1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36
37 #include "pnode.h"
38 #include "internal.h"
39
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
75
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84
85 struct mount_kattr {
86 unsigned int attr_set;
87 unsigned int attr_clr;
88 unsigned int propagation;
89 unsigned int lookup_flags;
90 bool recurse;
91 struct user_namespace *mnt_userns;
92 struct mnt_idmap *mnt_idmap;
93 };
94
95 /* /sys/fs */
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
98
99 /*
100 * vfsmount lock may be taken for read to prevent changes to the
101 * vfsmount hash, ie. during mountpoint lookups or walking back
102 * up the tree.
103 *
104 * It should be taken for write in all cases where the vfsmount
105 * tree or hash is modified or when a vfsmount structure is modified.
106 */
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108
mnt_ns_cmp(u64 seq,const struct mnt_namespace * ns)109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
110 {
111 u64 seq_b = ns->seq;
112
113 if (seq < seq_b)
114 return -1;
115 if (seq > seq_b)
116 return 1;
117 return 0;
118 }
119
node_to_mnt_ns(const struct rb_node * node)120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 if (!node)
123 return NULL;
124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126
mnt_ns_less(struct rb_node * a,const struct rb_node * b)127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 {
129 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 u64 seq_a = ns_a->seq;
132
133 return mnt_ns_cmp(seq_a, ns_b) < 0;
134 }
135
mnt_ns_tree_add(struct mnt_namespace * ns)136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 {
138 guard(write_lock)(&mnt_ns_tree_lock);
139 rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
140 }
141
mnt_ns_release(struct mnt_namespace * ns)142 static void mnt_ns_release(struct mnt_namespace *ns)
143 {
144 lockdep_assert_not_held(&mnt_ns_tree_lock);
145
146 /* keep alive for {list,stat}mount() */
147 if (refcount_dec_and_test(&ns->passive)) {
148 put_user_ns(ns->user_ns);
149 kfree(ns);
150 }
151 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 {
156 /* remove from global mount namespace list */
157 if (!is_anon_ns(ns)) {
158 guard(write_lock)(&mnt_ns_tree_lock);
159 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
160 }
161
162 mnt_ns_release(ns);
163 }
164
165 /*
166 * Returns the mount namespace which either has the specified id, or has the
167 * next smallest id afer the specified one.
168 */
mnt_ns_find_id_at(u64 mnt_ns_id)169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 {
171 struct rb_node *node = mnt_ns_tree.rb_node;
172 struct mnt_namespace *ret = NULL;
173
174 lockdep_assert_held(&mnt_ns_tree_lock);
175
176 while (node) {
177 struct mnt_namespace *n = node_to_mnt_ns(node);
178
179 if (mnt_ns_id <= n->seq) {
180 ret = node_to_mnt_ns(node);
181 if (mnt_ns_id == n->seq)
182 break;
183 node = node->rb_left;
184 } else {
185 node = node->rb_right;
186 }
187 }
188 return ret;
189 }
190
191 /*
192 * Lookup a mount namespace by id and take a passive reference count. Taking a
193 * passive reference means the mount namespace can be emptied if e.g., the last
194 * task holding an active reference exits. To access the mounts of the
195 * namespace the @namespace_sem must first be acquired. If the namespace has
196 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197 * see that the mount rbtree of the namespace is empty.
198 */
lookup_mnt_ns(u64 mnt_ns_id)199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 {
201 struct mnt_namespace *ns;
202
203 guard(read_lock)(&mnt_ns_tree_lock);
204 ns = mnt_ns_find_id_at(mnt_ns_id);
205 if (!ns || ns->seq != mnt_ns_id)
206 return NULL;
207
208 refcount_inc(&ns->passive);
209 return ns;
210 }
211
lock_mount_hash(void)212 static inline void lock_mount_hash(void)
213 {
214 write_seqlock(&mount_lock);
215 }
216
unlock_mount_hash(void)217 static inline void unlock_mount_hash(void)
218 {
219 write_sequnlock(&mount_lock);
220 }
221
m_hash(struct vfsmount * mnt,struct dentry * dentry)222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 {
224 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 tmp = tmp + (tmp >> m_hash_shift);
227 return &mount_hashtable[tmp & m_hash_mask];
228 }
229
mp_hash(struct dentry * dentry)230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 {
232 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 tmp = tmp + (tmp >> mp_hash_shift);
234 return &mountpoint_hashtable[tmp & mp_hash_mask];
235 }
236
mnt_alloc_id(struct mount * mnt)237 static int mnt_alloc_id(struct mount *mnt)
238 {
239 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
240
241 if (res < 0)
242 return res;
243 mnt->mnt_id = res;
244 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
245 return 0;
246 }
247
mnt_free_id(struct mount * mnt)248 static void mnt_free_id(struct mount *mnt)
249 {
250 ida_free(&mnt_id_ida, mnt->mnt_id);
