xref: /linux/fs/namespace.c (revision c5c2a8b497d69fb01d2563e383615a4eb69c72bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83 
84 #ifdef CONFIG_FSNOTIFY
85 LIST_HEAD(notify_list); /* protected by namespace_sem */
86 #endif
87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
89 
90 enum mount_kattr_flags_t {
91 	MOUNT_KATTR_RECURSE		= (1 << 0),
92 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
93 };
94 
95 struct mount_kattr {
96 	unsigned int attr_set;
97 	unsigned int attr_clr;
98 	unsigned int propagation;
99 	unsigned int lookup_flags;
100 	enum mount_kattr_flags_t kflags;
101 	struct user_namespace *mnt_userns;
102 	struct mnt_idmap *mnt_idmap;
103 };
104 
105 /* /sys/fs */
106 struct kobject *fs_kobj __ro_after_init;
107 EXPORT_SYMBOL_GPL(fs_kobj);
108 
109 /*
110  * vfsmount lock may be taken for read to prevent changes to the
111  * vfsmount hash, ie. during mountpoint lookups or walking back
112  * up the tree.
113  *
114  * It should be taken for write in all cases where the vfsmount
115  * tree or hash is modified or when a vfsmount structure is modified.
116  */
117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
118 
node_to_mnt_ns(const struct rb_node * node)119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
120 {
121 	if (!node)
122 		return NULL;
123 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
124 }
125 
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
127 {
128 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
129 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
130 	u64 seq_a = ns_a->seq;
131 	u64 seq_b = ns_b->seq;
132 
133 	if (seq_a < seq_b)
134 		return -1;
135 	if (seq_a > seq_b)
136 		return 1;
137 	return 0;
138 }
139 
mnt_ns_tree_write_lock(void)140 static inline void mnt_ns_tree_write_lock(void)
141 {
142 	write_seqlock(&mnt_ns_tree_lock);
143 }
144 
mnt_ns_tree_write_unlock(void)145 static inline void mnt_ns_tree_write_unlock(void)
146 {
147 	write_sequnlock(&mnt_ns_tree_lock);
148 }
149 
mnt_ns_tree_add(struct mnt_namespace * ns)150 static void mnt_ns_tree_add(struct mnt_namespace *ns)
151 {
152 	struct rb_node *node, *prev;
153 
154 	mnt_ns_tree_write_lock();
155 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
156 	/*
157 	 * If there's no previous entry simply add it after the
158 	 * head and if there is add it after the previous entry.
159 	 */
160 	prev = rb_prev(&ns->mnt_ns_tree_node);
161 	if (!prev)
162 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
163 	else
164 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
165 	mnt_ns_tree_write_unlock();
166 
167 	WARN_ON_ONCE(node);
168 }
169 
mnt_ns_release(struct mnt_namespace * ns)170 static void mnt_ns_release(struct mnt_namespace *ns)
171 {
172 	/* keep alive for {list,stat}mount() */
173 	if (refcount_dec_and_test(&ns->passive)) {
174 		fsnotify_mntns_delete(ns);
175 		put_user_ns(ns->user_ns);
176 		kfree(ns);
177 	}
178 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
180 
181 static void mnt_ns_release_rcu(struct rcu_head *rcu)
182 {
183 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
184 }
185 
mnt_ns_tree_remove(struct mnt_namespace * ns)186 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
187 {
188 	/* remove from global mount namespace list */
189 	if (!is_anon_ns(ns)) {
190 		mnt_ns_tree_write_lock();
191 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
192 		list_bidir_del_rcu(&ns->mnt_ns_list);
193 		mnt_ns_tree_write_unlock();
194 	}
195 
196 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
197 }
198 
mnt_ns_find(const void * key,const struct rb_node * node)199 static int mnt_ns_find(const void *key, const struct rb_node *node)
200 {
201 	const u64 mnt_ns_id = *(u64 *)key;
202 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
203 
204 	if (mnt_ns_id < ns->seq)
205 		return -1;
206 	if (mnt_ns_id > ns->seq)
207 		return 1;
208 	return 0;
209 }
210 
211 /*
212  * Lookup a mount namespace by id and take a passive reference count. Taking a
213  * passive reference means the mount namespace can be emptied if e.g., the last
214  * task holding an active reference exits. To access the mounts of the
215  * namespace the @namespace_sem must first be acquired. If the namespace has
216  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
217  * see that the mount rbtree of the namespace is empty.
218  *
219  * Note the lookup is lockless protected by a sequence counter. We only
220  * need to guard against false negatives as false positives aren't
221  * possible. So if we didn't find a mount namespace and the sequence
222  * counter has changed we need to retry. If the sequence counter is
223  * still the same we know the search actually failed.
224  */
lookup_mnt_ns(u64 mnt_ns_id)225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
226 {
227 	struct mnt_namespace *ns;
228 	struct rb_node *node;
229 	unsigned int seq;
230 
231 	guard(rcu)();
232 	do {
233 		seq = read_seqbegin(&mnt_ns_tree_lock);
234 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
235 		if (node)
236 			break;
237 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
238 
239 	if (!node)
240 		return NULL;
241 
242 	/*
243 	 * The last reference count is put with RCU delay so we can
244 	 * unconditonally acquire a reference here.
245 	 */
246 	ns = node_to_mnt_ns(node);
247 	refcount_inc(&ns->passive);
248 	return ns;
249 }
250 
lock_mount_hash(void)251 static inline void lock_mount_hash(void)
252 {
253 	write_seqlock(&mount_lock);
254 }
255 
unlock_mount_hash(void)256 static inline void unlock_mount_hash(void)
257 {
258 	write_sequnlock(&mount_lock);
259 }
260 
m_hash(struct vfsmount * mnt,struct dentry * dentry)261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
262 {
263 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
264 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
265 	tmp = tmp + (tmp >> m_hash_shift);
266 	return &mount_hashtable[tmp & m_hash_mask];
267 }
268 
mp_hash(struct dentry * dentry)269 static inline struct hlist_head *mp_hash(struct dentry *dentry)
270 {
271 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
272 	tmp = tmp + (tmp >> mp_hash_shift);
273 	return &mountpoint_hashtable[tmp & mp_hash_mask];
274 }
275 
mnt_alloc_id(struct mount * mnt)276 static int mnt_alloc_id(struct mount *mnt)
277 {
278 	int res;
279 
280 	xa_lock(&mnt_id_xa);
281 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
282 	if (!res)
283 		mnt->mnt_id_unique = ++mnt_id_ctr;
284 	xa_unlock(&mnt_id_xa);
285 	return res;
286 }
287 
mnt_free_id(struct mount * mnt)288 static void mnt_free_id(struct mount *mnt)
289 {
290 	xa_erase(&mnt_id_xa, mnt->mnt_id);
291 }
292 
293 /*
294  * Allocate a new peer group ID
295  */
mnt_alloc_group_id(struct mount * mnt)296 static int mnt_alloc_group_id(struct mount *mnt)
297 {
298 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
299 
300 	if (res < 0)
301 		return res;
302 	mnt->mnt_group_id = res;
303 	return 0;
304 }
305 
306 /*
307  * Release a peer group ID
308  */
mnt_release_group_id(struct mount * mnt)309 void mnt_release_group_id(struct mount *mnt)
310 {
311 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
312 	mnt->mnt_group_id = 0;
313 }
314 
315 /*
316  * vfsmount lock must be held for read
317  */
mnt_add_count(struct mount * mnt,int n)318 static inline void mnt_add_count(struct mount *mnt, int n)
319 {
320 #ifdef CONFIG_SMP
321 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
322 #else
323 	preempt_disable();
324 	mnt->mnt_count += n;
325 	preempt_enable();
326 #endif
327 }
328 
329 /*
330  * vfsmount lock must be held for write
331  */
mnt_get_count(struct mount * mnt)332 int mnt_get_count(struct mount *mnt)
333 {
334 #ifdef CONFIG_SMP
335 	int count = 0;
336 	int cpu;
337 
338 	for_each_possible_cpu(cpu) {
339 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
340 	}
341 
342 	return count;
343 #else
344 	return mnt->mnt_count;
345 #endif
346 }
347 
alloc_vfsmnt(const char * name)348 static struct mount *alloc_vfsmnt(const char *name)
349 {
350 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
351 	if (mnt) {
352 		int err;
353 
354 		err = mnt_alloc_id(mnt);
355 		if (err)
356 			goto out_free_cache;
357 
358 		if (name)
359 			mnt->mnt_devname = kstrdup_const(name,
360 							 GFP_KERNEL_ACCOUNT);
361 		else
362 			mnt->mnt_devname = "none";
363 		if (!mnt->mnt_devname)
364 			goto out_free_id;
365 
366 #ifdef CONFIG_SMP
367 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
368 		if (!mnt->mnt_pcp)
369 			goto out_free_devname;
370 
371 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
372 #else
373 		mnt->mnt_count = 1;
374 		mnt->mnt_writers = 0;
375 #endif
376 
377 		INIT_HLIST_NODE(&mnt->mnt_hash);
378 		INIT_LIST_HEAD(&mnt->mnt_child);
379 		INIT_LIST_HEAD(&mnt->mnt_mounts);
380 		INIT_LIST_HEAD(&mnt->mnt_list);
381 		INIT_LIST_HEAD(&mnt->mnt_expire);
382 		INIT_LIST_HEAD(&mnt->mnt_share);
383 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
384 		INIT_LIST_HEAD(&mnt->mnt_slave);
385 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
386 		INIT_LIST_HEAD(&mnt->mnt_umounting);
387 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
388 		RB_CLEAR_NODE(&mnt->mnt_node);
389 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
390 	}
391 	return mnt;
392 
393 #ifdef CONFIG_SMP
394 out_free_devname:
395 	kfree_const(mnt->mnt_devname);
396 #endif
397 out_free_id:
398 	mnt_free_id(mnt);
399 out_free_cache:
400 	kmem_cache_free(mnt_cache, mnt);
401 	return NULL;
402 }
403 
404 /*
405  * Most r/o checks on a fs are for operations that take
406  * discrete amounts of time, like a write() or unlink().
407  * We must keep track of when those operations start
408  * (for permission checks) and when they end, so that
409  * we can determine when writes are able to occur to
410  * a filesystem.
411  */
412 /*
413  * __mnt_is_readonly: check whether a mount is read-only
414  * @mnt: the mount to check for its write status
415  *
416  * This shouldn't be used directly ouside of the VFS.
417  * It does not guarantee that the filesystem will stay
418  * r/w, just that it is right *now*.  This can not and
419  * should not be used in place of IS_RDONLY(inode).
420  * mnt_want/drop_write() will _keep_ the filesystem
421  * r/w.
422  */
__mnt_is_readonly(struct vfsmount * mnt)423 bool __mnt_is_readonly(struct vfsmount *mnt)
424 {
425 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
426 }
427 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
428 
mnt_inc_writers(struct mount * mnt)429 static inline void mnt_inc_writers(struct mount *mnt)
430 {
431 #ifdef CONFIG_SMP
432 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
433 #else
434 	mnt->mnt_writers++;
435 #endif
436 }
437 
mnt_dec_writers(struct mount * mnt)438 static inline void mnt_dec_writers(struct mount *mnt)
439 {
440 #ifdef CONFIG_SMP
441 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
442 #else
443 	mnt->mnt_writers--;
444 #endif
445 }
446 
mnt_get_writers(struct mount * mnt)447 static unsigned int mnt_get_writers(struct mount *mnt)
448 {
449 #ifdef CONFIG_SMP
450 	unsigned int count = 0;
451 	int cpu;
452 
453 	for_each_possible_cpu(cpu) {
454 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
455 	}
456 
457 	return count;
458 #else
459 	return mnt->mnt_writers;
460 #endif
461 }
462 
mnt_is_readonly(struct vfsmount * mnt)463 static int mnt_is_readonly(struct vfsmount *mnt)
464 {
465 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
466 		return 1;
467 	/*
468 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
469 	 * making sure if we don't see s_readonly_remount set yet, we also will
470 	 * not see any superblock / mount flag changes done by remount.
471 	 * It also pairs with the barrier in sb_end_ro_state_change()
472 	 * assuring that if we see s_readonly_remount already cleared, we will
473 	 * see the values of superblock / mount flags updated by remount.
474 	 */
475 	smp_rmb();
476 	return __mnt_is_readonly(mnt);
477 }
478 
479 /*
480  * Most r/o & frozen checks on a fs are for operations that take discrete
481  * amounts of time, like a write() or unlink().  We must keep track of when
482  * those operations start (for permission checks) and when they end, so that we
483  * can determine when writes are able to occur to a filesystem.
484  */
485 /**
486  * mnt_get_write_access - get write access to a mount without freeze protection
487  * @m: the mount on which to take a write
488  *
489  * This tells the low-level filesystem that a write is about to be performed to
490  * it, and makes sure that writes are allowed (mnt it read-write) before
491  * returning success. This operation does not protect against filesystem being
492  * frozen. When the write operation is finished, mnt_put_write_access() must be
493  * called. This is effectively a refcount.
494  */
mnt_get_write_access(struct vfsmount * m)495 int mnt_get_write_access(struct vfsmount *m)
496 {
497 	struct mount *mnt = real_mount(m);
498 	int ret = 0;
499 
500 	preempt_disable();
501 	mnt_inc_writers(mnt);
502 	/*
503 	 * The store to mnt_inc_writers must be visible before we pass
504 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
505 	 * incremented count after it has set MNT_WRITE_HOLD.
506 	 */
507 	smp_mb();
508 	might_lock(&mount_lock.lock);
509 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
510 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
511 			cpu_relax();
512 		} else {
513 			/*
514 			 * This prevents priority inversion, if the task
515 			 * setting MNT_WRITE_HOLD got preempted on a remote
516 			 * CPU, and it prevents life lock if the task setting
517 			 * MNT_WRITE_HOLD has a lower priority and is bound to
518 			 * the same CPU as the task that is spinning here.
519 			 */
520 			preempt_enable();
521 			lock_mount_hash();
522 			unlock_mount_hash();
523 			preempt_disable();
524 		}
525 	}
526 	/*
527 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
528 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
529 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
530 	 * mnt_is_readonly() and bail in case we are racing with remount
531 	 * read-only.
532 	 */
533 	smp_rmb();
534 	if (mnt_is_readonly(m)) {
535 		mnt_dec_writers(mnt);
536 		ret = -EROFS;
537 	}
538 	preempt_enable();
539 
540 	return ret;
541 }
542 EXPORT_SYMBOL_GPL(mnt_get_write_access);
543 
544 /**
545  * mnt_want_write - get write access to a mount
546  * @m: the mount on which to take a write
547  *
548  * This tells the low-level filesystem that a write is about to be performed to
549  * it, and makes sure that writes are allowed (mount is read-write, filesystem
550  * is not frozen) before returning success.  When the write operation is
551  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
552  */
mnt_want_write(struct vfsmount * m)553 int mnt_want_write(struct vfsmount *m)
554 {
555 	int ret;
556 
557 	sb_start_write(m->mnt_sb);
558 	ret = mnt_get_write_access(m);
559 	if (ret)
560 		sb_end_write(m->mnt_sb);
561 	return ret;
562 }
563 EXPORT_SYMBOL_GPL(mnt_want_write);
564 
565 /**
566  * mnt_get_write_access_file - get write access to a file's mount
567  * @file: the file who's mount on which to take a write
568  *
569  * This is like mnt_get_write_access, but if @file is already open for write it
570  * skips incrementing mnt_writers (since the open file already has a reference)
571  * and instead only does the check for emergency r/o remounts.  This must be
572  * paired with mnt_put_write_access_file.
573  */
mnt_get_write_access_file(struct file * file)574 int mnt_get_write_access_file(struct file *file)
575 {
576 	if (file->f_mode & FMODE_WRITER) {
577 		/*
578 		 * Superblock may have become readonly while there are still
579 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
580 		 */
581 		if (__mnt_is_readonly(file->f_path.mnt))
582 			return -EROFS;
583 		return 0;
584 	}
585 	return mnt_get_write_access(file->f_path.mnt);
586 }
587 
588 /**
589  * mnt_want_write_file - get write access to a file's mount
590  * @file: the file who's mount on which to take a write
591  *
592  * This is like mnt_want_write, but if the file is already open for writing it
593  * skips incrementing mnt_writers (since the open file already has a reference)
594  * and instead only does the freeze protection and the check for emergency r/o
595  * remounts.  This must be paired with mnt_drop_write_file.
596  */
mnt_want_write_file(struct file * file)597 int mnt_want_write_file(struct file *file)
598 {
599 	int ret;
600 
601 	sb_start_write(file_inode(file)->i_sb);
602 	ret = mnt_get_write_access_file(file);
603 	if (ret)
604 		sb_end_write(file_inode(file)->i_sb);
605 	return ret;
606 }
607 EXPORT_SYMBOL_GPL(mnt_want_write_file);
608 
609 /**
610  * mnt_put_write_access - give up write access to a mount
611  * @mnt: the mount on which to give up write access
612  *
613  * Tells the low-level filesystem that we are done
614  * performing writes to it.  Must be matched with
615  * mnt_get_write_access() call above.
616  */
mnt_put_write_access(struct vfsmount * mnt)617 void mnt_put_write_access(struct vfsmount *mnt)
618 {
619 	preempt_disable();
620 	mnt_dec_writers(real_mount(mnt));
621 	preempt_enable();
622 }
623 EXPORT_SYMBOL_GPL(mnt_put_write_access);
624 
625 /**
626  * mnt_drop_write - give up write access to a mount
627  * @mnt: the mount on which to give up write access
628  *
629  * Tells the low-level filesystem that we are done performing writes to it and
630  * also allows filesystem to be frozen again.  Must be matched with
631  * mnt_want_write() call above.
632  */
mnt_drop_write(struct vfsmount * mnt)633 void mnt_drop_write(struct vfsmount *mnt)
634 {
635 	mnt_put_write_access(mnt);
636 	sb_end_write(mnt->mnt_sb);
637 }
638 EXPORT_SYMBOL_GPL(mnt_drop_write);
639 
mnt_put_write_access_file(struct file * file)640 void mnt_put_write_access_file(struct file *file)
641 {
642 	if (!(file->f_mode & FMODE_WRITER))
643 		mnt_put_write_access(file->f_path.mnt);
644 }
645 
mnt_drop_write_file(struct file * file)646 void mnt_drop_write_file(struct file *file)
647 {
648 	mnt_put_write_access_file(file);
649 	sb_end_write(file_inode(file)->i_sb);
650 }
651 EXPORT_SYMBOL(mnt_drop_write_file);
652 
653 /**
654  * mnt_hold_writers - prevent write access to the given mount
655  * @mnt: mnt to prevent write access to
656  *
657  * Prevents write access to @mnt if there are no active writers for @mnt.
658  * This function needs to be called and return successfully before changing
659  * properties of @mnt that need to remain stable for callers with write access
660  * to @mnt.
661  *
662  * After this functions has been called successfully callers must pair it with
663  * a call to mnt_unhold_writers() in order to stop preventing write access to
664  * @mnt.
665  *
666  * Context: This function expects lock_mount_hash() to be held serializing
667  *          setting MNT_WRITE_HOLD.
668  * Return: On success 0 is returned.
669  *	   On error, -EBUSY is returned.
670  */
mnt_hold_writers(struct mount * mnt)671 static inline int mnt_hold_writers(struct mount *mnt)
672 {
673 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
674 	/*
675 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
676 	 * should be visible before we do.
677 	 */
678 	smp_mb();
679 
680 	/*
681 	 * With writers on hold, if this value is zero, then there are
682 	 * definitely no active writers (although held writers may subsequently
683 	 * increment the count, they'll have to wait, and decrement it after
684 	 * seeing MNT_READONLY).
685 	 *
686 	 * It is OK to have counter incremented on one CPU and decremented on
687 	 * another: the sum will add up correctly. The danger would be when we
688 	 * sum up each counter, if we read a counter before it is incremented,
689 	 * but then read another CPU's count which it has been subsequently
690 	 * decremented from -- we would see more decrements than we should.
691 	 * MNT_WRITE_HOLD protects against this scenario, because
692 	 * mnt_want_write first increments count, then smp_mb, then spins on
693 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
694 	 * we're counting up here.
695 	 */
696 	if (mnt_get_writers(mnt) > 0)
697 		return -EBUSY;
698 
699 	return 0;
700 }
701 
702 /**
703  * mnt_unhold_writers - stop preventing write access to the given mount
704  * @mnt: mnt to stop preventing write access to
705  *
706  * Stop preventing write access to @mnt allowing callers to gain write access
707  * to @mnt again.
708  *
709  * This function can only be called after a successful call to
710  * mnt_hold_writers().
711  *
712  * Context: This function expects lock_mount_hash() to be held.
713  */
mnt_unhold_writers(struct mount * mnt)714 static inline void mnt_unhold_writers(struct mount *mnt)
715 {
716 	/*
717 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
718 	 * that become unheld will see MNT_READONLY.
719 	 */
720 	smp_wmb();
721 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
722 }
723 
mnt_make_readonly(struct mount * mnt)724 static int mnt_make_readonly(struct mount *mnt)
725 {
726 	int ret;
727 
728 	ret = mnt_hold_writers(mnt);
729 	if (!ret)
730 		mnt->mnt.mnt_flags |= MNT_READONLY;
731 	mnt_unhold_writers(mnt);
732 	return ret;
733 }
734 
sb_prepare_remount_readonly(struct super_block * sb)735 int sb_prepare_remount_readonly(struct super_block *sb)
736 {
737 	struct mount *mnt;
738 	int err = 0;
739 
740 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
741 	if (atomic_long_read(&sb->s_remove_count))
742 		return -EBUSY;
743 
744 	lock_mount_hash();
745 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
746 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
747 			err = mnt_hold_writers(mnt);
748 			if (err)
749 				break;
750 		}
751 	}
752 	if (!err && atomic_long_read(&sb->s_remove_count))
753 		err = -EBUSY;
754 
755 	if (!err)
756 		sb_start_ro_state_change(sb);
757 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
758 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
759 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
760 	}
761 	unlock_mount_hash();
762 
763 	return err;
764 }
765 
free_vfsmnt(struct mount * mnt)766 static void free_vfsmnt(struct mount *mnt)
767 {
768 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
769 	kfree_const(mnt->mnt_devname);
770 #ifdef CONFIG_SMP
771 	free_percpu(mnt->mnt_pcp);
772 #endif
773 	kmem_cache_free(mnt_cache, mnt);
774 }
775 
delayed_free_vfsmnt(struct rcu_head * head)776 static void delayed_free_vfsmnt(struct rcu_head *head)
777 {
778 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
779 }
780 
781 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
783 {
784 	struct mount *mnt;
785 	if (read_seqretry(&mount_lock, seq))
786 		return 1;
787 	if (bastard == NULL)
788 		return 0;
789 	mnt = real_mount(bastard);
790 	mnt_add_count(mnt, 1);
791 	smp_mb();		// see mntput_no_expire() and do_umount()
792 	if (likely(!read_seqretry(&mount_lock, seq)))
793 		return 0;
794 	lock_mount_hash();
795 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
796 		mnt_add_count(mnt, -1);
797 		unlock_mount_hash();
798 		return 1;
799 	}
800 	unlock_mount_hash();
801 	/* caller will mntput() */
802 	return -1;
803 }
804 
805 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
807 {
808 	int res = __legitimize_mnt(bastard, seq);
809 	if (likely(!res))
810 		return true;
811 	if (unlikely(res < 0)) {
812 		rcu_read_unlock();
813 		mntput(bastard);
814 		rcu_read_lock();
815 	}
816 	return false;
817 }
818 
819 /**
820  * __lookup_mnt - find first child mount
821  * @mnt:	parent mount
822  * @dentry:	mountpoint
823  *
824  * If @mnt has a child mount @c mounted @dentry find and return it.
825  *
826  * Note that the child mount @c need not be unique. There are cases
827  * where shadow mounts are created. For example, during mount
828  * propagation when a source mount @mnt whose root got overmounted by a
829  * mount @o after path lookup but before @namespace_sem could be
830  * acquired gets copied and propagated. So @mnt gets copied including
831  * @o. When @mnt is propagated to a destination mount @d that already
832  * has another mount @n mounted at the same mountpoint then the source
833  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
834  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
835  * on @dentry.
836  *
837  * Return: The first child of @mnt mounted @dentry or NULL.
838  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
840 {
841 	struct hlist_head *head = m_hash(mnt, dentry);
842 	struct mount *p;
843 
844 	hlist_for_each_entry_rcu(p, head, mnt_hash)
845 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
846 			return p;
847 	return NULL;
848 }
849 
850 /*
851  * lookup_mnt - Return the first child mount mounted at path
852  *
853  * "First" means first mounted chronologically.  If you create the
854  * following mounts:
855  *
856  * mount /dev/sda1 /mnt
857  * mount /dev/sda2 /mnt
858  * mount /dev/sda3 /mnt
859  *
860  * Then lookup_mnt() on the base /mnt dentry in the root mount will
861  * return successively the root dentry and vfsmount of /dev/sda1, then
862  * /dev/sda2, then /dev/sda3, then NULL.
863  *
864  * lookup_mnt takes a reference to the found vfsmount.
865  */
lookup_mnt(const struct path * path)866 struct vfsmount *lookup_mnt(const struct path *path)
867 {
868 	struct mount *child_mnt;
869 	struct vfsmount *m;
870 	unsigned seq;
871 
872 	rcu_read_lock();
873 	do {
874 		seq = read_seqbegin(&mount_lock);
875 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
876 		m = child_mnt ? &child_mnt->mnt : NULL;
877 	} while (!legitimize_mnt(m, seq));
878 	rcu_read_unlock();
879 	return m;
880 }
881 
882 /*
883  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
884  *                         current mount namespace.
