xref: /linux/fs/inode.c (revision ec8c17e5ecb4a5a74069687ccb6d2cfe1851302e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29 
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37  * Inode LRU list locks protect:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode->i_sb->s_inode_list_lock protects:
40  *   inode->i_sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *     Inode LRU list locks
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode->i_sb->s_inode_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 /*
69  * Empty aops. Can be used for the cases where the user does not
70  * define any of the address_space operations.
71  */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __ro_after_init;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110 
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 	unsigned long sum = 0;
114 	int i;
115 
116 	for_each_possible_cpu(i)
117 		sum += data_race(per_cpu(mg_ctime_updates, i));
118 	return sum;
119 }
120 
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 	unsigned long sum = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i)
127 		sum += data_race(per_cpu(mg_fine_stamps, i));
128 	return sum;
129 }
130 
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 	unsigned long sum = 0;
134 	int i;
135 
136 	for_each_possible_cpu(i)
137 		sum += data_race(per_cpu(mg_ctime_swaps, i));
138 	return sum;
139 }
140 
141 #define mgtime_counter_inc(__var)	this_cpu_inc(__var)
142 
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 	unsigned long ctime_updates = get_mg_ctime_updates();
146 	unsigned long ctime_swaps = get_mg_ctime_swaps();
147 	unsigned long fine_stamps = get_mg_fine_stamps();
148 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149 
150 	seq_printf(s, "%lu %lu %lu %lu\n",
151 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 	return 0;
153 }
154 
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156 
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 	return 0;
161 }
162 late_initcall(mg_debugfs_init);
163 
164 #else /* ! CONFIG_DEBUG_FS */
165 
166 #define mgtime_counter_inc(__var)	do { } while (0)
167 
168 #endif /* CONFIG_DEBUG_FS */
169 
170 /*
171  * Handle nr_inode sysctl
172  */
173 #ifdef CONFIG_SYSCTL
174 /*
175  * Statistics gathering..
176  */
177 static struct inodes_stat_t inodes_stat;
178 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 			  size_t *lenp, loff_t *ppos)
181 {
182 	inodes_stat.nr_inodes = get_nr_inodes();
183 	inodes_stat.nr_unused = get_nr_inodes_unused();
184 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186 
187 static struct ctl_table inodes_sysctls[] = {
188 	{
189 		.procname	= "inode-nr",
190 		.data		= &inodes_stat,
191 		.maxlen		= 2*sizeof(long),
192 		.mode		= 0444,
193 		.proc_handler	= proc_nr_inodes,
194 	},
195 	{
196 		.procname	= "inode-state",
197 		.data		= &inodes_stat,
198 		.maxlen		= 7*sizeof(long),
199 		.mode		= 0444,
200 		.proc_handler	= proc_nr_inodes,
201 	},
202 };
203 
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 	register_sysctl_init("fs", inodes_sysctls);
207 	return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211 
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 	return -ENXIO;
215 }
216 
217 /**
218  * inode_init_always_gfp - perform inode structure initialisation
219  * @sb: superblock inode belongs to
220  * @inode: inode to initialise
221  * @gfp: allocation flags
222  *
223  * These are initializations that need to be done on every inode
224  * allocation as the fields are not initialised by slab allocation.
225  * If there are additional allocations required @gfp is used.
226  */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 	static const struct inode_operations empty_iops;
230 	static const struct file_operations no_open_fops = {.open = no_open};
231 	struct address_space *const mapping = &inode->i_data;
232 
233 	inode->i_sb = sb;
234 	inode->i_blkbits = sb->s_blocksize_bits;
235 	inode->i_flags = 0;
236 	inode->i_state = 0;
237 	atomic64_set(&inode->i_sequence, 0);
238 	atomic_set(&inode->i_count, 1);
239 	inode->i_op = &empty_iops;
240 	inode->i_fop = &no_open_fops;
241 	inode->i_ino = 0;
242 	inode->__i_nlink = 1;
243 	inode->i_opflags = 0;
244 	if (sb->s_xattr)
245 		inode->i_opflags |= IOP_XATTR;
246 	if (sb->s_type->fs_flags & FS_MGTIME)
247 		inode->i_opflags |= IOP_MGTIME;
248 	i_uid_write(inode, 0);
249 	i_gid_write(inode, 0);
250 	atomic_set(&inode->i_writecount, 0);
251 	inode->i_size = 0;
252 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 	inode->i_blocks = 0;
254 	inode->i_bytes = 0;
255 	inode->i_generation = 0;
256 	inode->i_pipe = NULL;
257 	inode->i_cdev = NULL;
258 	inode->i_link = NULL;
259 	inode->i_dir_seq = 0;
260 	inode->i_rdev = 0;
261 	inode->dirtied_when = 0;
262 
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	inode->i_wb_frn_winner = 0;
265 	inode->i_wb_frn_avg_time = 0;
266 	inode->i_wb_frn_history = 0;
267 #endif
268 
269 	spin_lock_init(&inode->i_lock);
270 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271 
272 	init_rwsem(&inode->i_rwsem);
273 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274 
275 	atomic_set(&inode->i_dio_count, 0);
276 
277 	mapping->a_ops = &empty_aops;
278 	mapping->host = inode;
279 	mapping->flags = 0;
280 	mapping->wb_err = 0;
281 	atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 	atomic_set(&mapping->nr_thps, 0);
284 #endif
285 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 	mapping->i_private_data = NULL;
287 	mapping->writeback_index = 0;
288 	init_rwsem(&mapping->invalidate_lock);
289 	lockdep_set_class_and_name(&mapping->invalidate_lock,
290 				   &sb->s_type->invalidate_lock_key,
291 				   "mapping.invalidate_lock");
292 	if (sb->s_iflags & SB_I_STABLE_WRITES)
293 		mapping_set_stable_writes(mapping);
294 	inode->i_private = NULL;
295 	inode->i_mapping = mapping;
296 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300 
301 #ifdef CONFIG_FSNOTIFY
302 	inode->i_fsnotify_mask = 0;
303 #endif
304 	inode->i_flctx = NULL;
305 
306 	if (unlikely(security_inode_alloc(inode, gfp)))
307 		return -ENOMEM;
308 
309 	this_cpu_inc(nr_inodes);
310 
311 	return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314 
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 	kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320 
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 	struct inode *inode = container_of(head, struct inode, i_rcu);
324 	if (inode->free_inode)
325 		inode->free_inode(inode);
326 	else
327 		free_inode_nonrcu(inode);
328 }
329 
alloc_inode(struct super_block * sb)330 static struct inode *alloc_inode(struct super_block *sb)
331 {
332 	const struct super_operations *ops = sb->s_op;
333 	struct inode *inode;
334 
335 	if (ops->alloc_inode)
336 		inode = ops->alloc_inode(sb);
337 	else
338 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
339 
340 	if (!inode)
341 		return NULL;
342 
343 	if (unlikely(inode_init_always(sb, inode))) {
344 		if (ops->destroy_inode) {
345 			ops->destroy_inode(inode);
346 			if (!ops->free_inode)
347 				return NULL;
348 		}
349 		inode->free_inode = ops->free_inode;
350 		i_callback(&inode->i_rcu);
351 		return NULL;
352 	}
353 
354 	return inode;
355 }
356 
__destroy_inode(struct inode * inode)357 void __destroy_inode(struct inode *inode)
358 {
359 	BUG_ON(inode_has_buffers(inode));
360 	inode_detach_wb(inode);
361 	security_inode_free(inode);
362 	fsnotify_inode_delete(inode);
363 	locks_free_lock_context(inode);
364 	if (!inode->i_nlink) {
365 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
366 		atomic_long_dec(&inode->i_sb->s_remove_count);
367 	}
368 
369 #ifdef CONFIG_FS_POSIX_ACL
370 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
371 		posix_acl_release(inode->i_acl);
372 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
373 		posix_acl_release(inode->i_default_acl);
374 #endif
375 	this_cpu_dec(nr_inodes);
376 }
377 EXPORT_SYMBOL(__destroy_inode);
378 
destroy_inode(struct inode * inode)379 static void destroy_inode(struct inode *inode)
380 {
381 	const struct super_operations *ops = inode->i_sb->s_op;
382 
383 	BUG_ON(!list_empty(&inode->i_lru));
384 	__destroy_inode(inode);
385 	if (ops->destroy_inode) {
386 		ops->destroy_inode(inode);
387 		if (!ops->free_inode)
388 			return;
389 	}
390 	inode->free_inode = ops->free_inode;
391 	call_rcu(&inode->i_rcu, i_callback);
392 }
393 
394 /**
395  * drop_nlink - directly drop an inode's link count
396  * @inode: inode
397  *
398  * This is a low-level filesystem helper to replace any
399  * direct filesystem manipulation of i_nlink.  In cases
400  * where we are attempting to track writes to the
401  * filesystem, a decrement to zero means an imminent
402  * write when the file is truncated and actually unlinked
403  * on the filesystem.
404  */
drop_nlink(struct inode * inode)405 void drop_nlink(struct inode *inode)
406 {
407 	WARN_ON(inode->i_nlink == 0);
408 	inode->__i_nlink--;
409 	if (!inode->i_nlink)
410 		atomic_long_inc(&inode->i_sb->s_remove_count);
411 }
412 EXPORT_SYMBOL(drop_nlink);
413 
414 /**
415  * clear_nlink - directly zero an inode's link count
416  * @inode: inode
417  *
418  * This is a low-level filesystem helper to replace any
419  * direct filesystem manipulation of i_nlink.  See
420  * drop_nlink() for why we care about i_nlink hitting zero.
421  */
clear_nlink(struct inode * inode)422 void clear_nlink(struct inode *inode)
423 {
424 	if (inode->i_nlink) {
425 		inode->__i_nlink = 0;
426 		atomic_long_inc(&inode->i_sb->s_remove_count);
427 	}
428 }
429 EXPORT_SYMBOL(clear_nlink);
430 
431 /**
432  * set_nlink - directly set an inode's link count
433  * @inode: inode
434  * @nlink: new nlink (should be non-zero)
435  *
436  * This is a low-level filesystem helper to replace any
437  * direct filesystem manipulation of i_nlink.
438  */
set_nlink(struct inode * inode,unsigned int nlink)439 void set_nlink(struct inode *inode, unsigned int nlink)
440 {
441 	if (!nlink) {
442 		clear_nlink(inode);
443 	} else {
444 		/* Yes, some filesystems do change nlink from zero to one */
445 		if (inode->i_nlink == 0)
446 			atomic_long_dec(&inode->i_sb->s_remove_count);
447 
448 		inode->__i_nlink = nlink;
449 	}
450 }
451 EXPORT_SYMBOL(set_nlink);
452 
453 /**
454  * inc_nlink - directly increment an inode's link count
455  * @inode: inode
456  *
457  * This is a low-level filesystem helper to replace any
458  * direct filesystem manipulation of i_nlink.  Currently,
459  * it is only here for parity with dec_nlink().
460  */
inc_nlink(struct inode * inode)461 void inc_nlink(struct inode *inode)
462 {
463 	if (unlikely(inode->i_nlink == 0)) {
464 		WARN_ON(!(inode->i_state & I_LINKABLE));
465 		atomic_long_dec(&inode->i_sb->s_remove_count);
466 	}
467 
468 	inode->__i_nlink++;
469 }
470 EXPORT_SYMBOL(inc_nlink);
471 
__address_space_init_once(struct address_space * mapping)472 static void __address_space_init_once(struct address_space *mapping)
473 {
474 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
475 	init_rwsem(&mapping->i_mmap_rwsem);
476 	INIT_LIST_HEAD(&mapping->i_private_list);
477 	spin_lock_init(&mapping->i_private_lock);
478 	mapping->i_mmap = RB_ROOT_CACHED;
479 }
480 
address_space_init_once(struct address_space * mapping)481 void address_space_init_once(struct address_space *mapping)
482 {
483 	memset(mapping, 0, sizeof(*mapping));
484 	__address_space_init_once(mapping);
485 }
486 EXPORT_SYMBOL(address_space_init_once);
487 
488 /*
489  * These are initializations that only need to be done
490  * once, because the fields are idempotent across use
491  * of the inode, so let the slab aware of that.