251 }
252
253 /*
254 * Allocate a new peer group ID
255 */
mnt_alloc_group_id(struct mount * mnt)256 static int mnt_alloc_group_id(struct mount *mnt)
257 {
258 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
259
260 if (res < 0)
261 return res;
262 mnt->mnt_group_id = res;
263 return 0;
264 }
265
266 /*
267 * Release a peer group ID
268 */
mnt_release_group_id(struct mount * mnt)269 void mnt_release_group_id(struct mount *mnt)
270 {
271 ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 mnt->mnt_group_id = 0;
273 }
274
275 /*
276 * vfsmount lock must be held for read
277 */
mnt_add_count(struct mount * mnt,int n)278 static inline void mnt_add_count(struct mount *mnt, int n)
279 {
280 #ifdef CONFIG_SMP
281 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
282 #else
283 preempt_disable();
284 mnt->mnt_count += n;
285 preempt_enable();
286 #endif
287 }
288
289 /*
290 * vfsmount lock must be held for write
291 */
mnt_get_count(struct mount * mnt)292 int mnt_get_count(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_count;
305 #endif
306 }
307
alloc_vfsmnt(const char * name)308 static struct mount *alloc_vfsmnt(const char *name)
309 {
310 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
311 if (mnt) {
312 int err;
313
314 err = mnt_alloc_id(mnt);
315 if (err)
316 goto out_free_cache;
317
318 if (name) {
319 mnt->mnt_devname = kstrdup_const(name,
320 GFP_KERNEL_ACCOUNT);
321 if (!mnt->mnt_devname)
322 goto out_free_id;
323 }
324
325 #ifdef CONFIG_SMP
326 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 if (!mnt->mnt_pcp)
328 goto out_free_devname;
329
330 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
331 #else
332 mnt->mnt_count = 1;
333 mnt->mnt_writers = 0;
334 #endif
335
336 INIT_HLIST_NODE(&mnt->mnt_hash);
337 INIT_LIST_HEAD(&mnt->mnt_child);
338 INIT_LIST_HEAD(&mnt->mnt_mounts);
339 INIT_LIST_HEAD(&mnt->mnt_list);
340 INIT_LIST_HEAD(&mnt->mnt_expire);
341 INIT_LIST_HEAD(&mnt->mnt_share);
342 INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 INIT_LIST_HEAD(&mnt->mnt_slave);
344 INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 INIT_LIST_HEAD(&mnt->mnt_umounting);
346 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 RB_CLEAR_NODE(&mnt->mnt_node);
348 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
349 }
350 return mnt;
351
352 #ifdef CONFIG_SMP
353 out_free_devname:
354 kfree_const(mnt->mnt_devname);
355 #endif
356 out_free_id:
357 mnt_free_id(mnt);
358 out_free_cache:
359 kmem_cache_free(mnt_cache, mnt);
360 return NULL;
361 }
362
363 /*
364 * Most r/o checks on a fs are for operations that take
365 * discrete amounts of time, like a write() or unlink().
366 * We must keep track of when those operations start
367 * (for permission checks) and when they end, so that
368 * we can determine when writes are able to occur to
369 * a filesystem.
370 */
371 /*
372 * __mnt_is_readonly: check whether a mount is read-only
373 * @mnt: the mount to check for its write status
374 *
375 * This shouldn't be used directly ouside of the VFS.
376 * It does not guarantee that the filesystem will stay
377 * r/w, just that it is right *now*. This can not and
378 * should not be used in place of IS_RDONLY(inode).
379 * mnt_want/drop_write() will _keep_ the filesystem
380 * r/w.
381 */
__mnt_is_readonly(struct vfsmount * mnt)382 bool __mnt_is_readonly(struct vfsmount *mnt)
383 {
384 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
385 }
386 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
387
mnt_inc_writers(struct mount * mnt)388 static inline void mnt_inc_writers(struct mount *mnt)
389 {
390 #ifdef CONFIG_SMP
391 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
392 #else
393 mnt->mnt_writers++;
394 #endif
395 }
396
mnt_dec_writers(struct mount * mnt)397 static inline void mnt_dec_writers(struct mount *mnt)
398 {
399 #ifdef CONFIG_SMP
400 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
401 #else
402 mnt->mnt_writers--;
403 #endif
404 }
405
mnt_get_writers(struct mount * mnt)406 static unsigned int mnt_get_writers(struct mount *mnt)
407 {
408 #ifdef CONFIG_SMP
409 unsigned int count = 0;
410 int cpu;
411
412 for_each_possible_cpu(cpu) {
413 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
414 }
415
416 return count;
417 #else
418 return mnt->mnt_writers;
419 #endif
420 }
421
mnt_is_readonly(struct vfsmount * mnt)422 static int mnt_is_readonly(struct vfsmount *mnt)
423 {
424 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
425 return 1;
426 /*
427 * The barrier pairs with the barrier in sb_start_ro_state_change()
428 * making sure if we don't see s_readonly_remount set yet, we also will
429 * not see any superblock / mount flag changes done by remount.
430 * It also pairs with the barrier in sb_end_ro_state_change()
431 * assuring that if we see s_readonly_remount already cleared, we will
432 * see the values of superblock / mount flags updated by remount.