885  *
886  * The common case is dentries are not mountpoints at all and that
887  * test is handled inline.  For the slow case when we are actually
888  * dealing with a mountpoint of some kind, walk through all of the
889  * mounts in the current mount namespace and test to see if the dentry
890  * is a mountpoint.
891  *
892  * The mount_hashtable is not usable in the context because we
893  * need to identify all mounts that may be in the current mount
894  * namespace not just a mount that happens to have some specified
895  * parent mount.
896  */
__is_local_mountpoint(struct dentry * dentry)897 bool __is_local_mountpoint(struct dentry *dentry)
898 {
899 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
900 	struct mount *mnt, *n;
901 	bool is_covered = false;
902 
903 	down_read(&namespace_sem);
904 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
905 		is_covered = (mnt->mnt_mountpoint == dentry);
906 		if (is_covered)
907 			break;
908 	}
909 	up_read(&namespace_sem);
910 
911 	return is_covered;
912 }
913 
lookup_mountpoint(struct dentry * dentry)914 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
915 {
916 	struct hlist_head *chain = mp_hash(dentry);
917 	struct mountpoint *mp;
918 
919 	hlist_for_each_entry(mp, chain, m_hash) {
920 		if (mp->m_dentry == dentry) {
921 			mp->m_count++;
922 			return mp;
923 		}
924 	}
925 	return NULL;
926 }
927 
get_mountpoint(struct dentry * dentry)928 static struct mountpoint *get_mountpoint(struct dentry *dentry)
929 {
930 	struct mountpoint *mp, *new = NULL;
931 	int ret;
932 
933 	if (d_mountpoint(dentry)) {
934 		/* might be worth a WARN_ON() */
935 		if (d_unlinked(dentry))
936 			return ERR_PTR(-ENOENT);
937 mountpoint:
938 		read_seqlock_excl(&mount_lock);
939 		mp = lookup_mountpoint(dentry);
940 		read_sequnlock_excl(&mount_lock);
941 		if (mp)
942 			goto done;
943 	}
944 
945 	if (!new)
946 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
947 	if (!new)
948 		return ERR_PTR(-ENOMEM);
949 
950 
951 	/* Exactly one processes may set d_mounted */
952 	ret = d_set_mounted(dentry);
953 
954 	/* Someone else set d_mounted? */
955 	if (ret == -EBUSY)
956 		goto mountpoint;
957 
958 	/* The dentry is not available as a mountpoint? */
959 	mp = ERR_PTR(ret);
960 	if (ret)
961 		goto done;
962 
963 	/* Add the new mountpoint to the hash table */
964 	read_seqlock_excl(&mount_lock);
965 	new->m_dentry = dget(dentry);
966 	new->m_count = 1;
967 	hlist_add_head(&new->m_hash, mp_hash(dentry));
968 	INIT_HLIST_HEAD(&new->m_list);
969 	read_sequnlock_excl(&mount_lock);
970 
971 	mp = new;
972 	new = NULL;
973 done:
974 	kfree(new);
975 	return mp;
976 }
977 
978 /*
979  * vfsmount lock must be held.  Additionally, the caller is responsible
980  * for serializing calls for given disposal list.
981  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)982 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
983 {
984 	if (!--mp->m_count) {
985 		struct dentry *dentry = mp->m_dentry;
986 		BUG_ON(!hlist_empty(&mp->m_list));
987 		spin_lock(&dentry->d_lock);
988 		dentry->d_flags &= ~DCACHE_MOUNTED;
989 		spin_unlock(&dentry->d_lock);
990 		dput_to_list(dentry, list);
991 		hlist_del(&mp->m_hash);
992 		kfree(mp);
993 	}
994 }
995 
996 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)997 static void put_mountpoint(struct mountpoint *mp)
998 {
999 	__put_mountpoint(mp, &ex_mountpoints);
1000 }
1001 
check_mnt(struct mount * mnt)1002 static inline int check_mnt(struct mount *mnt)
1003 {
1004 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
1005 }
1006 
check_anonymous_mnt(struct mount * mnt)1007 static inline bool check_anonymous_mnt(struct mount *mnt)
1008 {
1009 	u64 seq;
1010 
1011 	if (!is_anon_ns(mnt->mnt_ns))
1012 		return false;
1013 
1014 	seq = mnt->mnt_ns->seq_origin;
1015 	return !seq || (seq == current->nsproxy->mnt_ns->seq);
1016 }
1017 
1018 /*
1019  * vfsmount lock must be held for write
1020  */
touch_mnt_namespace(struct mnt_namespace * ns)1021 static void touch_mnt_namespace(struct mnt_namespace *ns)
1022 {
1023 	if (ns) {
1024 		ns->event = ++event;
1025 		wake_up_interruptible(&ns->poll);
1026 	}
1027 }
1028 
1029 /*
1030  * vfsmount lock must be held for write
1031  */
__touch_mnt_namespace(struct mnt_namespace * ns)1032 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1033 {
1034 	if (ns && ns->event != event) {
1035 		ns->event = event;
1036 		wake_up_interruptible(&ns->poll);
1037 	}
1038 }
1039 
1040 /*
1041  * vfsmount lock must be held for write
1042  */
unhash_mnt(struct mount * mnt)1043 static struct mountpoint *unhash_mnt(struct mount *mnt)
1044 {
1045 	struct mountpoint *mp;
1046 	mnt->mnt_parent = mnt;
1047 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 	list_del_init(&mnt->mnt_child);
1049 	hlist_del_init_rcu(&mnt->mnt_hash);
1050 	hlist_del_init(&mnt->mnt_mp_list);
1051 	mp = mnt->mnt_mp;
1052 	mnt->mnt_mp = NULL;
1053 	return mp;
1054 }
1055 
1056 /*
1057  * vfsmount lock must be held for write
1058  */
umount_mnt(struct mount * mnt)1059 static void umount_mnt(struct mount *mnt)
1060 {
1061 	put_mountpoint(unhash_mnt(mnt));
1062 }
1063 
1064 /*
1065  * vfsmount lock must be held for write
1066  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1067 void mnt_set_mountpoint(struct mount *mnt,
1068 			struct mountpoint *mp,
1069 			struct mount *child_mnt)
1070 {
1071 	mp->m_count++;
1072 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1073 	child_mnt->mnt_mountpoint = mp->m_dentry;
1074 	child_mnt->mnt_parent = mnt;
1075 	child_mnt->mnt_mp = mp;
1076 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1077 }
1078 
1079 /**
1080  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1081  *
1082  * @new_parent: the source mount
1083  * @top_mnt:    the mount beneath which @new_parent is mounted
1084  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1085  *
1086  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1087  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1088  * @new_mp. And mount @new_parent on the old parent and old
1089  * mountpoint of @top_mnt.
1090  *
1091  * Context: This function expects namespace_lock() and lock_mount_hash()
1092  *          to have been acquired in that order.
1093  */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1094 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1095 				       struct mount *top_mnt,
1096 				       struct mountpoint *new_mp)
1097 {
1098 	struct mount *old_top_parent = top_mnt->mnt_parent;
1099 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1100 
1101 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1102 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1103 }
1104 
1105 
__attach_mnt(struct mount * mnt,struct mount * parent)1106 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1107 {
1108 	hlist_add_head_rcu(&mnt->mnt_hash,
1109 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1110 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1111 }
1112 
1113 /**
1114  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1115  *              list of child mounts
1116  * @parent:  the parent
1117  * @mnt:     the new mount
1118  * @mp:      the new mountpoint
1119  * @beneath: whether to mount @mnt beneath or on top of @parent
1120  *
1121  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1122  * to @parent's child mount list and to @mount_hashtable.
1123  *
1124  * If @beneath is true, remove @mnt from its current parent and
1125  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1126  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1127  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1128  *
1129  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1130  * to the correct parent.
1131  *
1132  * Context: This function expects namespace_lock() and lock_mount_hash()
1133  *          to have been acquired in that order.
1134  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1135 static void attach_mnt(struct mount *mnt, struct mount *parent,
1136 		       struct mountpoint *mp, bool beneath)
1137 {
1138 	if (beneath)
1139 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1140 	else
1141 		mnt_set_mountpoint(parent, mp, mnt);
1142 	/*
1143 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1144 	 * beneath @parent then @mnt will need to be attached to
1145 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1146 	 * isn't the same mount as @parent.
1147 	 */
1148 	__attach_mnt(mnt, mnt->mnt_parent);
1149 }
1150 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1151 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1152 {
1153 	struct mountpoint *old_mp = mnt->mnt_mp;
1154 	struct mount *old_parent = mnt->mnt_parent;
1155 
1156 	list_del_init(&mnt->mnt_child);
1157 	hlist_del_init(&mnt->mnt_mp_list);
1158 	hlist_del_init_rcu(&mnt->mnt_hash);
1159 
1160 	attach_mnt(mnt, parent, mp, false);
1161 
1162 	put_mountpoint(old_mp);
1163 	mnt_add_count(old_parent, -1);
1164 }
1165 
node_to_mount(struct rb_node * node)1166 static inline struct mount *node_to_mount(struct rb_node *node)
1167 {
1168 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1169 }
1170 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1171 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1172 {
1173 	struct rb_node **link = &ns->mounts.rb_node;
1174 	struct rb_node *parent = NULL;
1175 	bool mnt_first_node = true, mnt_last_node = true;
1176 
1177 	WARN_ON(mnt_ns_attached(mnt));
1178 	mnt->mnt_ns = ns;
1179 	while (*link) {
1180 		parent = *link;
1181 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1182 			link = &parent->rb_left;
1183 			mnt_last_node = false;
1184 		} else {
1185 			link = &parent->rb_right;
1186 			mnt_first_node = false;
1187 		}
1188 	}
1189 
1190 	if (mnt_last_node)
1191 		ns->mnt_last_node = &mnt->mnt_node;
1192 	if (mnt_first_node)
1193 		ns->mnt_first_node = &mnt->mnt_node;
1194 	rb_link_node(&mnt->mnt_node, parent, link);
1195 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1196 
1197 	mnt_notify_add(mnt);
1198 }
1199 
1200 /*
1201  * vfsmount lock must be held for write
1202  */
commit_tree(struct mount * mnt)1203 static void commit_tree(struct mount *mnt)
1204 {
1205 	struct mount *parent = mnt->mnt_parent;
1206 	struct mount *m;
1207 	LIST_HEAD(head);
1208 	struct mnt_namespace *n = parent->mnt_ns;
1209 
1210 	BUG_ON(parent == mnt);
1211 
1212 	list_add_tail(&head, &mnt->mnt_list);
1213 	while (!list_empty(&head)) {
1214 		m = list_first_entry(&head, typeof(*m), mnt_list);
1215 		list_del(&m->mnt_list);
1216 
1217 		mnt_add_to_ns(n, m);
1218 	}
1219 	n->nr_mounts += n->pending_mounts;
1220 	n->pending_mounts = 0;
1221 
1222 	__attach_mnt(mnt, parent);
1223 	touch_mnt_namespace(n);
1224 }
1225 
next_mnt(struct mount * p,struct mount * root)1226 static struct mount *next_mnt(struct mount *p, struct mount *root)
1227 {
1228 	struct list_head *next = p->mnt_mounts.next;
1229 	if (next == &p->mnt_mounts) {
1230 		while (1) {
1231 			if (p == root)
1232 				return NULL;
1233 			next = p->mnt_child.next;
1234 			if (next != &p->mnt_parent->mnt_mounts)
1235 				break;
1236 			p = p->mnt_parent;
1237 		}
1238 	}
1239 	return list_entry(next, struct mount, mnt_child);
1240 }
1241 
skip_mnt_tree(struct mount * p)1242 static struct mount *skip_mnt_tree(struct mount *p)
1243 {
1244 	struct list_head *prev = p->mnt_mounts.prev;
1245 	while (prev != &p->mnt_mounts) {
1246 		p = list_entry(prev, struct mount, mnt_child);
1247 		prev = p->mnt_mounts.prev;
1248 	}
1249 	return p;
1250 }
1251 
1252 /**
1253  * vfs_create_mount - Create a mount for a configured superblock
1254  * @fc: The configuration context with the superblock attached
1255  *
1256  * Create a mount to an already configured superblock.  If necessary, the
1257  * caller should invoke vfs_get_tree() before calling this.
1258  *
1259  * Note that this does not attach the mount to anything.
1260  */
vfs_create_mount(struct fs_context * fc)1261 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1262 {
1263 	struct mount *mnt;
1264 
1265 	if (!fc->root)
1266 		return ERR_PTR(-EINVAL);
1267 
1268 	mnt = alloc_vfsmnt(fc->source);
1269 	if (!mnt)
1270 		return ERR_PTR(-ENOMEM);
1271 
1272 	if (fc->sb_flags & SB_KERNMOUNT)
1273 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1274 
1275 	atomic_inc(&fc->root->d_sb->s_active);
1276 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1277 	mnt->mnt.mnt_root	= dget(fc->root);
1278 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1279 	mnt->mnt_parent		= mnt;
1280 
1281 	lock_mount_hash();
1282 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1283 	unlock_mount_hash();
1284 	return &mnt->mnt;
1285 }
1286 EXPORT_SYMBOL(vfs_create_mount);
1287 
fc_mount(struct fs_context * fc)1288 struct vfsmount *fc_mount(struct fs_context *fc)
1289 {
1290 	int err = vfs_get_tree(fc);
1291 	if (!err) {
1292 		up_write(&fc->root->d_sb->s_umount);
1293 		return vfs_create_mount(fc);
1294 	}
1295 	return ERR_PTR(err);
1296 }
1297 EXPORT_SYMBOL(fc_mount);
1298 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1299 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1300 				int flags, const char *name,
1301 				void *data)
1302 {
1303 	struct fs_context *fc;
1304 	struct vfsmount *mnt;
1305 	int ret = 0;
1306 
1307 	if (!type)
1308 		return ERR_PTR(-EINVAL);
1309 
1310 	fc = fs_context_for_mount(type, flags);
1311 	if (IS_ERR(fc))
1312 		return ERR_CAST(fc);
1313 
1314 	if (name)
1315 		ret = vfs_parse_fs_string(fc, "source",
1316 					  name, strlen(name));
1317 	if (!ret)
1318 		ret = parse_monolithic_mount_data(fc, data);
1319 	if (!ret)
1320 		mnt = fc_mount(fc);
1321 	else
1322 		mnt = ERR_PTR(ret);
1323 
1324 	put_fs_context(fc);
1325 	return mnt;
1326 }
1327 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1328 
clone_mnt(struct mount * old,struct dentry * root,int flag)1329 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1330 					int flag)
1331 {
1332 	struct super_block *sb = old->mnt.mnt_sb;
1333 	struct mount *mnt;
1334 	int err;
1335 
1336 	mnt = alloc_vfsmnt(old->mnt_devname);
1337 	if (!mnt)
1338 		return ERR_PTR(-ENOMEM);
1339 
1340 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1341 		mnt->mnt_group_id = 0; /* not a peer of original */
1342 	else
1343 		mnt->mnt_group_id = old->mnt_group_id;
1344 
1345 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1346 		err = mnt_alloc_group_id(mnt);
1347 		if (err)
1348 			goto out_free;
1349 	}
1350 
1351 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1352 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1353 
1354 	atomic_inc(&sb->s_active);
1355 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1356 
1357 	mnt->mnt.mnt_sb = sb;
1358 	mnt->mnt.mnt_root = dget(root);
1359 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1360 	mnt->mnt_parent = mnt;
1361 	lock_mount_hash();
1362 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1363 	unlock_mount_hash();
1364 
1365 	if ((flag & CL_SLAVE) ||
1366 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1367 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1368 		mnt->mnt_master = old;
1369 		CLEAR_MNT_SHARED(mnt);
1370 	} else if (!(flag & CL_PRIVATE)) {
1371 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1372 			list_add(&mnt->mnt_share, &old->mnt_share);
1373 		if (IS_MNT_SLAVE(old))
1374 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1375 		mnt->mnt_master = old->mnt_master;
1376 	} else {
1377 		CLEAR_MNT_SHARED(mnt);
1378 	}
1379 	if (flag & CL_MAKE_SHARED)
1380 		set_mnt_shared(mnt);
1381 
1382 	/* stick the duplicate mount on the same expiry list
1383 	 * as the original if that was on one */
1384 	if (flag & CL_EXPIRE) {
1385 		if (!list_empty(&old->mnt_expire))
1386 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1387 	}
1388 
1389 	return mnt;
1390 
1391  out_free:
1392 	mnt_free_id(mnt);
1393 	free_vfsmnt(mnt);
1394 	return ERR_PTR(err);
1395 }
1396 
cleanup_mnt(struct mount * mnt)1397 static void cleanup_mnt(struct mount *mnt)
1398 {
1399 	struct hlist_node *p;
1400 	struct mount *m;
1401 	/*
1402 	 * The warning here probably indicates that somebody messed
1403 	 * up a mnt_want/drop_write() pair.  If this happens, the
1404 	 * filesystem was probably unable to make r/w->r/o transitions.
1405 	 * The locking used to deal with mnt_count decrement provides barriers,
1406 	 * so mnt_get_writers() below is safe.
1407 	 */
1408 	WARN_ON(mnt_get_writers(mnt));
1409 	if (unlikely(mnt->mnt_pins.first))
1410 		mnt_pin_kill(mnt);
1411 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1412 		hlist_del(&m->mnt_umount);
1413 		mntput(&m->mnt);
1414 	}
1415 	fsnotify_vfsmount_delete(&mnt->mnt);
1416 	dput(mnt->mnt.mnt_root);
1417 	deactivate_super(mnt->mnt.mnt_sb);
1418 	mnt_free_id(mnt);
1419 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1420 }
1421 
__cleanup_mnt(struct rcu_head * head)1422 static void __cleanup_mnt(struct rcu_head *head)
1423 {
1424 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1425 }
1426 
1427 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1428 static void delayed_mntput(struct work_struct *unused)
1429 {
1430 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1431 	struct mount *m, *t;
1432 
1433 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1434 		cleanup_mnt(m);
1435 }
1436 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1437 
mntput_no_expire(struct mount * mnt)1438 static void mntput_no_expire(struct mount *mnt)
1439 {
1440 	LIST_HEAD(list);
1441 	int count;
1442 
1443 	rcu_read_lock();
1444 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1445 		/*
1446 		 * Since we don't do lock_mount_hash() here,
1447 		 * ->mnt_ns can change under us.  However, if it's
1448 		 * non-NULL, then there's a reference that won't
1449 		 * be dropped until after an RCU delay done after
1450 		 * turning ->mnt_ns NULL.  So if we observe it
1451 		 * non-NULL under rcu_read_lock(), the reference
1452 		 * we are dropping is not the final one.
1453 		 */
1454 		mnt_add_count(mnt, -1);
1455 		rcu_read_unlock();
1456 		return;
1457 	}
1458 	lock_mount_hash();
1459 	/*
1460 	 * make sure that if __legitimize_mnt() has not seen us grab
1461 	 * mount_lock, we'll see their refcount increment here.
1462 	 */
1463 	smp_mb();
1464 	mnt_add_count(mnt, -1);
1465 	count = mnt_get_count(mnt);
1466 	if (count != 0) {
1467 		WARN_ON(count < 0);
1468 		rcu_read_unlock();
1469 		unlock_mount_hash();
1470 		return;
1471 	}
1472 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1473 		rcu_read_unlock();
1474 		unlock_mount_hash();
1475 		return;
1476 	}
1477 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1478 	rcu_read_unlock();
1479 
1480 	list_del(&mnt->mnt_instance);
1481 
1482 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1483 		struct mount *p, *tmp;
1484 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1485 			__put_mountpoint(unhash_mnt(p), &list);
1486 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1487 		}
1488 	}
1489 	unlock_mount_hash();
1490 	shrink_dentry_list(&list);
1491 
1492 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1493 		struct task_struct *task = current;
1494 		if (likely(!(task->flags & PF_KTHREAD))) {
1495 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1496 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1497 				return;
1498 		}
1499 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1500 			schedule_delayed_work(&delayed_mntput_work, 1);
1501 		return;
1502 	}
1503 	cleanup_mnt(mnt);
1504 }
1505 
mntput(struct vfsmount * mnt)1506 void mntput(struct vfsmount *mnt)
1507 {
1508 	if (mnt) {
1509 		struct mount *m = real_mount(mnt);
1510 		/* avoid cacheline pingpong */
1511 		if (unlikely(m->mnt_expiry_mark))
1512 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1513 		mntput_no_expire(m);
1514 	}
1515 }
1516 EXPORT_SYMBOL(mntput);
1517 
mntget(struct vfsmount * mnt)1518 struct vfsmount *mntget(struct vfsmount *mnt)
1519 {
1520 	if (mnt)
1521 		mnt_add_count(real_mount(mnt), 1);
1522 	return mnt;
1523 }
1524 EXPORT_SYMBOL(mntget);
1525 
1526 /*
1527  * Make a mount point inaccessible to new lookups.
1528  * Because there may still be current users, the caller MUST WAIT
1529  * for an RCU grace period before destroying the mount point.
1530  */
mnt_make_shortterm(struct vfsmount * mnt)1531 void mnt_make_shortterm(struct vfsmount *mnt)
1532 {
1533 	if (mnt)
1534 		real_mount(mnt)->mnt_ns = NULL;
1535 }
1536 
1537 /**
1538  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1539  * @path: path to check
1540  *
1541  *  d_mountpoint() can only be used reliably to establish if a dentry is
1542  *  not mounted in any namespace and that common case is handled inline.
1543  *  d_mountpoint() isn't aware of the possibility there may be multiple
1544  *  mounts using a given dentry in a different namespace. This function
1545  *  checks if the passed in path is a mountpoint rather than the dentry
1546  *  alone.
1547  */
path_is_mountpoint(const struct path * path)1548 bool path_is_mountpoint(const struct path *path)
1549 {
1550 	unsigned seq;
1551 	bool res;
1552 
1553 	if (!d_mountpoint(path->dentry))
1554 		return false;
1555 
1556 	rcu_read_lock();
1557 	do {
1558 		seq = read_seqbegin(&mount_lock);
1559 		res = __path_is_mountpoint(path);
1560 	} while (read_seqretry(&mount_lock, seq));
1561 	rcu_read_unlock();
1562 
1563 	return res;
1564 }
1565 EXPORT_SYMBOL(path_is_mountpoint);
1566 
mnt_clone_internal(const struct path * path)1567 struct vfsmount *mnt_clone_internal(const struct path *path)
1568 {
1569 	struct mount *p;
1570 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1571 	if (IS_ERR(p))
1572 		return ERR_CAST(p);
1573 	p->mnt.mnt_flags |= MNT_INTERNAL;
1574 	return &p->mnt;
1575 }
1576 
1577 /*
1578  * Returns the mount which either has the specified mnt_id, or has the next
1579  * smallest id afer the specified one.
1580  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1581 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1582 {
1583 	struct rb_node *node = ns->mounts.rb_node;
1584 	struct mount *ret = NULL;
1585 
1586 	while (node) {
1587 		struct mount *m = node_to_mount(node);
1588 
1589 		if (mnt_id <= m->mnt_id_unique) {
1590 			ret = node_to_mount(node);
1591 			if (mnt_id == m->mnt_id_unique)
1592 				break;
1593 			node = node->rb_left;
1594 		} else {
1595 			node = node->rb_right;
1596 		}
1597 	}
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Returns the mount which either has the specified mnt_id, or has the next
1603  * greater id before the specified one.
1604  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1605 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1606 {
1607 	struct rb_node *node = ns->mounts.rb_node;
1608 	struct mount *ret = NULL;
1609 
1610 	while (node) {
1611 		struct mount *m = node_to_mount(node);
1612 
1613 		if (mnt_id >= m->mnt_id_unique) {
1614 			ret = node_to_mount(node);
1615 			if (mnt_id == m->mnt_id_unique)
1616 				break;
1617 			node = node->rb_right;
1618 		} else {
1619 			node = node->rb_left;
1620 		}
1621 	}
1622 	return ret;
1623 }
1624 
1625 #ifdef CONFIG_PROC_FS
1626 
1627 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1628 static void *m_start(struct seq_file *m, loff_t *pos)
1629 {
1630 	struct proc_mounts *p = m->private;
1631 
1632 	down_read(&namespace_sem);
1633 
1634 	return mnt_find_id_at(p->ns, *pos);
1635 }
1636 
m_next(struct seq_file * m,void * v,loff_t * pos)1637 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1638 {
1639 	struct mount *next = NULL, *mnt = v;
1640 	struct rb_node *node = rb_next(&mnt->mnt_node);
1641 
1642 	++*pos;
1643 	if (node) {
1644 		next = node_to_mount(node);
1645 		*pos = next->mnt_id_unique;
1646 	}
1647 	return next;
1648 }
1649 
m_stop(struct seq_file * m,void * v)1650 static void m_stop(struct seq_file *m, void *v)
1651 {
1652 	up_read(&namespace_sem);
1653 }
1654 
m_show(struct seq_file * m,void * v)1655 static int m_show(struct seq_file *m, void *v)
1656 {
1657 	struct proc_mounts *p = m->private;
1658 	struct mount *r = v;
1659 	return p->show(m, &r->mnt);
1660 }
1661 
1662 const struct seq_operations mounts_op = {
1663 	.start	= m_start,
1664 	.next	= m_next,
1665 	.stop	= m_stop,
1666 	.show	= m_show,
1667 };
1668 
1669 #endif  /* CONFIG_PROC_FS */
1670 
1671 /**
1672  * may_umount_tree - check if a mount tree is busy
1673  * @m: root of mount tree
1674  *
1675  * This is called to check if a tree of mounts has any
1676  * open files, pwds, chroots or sub mounts that are
1677  * busy.