492  */
inode_init_once(struct inode * inode)493 void inode_init_once(struct inode *inode)
494 {
495 	memset(inode, 0, sizeof(*inode));
496 	INIT_HLIST_NODE(&inode->i_hash);
497 	INIT_LIST_HEAD(&inode->i_devices);
498 	INIT_LIST_HEAD(&inode->i_io_list);
499 	INIT_LIST_HEAD(&inode->i_wb_list);
500 	INIT_LIST_HEAD(&inode->i_lru);
501 	INIT_LIST_HEAD(&inode->i_sb_list);
502 	__address_space_init_once(&inode->i_data);
503 	i_size_ordered_init(inode);
504 }
505 EXPORT_SYMBOL(inode_init_once);
506 
init_once(void * foo)507 static void init_once(void *foo)
508 {
509 	struct inode *inode = (struct inode *) foo;
510 
511 	inode_init_once(inode);
512 }
513 
514 /*
515  * get additional reference to inode; caller must already hold one.
516  */
ihold(struct inode * inode)517 void ihold(struct inode *inode)
518 {
519 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
520 }
521 EXPORT_SYMBOL(ihold);
522 
__inode_add_lru(struct inode * inode,bool rotate)523 static void __inode_add_lru(struct inode *inode, bool rotate)
524 {
525 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
526 		return;
527 	if (atomic_read(&inode->i_count))
528 		return;
529 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
530 		return;
531 	if (!mapping_shrinkable(&inode->i_data))
532 		return;
533 
534 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
535 		this_cpu_inc(nr_unused);
536 	else if (rotate)
537 		inode->i_state |= I_REFERENCED;
538 }
539 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)540 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
541 					    struct inode *inode, u32 bit)
542 {
543         void *bit_address;
544 
545         bit_address = inode_state_wait_address(inode, bit);
546         init_wait_var_entry(wqe, bit_address, 0);
547         return __var_waitqueue(bit_address);
548 }
549 EXPORT_SYMBOL(inode_bit_waitqueue);
550 
551 /*
552  * Add inode to LRU if needed (inode is unused and clean).
553  *
554  * Needs inode->i_lock held.
555  */
inode_add_lru(struct inode * inode)556 void inode_add_lru(struct inode *inode)
557 {
558 	__inode_add_lru(inode, false);
559 }
560 
inode_lru_list_del(struct inode * inode)561 static void inode_lru_list_del(struct inode *inode)
562 {
563 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
564 		this_cpu_dec(nr_unused);
565 }
566 
inode_pin_lru_isolating(struct inode * inode)567 static void inode_pin_lru_isolating(struct inode *inode)
568 {
569 	lockdep_assert_held(&inode->i_lock);
570 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
571 	inode->i_state |= I_LRU_ISOLATING;
572 }
573 
inode_unpin_lru_isolating(struct inode * inode)574 static void inode_unpin_lru_isolating(struct inode *inode)
575 {
576 	spin_lock(&inode->i_lock);
577 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
578 	inode->i_state &= ~I_LRU_ISOLATING;
579 	/* Called with inode->i_lock which ensures memory ordering. */
580 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
581 	spin_unlock(&inode->i_lock);
582 }
583 
inode_wait_for_lru_isolating(struct inode * inode)584 static void inode_wait_for_lru_isolating(struct inode *inode)
585 {
586 	struct wait_bit_queue_entry wqe;
587 	struct wait_queue_head *wq_head;
588 
589 	lockdep_assert_held(&inode->i_lock);
590 	if (!(inode->i_state & I_LRU_ISOLATING))
591 		return;
592 
593 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
594 	for (;;) {
595 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
596 		/*
597 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
598 		 * memory ordering.
599 		 */
600 		if (!(inode->i_state & I_LRU_ISOLATING))
601 			break;
602 		spin_unlock(&inode->i_lock);
603 		schedule();
604 		spin_lock(&inode->i_lock);
605 	}
606 	finish_wait(wq_head, &wqe.wq_entry);
607 	WARN_ON(inode->i_state & I_LRU_ISOLATING);
608 }
609 
610 /**
611  * inode_sb_list_add - add inode to the superblock list of inodes
612  * @inode: inode to add
613  */
inode_sb_list_add(struct inode * inode)614 void inode_sb_list_add(struct inode *inode)
615 {
616 	spin_lock(&inode->i_sb->s_inode_list_lock);
617 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
618 	spin_unlock(&inode->i_sb->s_inode_list_lock);
619 }
620 EXPORT_SYMBOL_GPL(inode_sb_list_add);
621 
inode_sb_list_del(struct inode * inode)622 static inline void inode_sb_list_del(struct inode *inode)
623 {
624 	if (!list_empty(&inode->i_sb_list)) {
625 		spin_lock(&inode->i_sb->s_inode_list_lock);
626 		list_del_init(&inode->i_sb_list);
627 		spin_unlock(&inode->i_sb->s_inode_list_lock);
628 	}
629 }
630 
hash(struct super_block * sb,unsigned long hashval)631 static unsigned long hash(struct super_block *sb, unsigned long hashval)
632 {
633 	unsigned long tmp;
634 
635 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
636 			L1_CACHE_BYTES;
637 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
638 	return tmp & i_hash_mask;
639 }
640 
641 /**
642  *	__insert_inode_hash - hash an inode
643  *	@inode: unhashed inode
644  *	@hashval: unsigned long value used to locate this object in the
645  *		inode_hashtable.
646  *
647  *	Add an inode to the inode hash for this superblock.
648  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)649 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
650 {
651 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
652 
653 	spin_lock(&inode_hash_lock);
654 	spin_lock(&inode->i_lock);
655 	hlist_add_head_rcu(&inode->i_hash, b);
656 	spin_unlock(&inode->i_lock);
657 	spin_unlock(&inode_hash_lock);
658 }
659 EXPORT_SYMBOL(__insert_inode_hash);
660 
661 /**
662  *	__remove_inode_hash - remove an inode from the hash
663  *	@inode: inode to unhash
664  *
665  *	Remove an inode from the superblock.
666  */
__remove_inode_hash(struct inode * inode)667 void __remove_inode_hash(struct inode *inode)
668 {
669 	spin_lock(&inode_hash_lock);
670 	spin_lock(&inode->i_lock);
671 	hlist_del_init_rcu(&inode->i_hash);
672 	spin_unlock(&inode->i_lock);
673 	spin_unlock(&inode_hash_lock);
674 }
675 EXPORT_SYMBOL(__remove_inode_hash);
676 
dump_mapping(const struct address_space * mapping)677 void dump_mapping(const struct address_space *mapping)
678 {
679 	struct inode *host;
680 	const struct address_space_operations *a_ops;
681 	struct hlist_node *dentry_first;
682 	struct dentry *dentry_ptr;
683 	struct dentry dentry;
684 	char fname[64] = {};
685 	unsigned long ino;
686 
687 	/*
688 	 * If mapping is an invalid pointer, we don't want to crash
689 	 * accessing it, so probe everything depending on it carefully.
690 	 */
691 	if (get_kernel_nofault(host, &mapping->host) ||
692 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
693 		pr_warn("invalid mapping:%px\n", mapping);
694 		return;
695 	}
696 
697 	if (!host) {
698 		pr_warn("aops:%ps\n", a_ops);
699 		return;
700 	}
701 
702 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
703 	    get_kernel_nofault(ino, &host->i_ino)) {
704 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
705 		return;
706 	}
707 
708 	if (!dentry_first) {
709 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
710 		return;
711 	}
712 
713 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
714 	if (get_kernel_nofault(dentry, dentry_ptr) ||
715 	    !dentry.d_parent || !dentry.d_name.name) {
716 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
717 				a_ops, ino, dentry_ptr);
718 		return;
719 	}
720 
721 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
722 		strscpy(fname, "<invalid>");
723 	/*
724 	 * Even if strncpy_from_kernel_nofault() succeeded,
725 	 * the fname could be unreliable
726 	 */
727 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
728 		a_ops, ino, fname);
729 }
730 
clear_inode(struct inode * inode)731 void clear_inode(struct inode *inode)
732 {
733 	/*
734 	 * We have to cycle the i_pages lock here because reclaim can be in the
735 	 * process of removing the last page (in __filemap_remove_folio())
736 	 * and we must not free the mapping under it.
737 	 */
738 	xa_lock_irq(&inode->i_data.i_pages);
739 	BUG_ON(inode->i_data.nrpages);
740 	/*
741 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
742 	 * two known and long-standing ways in which nodes may get left behind
743 	 * (when deep radix-tree node allocation failed partway; or when THP
744 	 * collapse_file() failed). Until those two known cases are cleaned up,
745 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
746 	 * nor even WARN_ON(!mapping_empty).
747 	 */
748 	xa_unlock_irq(&inode->i_data.i_pages);
749 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
750 	BUG_ON(!(inode->i_state & I_FREEING));
751 	BUG_ON(inode->i_state & I_CLEAR);
752 	BUG_ON(!list_empty(&inode->i_wb_list));
753 	/* don't need i_lock here, no concurrent mods to i_state */
754 	inode->i_state = I_FREEING | I_CLEAR;
755 }
756 EXPORT_SYMBOL(clear_inode);
757 
758 /*
759  * Free the inode passed in, removing it from the lists it is still connected
760  * to. We remove any pages still attached to the inode and wait for any IO that
761  * is still in progress before finally destroying the inode.
762  *
763  * An inode must already be marked I_FREEING so that we avoid the inode being
764  * moved back onto lists if we race with other code that manipulates the lists
765  * (e.g. writeback_single_inode). The caller is responsible for setting this.
766  *
767  * An inode must already be removed from the LRU list before being evicted from
768  * the cache. This should occur atomically with setting the I_FREEING state
769  * flag, so no inodes here should ever be on the LRU when being evicted.
770  */
evict(struct inode * inode)771 static void evict(struct inode *inode)
772 {
773 	const struct super_operations *op = inode->i_sb->s_op;
774 
775 	BUG_ON(!(inode->i_state & I_FREEING));
776 	BUG_ON(!list_empty(&inode->i_lru));
777 
778 	if (!list_empty(&inode->i_io_list))
779 		inode_io_list_del(inode);
780 
781 	inode_sb_list_del(inode);
782 
783 	spin_lock(&inode->i_lock);
784 	inode_wait_for_lru_isolating(inode);
785 
786 	/*
787 	 * Wait for flusher thread to be done with the inode so that filesystem
788 	 * does not start destroying it while writeback is still running. Since
789 	 * the inode has I_FREEING set, flusher thread won't start new work on
790 	 * the inode.  We just have to wait for running writeback to finish.
791 	 */
792 	inode_wait_for_writeback(inode);
793 	spin_unlock(&inode->i_lock);
794 
795 	if (op->evict_inode) {
796 		op->evict_inode(inode);
797 	} else {
798 		truncate_inode_pages_final(&inode->i_data);
799 		clear_inode(inode);
800 	}
801 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
802 		cd_forget(inode);
803 
804 	remove_inode_hash(inode);
805 
806 	/*
807 	 * Wake up waiters in __wait_on_freeing_inode().
808 	 *
809 	 * Lockless hash lookup may end up finding the inode before we removed
810 	 * it above, but only lock it *after* we are done with the wakeup below.
811 	 * In this case the potential waiter cannot safely block.
812 	 *
813 	 * The inode being unhashed after the call to remove_inode_hash() is
814 	 * used as an indicator whether blocking on it is safe.
815 	 */
816 	spin_lock(&inode->i_lock);
817 	/*
818 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
819 	 * ___wait_var_event() either sees the bit cleared or
820 	 * waitqueue_active() check in wake_up_var() sees the waiter.
821 	 */
822 	smp_mb__after_spinlock();
823 	inode_wake_up_bit(inode, __I_NEW);
824 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
825 	spin_unlock(&inode->i_lock);
826 
827 	destroy_inode(inode);
828 }
829 
830 /*
831  * dispose_list - dispose of the contents of a local list
832  * @head: the head of the list to free
833  *
834  * Dispose-list gets a local list with local inodes in it, so it doesn't
835  * need to worry about list corruption and SMP locks.