433 */
434 smp_rmb();
435 return __mnt_is_readonly(mnt);
436 }
437
438 /*
439 * Most r/o & frozen checks on a fs are for operations that take discrete
440 * amounts of time, like a write() or unlink(). We must keep track of when
441 * those operations start (for permission checks) and when they end, so that we
442 * can determine when writes are able to occur to a filesystem.
443 */
444 /**
445 * mnt_get_write_access - get write access to a mount without freeze protection
446 * @m: the mount on which to take a write
447 *
448 * This tells the low-level filesystem that a write is about to be performed to
449 * it, and makes sure that writes are allowed (mnt it read-write) before
450 * returning success. This operation does not protect against filesystem being
451 * frozen. When the write operation is finished, mnt_put_write_access() must be
452 * called. This is effectively a refcount.
453 */
mnt_get_write_access(struct vfsmount * m)454 int mnt_get_write_access(struct vfsmount *m)
455 {
456 struct mount *mnt = real_mount(m);
457 int ret = 0;
458
459 preempt_disable();
460 mnt_inc_writers(mnt);
461 /*
462 * The store to mnt_inc_writers must be visible before we pass
463 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
464 * incremented count after it has set MNT_WRITE_HOLD.
465 */
466 smp_mb();
467 might_lock(&mount_lock.lock);
468 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
469 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
470 cpu_relax();
471 } else {
472 /*
473 * This prevents priority inversion, if the task
474 * setting MNT_WRITE_HOLD got preempted on a remote
475 * CPU, and it prevents life lock if the task setting
476 * MNT_WRITE_HOLD has a lower priority and is bound to
477 * the same CPU as the task that is spinning here.
478 */
479 preempt_enable();
480 lock_mount_hash();
481 unlock_mount_hash();
482 preempt_disable();
483 }
484 }
485 /*
486 * The barrier pairs with the barrier sb_start_ro_state_change() making
487 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
488 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
489 * mnt_is_readonly() and bail in case we are racing with remount
490 * read-only.
491 */
492 smp_rmb();
493 if (mnt_is_readonly(m)) {
494 mnt_dec_writers(mnt);
495 ret = -EROFS;
496 }
497 preempt_enable();
498
499 return ret;
500 }
501 EXPORT_SYMBOL_GPL(mnt_get_write_access);
502
503 /**
504 * mnt_want_write - get write access to a mount
505 * @m: the mount on which to take a write
506 *
507 * This tells the low-level filesystem that a write is about to be performed to
508 * it, and makes sure that writes are allowed (mount is read-write, filesystem
509 * is not frozen) before returning success. When the write operation is
510 * finished, mnt_drop_write() must be called. This is effectively a refcount.
511 */
mnt_want_write(struct vfsmount * m)512 int mnt_want_write(struct vfsmount *m)
513 {
514 int ret;
515
516 sb_start_write(m->mnt_sb);
517 ret = mnt_get_write_access(m);
518 if (ret)
519 sb_end_write(m->mnt_sb);
520 return ret;
521 }
522 EXPORT_SYMBOL_GPL(mnt_want_write);
523
524 /**
525 * mnt_get_write_access_file - get write access to a file's mount
526 * @file: the file who's mount on which to take a write
527 *
528 * This is like mnt_get_write_access, but if @file is already open for write it
529 * skips incrementing mnt_writers (since the open file already has a reference)
530 * and instead only does the check for emergency r/o remounts. This must be
531 * paired with mnt_put_write_access_file.
532 */
mnt_get_write_access_file(struct file * file)533 int mnt_get_write_access_file(struct file *file)
534 {
535 if (file->f_mode & FMODE_WRITER) {
536 /*
537 * Superblock may have become readonly while there are still
538 * writable fd's, e.g. due to a fs error with errors=remount-ro
539 */
540 if (__mnt_is_readonly(file->f_path.mnt))
541 return -EROFS;
542 return 0;
543 }
544 return mnt_get_write_access(file->f_path.mnt);
545 }
546
547 /**
548 * mnt_want_write_file - get write access to a file's mount
549 * @file: the file who's mount on which to take a write
550 *
551 * This is like mnt_want_write, but if the file is already open for writing it
552 * skips incrementing mnt_writers (since the open file already has a reference)
553 * and instead only does the freeze protection and the check for emergency r/o
554 * remounts. This must be paired with mnt_drop_write_file.
555 */
mnt_want_write_file(struct file * file)556 int mnt_want_write_file(struct file *file)
557 {
558 int ret;
559
560 sb_start_write(file_inode(file)->i_sb);
561 ret = mnt_get_write_access_file(file);
562 if (ret)
563 sb_end_write(file_inode(file)->i_sb);
564 return ret;
565 }
566 EXPORT_SYMBOL_GPL(mnt_want_write_file);
567
568 /**
569 * mnt_put_write_access - give up write access to a mount
570 * @mnt: the mount on which to give up write access
571 *
572 * Tells the low-level filesystem that we are done
573 * performing writes to it. Must be matched with
574 * mnt_get_write_access() call above.
