	size_t name_size;
2168 	char *name;
2169 
2170 	/* If modversions were suppressed, pretend we didn't find any */
2171 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2172 		info->index.vers = 0;
2173 		info->index.vers_ext_crc = 0;
2174 		info->index.vers_ext_name = 0;
2175 		return 0;
2176 	}
2177 
2178 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2179 	vers_ext_name = find_sec(info, "__version_ext_names");
2180 
2181 	/* If we have one field, we must have the other */
2182 	if (!!vers_ext_crc != !!vers_ext_name) {
2183 		pr_err("extended version crc+name presence does not match");
2184 		return -ENOEXEC;
2185 	}
2186 
2187 	/*
2188 	 * If we have extended version information, we should have the same
2189 	 * number of entries in every section.
2190 	 */
2191 	if (vers_ext_crc) {
2192 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2193 		name = (void *)info->hdr +
2194 			info->sechdrs[vers_ext_name].sh_offset;
2195 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2196 
2197 		while (crc_count--) {
2198 			name_size = strnlen(name, remaining_len) + 1;
2199 			if (name_size > remaining_len) {
2200 				pr_err("more extended version crcs than names");
2201 				return -ENOEXEC;
2202 			}
2203 			remaining_len -= name_size;
2204 			name += name_size;
2205 		}
2206 	}
2207 
2208 	info->index.vers = find_sec(info, "__versions");
2209 	info->index.vers_ext_crc = vers_ext_crc;
2210 	info->index.vers_ext_name = vers_ext_name;
2211 	return 0;
2212 }
2213 
2214 /**
2215  * elf_validity_cache_index() - Resolve, validate, cache section indices
2216  * @info:  Load info to read from and update.
2217  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2218  * @flags: Load flags, relevant to suppress version loading, see
2219  *         uapi/linux/module.h
2220  *
2221  * Populates &load_info->index, validating as it goes.
2222  * See child functions for per-field validation:
2223  *
2224  * * elf_validity_cache_index_info()
2225  * * elf_validity_cache_index_mod()
2226  * * elf_validity_cache_index_sym()
2227  * * elf_validity_cache_index_str()
2228  * * elf_validity_cache_index_versions()
2229  *
2230  * If CONFIG_SMP is enabled, load the percpu section by name with no
2231  * validation.
2232  *
2233  * Return: 0 on success, negative error code if an index failed validation.
2234  */
elf_validity_cache_index(struct load_info * info,int flags)2235 static int elf_validity_cache_index(struct load_info *info, int flags)
2236 {
2237 	int err;
2238 
2239 	err = elf_validity_cache_index_info(info);
2240 	if (err < 0)
2241 		return err;
2242 	err = elf_validity_cache_index_mod(info);
2243 	if (err < 0)
2244 		return err;
2245 	err = elf_validity_cache_index_sym(info);
2246 	if (err < 0)
2247 		return err;
2248 	err = elf_validity_cache_index_str(info);
2249 	if (err < 0)
2250 		return err;
2251 	err = elf_validity_cache_index_versions(info, flags);
2252 	if (err < 0)
2253 		return err;
2254 
2255 	info->index.pcpu = find_pcpusec(info);
2256 
2257 	return 0;
2258 }
2259 
2260 /**
2261  * elf_validity_cache_strtab() - Validate and cache symbol string table
2262  * @info: Load info to read from and update.
2263  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2264  *        Must have &load_info->index populated.
2265  *
2266  * Checks:
2267  *
2268  * * The string table is not empty.
2269  * * The string table starts and ends with NUL (required by ELF spec).
2270  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2271  *   string table.
2272  *
2273  * And caches the pointer as &load_info->strtab in @info.
2274  *
2275  * Return: 0 on success, negative error code if a check failed.
2276  */
elf_validity_cache_strtab(struct load_info * info)2277 static int elf_validity_cache_strtab(struct load_info *info)
2278 {
2279 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2280 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2281 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2282 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2283 	int i;
2284 
2285 	if (str_shdr->sh_size == 0) {
2286 		pr_err("empty symbol string table\n");
2287 		return -ENOEXEC;
2288 	}
2289 	if (strtab[0] != '\0') {
2290 		pr_err("symbol string table missing leading NUL\n");
2291 		return -ENOEXEC;
2292 	}
2293 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2294 		pr_err("symbol string table isn't NUL terminated\n");
2295 		return -ENOEXEC;
2296 	}
2297 
2298 	/*
2299 	 * Now that we know strtab is correctly structured, check symbol
2300 	 * starts are inbounds before they're used later.
2301 	 */
2302 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2303 		if (syms[i].st_name >= str_shdr->sh_size) {
2304 			pr_err("symbol name out of bounds in string table");
2305 			return -ENOEXEC;
2306 		}
2307 	}
2308 
2309 	info->strtab = strtab;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Check userspace passed ELF module against our expectations, and cache
2315  * useful variables for further processing as we go.
2316  *
2317  * This does basic validity checks against section offsets and sizes, the
2318  * section name string table, and the indices used for it (sh_name).
2319  *
2320  * As a last step, since we're already checking the ELF sections we cache
2321  * useful variables which will be used later for our convenience:
2322  *
2323  * 	o pointers to section headers
2324  * 	o cache the modinfo symbol section
2325  * 	o cache the string symbol section
2326  * 	o cache the module section
2327  *
2328  * As a last step we set info->mod to the temporary copy of the module in
2329  * info->hdr. The final one will be allocated in move_module(). Any
2330  * modifications we make to our copy of the module will be carried over
2331  * to the final minted module.
2332  */
elf_validity_cache_copy(struct load_info * info,int flags)2333 static int elf_validity_cache_copy(struct load_info *info, int flags)
2334 {
2335 	int err;
2336 
2337 	err = elf_validity_cache_sechdrs(info);
2338 	if (err < 0)
2339 		return err;
2340 	err = elf_validity_cache_secstrings(info);
2341 	if (err < 0)
2342 		return err;
2343 	err = elf_validity_cache_index(info, flags);
2344 	if (err < 0)
2345 		return err;
2346 	err = elf_validity_cache_strtab(info);
2347 	if (err < 0)
2348 		return err;
2349 
2350 	/* This is temporary: point mod into copy of data. */
2351 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2352 
2353 	/*
2354 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2355 	 * on-disk struct mod 'name' field.