836  */
dispose_list(struct list_head * head)837 static void dispose_list(struct list_head *head)
838 {
839 	while (!list_empty(head)) {
840 		struct inode *inode;
841 
842 		inode = list_first_entry(head, struct inode, i_lru);
843 		list_del_init(&inode->i_lru);
844 
845 		evict(inode);
846 		cond_resched();
847 	}
848 }
849 
850 /**
851  * evict_inodes	- evict all evictable inodes for a superblock
852  * @sb:		superblock to operate on
853  *
854  * Make sure that no inodes with zero refcount are retained.  This is
855  * called by superblock shutdown after having SB_ACTIVE flag removed,
856  * so any inode reaching zero refcount during or after that call will
857  * be immediately evicted.
858  */
evict_inodes(struct super_block * sb)859 void evict_inodes(struct super_block *sb)
860 {
861 	struct inode *inode, *next;
862 	LIST_HEAD(dispose);
863 
864 again:
865 	spin_lock(&sb->s_inode_list_lock);
866 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
867 		if (atomic_read(&inode->i_count))
868 			continue;
869 
870 		spin_lock(&inode->i_lock);
871 		if (atomic_read(&inode->i_count)) {
872 			spin_unlock(&inode->i_lock);
873 			continue;
874 		}
875 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
876 			spin_unlock(&inode->i_lock);
877 			continue;
878 		}
879 
880 		inode->i_state |= I_FREEING;
881 		inode_lru_list_del(inode);
882 		spin_unlock(&inode->i_lock);
883 		list_add(&inode->i_lru, &dispose);
884 
885 		/*
886 		 * We can have a ton of inodes to evict at unmount time given
887 		 * enough memory, check to see if we need to go to sleep for a
888 		 * bit so we don't livelock.
889 		 */
890 		if (need_resched()) {
891 			spin_unlock(&sb->s_inode_list_lock);
892 			cond_resched();
893 			dispose_list(&dispose);
894 			goto again;
895 		}
896 	}
897 	spin_unlock(&sb->s_inode_list_lock);
898 
899 	dispose_list(&dispose);
900 }
901 EXPORT_SYMBOL_GPL(evict_inodes);
902 
903 /**
904  * invalidate_inodes	- attempt to free all inodes on a superblock
905  * @sb:		superblock to operate on
906  *
907  * Attempts to free all inodes (including dirty inodes) for a given superblock.
908  */
invalidate_inodes(struct super_block * sb)909 void invalidate_inodes(struct super_block *sb)
910 {
911 	struct inode *inode, *next;
912 	LIST_HEAD(dispose);
913 
914 again:
915 	spin_lock(&sb->s_inode_list_lock);
916 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
917 		spin_lock(&inode->i_lock);
918 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
919 			spin_unlock(&inode->i_lock);
920 			continue;
921 		}
922 		if (atomic_read(&inode->i_count)) {
923 			spin_unlock(&inode->i_lock);
924 			continue;
925 		}
926 
927 		inode->i_state |= I_FREEING;
928 		inode_lru_list_del(inode);
929 		spin_unlock(&inode->i_lock);
930 		list_add(&inode->i_lru, &dispose);
931 		if (need_resched()) {
932 			spin_unlock(&sb->s_inode_list_lock);
933 			cond_resched();
934 			dispose_list(&dispose);
935 			goto again;
936 		}
937 	}
938 	spin_unlock(&sb->s_inode_list_lock);
939 
940 	dispose_list(&dispose);
941 }
942 
943 /*
944  * Isolate the inode from the LRU in preparation for freeing it.
945  *
946  * If the inode has the I_REFERENCED flag set, then it means that it has been
947  * used recently - the flag is set in iput_final(). When we encounter such an
948  * inode, clear the flag and move it to the back of the LRU so it gets another
949  * pass through the LRU before it gets reclaimed. This is necessary because of
950  * the fact we are doing lazy LRU updates to minimise lock contention so the
951  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
952  * with this flag set because they are the inodes that are out of order.
953  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)954 static enum lru_status inode_lru_isolate(struct list_head *item,
955 		struct list_lru_one *lru, void *arg)
956 {
957 	struct list_head *freeable = arg;
958 	struct inode	*inode = container_of(item, struct inode, i_lru);
959 
960 	/*
961 	 * We are inverting the lru lock/inode->i_lock here, so use a
962 	 * trylock. If we fail to get the lock, just skip it.
963 	 */
964 	if (!spin_trylock(&inode->i_lock))
965 		return LRU_SKIP;
966 
967 	/*
968 	 * Inodes can get referenced, redirtied, or repopulated while
969 	 * they're already on the LRU, and this can make them
970 	 * unreclaimable for a while. Remove them lazily here; iput,
971 	 * sync, or the last page cache deletion will requeue them.
972 	 */
973 	if (atomic_read(&inode->i_count) ||
974 	    (inode->i_state & ~I_REFERENCED) ||
975 	    !mapping_shrinkable(&inode->i_data)) {
976 		list_lru_isolate(lru, &inode->i_lru);
977 		spin_unlock(&inode->i_lock);
978 		this_cpu_dec(nr_unused);
979 		return LRU_REMOVED;
980 	}
981 
982 	/* Recently referenced inodes get one more pass */
983 	if (inode->i_state & I_REFERENCED) {
984 		inode->i_state &= ~I_REFERENCED;
985 		spin_unlock(&inode->i_lock);
986 		return LRU_ROTATE;
987 	}
988 
989 	/*
990 	 * On highmem systems, mapping_shrinkable() permits dropping
991 	 * page cache in order to free up struct inodes: lowmem might
992 	 * be under pressure before the cache inside the highmem zone.
993 	 */
994 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
995 		inode_pin_lru_isolating(inode);
996 		spin_unlock(&inode->i_lock);
997 		spin_unlock(&lru->lock);
998 		if (remove_inode_buffers(inode)) {
999 			unsigned long reap;
1000 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
1001 			if (current_is_kswapd())
1002 				__count_vm_events(KSWAPD_INODESTEAL, reap);
1003 			else
1004 				__count_vm_events(PGINODESTEAL, reap);
1005 			mm_account_reclaimed_pages(reap);
1006 		}
1007 		inode_unpin_lru_isolating(inode);
1008 		return LRU_RETRY;
1009 	}
1010 
1011 	WARN_ON(inode->i_state & I_NEW);
1012 	inode->i_state |= I_FREEING;
1013 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
1014 	spin_unlock(&inode->i_lock);
1015 
1016 	this_cpu_dec(nr_unused);
1017 	return LRU_REMOVED;
1018 }
1019 
1020 /*
1021  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1022  * This is called from the superblock shrinker function with a number of inodes
1023  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1024  * then are freed outside inode_lock by dispose_list().
1025  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)1026 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
1027 {
1028 	LIST_HEAD(freeable);
1029 	long freed;
1030 
1031 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
1032 				     inode_lru_isolate, &freeable);
1033 	dispose_list(&freeable);
1034 	return freed;
1035 }
1036 
1037 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1038 /*
1039  * Called with the inode lock held.
1040  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)1041 static struct inode *find_inode(struct super_block *sb,
1042 				struct hlist_head *head,
1043 				int (*test)(struct inode *, void *),
1044 				void *data, bool is_inode_hash_locked)
1045 {
1046 	struct inode *inode = NULL;
1047 
1048 	if (is_inode_hash_locked)
1049 		lockdep_assert_held(&inode_hash_lock);
1050 	else
1051 		lockdep_assert_not_held(&inode_hash_lock);
1052 
1053 	rcu_read_lock();
1054 repeat:
1055 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1056 		if (inode->i_sb != sb)
1057 			continue;
1058 		if (!test(inode, data))
1059 			continue;
1060 		spin_lock(&inode->i_lock);
1061 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1062 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1063 			goto repeat;
1064 		}
1065 		if (unlikely(inode->i_state & I_CREATING)) {
1066 			spin_unlock(&inode->i_lock);
1067 			rcu_read_unlock();
1068 			return ERR_PTR(-ESTALE);
1069 		}
1070 		__iget(inode);
1071 		spin_unlock(&inode->i_lock);
1072 		rcu_read_unlock();
1073 		return inode;
1074 	}
1075 	rcu_read_unlock();
1076 	return NULL;
1077 }
1078 
1079 /*
1080  * find_inode_fast is the fast path version of find_inode, see the comment at
1081  * iget_locked for details.
1082  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1083 static struct inode *find_inode_fast(struct super_block *sb,
1084 				struct hlist_head *head, unsigned long ino,
1085 				bool is_inode_hash_locked)
1086 {
1087 	struct inode *inode = NULL;
1088 
1089 	if (is_inode_hash_locked)
1090 		lockdep_assert_held(&inode_hash_lock);
1091 	else
1092 		lockdep_assert_not_held(&inode_hash_lock);
1093 
1094 	rcu_read_lock();
1095 repeat:
1096 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1097 		if (inode->i_ino != ino)
1098 			continue;
1099 		if (inode->i_sb != sb)
1100 			continue;
1101 		spin_lock(&inode->i_lock);
1102 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1103 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1104 			goto repeat;
1105 		}
1106 		if (unlikely(inode->i_state & I_CREATING)) {
1107 			spin_unlock(&inode->i_lock);
1108 			rcu_read_unlock();
1109 			return ERR_PTR(-ESTALE);
1110 		}
1111 		__iget(inode);
1112 		spin_unlock(&inode->i_lock);
1113 		rcu_read_unlock();
1114 		return inode;
1115 	}
1116 	rcu_read_unlock();
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Each cpu owns a range of LAST_INO_BATCH numbers.
1122  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1123  * to renew the exhausted range.
1124  *
1125  * This does not significantly increase overflow rate because every CPU can
1126  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1127  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1128  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1129  * overflow rate by 2x, which does not seem too significant.
1130  *
1131  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1132  * error if st_ino won't fit in target struct field. Use 32bit counter
1133  * here to attempt to avoid that.
1134  */
1135 #define LAST_INO_BATCH 1024
1136 static DEFINE_PER_CPU(unsigned int, last_ino);
1137 
get_next_ino(void)1138 unsigned int get_next_ino(void)
1139 {
1140 	unsigned int *p = &get_cpu_var(last_ino);
1141 	unsigned int res = *p;
1142 
1143 #ifdef CONFIG_SMP
1144 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1145 		static atomic_t shared_last_ino;
1146 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1147 
1148 		res = next - LAST_INO_BATCH;
1149 	}
1150 #endif
1151 
1152 	res++;
1153 	/* get_next_ino should not provide a 0 inode number */
1154 	if (unlikely(!res))
1155 		res++;
1156 	*p = res;
1157 	put_cpu_var(last_ino);
1158 	return res;
1159 }
1160 EXPORT_SYMBOL(get_next_ino);
1161 
1162 /**
1163  *	new_inode_pseudo 	- obtain an inode
1164  *	@sb: superblock
1165  *
1166  *	Allocates a new inode for given superblock.