575 */
mnt_put_write_access(struct vfsmount * mnt)576 void mnt_put_write_access(struct vfsmount *mnt)
577 {
578 preempt_disable();
579 mnt_dec_writers(real_mount(mnt));
580 preempt_enable();
581 }
582 EXPORT_SYMBOL_GPL(mnt_put_write_access);
583
584 /**
585 * mnt_drop_write - give up write access to a mount
586 * @mnt: the mount on which to give up write access
587 *
588 * Tells the low-level filesystem that we are done performing writes to it and
589 * also allows filesystem to be frozen again. Must be matched with
590 * mnt_want_write() call above.
591 */
mnt_drop_write(struct vfsmount * mnt)592 void mnt_drop_write(struct vfsmount *mnt)
593 {
594 mnt_put_write_access(mnt);
595 sb_end_write(mnt->mnt_sb);
596 }
597 EXPORT_SYMBOL_GPL(mnt_drop_write);
598
mnt_put_write_access_file(struct file * file)599 void mnt_put_write_access_file(struct file *file)
600 {
601 if (!(file->f_mode & FMODE_WRITER))
602 mnt_put_write_access(file->f_path.mnt);
603 }
604
mnt_drop_write_file(struct file * file)605 void mnt_drop_write_file(struct file *file)
606 {
607 mnt_put_write_access_file(file);
608 sb_end_write(file_inode(file)->i_sb);
609 }
610 EXPORT_SYMBOL(mnt_drop_write_file);
611
612 /**
613 * mnt_hold_writers - prevent write access to the given mount
614 * @mnt: mnt to prevent write access to
615 *
616 * Prevents write access to @mnt if there are no active writers for @mnt.
617 * This function needs to be called and return successfully before changing
618 * properties of @mnt that need to remain stable for callers with write access
619 * to @mnt.
620 *
621 * After this functions has been called successfully callers must pair it with
622 * a call to mnt_unhold_writers() in order to stop preventing write access to
623 * @mnt.
624 *
625 * Context: This function expects lock_mount_hash() to be held serializing
626 * setting MNT_WRITE_HOLD.
627 * Return: On success 0 is returned.
628 * On error, -EBUSY is returned.
629 */
mnt_hold_writers(struct mount * mnt)630 static inline int mnt_hold_writers(struct mount *mnt)
631 {
632 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
633 /*
634 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
635 * should be visible before we do.
636 */
637 smp_mb();
638
639 /*
640 * With writers on hold, if this value is zero, then there are
641 * definitely no active writers (although held writers may subsequently
642 * increment the count, they'll have to wait, and decrement it after
643 * seeing MNT_READONLY).
644 *
645 * It is OK to have counter incremented on one CPU and decremented on
646 * another: the sum will add up correctly. The danger would be when we
647 * sum up each counter, if we read a counter before it is incremented,
648 * but then read another CPU's count which it has been subsequently
649 * decremented from -- we would see more decrements than we should.
650 * MNT_WRITE_HOLD protects against this scenario, because
651 * mnt_want_write first increments count, then smp_mb, then spins on
652 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
653 * we're counting up here.
654 */
655 if (mnt_get_writers(mnt) > 0)
656 return -EBUSY;
657
658 return 0;
659 }
660
661 /**
662 * mnt_unhold_writers - stop preventing write access to the given mount
663 * @mnt: mnt to stop preventing write access to
664 *
665 * Stop preventing write access to @mnt allowing callers to gain write access
666 * to @mnt again.
667 *
668 * This function can only be called after a successful call to
669 * mnt_hold_writers().
670 *
671 * Context: This function expects lock_mount_hash() to be held.
672 */
mnt_unhold_writers(struct mount * mnt)673 static inline void mnt_unhold_writers(struct mount *mnt)
674 {
675 /*
676 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
677 * that become unheld will see MNT_READONLY.