2356 	 */
2357 	if (!info->name)
2358 		info->name = info->mod->name;
2359 
2360 	return 0;
2361 }
2362 
2363 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2364 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2365 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2366 {
2367 	do {
2368 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2369 
2370 		if (copy_from_user(dst, usrc, n) != 0)
2371 			return -EFAULT;
2372 		cond_resched();
2373 		dst += n;
2374 		usrc += n;
2375 		len -= n;
2376 	} while (len);
2377 	return 0;
2378 }
2379 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2380 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2381 {
2382 	if (!get_modinfo(info, "livepatch"))
2383 		/* Nothing more to do */
2384 		return 0;
2385 
2386 	if (set_livepatch_module(mod))
2387 		return 0;
2388 
2389 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2390 	       mod->name);
2391 	return -ENOEXEC;
2392 }
2393 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2394 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2395 {
2396 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2397 		return;
2398 
2399 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2400 		mod->name);
2401 }
2402 
2403 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2404 static int copy_module_from_user(const void __user *umod, unsigned long len,
2405 				  struct load_info *info)
2406 {
2407 	int err;
2408 
2409 	info->len = len;
2410 	if (info->len < sizeof(*(info->hdr)))
2411 		return -ENOEXEC;
2412 
2413 	err = security_kernel_load_data(LOADING_MODULE, true);
2414 	if (err)
2415 		return err;
2416 
2417 	/* Suck in entire file: we'll want most of it. */
2418 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2419 	if (!info->hdr)
2420 		return -ENOMEM;
2421 
2422 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2423 		err = -EFAULT;
2424 		goto out;
2425 	}
2426 
2427 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2428 					     LOADING_MODULE, "init_module");
2429 out:
2430 	if (err)
2431 		vfree(info->hdr);
2432 
2433 	return err;
2434 }
2435 
free_copy(struct load_info * info,int flags)2436 static void free_copy(struct load_info *info, int flags)
2437 {
2438 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2439 		module_decompress_cleanup(info);
2440 	else
2441 		vfree(info->hdr);
2442 }
2443 
rewrite_section_headers(struct load_info * info,int flags)2444 static int rewrite_section_headers(struct load_info *info, int flags)
2445 {
2446 	unsigned int i;
2447 
2448 	/* This should always be true, but let's be sure. */
2449 	info->sechdrs[0].sh_addr = 0;
2450 
2451 	for (i = 1; i < info->hdr->e_shnum; i++) {
2452 		Elf_Shdr *shdr = &info->sechdrs[i];
2453 
2454 		/*
2455 		 * Mark all sections sh_addr with their address in the
2456 		 * temporary image.
2457 		 */
2458 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2459 
2460 	}
2461 
2462 	/* Track but don't keep modinfo and version sections. */
2463 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2464 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2465 		~(unsigned long)SHF_ALLOC;
2466 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2467 		~(unsigned long)SHF_ALLOC;
2468 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2469 
2470 	return 0;
2471 }
2472 
2473 static const char *const module_license_offenders[] = {
2474 	/* driverloader was caught wrongly pretending to be under GPL */
2475 	"driverloader",
2476 
2477 	/* lve claims to be GPL but upstream won't provide source */
2478 	"lve",
2479 };
2480 
2481 /*
2482  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2483 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2484 {
2485 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2486 	size_t i;
2487 
2488 	if (!get_modinfo(info, "intree")) {
2489 		if (!test_taint(TAINT_OOT_MODULE))
2490 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2491 				mod->name);
2492 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2493 	}
2494 
2495 	check_modinfo_retpoline(mod, info);
2496 
2497 	if (get_modinfo(info, "staging")) {
2498 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2499 		pr_warn("%s: module is from the staging directory, the quality "
2500 			"is unknown, you have been warned.\n", mod->name);
2501 	}
2502 
2503 	if (is_livepatch_module(mod)) {
2504 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2505 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2506 				mod->name);
2507 	}
2508 
2509 	module_license_taint_check(mod, get_modinfo(info, "license"));
2510 
2511 	if (get_modinfo(info, "test")) {
2512 		if (!test_taint(TAINT_TEST))
2513 			pr_warn("%s: loading test module taints kernel.\n",
2514 				mod->name);
2515 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2516 	}
2517 #ifdef CONFIG_MODULE_SIG
2518 	mod->sig_ok = info->sig_ok;
2519 	if (!mod->sig_ok) {
2520 		pr_notice_once("%s: module verification failed: signature "
2521 			       "and/or required key missing - tainting "
2522 			       "kernel\n", mod->name);
2523 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2524 	}
2525 #endif
2526 
2527 	/*
2528 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2529 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2530 	 * using GPL-only symbols it needs.
2531 	 */
2532 	if (strcmp(mod->name, "ndiswrapper") == 0)
2533 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2534 
2535 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2536 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2537 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2538 					 LOCKDEP_NOW_UNRELIABLE);
2539 	}
2540 
2541 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2542 		pr_warn("%s: module license taints kernel.\n", mod->name);
2543 
2544 }
2545 
check_modinfo(struct module * mod,struct load_info * info,int flags)2546 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2547 {
2548 	const char *modmagic = get_modinfo(info, "vermagic");
2549 	int err;
2550 
2551 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2552 		modmagic = NULL;
2553 
2554 	/* This is allowed: modprobe --force will invalidate it. */
2555 	if (!modmagic) {
2556 		err = try_to_force_load(mod, "bad vermagic");
2557 		if (err)
2558 			return err;
2559 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2560 		pr_err("%s: version magic '%s' should be '%s'\n",
2561 		       info->name, modmagic, vermagic);
2562 		return -ENOEXEC;
2563 	}
2564 
2565 	err = check_modinfo_livepatch(mod, info);
2566 	if (err)
2567 		return err;
2568 
2569 	return 0;
2570 }
2571 
find_module_sections(struct module * mod,struct load_info * info)2572 static int find_module_sections(struct module *mod, struct load_info *info)
2573 {
2574 	mod->kp = section_objs(info, "__param",
2575 			       sizeof(*mod->kp), &mod->num_kp);
2576 	mod->syms = section_objs(info, "__ksymtab",
2577 				 sizeof(*mod->syms), &mod->num_syms);
2578 	mod->crcs = section_addr(info, "__kcrctab");
2579 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2580 				     sizeof(*mod->gpl_syms),
2581 				     &mod->num_gpl_syms);
2582 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2583 
2584 #ifdef CONFIG_CONSTRUCTORS
2585 	mod->ctors = section_objs(info, ".ctors",
2586 				  sizeof(*mod->ctors), &mod->num_ctors);
2587 	if (!mod->ctors)
2588 		mod->ctors = section_objs(info, ".init_array",
2589 				sizeof(*mod->ctors), &mod->num_ctors);
2590 	else if (find_sec(info, ".init_array")) {
2591 		/*
2592 		 * This shouldn't happen with same compiler and binutils
2593 		 * building all parts of the module.