1167  *	Inode wont be chained in superblock s_inodes list
1168  *	This means :
1169  *	- fs can't be unmount
1170  *	- quotas, fsnotify, writeback can't work
1171  */
new_inode_pseudo(struct super_block * sb)1172 struct inode *new_inode_pseudo(struct super_block *sb)
1173 {
1174 	return alloc_inode(sb);
1175 }
1176 
1177 /**
1178  *	new_inode 	- obtain an inode
1179  *	@sb: superblock
1180  *
1181  *	Allocates a new inode for given superblock. The default gfp_mask
1182  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1183  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1184  *	for the page cache are not reclaimable or migratable,
1185  *	mapping_set_gfp_mask() must be called with suitable flags on the
1186  *	newly created inode's mapping
1187  *
1188  */
new_inode(struct super_block * sb)1189 struct inode *new_inode(struct super_block *sb)
1190 {
1191 	struct inode *inode;
1192 
1193 	inode = new_inode_pseudo(sb);
1194 	if (inode)
1195 		inode_sb_list_add(inode);
1196 	return inode;
1197 }
1198 EXPORT_SYMBOL(new_inode);
1199 
1200 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1201 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1202 {
1203 	if (S_ISDIR(inode->i_mode)) {
1204 		struct file_system_type *type = inode->i_sb->s_type;
1205 
1206 		/* Set new key only if filesystem hasn't already changed it */
1207 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1208 			/*
1209 			 * ensure nobody is actually holding i_mutex
1210 			 */
1211 			// mutex_destroy(&inode->i_mutex);
1212 			init_rwsem(&inode->i_rwsem);
1213 			lockdep_set_class(&inode->i_rwsem,
1214 					  &type->i_mutex_dir_key);
1215 		}
1216 	}
1217 }
1218 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1219 #endif
1220 
1221 /**
1222  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1223  * @inode:	new inode to unlock
1224  *
1225  * Called when the inode is fully initialised to clear the new state of the
1226  * inode and wake up anyone waiting for the inode to finish initialisation.
1227  */
unlock_new_inode(struct inode * inode)1228 void unlock_new_inode(struct inode *inode)
1229 {
1230 	lockdep_annotate_inode_mutex_key(inode);
1231 	spin_lock(&inode->i_lock);
1232 	WARN_ON(!(inode->i_state & I_NEW));
1233 	inode->i_state &= ~I_NEW & ~I_CREATING;
1234 	/*
1235 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1236 	 * ___wait_var_event() either sees the bit cleared or
1237 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1238 	 */
1239 	smp_mb();
1240 	inode_wake_up_bit(inode, __I_NEW);
1241 	spin_unlock(&inode->i_lock);
1242 }
1243 EXPORT_SYMBOL(unlock_new_inode);
1244 
discard_new_inode(struct inode * inode)1245 void discard_new_inode(struct inode *inode)
1246 {
1247 	lockdep_annotate_inode_mutex_key(inode);
1248 	spin_lock(&inode->i_lock);
1249 	WARN_ON(!(inode->i_state & I_NEW));
1250 	inode->i_state &= ~I_NEW;
1251 	/*
1252 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1253 	 * ___wait_var_event() either sees the bit cleared or
1254 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1255 	 */
1256 	smp_mb();
1257 	inode_wake_up_bit(inode, __I_NEW);
1258 	spin_unlock(&inode->i_lock);
1259 	iput(inode);
1260 }
1261 EXPORT_SYMBOL(discard_new_inode);
1262 
1263 /**
1264  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1265  *
1266  * Lock any non-NULL argument. Passed objects must not be directories.
1267  * Zero, one or two objects may be locked by this function.
1268  *
1269  * @inode1: first inode to lock
1270  * @inode2: second inode to lock
1271  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1272 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1273 {
1274 	if (inode1)
1275 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1276 	if (inode2)
1277 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1278 	if (inode1 > inode2)
1279 		swap(inode1, inode2);
1280 	if (inode1)
1281 		inode_lock(inode1);
1282 	if (inode2 && inode2 != inode1)
1283 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1284 }
1285 EXPORT_SYMBOL(lock_two_nondirectories);
1286 
1287 /**
1288  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1289  * @inode1: first inode to unlock
1290  * @inode2: second inode to unlock
1291  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1292 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1293 {
1294 	if (inode1) {
1295 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1296 		inode_unlock(inode1);
1297 	}
1298 	if (inode2 && inode2 != inode1) {
1299 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1300 		inode_unlock(inode2);
1301 	}
1302 }
1303 EXPORT_SYMBOL(unlock_two_nondirectories);
1304 
1305 /**
1306  * inode_insert5 - obtain an inode from a mounted file system
1307  * @inode:	pre-allocated inode to use for insert to cache
1308  * @hashval:	hash value (usually inode number) to get
1309  * @test:	callback used for comparisons between inodes
1310  * @set:	callback used to initialize a new struct inode
1311  * @data:	opaque data pointer to pass to @test and @set
1312  *
1313  * Search for the inode specified by @hashval and @data in the inode cache,
1314  * and if present return it with an increased reference count. This is a
1315  * variant of iget5_locked() that doesn't allocate an inode.
1316  *
1317  * If the inode is not present in the cache, insert the pre-allocated inode and
1318  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1319  * to fill it in before unlocking it via unlock_new_inode().
1320  *
1321  * Note that both @test and @set are called with the inode_hash_lock held, so
1322  * they can't sleep.
1323  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1324 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1325 			    int (*test)(struct inode *, void *),
1326 			    int (*set)(struct inode *, void *), void *data)
1327 {
1328 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1329 	struct inode *old;
1330 
1331 again:
1332 	spin_lock(&inode_hash_lock);
1333 	old = find_inode(inode->i_sb, head, test, data, true);
1334 	if (unlikely(old)) {
1335 		/*
1336 		 * Uhhuh, somebody else created the same inode under us.
1337 		 * Use the old inode instead of the preallocated one.
1338 		 */
1339 		spin_unlock(&inode_hash_lock);
1340 		if (IS_ERR(old))
1341 			return NULL;
1342 		wait_on_inode(old);
1343 		if (unlikely(inode_unhashed(old))) {
1344 			iput(old);
1345 			goto again;
1346 		}
1347 		return old;
1348 	}
1349 
1350 	if (set && unlikely(set(inode, data))) {
1351 		inode = NULL;
1352 		goto unlock;
1353 	}
1354 
1355 	/*
1356 	 * Return the locked inode with I_NEW set, the
1357 	 * caller is responsible for filling in the contents
1358 	 */
1359 	spin_lock(&inode->i_lock);
1360 	inode->i_state |= I_NEW;
1361 	hlist_add_head_rcu(&inode->i_hash, head);
1362 	spin_unlock(&inode->i_lock);
1363 
1364 	/*
1365 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1366 	 * point, so it should be safe to test i_sb_list locklessly.
1367 	 */
1368 	if (list_empty(&inode->i_sb_list))
1369 		inode_sb_list_add(inode);
1370 unlock:
1371 	spin_unlock(&inode_hash_lock);
1372 
1373 	return inode;
1374 }
1375 EXPORT_SYMBOL(inode_insert5);
1376 
1377 /**
1378  * iget5_locked - obtain an inode from a mounted file system
1379  * @sb:		super block of file system
1380  * @hashval:	hash value (usually inode number) to get
1381  * @test:	callback used for comparisons between inodes
1382  * @set:	callback used to initialize a new struct inode
1383  * @data:	opaque data pointer to pass to @test and @set
1384  *
1385  * Search for the inode specified by @hashval and @data in the inode cache,
1386  * and if present return it with an increased reference count. This is a
1387  * generalized version of iget_locked() for file systems where the inode
1388  * number is not sufficient for unique identification of an inode.
1389  *
1390  * If the inode is not present in the cache, allocate and insert a new inode
1391  * and return it locked, hashed, and with the I_NEW flag set. The file system
1392  * gets to fill it in before unlocking it via unlock_new_inode().
1393  *
1394  * Note that both @test and @set are called with the inode_hash_lock held, so
1395  * they can't sleep.
1396  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1397 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1398 		int (*test)(struct inode *, void *),
1399 		int (*set)(struct inode *, void *), void *data)
1400 {
1401 	struct inode *inode = ilookup5(sb, hashval, test, data);
1402 
1403 	if (!inode) {
1404 		struct inode *new = alloc_inode(sb);
1405 
1406 		if (new) {
1407 			inode = inode_insert5(new, hashval, test, set, data);
1408 			if (unlikely(inode != new))
1409 				destroy_inode(new);
1410 		}
1411 	}
1412 	return inode;
1413 }
1414 EXPORT_SYMBOL(iget5_locked);
1415 
1416 /**
1417  * iget5_locked_rcu - obtain an inode from a mounted file system
1418  * @sb:		super block of file system
1419  * @hashval:	hash value (usually inode number) to get
1420  * @test:	callback used for comparisons between inodes
1421  * @set:	callback used to initialize a new struct inode
1422  * @data:	opaque data pointer to pass to @test and @set
1423  *
1424  * This is equivalent to iget5_locked, except the @test callback must
1425  * tolerate the inode not being stable, including being mid-teardown.
1426  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1427 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1428 		int (*test)(struct inode *, void *),
1429 		int (*set)(struct inode *, void *), void *data)
1430 {
1431 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1432 	struct inode *inode, *new;
1433 
1434 again:
1435 	inode = find_inode(sb, head, test, data, false);
1436 	if (inode) {
1437 		if (IS_ERR(inode))
1438 			return NULL;
1439 		wait_on_inode(inode);
1440 		if (unlikely(inode_unhashed(inode))) {
1441 			iput(inode);
1442 			goto again;
1443 		}
1444 		return inode;
1445 	}
1446 
1447 	new = alloc_inode(sb);
1448 	if (new) {
1449 		inode = inode_insert5(new, hashval, test, set, data);
1450 		if (unlikely(inode != new))
1451 			destroy_inode(new);
1452 	}
1453 	return inode;
1454 }
1455 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1456 
1457 /**
1458  * iget_locked - obtain an inode from a mounted file system
1459  * @sb:		super block of file system
1460  * @ino:	inode number to get
1461  *
1462  * Search for the inode specified by @ino in the inode cache and if present
1463  * return it with an increased reference count. This is for file systems
1464  * where the inode number is sufficient for unique identification of an inode.
1465  *
1466  * If the inode is not in cache, allocate a new inode and return it locked,
1467  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1468  * before unlocking it via unlock_new_inode().
1469  */
iget_locked(struct super_block * sb,unsigned long ino)1470 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1471 {
1472 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1473 	struct inode *inode;
1474 again:
1475 	inode = find_inode_fast(sb, head, ino, false);
1476 	if (inode) {
1477 		if (IS_ERR(inode))
1478 			return NULL;
1479 		wait_on_inode(inode);
1480 		if (unlikely(inode_unhashed(inode))) {
1481 			iput(inode);
1482 			goto again;
1483 		}
1484 		return inode;
1485 	}
1486 
1487 	inode = alloc_inode(sb);
1488 	if (inode) {
1489 		struct inode *old;
1490 
1491 		spin_lock(&inode_hash_lock);
1492 		/* We released the lock, so.. */
1493 		old = find_inode_fast(sb, head, ino, true);
1494 		if (!old) {
1495 			inode->i_ino = ino;
1496 			spin_lock(&inode->i_lock);
1497 			inode->i_state = I_NEW;
1498 			hlist_add_head_rcu(&inode->i_hash, head);
1499 			spin_unlock(&inode->i_lock);
1500 			inode_sb_list_add(inode);
1501 			spin_unlock(&inode_hash_lock);
1502 
1503 			/* Return the locked inode with I_NEW set, the
1504 			 * caller is responsible for filling in the contents
1505 			 */
1506 			return inode;
1507 		}
1508 
1509 		/*
1510 		 * Uhhuh, somebody else created the same inode under
1511 		 * us. Use the old inode instead of the one we just
1512 		 * allocated.
1513 		 */
1514 		spin_unlock(&inode_hash_lock);
1515 		destroy_inode(inode);
1516 		if (IS_ERR(old))
1517 			return NULL;
1518 		inode = old;
1519 		wait_on_inode(inode);
1520 		if (unlikely(inode_unhashed(inode))) {
1521 			iput(inode);
1522 			goto again;
1523 		}
1524 	}
1525 	return inode;
1526 }
1527 EXPORT_SYMBOL(iget_locked);
1528 
1529 /*
1530  * search the inode cache for a matching inode number.
1531  * If we find one, then the inode number we are trying to
1532  * allocate is not unique and so we should not use it.
1533  *
1534  * Returns 1 if the inode number is unique, 0 if it is not.
1535  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1536 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1537 {
1538 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1539 	struct inode *inode;
1540 
1541 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1542 		if (inode->i_ino == ino && inode->i_sb == sb)
1543 			return 0;
1544 	}
1545 	return 1;
1546 }
1547 
1548 /**
1549  *	iunique - get a unique inode number
1550  *	@sb: superblock
1551  *	@max_reserved: highest reserved inode number
1552  *
1553  *	Obtain an inode number that is unique on the system for a given
1554  *	superblock. This is used by file systems that have no natural
1555  *	permanent inode numbering system. An inode number is returned that
1556  *	is higher than the reserved limit but unique.