678 */
679 smp_wmb();
680 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
681 }
682
mnt_make_readonly(struct mount * mnt)683 static int mnt_make_readonly(struct mount *mnt)
684 {
685 int ret;
686
687 ret = mnt_hold_writers(mnt);
688 if (!ret)
689 mnt->mnt.mnt_flags |= MNT_READONLY;
690 mnt_unhold_writers(mnt);
691 return ret;
692 }
693
sb_prepare_remount_readonly(struct super_block * sb)694 int sb_prepare_remount_readonly(struct super_block *sb)
695 {
696 struct mount *mnt;
697 int err = 0;
698
699 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
700 if (atomic_long_read(&sb->s_remove_count))
701 return -EBUSY;
702
703 lock_mount_hash();
704 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
705 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
706 err = mnt_hold_writers(mnt);
707 if (err)
708 break;
709 }
710 }
711 if (!err && atomic_long_read(&sb->s_remove_count))
712 err = -EBUSY;
713
714 if (!err)
715 sb_start_ro_state_change(sb);
716 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
717 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
718 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719 }
720 unlock_mount_hash();
721
722 return err;
723 }
724
free_vfsmnt(struct mount * mnt)725 static void free_vfsmnt(struct mount *mnt)
726 {
727 mnt_idmap_put(mnt_idmap(&mnt->mnt));
728 kfree_const(mnt->mnt_devname);
729 #ifdef CONFIG_SMP
730 free_percpu(mnt->mnt_pcp);
731 #endif
732 kmem_cache_free(mnt_cache, mnt);
733 }
734
delayed_free_vfsmnt(struct rcu_head * head)735 static void delayed_free_vfsmnt(struct rcu_head *head)
736 {
737 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
738 }
739
740 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)741 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
742 {
743 struct mount *mnt;
744 if (read_seqretry(&mount_lock, seq))
745 return 1;
746 if (bastard == NULL)
747 return 0;
748 mnt = real_mount(bastard);
749 mnt_add_count(mnt, 1);
750 smp_mb(); // see mntput_no_expire()
751 if (likely(!read_seqretry(&mount_lock, seq)))
752 return 0;
753 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
754 mnt_add_count(mnt, -1);
755 return 1;
756 }
757 lock_mount_hash();
758 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
759 mnt_add_count(mnt, -1);
760 unlock_mount_hash();
761 return 1;
762 }
763 unlock_mount_hash();
764 /* caller will mntput() */
765 return -1;
766 }
767
768 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)769 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
770 {
771 int res = __legitimize_mnt(bastard, seq);
772 if (likely(!res))
773 return true;
774 if (unlikely(res < 0)) {
775 rcu_read_unlock();
776 mntput(bastard);
777 rcu_read_lock();
778 }
779 return false;
780 }
781
782 /**
783 * __lookup_mnt - find first child mount
784 * @mnt: parent mount
785 * @dentry: mountpoint
786 *
787 * If @mnt has a child mount @c mounted @dentry find and return it.
788 *
789 * Note that the child mount @c need not be unique. There are cases
790 * where shadow mounts are created. For example, during mount
791 * propagation when a source mount @mnt whose root got overmounted by a
792 * mount @o after path lookup but before @namespace_sem could be
793 * acquired gets copied and propagated. So @mnt gets copied including
794 * @o. When @mnt is propagated to a destination mount @d that already
795 * has another mount @n mounted at the same mountpoint then the source
796 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
797 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
798 * on @dentry.
799 *
800 * Return: The first child of @mnt mounted @dentry or NULL.
801 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)802 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
803 {
804 struct hlist_head *head = m_hash(mnt, dentry);
805 struct mount *p;
806
807 hlist_for_each_entry_rcu(p, head, mnt_hash)
808 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
809 return p;
810 return NULL;
811 }
812
813 /*
814 * lookup_mnt - Return the first child mount mounted at path
815 *
816 * "First" means first mounted chronologically. If you create the
817 * following mounts:
818 *
819 * mount /dev/sda1 /mnt
820 * mount /dev/sda2 /mnt
821 * mount /dev/sda3 /mnt
822 *
823 * Then lookup_mnt() on the base /mnt dentry in the root mount will
824 * return successively the root dentry and vfsmount of /dev/sda1, then
825 * /dev/sda2, then /dev/sda3, then NULL.
826 *
827 * lookup_mnt takes a reference to the found vfsmount.
828 */
lookup_mnt(const struct path * path)829 struct vfsmount *lookup_mnt(const struct path *path)
830 {
831 struct mount *child_mnt;
832 struct vfsmount *m;
833 unsigned seq;
834
835 rcu_read_lock();
836 do {
837 seq = read_seqbegin(&mount_lock);
838 child_mnt = __lookup_mnt(path->mnt, path->dentry);
839 m = child_mnt ? &child_mnt->mnt : NULL;
840 } while (!legitimize_mnt(m, seq));
841 rcu_read_unlock();
842 return m;
843 }
844
845 /*
846 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
847 * current mount namespace.
848 *
849 * The common case is dentries are not mountpoints at all and that
850 * test is handled inline. For the slow case when we are actually
851 * dealing with a mountpoint of some kind, walk through all of the
852 * mounts in the current mount namespace and test to see if the dentry
853 * is a mountpoint.
854 *
855 * The mount_hashtable is not usable in the context because we
856 * need to identify all mounts that may be in the current mount
857 * namespace not just a mount that happens to have some specified
858 * parent mount.