2594 		 */
2595 		pr_warn("%s: has both .ctors and .init_array.\n",
2596 		       mod->name);
2597 		return -EINVAL;
2598 	}
2599 #endif
2600 
2601 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2602 						&mod->noinstr_text_size);
2603 
2604 #ifdef CONFIG_TRACEPOINTS
2605 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2606 					     sizeof(*mod->tracepoints_ptrs),
2607 					     &mod->num_tracepoints);
2608 #endif
2609 #ifdef CONFIG_TREE_SRCU
2610 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2611 					     sizeof(*mod->srcu_struct_ptrs),
2612 					     &mod->num_srcu_structs);
2613 #endif
2614 #ifdef CONFIG_BPF_EVENTS
2615 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2616 					   sizeof(*mod->bpf_raw_events),
2617 					   &mod->num_bpf_raw_events);
2618 #endif
2619 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2620 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2621 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2622 					      &mod->btf_base_data_size);
2623 #endif
2624 #ifdef CONFIG_JUMP_LABEL
2625 	mod->jump_entries = section_objs(info, "__jump_table",
2626 					sizeof(*mod->jump_entries),
2627 					&mod->num_jump_entries);
2628 #endif
2629 #ifdef CONFIG_EVENT_TRACING
2630 	mod->trace_events = section_objs(info, "_ftrace_events",
2631 					 sizeof(*mod->trace_events),
2632 					 &mod->num_trace_events);
2633 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2634 					sizeof(*mod->trace_evals),
2635 					&mod->num_trace_evals);
2636 #endif
2637 #ifdef CONFIG_TRACING
2638 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2639 					 sizeof(*mod->trace_bprintk_fmt_start),
2640 					 &mod->num_trace_bprintk_fmt);
2641 #endif
2642 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2643 	/* sechdrs[0].sh_size is always zero */
2644 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2645 					     sizeof(*mod->ftrace_callsites),
2646 					     &mod->num_ftrace_callsites);
2647 #endif
2648 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2649 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2650 					    sizeof(*mod->ei_funcs),
2651 					    &mod->num_ei_funcs);
2652 #endif
2653 #ifdef CONFIG_KPROBES
2654 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2655 						&mod->kprobes_text_size);
2656 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2657 						sizeof(unsigned long),
2658 						&mod->num_kprobe_blacklist);
2659 #endif
2660 #ifdef CONFIG_PRINTK_INDEX
2661 	mod->printk_index_start = section_objs(info, ".printk_index",
2662 					       sizeof(*mod->printk_index_start),
2663 					       &mod->printk_index_size);
2664 #endif
2665 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2666 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2667 					      sizeof(*mod->static_call_sites),
2668 					      &mod->num_static_call_sites);
2669 #endif
2670 #if IS_ENABLED(CONFIG_KUNIT)
2671 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2672 					      sizeof(*mod->kunit_suites),
2673 					      &mod->num_kunit_suites);
2674 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2675 					      sizeof(*mod->kunit_init_suites),
2676 					      &mod->num_kunit_init_suites);
2677 #endif
2678 
2679 	mod->extable = section_objs(info, "__ex_table",
2680 				    sizeof(*mod->extable), &mod->num_exentries);
2681 
2682 	if (section_addr(info, "__obsparm"))
2683 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2684 
2685 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2686 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2687 					      sizeof(*mod->dyndbg_info.descs),
2688 					      &mod->dyndbg_info.num_descs);
2689 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2690 						sizeof(*mod->dyndbg_info.classes),
2691 						&mod->dyndbg_info.num_classes);
2692 #endif
2693 
2694 	return 0;
2695 }
2696 
move_module(struct module * mod,struct load_info * info)2697 static int move_module(struct module *mod, struct load_info *info)
2698 {
2699 	int i;
2700 	enum mod_mem_type t = 0;
2701 	int ret = -ENOMEM;
2702 	bool codetag_section_found = false;
2703 
2704 	for_each_mod_mem_type(type) {
2705 		if (!mod->mem[type].size) {
2706 			mod->mem[type].base = NULL;
2707 			continue;
2708 		}
2709 
2710 		ret = module_memory_alloc(mod, type);
2711 		if (ret) {
2712 			t = type;
2713 			goto out_err;
2714 		}
2715 	}
2716 
2717 	/* Transfer each section which specifies SHF_ALLOC */
2718 	pr_debug("Final section addresses for %s:\n", mod->name);
2719 	for (i = 0; i < info->hdr->e_shnum; i++) {
2720 		void *dest;
2721 		Elf_Shdr *shdr = &info->sechdrs[i];
2722 		const char *sname;
2723 
2724 		if (!(shdr->sh_flags & SHF_ALLOC))
2725 			continue;
2726 
2727 		sname = info->secstrings + shdr->sh_name;
2728 		/*
2729 		 * Load codetag sections separately as they might still be used
2730 		 * after module unload.
2731 		 */
2732 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2733 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2734 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2735 			if (WARN_ON(!dest)) {
2736 				ret = -EINVAL;
2737 				goto out_err;
2738 			}
2739 			if (IS_ERR(dest)) {
2740 				ret = PTR_ERR(dest);
2741 				goto out_err;
2742 			}
2743 			codetag_section_found = true;
2744 		} else {
2745 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2746 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2747 
2748 			dest = mod->mem[type].base + offset;
2749 		}
2750 
2751 		if (shdr->sh_type != SHT_NOBITS) {
2752 			/*
2753 			 * Our ELF checker already validated this, but let's
2754 			 * be pedantic and make the goal clearer. We actually
2755 			 * end up copying over all modifications made to the
2756 			 * userspace copy of the entire struct module.
2757 			 */
2758 			if (i == info->index.mod &&
2759 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2760 				ret = -ENOEXEC;
2761 				goto out_err;
2762 			}
2763 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2764 		}
2765 		/*
2766 		 * Update the userspace copy's ELF section address to point to
2767 		 * our newly allocated memory as a pure convenience so that
2768 		 * users of info can keep taking advantage and using the newly
2769 		 * minted official memory area.
2770 		 */
2771 		shdr->sh_addr = (unsigned long)dest;
2772 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2773 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2774 	}
2775 
2776 	return 0;
2777 out_err:
2778 	module_memory_restore_rox(mod);
2779 	for (t--; t >= 0; t--)
2780 		module_memory_free(mod, t);
2781 	if (codetag_section_found)
2782 		codetag_free_module_sections(mod);
2783 
2784 	return ret;
2785 }
2786 
check_export_symbol_versions(struct module * mod)2787 static int check_export_symbol_versions(struct module *mod)
2788 {
2789 #ifdef CONFIG_MODVERSIONS
2790 	if ((mod->num_syms && !mod->crcs) ||
2791 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2792 		return try_to_force_load(mod,
2793 					 "no versions for exported symbols");
2794 	}
2795 #endif
2796 	return 0;
2797 }
2798 
flush_module_icache(const struct module * mod)2799 static void flush_module_icache(const struct module *mod)
2800 {
2801 	/*
2802 	 * Flush the instruction cache, since we've played with text.
2803 	 * Do it before processing of module parameters, so the module
2804 	 * can provide parameter accessor functions of its own.