1557  *
1558  *	BUGS:
1559  *	With a large number of inodes live on the file system this function
1560  *	currently becomes quite slow.
1561  */
iunique(struct super_block * sb,ino_t max_reserved)1562 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1563 {
1564 	/*
1565 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1566 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1567 	 * here to attempt to avoid that.
1568 	 */
1569 	static DEFINE_SPINLOCK(iunique_lock);
1570 	static unsigned int counter;
1571 	ino_t res;
1572 
1573 	rcu_read_lock();
1574 	spin_lock(&iunique_lock);
1575 	do {
1576 		if (counter <= max_reserved)
1577 			counter = max_reserved + 1;
1578 		res = counter++;
1579 	} while (!test_inode_iunique(sb, res));
1580 	spin_unlock(&iunique_lock);
1581 	rcu_read_unlock();
1582 
1583 	return res;
1584 }
1585 EXPORT_SYMBOL(iunique);
1586 
igrab(struct inode * inode)1587 struct inode *igrab(struct inode *inode)
1588 {
1589 	spin_lock(&inode->i_lock);
1590 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1591 		__iget(inode);
1592 		spin_unlock(&inode->i_lock);
1593 	} else {
1594 		spin_unlock(&inode->i_lock);
1595 		/*
1596 		 * Handle the case where s_op->clear_inode is not been
1597 		 * called yet, and somebody is calling igrab
1598 		 * while the inode is getting freed.
1599 		 */
1600 		inode = NULL;
1601 	}
1602 	return inode;
1603 }
1604 EXPORT_SYMBOL(igrab);
1605 
1606 /**
1607  * ilookup5_nowait - search for an inode in the inode cache
1608  * @sb:		super block of file system to search
1609  * @hashval:	hash value (usually inode number) to search for
1610  * @test:	callback used for comparisons between inodes
1611  * @data:	opaque data pointer to pass to @test
1612  *
1613  * Search for the inode specified by @hashval and @data in the inode cache.
1614  * If the inode is in the cache, the inode is returned with an incremented
1615  * reference count.
1616  *
1617  * Note: I_NEW is not waited upon so you have to be very careful what you do
1618  * with the returned inode.  You probably should be using ilookup5() instead.
1619  *
1620  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1621  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1622 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1623 		int (*test)(struct inode *, void *), void *data)
1624 {
1625 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1626 	struct inode *inode;
1627 
1628 	spin_lock(&inode_hash_lock);
1629 	inode = find_inode(sb, head, test, data, true);
1630 	spin_unlock(&inode_hash_lock);
1631 
1632 	return IS_ERR(inode) ? NULL : inode;
1633 }
1634 EXPORT_SYMBOL(ilookup5_nowait);
1635 
1636 /**
1637  * ilookup5 - search for an inode in the inode cache
1638  * @sb:		super block of file system to search
1639  * @hashval:	hash value (usually inode number) to search for
1640  * @test:	callback used for comparisons between inodes
1641  * @data:	opaque data pointer to pass to @test
1642  *
1643  * Search for the inode specified by @hashval and @data in the inode cache,
1644  * and if the inode is in the cache, return the inode with an incremented
1645  * reference count.  Waits on I_NEW before returning the inode.
1646  * returned with an incremented reference count.
1647  *
1648  * This is a generalized version of ilookup() for file systems where the
1649  * inode number is not sufficient for unique identification of an inode.
1650  *
1651  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1652  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1653 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1654 		int (*test)(struct inode *, void *), void *data)
1655 {
1656 	struct inode *inode;
1657 again:
1658 	inode = ilookup5_nowait(sb, hashval, test, data);
1659 	if (inode) {
1660 		wait_on_inode(inode);
1661 		if (unlikely(inode_unhashed(inode))) {
1662 			iput(inode);
1663 			goto again;
1664 		}
1665 	}
1666 	return inode;
1667 }
1668 EXPORT_SYMBOL(ilookup5);
1669 
1670 /**
1671  * ilookup - search for an inode in the inode cache
1672  * @sb:		super block of file system to search
1673  * @ino:	inode number to search for
1674  *
1675  * Search for the inode @ino in the inode cache, and if the inode is in the
1676  * cache, the inode is returned with an incremented reference count.
1677  */
ilookup(struct super_block * sb,unsigned long ino)1678 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1679 {
1680 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1681 	struct inode *inode;
1682 again:
1683 	inode = find_inode_fast(sb, head, ino, false);
1684 
1685 	if (inode) {
1686 		if (IS_ERR(inode))
1687 			return NULL;
1688 		wait_on_inode(inode);
1689 		if (unlikely(inode_unhashed(inode))) {
1690 			iput(inode);
1691 			goto again;
1692 		}
1693 	}
1694 	return inode;
1695 }
1696 EXPORT_SYMBOL(ilookup);
1697 
1698 /**
1699  * find_inode_nowait - find an inode in the inode cache
1700  * @sb:		super block of file system to search
1701  * @hashval:	hash value (usually inode number) to search for
1702  * @match:	callback used for comparisons between inodes
1703  * @data:	opaque data pointer to pass to @match
1704  *
1705  * Search for the inode specified by @hashval and @data in the inode
1706  * cache, where the helper function @match will return 0 if the inode
1707  * does not match, 1 if the inode does match, and -1 if the search
1708  * should be stopped.  The @match function must be responsible for
1709  * taking the i_lock spin_lock and checking i_state for an inode being
1710  * freed or being initialized, and incrementing the reference count
1711  * before returning 1.  It also must not sleep, since it is called with
1712  * the inode_hash_lock spinlock held.
1713  *
1714  * This is a even more generalized version of ilookup5() when the
1715  * function must never block --- find_inode() can block in
1716  * __wait_on_freeing_inode() --- or when the caller can not increment
1717  * the reference count because the resulting iput() might cause an
1718  * inode eviction.  The tradeoff is that the @match funtion must be
1719  * very carefully implemented.
1720  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1721 struct inode *find_inode_nowait(struct super_block *sb,
1722 				unsigned long hashval,
1723 				int (*match)(struct inode *, unsigned long,
1724 					     void *),
1725 				void *data)
1726 {
1727 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1728 	struct inode *inode, *ret_inode = NULL;
1729 	int mval;
1730 
1731 	spin_lock(&inode_hash_lock);
1732 	hlist_for_each_entry(inode, head, i_hash) {
1733 		if (inode->i_sb != sb)
1734 			continue;
1735 		mval = match(inode, hashval, data);
1736 		if (mval == 0)
1737 			continue;
1738 		if (mval == 1)
1739 			ret_inode = inode;
1740 		goto out;
1741 	}
1742 out:
1743 	spin_unlock(&inode_hash_lock);
1744 	return ret_inode;
1745 }
1746 EXPORT_SYMBOL(find_inode_nowait);
1747 
1748 /**
1749  * find_inode_rcu - find an inode in the inode cache
1750  * @sb:		Super block of file system to search
1751  * @hashval:	Key to hash
1752  * @test:	Function to test match on an inode
1753  * @data:	Data for test function
1754  *
1755  * Search for the inode specified by @hashval and @data in the inode cache,
1756  * where the helper function @test will return 0 if the inode does not match
1757  * and 1 if it does.  The @test function must be responsible for taking the
1758  * i_lock spin_lock and checking i_state for an inode being freed or being
1759  * initialized.
1760  *
1761  * If successful, this will return the inode for which the @test function
1762  * returned 1 and NULL otherwise.
1763  *
1764  * The @test function is not permitted to take a ref on any inode presented.
1765  * It is also not permitted to sleep.
1766  *
1767  * The caller must hold the RCU read lock.
1768  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1769 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1770 			     int (*test)(struct inode *, void *), void *data)
1771 {
1772 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1773 	struct inode *inode;
1774 
1775 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1776 			 "suspicious find_inode_rcu() usage");
1777 
1778 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1779 		if (inode->i_sb == sb &&
1780 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1781 		    test(inode, data))
1782 			return inode;
1783 	}
1784 	return NULL;
1785 }
1786 EXPORT_SYMBOL(find_inode_rcu);
1787 
1788 /**
1789  * find_inode_by_ino_rcu - Find an inode in the inode cache
1790  * @sb:		Super block of file system to search
1791  * @ino:	The inode number to match
1792  *
1793  * Search for the inode specified by @hashval and @data in the inode cache,
1794  * where the helper function @test will return 0 if the inode does not match
1795  * and 1 if it does.  The @test function must be responsible for taking the
1796  * i_lock spin_lock and checking i_state for an inode being freed or being
1797  * initialized.
1798  *
1799  * If successful, this will return the inode for which the @test function
1800  * returned 1 and NULL otherwise.
1801  *
1802  * The @test function is not permitted to take a ref on any inode presented.
1803  * It is also not permitted to sleep.
1804  *
1805  * The caller must hold the RCU read lock.
1806  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1807 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1808 				    unsigned long ino)
1809 {
1810 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1811 	struct inode *inode;
1812 
1813 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1814 			 "suspicious find_inode_by_ino_rcu() usage");
1815 
1816 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1817 		if (inode->i_ino == ino &&
1818 		    inode->i_sb == sb &&
1819 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1820 		    return inode;
1821 	}
1822 	return NULL;
1823 }
1824 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1825 
insert_inode_locked(struct inode * inode)1826 int insert_inode_locked(struct inode *inode)
1827 {
1828 	struct super_block *sb = inode->i_sb;
1829 	ino_t ino = inode->i_ino;
1830 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1831 
1832 	while (1) {
1833 		struct inode *old = NULL;
1834 		spin_lock(&inode_hash_lock);
1835 		hlist_for_each_entry(old, head, i_hash) {
1836 			if (old->i_ino != ino)
1837 				continue;
1838 			if (old->i_sb != sb)
1839 				continue;
1840 			spin_lock(&old->i_lock);
1841 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1842 				spin_unlock(&old->i_lock);
1843 				continue;
1844 			}
1845 			break;
1846 		}
1847 		if (likely(!old)) {
1848 			spin_lock(&inode->i_lock);
1849 			inode->i_state |= I_NEW | I_CREATING;
1850 			hlist_add_head_rcu(&inode->i_hash, head);
1851 			spin_unlock(&inode->i_lock);
1852 			spin_unlock(&inode_hash_lock);
1853 			return 0;
1854 		}
1855 		if (unlikely(old->i_state & I_CREATING)) {
1856 			spin_unlock(&old->i_lock);
1857 			spin_unlock(&inode_hash_lock);
1858 			return -EBUSY;
1859 		}
1860 		__iget(old);
1861 		spin_unlock(&old->i_lock);
1862 		spin_unlock(&inode_hash_lock);
1863 		wait_on_inode(old);
1864 		if (unlikely(!inode_unhashed(old))) {
1865 			iput(old);
1866 			return -EBUSY;
1867 		}
1868 		iput(old);
1869 	}
1870 }
1871 EXPORT_SYMBOL(insert_inode_locked);
1872 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1873 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1874 		int (*test)(struct inode *, void *), void *data)
1875 {
1876 	struct inode *old;
1877 
1878 	inode->i_state |= I_CREATING;
1879 	old = inode_insert5(inode, hashval, test, NULL, data);
1880 
1881 	if (old != inode) {
1882 		iput(old);
1883 		return -EBUSY;
1884 	}
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL(insert_inode_locked4);
1888 
1889 
generic_delete_inode(struct inode * inode)1890 int generic_delete_inode(struct inode *inode)
1891 {
1892 	return 1;
1893 }
1894 EXPORT_SYMBOL(generic_delete_inode);
1895 
1896 /*
1897  * Called when we're dropping the last reference
1898  * to an inode.
1899  *
1900  * Call the FS "drop_inode()" function, defaulting to
1901  * the legacy UNIX filesystem behaviour.  If it tells
1902  * us to evict inode, do so.  Otherwise, retain inode
1903  * in cache if fs is alive, sync and evict if fs is
1904  * shutting down.