859 */
__is_local_mountpoint(struct dentry * dentry)860 bool __is_local_mountpoint(struct dentry *dentry)
861 {
862 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
863 struct mount *mnt, *n;
864 bool is_covered = false;
865
866 down_read(&namespace_sem);
867 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
868 is_covered = (mnt->mnt_mountpoint == dentry);
869 if (is_covered)
870 break;
871 }
872 up_read(&namespace_sem);
873
874 return is_covered;
875 }
876
lookup_mountpoint(struct dentry * dentry)877 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
878 {
879 struct hlist_head *chain = mp_hash(dentry);
880 struct mountpoint *mp;
881
882 hlist_for_each_entry(mp, chain, m_hash) {
883 if (mp->m_dentry == dentry) {
884 mp->m_count++;
885 return mp;
886 }
887 }
888 return NULL;
889 }
890
get_mountpoint(struct dentry * dentry)891 static struct mountpoint *get_mountpoint(struct dentry *dentry)
892 {
893 struct mountpoint *mp, *new = NULL;
894 int ret;
895
896 if (d_mountpoint(dentry)) {
897 /* might be worth a WARN_ON() */
898 if (d_unlinked(dentry))
899 return ERR_PTR(-ENOENT);
900 mountpoint:
901 read_seqlock_excl(&mount_lock);
902 mp = lookup_mountpoint(dentry);
903 read_sequnlock_excl(&mount_lock);
904 if (mp)
905 goto done;
906 }
907
908 if (!new)
909 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
910 if (!new)
911 return ERR_PTR(-ENOMEM);
912
913
914 /* Exactly one processes may set d_mounted */
915 ret = d_set_mounted(dentry);
916
917 /* Someone else set d_mounted? */
918 if (ret == -EBUSY)
919 goto mountpoint;
920
921 /* The dentry is not available as a mountpoint? */
922 mp = ERR_PTR(ret);
923 if (ret)
924 goto done;
925
926 /* Add the new mountpoint to the hash table */
927 read_seqlock_excl(&mount_lock);
928 new->m_dentry = dget(dentry);
929 new->m_count = 1;
930 hlist_add_head(&new->m_hash, mp_hash(dentry));
931 INIT_HLIST_HEAD(&new->m_list);
932 read_sequnlock_excl(&mount_lock);
933
934 mp = new;
935 new = NULL;
936 done:
937 kfree(new);
938 return mp;
939 }
940
941 /*
942 * vfsmount lock must be held. Additionally, the caller is responsible
943 * for serializing calls for given disposal list.
944 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)945 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
946 {
947 if (!--mp->m_count) {
948 struct dentry *dentry = mp->m_dentry;
949 BUG_ON(!hlist_empty(&mp->m_list));
950 spin_lock(&dentry->d_lock);
951 dentry->d_flags &= ~DCACHE_MOUNTED;
952 spin_unlock(&dentry->d_lock);
953 dput_to_list(dentry, list);
954 hlist_del(&mp->m_hash);
955 kfree(mp);
956 }
957 }
958
959 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)960 static void put_mountpoint(struct mountpoint *mp)
961 {
962 __put_mountpoint(mp, &ex_mountpoints);
963 }
964
check_mnt(struct mount * mnt)965 static inline int check_mnt(struct mount *mnt)
966 {
967 return mnt->mnt_ns == current->nsproxy->mnt_ns;
968 }
969
970 /*
971 * vfsmount lock must be held for write
972 */
touch_mnt_namespace(struct mnt_namespace * ns)973 static void touch_mnt_namespace(struct mnt_namespace *ns)
974 {
975 if (ns) {
976 ns->event = ++event;
977 wake_up_interruptible(&ns->poll);
978 }
979 }
980
981 /*
982 * vfsmount lock must be held for write
983 */
__touch_mnt_namespace(struct mnt_namespace * ns)984 static void __touch_mnt_namespace(struct mnt_namespace *ns)
985 {
986 if (ns && ns->event != event) {
987 ns->event = event;
988 wake_up_interruptible(&ns->poll);
989 }
990 }
991
992 /*
993 * vfsmount lock must be held for write
994 */
unhash_mnt(struct mount * mnt)995 static struct mountpoint *unhash_mnt(struct mount *mnt)
996 {
997 struct mountpoint *mp;
998 mnt->mnt_parent = mnt;
999 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1000 list_del_init(&mnt->mnt_child);
1001 hlist_del_init_rcu(&mnt->mnt_hash);
1002 hlist_del_init(&mnt->mnt_mp_list);
1003 mp = mnt->mnt_mp;
1004 mnt->mnt_mp = NULL;
1005 return mp;
1006 }
1007
1008 /*
1009 * vfsmount lock must be held for write
1010 */
umount_mnt(struct mount * mnt)1011 static void umount_mnt(struct mount *mnt)
1012 {
1013 put_mountpoint(unhash_mnt(mnt));
1014 }
1015
1016 /*
1017 * vfsmount lock must be held for write
1018 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1019 void mnt_set_mountpoint(struct mount *mnt,
1020 struct mountpoint *mp,
1021 struct mount *child_mnt)
1022 {
1023 mp->m_count++;
1024 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1025 child_mnt->mnt_mountpoint = mp->m_dentry;
1026 child_mnt->mnt_parent = mnt;
1027 child_mnt->mnt_mp = mp;
1028 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1029 }
1030
1031 /**
1032 * mnt_set_mountpoint_beneath - mount a mount beneath another one
1033 *
1034 * @new_parent: the source mount
1035 * @top_mnt: the mount beneath which @new_parent is mounted
1036 * @new_mp: the new mountpoint of @top_mnt on @new_parent
1037 *
1038 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1039 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1040 * @new_mp. And mount @new_parent on the old parent and old
1041 * mountpoint of @top_mnt.
1042 *
1043 * Context: This function expects namespace_lock() and lock_mount_hash()
1044 * to have been acquired in that order.