2805 	 */
2806 	for_each_mod_mem_type(type) {
2807 		const struct module_memory *mod_mem = &mod->mem[type];
2808 
2809 		if (mod_mem->size) {
2810 			flush_icache_range((unsigned long)mod_mem->base,
2811 					   (unsigned long)mod_mem->base + mod_mem->size);
2812 		}
2813 	}
2814 }
2815 
module_elf_check_arch(Elf_Ehdr * hdr)2816 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2817 {
2818 	return true;
2819 }
2820 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2821 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2822 				     Elf_Shdr *sechdrs,
2823 				     char *secstrings,
2824 				     struct module *mod)
2825 {
2826 	return 0;
2827 }
2828 
2829 /* module_blacklist is a comma-separated list of module names */
2830 static char *module_blacklist;
blacklisted(const char * module_name)2831 static bool blacklisted(const char *module_name)
2832 {
2833 	const char *p;
2834 	size_t len;
2835 
2836 	if (!module_blacklist)
2837 		return false;
2838 
2839 	for (p = module_blacklist; *p; p += len) {
2840 		len = strcspn(p, ",");
2841 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2842 			return true;
2843 		if (p[len] == ',')
2844 			len++;
2845 	}
2846 	return false;
2847 }
2848 core_param(module_blacklist, module_blacklist, charp, 0400);
2849 
layout_and_allocate(struct load_info * info,int flags)2850 static struct module *layout_and_allocate(struct load_info *info, int flags)
2851 {
2852 	struct module *mod;
2853 	int err;
2854 
2855 	/* Allow arches to frob section contents and sizes.  */
2856 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2857 					info->secstrings, info->mod);
2858 	if (err < 0)
2859 		return ERR_PTR(err);
2860 
2861 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2862 					  info->secstrings, info->mod);
2863 	if (err < 0)
2864 		return ERR_PTR(err);
2865 
2866 	/* We will do a special allocation for per-cpu sections later. */
2867 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2868 
2869 	/*
2870 	 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2871 	 * put them in the right place.
2872 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2873 	 */
2874 	module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2875 
2876 	/*
2877 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2878 	 * this is done generically; there doesn't appear to be any
2879 	 * special cases for the architectures.
2880 	 */
2881 	layout_sections(info->mod, info);
2882 	layout_symtab(info->mod, info);
2883 
2884 	/* Allocate and move to the final place */
2885 	err = move_module(info->mod, info);
2886 	if (err)
2887 		return ERR_PTR(err);
2888 
2889 	/* Module has been copied to its final place now: return it. */
2890 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2891 	kmemleak_load_module(mod, info);
2892 	codetag_module_replaced(info->mod, mod);
2893 
2894 	return mod;
2895 }
2896 
2897 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2898 static void module_deallocate(struct module *mod, struct load_info *info)
2899 {
2900 	percpu_modfree(mod);
2901 	module_arch_freeing_init(mod);
2902 	codetag_free_module_sections(mod);
2903 
2904 	free_mod_mem(mod);
2905 }
2906 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2907 int __weak module_finalize(const Elf_Ehdr *hdr,
2908 			   const Elf_Shdr *sechdrs,
2909 			   struct module *me)
2910 {
2911 	return 0;
2912 }
2913 
post_relocation(struct module * mod,const struct load_info * info)2914 static int post_relocation(struct module *mod, const struct load_info *info)
2915 {
2916 	/* Sort exception table now relocations are done. */
2917 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2918 
2919 	/* Copy relocated percpu area over. */
2920 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2921 		       info->sechdrs[info->index.pcpu].sh_size);
2922 
2923 	/* Setup kallsyms-specific fields. */
2924 	add_kallsyms(mod, info);
2925 
2926 	/* Arch-specific module finalizing. */
2927 	return module_finalize(info->hdr, info->sechdrs, mod);
2928 }
2929 
2930 /* Call module constructors. */
do_mod_ctors(struct module * mod)2931 static void do_mod_ctors(struct module *mod)
2932 {
2933 #ifdef CONFIG_CONSTRUCTORS
2934 	unsigned long i;
2935 
2936 	for (i = 0; i < mod->num_ctors; i++)
2937 		mod->ctors[i]();
2938 #endif
2939 }
2940 
2941 /* For freeing module_init on success, in case kallsyms traversing */
2942 struct mod_initfree {
2943 	struct llist_node node;
2944 	void *init_text;
2945 	void *init_data;
2946 	void *init_rodata;
2947 };
2948 
do_free_init(struct work_struct * w)2949 static void do_free_init(struct work_struct *w)
2950 {
2951 	struct llist_node *pos, *n, *list;
2952 	struct mod_initfree *initfree;
2953 
2954 	list = llist_del_all(&init_free_list);
2955 
2956 	synchronize_rcu();
2957 
2958 	llist_for_each_safe(pos, n, list) {
2959 		initfree = container_of(pos, struct mod_initfree, node);
2960 		execmem_free(initfree->init_text);
2961 		execmem_free(initfree->init_data);
2962 		execmem_free(initfree->init_rodata);
2963 		kfree(initfree);
2964 	}
2965 }
2966 
flush_module_init_free_work(void)2967 void flush_module_init_free_work(void)
2968 {
2969 	flush_work(&init_free_wq);
2970 }
2971 
2972 #undef MODULE_PARAM_PREFIX
2973 #define MODULE_PARAM_PREFIX "module."
2974 /* Default value for module->async_probe_requested */
2975 static bool async_probe;
2976 module_param(async_probe, bool, 0644);
2977 
2978 /*
2979  * This is where the real work happens.
2980  *
2981  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2982  * helper command 'lx-symbols'.
2983  */
do_init_module(struct module * mod)2984 static noinline int do_init_module(struct module *mod)
2985 {
2986 	int ret = 0;
2987 	struct mod_initfree *freeinit;
2988 #if defined(CONFIG_MODULE_STATS)
2989 	unsigned int text_size = 0, total_size = 0;
2990 
2991 	for_each_mod_mem_type(type) {
2992 		const struct module_memory *mod_mem = &mod->mem[type];
2993 		if (mod_mem->size) {
2994 			total_size += mod_mem->size;
2995 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2996 				text_size += mod_mem->size;
2997 		}
2998 	}
2999 #endif
3000 
3001 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3002 	if (!freeinit) {
3003 		ret = -ENOMEM;
3004 		goto fail;
3005 	}
3006 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3007 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3008 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3009 
3010 	do_mod_ctors(mod);
3011 	/* Start the module */
3012 	if (mod->init != NULL)
3013 		ret = do_one_initcall(mod->init);
3014 	if (ret < 0) {
3015 		goto fail_free_freeinit;
3016 	}
3017 	if (ret > 0) {
3018 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3019 			"follow 0/-E convention\n"
3020 			"%s: loading module anyway...\n",
3021 			__func__, mod->name, ret, __func__);
3022 		dump_stack();
3023 	}
3024 
3025 	/* Now it's a first class citizen! */
3026 	mod->state = MODULE_STATE_LIVE;
3027 	blocking_notifier_call_chain(&module_notify_list,
3028 				     MODULE_STATE_LIVE, mod);
3029 
3030 	/* Delay uevent until module has finished its init routine */
3031 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3032 
3033 	/*
3034 	 * We need to finish all async code before the module init sequence
3035 	 * is done. This has potential to deadlock if synchronous module
3036 	 * loading is requested from async (which is not allowed!).