1678  */
may_umount_tree(struct vfsmount * m)1679 int may_umount_tree(struct vfsmount *m)
1680 {
1681 	struct mount *mnt = real_mount(m);
1682 	int actual_refs = 0;
1683 	int minimum_refs = 0;
1684 	struct mount *p;
1685 	BUG_ON(!m);
1686 
1687 	/* write lock needed for mnt_get_count */
1688 	lock_mount_hash();
1689 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1690 		actual_refs += mnt_get_count(p);
1691 		minimum_refs += 2;
1692 	}
1693 	unlock_mount_hash();
1694 
1695 	if (actual_refs > minimum_refs)
1696 		return 0;
1697 
1698 	return 1;
1699 }
1700 
1701 EXPORT_SYMBOL(may_umount_tree);
1702 
1703 /**
1704  * may_umount - check if a mount point is busy
1705  * @mnt: root of mount
1706  *
1707  * This is called to check if a mount point has any
1708  * open files, pwds, chroots or sub mounts. If the
1709  * mount has sub mounts this will return busy
1710  * regardless of whether the sub mounts are busy.
1711  *
1712  * Doesn't take quota and stuff into account. IOW, in some cases it will
1713  * give false negatives. The main reason why it's here is that we need
1714  * a non-destructive way to look for easily umountable filesystems.
1715  */
may_umount(struct vfsmount * mnt)1716 int may_umount(struct vfsmount *mnt)
1717 {
1718 	int ret = 1;
1719 	down_read(&namespace_sem);
1720 	lock_mount_hash();
1721 	if (propagate_mount_busy(real_mount(mnt), 2))
1722 		ret = 0;
1723 	unlock_mount_hash();
1724 	up_read(&namespace_sem);
1725 	return ret;
1726 }
1727 
1728 EXPORT_SYMBOL(may_umount);
1729 
1730 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1731 static void mnt_notify(struct mount *p)
1732 {
1733 	if (!p->prev_ns && p->mnt_ns) {
1734 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1735 	} else if (p->prev_ns && !p->mnt_ns) {
1736 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1737 	} else if (p->prev_ns == p->mnt_ns) {
1738 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1739 	} else {
1740 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1741 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1742 	}
1743 	p->prev_ns = p->mnt_ns;
1744 }
1745 
notify_mnt_list(void)1746 static void notify_mnt_list(void)
1747 {
1748 	struct mount *m, *tmp;
1749 	/*
1750 	 * Notify about mounts that were added/reparented/detached/remain
1751 	 * connected after unmount.
1752 	 */
1753 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1754 		mnt_notify(m);
1755 		list_del_init(&m->to_notify);
1756 	}
1757 }
1758 
need_notify_mnt_list(void)1759 static bool need_notify_mnt_list(void)
1760 {
1761 	return !list_empty(&notify_list);
1762 }
1763 #else
notify_mnt_list(void)1764 static void notify_mnt_list(void)
1765 {
1766 }
1767 
need_notify_mnt_list(void)1768 static bool need_notify_mnt_list(void)
1769 {
1770 	return false;
1771 }
1772 #endif
1773 
namespace_unlock(void)1774 static void namespace_unlock(void)
1775 {
1776 	struct hlist_head head;
1777 	struct hlist_node *p;
1778 	struct mount *m;
1779 	LIST_HEAD(list);
1780 
1781 	hlist_move_list(&unmounted, &head);
1782 	list_splice_init(&ex_mountpoints, &list);
1783 
1784 	if (need_notify_mnt_list()) {
1785 		/*
1786 		 * No point blocking out concurrent readers while notifications
1787 		 * are sent. This will also allow statmount()/listmount() to run
1788 		 * concurrently.
1789 		 */
1790 		downgrade_write(&namespace_sem);
1791 		notify_mnt_list();
1792 		up_read(&namespace_sem);
1793 	} else {
1794 		up_write(&namespace_sem);
1795 	}
1796 
1797 	shrink_dentry_list(&list);
1798 
1799 	if (likely(hlist_empty(&head)))
1800 		return;
1801 
1802 	synchronize_rcu_expedited();
1803 
1804 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1805 		hlist_del(&m->mnt_umount);
1806 		mntput(&m->mnt);
1807 	}
1808 }
1809 
namespace_lock(void)1810 static inline void namespace_lock(void)
1811 {
1812 	down_write(&namespace_sem);
1813 }
1814 
1815 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1816 
1817 enum umount_tree_flags {
1818 	UMOUNT_SYNC = 1,
1819 	UMOUNT_PROPAGATE = 2,
1820 	UMOUNT_CONNECTED = 4,
1821 };
1822 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1823 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1824 {
1825 	/* Leaving mounts connected is only valid for lazy umounts */
1826 	if (how & UMOUNT_SYNC)
1827 		return true;
1828 
1829 	/* A mount without a parent has nothing to be connected to */
1830 	if (!mnt_has_parent(mnt))
1831 		return true;
1832 
1833 	/* Because the reference counting rules change when mounts are
1834 	 * unmounted and connected, umounted mounts may not be
1835 	 * connected to mounted mounts.
1836 	 */
1837 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1838 		return true;
1839 
1840 	/* Has it been requested that the mount remain connected? */
1841 	if (how & UMOUNT_CONNECTED)
1842 		return false;
1843 
1844 	/* Is the mount locked such that it needs to remain connected? */
1845 	if (IS_MNT_LOCKED(mnt))
1846 		return false;
1847 
1848 	/* By default disconnect the mount */
1849 	return true;
1850 }
1851 
1852 /*
1853  * mount_lock must be held
1854  * namespace_sem must be held for write
1855  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1856 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1857 {
1858 	LIST_HEAD(tmp_list);
1859 	struct mount *p;
1860 
1861 	if (how & UMOUNT_PROPAGATE)
1862 		propagate_mount_unlock(mnt);
1863 
1864 	/* Gather the mounts to umount */
1865 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1866 		p->mnt.mnt_flags |= MNT_UMOUNT;
1867 		if (mnt_ns_attached(p))
1868 			move_from_ns(p, &tmp_list);
1869 		else
1870 			list_move(&p->mnt_list, &tmp_list);
1871 	}
1872 
1873 	/* Hide the mounts from mnt_mounts */
1874 	list_for_each_entry(p, &tmp_list, mnt_list) {
1875 		list_del_init(&p->mnt_child);
1876 	}
1877 
1878 	/* Add propagated mounts to the tmp_list */
1879 	if (how & UMOUNT_PROPAGATE)
1880 		propagate_umount(&tmp_list);
1881 
1882 	while (!list_empty(&tmp_list)) {
1883 		struct mnt_namespace *ns;
1884 		bool disconnect;
1885 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1886 		list_del_init(&p->mnt_expire);
1887 		list_del_init(&p->mnt_list);
1888 		ns = p->mnt_ns;
1889 		if (ns) {
1890 			ns->nr_mounts--;
1891 			__touch_mnt_namespace(ns);
1892 		}
1893 		p->mnt_ns = NULL;
1894 		if (how & UMOUNT_SYNC)
1895 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1896 
1897 		disconnect = disconnect_mount(p, how);
1898 		if (mnt_has_parent(p)) {
1899 			mnt_add_count(p->mnt_parent, -1);
1900 			if (!disconnect) {
1901 				/* Don't forget about p */
1902 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1903 			} else {
1904 				umount_mnt(p);
1905 			}
1906 		}
1907 		change_mnt_propagation(p, MS_PRIVATE);
1908 		if (disconnect)
1909 			hlist_add_head(&p->mnt_umount, &unmounted);
1910 
1911 		/*
1912 		 * At this point p->mnt_ns is NULL, notification will be queued
1913 		 * only if
1914 		 *
1915 		 *  - p->prev_ns is non-NULL *and*
1916 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1917 		 *
1918 		 * This will preclude queuing the mount if this is a cleanup
1919 		 * after a failed copy_tree() or destruction of an anonymous
1920 		 * namespace, etc.
1921 		 */
1922 		mnt_notify_add(p);
1923 	}
1924 }
1925 
1926 static void shrink_submounts(struct mount *mnt);
1927 
do_umount_root(struct super_block * sb)1928 static int do_umount_root(struct super_block *sb)
1929 {
1930 	int ret = 0;
1931 
1932 	down_write(&sb->s_umount);
1933 	if (!sb_rdonly(sb)) {
1934 		struct fs_context *fc;
1935 
1936 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1937 						SB_RDONLY);
1938 		if (IS_ERR(fc)) {
1939 			ret = PTR_ERR(fc);
1940 		} else {
1941 			ret = parse_monolithic_mount_data(fc, NULL);
1942 			if (!ret)
1943 				ret = reconfigure_super(fc);
1944 			put_fs_context(fc);
1945 		}
1946 	}
1947 	up_write(&sb->s_umount);
1948 	return ret;
1949 }
1950 
do_umount(struct mount * mnt,int flags)1951 static int do_umount(struct mount *mnt, int flags)
1952 {
1953 	struct super_block *sb = mnt->mnt.mnt_sb;
1954 	int retval;
1955 
1956 	retval = security_sb_umount(&mnt->mnt, flags);
1957 	if (retval)
1958 		return retval;
1959 
1960 	/*
1961 	 * Allow userspace to request a mountpoint be expired rather than
1962 	 * unmounting unconditionally. Unmount only happens if:
1963 	 *  (1) the mark is already set (the mark is cleared by mntput())
1964 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1965 	 */
1966 	if (flags & MNT_EXPIRE) {
1967 		if (&mnt->mnt == current->fs->root.mnt ||
1968 		    flags & (MNT_FORCE | MNT_DETACH))
1969 			return -EINVAL;
1970 
1971 		/*
1972 		 * probably don't strictly need the lock here if we examined
1973 		 * all race cases, but it's a slowpath.
1974 		 */
1975 		lock_mount_hash();
1976 		if (mnt_get_count(mnt) != 2) {
1977 			unlock_mount_hash();
1978 			return -EBUSY;
1979 		}
1980 		unlock_mount_hash();
1981 
1982 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1983 			return -EAGAIN;
1984 	}
1985 
1986 	/*
1987 	 * If we may have to abort operations to get out of this
1988 	 * mount, and they will themselves hold resources we must
1989 	 * allow the fs to do things. In the Unix tradition of
1990 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1991 	 * might fail to complete on the first run through as other tasks
1992 	 * must return, and the like. Thats for the mount program to worry
1993 	 * about for the moment.
1994 	 */
1995 
1996 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1997 		sb->s_op->umount_begin(sb);
1998 	}
1999 
2000 	/*
2001 	 * No sense to grab the lock for this test, but test itself looks
2002 	 * somewhat bogus. Suggestions for better replacement?
2003 	 * Ho-hum... In principle, we might treat that as umount + switch
2004 	 * to rootfs. GC would eventually take care of the old vfsmount.
2005 	 * Actually it makes sense, especially if rootfs would contain a
2006 	 * /reboot - static binary that would close all descriptors and
2007 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
2008 	 */
2009 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
2010 		/*
2011 		 * Special case for "unmounting" root ...
2012 		 * we just try to remount it readonly.
2013 		 */
2014 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2015 			return -EPERM;
2016 		return do_umount_root(sb);
2017 	}
2018 
2019 	namespace_lock();
2020 	lock_mount_hash();
2021 
2022 	/* Recheck MNT_LOCKED with the locks held */
2023 	retval = -EINVAL;
2024 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
2025 		goto out;
2026 
2027 	event++;
2028 	if (flags & MNT_DETACH) {
2029 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2030 			umount_tree(mnt, UMOUNT_PROPAGATE);
2031 		retval = 0;
2032 	} else {
2033 		smp_mb(); // paired with __legitimize_mnt()
2034 		shrink_submounts(mnt);
2035 		retval = -EBUSY;
2036 		if (!propagate_mount_busy(mnt, 2)) {
2037 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2038 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2039 			retval = 0;
2040 		}
2041 	}
2042 out:
2043 	unlock_mount_hash();
2044 	namespace_unlock();
2045 	return retval;
2046 }
2047 
2048 /*
2049  * __detach_mounts - lazily unmount all mounts on the specified dentry
2050  *
2051  * During unlink, rmdir, and d_drop it is possible to loose the path
2052  * to an existing mountpoint, and wind up leaking the mount.
2053  * detach_mounts allows lazily unmounting those mounts instead of
2054  * leaking them.
2055  *
2056  * The caller may hold dentry->d_inode->i_mutex.
2057  */
__detach_mounts(struct dentry * dentry)2058 void __detach_mounts(struct dentry *dentry)
2059 {
2060 	struct mountpoint *mp;
2061 	struct mount *mnt;
2062 
2063 	namespace_lock();
2064 	lock_mount_hash();
2065 	mp = lookup_mountpoint(dentry);
2066 	if (!mp)
2067 		goto out_unlock;
2068 
2069 	event++;
2070 	while (!hlist_empty(&mp->m_list)) {
2071 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
2072 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2073 			umount_mnt(mnt);
2074 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2075 		}
2076 		else umount_tree(mnt, UMOUNT_CONNECTED);
2077 	}
2078 	put_mountpoint(mp);
2079 out_unlock:
2080 	unlock_mount_hash();
2081 	namespace_unlock();
2082 }
2083 
2084 /*
2085  * Is the caller allowed to modify his namespace?
2086  */
may_mount(void)2087 bool may_mount(void)
2088 {
2089 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2090 }
2091 
warn_mandlock(void)2092 static void warn_mandlock(void)
2093 {
2094 	pr_warn_once("=======================================================\n"
2095 		     "WARNING: The mand mount option has been deprecated and\n"
2096 		     "         and is ignored by this kernel. Remove the mand\n"
2097 		     "         option from the mount to silence this warning.\n"
2098 		     "=======================================================\n");
2099 }
2100 
can_umount(const struct path * path,int flags)2101 static int can_umount(const struct path *path, int flags)
2102 {
2103 	struct mount *mnt = real_mount(path->mnt);
2104 	struct super_block *sb = path->dentry->d_sb;
2105 
2106 	if (!may_mount())
2107 		return -EPERM;
2108 	if (!path_mounted(path))
2109 		return -EINVAL;
2110 	if (!check_mnt(mnt))
2111 		return -EINVAL;
2112 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2113 		return -EINVAL;
2114 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2115 		return -EPERM;
2116 	return 0;
2117 }
2118 
2119 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2120 int path_umount(struct path *path, int flags)
2121 {
2122 	struct mount *mnt = real_mount(path->mnt);
2123 	int ret;
2124 
2125 	ret = can_umount(path, flags);
2126 	if (!ret)
2127 		ret = do_umount(mnt, flags);
2128 
2129 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2130 	dput(path->dentry);
2131 	mntput_no_expire(mnt);
2132 	return ret;
2133 }
2134 
ksys_umount(char __user * name,int flags)2135 static int ksys_umount(char __user *name, int flags)
2136 {
2137 	int lookup_flags = LOOKUP_MOUNTPOINT;
2138 	struct path path;
2139 	int ret;
2140 
2141 	// basic validity checks done first
2142 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2143 		return -EINVAL;
2144 
2145 	if (!(flags & UMOUNT_NOFOLLOW))
2146 		lookup_flags |= LOOKUP_FOLLOW;
2147 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2148 	if (ret)
2149 		return ret;
2150 	return path_umount(&path, flags);
2151 }
2152 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2153 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2154 {
2155 	return ksys_umount(name, flags);
2156 }
2157 
2158 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2159 
2160 /*
2161  *	The 2.0 compatible umount. No flags.
2162  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2163 SYSCALL_DEFINE1(oldumount, char __user *, name)
2164 {
2165 	return ksys_umount(name, 0);
2166 }
2167 
2168 #endif
2169 
is_mnt_ns_file(struct dentry * dentry)2170 static bool is_mnt_ns_file(struct dentry *dentry)
2171 {
2172 	struct ns_common *ns;
2173 
2174 	/* Is this a proxy for a mount namespace? */
2175 	if (dentry->d_op != &ns_dentry_operations)
2176 		return false;
2177 
2178 	ns = d_inode(dentry)->i_private;
2179 
2180 	return ns->ops == &mntns_operations;
2181 }
2182 
from_mnt_ns(struct mnt_namespace * mnt)2183 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2184 {
2185 	return &mnt->ns;
2186 }
2187 
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2188 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2189 {
2190 	guard(rcu)();
2191 
2192 	for (;;) {
2193 		struct list_head *list;
2194 
2195 		if (previous)
2196 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2197 		else
2198 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2199 		if (list_is_head(list, &mnt_ns_list))
2200 			return ERR_PTR(-ENOENT);
2201 
2202 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2203 
2204 		/*
2205 		 * The last passive reference count is put with RCU
2206 		 * delay so accessing the mount namespace is not just
2207 		 * safe but all relevant members are still valid.
2208 		 */
2209 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2210 			continue;
2211 
2212 		/*
2213 		 * We need an active reference count as we're persisting
2214 		 * the mount namespace and it might already be on its
2215 		 * deathbed.
2216 		 */
2217 		if (!refcount_inc_not_zero(&mntns->ns.count))
2218 			continue;
2219 
2220 		return mntns;
2221 	}
2222 }
2223 
mnt_ns_from_dentry(struct dentry * dentry)2224 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2225 {
2226 	if (!is_mnt_ns_file(dentry))
2227 		return NULL;
2228 
2229 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2230 }
2231 
mnt_ns_loop(struct dentry * dentry)2232 static bool mnt_ns_loop(struct dentry *dentry)
2233 {
2234 	/* Could bind mounting the mount namespace inode cause a
2235 	 * mount namespace loop?
2236 	 */
2237 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2238 
2239 	if (!mnt_ns)
2240 		return false;
2241 
2242 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2243 }
2244 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2245 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2246 					int flag)
2247 {
2248 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2249 		*dst_parent, *dst_mnt;
2250 
2251 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2252 		return ERR_PTR(-EINVAL);
2253 
2254 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2255 		return ERR_PTR(-EINVAL);
2256 
2257 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2258 	if (IS_ERR(dst_mnt))
2259 		return dst_mnt;
2260 
2261 	src_parent = src_root;
2262 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2263 
2264 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2265 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2266 			continue;
2267 
2268 		for (src_mnt = src_root_child; src_mnt;
2269 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2270 			if (!(flag & CL_COPY_UNBINDABLE) &&
2271 			    IS_MNT_UNBINDABLE(src_mnt)) {
2272 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2273 					/* Both unbindable and locked. */
2274 					dst_mnt = ERR_PTR(-EPERM);
2275 					goto out;
2276 				} else {
2277 					src_mnt = skip_mnt_tree(src_mnt);
2278 					continue;
2279 				}
2280 			}
2281 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2282 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2283 				src_mnt = skip_mnt_tree(src_mnt);
2284 				continue;
2285 			}
2286 			while (src_parent != src_mnt->mnt_parent) {
2287 				src_parent = src_parent->mnt_parent;
2288 				dst_mnt = dst_mnt->mnt_parent;
2289 			}
2290 
2291 			src_parent = src_mnt;
2292 			dst_parent = dst_mnt;
2293 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2294 			if (IS_ERR(dst_mnt))
2295 				goto out;
2296 			lock_mount_hash();
2297 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2298 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2299 			unlock_mount_hash();
2300 		}
2301 	}
2302 	return res;
2303 
2304 out:
2305 	if (res) {
2306 		lock_mount_hash();
2307 		umount_tree(res, UMOUNT_SYNC);
2308 		unlock_mount_hash();
2309 	}
2310 	return dst_mnt;
2311 }
2312 
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2313 static inline bool extend_array(struct path **res, struct path **to_free,
2314 				unsigned n, unsigned *count, unsigned new_count)
2315 {
2316 	struct path *p;
2317 
2318 	if (likely(n < *count))
2319 		return true;
2320 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2321 	if (p && *count)
2322 		memcpy(p, *res, *count * sizeof(struct path));
2323 	*count = new_count;
2324 	kfree(*to_free);
2325 	*to_free = *res = p;
2326 	return p;
2327 }
2328 
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2329 struct path *collect_paths(const struct path *path,
2330 			      struct path *prealloc, unsigned count)
2331 {
2332 	struct mount *root = real_mount(path->mnt);
2333 	struct mount *child;
2334 	struct path *res = prealloc, *to_free = NULL;
2335 	unsigned n = 0;
2336 
2337 	guard(rwsem_read)(&namespace_sem);
2338 
2339 	if (!check_mnt(root))
2340 		return ERR_PTR(-EINVAL);
2341 	if (!extend_array(&res, &to_free, 0, &count, 32))
2342 		return ERR_PTR(-ENOMEM);
2343 	res[n++] = *path;
2344 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2345 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2346 			continue;
2347 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2348 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2349 				return ERR_PTR(-ENOMEM);
2350 			res[n].mnt = &m->mnt;
2351 			res[n].dentry = m->mnt.mnt_root;
2352 			n++;
2353 		}
2354 	}
2355 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2356 		return ERR_PTR(-ENOMEM);
2357 	memset(res + n, 0, (count - n) * sizeof(struct path));
2358 	for (struct path *p = res; p->mnt; p++)
2359 		path_get(p);
2360 	return res;
2361 }
2362 
drop_collected_paths(struct path * paths,struct path * prealloc)2363 void drop_collected_paths(struct path *paths, struct path *prealloc)
2364 {
2365 	for (struct path *p = paths; p->mnt; p++)
2366 		path_put(p);
2367 	if (paths != prealloc)
2368 		kfree(paths);
2369 }
2370 
2371 static void free_mnt_ns(struct mnt_namespace *);
2372 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2373 
must_dissolve(struct mnt_namespace * mnt_ns)2374 static inline bool must_dissolve(struct mnt_namespace *mnt_ns)
2375 {
2376 	/*
2377         * This mount belonged to an anonymous mount namespace
2378         * but was moved to a non-anonymous mount namespace and
2379         * then unmounted.
2380         */
2381 	if (unlikely(!mnt_ns))
2382 		return false;
2383 
2384 	/*
2385         * This mount belongs to a non-anonymous mount namespace
2386         * and we know that such a mount can never transition to
2387         * an anonymous mount namespace again.
2388         */
2389 	if (!is_anon_ns(mnt_ns)) {
2390 		/*
2391 		 * A detached mount either belongs to an anonymous mount
2392 		 * namespace or a non-anonymous mount namespace. It
2393 		 * should never belong to something purely internal.
2394 		 */
2395 		VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL);
2396 		return false;
2397 	}
2398 
2399 	return true;
2400 }
2401 
dissolve_on_fput(struct vfsmount * mnt)2402 void dissolve_on_fput(struct vfsmount *mnt)
2403 {
2404 	struct mnt_namespace *ns;
2405 	struct mount *m = real_mount(mnt);
2406 
2407 	scoped_guard(rcu) {
2408 		if (!must_dissolve(READ_ONCE(m->mnt_ns)))
2409 			return;
2410 	}
2411 
2412 	scoped_guard(namespace_lock, &namespace_sem) {
2413 		ns = m->mnt_ns;
2414 		if (!must_dissolve(ns))
2415 			return;
2416 
2417 		/*
2418 		 * After must_dissolve() we know that this is a detached
2419 		 * mount in an anonymous mount namespace.
2420 		 *
2421 		 * Now when mnt_has_parent() reports that this mount
2422 		 * tree has a parent, we know that this anonymous mount
2423 		 * tree has been moved to another anonymous mount
2424 		 * namespace.
2425 		 *
2426 		 * So when closing this file we cannot unmount the mount
2427 		 * tree. This will be done when the file referring to
2428 		 * the root of the anonymous mount namespace will be
2429 		 * closed (It could already be closed but it would sync
2430 		 * on @namespace_sem and wait for us to finish.).
2431 		 */
2432 		if (mnt_has_parent(m))
2433 			return;
2434 
2435 		lock_mount_hash();
2436 		umount_tree(m, UMOUNT_CONNECTED);
2437 		unlock_mount_hash();
2438 	}
2439 
2440 	/* Make sure we notice when we leak mounts. */
2441 	VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
2442 	free_mnt_ns(ns);
2443 }
2444 
__has_locked_children(struct mount * mnt,struct dentry * dentry)2445 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2446 {
2447 	struct mount *child;
2448 
2449 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2450 		if (!is_subdir(child->mnt_mountpoint, dentry))
2451 			continue;
2452 
2453 		if (child->mnt.mnt_flags & MNT_LOCKED)
2454 			return true;
2455 	}
2456 	return false;
2457 }
2458 
has_locked_children(struct mount * mnt,struct dentry * dentry)2459 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2460 {
2461 	bool res;
2462 
2463 	read_seqlock_excl(&mount_lock);
2464 	res = __has_locked_children(mnt, dentry);
2465 	read_sequnlock_excl(&mount_lock);
2466 	return res;
2467 }
2468 
2469 /*
2470  * Check that there aren't references to earlier/same mount namespaces in the
2471  * specified subtree.  Such references can act as pins for mount namespaces
2472  * that aren't checked by the mount-cycle checking code, thereby allowing
2473  * cycles to be made.
