1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.). 4 //! 5 //! This documentation describes how to implement a bus specific driver API and how to align it with 6 //! the design of (bus specific) devices. 7 //! 8 //! Note: Readers are expected to know the content of the documentation of [`Device`] and 9 //! [`DeviceContext`]. 10 //! 11 //! # Driver Trait 12 //! 13 //! The main driver interface is defined by a bus specific driver trait. For instance: 14 //! 15 //! ```ignore 16 //! pub trait Driver: Send { 17 //! /// The type holding information about each device ID supported by the driver. 18 //! type IdInfo: 'static; 19 //! 20 //! /// The table of OF device ids supported by the driver. 21 //! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None; 22 //! 23 //! /// The table of ACPI device ids supported by the driver. 24 //! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None; 25 //! 26 //! /// Driver probe. 27 //! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>; 28 //! 29 //! /// Driver unbind (optional). 30 //! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) { 31 //! let _ = (dev, this); 32 //! } 33 //! } 34 //! ``` 35 //! 36 //! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`]. 37 //! 38 //! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private 39 //! data. The bus abstraction should store the pointer in the corresponding bus device. The generic 40 //! [`Device`] infrastructure provides common helpers for this purpose on its 41 //! [`Device<CoreInternal>`] implementation. 42 //! 43 //! All driver callbacks should provide a reference to the driver's private data. Once the driver 44 //! is unbound from the device, the bus abstraction should take back the ownership of the driver's 45 //! private data from the corresponding [`Device`] and [`drop`] it. 46 //! 47 //! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]). 48 //! 49 //! # Adapter 50 //! 51 //! The adapter implementation of a bus represents the abstraction layer between the C bus 52 //! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of 53 //! the [driver trait](#driver-trait). 54 //! 55 //! ```ignore 56 //! pub struct Adapter<T: Driver>; 57 //! ``` 58 //! 59 //! There's a common [`Adapter`] trait that can be implemented to inherit common driver 60 //! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`]. 61 //! 62 //! # Driver Registration 63 //! 64 //! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter) 65 //! should implement the [`RegistrationOps`] trait. 66 //! 67 //! This trait implementation can be used to create the actual registration with the common 68 //! [`Registration`] type. 69 //! 70 //! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which 71 //! creates a kernel module with exactly one [`Registration`] for the bus specific adapter. 72 //! 73 //! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro. 74 //! 75 //! # Device IDs 76 //! 77 //! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses 78 //! may need to implement their own device ID types. 79 //! 80 //! For this purpose the generic infrastructure in [`device_id`] should be used. 81 //! 82 //! [`auxiliary::Driver`]: kernel::auxiliary::Driver 83 //! [`Core`]: device::Core 84 //! [`Device`]: device::Device 85 //! [`Device<Core>`]: device::Device<device::Core> 86 //! [`Device<CoreInternal>`]: device::Device<device::CoreInternal> 87 //! [`DeviceContext`]: device::DeviceContext 88 //! [`device_id`]: kernel::device_id 89 //! [`module_driver`]: kernel::module_driver 90 //! [`pci::Driver`]: kernel::pci::Driver 91 //! [`platform::Driver`]: kernel::platform::Driver 92 93 use crate::error::{Error, Result}; 94 use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule}; 95 use core::pin::Pin; 96 use pin_init::{pin_data, pinned_drop, PinInit}; 97 98 /// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform, 99 /// Amba, etc.) to provide the corresponding subsystem specific implementation to register / 100 /// unregister a driver of the particular type (`RegType`). 101 /// 102 /// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call 103 /// `bindings::__pci_register_driver` from `RegistrationOps::register` and 104 /// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`. 105 /// 106 /// # Safety 107 /// 108 /// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a 109 /// preceding call to [`RegistrationOps::register`] has been successful. 110 pub unsafe trait RegistrationOps { 111 /// The type that holds information about the registration. This is typically a struct defined 112 /// by the C portion of the kernel. 113 type RegType: Default; 114 115 /// Registers a driver. 116 /// 117 /// # Safety 118 /// 119 /// On success, `reg` must remain pinned and valid until the matching call to 120 /// [`RegistrationOps::unregister`]. register( reg: &Opaque<Self::RegType>, name: &'static CStr, module: &'static ThisModule, ) -> Result121 unsafe fn register( 122 reg: &Opaque<Self::RegType>, 123 name: &'static CStr, 124 module: &'static ThisModule, 125 ) -> Result; 126 127 /// Unregisters a driver previously registered with [`RegistrationOps::register`]. 128 /// 129 /// # Safety 130 /// 131 /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for 132 /// the same `reg`. unregister(reg: &Opaque<Self::RegType>)133 unsafe fn unregister(reg: &Opaque<Self::RegType>); 134 } 135 136 /// A [`Registration`] is a generic type that represents the registration of some driver type (e.g. 137 /// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that 138 /// implements the [`RegistrationOps`] trait, such that the generic `T::register` and 139 /// `T::unregister` calls result in the subsystem specific registration calls. 140 /// 141 ///Once the `Registration` structure is dropped, the driver is unregistered. 