3037 	 *
3038 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3039 	 * request_module() from async workers") for more details.
3040 	 */
3041 	if (!mod->async_probe_requested)
3042 		async_synchronize_full();
3043 
3044 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3045 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3046 	mutex_lock(&module_mutex);
3047 	/* Drop initial reference. */
3048 	module_put(mod);
3049 	trim_init_extable(mod);
3050 #ifdef CONFIG_KALLSYMS
3051 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3052 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3053 #endif
3054 	ret = module_enable_rodata_ro_after_init(mod);
3055 	if (ret)
3056 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3057 			"ro_after_init data might still be writable\n",
3058 			mod->name, ret);
3059 
3060 	mod_tree_remove_init(mod);
3061 	module_arch_freeing_init(mod);
3062 	for_class_mod_mem_type(type, init) {
3063 		mod->mem[type].base = NULL;
3064 		mod->mem[type].size = 0;
3065 	}
3066 
3067 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3068 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3069 	mod->btf_data = NULL;
3070 	mod->btf_base_data = NULL;
3071 #endif
3072 	/*
3073 	 * We want to free module_init, but be aware that kallsyms may be
3074 	 * walking this within an RCU read section. In all the failure paths, we
3075 	 * call synchronize_rcu(), but we don't want to slow down the success
3076 	 * path. execmem_free() cannot be called in an interrupt, so do the
3077 	 * work and call synchronize_rcu() in a work queue.
3078 	 *
3079 	 * Note that execmem_alloc() on most architectures creates W+X page
3080 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3081 	 * code such as mark_rodata_ro() which depends on those mappings to
3082 	 * be cleaned up needs to sync with the queued work by invoking
3083 	 * flush_module_init_free_work().
3084 	 */
3085 	if (llist_add(&freeinit->node, &init_free_list))
3086 		schedule_work(&init_free_wq);
3087 
3088 	mutex_unlock(&module_mutex);
3089 	wake_up_all(&module_wq);
3090 
3091 	mod_stat_add_long(text_size, &total_text_size);
3092 	mod_stat_add_long(total_size, &total_mod_size);
3093 
3094 	mod_stat_inc(&modcount);
3095 
3096 	return 0;
3097 
3098 fail_free_freeinit:
3099 	kfree(freeinit);
3100 fail:
3101 	/* Try to protect us from buggy refcounters. */
3102 	mod->state = MODULE_STATE_GOING;
3103 	synchronize_rcu();
3104 	module_put(mod);
3105 	blocking_notifier_call_chain(&module_notify_list,
3106 				     MODULE_STATE_GOING, mod);
3107 	klp_module_going(mod);
3108 	ftrace_release_mod(mod);
3109 	free_module(mod);
3110 	wake_up_all(&module_wq);
3111 
3112 	return ret;
3113 }
3114 
may_init_module(void)3115 static int may_init_module(void)
3116 {
3117 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3118 		return -EPERM;
3119 
3120 	return 0;
3121 }
3122 
3123 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3124 static bool finished_loading(const char *name)
3125 {
3126 	struct module *mod;
3127 	bool ret;
3128 
3129 	/*
3130 	 * The module_mutex should not be a heavily contended lock;
3131 	 * if we get the occasional sleep here, we'll go an extra iteration
3132 	 * in the wait_event_interruptible(), which is harmless.
3133 	 */
3134 	sched_annotate_sleep();
3135 	mutex_lock(&module_mutex);
3136 	mod = find_module_all(name, strlen(name), true);
3137 	ret = !mod || mod->state == MODULE_STATE_LIVE
3138 		|| mod->state == MODULE_STATE_GOING;
3139 	mutex_unlock(&module_mutex);
3140 
3141 	return ret;
3142 }
3143 
3144 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3145 static int module_patient_check_exists(const char *name,
3146 				       enum fail_dup_mod_reason reason)
3147 {
3148 	struct module *old;
3149 	int err = 0;
3150 
3151 	old = find_module_all(name, strlen(name), true);
3152 	if (old == NULL)
3153 		return 0;
3154 
3155 	if (old->state == MODULE_STATE_COMING ||
3156 	    old->state == MODULE_STATE_UNFORMED) {
3157 		/* Wait in case it fails to load. */
3158 		mutex_unlock(&module_mutex);
3159 		err = wait_event_interruptible(module_wq,
3160 				       finished_loading(name));
3161 		mutex_lock(&module_mutex);
3162 		if (err)
3163 			return err;
3164 
3165 		/* The module might have gone in the meantime. */
3166 		old = find_module_all(name, strlen(name), true);
3167 	}
3168 
3169 	if (try_add_failed_module(name, reason))
3170 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3171 
3172 	/*
3173 	 * We are here only when the same module was being loaded. Do
3174 	 * not try to load it again right now. It prevents long delays
3175 	 * caused by serialized module load failures. It might happen
3176 	 * when more devices of the same type trigger load of
3177 	 * a particular module.
3178 	 */
3179 	if (old && old->state == MODULE_STATE_LIVE)
3180 		return -EEXIST;
3181 	return -EBUSY;
3182 }
3183 
3184 /*
3185  * We try to place it in the list now to make sure it's unique before
3186  * we dedicate too many resources.  In particular, temporary percpu
3187  * memory exhaustion.
3188  */
add_unformed_module(struct module * mod)3189 static int add_unformed_module(struct module *mod)
3190 {
3191 	int err;
3192 
3193 	mod->state = MODULE_STATE_UNFORMED;
3194 
3195 	mutex_lock(&module_mutex);
3196 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3197 	if (err)
3198 		goto out;
3199 
3200 	mod_update_bounds(mod);
3201 	list_add_rcu(&mod->list, &modules);
3202 	mod_tree_insert(mod);
3203 	err = 0;
3204 
3205 out:
3206 	mutex_unlock(&module_mutex);
3207 	return err;
3208 }
3209 
complete_formation(struct module * mod,struct load_info * info)3210 static int complete_formation(struct module *mod, struct load_info *info)
3211 {
3212 	int err;
3213 
3214 	mutex_lock(&module_mutex);
3215 
3216 	/* Find duplicate symbols (must be called under lock). */
3217 	err = verify_exported_symbols(mod);
3218 	if (err < 0)
3219 		goto out;
3220 
3221 	/* These rely on module_mutex for list integrity. */
3222 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3223 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3224 
3225 	err = module_enable_rodata_ro(mod);
3226 	if (err)
3227 		goto out_strict_rwx;
3228 	err = module_enable_data_nx(mod);
3229 	if (err)
3230 		goto out_strict_rwx;
3231 	err = module_enable_text_rox(mod);
3232 	if (err)
3233 		goto out_strict_rwx;
3234 
3235 	/*
3236 	 * Mark state as coming so strong_try_module_get() ignores us,
3237 	 * but kallsyms etc. can see us.