2474  */
check_for_nsfs_mounts(struct mount * subtree)2475 static bool check_for_nsfs_mounts(struct mount *subtree)
2476 {
2477 	struct mount *p;
2478 	bool ret = false;
2479 
2480 	lock_mount_hash();
2481 	for (p = subtree; p; p = next_mnt(p, subtree))
2482 		if (mnt_ns_loop(p->mnt.mnt_root))
2483 			goto out;
2484 
2485 	ret = true;
2486 out:
2487 	unlock_mount_hash();
2488 	return ret;
2489 }
2490 
2491 /**
2492  * clone_private_mount - create a private clone of a path
2493  * @path: path to clone
2494  *
2495  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2496  * will not be attached anywhere in the namespace and will be private (i.e.
2497  * changes to the originating mount won't be propagated into this).
2498  *
2499  * This assumes caller has called or done the equivalent of may_mount().
2500  *
2501  * Release with mntput().
2502  */
clone_private_mount(const struct path * path)2503 struct vfsmount *clone_private_mount(const struct path *path)
2504 {
2505 	struct mount *old_mnt = real_mount(path->mnt);
2506 	struct mount *new_mnt;
2507 
2508 	guard(rwsem_read)(&namespace_sem);
2509 
2510 	if (IS_MNT_UNBINDABLE(old_mnt))
2511 		return ERR_PTR(-EINVAL);
2512 
2513 	/*
2514 	 * Make sure the source mount is acceptable.
2515 	 * Anything mounted in our mount namespace is allowed.
2516 	 * Otherwise, it must be the root of an anonymous mount
2517 	 * namespace, and we need to make sure no namespace
2518 	 * loops get created.
2519 	 */
2520 	if (!check_mnt(old_mnt)) {
2521 		if (!is_mounted(&old_mnt->mnt) ||
2522 			!is_anon_ns(old_mnt->mnt_ns) ||
2523 			mnt_has_parent(old_mnt))
2524 			return ERR_PTR(-EINVAL);
2525 
2526 		if (!check_for_nsfs_mounts(old_mnt))
2527 			return ERR_PTR(-EINVAL);
2528 	}
2529 
2530         if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2531 		return ERR_PTR(-EPERM);
2532 
2533 	if (__has_locked_children(old_mnt, path->dentry))
2534 		return ERR_PTR(-EINVAL);
2535 
2536 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2537 	if (IS_ERR(new_mnt))
2538 		return ERR_PTR(-EINVAL);
2539 
2540 	/* Longterm mount to be removed by kern_unmount*() */
2541 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2542 	return &new_mnt->mnt;
2543 }
2544 EXPORT_SYMBOL_GPL(clone_private_mount);
2545 
lock_mnt_tree(struct mount * mnt)2546 static void lock_mnt_tree(struct mount *mnt)
2547 {
2548 	struct mount *p;
2549 
2550 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2551 		int flags = p->mnt.mnt_flags;
2552 		/* Don't allow unprivileged users to change mount flags */
2553 		flags |= MNT_LOCK_ATIME;
2554 
2555 		if (flags & MNT_READONLY)
2556 			flags |= MNT_LOCK_READONLY;
2557 
2558 		if (flags & MNT_NODEV)
2559 			flags |= MNT_LOCK_NODEV;
2560 
2561 		if (flags & MNT_NOSUID)
2562 			flags |= MNT_LOCK_NOSUID;
2563 
2564 		if (flags & MNT_NOEXEC)
2565 			flags |= MNT_LOCK_NOEXEC;
2566 		/* Don't allow unprivileged users to reveal what is under a mount */
2567 		if (list_empty(&p->mnt_expire))
2568 			flags |= MNT_LOCKED;
2569 		p->mnt.mnt_flags = flags;
2570 	}
2571 }
2572 
cleanup_group_ids(struct mount * mnt,struct mount * end)2573 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2574 {
2575 	struct mount *p;
2576 
2577 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2578 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2579 			mnt_release_group_id(p);
2580 	}
2581 }
2582 
invent_group_ids(struct mount * mnt,bool recurse)2583 static int invent_group_ids(struct mount *mnt, bool recurse)
2584 {
2585 	struct mount *p;
2586 
2587 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2588 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2589 			int err = mnt_alloc_group_id(p);
2590 			if (err) {
2591 				cleanup_group_ids(mnt, p);
2592 				return err;
2593 			}
2594 		}
2595 	}
2596 
2597 	return 0;
2598 }
2599 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2600 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2601 {
2602 	unsigned int max = READ_ONCE(sysctl_mount_max);
2603 	unsigned int mounts = 0;
2604 	struct mount *p;
2605 
2606 	if (ns->nr_mounts >= max)
2607 		return -ENOSPC;
2608 	max -= ns->nr_mounts;
2609 	if (ns->pending_mounts >= max)
2610 		return -ENOSPC;
2611 	max -= ns->pending_mounts;
2612 
2613 	for (p = mnt; p; p = next_mnt(p, mnt))
2614 		mounts++;
2615 
2616 	if (mounts > max)
2617 		return -ENOSPC;
2618 
2619 	ns->pending_mounts += mounts;
2620 	return 0;
2621 }
2622 
2623 enum mnt_tree_flags_t {
2624 	MNT_TREE_MOVE = BIT(0),
2625 	MNT_TREE_BENEATH = BIT(1),
2626 	MNT_TREE_PROPAGATION = BIT(2),
2627 };
2628 
2629 /**
2630  * attach_recursive_mnt - attach a source mount tree
2631  * @source_mnt: mount tree to be attached
2632  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2633  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2634  * @flags:      modify how @source_mnt is supposed to be attached
2635  *
2636  *  NOTE: in the table below explains the semantics when a source mount
2637  *  of a given type is attached to a destination mount of a given type.
2638  * ---------------------------------------------------------------------------
2639  * |         BIND MOUNT OPERATION                                            |
2640  * |**************************************************************************
2641  * | source-->| shared        |       private  |       slave    | unbindable |
2642  * | dest     |               |                |                |            |
2643  * |   |      |               |                |                |            |
2644  * |   v      |               |                |                |            |
2645  * |**************************************************************************
2646  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2647  * |          |               |                |                |            |
2648  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2649  * ***************************************************************************
2650  * A bind operation clones the source mount and mounts the clone on the
2651  * destination mount.
2652  *
2653  * (++)  the cloned mount is propagated to all the mounts in the propagation
2654  * 	 tree of the destination mount and the cloned mount is added to
2655  * 	 the peer group of the source mount.
2656  * (+)   the cloned mount is created under the destination mount and is marked
2657  *       as shared. The cloned mount is added to the peer group of the source
2658  *       mount.
2659  * (+++) the mount is propagated to all the mounts in the propagation tree
2660  *       of the destination mount and the cloned mount is made slave
2661  *       of the same master as that of the source mount. The cloned mount
2662  *       is marked as 'shared and slave'.
2663  * (*)   the cloned mount is made a slave of the same master as that of the
2664  * 	 source mount.
2665  *
2666  * ---------------------------------------------------------------------------
2667  * |         		MOVE MOUNT OPERATION                                 |
2668  * |**************************************************************************
2669  * | source-->| shared        |       private  |       slave    | unbindable |
2670  * | dest     |               |                |                |            |
2671  * |   |      |               |                |                |            |
2672  * |   v      |               |                |                |            |
2673  * |**************************************************************************
2674  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2675  * |          |               |                |                |            |
2676  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2677  * ***************************************************************************
2678  *
2679  * (+)  the mount is moved to the destination. And is then propagated to
2680  * 	all the mounts in the propagation tree of the destination mount.
2681  * (+*)  the mount is moved to the destination.
2682  * (+++)  the mount is moved to the destination and is then propagated to
2683  * 	all the mounts belonging to the destination mount's propagation tree.
2684  * 	the mount is marked as 'shared and slave'.
2685  * (*)	the mount continues to be a slave at the new location.
2686  *
2687  * if the source mount is a tree, the operations explained above is
2688  * applied to each mount in the tree.
2689  * Must be called without spinlocks held, since this function can sleep
2690  * in allocations.
2691  *
2692  * Context: The function expects namespace_lock() to be held.
2693  * Return: If @source_mnt was successfully attached 0 is returned.
2694  *         Otherwise a negative error code is returned.
2695  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2696 static int attach_recursive_mnt(struct mount *source_mnt,
2697 				struct mount *top_mnt,
2698 				struct mountpoint *dest_mp,
2699 				enum mnt_tree_flags_t flags)
2700 {
2701 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2702 	HLIST_HEAD(tree_list);
2703 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2704 	struct mountpoint *smp;
2705 	struct mount *child, *dest_mnt, *p;
2706 	struct hlist_node *n;
2707 	int err = 0;
2708 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2709 
2710 	/*
2711 	 * Preallocate a mountpoint in case the new mounts need to be
2712 	 * mounted beneath mounts on the same mountpoint.
2713 	 */
2714 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2715 	if (IS_ERR(smp))
2716 		return PTR_ERR(smp);
2717 
2718 	/* Is there space to add these mounts to the mount namespace? */
2719 	if (!moving) {
2720 		err = count_mounts(ns, source_mnt);
2721 		if (err)
2722 			goto out;
2723 	}
2724 
2725 	if (beneath)
2726 		dest_mnt = top_mnt->mnt_parent;
2727 	else
2728 		dest_mnt = top_mnt;
2729 
2730 	if (IS_MNT_SHARED(dest_mnt)) {
2731 		err = invent_group_ids(source_mnt, true);
2732 		if (err)
2733 			goto out;
2734 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2735 	}
2736 	lock_mount_hash();
2737 	if (err)
2738 		goto out_cleanup_ids;
2739 
2740 	if (IS_MNT_SHARED(dest_mnt)) {
2741 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2742 			set_mnt_shared(p);
2743 	}
2744 
2745 	if (moving) {
2746 		if (beneath)
2747 			dest_mp = smp;
2748 		unhash_mnt(source_mnt);
2749 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2750 		mnt_notify_add(source_mnt);
2751 		touch_mnt_namespace(source_mnt->mnt_ns);
2752 	} else {
2753 		if (source_mnt->mnt_ns) {
2754 			LIST_HEAD(head);
2755 
2756 			/* move from anon - the caller will destroy */
2757 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2758 				move_from_ns(p, &head);
2759 			list_del_init(&head);
2760 		}
2761 		if (beneath)
2762 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2763 		else
2764 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2765 		commit_tree(source_mnt);
2766 	}
2767 
2768 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2769 		struct mount *q;
2770 		hlist_del_init(&child->mnt_hash);
2771 		/* Notice when we are propagating across user namespaces */
2772 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2773 			lock_mnt_tree(child);
2774 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2775 		q = __lookup_mnt(&child->mnt_parent->mnt,
2776 				 child->mnt_mountpoint);
2777 		if (q)
2778 			mnt_change_mountpoint(child, smp, q);
2779 		commit_tree(child);
2780 	}
2781 	put_mountpoint(smp);
2782 	unlock_mount_hash();
2783 
2784 	return 0;
2785 
2786  out_cleanup_ids:
2787 	while (!hlist_empty(&tree_list)) {
2788 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2789 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2790 		umount_tree(child, UMOUNT_SYNC);
2791 	}
2792 	unlock_mount_hash();
2793 	cleanup_group_ids(source_mnt, NULL);
2794  out:
2795 	ns->pending_mounts = 0;
2796 
2797 	read_seqlock_excl(&mount_lock);
2798 	put_mountpoint(smp);
2799 	read_sequnlock_excl(&mount_lock);
2800 
2801 	return err;
2802 }
2803 
2804 /**
2805  * do_lock_mount - lock mount and mountpoint
2806  * @path:    target path
2807  * @beneath: whether the intention is to mount beneath @path
2808  *
2809  * Follow the mount stack on @path until the top mount @mnt is found. If
2810  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2811  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2812  * until nothing is stacked on top of it anymore.
2813  *
2814  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2815  * against concurrent removal of the new mountpoint from another mount
2816  * namespace.
2817  *
2818  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2819  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2820  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2821  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2822  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2823  * on top of it for @beneath.
2824  *
2825  * In addition, @beneath needs to make sure that @mnt hasn't been
2826  * unmounted or moved from its current mountpoint in between dropping
2827  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2828  * being unmounted would be detected later by e.g., calling
2829  * check_mnt(mnt) in the function it's called from. For the @beneath
2830  * case however, it's useful to detect it directly in do_lock_mount().
2831  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2832  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2833  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2834  *
2835  * Return: Either the target mountpoint on the top mount or the top
2836  *         mount's mountpoint.
2837  */
do_lock_mount(struct path * path,bool beneath)2838 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2839 {
2840 	struct vfsmount *mnt = path->mnt;
2841 	struct dentry *dentry;
2842 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2843 	struct path under = {};
2844 
2845 	for (;;) {
2846 		struct mount *m = real_mount(mnt);
2847 
2848 		if (beneath) {
2849 			path_put(&under);
2850 			read_seqlock_excl(&mount_lock);
2851 			under.mnt = mntget(&m->mnt_parent->mnt);
2852 			under.dentry = dget(m->mnt_mountpoint);
2853 			read_sequnlock_excl(&mount_lock);
2854 			dentry = under.dentry;
2855 		} else {
2856 			dentry = path->dentry;
2857 		}
2858 
2859 		inode_lock(dentry->d_inode);
2860 		namespace_lock();
2861 
2862 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2863 			break;		// not to be mounted on
2864 
2865 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2866 				        &m->mnt_parent->mnt != under.mnt)) {
2867 			namespace_unlock();
2868 			inode_unlock(dentry->d_inode);
2869 			continue;	// got moved
2870 		}
2871 
2872 		mnt = lookup_mnt(path);
2873 		if (unlikely(mnt)) {
2874 			namespace_unlock();
2875 			inode_unlock(dentry->d_inode);
2876 			path_put(path);
2877 			path->mnt = mnt;
2878 			path->dentry = dget(mnt->mnt_root);
2879 			continue;	// got overmounted
2880 		}
2881 		mp = get_mountpoint(dentry);
2882 		if (IS_ERR(mp))
2883 			break;
2884 		if (beneath) {
2885 			/*
2886 			 * @under duplicates the references that will stay
2887 			 * at least until namespace_unlock(), so the path_put()
2888 			 * below is safe (and OK to do under namespace_lock -
2889 			 * we are not dropping the final references here).
2890 			 */
2891 			path_put(&under);
2892 		}
2893 		return mp;
2894 	}
2895 	namespace_unlock();
2896 	inode_unlock(dentry->d_inode);
2897 	if (beneath)
2898 		path_put(&under);
2899 	return mp;
2900 }
2901 
lock_mount(struct path * path)2902 static inline struct mountpoint *lock_mount(struct path *path)
2903 {
2904 	return do_lock_mount(path, false);
2905 }
2906 
unlock_mount(struct mountpoint * where)2907 static void unlock_mount(struct mountpoint *where)
2908 {
2909 	inode_unlock(where->m_dentry->d_inode);
2910 	read_seqlock_excl(&mount_lock);
2911 	put_mountpoint(where);
2912 	read_sequnlock_excl(&mount_lock);
2913 	namespace_unlock();
2914 }
2915 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2916 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2917 {
2918 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2919 		return -EINVAL;
2920 
2921 	if (d_is_dir(mp->m_dentry) !=
2922 	      d_is_dir(mnt->mnt.mnt_root))
2923 		return -ENOTDIR;
2924 
2925 	return attach_recursive_mnt(mnt, p, mp, 0);
2926 }
2927 
2928 /*
2929  * Sanity check the flags to change_mnt_propagation.
2930  */
2931 
flags_to_propagation_type(int ms_flags)2932 static int flags_to_propagation_type(int ms_flags)
2933 {
2934 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2935 
2936 	/* Fail if any non-propagation flags are set */
2937 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2938 		return 0;
2939 	/* Only one propagation flag should be set */
2940 	if (!is_power_of_2(type))
2941 		return 0;
2942 	return type;
2943 }
2944 
2945 /*
2946  * recursively change the type of the mountpoint.
2947  */
do_change_type(struct path * path,int ms_flags)2948 static int do_change_type(struct path *path, int ms_flags)
2949 {
2950 	struct mount *m;
2951 	struct mount *mnt = real_mount(path->mnt);
2952 	int recurse = ms_flags & MS_REC;
2953 	int type;
2954 	int err = 0;
2955 
2956 	if (!path_mounted(path))
2957 		return -EINVAL;
2958 
2959 	type = flags_to_propagation_type(ms_flags);
2960 	if (!type)
2961 		return -EINVAL;
2962 
2963 	namespace_lock();
2964 	if (!check_mnt(mnt)) {
2965 		err = -EINVAL;
2966 		goto out_unlock;
2967 	}
2968 	if (type == MS_SHARED) {
2969 		err = invent_group_ids(mnt, recurse);
2970 		if (err)
2971 			goto out_unlock;
2972 	}
2973 
2974 	lock_mount_hash();
2975 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2976 		change_mnt_propagation(m, type);
2977 	unlock_mount_hash();
2978 
2979  out_unlock:
2980 	namespace_unlock();
2981 	return err;
2982 }
2983 
2984 /* may_copy_tree() - check if a mount tree can be copied
2985  * @path: path to the mount tree to be copied
2986  *
2987  * This helper checks if the caller may copy the mount tree starting
2988  * from @path->mnt. The caller may copy the mount tree under the
2989  * following circumstances:
2990  *
2991  * (1) The caller is located in the mount namespace of the mount tree.
2992  *     This also implies that the mount does not belong to an anonymous
2993  *     mount namespace.
2994  * (2) The caller tries to copy an nfs mount referring to a mount
2995  *     namespace, i.e., the caller is trying to copy a mount namespace
2996  *     entry from nsfs.
2997  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2998  * (4) The caller is trying to copy a mount tree that belongs to an
2999  *     anonymous mount namespace.
3000  *
3001  *     For that to be safe, this helper enforces that the origin mount
3002  *     namespace the anonymous mount namespace was created from is the
3003  *     same as the caller's mount namespace by comparing the sequence
3004  *     numbers.
3005  *
3006  *     This is not strictly necessary. The current semantics of the new
3007  *     mount api enforce that the caller must be located in the same
3008  *     mount namespace as the mount tree it interacts with. Using the
3009  *     origin sequence number preserves these semantics even for
3010  *     anonymous mount namespaces. However, one could envision extending
3011  *     the api to directly operate across mount namespace if needed.
3012  *
3013  *     The ownership of a non-anonymous mount namespace such as the
3014  *     caller's cannot change.
3015  *     => We know that the caller's mount namespace is stable.
3016  *
3017  *     If the origin sequence number of the anonymous mount namespace is
3018  *     the same as the sequence number of the caller's mount namespace.
3019  *     => The owning namespaces are the same.
3020  *
3021  *     ==> The earlier capability check on the owning namespace of the
3022  *         caller's mount namespace ensures that the caller has the
3023  *         ability to copy the mount tree.
3024  *
3025  * Returns true if the mount tree can be copied, false otherwise.
3026  */
may_copy_tree(struct path * path)3027 static inline bool may_copy_tree(struct path *path)
3028 {
3029 	struct mount *mnt = real_mount(path->mnt);
3030 	const struct dentry_operations *d_op;
3031 
3032 	if (check_mnt(mnt))
3033 		return true;
3034 
3035 	d_op = path->dentry->d_op;
3036 	if (d_op == &ns_dentry_operations)
3037 		return true;
3038 
3039 	if (d_op == &pidfs_dentry_operations)
3040 		return true;
3041 
3042 	if (!is_mounted(path->mnt))
3043 		return false;
3044 
3045 	return check_anonymous_mnt(mnt);
3046 }
3047 
3048 
__do_loopback(struct path * old_path,int recurse)3049 static struct mount *__do_loopback(struct path *old_path, int recurse)
3050 {
3051 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
3052 
3053 	if (IS_MNT_UNBINDABLE(old))
3054 		return mnt;
3055 
3056 	if (!may_copy_tree(old_path))
3057 		return mnt;
3058 
3059 	if (!recurse && __has_locked_children(old, old_path->dentry))
3060 		return mnt;
3061 
3062 	if (recurse)
3063 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3064 	else
3065 		mnt = clone_mnt(old, old_path->dentry, 0);
3066 
3067 	if (!IS_ERR(mnt))
3068 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3069 
3070 	return mnt;
3071 }
3072 
3073 /*
3074  * do loopback mount.
3075  */
do_loopback(struct path * path,const char * old_name,int recurse)3076 static int do_loopback(struct path *path, const char *old_name,
3077 				int recurse)
3078 {
3079 	struct path old_path;
3080 	struct mount *mnt = NULL, *parent;
3081 	struct mountpoint *mp;
3082 	int err;
3083 	if (!old_name || !*old_name)
3084 		return -EINVAL;
3085 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3086 	if (err)
3087 		return err;
3088 
3089 	err = -EINVAL;
3090 	if (mnt_ns_loop(old_path.dentry))
3091 		goto out;
3092 
3093 	mp = lock_mount(path);
3094 	if (IS_ERR(mp)) {
3095 		err = PTR_ERR(mp);
3096 		goto out;
3097 	}
3098 
3099 	parent = real_mount(path->mnt);
3100 	if (!check_mnt(parent))
3101 		goto out2;
3102 
3103 	mnt = __do_loopback(&old_path, recurse);
3104 	if (IS_ERR(mnt)) {
3105 		err = PTR_ERR(mnt);
3106 		goto out2;
3107 	}
3108 
3109 	err = graft_tree(mnt, parent, mp);
3110 	if (err) {
3111 		lock_mount_hash();
3112 		umount_tree(mnt, UMOUNT_SYNC);
3113 		unlock_mount_hash();
3114 	}
3115 out2:
3116 	unlock_mount(mp);
3117 out:
3118 	path_put(&old_path);
3119 	return err;
3120 }
3121 
open_detached_copy(struct path * path,bool recursive)3122 static struct file *open_detached_copy(struct path *path, bool recursive)
3123 {
3124 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3125 	struct user_namespace *user_ns = mnt_ns->user_ns;
3126 	struct mount *mnt, *p;
3127 	struct file *file;
3128 
3129 	ns = alloc_mnt_ns(user_ns, true);
3130 	if (IS_ERR(ns))
3131 		return ERR_CAST(ns);
3132 
3133 	namespace_lock();
3134 
3135 	/*
3136 	 * Record the sequence number of the source mount namespace.
3137 	 * This needs to hold namespace_sem to ensure that the mount
3138 	 * doesn't get attached.
3139 	 */
3140 	if (is_mounted(path->mnt)) {
3141 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3142 		if (is_anon_ns(src_mnt_ns))
3143 			ns->seq_origin = src_mnt_ns->seq_origin;
3144 		else
3145 			ns->seq_origin = src_mnt_ns->seq;
3146 	}
3147 
3148 	mnt = __do_loopback(path, recursive);
3149 	if (IS_ERR(mnt)) {
3150 		namespace_unlock();
3151 		free_mnt_ns(ns);
3152 		return ERR_CAST(mnt);
3153 	}
3154 
3155 	lock_mount_hash();
3156 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3157 		mnt_add_to_ns(ns, p);
3158 		ns->nr_mounts++;
3159 	}
3160 	ns->root = mnt;
3161 	mntget(&mnt->mnt);
3162 	unlock_mount_hash();
3163 	namespace_unlock();
3164 
3165 	mntput(path->mnt);
3166 	path->mnt = &mnt->mnt;
3167 	file = dentry_open(path, O_PATH, current_cred());
3168 	if (IS_ERR(file))
3169 		dissolve_on_fput(path->mnt);
3170 	else
3171 		file->f_mode |= FMODE_NEED_UNMOUNT;
3172 	return file;
3173 }
3174 
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3175 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3176 {
3177 	int ret;
3178 	struct path path __free(path_put) = {};
3179 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3180 	bool detached = flags & OPEN_TREE_CLONE;
3181 
3182 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3183 
3184 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3185 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3186 		      OPEN_TREE_CLOEXEC))
3187 		return ERR_PTR(-EINVAL);
3188 
3189 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3190 		return ERR_PTR(-EINVAL);
3191 
3192 	if (flags & AT_NO_AUTOMOUNT)
3193 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3194 	if (flags & AT_SYMLINK_NOFOLLOW)
3195 		lookup_flags &= ~LOOKUP_FOLLOW;
3196 	if (flags & AT_EMPTY_PATH)
3197 		lookup_flags |= LOOKUP_EMPTY;
3198 
3199 	if (detached && !may_mount())
3200 		return ERR_PTR(-EPERM);
3201 
3202 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3203 	if (unlikely(ret))
3204 		return ERR_PTR(ret);
3205 
3206 	if (detached)
3207 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3208 
3209 	return dentry_open(&path, O_PATH, current_cred());
3210 }
3211 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3212 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3213 {
3214 	int fd;
3215 	struct file *file __free(fput) = NULL;
3216 
3217 	file = vfs_open_tree(dfd, filename, flags);
3218 	if (IS_ERR(file))
3219 		return PTR_ERR(file);
3220 
3221 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3222 	if (fd < 0)
3223 		return fd;
3224 
3225 	fd_install(fd, no_free_ptr(file));
3226 	return fd;
3227 }
3228 
3229 /*
3230  * Don't allow locked mount flags to be cleared.
3231  *
3232  * No locks need to be held here while testing the various MNT_LOCK
3233  * flags because those flags can never be cleared once they are set.