1905  */
iput_final(struct inode * inode)1906 static void iput_final(struct inode *inode)
1907 {
1908 	struct super_block *sb = inode->i_sb;
1909 	const struct super_operations *op = inode->i_sb->s_op;
1910 	unsigned long state;
1911 	int drop;
1912 
1913 	WARN_ON(inode->i_state & I_NEW);
1914 
1915 	if (op->drop_inode)
1916 		drop = op->drop_inode(inode);
1917 	else
1918 		drop = generic_drop_inode(inode);
1919 
1920 	if (!drop &&
1921 	    !(inode->i_state & I_DONTCACHE) &&
1922 	    (sb->s_flags & SB_ACTIVE)) {
1923 		__inode_add_lru(inode, true);
1924 		spin_unlock(&inode->i_lock);
1925 		return;
1926 	}
1927 
1928 	state = inode->i_state;
1929 	if (!drop) {
1930 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1931 		spin_unlock(&inode->i_lock);
1932 
1933 		write_inode_now(inode, 1);
1934 
1935 		spin_lock(&inode->i_lock);
1936 		state = inode->i_state;
1937 		WARN_ON(state & I_NEW);
1938 		state &= ~I_WILL_FREE;
1939 	}
1940 
1941 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1942 	if (!list_empty(&inode->i_lru))
1943 		inode_lru_list_del(inode);
1944 	spin_unlock(&inode->i_lock);
1945 
1946 	evict(inode);
1947 }
1948 
1949 /**
1950  *	iput	- put an inode
1951  *	@inode: inode to put
1952  *
1953  *	Puts an inode, dropping its usage count. If the inode use count hits
1954  *	zero, the inode is then freed and may also be destroyed.
1955  *
1956  *	Consequently, iput() can sleep.
1957  */
iput(struct inode * inode)1958 void iput(struct inode *inode)
1959 {
1960 	if (!inode)
1961 		return;
1962 	BUG_ON(inode->i_state & I_CLEAR);
1963 retry:
1964 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1965 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1966 			atomic_inc(&inode->i_count);
1967 			spin_unlock(&inode->i_lock);
1968 			trace_writeback_lazytime_iput(inode);
1969 			mark_inode_dirty_sync(inode);
1970 			goto retry;
1971 		}
1972 		iput_final(inode);
1973 	}
1974 }
1975 EXPORT_SYMBOL(iput);
1976 
1977 #ifdef CONFIG_BLOCK
1978 /**
1979  *	bmap	- find a block number in a file
1980  *	@inode:  inode owning the block number being requested
1981  *	@block: pointer containing the block to find
1982  *
1983  *	Replaces the value in ``*block`` with the block number on the device holding
1984  *	corresponding to the requested block number in the file.
1985  *	That is, asked for block 4 of inode 1 the function will replace the
1986  *	4 in ``*block``, with disk block relative to the disk start that holds that
1987  *	block of the file.
1988  *
1989  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1990  *	hole, returns 0 and ``*block`` is also set to 0.
1991  */
bmap(struct inode * inode,sector_t * block)1992 int bmap(struct inode *inode, sector_t *block)
1993 {
1994 	if (!inode->i_mapping->a_ops->bmap)
1995 		return -EINVAL;
1996 
1997 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL(bmap);
2001 #endif
2002 
2003 /*
2004  * With relative atime, only update atime if the previous atime is
2005  * earlier than or equal to either the ctime or mtime,
2006  * or if at least a day has passed since the last atime update.
2007  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)2008 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2009 			     struct timespec64 now)
2010 {
2011 	struct timespec64 atime, mtime, ctime;
2012 
2013 	if (!(mnt->mnt_flags & MNT_RELATIME))
2014 		return true;
2015 	/*
2016 	 * Is mtime younger than or equal to atime? If yes, update atime:
2017 	 */
2018 	atime = inode_get_atime(inode);
2019 	mtime = inode_get_mtime(inode);
2020 	if (timespec64_compare(&mtime, &atime) >= 0)
2021 		return true;
2022 	/*
2023 	 * Is ctime younger than or equal to atime? If yes, update atime:
2024 	 */
2025 	ctime = inode_get_ctime(inode);
2026 	if (timespec64_compare(&ctime, &atime) >= 0)
2027 		return true;
2028 
2029 	/*
2030 	 * Is the previous atime value older than a day? If yes,
2031 	 * update atime:
2032 	 */
2033 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2034 		return true;
2035 	/*
2036 	 * Good, we can skip the atime update:
2037 	 */
2038 	return false;
2039 }
2040 
2041 /**
2042  * inode_update_timestamps - update the timestamps on the inode
2043  * @inode: inode to be updated
2044  * @flags: S_* flags that needed to be updated
2045  *
2046  * The update_time function is called when an inode's timestamps need to be
2047  * updated for a read or write operation. This function handles updating the
2048  * actual timestamps. It's up to the caller to ensure that the inode is marked
2049  * dirty appropriately.
2050  *
2051  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2052  * attempt to update all three of them. S_ATIME updates can be handled
2053  * independently of the rest.
2054  *
2055  * Returns a set of S_* flags indicating which values changed.
2056  */
inode_update_timestamps(struct inode * inode,int flags)2057 int inode_update_timestamps(struct inode *inode, int flags)
2058 {
2059 	int updated = 0;
2060 	struct timespec64 now;
2061 
2062 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2063 		struct timespec64 ctime = inode_get_ctime(inode);
2064 		struct timespec64 mtime = inode_get_mtime(inode);
2065 
2066 		now = inode_set_ctime_current(inode);
2067 		if (!timespec64_equal(&now, &ctime))
2068 			updated |= S_CTIME;
2069 		if (!timespec64_equal(&now, &mtime)) {
2070 			inode_set_mtime_to_ts(inode, now);
2071 			updated |= S_MTIME;
2072 		}
2073 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2074 			updated |= S_VERSION;
2075 	} else {
2076 		now = current_time(inode);
2077 	}
2078 
2079 	if (flags & S_ATIME) {
2080 		struct timespec64 atime = inode_get_atime(inode);
2081 
2082 		if (!timespec64_equal(&now, &atime)) {
2083 			inode_set_atime_to_ts(inode, now);
2084 			updated |= S_ATIME;
2085 		}
2086 	}
2087 	return updated;
2088 }
2089 EXPORT_SYMBOL(inode_update_timestamps);
2090 
2091 /**
2092  * generic_update_time - update the timestamps on the inode
2093  * @inode: inode to be updated
2094  * @flags: S_* flags that needed to be updated
2095  *
2096  * The update_time function is called when an inode's timestamps need to be
2097  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2098  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2099  * updates can be handled done independently of the rest.
2100  *
2101  * Returns a S_* mask indicating which fields were updated.
2102  */
generic_update_time(struct inode * inode,int flags)2103 int generic_update_time(struct inode *inode, int flags)
2104 {
2105 	int updated = inode_update_timestamps(inode, flags);
2106 	int dirty_flags = 0;
2107 
2108 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2109 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2110 	if (updated & S_VERSION)
2111 		dirty_flags |= I_DIRTY_SYNC;
2112 	__mark_inode_dirty(inode, dirty_flags);
2113 	return updated;
2114 }
2115 EXPORT_SYMBOL(generic_update_time);
2116 
2117 /*
2118  * This does the actual work of updating an inodes time or version.  Must have
2119  * had called mnt_want_write() before calling this.
2120  */
inode_update_time(struct inode * inode,int flags)2121 int inode_update_time(struct inode *inode, int flags)
2122 {
2123 	if (inode->i_op->update_time)
2124 		return inode->i_op->update_time(inode, flags);
2125 	generic_update_time(inode, flags);
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(inode_update_time);
2129 
2130 /**
2131  *	atime_needs_update	-	update the access time
2132  *	@path: the &struct path to update
2133  *	@inode: inode to update
2134  *
2135  *	Update the accessed time on an inode and mark it for writeback.
2136  *	This function automatically handles read only file systems and media,
2137  *	as well as the "noatime" flag and inode specific "noatime" markers.
2138  */
atime_needs_update(const struct path * path,struct inode * inode)2139 bool atime_needs_update(const struct path *path, struct inode *inode)
2140 {
2141 	struct vfsmount *mnt = path->mnt;
2142 	struct timespec64 now, atime;
2143 
2144 	if (inode->i_flags & S_NOATIME)
2145 		return false;
2146 
2147 	/* Atime updates will likely cause i_uid and i_gid to be written
2148 	 * back improprely if their true value is unknown to the vfs.
2149 	 */
2150 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2151 		return false;
2152 
2153 	if (IS_NOATIME(inode))
2154 		return false;
2155 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2156 		return false;
2157 
2158 	if (mnt->mnt_flags & MNT_NOATIME)
2159 		return false;
2160 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2161 		return false;
2162 
2163 	now = current_time(inode);
2164 
2165 	if (!relatime_need_update(mnt, inode, now))
2166 		return false;
2167 
2168 	atime = inode_get_atime(inode);
2169 	if (timespec64_equal(&atime, &now))
2170 		return false;
2171 
2172 	return true;
2173 }
2174 
touch_atime(const struct path * path)2175 void touch_atime(const struct path *path)
2176 {
2177 	struct vfsmount *mnt = path->mnt;
2178 	struct inode *inode = d_inode(path->dentry);
2179 
2180 	if (!atime_needs_update(path, inode))
2181 		return;
2182 
2183 	if (!sb_start_write_trylock(inode->i_sb))
2184 		return;
2185 
2186 	if (mnt_get_write_access(mnt) != 0)
2187 		goto skip_update;
2188 	/*
2189 	 * File systems can error out when updating inodes if they need to
2190 	 * allocate new space to modify an inode (such is the case for
2191 	 * Btrfs), but since we touch atime while walking down the path we
2192 	 * really don't care if we failed to update the atime of the file,
2193 	 * so just ignore the return value.
2194 	 * We may also fail on filesystems that have the ability to make parts
2195 	 * of the fs read only, e.g. subvolumes in Btrfs.
2196 	 */
2197 	inode_update_time(inode, S_ATIME);
2198 	mnt_put_write_access(mnt);
2199 skip_update:
2200 	sb_end_write(inode->i_sb);
2201 }
2202 EXPORT_SYMBOL(touch_atime);
2203 
2204 /*
2205  * Return mask of changes for notify_change() that need to be done as a
2206  * response to write or truncate. Return 0 if nothing has to be changed.
2207  * Negative value on error (change should be denied).
2208  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2209 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2210 			      struct dentry *dentry)
2211 {
2212 	struct inode *inode = d_inode(dentry);
2213 	int mask = 0;
2214 	int ret;
2215 
2216 	if (IS_NOSEC(inode))
2217 		return 0;
2218 
2219 	mask = setattr_should_drop_suidgid(idmap, inode);
2220 	ret = security_inode_need_killpriv(dentry);
2221 	if (ret < 0)
2222 		return ret;
2223 	if (ret)
2224 		mask |= ATTR_KILL_PRIV;
2225 	return mask;
2226 }
2227 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2228 static int __remove_privs(struct mnt_idmap *idmap,
2229 			  struct dentry *dentry, int kill)
2230 {
2231 	struct iattr newattrs;
2232 
2233 	newattrs.ia_valid = ATTR_FORCE | kill;
2234 	/*
2235 	 * Note we call this on write, so notify_change will not
2236 	 * encounter any conflicting delegations:
2237 	 */
2238 	return notify_change(idmap, dentry, &newattrs, NULL);
2239 }
2240 
file_remove_privs_flags(struct file * file,unsigned int flags)2241 int file_remove_privs_flags(struct file *file, unsigned int flags)
2242 {
2243 	struct dentry *dentry = file_dentry(file);
2244 	struct inode *inode = file_inode(file);
2245 	int error = 0;
2246 	int kill;
2247 
2248 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2249 		return 0;
2250 
2251 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2252 	if (kill < 0)
2253 		return kill;
2254 
2255 	if (kill) {
2256 		if (flags & IOCB_NOWAIT)
2257 			return -EAGAIN;
2258 
2259 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2260 	}
2261 
2262 	if (!error)
2263 		inode_has_no_xattr(inode);
2264 	return error;
2265 }
2266 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2267 
2268 /**
2269  * file_remove_privs - remove special file privileges (suid, capabilities)
2270  * @file: file to remove privileges from
2271  *
2272  * When file is modified by a write or truncation ensure that special
2273  * file privileges are removed.