3238 	 */
3239 	mod->state = MODULE_STATE_COMING;
3240 	mutex_unlock(&module_mutex);
3241 
3242 	return 0;
3243 
3244 out_strict_rwx:
3245 	module_bug_cleanup(mod);
3246 out:
3247 	mutex_unlock(&module_mutex);
3248 	return err;
3249 }
3250 
prepare_coming_module(struct module * mod)3251 static int prepare_coming_module(struct module *mod)
3252 {
3253 	int err;
3254 
3255 	ftrace_module_enable(mod);
3256 	err = klp_module_coming(mod);
3257 	if (err)
3258 		return err;
3259 
3260 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3261 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3262 	err = notifier_to_errno(err);
3263 	if (err)
3264 		klp_module_going(mod);
3265 
3266 	return err;
3267 }
3268 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3269 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3270 				   void *arg)
3271 {
3272 	struct module *mod = arg;
3273 	int ret;
3274 
3275 	if (strcmp(param, "async_probe") == 0) {
3276 		if (kstrtobool(val, &mod->async_probe_requested))
3277 			mod->async_probe_requested = true;
3278 		return 0;
3279 	}
3280 
3281 	/* Check for magic 'dyndbg' arg */
3282 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3283 	if (ret != 0)
3284 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3285 	return 0;
3286 }
3287 
3288 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3289 static int early_mod_check(struct load_info *info, int flags)
3290 {
3291 	int err;
3292 
3293 	/*
3294 	 * Now that we know we have the correct module name, check
3295 	 * if it's blacklisted.
3296 	 */
3297 	if (blacklisted(info->name)) {
3298 		pr_err("Module %s is blacklisted\n", info->name);
3299 		return -EPERM;
3300 	}
3301 
3302 	err = rewrite_section_headers(info, flags);
3303 	if (err)
3304 		return err;
3305 
3306 	/* Check module struct version now, before we try to use module. */
3307 	if (!check_modstruct_version(info, info->mod))
3308 		return -ENOEXEC;
3309 
3310 	err = check_modinfo(info->mod, info, flags);
3311 	if (err)
3312 		return err;
3313 
3314 	mutex_lock(&module_mutex);
3315 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3316 	mutex_unlock(&module_mutex);
3317 
3318 	return err;
3319 }
3320 
3321 /*
3322  * Allocate and load the module: note that size of section 0 is always
3323  * zero, and we rely on this for optional sections.
3324  */
load_module(struct load_info * info,const char __user * uargs,int flags)3325 static int load_module(struct load_info *info, const char __user *uargs,
3326 		       int flags)
3327 {
3328 	struct module *mod;
3329 	bool module_allocated = false;
3330 	long err = 0;
3331 	char *after_dashes;
3332 
3333 	/*
3334 	 * Do the signature check (if any) first. All that
3335 	 * the signature check needs is info->len, it does
3336 	 * not need any of the section info. That can be
3337 	 * set up later. This will minimize the chances
3338 	 * of a corrupt module causing problems before
3339 	 * we even get to the signature check.
3340 	 *
3341 	 * The check will also adjust info->len by stripping
3342 	 * off the sig length at the end of the module, making
3343 	 * checks against info->len more correct.
3344 	 */
3345 	err = module_sig_check(info, flags);
3346 	if (err)
3347 		goto free_copy;
3348 
3349 	/*
3350 	 * Do basic sanity checks against the ELF header and
3351 	 * sections. Cache useful sections and set the
3352 	 * info->mod to the userspace passed struct module.
3353 	 */
3354 	err = elf_validity_cache_copy(info, flags);
3355 	if (err)
3356 		goto free_copy;
3357 
3358 	err = early_mod_check(info, flags);
3359 	if (err)
3360 		goto free_copy;
3361 
3362 	/* Figure out module layout, and allocate all the memory. */
3363 	mod = layout_and_allocate(info, flags);
3364 	if (IS_ERR(mod)) {
3365 		err = PTR_ERR(mod);
3366 		goto free_copy;
3367 	}
3368 
3369 	module_allocated = true;
3370 
3371 	audit_log_kern_module(mod->name);
3372 
3373 	/* Reserve our place in the list. */
3374 	err = add_unformed_module(mod);
3375 	if (err)
3376 		goto free_module;
3377 
3378 	/*
3379 	 * We are tainting your kernel if your module gets into
3380 	 * the modules linked list somehow.
3381 	 */
3382 	module_augment_kernel_taints(mod, info);
3383 
3384 	/* To avoid stressing percpu allocator, do this once we're unique. */
3385 	err = percpu_modalloc(mod, info);
3386 	if (err)
3387 		goto unlink_mod;
3388 
3389 	/* Now module is in final location, initialize linked lists, etc. */
3390 	err = module_unload_init(mod);
3391 	if (err)
3392 		goto unlink_mod;
3393 
3394 	init_param_lock(mod);
3395 
3396 	/*
3397 	 * Now we've got everything in the final locations, we can
3398 	 * find optional sections.
3399 	 */
3400 	err = find_module_sections(mod, info);
3401 	if (err)
3402 		goto free_unload;
3403 
3404 	err = check_export_symbol_versions(mod);
3405 	if (err)
3406 		goto free_unload;
3407 
3408 	/* Set up MODINFO_ATTR fields */
3409 	err = setup_modinfo(mod, info);
3410 	if (err)
3411 		goto free_modinfo;
3412 
3413 	/* Fix up syms, so that st_value is a pointer to location. */
3414 	err = simplify_symbols(mod, info);
3415 	if (err < 0)
3416 		goto free_modinfo;
3417 
3418 	err = apply_relocations(mod, info);
3419 	if (err < 0)
3420 		goto free_modinfo;
3421 
3422 	err = post_relocation(mod, info);
3423 	if (err < 0)
3424 		goto free_modinfo;
3425 
3426 	flush_module_icache(mod);
3427 
3428 	/* Now copy in args */
3429 	mod->args = strndup_user(uargs, ~0UL >> 1);
3430 	if (IS_ERR(mod->args)) {
3431 		err = PTR_ERR(mod->args);
3432 		goto free_arch_cleanup;
3433 	}
3434 
3435 	init_build_id(mod, info);
3436 
3437 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3438 	ftrace_module_init(mod);
3439 
3440 	/* Finally it's fully formed, ready to start executing. */
3441 	err = complete_formation(mod, info);
3442 	if (err)
3443 		goto ddebug_cleanup;
3444 
3445 	err = prepare_coming_module(mod);
3446 	if (err)
3447 		goto bug_cleanup;
3448 
3449 	mod->async_probe_requested = async_probe;
3450 
3451 	/* Module is ready to execute: parsing args may do that. */
3452 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3453 				  -32768, 32767, mod,
3454 				  unknown_module_param_cb);
3455 	if (IS_ERR(after_dashes)) {
3456 		err = PTR_ERR(after_dashes);
3457 		goto coming_cleanup;
3458 	} else if (after_dashes) {
3459 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3460 		       mod->name, after_dashes);
3461 	}
3462 
3463 	/* Link in to sysfs. */
3464 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3465 	if (err < 0)
3466 		goto coming_cleanup;
3467 
3468 	if (is_livepatch_module(mod)) {
3469 		err = copy_module_elf(mod, info);
3470 		if (err < 0)
3471 			goto sysfs_cleanup;
3472 	}