3234  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3235 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3236 {
3237 	unsigned int fl = mnt->mnt.mnt_flags;
3238 
3239 	if ((fl & MNT_LOCK_READONLY) &&
3240 	    !(mnt_flags & MNT_READONLY))
3241 		return false;
3242 
3243 	if ((fl & MNT_LOCK_NODEV) &&
3244 	    !(mnt_flags & MNT_NODEV))
3245 		return false;
3246 
3247 	if ((fl & MNT_LOCK_NOSUID) &&
3248 	    !(mnt_flags & MNT_NOSUID))
3249 		return false;
3250 
3251 	if ((fl & MNT_LOCK_NOEXEC) &&
3252 	    !(mnt_flags & MNT_NOEXEC))
3253 		return false;
3254 
3255 	if ((fl & MNT_LOCK_ATIME) &&
3256 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3257 		return false;
3258 
3259 	return true;
3260 }
3261 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3262 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3263 {
3264 	bool readonly_request = (mnt_flags & MNT_READONLY);
3265 
3266 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3267 		return 0;
3268 
3269 	if (readonly_request)
3270 		return mnt_make_readonly(mnt);
3271 
3272 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3273 	return 0;
3274 }
3275 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3276 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3277 {
3278 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3279 	mnt->mnt.mnt_flags = mnt_flags;
3280 	touch_mnt_namespace(mnt->mnt_ns);
3281 }
3282 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)3283 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3284 {
3285 	struct super_block *sb = mnt->mnt_sb;
3286 
3287 	if (!__mnt_is_readonly(mnt) &&
3288 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3289 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3290 		char *buf, *mntpath;
3291 
3292 		buf = (char *)__get_free_page(GFP_KERNEL);
3293 		if (buf)
3294 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3295 		else
3296 			mntpath = ERR_PTR(-ENOMEM);
3297 		if (IS_ERR(mntpath))
3298 			mntpath = "(unknown)";
3299 
3300 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3301 			sb->s_type->name,
3302 			is_mounted(mnt) ? "remounted" : "mounted",
3303 			mntpath, &sb->s_time_max,
3304 			(unsigned long long)sb->s_time_max);
3305 
3306 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3307 		if (buf)
3308 			free_page((unsigned long)buf);
3309 	}
3310 }
3311 
3312 /*
3313  * Handle reconfiguration of the mountpoint only without alteration of the
3314  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3315  * to mount(2).
3316  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3317 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3318 {
3319 	struct super_block *sb = path->mnt->mnt_sb;
3320 	struct mount *mnt = real_mount(path->mnt);
3321 	int ret;
3322 
3323 	if (!check_mnt(mnt))
3324 		return -EINVAL;
3325 
3326 	if (!path_mounted(path))
3327 		return -EINVAL;
3328 
3329 	if (!can_change_locked_flags(mnt, mnt_flags))
3330 		return -EPERM;
3331 
3332 	/*
3333 	 * We're only checking whether the superblock is read-only not
3334 	 * changing it, so only take down_read(&sb->s_umount).
3335 	 */
3336 	down_read(&sb->s_umount);
3337 	lock_mount_hash();
3338 	ret = change_mount_ro_state(mnt, mnt_flags);
3339 	if (ret == 0)
3340 		set_mount_attributes(mnt, mnt_flags);
3341 	unlock_mount_hash();
3342 	up_read(&sb->s_umount);
3343 
3344 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3345 
3346 	return ret;
3347 }
3348 
3349 /*
3350  * change filesystem flags. dir should be a physical root of filesystem.
3351  * If you've mounted a non-root directory somewhere and want to do remount
3352  * on it - tough luck.
3353  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3354 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3355 		      int mnt_flags, void *data)
3356 {
3357 	int err;
3358 	struct super_block *sb = path->mnt->mnt_sb;
3359 	struct mount *mnt = real_mount(path->mnt);
3360 	struct fs_context *fc;
3361 
3362 	if (!check_mnt(mnt))
3363 		return -EINVAL;
3364 
3365 	if (!path_mounted(path))
3366 		return -EINVAL;
3367 
3368 	if (!can_change_locked_flags(mnt, mnt_flags))
3369 		return -EPERM;
3370 
3371 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3372 	if (IS_ERR(fc))
3373 		return PTR_ERR(fc);
3374 
3375 	/*
3376 	 * Indicate to the filesystem that the remount request is coming
3377 	 * from the legacy mount system call.
3378 	 */
3379 	fc->oldapi = true;
3380 
3381 	err = parse_monolithic_mount_data(fc, data);
3382 	if (!err) {
3383 		down_write(&sb->s_umount);
3384 		err = -EPERM;
3385 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3386 			err = reconfigure_super(fc);
3387 			if (!err) {
3388 				lock_mount_hash();
3389 				set_mount_attributes(mnt, mnt_flags);
3390 				unlock_mount_hash();
3391 			}
3392 		}
3393 		up_write(&sb->s_umount);
3394 	}
3395 
3396 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3397 
3398 	put_fs_context(fc);
3399 	return err;
3400 }
3401 
tree_contains_unbindable(struct mount * mnt)3402 static inline int tree_contains_unbindable(struct mount *mnt)
3403 {
3404 	struct mount *p;
3405 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3406 		if (IS_MNT_UNBINDABLE(p))
3407 			return 1;
3408 	}
3409 	return 0;
3410 }
3411 
do_set_group(struct path * from_path,struct path * to_path)3412 static int do_set_group(struct path *from_path, struct path *to_path)
3413 {
3414 	struct mount *from, *to;
3415 	int err;
3416 
3417 	from = real_mount(from_path->mnt);
3418 	to = real_mount(to_path->mnt);
3419 
3420 	namespace_lock();
3421 
3422 	err = -EINVAL;
3423 	/* To and From must be mounted */
3424 	if (!is_mounted(&from->mnt))
3425 		goto out;
3426 	if (!is_mounted(&to->mnt))
3427 		goto out;
3428 
3429 	err = -EPERM;
3430 	/* We should be allowed to modify mount namespaces of both mounts */
3431 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3432 		goto out;
3433 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3434 		goto out;
3435 
3436 	err = -EINVAL;
3437 	/* To and From paths should be mount roots */
3438 	if (!path_mounted(from_path))
3439 		goto out;
3440 	if (!path_mounted(to_path))
3441 		goto out;
3442 
3443 	/* Setting sharing groups is only allowed across same superblock */
3444 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3445 		goto out;
3446 
3447 	/* From mount root should be wider than To mount root */
3448 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3449 		goto out;
3450 
3451 	/* From mount should not have locked children in place of To's root */
3452 	if (__has_locked_children(from, to->mnt.mnt_root))
3453 		goto out;
3454 
3455 	/* Setting sharing groups is only allowed on private mounts */
3456 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3457 		goto out;
3458 
3459 	/* From should not be private */
3460 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3461 		goto out;
3462 
3463 	if (IS_MNT_SLAVE(from)) {
3464 		struct mount *m = from->mnt_master;
3465 
3466 		list_add(&to->mnt_slave, &from->mnt_slave);
3467 		to->mnt_master = m;
3468 	}
3469 
3470 	if (IS_MNT_SHARED(from)) {
3471 		to->mnt_group_id = from->mnt_group_id;
3472 		list_add(&to->mnt_share, &from->mnt_share);
3473 		lock_mount_hash();
3474 		set_mnt_shared(to);
3475 		unlock_mount_hash();
3476 	}
3477 
3478 	err = 0;
3479 out:
3480 	namespace_unlock();
3481 	return err;
3482 }
3483 
3484 /**
3485  * path_overmounted - check if path is overmounted
3486  * @path: path to check
3487  *
3488  * Check if path is overmounted, i.e., if there's a mount on top of
3489  * @path->mnt with @path->dentry as mountpoint.
3490  *
3491  * Context: namespace_sem must be held at least shared.
3492  * MUST NOT be called under lock_mount_hash() (there one should just
3493  * call __lookup_mnt() and check if it returns NULL).
3494  * Return: If path is overmounted true is returned, false if not.
3495  */
path_overmounted(const struct path * path)3496 static inline bool path_overmounted(const struct path *path)
3497 {
3498 	unsigned seq = read_seqbegin(&mount_lock);
3499 	bool no_child;
3500 
3501 	rcu_read_lock();
3502 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3503 	rcu_read_unlock();
3504 	if (need_seqretry(&mount_lock, seq)) {
3505 		read_seqlock_excl(&mount_lock);
3506 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3507 		read_sequnlock_excl(&mount_lock);
3508 	}
3509 	return unlikely(!no_child);
3510 }
3511 
3512 /**
3513  * can_move_mount_beneath - check that we can mount beneath the top mount
3514  * @from: mount to mount beneath
3515  * @to:   mount under which to mount
3516  * @mp:   mountpoint of @to
3517  *
3518  * - Make sure that @to->dentry is actually the root of a mount under
3519  *   which we can mount another mount.
3520  * - Make sure that nothing can be mounted beneath the caller's current
3521  *   root or the rootfs of the namespace.
3522  * - Make sure that the caller can unmount the topmost mount ensuring
3523  *   that the caller could reveal the underlying mountpoint.
3524  * - Ensure that nothing has been mounted on top of @from before we
3525  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3526  * - Prevent mounting beneath a mount if the propagation relationship
3527  *   between the source mount, parent mount, and top mount would lead to
3528  *   nonsensical mount trees.
3529  *
3530  * Context: This function expects namespace_lock() to be held.
3531  * Return: On success 0, and on error a negative error code is returned.
3532  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3533 static int can_move_mount_beneath(const struct path *from,
3534 				  const struct path *to,
3535 				  const struct mountpoint *mp)
3536 {
3537 	struct mount *mnt_from = real_mount(from->mnt),
3538 		     *mnt_to = real_mount(to->mnt),
3539 		     *parent_mnt_to = mnt_to->mnt_parent;
3540 
3541 	if (!mnt_has_parent(mnt_to))
3542 		return -EINVAL;
3543 
3544 	if (!path_mounted(to))
3545 		return -EINVAL;
3546 
3547 	if (IS_MNT_LOCKED(mnt_to))
3548 		return -EINVAL;
3549 
3550 	/* Avoid creating shadow mounts during mount propagation. */
3551 	if (path_overmounted(from))
3552 		return -EINVAL;
3553 
3554 	/*
3555 	 * Mounting beneath the rootfs only makes sense when the
3556 	 * semantics of pivot_root(".", ".") are used.
3557 	 */
3558 	if (&mnt_to->mnt == current->fs->root.mnt)
3559 		return -EINVAL;
3560 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3561 		return -EINVAL;
3562 
3563 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3564 		if (p == mnt_to)
3565 			return -EINVAL;
3566 
3567 	/*
3568 	 * If the parent mount propagates to the child mount this would
3569 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3570 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3571 	 * defeats the whole purpose of mounting beneath another mount.
3572 	 */
3573 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3574 		return -EINVAL;
3575 
3576 	/*
3577 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3578 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3579 	 * Afterwards @mnt_from would be mounted on top of
3580 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3581 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3582 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3583 	 * remounted on top of @c. Afterwards, @mnt_from would be
3584 	 * covered by a copy @c of @mnt_from and @c would be covered by
3585 	 * @mnt_from itself. This defeats the whole purpose of mounting
3586 	 * @mnt_from beneath @mnt_to.
3587 	 */
3588 	if (check_mnt(mnt_from) &&
3589 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3590 		return -EINVAL;
3591 
3592 	return 0;
3593 }
3594 
3595 /* may_use_mount() - check if a mount tree can be used
3596  * @mnt: vfsmount to be used
3597  *
3598  * This helper checks if the caller may use the mount tree starting
3599  * from @path->mnt. The caller may use the mount tree under the
3600  * following circumstances:
3601  *
3602  * (1) The caller is located in the mount namespace of the mount tree.
3603  *     This also implies that the mount does not belong to an anonymous
3604  *     mount namespace.
3605  * (2) The caller is trying to use a mount tree that belongs to an
3606  *     anonymous mount namespace.
3607  *
3608  *     For that to be safe, this helper enforces that the origin mount
3609  *     namespace the anonymous mount namespace was created from is the
3610  *     same as the caller's mount namespace by comparing the sequence
3611  *     numbers.
3612  *
3613  *     The ownership of a non-anonymous mount namespace such as the
3614  *     caller's cannot change.
3615  *     => We know that the caller's mount namespace is stable.
3616  *
3617  *     If the origin sequence number of the anonymous mount namespace is
3618  *     the same as the sequence number of the caller's mount namespace.
3619  *     => The owning namespaces are the same.
3620  *
3621  *     ==> The earlier capability check on the owning namespace of the
3622  *         caller's mount namespace ensures that the caller has the
3623  *         ability to use the mount tree.
3624  *
3625  * Returns true if the mount tree can be used, false otherwise.
3626  */
may_use_mount(struct mount * mnt)3627 static inline bool may_use_mount(struct mount *mnt)
3628 {
3629 	if (check_mnt(mnt))
3630 		return true;
3631 
3632 	/*
3633 	 * Make sure that noone unmounted the target path or somehow
3634 	 * managed to get their hands on something purely kernel
3635 	 * internal.
3636 	 */
3637 	if (!is_mounted(&mnt->mnt))
3638 		return false;
3639 
3640 	return check_anonymous_mnt(mnt);
3641 }
3642 
do_move_mount(struct path * old_path,struct path * new_path,enum mnt_tree_flags_t flags)3643 static int do_move_mount(struct path *old_path,
3644 			 struct path *new_path, enum mnt_tree_flags_t flags)
3645 {
3646 	struct mnt_namespace *ns;
3647 	struct mount *p;
3648 	struct mount *old;
3649 	struct mount *parent;
3650 	struct mountpoint *mp, *old_mp;
3651 	int err;
3652 	bool attached, beneath = flags & MNT_TREE_BENEATH;
3653 
3654 	mp = do_lock_mount(new_path, beneath);
3655 	if (IS_ERR(mp))
3656 		return PTR_ERR(mp);
3657 
3658 	old = real_mount(old_path->mnt);
3659 	p = real_mount(new_path->mnt);
3660 	parent = old->mnt_parent;
3661 	attached = mnt_has_parent(old);
3662 	if (attached)
3663 		flags |= MNT_TREE_MOVE;
3664 	old_mp = old->mnt_mp;
3665 	ns = old->mnt_ns;
3666 
3667 	err = -EINVAL;
3668 	/* The thing moved must be mounted... */
3669 	if (!is_mounted(&old->mnt))
3670 		goto out;
3671 
3672 	if (check_mnt(old)) {
3673 		/* if the source is in our namespace... */
3674 		/* ... it should be detachable from parent */
3675 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3676 			goto out;
3677 		/* ... and the target should be in our namespace */
3678 		if (!check_mnt(p))
3679 			goto out;
3680 	} else {
3681 		/*
3682 		 * otherwise the source must be the root of some anon namespace.
3683 		 * AV: check for mount being root of an anon namespace is worth
3684 		 * an inlined predicate...
3685 		 */
3686 		if (!is_anon_ns(ns) || mnt_has_parent(old))
3687 			goto out;
3688 		/*
3689 		 * Bail out early if the target is within the same namespace -
3690 		 * subsequent checks would've rejected that, but they lose
3691 		 * some corner cases if we check it early.
3692 		 */
3693 		if (ns == p->mnt_ns)
3694 			goto out;
3695 		/*
3696 		 * Target should be either in our namespace or in an acceptable
3697 		 * anon namespace, sensu check_anonymous_mnt().
3698 		 */
3699 		if (!may_use_mount(p))
3700 			goto out;
3701 	}
3702 
3703 	if (!path_mounted(old_path))
3704 		goto out;
3705 
3706 	if (d_is_dir(new_path->dentry) !=
3707 	    d_is_dir(old_path->dentry))
3708 		goto out;
3709 	/*
3710 	 * Don't move a mount residing in a shared parent.
3711 	 */
3712 	if (attached && IS_MNT_SHARED(parent))
3713 		goto out;
3714 
3715 	if (beneath) {
3716 		err = can_move_mount_beneath(old_path, new_path, mp);
3717 		if (err)
3718 			goto out;
3719 
3720 		err = -EINVAL;
3721 		p = p->mnt_parent;
3722 		flags |= MNT_TREE_BENEATH;
3723 	}
3724 
3725 	/*
3726 	 * Don't move a mount tree containing unbindable mounts to a destination
3727 	 * mount which is shared.
3728 	 */
3729 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3730 		goto out;
3731 	err = -ELOOP;
3732 	if (!check_for_nsfs_mounts(old))
3733 		goto out;
3734 	for (; mnt_has_parent(p); p = p->mnt_parent)
3735 		if (p == old)
3736 			goto out;
3737 
3738 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3739 	if (err)
3740 		goto out;
3741 
3742 	/* if the mount is moved, it should no longer be expire
3743 	 * automatically */
3744 	list_del_init(&old->mnt_expire);
3745 	if (attached)
3746 		put_mountpoint(old_mp);
3747 out:
3748 	unlock_mount(mp);
3749 	if (!err) {
3750 		if (attached) {
3751 			mntput_no_expire(parent);
3752 		} else {
3753 			/* Make sure we notice when we leak mounts. */
3754 			VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
3755 			free_mnt_ns(ns);
3756 		}
3757 	}
3758 	return err;
3759 }
3760 
do_move_mount_old(struct path * path,const char * old_name)3761 static int do_move_mount_old(struct path *path, const char *old_name)
3762 {
3763 	struct path old_path;
3764 	int err;
3765 
3766 	if (!old_name || !*old_name)
3767 		return -EINVAL;
3768 
3769 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3770 	if (err)
3771 		return err;
3772 
3773 	err = do_move_mount(&old_path, path, 0);
3774 	path_put(&old_path);
3775 	return err;
3776 }
3777 
3778 /*
3779  * add a mount into a namespace's mount tree
3780  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3781 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3782 			const struct path *path, int mnt_flags)
3783 {
3784 	struct mount *parent = real_mount(path->mnt);
3785 
3786 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3787 
3788 	if (unlikely(!check_mnt(parent))) {
3789 		/* that's acceptable only for automounts done in private ns */
3790 		if (!(mnt_flags & MNT_SHRINKABLE))
3791 			return -EINVAL;
3792 		/* ... and for those we'd better have mountpoint still alive */
3793 		if (!parent->mnt_ns)
3794 			return -EINVAL;
3795 	}
3796 
3797 	/* Refuse the same filesystem on the same mount point */
3798 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3799 		return -EBUSY;
3800 
3801 	if (d_is_symlink(newmnt->mnt.mnt_root))
3802 		return -EINVAL;
3803 
3804 	newmnt->mnt.mnt_flags = mnt_flags;
3805 	return graft_tree(newmnt, parent, mp);
3806 }
3807 
3808 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3809 
3810 /*
3811  * Create a new mount using a superblock configuration and request it
3812  * be added to the namespace tree.
3813  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3814 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3815 			   unsigned int mnt_flags)
3816 {
3817 	struct vfsmount *mnt;
3818 	struct mountpoint *mp;
3819 	struct super_block *sb = fc->root->d_sb;
3820 	int error;
3821 
3822 	error = security_sb_kern_mount(sb);
3823 	if (!error && mount_too_revealing(sb, &mnt_flags))
3824 		error = -EPERM;
3825 
3826 	if (unlikely(error)) {
3827 		fc_drop_locked(fc);
3828 		return error;
3829 	}
3830 
3831 	up_write(&sb->s_umount);
3832 
3833 	mnt = vfs_create_mount(fc);
3834 	if (IS_ERR(mnt))
3835 		return PTR_ERR(mnt);
3836 
3837 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3838 
3839 	mp = lock_mount(mountpoint);
3840 	if (IS_ERR(mp)) {
3841 		mntput(mnt);
3842 		return PTR_ERR(mp);
3843 	}
3844 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3845 	unlock_mount(mp);
3846 	if (error < 0)
3847 		mntput(mnt);
3848 	return error;
3849 }
3850 
3851 /*
3852  * create a new mount for userspace and request it to be added into the
3853  * namespace's tree
3854  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3855 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3856 			int mnt_flags, const char *name, void *data)
3857 {
3858 	struct file_system_type *type;
3859 	struct fs_context *fc;
3860 	const char *subtype = NULL;
3861 	int err = 0;
3862 
3863 	if (!fstype)
3864 		return -EINVAL;
3865 
3866 	type = get_fs_type(fstype);
3867 	if (!type)
3868 		return -ENODEV;
3869 
3870 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3871 		subtype = strchr(fstype, '.');
3872 		if (subtype) {
3873 			subtype++;
3874 			if (!*subtype) {
3875 				put_filesystem(type);
3876 				return -EINVAL;
3877 			}
3878 		}
3879 	}
3880 
3881 	fc = fs_context_for_mount(type, sb_flags);
3882 	put_filesystem(type);
3883 	if (IS_ERR(fc))
3884 		return PTR_ERR(fc);
3885 
3886 	/*
3887 	 * Indicate to the filesystem that the mount request is coming
3888 	 * from the legacy mount system call.
3889 	 */
3890 	fc->oldapi = true;
3891 
3892 	if (subtype)
3893 		err = vfs_parse_fs_string(fc, "subtype",
3894 					  subtype, strlen(subtype));
3895 	if (!err && name)
3896 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3897 	if (!err)
3898 		err = parse_monolithic_mount_data(fc, data);
3899 	if (!err && !mount_capable(fc))
3900 		err = -EPERM;
3901 	if (!err)
3902 		err = vfs_get_tree(fc);
3903 	if (!err)
3904 		err = do_new_mount_fc(fc, path, mnt_flags);
3905 
3906 	put_fs_context(fc);
3907 	return err;
3908 }
3909 
finish_automount(struct vfsmount * m,const struct path * path)3910 int finish_automount(struct vfsmount *m, const struct path *path)
3911 {
3912 	struct dentry *dentry = path->dentry;
3913 	struct mountpoint *mp;
3914 	struct mount *mnt;
3915 	int err;
3916 
3917 	if (!m)
3918 		return 0;
3919 	if (IS_ERR(m))
3920 		return PTR_ERR(m);
3921 
3922 	mnt = real_mount(m);
3923 
3924 	if (m->mnt_sb == path->mnt->mnt_sb &&
3925 	    m->mnt_root == dentry) {
3926 		err = -ELOOP;
3927 		goto discard;
3928 	}
3929 
3930 	/*
3931 	 * we don't want to use lock_mount() - in this case finding something
3932 	 * that overmounts our mountpoint to be means "quitely drop what we've
3933 	 * got", not "try to mount it on top".
3934 	 */
3935 	inode_lock(dentry->d_inode);
3936 	namespace_lock();
3937 	if (unlikely(cant_mount(dentry))) {
3938 		err = -ENOENT;
3939 		goto discard_locked;
3940 	}
3941 	if (path_overmounted(path)) {
3942 		err = 0;
3943 		goto discard_locked;
3944 	}
3945 	mp = get_mountpoint(dentry);
3946 	if (IS_ERR(mp)) {
3947 		err = PTR_ERR(mp);
3948 		goto discard_locked;
3949 	}
3950 
3951 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3952 	unlock_mount(mp);
3953 	if (unlikely(err))
3954 		goto discard;
3955 	return 0;
3956 
3957 discard_locked:
3958 	namespace_unlock();
3959 	inode_unlock(dentry->d_inode);
3960 discard:
3961 	/* remove m from any expiration list it may be on */
3962 	if (!list_empty(&mnt->mnt_expire)) {
3963 		namespace_lock();
3964 		list_del_init(&mnt->mnt_expire);
3965 		namespace_unlock();
3966 	}
3967 	mntput(m);
3968 	return err;
3969 }
3970 
3971 /**
3972  * mnt_set_expiry - Put a mount on an expiration list
3973  * @mnt: The mount to list.
3974  * @expiry_list: The list to add the mount to.
3975  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3976 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3977 {
3978 	namespace_lock();
3979 
3980 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3981 
3982 	namespace_unlock();
3983 }
3984 EXPORT_SYMBOL(mnt_set_expiry);
3985 
3986 /*
3987  * process a list of expirable mountpoints with the intent of discarding any
3988  * mountpoints that aren't in use and haven't been touched since last we came
3989  * here
3990  */
mark_mounts_for_expiry(struct list_head * mounts)3991 void mark_mounts_for_expiry(struct list_head *mounts)
3992 {
3993 	struct mount *mnt, *next;
3994 	LIST_HEAD(graveyard);
3995 
3996 	if (list_empty(mounts))
3997 		return;
3998 
3999 	namespace_lock();
4000 	lock_mount_hash();
4001 
4002 	/* extract from the expiration list every vfsmount that matches the
4003 	 * following criteria:
4004 	 * - already mounted
4005 	 * - only referenced by its parent vfsmount
4006 	 * - still marked for expiry (marked on the last call here; marks are
4007 	 *   cleared by mntput())
4008 	 */
4009 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
4010 		if (!is_mounted(&mnt->mnt))
4011 			continue;
4012 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
4013 			propagate_mount_busy(mnt, 1))
4014 			continue;
4015 		list_move(&mnt->mnt_expire, &graveyard);
4016 	}
4017 	while (!list_empty(&graveyard)) {
4018 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
4019 		touch_mnt_namespace(mnt->mnt_ns);
4020 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4021 	}
4022 	unlock_mount_hash();
4023 	namespace_unlock();
4024 }
4025 
4026 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
4027 
4028 /*
4029  * Ripoff of 'select_parent()'
4030  *
4031  * search the list of submounts for a given mountpoint, and move any
4032  * shrinkable submounts to the 'graveyard' list.
4033  */
select_submounts(struct mount * parent,struct list_head * graveyard)4034 static int select_submounts(struct mount *parent, struct list_head *graveyard)
4035 {
4036 	struct mount *this_parent = parent;
4037 	struct list_head *next;
4038 	int found = 0;
4039 
4040 repeat:
4041 	next = this_parent->mnt_mounts.next;
4042 resume:
4043 	while (next != &this_parent->mnt_mounts) {
4044 		struct list_head *tmp = next;
4045 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
4046 
4047 		next = tmp->next;
4048 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
4049 			continue;
4050 		/*
4051 		 * Descend a level if the d_mounts list is non-empty.