1045 */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1046 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1047 struct mount *top_mnt,
1048 struct mountpoint *new_mp)
1049 {
1050 struct mount *old_top_parent = top_mnt->mnt_parent;
1051 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1052
1053 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1054 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1055 }
1056
1057
__attach_mnt(struct mount * mnt,struct mount * parent)1058 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1059 {
1060 hlist_add_head_rcu(&mnt->mnt_hash,
1061 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1062 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1063 }
1064
1065 /**
1066 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1067 * list of child mounts
1068 * @parent: the parent
1069 * @mnt: the new mount
1070 * @mp: the new mountpoint
1071 * @beneath: whether to mount @mnt beneath or on top of @parent
1072 *
1073 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1074 * to @parent's child mount list and to @mount_hashtable.
1075 *
1076 * If @beneath is true, remove @mnt from its current parent and
1077 * mountpoint and mount it on @mp on @parent, and mount @parent on the
1078 * old parent and old mountpoint of @mnt. Finally, attach @parent to
1079 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1080 *
1081 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1082 * to the correct parent.
1083 *
1084 * Context: This function expects namespace_lock() and lock_mount_hash()
1085 * to have been acquired in that order.
1086 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1087 static void attach_mnt(struct mount *mnt, struct mount *parent,
1088 struct mountpoint *mp, bool beneath)
1089 {
1090 if (beneath)
1091 mnt_set_mountpoint_beneath(mnt, parent, mp);
1092 else
1093 mnt_set_mountpoint(parent, mp, mnt);
1094 /*
1095 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1096 * beneath @parent then @mnt will need to be attached to
1097 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1098 * isn't the same mount as @parent.
1099 */
1100 __attach_mnt(mnt, mnt->mnt_parent);
1101 }
1102
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1103 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1104 {
1105 struct mountpoint *old_mp = mnt->mnt_mp;
1106 struct mount *old_parent = mnt->mnt_parent;
1107
1108 list_del_init(&mnt->mnt_child);
1109 hlist_del_init(&mnt->mnt_mp_list);
1110 hlist_del_init_rcu(&mnt->mnt_hash);
1111
1112 attach_mnt(mnt, parent, mp, false);
1113
1114 put_mountpoint(old_mp);
1115 mnt_add_count(old_parent, -1);
1116 }
1117
node_to_mount(struct rb_node * node)1118 static inline struct mount *node_to_mount(struct rb_node *node)
1119 {
1120 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1121 }
1122
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1123 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1124 {
1125 struct rb_node **link = &ns->mounts.rb_node;
1126 struct rb_node *parent = NULL;
1127
1128 WARN_ON(mnt_ns_attached(mnt));
1129 mnt->mnt_ns = ns;
1130 while (*link) {
1131 parent = *link;
1132 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1133 link = &parent->rb_left;
1134 else
1135 link = &parent->rb_right;
1136 }
1137 rb_link_node(&mnt->mnt_node, parent, link);
1138 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1139 }
1140
1141 /*
1142 * vfsmount lock must be held for write
1143 */
commit_tree(struct mount * mnt)1144 static void commit_tree(struct mount *mnt)
1145 {
1146 struct mount *parent = mnt->mnt_parent;
1147 struct mount *m;
1148 LIST_HEAD(head);
1149 struct mnt_namespace *n = parent->mnt_ns;
1150
1151 BUG_ON(parent == mnt);
1152
1153 list_add_tail(&head, &mnt->mnt_list);
1154 while (!list_empty(&head)) {
1155 m = list_first_entry(&head, typeof(*m), mnt_list);
1156 list_del(&m->mnt_list);
1157
1158 mnt_add_to_ns(n, m);
1159 }
1160 n->nr_mounts += n->pending_mounts;
1161 n->pending_mounts = 0;
1162
1163 __attach_mnt(mnt, parent);
1164 touch_mnt_namespace(n);
1165 }
1166
next_mnt(struct mount * p,struct mount * root)1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 {
1169 struct list_head *next = p->mnt_mounts.next;
1170 if (next == &p->mnt_mounts) {
1171 while (1) {
1172 if (p == root)
1173 return NULL;
1174 next = p->mnt_child.next;
1175 if (next != &p->mnt_parent->mnt_mounts)
1176 break;
1177 p = p->mnt_parent;
1178 }
1179 }
1180 return list_entry(next, struct mount, mnt_child);
1181 }
1182
skip_mnt_tree(struct mount * p)1183 static struct mount *skip_mnt_tree(struct mount *p)
1184 {
1185 struct list_head *prev = p->mnt_mounts.prev;
1186 while (prev != &p->mnt_mounts) {
1187 p = list_entry(prev, struct mount, mnt_child);
1188 prev = p->mnt_mounts.prev;
1189 }
1190 return p;
1191 }
1192
1193 /**
1194 * vfs_create_mount - Create a mount for a configured superblock
1195 * @fc: The configuration context with the superblock attached
1196 *
1197 * Create a mount to an already configured superblock. If necessary, the
1198 * caller should invoke vfs_get_tree() before calling this.