3473 
3474 	if (codetag_load_module(mod))
3475 		goto sysfs_cleanup;
3476 
3477 	/* Get rid of temporary copy. */
3478 	free_copy(info, flags);
3479 
3480 	/* Done! */
3481 	trace_module_load(mod);
3482 
3483 	return do_init_module(mod);
3484 
3485  sysfs_cleanup:
3486 	mod_sysfs_teardown(mod);
3487  coming_cleanup:
3488 	mod->state = MODULE_STATE_GOING;
3489 	destroy_params(mod->kp, mod->num_kp);
3490 	blocking_notifier_call_chain(&module_notify_list,
3491 				     MODULE_STATE_GOING, mod);
3492 	klp_module_going(mod);
3493  bug_cleanup:
3494 	mod->state = MODULE_STATE_GOING;
3495 	/* module_bug_cleanup needs module_mutex protection */
3496 	mutex_lock(&module_mutex);
3497 	module_bug_cleanup(mod);
3498 	mutex_unlock(&module_mutex);
3499 
3500  ddebug_cleanup:
3501 	ftrace_release_mod(mod);
3502 	synchronize_rcu();
3503 	kfree(mod->args);
3504  free_arch_cleanup:
3505 	module_arch_cleanup(mod);
3506  free_modinfo:
3507 	free_modinfo(mod);
3508  free_unload:
3509 	module_unload_free(mod);
3510  unlink_mod:
3511 	mutex_lock(&module_mutex);
3512 	/* Unlink carefully: kallsyms could be walking list. */
3513 	list_del_rcu(&mod->list);
3514 	mod_tree_remove(mod);
3515 	wake_up_all(&module_wq);
3516 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3517 	synchronize_rcu();
3518 	mutex_unlock(&module_mutex);
3519  free_module:
3520 	mod_stat_bump_invalid(info, flags);
3521 	/* Free lock-classes; relies on the preceding sync_rcu() */
3522 	for_class_mod_mem_type(type, core_data) {
3523 		lockdep_free_key_range(mod->mem[type].base,
3524 				       mod->mem[type].size);
3525 	}
3526 
3527 	module_memory_restore_rox(mod);
3528 	module_deallocate(mod, info);
3529  free_copy:
3530 	/*
3531 	 * The info->len is always set. We distinguish between
3532 	 * failures once the proper module was allocated and
3533 	 * before that.
3534 	 */
3535 	if (!module_allocated)
3536 		mod_stat_bump_becoming(info, flags);
3537 	free_copy(info, flags);
3538 	return err;
3539 }
3540 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3541 SYSCALL_DEFINE3(init_module, void __user *, umod,
3542 		unsigned long, len, const char __user *, uargs)
3543 {
3544 	int err;
3545 	struct load_info info = { };
3546 
3547 	err = may_init_module();
3548 	if (err)
3549 		return err;
3550 
3551 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3552 	       umod, len, uargs);
3553 
3554 	err = copy_module_from_user(umod, len, &info);
3555 	if (err) {
3556 		mod_stat_inc(&failed_kreads);
3557 		mod_stat_add_long(len, &invalid_kread_bytes);
3558 		return err;
3559 	}
3560 
3561 	return load_module(&info, uargs, 0);
3562 }
3563 
3564 struct idempotent {
3565 	const void *cookie;
3566 	struct hlist_node entry;
3567 	struct completion complete;
3568 	int ret;
3569 };
3570 
3571 #define IDEM_HASH_BITS 8
3572 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3573 static DEFINE_SPINLOCK(idem_lock);
3574 
idempotent(struct idempotent * u,const void * cookie)3575 static bool idempotent(struct idempotent *u, const void *cookie)
3576 {
3577 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3578 	struct hlist_head *head = idem_hash + hash;
3579 	struct idempotent *existing;
3580 	bool first;
3581 
3582 	u->ret = -EINTR;
3583 	u->cookie = cookie;
3584 	init_completion(&u->complete);
3585 
3586 	spin_lock(&idem_lock);
3587 	first = true;
3588 	hlist_for_each_entry(existing, head, entry) {
3589 		if (existing->cookie != cookie)
3590 			continue;
3591 		first = false;
3592 		break;
3593 	}
3594 	hlist_add_head(&u->entry, idem_hash + hash);
3595 	spin_unlock(&idem_lock);
3596 
3597 	return !first;
3598 }
3599 
3600 /*
3601  * We were the first one with 'cookie' on the list, and we ended
3602  * up completing the operation. We now need to walk the list,
3603  * remove everybody - which includes ourselves - fill in the return
3604  * value, and then complete the operation.
3605  */
idempotent_complete(struct idempotent * u,int ret)3606 static int idempotent_complete(struct idempotent *u, int ret)
3607 {
3608 	const void *cookie = u->cookie;
3609 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3610 	struct hlist_head *head = idem_hash + hash;
3611 	struct hlist_node *next;
3612 	struct idempotent *pos;
3613 
3614 	spin_lock(&idem_lock);
3615 	hlist_for_each_entry_safe(pos, next, head, entry) {
3616 		if (pos->cookie != cookie)
3617 			continue;
3618 		hlist_del_init(&pos->entry);
3619 		pos->ret = ret;
3620 		complete(&pos->complete);
3621 	}
3622 	spin_unlock(&idem_lock);
3623 	return ret;
3624 }
3625 
3626 /*
3627  * Wait for the idempotent worker.
3628  *
3629  * If we get interrupted, we need to remove ourselves from the
3630  * the idempotent list, and the completion may still come in.
3631  *
3632  * The 'idem_lock' protects against the race, and 'idem.ret' was
3633  * initialized to -EINTR and is thus always the right return
3634  * value even if the idempotent work then completes between
3635  * the wait_for_completion and the cleanup.
3636  */
idempotent_wait_for_completion(struct idempotent * u)3637 static int idempotent_wait_for_completion(struct idempotent *u)
3638 {
3639 	if (wait_for_completion_interruptible(&u->complete)) {
3640 		spin_lock(&idem_lock);
3641 		if (!hlist_unhashed(&u->entry))
3642 			hlist_del(&u->entry);
3643 		spin_unlock(&idem_lock);
3644 	}
3645 	return u->ret;
3646 }
3647 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3648 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3649 {
3650 	struct load_info info = { };
3651 	void *buf = NULL;
3652 	int len;
3653 
3654 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3655 	if (len < 0) {
3656 		mod_stat_inc(&failed_kreads);
3657 		return len;
3658 	}
3659 
3660 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3661 		int err = module_decompress(&info, buf, len);
3662 		vfree(buf); /* compressed data is no longer needed */
3663 		if (err) {
3664 			mod_stat_inc(&failed_decompress);
3665 			mod_stat_add_long(len, &invalid_decompress_bytes);
3666 			return err;
3667 		}
3668 	} else {
3669 		info.hdr = buf;
3670 		info.len = len;
3671 	}
3672 
3673 	return load_module(&info, uargs, flags);
3674 }
3675 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3676 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3677 {
3678 	struct idempotent idem;
3679 
3680 	if (!(f->f_mode & FMODE_READ))
3681 		return -EBADF;
3682 
3683 	/* Are we the winners of the race and get to do this? */
3684 	if (!idempotent(&idem, file_inode(f))) {
3685 		int ret = init_module_from_file(f, uargs, flags);
3686 		return idempotent_complete(&idem, ret);
3687 	}
3688 
3689 	/*
3690 	 * Somebody else won the race and is loading the module.