4052 		 */
4053 		if (!list_empty(&mnt->mnt_mounts)) {
4054 			this_parent = mnt;
4055 			goto repeat;
4056 		}
4057 
4058 		if (!propagate_mount_busy(mnt, 1)) {
4059 			list_move_tail(&mnt->mnt_expire, graveyard);
4060 			found++;
4061 		}
4062 	}
4063 	/*
4064 	 * All done at this level ... ascend and resume the search
4065 	 */
4066 	if (this_parent != parent) {
4067 		next = this_parent->mnt_child.next;
4068 		this_parent = this_parent->mnt_parent;
4069 		goto resume;
4070 	}
4071 	return found;
4072 }
4073 
4074 /*
4075  * process a list of expirable mountpoints with the intent of discarding any
4076  * submounts of a specific parent mountpoint
4077  *
4078  * mount_lock must be held for write
4079  */
shrink_submounts(struct mount * mnt)4080 static void shrink_submounts(struct mount *mnt)
4081 {
4082 	LIST_HEAD(graveyard);
4083 	struct mount *m;
4084 
4085 	/* extract submounts of 'mountpoint' from the expiration list */
4086 	while (select_submounts(mnt, &graveyard)) {
4087 		while (!list_empty(&graveyard)) {
4088 			m = list_first_entry(&graveyard, struct mount,
4089 						mnt_expire);
4090 			touch_mnt_namespace(m->mnt_ns);
4091 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4092 		}
4093 	}
4094 }
4095 
copy_mount_options(const void __user * data)4096 static void *copy_mount_options(const void __user * data)
4097 {
4098 	char *copy;
4099 	unsigned left, offset;
4100 
4101 	if (!data)
4102 		return NULL;
4103 
4104 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4105 	if (!copy)
4106 		return ERR_PTR(-ENOMEM);
4107 
4108 	left = copy_from_user(copy, data, PAGE_SIZE);
4109 
4110 	/*
4111 	 * Not all architectures have an exact copy_from_user(). Resort to
4112 	 * byte at a time.
4113 	 */
4114 	offset = PAGE_SIZE - left;
4115 	while (left) {
4116 		char c;
4117 		if (get_user(c, (const char __user *)data + offset))
4118 			break;
4119 		copy[offset] = c;
4120 		left--;
4121 		offset++;
4122 	}
4123 
4124 	if (left == PAGE_SIZE) {
4125 		kfree(copy);
4126 		return ERR_PTR(-EFAULT);
4127 	}
4128 
4129 	return copy;
4130 }
4131 
copy_mount_string(const void __user * data)4132 static char *copy_mount_string(const void __user *data)
4133 {
4134 	return data ? strndup_user(data, PATH_MAX) : NULL;
4135 }
4136 
4137 /*
4138  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4139  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4140  *
4141  * data is a (void *) that can point to any structure up to
4142  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4143  * information (or be NULL).
4144  *
4145  * Pre-0.97 versions of mount() didn't have a flags word.
4146  * When the flags word was introduced its top half was required
4147  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4148  * Therefore, if this magic number is present, it carries no information
4149  * and must be discarded.
4150  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)4151 int path_mount(const char *dev_name, struct path *path,
4152 		const char *type_page, unsigned long flags, void *data_page)
4153 {
4154 	unsigned int mnt_flags = 0, sb_flags;
4155 	int ret;
4156 
4157 	/* Discard magic */
4158 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4159 		flags &= ~MS_MGC_MSK;
4160 
4161 	/* Basic sanity checks */
4162 	if (data_page)
4163 		((char *)data_page)[PAGE_SIZE - 1] = 0;
4164 
4165 	if (flags & MS_NOUSER)
4166 		return -EINVAL;
4167 
4168 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4169 	if (ret)
4170 		return ret;
4171 	if (!may_mount())
4172 		return -EPERM;
4173 	if (flags & SB_MANDLOCK)
4174 		warn_mandlock();
4175 
4176 	/* Default to relatime unless overriden */
4177 	if (!(flags & MS_NOATIME))
4178 		mnt_flags |= MNT_RELATIME;
4179 
4180 	/* Separate the per-mountpoint flags */
4181 	if (flags & MS_NOSUID)
4182 		mnt_flags |= MNT_NOSUID;
4183 	if (flags & MS_NODEV)
4184 		mnt_flags |= MNT_NODEV;
4185 	if (flags & MS_NOEXEC)
4186 		mnt_flags |= MNT_NOEXEC;
4187 	if (flags & MS_NOATIME)
4188 		mnt_flags |= MNT_NOATIME;
4189 	if (flags & MS_NODIRATIME)
4190 		mnt_flags |= MNT_NODIRATIME;
4191 	if (flags & MS_STRICTATIME)
4192 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4193 	if (flags & MS_RDONLY)
4194 		mnt_flags |= MNT_READONLY;
4195 	if (flags & MS_NOSYMFOLLOW)
4196 		mnt_flags |= MNT_NOSYMFOLLOW;
4197 
4198 	/* The default atime for remount is preservation */
4199 	if ((flags & MS_REMOUNT) &&
4200 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4201 		       MS_STRICTATIME)) == 0)) {
4202 		mnt_flags &= ~MNT_ATIME_MASK;
4203 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4204 	}
4205 
4206 	sb_flags = flags & (SB_RDONLY |
4207 			    SB_SYNCHRONOUS |
4208 			    SB_MANDLOCK |
4209 			    SB_DIRSYNC |
4210 			    SB_SILENT |
4211 			    SB_POSIXACL |
4212 			    SB_LAZYTIME |
4213 			    SB_I_VERSION);
4214 
4215 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4216 		return do_reconfigure_mnt(path, mnt_flags);
4217 	if (flags & MS_REMOUNT)
4218 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4219 	if (flags & MS_BIND)
4220 		return do_loopback(path, dev_name, flags & MS_REC);
4221 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4222 		return do_change_type(path, flags);
4223 	if (flags & MS_MOVE)
4224 		return do_move_mount_old(path, dev_name);
4225 
4226 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4227 			    data_page);
4228 }
4229 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4230 int do_mount(const char *dev_name, const char __user *dir_name,
4231 		const char *type_page, unsigned long flags, void *data_page)
4232 {
4233 	struct path path;
4234 	int ret;
4235 
4236 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4237 	if (ret)
4238 		return ret;
4239 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
4240 	path_put(&path);
4241 	return ret;
4242 }
4243 
inc_mnt_namespaces(struct user_namespace * ns)4244 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4245 {
4246 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4247 }
4248 
dec_mnt_namespaces(struct ucounts * ucounts)4249 static void dec_mnt_namespaces(struct ucounts *ucounts)
4250 {
4251 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4252 }
4253 
free_mnt_ns(struct mnt_namespace * ns)4254 static void free_mnt_ns(struct mnt_namespace *ns)
4255 {
4256 	if (!is_anon_ns(ns))
4257 		ns_free_inum(&ns->ns);
4258 	dec_mnt_namespaces(ns->ucounts);
4259 	mnt_ns_tree_remove(ns);
4260 }
4261 
4262 /*
4263  * Assign a sequence number so we can detect when we attempt to bind
4264  * mount a reference to an older mount namespace into the current
4265  * mount namespace, preventing reference counting loops.  A 64bit
4266  * number incrementing at 10Ghz will take 12,427 years to wrap which
4267  * is effectively never, so we can ignore the possibility.
4268  */
4269 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4270 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4271 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4272 {
4273 	struct mnt_namespace *new_ns;
4274 	struct ucounts *ucounts;
4275 	int ret;
4276 
4277 	ucounts = inc_mnt_namespaces(user_ns);
4278 	if (!ucounts)
4279 		return ERR_PTR(-ENOSPC);
4280 
4281 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4282 	if (!new_ns) {
4283 		dec_mnt_namespaces(ucounts);
4284 		return ERR_PTR(-ENOMEM);
4285 	}
4286 	if (!anon) {
4287 		ret = ns_alloc_inum(&new_ns->ns);
4288 		if (ret) {
4289 			kfree(new_ns);
4290 			dec_mnt_namespaces(ucounts);
4291 			return ERR_PTR(ret);
4292 		}
4293 	}
4294 	new_ns->ns.ops = &mntns_operations;
4295 	if (!anon)
4296 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4297 	refcount_set(&new_ns->ns.count, 1);
4298 	refcount_set(&new_ns->passive, 1);
4299 	new_ns->mounts = RB_ROOT;
4300 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4301 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4302 	init_waitqueue_head(&new_ns->poll);
4303 	new_ns->user_ns = get_user_ns(user_ns);
4304 	new_ns->ucounts = ucounts;
4305 	return new_ns;
4306 }
4307 
4308 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4309 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4310 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4311 {
4312 	struct mnt_namespace *new_ns;
4313 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4314 	struct mount *p, *q;
4315 	struct mount *old;
4316 	struct mount *new;
4317 	int copy_flags;
4318 
4319 	BUG_ON(!ns);
4320 
4321 	if (likely(!(flags & CLONE_NEWNS))) {
4322 		get_mnt_ns(ns);
4323 		return ns;
4324 	}
4325 
4326 	old = ns->root;
4327 
4328 	new_ns = alloc_mnt_ns(user_ns, false);
4329 	if (IS_ERR(new_ns))
4330 		return new_ns;
4331 
4332 	namespace_lock();
4333 	/* First pass: copy the tree topology */
4334 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4335 	if (user_ns != ns->user_ns)
4336 		copy_flags |= CL_SHARED_TO_SLAVE;
4337 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4338 	if (IS_ERR(new)) {
4339 		namespace_unlock();
4340 		ns_free_inum(&new_ns->ns);
4341 		dec_mnt_namespaces(new_ns->ucounts);
4342 		mnt_ns_release(new_ns);
4343 		return ERR_CAST(new);
4344 	}
4345 	if (user_ns != ns->user_ns) {
4346 		lock_mount_hash();
4347 		lock_mnt_tree(new);
4348 		unlock_mount_hash();
4349 	}
4350 	new_ns->root = new;
4351 
4352 	/*
4353 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4354 	 * as belonging to new namespace.  We have already acquired a private
4355 	 * fs_struct, so tsk->fs->lock is not needed.
4356 	 */
4357 	p = old;
4358 	q = new;
4359 	while (p) {
4360 		mnt_add_to_ns(new_ns, q);
4361 		new_ns->nr_mounts++;
4362 		if (new_fs) {
4363 			if (&p->mnt == new_fs->root.mnt) {
4364 				new_fs->root.mnt = mntget(&q->mnt);
4365 				rootmnt = &p->mnt;
4366 			}
4367 			if (&p->mnt == new_fs->pwd.mnt) {
4368 				new_fs->pwd.mnt = mntget(&q->mnt);
4369 				pwdmnt = &p->mnt;
4370 			}
4371 		}
4372 		p = next_mnt(p, old);
4373 		q = next_mnt(q, new);
4374 		if (!q)
4375 			break;
4376 		// an mntns binding we'd skipped?
4377 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4378 			p = next_mnt(skip_mnt_tree(p), old);
4379 	}
4380 	namespace_unlock();
4381 
4382 	if (rootmnt)
4383 		mntput(rootmnt);
4384 	if (pwdmnt)
4385 		mntput(pwdmnt);
4386 
4387 	mnt_ns_tree_add(new_ns);
4388 	return new_ns;
4389 }
4390 
mount_subtree(struct vfsmount * m,const char * name)4391 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4392 {
4393 	struct mount *mnt = real_mount(m);
4394 	struct mnt_namespace *ns;
4395 	struct super_block *s;
4396 	struct path path;
4397 	int err;
4398 
4399 	ns = alloc_mnt_ns(&init_user_ns, true);
4400 	if (IS_ERR(ns)) {
4401 		mntput(m);
4402 		return ERR_CAST(ns);
4403 	}
4404 	ns->root = mnt;
4405 	ns->nr_mounts++;
4406 	mnt_add_to_ns(ns, mnt);
4407 
4408 	err = vfs_path_lookup(m->mnt_root, m,
4409 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4410 
4411 	put_mnt_ns(ns);
4412 
4413 	if (err)
4414 		return ERR_PTR(err);
4415 
4416 	/* trade a vfsmount reference for active sb one */
4417 	s = path.mnt->mnt_sb;
4418 	atomic_inc(&s->s_active);
4419 	mntput(path.mnt);
4420 	/* lock the sucker */
4421 	down_write(&s->s_umount);
4422 	/* ... and return the root of (sub)tree on it */
4423 	return path.dentry;
4424 }
4425 EXPORT_SYMBOL(mount_subtree);
4426 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4427 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4428 		char __user *, type, unsigned long, flags, void __user *, data)
4429 {
4430 	int ret;
4431 	char *kernel_type;
4432 	char *kernel_dev;
4433 	void *options;
4434 
4435 	kernel_type = copy_mount_string(type);
4436 	ret = PTR_ERR(kernel_type);
4437 	if (IS_ERR(kernel_type))
4438 		goto out_type;
4439 
4440 	kernel_dev = copy_mount_string(dev_name);
4441 	ret = PTR_ERR(kernel_dev);
4442 	if (IS_ERR(kernel_dev))
4443 		goto out_dev;
4444 
4445 	options = copy_mount_options(data);
4446 	ret = PTR_ERR(options);
4447 	if (IS_ERR(options))
4448 		goto out_data;
4449 
4450 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4451 
4452 	kfree(options);
4453 out_data:
4454 	kfree(kernel_dev);
4455 out_dev:
4456 	kfree(kernel_type);
4457 out_type:
4458 	return ret;
4459 }
4460 
4461 #define FSMOUNT_VALID_FLAGS                                                    \
4462 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4463 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4464 	 MOUNT_ATTR_NOSYMFOLLOW)
4465 
4466 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4467 
4468 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4469 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4470 
attr_flags_to_mnt_flags(u64 attr_flags)4471 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4472 {
4473 	unsigned int mnt_flags = 0;
4474 
4475 	if (attr_flags & MOUNT_ATTR_RDONLY)
4476 		mnt_flags |= MNT_READONLY;
4477 	if (attr_flags & MOUNT_ATTR_NOSUID)
4478 		mnt_flags |= MNT_NOSUID;
4479 	if (attr_flags & MOUNT_ATTR_NODEV)
4480 		mnt_flags |= MNT_NODEV;
4481 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4482 		mnt_flags |= MNT_NOEXEC;
4483 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4484 		mnt_flags |= MNT_NODIRATIME;
4485 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4486 		mnt_flags |= MNT_NOSYMFOLLOW;
4487 
4488 	return mnt_flags;
4489 }
4490 
4491 /*
4492  * Create a kernel mount representation for a new, prepared superblock
4493  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4494  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4495 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4496 		unsigned int, attr_flags)
4497 {
4498 	struct mnt_namespace *ns;
4499 	struct fs_context *fc;
4500 	struct file *file;
4501 	struct path newmount;
4502 	struct mount *mnt;
4503 	unsigned int mnt_flags = 0;
4504 	long ret;
4505 
4506 	if (!may_mount())
4507 		return -EPERM;
4508 
4509 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4510 		return -EINVAL;
4511 
4512 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4513 		return -EINVAL;
4514 
4515 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4516 
4517 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4518 	case MOUNT_ATTR_STRICTATIME:
4519 		break;
4520 	case MOUNT_ATTR_NOATIME:
4521 		mnt_flags |= MNT_NOATIME;
4522 		break;
4523 	case MOUNT_ATTR_RELATIME:
4524 		mnt_flags |= MNT_RELATIME;
4525 		break;
4526 	default:
4527 		return -EINVAL;
4528 	}
4529 
4530 	CLASS(fd, f)(fs_fd);
4531 	if (fd_empty(f))
4532 		return -EBADF;
4533 
4534 	if (fd_file(f)->f_op != &fscontext_fops)
4535 		return -EINVAL;
4536 
4537 	fc = fd_file(f)->private_data;
4538 
4539 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4540 	if (ret < 0)
4541 		return ret;
4542 
4543 	/* There must be a valid superblock or we can't mount it */
4544 	ret = -EINVAL;
4545 	if (!fc->root)
4546 		goto err_unlock;
4547 
4548 	ret = -EPERM;
4549 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4550 		pr_warn("VFS: Mount too revealing\n");
4551 		goto err_unlock;
4552 	}
4553 
4554 	ret = -EBUSY;
4555 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4556 		goto err_unlock;
4557 
4558 	if (fc->sb_flags & SB_MANDLOCK)
4559 		warn_mandlock();
4560 
4561 	newmount.mnt = vfs_create_mount(fc);
4562 	if (IS_ERR(newmount.mnt)) {
4563 		ret = PTR_ERR(newmount.mnt);
4564 		goto err_unlock;
4565 	}
4566 	newmount.dentry = dget(fc->root);
4567 	newmount.mnt->mnt_flags = mnt_flags;
4568 
4569 	/* We've done the mount bit - now move the file context into more or
4570 	 * less the same state as if we'd done an fspick().  We don't want to
4571 	 * do any memory allocation or anything like that at this point as we
4572 	 * don't want to have to handle any errors incurred.
4573 	 */
4574 	vfs_clean_context(fc);
4575 
4576 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4577 	if (IS_ERR(ns)) {
4578 		ret = PTR_ERR(ns);
4579 		goto err_path;
4580 	}
4581 	mnt = real_mount(newmount.mnt);
4582 	ns->root = mnt;
4583 	ns->nr_mounts = 1;
4584 	mnt_add_to_ns(ns, mnt);
4585 	mntget(newmount.mnt);
4586 
4587 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4588 	 * it, not just simply put it.
4589 	 */
4590 	file = dentry_open(&newmount, O_PATH, fc->cred);
4591 	if (IS_ERR(file)) {
4592 		dissolve_on_fput(newmount.mnt);
4593 		ret = PTR_ERR(file);
4594 		goto err_path;
4595 	}
4596 	file->f_mode |= FMODE_NEED_UNMOUNT;
4597 
4598 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4599 	if (ret >= 0)
4600 		fd_install(ret, file);
4601 	else
4602 		fput(file);
4603 
4604 err_path:
4605 	path_put(&newmount);
4606 err_unlock:
4607 	mutex_unlock(&fc->uapi_mutex);
4608 	return ret;
4609 }
4610 
vfs_move_mount(struct path * from_path,struct path * to_path,enum mnt_tree_flags_t mflags)4611 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4612 				 enum mnt_tree_flags_t mflags)
4613 {
4614 	int ret;
4615 
4616 	ret = security_move_mount(from_path, to_path);
4617 	if (ret)
4618 		return ret;
4619 
4620 	if (mflags & MNT_TREE_PROPAGATION)
4621 		return do_set_group(from_path, to_path);
4622 
4623 	return do_move_mount(from_path, to_path, mflags);
4624 }
4625 
4626 /*
4627  * Move a mount from one place to another.  In combination with
4628  * fsopen()/fsmount() this is used to install a new mount and in combination
4629  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4630  * a mount subtree.
4631  *
4632  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4633  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4634 SYSCALL_DEFINE5(move_mount,
4635 		int, from_dfd, const char __user *, from_pathname,
4636 		int, to_dfd, const char __user *, to_pathname,
4637 		unsigned int, flags)
4638 {
4639 	struct path to_path __free(path_put) = {};
4640 	struct path from_path __free(path_put) = {};
4641 	struct filename *to_name __free(putname) = NULL;
4642 	struct filename *from_name __free(putname) = NULL;
4643 	unsigned int lflags, uflags;
4644 	enum mnt_tree_flags_t mflags = 0;
4645 	int ret = 0;
4646 
4647 	if (!may_mount())
4648 		return -EPERM;
4649 
4650 	if (flags & ~MOVE_MOUNT__MASK)
4651 		return -EINVAL;
4652 
4653 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4654 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4655 		return -EINVAL;
4656 
4657 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4658 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4659 
4660 	lflags = 0;
4661 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4662 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4663 	uflags = 0;
4664 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	uflags = AT_EMPTY_PATH;
4665 	from_name = getname_maybe_null(from_pathname, uflags);
4666 	if (IS_ERR(from_name))
4667 		return PTR_ERR(from_name);
4668 
4669 	lflags = 0;
4670 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4671 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4672 	uflags = 0;
4673 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	uflags = AT_EMPTY_PATH;
4674 	to_name = getname_maybe_null(to_pathname, uflags);
4675 	if (IS_ERR(to_name))
4676 		return PTR_ERR(to_name);
4677 
4678 	if (!to_name && to_dfd >= 0) {
4679 		CLASS(fd_raw, f_to)(to_dfd);
4680 		if (fd_empty(f_to))
4681 			return -EBADF;
4682 
4683 		to_path = fd_file(f_to)->f_path;
4684 		path_get(&to_path);
4685 	} else {
4686 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4687 		if (ret)
4688 			return ret;
4689 	}
4690 
4691 	if (!from_name && from_dfd >= 0) {
4692 		CLASS(fd_raw, f_from)(from_dfd);
4693 		if (fd_empty(f_from))
4694 			return -EBADF;
4695 
4696 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4697 	}
4698 
4699 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4700 	if (ret)
4701 		return ret;
4702 
4703 	return vfs_move_mount(&from_path, &to_path, mflags);
4704 }
4705 
4706 /*
4707  * Return true if path is reachable from root
4708  *
4709  * namespace_sem or mount_lock is held
4710  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4711 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4712 			 const struct path *root)
4713 {
4714 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4715 		dentry = mnt->mnt_mountpoint;
4716 		mnt = mnt->mnt_parent;
4717 	}
4718 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4719 }
4720 
path_is_under(const struct path * path1,const struct path * path2)4721 bool path_is_under(const struct path *path1, const struct path *path2)
4722 {
4723 	bool res;
4724 	read_seqlock_excl(&mount_lock);
4725 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4726 	read_sequnlock_excl(&mount_lock);
4727 	return res;
4728 }
4729 EXPORT_SYMBOL(path_is_under);
4730 
4731 /*
4732  * pivot_root Semantics:
4733  * Moves the root file system of the current process to the directory put_old,
4734  * makes new_root as the new root file system of the current process, and sets
4735  * root/cwd of all processes which had them on the current root to new_root.
4736  *
4737  * Restrictions:
4738  * The new_root and put_old must be directories, and  must not be on the
4739  * same file  system as the current process root. The put_old  must  be
4740  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4741  * pointed to by put_old must yield the same directory as new_root. No other
4742  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4743  *
4744  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4745  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4746  * in this situation.
4747  *
4748  * Notes:
4749  *  - we don't move root/cwd if they are not at the root (reason: if something
4750  *    cared enough to change them, it's probably wrong to force them elsewhere)
4751  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4752  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4753  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4754  *    first.
4755  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4756 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4757 		const char __user *, put_old)
4758 {
4759 	struct path new, old, root;
4760 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4761 	struct mountpoint *old_mp, *root_mp;
4762 	int error;
4763 
4764 	if (!may_mount())
4765 		return -EPERM;
4766 
4767 	error = user_path_at(AT_FDCWD, new_root,
4768 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4769 	if (error)
4770 		goto out0;
4771 
4772 	error = user_path_at(AT_FDCWD, put_old,
4773 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4774 	if (error)
4775 		goto out1;
4776 
4777 	error = security_sb_pivotroot(&old, &new);
4778 	if (error)
4779 		goto out2;
4780 
4781 	get_fs_root(current->fs, &root);
4782 	old_mp = lock_mount(&old);
4783 	error = PTR_ERR(old_mp);
4784 	if (IS_ERR(old_mp))
4785 		goto out3;
4786 
4787 	error = -EINVAL;
4788 	new_mnt = real_mount(new.mnt);
4789 	root_mnt = real_mount(root.mnt);
4790 	old_mnt = real_mount(old.mnt);
4791 	ex_parent = new_mnt->mnt_parent;
4792 	root_parent = root_mnt->mnt_parent;
4793 	if (IS_MNT_SHARED(old_mnt) ||
4794 		IS_MNT_SHARED(ex_parent) ||
4795 		IS_MNT_SHARED(root_parent))
4796 		goto out4;
4797 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4798 		goto out4;
4799 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4800 		goto out4;
4801 	error = -ENOENT;
4802 	if (d_unlinked(new.dentry))
4803 		goto out4;
4804 	error = -EBUSY;
4805 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4806 		goto out4; /* loop, on the same file system  */
4807 	error = -EINVAL;
4808 	if (!path_mounted(&root))
4809 		goto out4; /* not a mountpoint */
4810 	if (!mnt_has_parent(root_mnt))
4811 		goto out4; /* not attached */
4812 	if (!path_mounted(&new))
4813 		goto out4; /* not a mountpoint */
4814 	if (!mnt_has_parent(new_mnt))
4815 		goto out4; /* not attached */
4816 	/* make sure we can reach put_old from new_root */
4817 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4818 		goto out4;
4819 	/* make certain new is below the root */
4820 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4821 		goto out4;
4822 	lock_mount_hash();
4823 	umount_mnt(new_mnt);
4824 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4825 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4826 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4827 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4828 	}
4829 	/* mount old root on put_old */
4830 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4831 	/* mount new_root on / */
4832 	attach_mnt(new_mnt, root_parent, root_mp, false);
4833 	mnt_add_count(root_parent, -1);
4834 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4835 	/* A moved mount should not expire automatically */
4836 	list_del_init(&new_mnt->mnt_expire);
4837 	put_mountpoint(root_mp);
4838 	unlock_mount_hash();
4839 	mnt_notify_add(root_mnt);
4840 	mnt_notify_add(new_mnt);
4841 	chroot_fs_refs(&root, &new);
4842 	error = 0;
4843 out4:
4844 	unlock_mount(old_mp);
4845 	if (!error)
4846 		mntput_no_expire(ex_parent);
4847 out3:
4848 	path_put(&root);
4849 out2:
4850 	path_put(&old);
4851 out1:
4852 	path_put(&new);
4853 out0:
4854 	return error;
4855 }
4856 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4857 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4858 {
4859 	unsigned int flags = mnt->mnt.mnt_flags;
4860 
4861 	/*  flags to clear */
4862 	flags &= ~kattr->attr_clr;
4863 	/* flags to raise */
4864 	flags |= kattr->attr_set;
4865 
4866 	return flags;
4867 }
4868 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4869 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4870 {
4871 	struct vfsmount *m = &mnt->mnt;
4872 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4873 
4874 	if (!kattr->mnt_idmap)
4875 		return 0;
4876 
4877 	/*
4878 	 * Creating an idmapped mount with the filesystem wide idmapping
4879 	 * doesn't make sense so block that. We don't allow mushy semantics.