142 #[pin_data(PinnedDrop)] 143 pub struct Registration<T: RegistrationOps> { 144 #[pin] 145 reg: Opaque<T::RegType>, 146 } 147 148 // SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to 149 // share references to it with multiple threads as nothing can be done. 150 unsafe impl<T: RegistrationOps> Sync for Registration<T> {} 151 152 // SAFETY: Both registration and unregistration are implemented in C and safe to be performed from 153 // any thread, so `Registration` is `Send`. 154 unsafe impl<T: RegistrationOps> Send for Registration<T> {} 155 156 impl<T: RegistrationOps> Registration<T> { 157 /// Creates a new instance of the registration object. new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error>158 pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> { 159 try_pin_init!(Self { 160 reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| { 161 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write. 162 unsafe { ptr.write(T::RegType::default()) }; 163 164 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has 165 // just been initialised above, so it's also valid for read. 166 let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) }; 167 168 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`. 169 unsafe { T::register(drv, name, module) } 170 }), 171 }) 172 } 173 } 174 175 #[pinned_drop] 176 impl<T: RegistrationOps> PinnedDrop for Registration<T> { drop(self: Pin<&mut Self>)177 fn drop(self: Pin<&mut Self>) { 178 // SAFETY: The existence of `self` guarantees that `self.reg` has previously been 179 // successfully registered with `T::register` 180 unsafe { T::unregister(&self.reg) }; 181 } 182 } 183 184 /// Declares a kernel module that exposes a single driver. 185 /// 186 /// It is meant to be used as a helper by other subsystems so they can more easily expose their own 187 /// macros. 188 #[macro_export] 189 macro_rules! module_driver { 190 (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => { 191 type Ops<$gen_type> = $driver_ops; 192 193 #[$crate::prelude::pin_data] 194 struct DriverModule { 195 #[pin] 196 _driver: $crate::driver::Registration<Ops<$type>>, 197 } 198 199 impl $crate::InPlaceModule for DriverModule { 200 fn init( 201 module: &'static $crate::ThisModule 202 ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> { 203 $crate::try_pin_init!(Self { 204 _driver <- $crate::driver::Registration::new( 205 <Self as $crate::ModuleMetadata>::NAME, 206 module, 207 ), 208 }) 209 } 210 } 211 212 $crate::prelude::module! { 213 type: DriverModule, 214 $($f)* 215 } 216 } 217 } 218 219 /// The bus independent adapter to match a drivers and a devices. 220 /// 221 /// This trait should be implemented by the bus specific adapter, which represents the connection 222 /// of a device and a driver. 223 /// 224 /// It provides bus independent functions for device / driver interactions. 225 pub trait Adapter { 226 /// The type holding driver private data about each device id supported by the driver. 227 type IdInfo: 'static; 228 229 /// The [`acpi::IdTable`] of the corresponding driver acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>230 fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>; 231 232 /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any. 233 /// 234 /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`]. acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>235 fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 236 #[cfg(not(CONFIG_ACPI))] 237 { 238 let _ = dev; 239 None 240 } 241 242 #[cfg(CONFIG_ACPI)] 243 { 244 let table = Self::acpi_id_table()?; 245 246 // SAFETY: 247 // - `table` has static lifetime, hence it's valid for read, 248 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 249 let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) }; 250 251 if raw_id.is_null() { 252 None 253 } else { 254 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id` 255 // and does not add additional invariants, so it's safe to transmute. 256 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() }; 257 258 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id))) 259 } 260 } 261 } 262 263 /// The [`of::IdTable`] of the corresponding driver. of_id_table() -> Option<of::IdTable<Self::IdInfo>>264 fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>; 265 266 /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any. 267 /// 268 /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`]. of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>269 fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 270 #[cfg(not(CONFIG_OF))] 271 { 272 let _ = dev; 273 None 274 } 275 276 #[cfg(CONFIG_OF)] 277 { 278 let table = Self::of_id_table()?; 279 280 // SAFETY: 281 // - `table` has static lifetime, hence it's valid for read, 282 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 283 let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) }; 284 285 if raw_id.is_null() { 286 None 287 } else { 288 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id` 289 // and does not add additional invariants, so it's safe to transmute. 290 let id = unsafe { &*raw_id.cast::<of::DeviceId>() }; 291 292 Some( 293 table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index( 294 id, 295 )), 296 ) 297 } 298 } 299 } 300 301 /// Returns the driver's private data from the matching entry of any of the ID tables, if any. 302 /// 303 /// If this returns `None`, it means that there is no match in any of the ID tables directly 304 /// associated with a [`device::Device`]. id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>305 fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 306 let id = Self::acpi_id_info(dev); 307 if id.is_some() { 308 return id; 309 } 310 311 let id = Self::of_id_info(dev); 312 if id.is_some() { 313 return id; 314 } 315 316 None 317 } 318 } 319