3691 	 */
3692 	return idempotent_wait_for_completion(&idem);
3693 }
3694 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3695 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3696 {
3697 	int err = may_init_module();
3698 	if (err)
3699 		return err;
3700 
3701 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3702 
3703 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3704 		      |MODULE_INIT_IGNORE_VERMAGIC
3705 		      |MODULE_INIT_COMPRESSED_FILE))
3706 		return -EINVAL;
3707 
3708 	CLASS(fd, f)(fd);
3709 	if (fd_empty(f))
3710 		return -EBADF;
3711 	return idempotent_init_module(fd_file(f), uargs, flags);
3712 }
3713 
3714 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3715 char *module_flags(struct module *mod, char *buf, bool show_state)
3716 {
3717 	int bx = 0;
3718 
3719 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3720 	if (!mod->taints && !show_state)
3721 		goto out;
3722 	if (mod->taints ||
3723 	    mod->state == MODULE_STATE_GOING ||
3724 	    mod->state == MODULE_STATE_COMING) {
3725 		buf[bx++] = '(';
3726 		bx += module_flags_taint(mod->taints, buf + bx);
3727 		/* Show a - for module-is-being-unloaded */
3728 		if (mod->state == MODULE_STATE_GOING && show_state)
3729 			buf[bx++] = '-';
3730 		/* Show a + for module-is-being-loaded */
3731 		if (mod->state == MODULE_STATE_COMING && show_state)
3732 			buf[bx++] = '+';
3733 		buf[bx++] = ')';
3734 	}
3735 out:
3736 	buf[bx] = '\0';
3737 
3738 	return buf;
3739 }
3740 
3741 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3742 const struct exception_table_entry *search_module_extables(unsigned long addr)
3743 {
3744 	struct module *mod;
3745 
3746 	guard(rcu)();
3747 	mod = __module_address(addr);
3748 	if (!mod)
3749 		return NULL;
3750 
3751 	if (!mod->num_exentries)
3752 		return NULL;
3753 	/*
3754 	 * The address passed here belongs to a module that is currently
3755 	 * invoked (we are running inside it). Therefore its module::refcnt
3756 	 * needs already be >0 to ensure that it is not removed at this stage.
3757 	 * All other user need to invoke this function within a RCU read
3758 	 * section.
3759 	 */
3760 	return search_extable(mod->extable, mod->num_exentries, addr);
3761 }
3762 
3763 /**
3764  * is_module_address() - is this address inside a module?
3765  * @addr: the address to check.
3766  *
3767  * See is_module_text_address() if you simply want to see if the address
3768  * is code (not data).
3769  */
is_module_address(unsigned long addr)3770 bool is_module_address(unsigned long addr)
3771 {
3772 	guard(rcu)();
3773 	return __module_address(addr) != NULL;
3774 }
3775 
3776 /**
3777  * __module_address() - get the module which contains an address.
3778  * @addr: the address.
3779  *
3780  * Must be called within RCU read section or module mutex held so that
3781  * module doesn't get freed during this.
3782  */
__module_address(unsigned long addr)3783 struct module *__module_address(unsigned long addr)
3784 {
3785 	struct module *mod;
3786 
3787 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3788 		goto lookup;
3789 
3790 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3791 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3792 		goto lookup;
3793 #endif
3794 
3795 	return NULL;
3796 
3797 lookup:
3798 	mod = mod_find(addr, &mod_tree);
3799 	if (mod) {
3800 		BUG_ON(!within_module(addr, mod));
3801 		if (mod->state == MODULE_STATE_UNFORMED)
3802 			mod = NULL;
3803 	}
3804 	return mod;
3805 }
3806 
3807 /**
3808  * is_module_text_address() - is this address inside module code?
3809  * @addr: the address to check.
3810  *
3811  * See is_module_address() if you simply want to see if the address is
3812  * anywhere in a module.  See kernel_text_address() for testing if an
3813  * address corresponds to kernel or module code.
3814  */
is_module_text_address(unsigned long addr)3815 bool is_module_text_address(unsigned long addr)
3816 {
3817 	guard(rcu)();
3818 	return __module_text_address(addr) != NULL;
3819 }
3820 
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3821 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3822 {
3823 	struct module *mod;
3824 
3825 	guard(rcu)();
3826 	list_for_each_entry_rcu(mod, &modules, list) {
3827 		if (mod->state == MODULE_STATE_UNFORMED)
3828 			continue;
3829 		if (func(mod, data))
3830 			break;
3831 	}
3832 }
3833 
3834 /**
3835  * __module_text_address() - get the module whose code contains an address.
3836  * @addr: the address.
3837  *
3838  * Must be called within RCU read section or module mutex held so that
3839  * module doesn't get freed during this.
3840  */
__module_text_address(unsigned long addr)3841 struct module *__module_text_address(unsigned long addr)
3842 {
3843 	struct module *mod = __module_address(addr);
3844 	if (mod) {
3845 		/* Make sure it's within the text section. */
3846 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3847 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3848 			mod = NULL;
3849 	}
3850 	return mod;
3851 }
3852 
3853 /* Don't grab lock, we're oopsing. */
print_modules(void)3854 void print_modules(void)
3855 {
3856 	struct module *mod;
3857 	char buf[MODULE_FLAGS_BUF_SIZE];
3858 
3859 	printk(KERN_DEFAULT "Modules linked in:");
3860 	/* Most callers should already have preempt disabled, but make sure */
3861 	guard(rcu)();
3862 	list_for_each_entry_rcu(mod, &modules, list) {
3863 		if (mod->state == MODULE_STATE_UNFORMED)
3864 			continue;
3865 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3866 	}
3867 
3868 	print_unloaded_tainted_modules();
3869 	if (last_unloaded_module.name[0])
3870 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3871 			last_unloaded_module.taints);
3872 	pr_cont("\n");
3873 }
3874 
3875 #ifdef CONFIG_MODULE_DEBUGFS
3876 struct dentry *mod_debugfs_root;
3877 
module_debugfs_init(void)3878 static int module_debugfs_init(void)
3879 {
3880 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3881 	return 0;
3882 }
3883 module_init(module_debugfs_init);
3884 #endif
3885