4880 	 */
4881 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4882 		return -EINVAL;
4883 
4884 	/*
4885 	 * We only allow an mount to change it's idmapping if it has
4886 	 * never been accessible to userspace.
4887 	 */
4888 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4889 		return -EPERM;
4890 
4891 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4892 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4893 		return -EINVAL;
4894 
4895 	/* The filesystem has turned off idmapped mounts. */
4896 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4897 		return -EINVAL;
4898 
4899 	/* We're not controlling the superblock. */
4900 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4901 		return -EPERM;
4902 
4903 	/* Mount has already been visible in the filesystem hierarchy. */
4904 	if (!is_anon_ns(mnt->mnt_ns))
4905 		return -EINVAL;
4906 
4907 	return 0;
4908 }
4909 
4910 /**
4911  * mnt_allow_writers() - check whether the attribute change allows writers
4912  * @kattr: the new mount attributes
4913  * @mnt: the mount to which @kattr will be applied
4914  *
4915  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4916  *
4917  * Return: true if writers need to be held, false if not
4918  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4919 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4920 				     const struct mount *mnt)
4921 {
4922 	return (!(kattr->attr_set & MNT_READONLY) ||
4923 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4924 	       !kattr->mnt_idmap;
4925 }
4926 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4927 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4928 {
4929 	struct mount *m;
4930 	int err;
4931 
4932 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4933 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4934 			err = -EPERM;
4935 			break;
4936 		}
4937 
4938 		err = can_idmap_mount(kattr, m);
4939 		if (err)
4940 			break;
4941 
4942 		if (!mnt_allow_writers(kattr, m)) {
4943 			err = mnt_hold_writers(m);
4944 			if (err)
4945 				break;
4946 		}
4947 
4948 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4949 			return 0;
4950 	}
4951 
4952 	if (err) {
4953 		struct mount *p;
4954 
4955 		/*
4956 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4957 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4958 		 * mounts and needs to take care to include the first mount.
4959 		 */
4960 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4961 			/* If we had to hold writers unblock them. */
4962 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4963 				mnt_unhold_writers(p);
4964 
4965 			/*
4966 			 * We're done once the first mount we changed got
4967 			 * MNT_WRITE_HOLD unset.
4968 			 */
4969 			if (p == m)
4970 				break;
4971 		}
4972 	}
4973 	return err;
4974 }
4975 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4976 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4977 {
4978 	struct mnt_idmap *old_idmap;
4979 
4980 	if (!kattr->mnt_idmap)
4981 		return;
4982 
4983 	old_idmap = mnt_idmap(&mnt->mnt);
4984 
4985 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4986 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4987 	mnt_idmap_put(old_idmap);
4988 }
4989 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4990 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4991 {
4992 	struct mount *m;
4993 
4994 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4995 		unsigned int flags;
4996 
4997 		do_idmap_mount(kattr, m);
4998 		flags = recalc_flags(kattr, m);
4999 		WRITE_ONCE(m->mnt.mnt_flags, flags);
5000 
5001 		/* If we had to hold writers unblock them. */
5002 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
5003 			mnt_unhold_writers(m);
5004 
5005 		if (kattr->propagation)
5006 			change_mnt_propagation(m, kattr->propagation);
5007 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
5008 			break;
5009 	}
5010 	touch_mnt_namespace(mnt->mnt_ns);
5011 }
5012 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)5013 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
5014 {
5015 	struct mount *mnt = real_mount(path->mnt);
5016 	int err = 0;
5017 
5018 	if (!path_mounted(path))
5019 		return -EINVAL;
5020 
5021 	if (kattr->mnt_userns) {
5022 		struct mnt_idmap *mnt_idmap;
5023 
5024 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
5025 		if (IS_ERR(mnt_idmap))
5026 			return PTR_ERR(mnt_idmap);
5027 		kattr->mnt_idmap = mnt_idmap;
5028 	}
5029 
5030 	if (kattr->propagation) {
5031 		/*
5032 		 * Only take namespace_lock() if we're actually changing
5033 		 * propagation.
5034 		 */
5035 		namespace_lock();
5036 		if (kattr->propagation == MS_SHARED) {
5037 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
5038 			if (err) {
5039 				namespace_unlock();
5040 				return err;
5041 			}
5042 		}
5043 	}
5044 
5045 	err = -EINVAL;
5046 	lock_mount_hash();
5047 
5048 	/* Ensure that this isn't anything purely vfs internal. */
5049 	if (!is_mounted(&mnt->mnt))
5050 		goto out;
5051 
5052 	/*
5053 	 * If this is an attached mount make sure it's located in the callers
5054 	 * mount namespace. If it's not don't let the caller interact with it.
5055 	 *
5056 	 * If this mount doesn't have a parent it's most often simply a
5057 	 * detached mount with an anonymous mount namespace. IOW, something
5058 	 * that's simply not attached yet. But there are apparently also users
5059 	 * that do change mount properties on the rootfs itself. That obviously
5060 	 * neither has a parent nor is it a detached mount so we cannot
5061 	 * unconditionally check for detached mounts.
5062 	 */
5063 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
5064 		goto out;
5065 
5066 	/*
5067 	 * First, we get the mount tree in a shape where we can change mount
5068 	 * properties without failure. If we succeeded to do so we commit all
5069 	 * changes and if we failed we clean up.
5070 	 */
5071 	err = mount_setattr_prepare(kattr, mnt);
5072 	if (!err)
5073 		mount_setattr_commit(kattr, mnt);
5074 
5075 out:
5076 	unlock_mount_hash();
5077 
5078 	if (kattr->propagation) {
5079 		if (err)
5080 			cleanup_group_ids(mnt, NULL);
5081 		namespace_unlock();
5082 	}
5083 
5084 	return err;
5085 }
5086 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5087 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
5088 				struct mount_kattr *kattr)
5089 {
5090 	struct ns_common *ns;
5091 	struct user_namespace *mnt_userns;
5092 
5093 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
5094 		return 0;
5095 
5096 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
5097 		/*
5098 		 * We can only remove an idmapping if it's never been
5099 		 * exposed to userspace.
5100 		 */
5101 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
5102 			return -EINVAL;
5103 
5104 		/*
5105 		 * Removal of idmappings is equivalent to setting
5106 		 * nop_mnt_idmap.
5107 		 */
5108 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
5109 			kattr->mnt_idmap = &nop_mnt_idmap;
5110 			return 0;
5111 		}
5112 	}
5113 
5114 	if (attr->userns_fd > INT_MAX)
5115 		return -EINVAL;
5116 
5117 	CLASS(fd, f)(attr->userns_fd);
5118 	if (fd_empty(f))
5119 		return -EBADF;
5120 
5121 	if (!proc_ns_file(fd_file(f)))
5122 		return -EINVAL;
5123 
5124 	ns = get_proc_ns(file_inode(fd_file(f)));
5125 	if (ns->ops->type != CLONE_NEWUSER)
5126 		return -EINVAL;
5127 
5128 	/*
5129 	 * The initial idmapping cannot be used to create an idmapped
5130 	 * mount. We use the initial idmapping as an indicator of a mount
5131 	 * that is not idmapped. It can simply be passed into helpers that
5132 	 * are aware of idmapped mounts as a convenient shortcut. A user
5133 	 * can just create a dedicated identity mapping to achieve the same
5134 	 * result.
5135 	 */
5136 	mnt_userns = container_of(ns, struct user_namespace, ns);
5137 	if (mnt_userns == &init_user_ns)
5138 		return -EPERM;
5139 
5140 	/* We're not controlling the target namespace. */
5141 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5142 		return -EPERM;
5143 
5144 	kattr->mnt_userns = get_user_ns(mnt_userns);
5145 	return 0;
5146 }
5147 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5148 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5149 			     struct mount_kattr *kattr)
5150 {
5151 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5152 		return -EINVAL;
5153 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5154 		return -EINVAL;
5155 	kattr->propagation = attr->propagation;
5156 
5157 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5158 		return -EINVAL;
5159 
5160 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5161 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5162 
5163 	/*
5164 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5165 	 * users wanting to transition to a different atime setting cannot
5166 	 * simply specify the atime setting in @attr_set, but must also
5167 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5168 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5169 	 * @attr_clr and that @attr_set can't have any atime bits set if
5170 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5171 	 */
5172 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5173 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5174 			return -EINVAL;
5175 
5176 		/*
5177 		 * Clear all previous time settings as they are mutually
5178 		 * exclusive.
5179 		 */
5180 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5181 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5182 		case MOUNT_ATTR_RELATIME:
5183 			kattr->attr_set |= MNT_RELATIME;
5184 			break;
5185 		case MOUNT_ATTR_NOATIME:
5186 			kattr->attr_set |= MNT_NOATIME;
5187 			break;
5188 		case MOUNT_ATTR_STRICTATIME:
5189 			break;
5190 		default:
5191 			return -EINVAL;
5192 		}
5193 	} else {
5194 		if (attr->attr_set & MOUNT_ATTR__ATIME)
5195 			return -EINVAL;
5196 	}
5197 
5198 	return build_mount_idmapped(attr, usize, kattr);
5199 }
5200 
finish_mount_kattr(struct mount_kattr * kattr)5201 static void finish_mount_kattr(struct mount_kattr *kattr)
5202 {
5203 	if (kattr->mnt_userns) {
5204 		put_user_ns(kattr->mnt_userns);
5205 		kattr->mnt_userns = NULL;
5206 	}
5207 
5208 	if (kattr->mnt_idmap)
5209 		mnt_idmap_put(kattr->mnt_idmap);
5210 }
5211 
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)5212 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5213 			       struct mount_kattr *kattr)
5214 {
5215 	int ret;
5216 	struct mount_attr attr;
5217 
5218 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5219 
5220 	if (unlikely(usize > PAGE_SIZE))
5221 		return -E2BIG;
5222 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5223 		return -EINVAL;
5224 
5225 	if (!may_mount())
5226 		return -EPERM;
5227 
5228 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5229 	if (ret)
5230 		return ret;
5231 
5232 	/* Don't bother walking through the mounts if this is a nop. */
5233 	if (attr.attr_set == 0 &&
5234 	    attr.attr_clr == 0 &&
5235 	    attr.propagation == 0)
5236 		return 0; /* Tell caller to not bother. */
5237 
5238 	ret = build_mount_kattr(&attr, usize, kattr);
5239 	if (ret < 0)
5240 		return ret;
5241 
5242 	return 1;
5243 }
5244 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)5245 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5246 		unsigned int, flags, struct mount_attr __user *, uattr,
5247 		size_t, usize)
5248 {
5249 	int err;
5250 	struct path target;
5251 	struct mount_kattr kattr;
5252 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5253 
5254 	if (flags & ~(AT_EMPTY_PATH |
5255 		      AT_RECURSIVE |
5256 		      AT_SYMLINK_NOFOLLOW |
5257 		      AT_NO_AUTOMOUNT))
5258 		return -EINVAL;
5259 
5260 	if (flags & AT_NO_AUTOMOUNT)
5261 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5262 	if (flags & AT_SYMLINK_NOFOLLOW)
5263 		lookup_flags &= ~LOOKUP_FOLLOW;
5264 	if (flags & AT_EMPTY_PATH)
5265 		lookup_flags |= LOOKUP_EMPTY;
5266 
5267 	kattr = (struct mount_kattr) {
5268 		.lookup_flags	= lookup_flags,
5269 	};
5270 
5271 	if (flags & AT_RECURSIVE)
5272 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5273 
5274 	err = wants_mount_setattr(uattr, usize, &kattr);
5275 	if (err <= 0)
5276 		return err;
5277 
5278 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5279 	if (!err) {
5280 		err = do_mount_setattr(&target, &kattr);
5281 		path_put(&target);
5282 	}
5283 	finish_mount_kattr(&kattr);
5284 	return err;
5285 }
5286 
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5287 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5288 		unsigned, flags, struct mount_attr __user *, uattr,
5289 		size_t, usize)
5290 {
5291 	struct file __free(fput) *file = NULL;
5292 	int fd;
5293 
5294 	if (!uattr && usize)
5295 		return -EINVAL;
5296 
5297 	file = vfs_open_tree(dfd, filename, flags);
5298 	if (IS_ERR(file))
5299 		return PTR_ERR(file);
5300 
5301 	if (uattr) {
5302 		int ret;
5303 		struct mount_kattr kattr = {};
5304 
5305 		kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5306 		if (flags & AT_RECURSIVE)
5307 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5308 
5309 		ret = wants_mount_setattr(uattr, usize, &kattr);
5310 		if (ret > 0) {
5311 			ret = do_mount_setattr(&file->f_path, &kattr);
5312 			finish_mount_kattr(&kattr);
5313 		}
5314 		if (ret)
5315 			return ret;
5316 	}
5317 
5318 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5319 	if (fd < 0)
5320 		return fd;
5321 
5322 	fd_install(fd, no_free_ptr(file));
5323 	return fd;
5324 }
5325 
show_path(struct seq_file * m,struct dentry * root)5326 int show_path(struct seq_file *m, struct dentry *root)
5327 {
5328 	if (root->d_sb->s_op->show_path)
5329 		return root->d_sb->s_op->show_path(m, root);
5330 
5331 	seq_dentry(m, root, " \t\n\\");
5332 	return 0;
5333 }
5334 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5335 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5336 {
5337 	struct mount *mnt = mnt_find_id_at(ns, id);
5338 
5339 	if (!mnt || mnt->mnt_id_unique != id)
5340 		return NULL;
5341 
5342 	return &mnt->mnt;
5343 }
5344 
5345 struct kstatmount {
5346 	struct statmount __user *buf;
5347 	size_t bufsize;
5348 	struct vfsmount *mnt;
5349 	struct mnt_idmap *idmap;
5350 	u64 mask;
5351 	struct path root;
5352 	struct seq_file seq;
5353 
5354 	/* Must be last --ends in a flexible-array member. */
5355 	struct statmount sm;
5356 };
5357 
mnt_to_attr_flags(struct vfsmount * mnt)5358 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5359 {
5360 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5361 	u64 attr_flags = 0;
5362 
5363 	if (mnt_flags & MNT_READONLY)
5364 		attr_flags |= MOUNT_ATTR_RDONLY;
5365 	if (mnt_flags & MNT_NOSUID)
5366 		attr_flags |= MOUNT_ATTR_NOSUID;
5367 	if (mnt_flags & MNT_NODEV)
5368 		attr_flags |= MOUNT_ATTR_NODEV;
5369 	if (mnt_flags & MNT_NOEXEC)
5370 		attr_flags |= MOUNT_ATTR_NOEXEC;
5371 	if (mnt_flags & MNT_NODIRATIME)
5372 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5373 	if (mnt_flags & MNT_NOSYMFOLLOW)
5374 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5375 
5376 	if (mnt_flags & MNT_NOATIME)
5377 		attr_flags |= MOUNT_ATTR_NOATIME;
5378 	else if (mnt_flags & MNT_RELATIME)
5379 		attr_flags |= MOUNT_ATTR_RELATIME;
5380 	else
5381 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5382 
5383 	if (is_idmapped_mnt(mnt))
5384 		attr_flags |= MOUNT_ATTR_IDMAP;
5385 
5386 	return attr_flags;
5387 }
5388 
mnt_to_propagation_flags(struct mount * m)5389 static u64 mnt_to_propagation_flags(struct mount *m)
5390 {
5391 	u64 propagation = 0;
5392 
5393 	if (IS_MNT_SHARED(m))
5394 		propagation |= MS_SHARED;
5395 	if (IS_MNT_SLAVE(m))
5396 		propagation |= MS_SLAVE;
5397 	if (IS_MNT_UNBINDABLE(m))
5398 		propagation |= MS_UNBINDABLE;
5399 	if (!propagation)
5400 		propagation |= MS_PRIVATE;
5401 
5402 	return propagation;
5403 }
5404 
statmount_sb_basic(struct kstatmount * s)5405 static void statmount_sb_basic(struct kstatmount *s)
5406 {
5407 	struct super_block *sb = s->mnt->mnt_sb;
5408 
5409 	s->sm.mask |= STATMOUNT_SB_BASIC;
5410 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5411 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5412 	s->sm.sb_magic = sb->s_magic;
5413 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5414 }
5415 
statmount_mnt_basic(struct kstatmount * s)5416 static void statmount_mnt_basic(struct kstatmount *s)
5417 {
5418 	struct mount *m = real_mount(s->mnt);
5419 
5420 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5421 	s->sm.mnt_id = m->mnt_id_unique;
5422 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5423 	s->sm.mnt_id_old = m->mnt_id;
5424 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5425 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5426 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5427 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
5428 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5429 }
5430 
statmount_propagate_from(struct kstatmount * s)5431 static void statmount_propagate_from(struct kstatmount *s)
5432 {
5433 	struct mount *m = real_mount(s->mnt);
5434 
5435 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5436 	if (IS_MNT_SLAVE(m))
5437 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5438 }
5439 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5440 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5441 {
5442 	int ret;
5443 	size_t start = seq->count;
5444 
5445 	ret = show_path(seq, s->mnt->mnt_root);
5446 	if (ret)
5447 		return ret;
5448 
5449 	if (unlikely(seq_has_overflowed(seq)))
5450 		return -EAGAIN;
5451 
5452 	/*
5453          * Unescape the result. It would be better if supplied string was not
5454          * escaped in the first place, but that's a pretty invasive change.
5455          */
5456 	seq->buf[seq->count] = '\0';
5457 	seq->count = start;
5458 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5459 	return 0;
5460 }
5461 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5462 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5463 {
5464 	struct vfsmount *mnt = s->mnt;
5465 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5466 	int err;
5467 
5468 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5469 	return err == SEQ_SKIP ? 0 : err;
5470 }
5471 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5472 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5473 {
5474 	struct super_block *sb = s->mnt->mnt_sb;
5475 
5476 	seq_puts(seq, sb->s_type->name);
5477 	return 0;
5478 }
5479 
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5480 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5481 {
5482 	struct super_block *sb = s->mnt->mnt_sb;
5483 
5484 	if (sb->s_subtype)
5485 		seq_puts(seq, sb->s_subtype);
5486 }
5487 
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5488 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5489 {
5490 	struct super_block *sb = s->mnt->mnt_sb;
5491 	struct mount *r = real_mount(s->mnt);
5492 
5493 	if (sb->s_op->show_devname) {
5494 		size_t start = seq->count;
5495 		int ret;
5496 
5497 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5498 		if (ret)
5499 			return ret;
5500 
5501 		if (unlikely(seq_has_overflowed(seq)))
5502 			return -EAGAIN;
5503 
5504 		/* Unescape the result */
5505 		seq->buf[seq->count] = '\0';
5506 		seq->count = start;
5507 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5508 	} else {
5509 		seq_puts(seq, r->mnt_devname);
5510 	}
5511 	return 0;
5512 }
5513 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5514 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5515 {
5516 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5517 	s->sm.mnt_ns_id = ns->seq;
5518 }
5519 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5520 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5521 {
5522 	struct vfsmount *mnt = s->mnt;
5523 	struct super_block *sb = mnt->mnt_sb;
5524 	size_t start = seq->count;
5525 	int err;
5526 
5527 	err = security_sb_show_options(seq, sb);
5528 	if (err)
5529 		return err;
5530 
5531 	if (sb->s_op->show_options) {
5532 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5533 		if (err)
5534 			return err;
5535 	}
5536 
5537 	if (unlikely(seq_has_overflowed(seq)))
5538 		return -EAGAIN;
5539 
5540 	if (seq->count == start)
5541 		return 0;
5542 
5543 	/* skip leading comma */
5544 	memmove(seq->buf + start, seq->buf + start + 1,
5545 		seq->count - start - 1);
5546 	seq->count--;
5547 
5548 	return 0;
5549 }
5550 
statmount_opt_process(struct seq_file * seq,size_t start)5551 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5552 {
5553 	char *buf_end, *opt_end, *src, *dst;
5554 	int count = 0;
5555 
5556 	if (unlikely(seq_has_overflowed(seq)))
5557 		return -EAGAIN;
5558 
5559 	buf_end = seq->buf + seq->count;
5560 	dst = seq->buf + start;
5561 	src = dst + 1;	/* skip initial comma */
5562 
5563 	if (src >= buf_end) {
5564 		seq->count = start;
5565 		return 0;
5566 	}
5567 
5568 	*buf_end = '\0';
5569 	for (; src < buf_end; src = opt_end + 1) {
5570 		opt_end = strchrnul(src, ',');
5571 		*opt_end = '\0';
5572 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5573 		if (WARN_ON_ONCE(++count == INT_MAX))
5574 			return -EOVERFLOW;
5575 	}
5576 	seq->count = dst - 1 - seq->buf;
5577 	return count;
5578 }
5579 
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5580 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5581 {
5582 	struct vfsmount *mnt = s->mnt;
5583 	struct super_block *sb = mnt->mnt_sb;
5584 	size_t start = seq->count;
5585 	int err;
5586 
5587 	if (!sb->s_op->show_options)
5588 		return 0;
5589 
5590 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5591 	if (err)
5592 		return err;
5593 
5594 	err = statmount_opt_process(seq, start);
5595 	if (err < 0)
5596 		return err;
5597 
5598 	s->sm.opt_num = err;
5599 	return 0;
5600 }
5601 
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5602 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5603 {
5604 	struct vfsmount *mnt = s->mnt;
5605 	struct super_block *sb = mnt->mnt_sb;
5606 	size_t start = seq->count;
5607 	int err;
5608 
5609 	err = security_sb_show_options(seq, sb);
5610 	if (err)
5611 		return err;
5612 
5613 	err = statmount_opt_process(seq, start);
5614 	if (err < 0)
5615 		return err;
5616 
5617 	s->sm.opt_sec_num = err;
5618 	return 0;
5619 }
5620 
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5621 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5622 {
5623 	int ret;
5624 
5625 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5626 	if (ret < 0)
5627 		return ret;
5628 
5629 	s->sm.mnt_uidmap_num = ret;
5630 	/*
5631 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5632 	 * mappings. This allows userspace to distinguish between a
5633 	 * non-idmapped mount and an idmapped mount where none of the
5634 	 * individual mappings are valid in the caller's idmapping.
5635 	 */
5636 	if (is_valid_mnt_idmap(s->idmap))
5637 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5638 	return 0;
5639 }
5640 
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5641 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5642 {
5643 	int ret;
5644 
5645 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5646 	if (ret < 0)
5647 		return ret;
5648 
5649 	s->sm.mnt_gidmap_num = ret;
5650 	/*
5651 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5652 	 * mappings. This allows userspace to distinguish between a
5653 	 * non-idmapped mount and an idmapped mount where none of the
5654 	 * individual mappings are valid in the caller's idmapping.
5655 	 */
5656 	if (is_valid_mnt_idmap(s->idmap))
5657 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5658 	return 0;
5659 }
5660 
statmount_string(struct kstatmount * s,u64 flag)5661 static int statmount_string(struct kstatmount *s, u64 flag)
5662 {
5663 	int ret = 0;
5664 	size_t kbufsize;
5665 	struct seq_file *seq = &s->seq;
5666 	struct statmount *sm = &s->sm;
5667 	u32 start, *offp;
5668 
5669 	/* Reserve an empty string at the beginning for any unset offsets */
5670 	if (!seq->count)
5671 		seq_putc(seq, 0);
5672 
5673 	start = seq->count;
5674 
5675 	switch (flag) {
5676 	case STATMOUNT_FS_TYPE:
5677 		offp = &sm->fs_type;
5678 		ret = statmount_fs_type(s, seq);
5679 		break;
5680 	case STATMOUNT_MNT_ROOT:
5681 		offp = &sm->mnt_root;
5682 		ret = statmount_mnt_root(s, seq);
5683 		break;
5684 	case STATMOUNT_MNT_POINT:
5685 		offp = &sm->mnt_point;
5686 		ret = statmount_mnt_point(s, seq);
5687 		break;
5688 	case STATMOUNT_MNT_OPTS:
5689 		offp = &sm->mnt_opts;
5690 		ret = statmount_mnt_opts(s, seq);
5691 		break;
5692 	case STATMOUNT_OPT_ARRAY:
5693 		offp = &sm->opt_array;
5694 		ret = statmount_opt_array(s, seq);
5695 		break;
5696 	case STATMOUNT_OPT_SEC_ARRAY:
5697 		offp = &sm->opt_sec_array;
5698 		ret = statmount_opt_sec_array(s, seq);
5699 		break;
5700 	case STATMOUNT_FS_SUBTYPE:
5701 		offp = &sm->fs_subtype;
5702 		statmount_fs_subtype(s, seq);
5703 		break;
5704 	case STATMOUNT_SB_SOURCE:
5705 		offp = &sm->sb_source;
5706 		ret = statmount_sb_source(s, seq);
5707 		break;
5708 	case STATMOUNT_MNT_UIDMAP:
5709 		sm->mnt_uidmap = start;
5710 		ret = statmount_mnt_uidmap(s, seq);
5711 		break;
5712 	case STATMOUNT_MNT_GIDMAP:
5713 		sm->mnt_gidmap = start;
5714 		ret = statmount_mnt_gidmap(s, seq);
5715 		break;
5716 	default:
5717 		WARN_ON_ONCE(true);
5718 		return -EINVAL;
5719 	}
5720 
5721 	/*
5722 	 * If nothing was emitted, return to avoid setting the flag
5723 	 * and terminating the buffer.