2274  *
2275  * Return: 0 on success, negative errno on failure.
2276  */
file_remove_privs(struct file * file)2277 int file_remove_privs(struct file *file)
2278 {
2279 	return file_remove_privs_flags(file, 0);
2280 }
2281 EXPORT_SYMBOL(file_remove_privs);
2282 
2283 /**
2284  * current_time - Return FS time (possibly fine-grained)
2285  * @inode: inode.
2286  *
2287  * Return the current time truncated to the time granularity supported by
2288  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2289  * as having been QUERIED, get a fine-grained timestamp, but don't update
2290  * the floor.
2291  *
2292  * For a multigrain inode, this is effectively an estimate of the timestamp
2293  * that a file would receive. An actual update must go through
2294  * inode_set_ctime_current().
2295  */
current_time(struct inode * inode)2296 struct timespec64 current_time(struct inode *inode)
2297 {
2298 	struct timespec64 now;
2299 	u32 cns;
2300 
2301 	ktime_get_coarse_real_ts64_mg(&now);
2302 
2303 	if (!is_mgtime(inode))
2304 		goto out;
2305 
2306 	/* If nothing has queried it, then coarse time is fine */
2307 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2308 	if (cns & I_CTIME_QUERIED) {
2309 		/*
2310 		 * If there is no apparent change, then get a fine-grained
2311 		 * timestamp.
2312 		 */
2313 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2314 			ktime_get_real_ts64(&now);
2315 	}
2316 out:
2317 	return timestamp_truncate(now, inode);
2318 }
2319 EXPORT_SYMBOL(current_time);
2320 
inode_needs_update_time(struct inode * inode)2321 static int inode_needs_update_time(struct inode *inode)
2322 {
2323 	struct timespec64 now, ts;
2324 	int sync_it = 0;
2325 
2326 	/* First try to exhaust all avenues to not sync */
2327 	if (IS_NOCMTIME(inode))
2328 		return 0;
2329 
2330 	now = current_time(inode);
2331 
2332 	ts = inode_get_mtime(inode);
2333 	if (!timespec64_equal(&ts, &now))
2334 		sync_it |= S_MTIME;
2335 
2336 	ts = inode_get_ctime(inode);
2337 	if (!timespec64_equal(&ts, &now))
2338 		sync_it |= S_CTIME;
2339 
2340 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2341 		sync_it |= S_VERSION;
2342 
2343 	return sync_it;
2344 }
2345 
__file_update_time(struct file * file,int sync_mode)2346 static int __file_update_time(struct file *file, int sync_mode)
2347 {
2348 	int ret = 0;
2349 	struct inode *inode = file_inode(file);
2350 
2351 	/* try to update time settings */
2352 	if (!mnt_get_write_access_file(file)) {
2353 		ret = inode_update_time(inode, sync_mode);
2354 		mnt_put_write_access_file(file);
2355 	}
2356 
2357 	return ret;
2358 }
2359 
2360 /**
2361  * file_update_time - update mtime and ctime time
2362  * @file: file accessed
2363  *
2364  * Update the mtime and ctime members of an inode and mark the inode for
2365  * writeback. Note that this function is meant exclusively for usage in
2366  * the file write path of filesystems, and filesystems may choose to
2367  * explicitly ignore updates via this function with the _NOCMTIME inode
2368  * flag, e.g. for network filesystem where these imestamps are handled
2369  * by the server. This can return an error for file systems who need to
2370  * allocate space in order to update an inode.
2371  *
2372  * Return: 0 on success, negative errno on failure.
2373  */
file_update_time(struct file * file)2374 int file_update_time(struct file *file)
2375 {
2376 	int ret;
2377 	struct inode *inode = file_inode(file);
2378 
2379 	ret = inode_needs_update_time(inode);
2380 	if (ret <= 0)
2381 		return ret;
2382 
2383 	return __file_update_time(file, ret);
2384 }
2385 EXPORT_SYMBOL(file_update_time);
2386 
2387 /**
2388  * file_modified_flags - handle mandated vfs changes when modifying a file
2389  * @file: file that was modified
2390  * @flags: kiocb flags
2391  *
2392  * When file has been modified ensure that special
2393  * file privileges are removed and time settings are updated.
2394  *
2395  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2396  * time settings will not be updated. It will return -EAGAIN.
2397  *
2398  * Context: Caller must hold the file's inode lock.
2399  *
2400  * Return: 0 on success, negative errno on failure.
2401  */
file_modified_flags(struct file * file,int flags)2402 static int file_modified_flags(struct file *file, int flags)
2403 {
2404 	int ret;
2405 	struct inode *inode = file_inode(file);
2406 
2407 	/*
2408 	 * Clear the security bits if the process is not being run by root.
2409 	 * This keeps people from modifying setuid and setgid binaries.
2410 	 */
2411 	ret = file_remove_privs_flags(file, flags);
2412 	if (ret)
2413 		return ret;
2414 
2415 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2416 		return 0;
2417 
2418 	ret = inode_needs_update_time(inode);
2419 	if (ret <= 0)
2420 		return ret;
2421 	if (flags & IOCB_NOWAIT)
2422 		return -EAGAIN;
2423 
2424 	return __file_update_time(file, ret);
2425 }
2426 
2427 /**
2428  * file_modified - handle mandated vfs changes when modifying a file
2429  * @file: file that was modified
2430  *
2431  * When file has been modified ensure that special
2432  * file privileges are removed and time settings are updated.
2433  *
2434  * Context: Caller must hold the file's inode lock.
2435  *
2436  * Return: 0 on success, negative errno on failure.
2437  */
file_modified(struct file * file)2438 int file_modified(struct file *file)
2439 {
2440 	return file_modified_flags(file, 0);
2441 }
2442 EXPORT_SYMBOL(file_modified);
2443 
2444 /**
2445  * kiocb_modified - handle mandated vfs changes when modifying a file
2446  * @iocb: iocb that was modified
2447  *
2448  * When file has been modified ensure that special
2449  * file privileges are removed and time settings are updated.
2450  *
2451  * Context: Caller must hold the file's inode lock.
2452  *
2453  * Return: 0 on success, negative errno on failure.
2454  */
kiocb_modified(struct kiocb * iocb)2455 int kiocb_modified(struct kiocb *iocb)
2456 {
2457 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2458 }
2459 EXPORT_SYMBOL_GPL(kiocb_modified);
2460 
inode_needs_sync(struct inode * inode)2461 int inode_needs_sync(struct inode *inode)
2462 {
2463 	if (IS_SYNC(inode))
2464 		return 1;
2465 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2466 		return 1;
2467 	return 0;
2468 }
2469 EXPORT_SYMBOL(inode_needs_sync);
2470 
2471 /*
2472  * If we try to find an inode in the inode hash while it is being
2473  * deleted, we have to wait until the filesystem completes its
2474  * deletion before reporting that it isn't found.  This function waits
2475  * until the deletion _might_ have completed.  Callers are responsible
2476  * to recheck inode state.
2477  *
2478  * It doesn't matter if I_NEW is not set initially, a call to
2479  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2480  * will DTRT.
2481  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2482 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2483 {
2484 	struct wait_bit_queue_entry wqe;
2485 	struct wait_queue_head *wq_head;
2486 
2487 	/*
2488 	 * Handle racing against evict(), see that routine for more details.
2489 	 */
2490 	if (unlikely(inode_unhashed(inode))) {
2491 		WARN_ON(is_inode_hash_locked);
2492 		spin_unlock(&inode->i_lock);
2493 		return;
2494 	}
2495 
2496 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2497 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2498 	spin_unlock(&inode->i_lock);
2499 	rcu_read_unlock();
2500 	if (is_inode_hash_locked)
2501 		spin_unlock(&inode_hash_lock);
2502 	schedule();
2503 	finish_wait(wq_head, &wqe.wq_entry);
2504 	if (is_inode_hash_locked)
2505 		spin_lock(&inode_hash_lock);
2506 	rcu_read_lock();
2507 }
2508 
2509 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2510 static int __init set_ihash_entries(char *str)
2511 {
2512 	if (!str)
2513 		return 0;
2514 	ihash_entries = simple_strtoul(str, &str, 0);
2515 	return 1;
2516 }
2517 __setup("ihash_entries=", set_ihash_entries);
2518 
2519 /*
2520  * Initialize the waitqueues and inode hash table.
2521  */
inode_init_early(void)2522 void __init inode_init_early(void)
2523 {
2524 	/* If hashes are distributed across NUMA nodes, defer
2525 	 * hash allocation until vmalloc space is available.
2526 	 */
2527 	if (hashdist)
2528 		return;
2529 
2530 	inode_hashtable =
2531 		alloc_large_system_hash("Inode-cache",
2532 					sizeof(struct hlist_head),
2533 					ihash_entries,
2534 					14,
2535 					HASH_EARLY | HASH_ZERO,
2536 					&i_hash_shift,
2537 					&i_hash_mask,
2538 					0,
2539 					0);
2540 }
2541 
inode_init(void)2542 void __init inode_init(void)
2543 {
2544 	/* inode slab cache */
2545 	inode_cachep = kmem_cache_create("inode_cache",
2546 					 sizeof(struct inode),
2547 					 0,
2548 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2549 					 SLAB_ACCOUNT),
2550 					 init_once);
2551 
2552 	/* Hash may have been set up in inode_init_early */
2553 	if (!hashdist)
2554 		return;
2555 
2556 	inode_hashtable =
2557 		alloc_large_system_hash("Inode-cache",
2558 					sizeof(struct hlist_head),
2559 					ihash_entries,
2560 					14,
2561 					HASH_ZERO,
2562 					&i_hash_shift,
2563 					&i_hash_mask,
2564 					0,
2565 					0);
2566 }
2567 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2568 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2569 {
2570 	inode->i_mode = mode;
2571 	if (S_ISCHR(mode)) {
2572 		inode->i_fop = &def_chr_fops;
2573 		inode->i_rdev = rdev;
2574 	} else if (S_ISBLK(mode)) {
2575 		if (IS_ENABLED(CONFIG_BLOCK))
2576 			inode->i_fop = &def_blk_fops;
2577 		inode->i_rdev = rdev;
2578 	} else if (S_ISFIFO(mode))
2579 		inode->i_fop = &pipefifo_fops;
2580 	else if (S_ISSOCK(mode))
2581 		;	/* leave it no_open_fops */
2582 	else
2583 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2584 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2585 				  inode->i_ino);
2586 }
2587 EXPORT_SYMBOL(init_special_inode);
2588 
2589 /**
2590  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2591  * @idmap: idmap of the mount the inode was created from
2592  * @inode: New inode
2593  * @dir: Directory inode
2594  * @mode: mode of the new inode
2595  *
2596  * If the inode has been created through an idmapped mount the idmap of
2597  * the vfsmount must be passed through @idmap. This function will then take
2598  * care to map the inode according to @idmap before checking permissions
2599  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2600  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2601  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2602 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2603 		      const struct inode *dir, umode_t mode)
2604 {
2605 	inode_fsuid_set(inode, idmap);
2606 	if (dir && dir->i_mode & S_ISGID) {
2607 		inode->i_gid = dir->i_gid;
2608 
2609 		/* Directories are special, and always inherit S_ISGID */
2610 		if (S_ISDIR(mode))
2611 			mode |= S_ISGID;
2612 	} else
2613 		inode_fsgid_set(inode, idmap);
2614 	inode->i_mode = mode;
2615 }
2616 EXPORT_SYMBOL(inode_init_owner);
2617 
2618 /**
2619  * inode_owner_or_capable - check current task permissions to inode
2620  * @idmap: idmap of the mount the inode was found from
2621  * @inode: inode being checked
2622  *
2623  * Return true if current either has CAP_FOWNER in a namespace with the
2624  * inode owner uid mapped, or owns the file.