5724 	 */
5725 	if (seq->count == start)
5726 		return ret;
5727 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5728 		return -EOVERFLOW;
5729 	if (kbufsize >= s->bufsize)
5730 		return -EOVERFLOW;
5731 
5732 	/* signal a retry */
5733 	if (unlikely(seq_has_overflowed(seq)))
5734 		return -EAGAIN;
5735 
5736 	if (ret)
5737 		return ret;
5738 
5739 	seq->buf[seq->count++] = '\0';
5740 	sm->mask |= flag;
5741 	*offp = start;
5742 	return 0;
5743 }
5744 
copy_statmount_to_user(struct kstatmount * s)5745 static int copy_statmount_to_user(struct kstatmount *s)
5746 {
5747 	struct statmount *sm = &s->sm;
5748 	struct seq_file *seq = &s->seq;
5749 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5750 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5751 
5752 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5753 		return -EFAULT;
5754 
5755 	/* Return the number of bytes copied to the buffer */
5756 	sm->size = copysize + seq->count;
5757 	if (copy_to_user(s->buf, sm, copysize))
5758 		return -EFAULT;
5759 
5760 	return 0;
5761 }
5762 
listmnt_next(struct mount * curr,bool reverse)5763 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5764 {
5765 	struct rb_node *node;
5766 
5767 	if (reverse)
5768 		node = rb_prev(&curr->mnt_node);
5769 	else
5770 		node = rb_next(&curr->mnt_node);
5771 
5772 	return node_to_mount(node);
5773 }
5774 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5775 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5776 {
5777 	struct mount *first, *child;
5778 
5779 	rwsem_assert_held(&namespace_sem);
5780 
5781 	/* We're looking at our own ns, just use get_fs_root. */
5782 	if (ns == current->nsproxy->mnt_ns) {
5783 		get_fs_root(current->fs, root);
5784 		return 0;
5785 	}
5786 
5787 	/*
5788 	 * We have to find the first mount in our ns and use that, however it
5789 	 * may not exist, so handle that properly.
5790 	 */
5791 	if (mnt_ns_empty(ns))
5792 		return -ENOENT;
5793 
5794 	first = child = ns->root;
5795 	for (;;) {
5796 		child = listmnt_next(child, false);
5797 		if (!child)
5798 			return -ENOENT;
5799 		if (child->mnt_parent == first)
5800 			break;
5801 	}
5802 
5803 	root->mnt = mntget(&child->mnt);
5804 	root->dentry = dget(root->mnt->mnt_root);
5805 	return 0;
5806 }
5807 
5808 /* This must be updated whenever a new flag is added */
5809 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5810 			     STATMOUNT_MNT_BASIC | \
5811 			     STATMOUNT_PROPAGATE_FROM | \
5812 			     STATMOUNT_MNT_ROOT | \
5813 			     STATMOUNT_MNT_POINT | \
5814 			     STATMOUNT_FS_TYPE | \
5815 			     STATMOUNT_MNT_NS_ID | \
5816 			     STATMOUNT_MNT_OPTS | \
5817 			     STATMOUNT_FS_SUBTYPE | \
5818 			     STATMOUNT_SB_SOURCE | \
5819 			     STATMOUNT_OPT_ARRAY | \
5820 			     STATMOUNT_OPT_SEC_ARRAY | \
5821 			     STATMOUNT_SUPPORTED_MASK | \
5822 			     STATMOUNT_MNT_UIDMAP | \
5823 			     STATMOUNT_MNT_GIDMAP)
5824 
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5825 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5826 			struct mnt_namespace *ns)
5827 {
5828 	struct path root __free(path_put) = {};
5829 	struct mount *m;
5830 	int err;
5831 
5832 	/* Has the namespace already been emptied? */
5833 	if (mnt_ns_id && mnt_ns_empty(ns))
5834 		return -ENOENT;
5835 
5836 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5837 	if (!s->mnt)
5838 		return -ENOENT;
5839 
5840 	err = grab_requested_root(ns, &root);
5841 	if (err)
5842 		return err;
5843 
5844 	/*
5845 	 * Don't trigger audit denials. We just want to determine what
5846 	 * mounts to show users.
5847 	 */
5848 	m = real_mount(s->mnt);
5849 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5850 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5851 		return -EPERM;
5852 
5853 	err = security_sb_statfs(s->mnt->mnt_root);
5854 	if (err)
5855 		return err;
5856 
5857 	s->root = root;
5858 
5859 	/*
5860 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5861 	 * can change concurrently as we only hold the read-side of the
5862 	 * namespace semaphore and mount properties may change with only
5863 	 * the mount lock held.
5864 	 *
5865 	 * We could sample the mount lock sequence counter to detect
5866 	 * those changes and retry. But it's not worth it. Worst that
5867 	 * happens is that the mnt->mnt_idmap pointer is already changed
5868 	 * while mnt->mnt_flags isn't or vica versa. So what.
5869 	 *
5870 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5871 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5872 	 * torn read/write. That's all we care about right now.
5873 	 */
5874 	s->idmap = mnt_idmap(s->mnt);
5875 	if (s->mask & STATMOUNT_MNT_BASIC)
5876 		statmount_mnt_basic(s);
5877 
5878 	if (s->mask & STATMOUNT_SB_BASIC)
5879 		statmount_sb_basic(s);
5880 
5881 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5882 		statmount_propagate_from(s);
5883 
5884 	if (s->mask & STATMOUNT_FS_TYPE)
5885 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5886 
5887 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5888 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5889 
5890 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5891 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5892 
5893 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5894 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5895 
5896 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5897 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5898 
5899 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5900 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5901 
5902 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5903 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5904 
5905 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5906 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5907 
5908 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5909 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5910 
5911 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5912 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5913 
5914 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5915 		statmount_mnt_ns_id(s, ns);
5916 
5917 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5918 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5919 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5920 	}
5921 
5922 	if (err)
5923 		return err;
5924 
5925 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5926 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5927 
5928 	return 0;
5929 }
5930 
retry_statmount(const long ret,size_t * seq_size)5931 static inline bool retry_statmount(const long ret, size_t *seq_size)
5932 {
5933 	if (likely(ret != -EAGAIN))
5934 		return false;
5935 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5936 		return false;
5937 	if (unlikely(*seq_size > MAX_RW_COUNT))
5938 		return false;
5939 	return true;
5940 }
5941 
5942 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5943 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5944 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5945 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5946 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5947 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5948 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5949 			      struct statmount __user *buf, size_t bufsize,
5950 			      size_t seq_size)
5951 {
5952 	if (!access_ok(buf, bufsize))
5953 		return -EFAULT;
5954 
5955 	memset(ks, 0, sizeof(*ks));
5956 	ks->mask = kreq->param;
5957 	ks->buf = buf;
5958 	ks->bufsize = bufsize;
5959 
5960 	if (ks->mask & STATMOUNT_STRING_REQ) {
5961 		if (bufsize == sizeof(ks->sm))
5962 			return -EOVERFLOW;
5963 
5964 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5965 		if (!ks->seq.buf)
5966 			return -ENOMEM;
5967 
5968 		ks->seq.size = seq_size;
5969 	}
5970 
5971 	return 0;
5972 }
5973 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5974 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5975 			   struct mnt_id_req *kreq)
5976 {
5977 	int ret;
5978 	size_t usize;
5979 
5980 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5981 
5982 	ret = get_user(usize, &req->size);
5983 	if (ret)
5984 		return -EFAULT;
5985 	if (unlikely(usize > PAGE_SIZE))
5986 		return -E2BIG;
5987 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5988 		return -EINVAL;
5989 	memset(kreq, 0, sizeof(*kreq));
5990 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5991 	if (ret)
5992 		return ret;
5993 	if (kreq->spare != 0)
5994 		return -EINVAL;
5995 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5996 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5997 		return -EINVAL;
5998 	return 0;
5999 }
6000 
6001 /*
6002  * If the user requested a specific mount namespace id, look that up and return
6003  * that, or if not simply grab a passive reference on our mount namespace and
6004  * return that.
6005  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)6006 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
6007 {
6008 	struct mnt_namespace *mnt_ns;
6009 
6010 	if (kreq->mnt_ns_id && kreq->spare)
6011 		return ERR_PTR(-EINVAL);
6012 
6013 	if (kreq->mnt_ns_id)
6014 		return lookup_mnt_ns(kreq->mnt_ns_id);
6015 
6016 	if (kreq->spare) {
6017 		struct ns_common *ns;
6018 
6019 		CLASS(fd, f)(kreq->spare);
6020 		if (fd_empty(f))
6021 			return ERR_PTR(-EBADF);
6022 
6023 		if (!proc_ns_file(fd_file(f)))
6024 			return ERR_PTR(-EINVAL);
6025 
6026 		ns = get_proc_ns(file_inode(fd_file(f)));
6027 		if (ns->ops->type != CLONE_NEWNS)
6028 			return ERR_PTR(-EINVAL);
6029 
6030 		mnt_ns = to_mnt_ns(ns);
6031 	} else {
6032 		mnt_ns = current->nsproxy->mnt_ns;
6033 	}
6034 
6035 	refcount_inc(&mnt_ns->passive);
6036 	return mnt_ns;
6037 }
6038 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)6039 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
6040 		struct statmount __user *, buf, size_t, bufsize,
6041 		unsigned int, flags)
6042 {
6043 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6044 	struct kstatmount *ks __free(kfree) = NULL;
6045 	struct mnt_id_req kreq;
6046 	/* We currently support retrieval of 3 strings. */
6047 	size_t seq_size = 3 * PATH_MAX;
6048 	int ret;
6049 
6050 	if (flags)
6051 		return -EINVAL;
6052 
6053 	ret = copy_mnt_id_req(req, &kreq);
6054 	if (ret)
6055 		return ret;
6056 
6057 	ns = grab_requested_mnt_ns(&kreq);
6058 	if (!ns)
6059 		return -ENOENT;
6060 
6061 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6062 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6063 		return -ENOENT;
6064 
6065 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
6066 	if (!ks)
6067 		return -ENOMEM;
6068 
6069 retry:
6070 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
6071 	if (ret)
6072 		return ret;
6073 
6074 	scoped_guard(rwsem_read, &namespace_sem)
6075 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
6076 
6077 	if (!ret)
6078 		ret = copy_statmount_to_user(ks);
6079 	kvfree(ks->seq.buf);
6080 	if (retry_statmount(ret, &seq_size))
6081 		goto retry;
6082 	return ret;
6083 }
6084 
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)6085 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
6086 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
6087 			    bool reverse)
6088 {
6089 	struct path root __free(path_put) = {};
6090 	struct path orig;
6091 	struct mount *r, *first;
6092 	ssize_t ret;
6093 
6094 	rwsem_assert_held(&namespace_sem);
6095 
6096 	ret = grab_requested_root(ns, &root);
6097 	if (ret)
6098 		return ret;
6099 
6100 	if (mnt_parent_id == LSMT_ROOT) {
6101 		orig = root;
6102 	} else {
6103 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
6104 		if (!orig.mnt)
6105 			return -ENOENT;
6106 		orig.dentry = orig.mnt->mnt_root;
6107 	}
6108 
6109 	/*
6110 	 * Don't trigger audit denials. We just want to determine what
6111 	 * mounts to show users.
6112 	 */
6113 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
6114 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6115 		return -EPERM;
6116 
6117 	ret = security_sb_statfs(orig.dentry);
6118 	if (ret)
6119 		return ret;
6120 
6121 	if (!last_mnt_id) {
6122 		if (reverse)
6123 			first = node_to_mount(ns->mnt_last_node);
6124 		else
6125 			first = node_to_mount(ns->mnt_first_node);
6126 	} else {
6127 		if (reverse)
6128 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6129 		else
6130 			first = mnt_find_id_at(ns, last_mnt_id + 1);
6131 	}
6132 
6133 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6134 		if (r->mnt_id_unique == mnt_parent_id)
6135 			continue;
6136 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6137 			continue;
6138 		*mnt_ids = r->mnt_id_unique;
6139 		mnt_ids++;
6140 		nr_mnt_ids--;
6141 		ret++;
6142 	}
6143 	return ret;
6144 }
6145 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)6146 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6147 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6148 {
6149 	u64 *kmnt_ids __free(kvfree) = NULL;
6150 	const size_t maxcount = 1000000;
6151 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6152 	struct mnt_id_req kreq;
6153 	u64 last_mnt_id;
6154 	ssize_t ret;
6155 
6156 	if (flags & ~LISTMOUNT_REVERSE)
6157 		return -EINVAL;
6158 
6159 	/*
6160 	 * If the mount namespace really has more than 1 million mounts the
6161 	 * caller must iterate over the mount namespace (and reconsider their
6162 	 * system design...).
6163 	 */
6164 	if (unlikely(nr_mnt_ids > maxcount))
6165 		return -EOVERFLOW;
6166 
6167 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6168 		return -EFAULT;
6169 
6170 	ret = copy_mnt_id_req(req, &kreq);
6171 	if (ret)
6172 		return ret;
6173 
6174 	last_mnt_id = kreq.param;
6175 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6176 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6177 		return -EINVAL;
6178 
6179 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6180 				  GFP_KERNEL_ACCOUNT);
6181 	if (!kmnt_ids)
6182 		return -ENOMEM;
6183 
6184 	ns = grab_requested_mnt_ns(&kreq);
6185 	if (!ns)
6186 		return -ENOENT;
6187 
6188 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6189 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6190 		return -ENOENT;
6191 
6192 	/*
6193 	 * We only need to guard against mount topology changes as
6194 	 * listmount() doesn't care about any mount properties.
6195 	 */
6196 	scoped_guard(rwsem_read, &namespace_sem)
6197 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6198 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6199 	if (ret <= 0)
6200 		return ret;
6201 
6202 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6203 		return -EFAULT;
6204 
6205 	return ret;
6206 }
6207 
init_mount_tree(void)6208 static void __init init_mount_tree(void)
6209 {
6210 	struct vfsmount *mnt;
6211 	struct mount *m;
6212 	struct mnt_namespace *ns;
6213 	struct path root;
6214 
6215 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6216 	if (IS_ERR(mnt))
6217 		panic("Can't create rootfs");
6218 
6219 	ns = alloc_mnt_ns(&init_user_ns, false);
6220 	if (IS_ERR(ns))
6221 		panic("Can't allocate initial namespace");
6222 	m = real_mount(mnt);
6223 	ns->root = m;
6224 	ns->nr_mounts = 1;
6225 	mnt_add_to_ns(ns, m);
6226 	init_task.nsproxy->mnt_ns = ns;
6227 	get_mnt_ns(ns);
6228 
6229 	root.mnt = mnt;
6230 	root.dentry = mnt->mnt_root;
6231 	mnt->mnt_flags |= MNT_LOCKED;
6232 
6233 	set_fs_pwd(current->fs, &root);
6234 	set_fs_root(current->fs, &root);
6235 
6236 	mnt_ns_tree_add(ns);
6237 }
6238 
mnt_init(void)6239 void __init mnt_init(void)
6240 {
6241 	int err;
6242 
6243 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6244 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6245 
6246 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6247 				sizeof(struct hlist_head),
6248 				mhash_entries, 19,
6249 				HASH_ZERO,
6250 				&m_hash_shift, &m_hash_mask, 0, 0);
6251 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6252 				sizeof(struct hlist_head),
6253 				mphash_entries, 19,
6254 				HASH_ZERO,
6255 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6256 
6257 	if (!mount_hashtable || !mountpoint_hashtable)
6258 		panic("Failed to allocate mount hash table\n");
6259 
6260 	kernfs_init();
6261 
6262 	err = sysfs_init();
6263 	if (err)
6264 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6265 			__func__, err);
6266 	fs_kobj = kobject_create_and_add("fs", NULL);
6267 	if (!fs_kobj)
6268 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6269 	shmem_init();
6270 	init_rootfs();
6271 	init_mount_tree();
6272 }
6273 
put_mnt_ns(struct mnt_namespace * ns)6274 void put_mnt_ns(struct mnt_namespace *ns)
6275 {
6276 	if (!refcount_dec_and_test(&ns->ns.count))
6277 		return;
6278 	namespace_lock();
6279 	lock_mount_hash();
6280 	umount_tree(ns->root, 0);
6281 	unlock_mount_hash();
6282 	namespace_unlock();
6283 	free_mnt_ns(ns);
6284 }
6285 
kern_mount(struct file_system_type * type)6286 struct vfsmount *kern_mount(struct file_system_type *type)
6287 {
6288 	struct vfsmount *mnt;
6289 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6290 	if (!IS_ERR(mnt)) {
6291 		/*
6292 		 * it is a longterm mount, don't release mnt until
6293 		 * we unmount before file sys is unregistered
6294 		*/
6295 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6296 	}
6297 	return mnt;
6298 }
6299 EXPORT_SYMBOL_GPL(kern_mount);
6300 
kern_unmount(struct vfsmount * mnt)6301 void kern_unmount(struct vfsmount *mnt)
6302 {
6303 	/* release long term mount so mount point can be released */
6304 	if (!IS_ERR(mnt)) {
6305 		mnt_make_shortterm(mnt);
6306 		synchronize_rcu();	/* yecchhh... */
6307 		mntput(mnt);
6308 	}
6309 }
6310 EXPORT_SYMBOL(kern_unmount);
6311 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6312 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6313 {
6314 	unsigned int i;
6315 
6316 	for (i = 0; i < num; i++)
6317 		mnt_make_shortterm(mnt[i]);
6318 	synchronize_rcu_expedited();
6319 	for (i = 0; i < num; i++)
6320 		mntput(mnt[i]);
6321 }
6322 EXPORT_SYMBOL(kern_unmount_array);
6323 
our_mnt(struct vfsmount * mnt)6324 bool our_mnt(struct vfsmount *mnt)
6325 {
6326 	return check_mnt(real_mount(mnt));
6327 }
6328 
current_chrooted(void)6329 bool current_chrooted(void)
6330 {
6331 	/* Does the current process have a non-standard root */
6332 	struct path ns_root;
6333 	struct path fs_root;
6334 	bool chrooted;
6335 
6336 	/* Find the namespace root */
6337 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
6338 	ns_root.dentry = ns_root.mnt->mnt_root;
6339 	path_get(&ns_root);
6340 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6341 		;
6342 
6343 	get_fs_root(current->fs, &fs_root);
6344 
6345 	chrooted = !path_equal(&fs_root, &ns_root);
6346 
6347 	path_put(&fs_root);
6348 	path_put(&ns_root);
6349 
6350 	return chrooted;
6351 }
6352 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6353 static bool mnt_already_visible(struct mnt_namespace *ns,
6354 				const struct super_block *sb,
6355 				int *new_mnt_flags)
6356 {
6357 	int new_flags = *new_mnt_flags;
6358 	struct mount *mnt, *n;
6359 	bool visible = false;
6360 
6361 	down_read(&namespace_sem);
6362 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6363 		struct mount *child;
6364 		int mnt_flags;
6365 
6366 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6367 			continue;
6368 
6369 		/* This mount is not fully visible if it's root directory
6370 		 * is not the root directory of the filesystem.
6371 		 */
6372 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6373 			continue;
6374 
6375 		/* A local view of the mount flags */
6376 		mnt_flags = mnt->mnt.mnt_flags;
6377 
6378 		/* Don't miss readonly hidden in the superblock flags */
6379 		if (sb_rdonly(mnt->mnt.mnt_sb))
6380 			mnt_flags |= MNT_LOCK_READONLY;
6381 
6382 		/* Verify the mount flags are equal to or more permissive
6383 		 * than the proposed new mount.
6384 		 */
6385 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6386 		    !(new_flags & MNT_READONLY))
6387 			continue;
6388 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6389 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6390 			continue;
6391 
6392 		/* This mount is not fully visible if there are any
6393 		 * locked child mounts that cover anything except for
6394 		 * empty directories.
6395 		 */
6396 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6397 			struct inode *inode = child->mnt_mountpoint->d_inode;
6398 			/* Only worry about locked mounts */
6399 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6400 				continue;
6401 			/* Is the directory permanently empty? */
6402 			if (!is_empty_dir_inode(inode))
6403 				goto next;
6404 		}
6405 		/* Preserve the locked attributes */
6406 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6407 					       MNT_LOCK_ATIME);
6408 		visible = true;
6409 		goto found;
6410 	next:	;
6411 	}
6412 found:
6413 	up_read(&namespace_sem);
6414 	return visible;
6415 }
6416 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6417 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6418 {
6419 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6420 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6421 	unsigned long s_iflags;
6422 
6423 	if (ns->user_ns == &init_user_ns)
6424 		return false;
6425 
6426 	/* Can this filesystem be too revealing? */
6427 	s_iflags = sb->s_iflags;
6428 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6429 		return false;
6430 
6431 	if ((s_iflags & required_iflags) != required_iflags) {
6432 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6433 			  required_iflags);
6434 		return true;
6435 	}
6436 
6437 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6438 }
6439 
mnt_may_suid(struct vfsmount * mnt)6440 bool mnt_may_suid(struct vfsmount *mnt)
6441 {
6442 	/*
6443 	 * Foreign mounts (accessed via fchdir or through /proc
6444 	 * symlinks) are always treated as if they are nosuid.  This
6445 	 * prevents namespaces from trusting potentially unsafe
6446 	 * suid/sgid bits, file caps, or security labels that originate
6447 	 * in other namespaces.
6448 	 */
6449 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6450 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6451 }
6452 
mntns_get(struct task_struct * task)6453 static struct ns_common *mntns_get(struct task_struct *task)
6454 {
6455 	struct ns_common *ns = NULL;
6456 	struct nsproxy *nsproxy;
6457 
6458 	task_lock(task);
6459 	nsproxy = task->nsproxy;
6460 	if (nsproxy) {
6461 		ns = &nsproxy->mnt_ns->ns;
6462 		get_mnt_ns(to_mnt_ns(ns));
6463 	}
6464 	task_unlock(task);
6465 
6466 	return ns;
6467 }
6468 
mntns_put(struct ns_common * ns)6469 static void mntns_put(struct ns_common *ns)
6470 {
6471 	put_mnt_ns(to_mnt_ns(ns));
6472 }
6473 
mntns_install(struct nsset * nsset,struct ns_common * ns)6474 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6475 {
6476 	struct nsproxy *nsproxy = nsset->nsproxy;
6477 	struct fs_struct *fs = nsset->fs;
6478 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6479 	struct user_namespace *user_ns = nsset->cred->user_ns;
6480 	struct path root;
6481 	int err;
6482 
6483 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6484 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6485 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6486 		return -EPERM;
6487 
6488 	if (is_anon_ns(mnt_ns))
6489 		return -EINVAL;
6490 
6491 	if (fs->users != 1)
6492 		return -EINVAL;
6493 
6494 	get_mnt_ns(mnt_ns);
6495 	old_mnt_ns = nsproxy->mnt_ns;
6496 	nsproxy->mnt_ns = mnt_ns;
6497 
6498 	/* Find the root */
6499 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6500 				"/", LOOKUP_DOWN, &root);
6501 	if (err) {
6502 		/* revert to old namespace */
6503 		nsproxy->mnt_ns = old_mnt_ns;
6504 		put_mnt_ns(mnt_ns);
6505 		return err;
6506 	}
6507 
6508 	put_mnt_ns(old_mnt_ns);
6509 
6510 	/* Update the pwd and root */
6511 	set_fs_pwd(fs, &root);
6512 	set_fs_root(fs, &root);
6513 
6514 	path_put(&root);
6515 	return 0;
6516 }
6517 
mntns_owner(struct ns_common * ns)6518 static struct user_namespace *mntns_owner(struct ns_common *ns)
6519 {
6520 	return to_mnt_ns(ns)->user_ns;
6521 }
6522 
6523 const struct proc_ns_operations mntns_operations = {
6524 	.name		= "mnt",
6525 	.type		= CLONE_NEWNS,
6526 	.get		= mntns_get,
6527 	.put		= mntns_put,
6528 	.install	= mntns_install,
6529 	.owner		= mntns_owner,
6530 };
6531 
6532 #ifdef CONFIG_SYSCTL
6533 static const struct ctl_table fs_namespace_sysctls[] = {
6534 	{
6535 		.procname	= "mount-max",
6536 		.data		= &sysctl_mount_max,
6537 		.maxlen		= sizeof(unsigned int),
6538 		.mode		= 0644,
6539 		.proc_handler	= proc_dointvec_minmax,
6540 		.extra1		= SYSCTL_ONE,
6541 	},
6542 };
6543 
init_fs_namespace_sysctls(void)6544 static int __init init_fs_namespace_sysctls(void)
6545 {
6546 	register_sysctl_init("fs", fs_namespace_sysctls);
6547 	return 0;
6548 }
6549 fs_initcall(init_fs_namespace_sysctls);
6550 
6551 #endif /* CONFIG_SYSCTL */
6552