2625  *
2626  * If the inode has been found through an idmapped mount the idmap of
2627  * the vfsmount must be passed through @idmap. This function will then take
2628  * care to map the inode according to @idmap before checking permissions.
2629  * On non-idmapped mounts or if permission checking is to be performed on the
2630  * raw inode simply pass @nop_mnt_idmap.
2631  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2632 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2633 			    const struct inode *inode)
2634 {
2635 	vfsuid_t vfsuid;
2636 	struct user_namespace *ns;
2637 
2638 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2639 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2640 		return true;
2641 
2642 	ns = current_user_ns();
2643 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2644 		return true;
2645 	return false;
2646 }
2647 EXPORT_SYMBOL(inode_owner_or_capable);
2648 
2649 /*
2650  * Direct i/o helper functions
2651  */
inode_dio_finished(const struct inode * inode)2652 bool inode_dio_finished(const struct inode *inode)
2653 {
2654 	return atomic_read(&inode->i_dio_count) == 0;
2655 }
2656 EXPORT_SYMBOL(inode_dio_finished);
2657 
2658 /**
2659  * inode_dio_wait - wait for outstanding DIO requests to finish
2660  * @inode: inode to wait for
2661  *
2662  * Waits for all pending direct I/O requests to finish so that we can
2663  * proceed with a truncate or equivalent operation.
2664  *
2665  * Must be called under a lock that serializes taking new references
2666  * to i_dio_count, usually by inode->i_mutex.
2667  */
inode_dio_wait(struct inode * inode)2668 void inode_dio_wait(struct inode *inode)
2669 {
2670 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2671 }
2672 EXPORT_SYMBOL(inode_dio_wait);
2673 
inode_dio_wait_interruptible(struct inode * inode)2674 void inode_dio_wait_interruptible(struct inode *inode)
2675 {
2676 	wait_var_event_interruptible(&inode->i_dio_count,
2677 				     inode_dio_finished(inode));
2678 }
2679 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2680 
2681 /*
2682  * inode_set_flags - atomically set some inode flags
2683  *
2684  * Note: the caller should be holding i_mutex, or else be sure that
2685  * they have exclusive access to the inode structure (i.e., while the
2686  * inode is being instantiated).  The reason for the cmpxchg() loop
2687  * --- which wouldn't be necessary if all code paths which modify
2688  * i_flags actually followed this rule, is that there is at least one
2689  * code path which doesn't today so we use cmpxchg() out of an abundance
2690  * of caution.
2691  *
2692  * In the long run, i_mutex is overkill, and we should probably look
2693  * at using the i_lock spinlock to protect i_flags, and then make sure
2694  * it is so documented in include/linux/fs.h and that all code follows
2695  * the locking convention!!
2696  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2697 void inode_set_flags(struct inode *inode, unsigned int flags,
2698 		     unsigned int mask)
2699 {
2700 	WARN_ON_ONCE(flags & ~mask);
2701 	set_mask_bits(&inode->i_flags, mask, flags);
2702 }
2703 EXPORT_SYMBOL(inode_set_flags);
2704 
inode_nohighmem(struct inode * inode)2705 void inode_nohighmem(struct inode *inode)
2706 {
2707 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2708 }
2709 EXPORT_SYMBOL(inode_nohighmem);
2710 
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2711 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2712 {
2713 	trace_inode_set_ctime_to_ts(inode, &ts);
2714 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2715 	inode->i_ctime_sec = ts.tv_sec;
2716 	inode->i_ctime_nsec = ts.tv_nsec;
2717 	return ts;
2718 }
2719 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2720 
2721 /**
2722  * timestamp_truncate - Truncate timespec to a granularity
2723  * @t: Timespec
2724  * @inode: inode being updated
2725  *
2726  * Truncate a timespec to the granularity supported by the fs
2727  * containing the inode. Always rounds down. gran must
2728  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2729  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2730 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2731 {
2732 	struct super_block *sb = inode->i_sb;
2733 	unsigned int gran = sb->s_time_gran;
2734 
2735 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2736 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2737 		t.tv_nsec = 0;
2738 
2739 	/* Avoid division in the common cases 1 ns and 1 s. */
2740 	if (gran == 1)
2741 		; /* nothing */
2742 	else if (gran == NSEC_PER_SEC)
2743 		t.tv_nsec = 0;
2744 	else if (gran > 1 && gran < NSEC_PER_SEC)
2745 		t.tv_nsec -= t.tv_nsec % gran;
2746 	else
2747 		WARN(1, "invalid file time granularity: %u", gran);
2748 	return t;
2749 }
2750 EXPORT_SYMBOL(timestamp_truncate);
2751 
2752 /**
2753  * inode_set_ctime_current - set the ctime to current_time
2754  * @inode: inode
2755  *
2756  * Set the inode's ctime to the current value for the inode. Returns the
2757  * current value that was assigned. If this is not a multigrain inode, then we
2758  * set it to the later of the coarse time and floor value.
2759  *
2760  * If it is multigrain, then we first see if the coarse-grained timestamp is
2761  * distinct from what is already there. If so, then use that. Otherwise, get a
2762  * fine-grained timestamp.
2763  *
2764  * After that, try to swap the new value into i_ctime_nsec. Accept the
2765  * resulting ctime, regardless of the outcome of the swap. If it has
2766  * already been replaced, then that timestamp is later than the earlier
2767  * unacceptable one, and is thus acceptable.
2768  */
inode_set_ctime_current(struct inode * inode)2769 struct timespec64 inode_set_ctime_current(struct inode *inode)
2770 {
2771 	struct timespec64 now;
2772 	u32 cns, cur;
2773 
2774 	ktime_get_coarse_real_ts64_mg(&now);
2775 	now = timestamp_truncate(now, inode);
2776 
2777 	/* Just return that if this is not a multigrain fs */
2778 	if (!is_mgtime(inode)) {
2779 		inode_set_ctime_to_ts(inode, now);
2780 		goto out;
2781 	}
2782 
2783 	/*
2784 	 * A fine-grained time is only needed if someone has queried
2785 	 * for timestamps, and the current coarse grained time isn't
2786 	 * later than what's already there.
2787 	 */
2788 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2789 	if (cns & I_CTIME_QUERIED) {
2790 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2791 					    .tv_nsec = cns & ~I_CTIME_QUERIED };
2792 
2793 		if (timespec64_compare(&now, &ctime) <= 0) {
2794 			ktime_get_real_ts64_mg(&now);
2795 			now = timestamp_truncate(now, inode);
2796 			mgtime_counter_inc(mg_fine_stamps);
2797 		}
2798 	}
2799 	mgtime_counter_inc(mg_ctime_updates);
2800 
2801 	/* No need to cmpxchg if it's exactly the same */
2802 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2803 		trace_ctime_xchg_skip(inode, &now);
2804 		goto out;
2805 	}
2806 	cur = cns;
2807 retry:
2808 	/* Try to swap the nsec value into place. */
2809 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2810 		/* If swap occurred, then we're (mostly) done */
2811 		inode->i_ctime_sec = now.tv_sec;
2812 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2813 		mgtime_counter_inc(mg_ctime_swaps);
2814 	} else {
2815 		/*
2816 		 * Was the change due to someone marking the old ctime QUERIED?
2817 		 * If so then retry the swap. This can only happen once since
2818 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2819 		 * with a new ctime.
2820 		 */
2821 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2822 			cns = cur;
2823 			goto retry;
2824 		}
2825 		/* Otherwise, keep the existing ctime */
2826 		now.tv_sec = inode->i_ctime_sec;
2827 		now.tv_nsec = cur & ~I_CTIME_QUERIED;
2828 	}
2829 out:
2830 	return now;
2831 }
2832 EXPORT_SYMBOL(inode_set_ctime_current);
2833 
2834 /**
2835  * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2836  * @inode: inode to update
2837  * @update: timespec64 to set the ctime
2838  *
2839  * Attempt to atomically update the ctime on behalf of a delegation holder.
2840  *
2841  * The nfs server can call back the holder of a delegation to get updated
2842  * inode attributes, including the mtime. When updating the mtime, update
2843  * the ctime to a value at least equal to that.
2844  *
2845  * This can race with concurrent updates to the inode, in which
2846  * case the update is skipped.
2847  *
2848  * Note that this works even when multigrain timestamps are not enabled,
2849  * so it is used in either case.
2850  */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2851 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2852 {
2853 	struct timespec64 now, cur_ts;
2854 	u32 cur, old;
2855 
2856 	/* pairs with try_cmpxchg below */
2857 	cur = smp_load_acquire(&inode->i_ctime_nsec);
2858 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2859 	cur_ts.tv_sec = inode->i_ctime_sec;
2860 
2861 	/* If the update is older than the existing value, skip it. */
2862 	if (timespec64_compare(&update, &cur_ts) <= 0)
2863 		return cur_ts;
2864 
2865 	ktime_get_coarse_real_ts64_mg(&now);
2866 
2867 	/* Clamp the update to "now" if it's in the future */
2868 	if (timespec64_compare(&update, &now) > 0)
2869 		update = now;
2870 
2871 	update = timestamp_truncate(update, inode);
2872 
2873 	/* No need to update if the values are already the same */
2874 	if (timespec64_equal(&update, &cur_ts))
2875 		return cur_ts;
2876 
2877 	/*
2878 	 * Try to swap the nsec value into place. If it fails, that means
2879 	 * it raced with an update due to a write or similar activity. That
2880 	 * stamp takes precedence, so just skip the update.
2881 	 */
2882 retry:
2883 	old = cur;
2884 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2885 		inode->i_ctime_sec = update.tv_sec;
2886 		mgtime_counter_inc(mg_ctime_swaps);
2887 		return update;
2888 	}
2889 
2890 	/*
2891 	 * Was the change due to another task marking the old ctime QUERIED?
2892 	 *
2893 	 * If so, then retry the swap. This can only happen once since
2894 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2895 	 * with a new ctime.
2896 	 */
2897 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2898 		goto retry;
2899 
2900 	/* Otherwise, it was a new timestamp. */
2901 	cur_ts.tv_sec = inode->i_ctime_sec;
2902 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2903 	return cur_ts;
2904 }
2905 EXPORT_SYMBOL(inode_set_ctime_deleg);
2906 
2907 /**
2908  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2909  * @idmap:	idmap of the mount @inode was found from
2910  * @inode:	inode to check
2911  * @vfsgid:	the new/current vfsgid of @inode
2912  *
2913  * Check whether @vfsgid is in the caller's group list or if the caller is
2914  * privileged with CAP_FSETID over @inode. This can be used to determine
2915  * whether the setgid bit can be kept or must be dropped.
2916  *
2917  * Return: true if the caller is sufficiently privileged, false if not.
2918  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2919 bool in_group_or_capable(struct mnt_idmap *idmap,
2920 			 const struct inode *inode, vfsgid_t vfsgid)
2921 {
2922 	if (vfsgid_in_group_p(vfsgid))
2923 		return true;
2924 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2925 		return true;
2926 	return false;
2927 }
2928 EXPORT_SYMBOL(in_group_or_capable);
2929 
2930 /**
2931  * mode_strip_sgid - handle the sgid bit for non-directories
2932  * @idmap: idmap of the mount the inode was created from
2933  * @dir: parent directory inode
2934  * @mode: mode of the file to be created in @dir
2935  *
2936  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2937  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2938  * either in the group of the parent directory or they have CAP_FSETID
2939  * in their user namespace and are privileged over the parent directory.
2940  * In all other cases, strip the S_ISGID bit from @mode.
2941  *
2942  * Return: the new mode to use for the file
2943  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2944 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2945 			const struct inode *dir, umode_t mode)
2946 {
2947 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2948 		return mode;
2949 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2950 		return mode;
2951 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2952 		return mode;
2953 	return mode & ~S_ISGID;
2954 }
2955 EXPORT_SYMBOL(mode_strip_sgid);
2956