1199 *
1200 * Note that this does not attach the mount to anything.
1201 */
vfs_create_mount(struct fs_context * fc)1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1203 {
1204 struct mount *mnt;
1205
1206 if (!fc->root)
1207 return ERR_PTR(-EINVAL);
1208
1209 mnt = alloc_vfsmnt(fc->source ?: "none");
1210 if (!mnt)
1211 return ERR_PTR(-ENOMEM);
1212
1213 if (fc->sb_flags & SB_KERNMOUNT)
1214 mnt->mnt.mnt_flags = MNT_INTERNAL;
1215
1216 atomic_inc(&fc->root->d_sb->s_active);
1217 mnt->mnt.mnt_sb = fc->root->d_sb;
1218 mnt->mnt.mnt_root = dget(fc->root);
1219 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1220 mnt->mnt_parent = mnt;
1221
1222 lock_mount_hash();
1223 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 unlock_mount_hash();
1225 return &mnt->mnt;
1226 }
1227 EXPORT_SYMBOL(vfs_create_mount);
1228
fc_mount(struct fs_context * fc)1229 struct vfsmount *fc_mount(struct fs_context *fc)
1230 {
1231 int err = vfs_get_tree(fc);
1232 if (!err) {
1233 up_write(&fc->root->d_sb->s_umount);
1234 return vfs_create_mount(fc);
1235 }
1236 return ERR_PTR(err);
1237 }
1238 EXPORT_SYMBOL(fc_mount);
1239
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 int flags, const char *name,
1242 void *data)
1243 {
1244 struct fs_context *fc;
1245 struct vfsmount *mnt;
1246 int ret = 0;
1247
1248 if (!type)
1249 return ERR_PTR(-EINVAL);
1250
1251 fc = fs_context_for_mount(type, flags);
1252 if (IS_ERR(fc))
1253 return ERR_CAST(fc);
1254
1255 if (name)
1256 ret = vfs_parse_fs_string(fc, "source",
1257 name, strlen(name));
1258 if (!ret)
1259 ret = parse_monolithic_mount_data(fc, data);
1260 if (!ret)
1261 mnt = fc_mount(fc);
1262 else
1263 mnt = ERR_PTR(ret);
1264
1265 put_fs_context(fc);
1266 return mnt;
1267 }
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1269
1270 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 const char *name, void *data)
1273 {
1274 /* Until it is worked out how to pass the user namespace
1275 * through from the parent mount to the submount don't support
1276 * unprivileged mounts with submounts.
1277 */
1278 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 return ERR_PTR(-EPERM);
1280
1281 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 }
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1284
clone_mnt(struct mount * old,struct dentry * root,int flag)1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1286 int flag)
1287 {
1288 struct super_block *sb = old->mnt.mnt_sb;
1289 struct mount *mnt;
1290 int err;
1291
1292 mnt = alloc_vfsmnt(old->mnt_devname);
1293 if (!mnt)
1294 return ERR_PTR(-ENOMEM);
1295
1296 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 mnt->mnt_group_id = 0; /* not a peer of original */
1298 else
1299 mnt->mnt_group_id = old->mnt_group_id;
1300
1301 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 err = mnt_alloc_group_id(mnt);
1303 if (err)
1304 goto out_free;
1305 }
1306
1307 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1309
1310 atomic_inc(&sb->s_active);
1311 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312
1313 mnt->mnt.mnt_sb = sb;
1314 mnt->mnt.mnt_root = dget(root);
1315 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 mnt->mnt_parent = mnt;
1317 lock_mount_hash();
1318 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 unlock_mount_hash();
1320
1321 if ((flag & CL_SLAVE) ||
1322 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 mnt->mnt_master = old;
1325 CLEAR_MNT_SHARED(mnt);
1326 } else if (!(flag & CL_PRIVATE)) {
1327 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 list_add(&mnt->mnt_share, &old->mnt_share);
1329 if (IS_MNT_SLAVE(old))
1330 list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 mnt->mnt_master = old->mnt_master;
1332 } else {
1333 CLEAR_MNT_SHARED(mnt);
1334 }
1335 if (flag & CL_MAKE_SHARED)
1336 set_mnt_shared(mnt);
1337
1338 /* stick the duplicate mount on the same expiry list
1339 * as the original if that was on one */
1340 if (flag & CL_EXPIRE) {
1341 if (!list_empty(&old->mnt_expire))
1342 list_add(&mnt->mnt_expire, &old->mnt_expire);
1343 }
1344
1345 return mnt;
1346
1347 out_free:
1348 mnt_free_id(mnt);
1349 free_vfsmnt(mnt);
1350 return ERR_PTR(err);
1351 }
1352
cleanup_mnt(struct mount * mnt)1353 static void cleanup_mnt(struct mount *mnt)
1354 {
1355 struct hlist_node *p;
1356 struct mount *m;
1357 /*
1358 * The warning here probably indicates that somebody messed
1359 * up a mnt_want/drop_write() pair. If this happens, the
1360 * filesystem was probably unable to make r/w->r/o transitions.
1361 * The locking used to deal with mnt_count decrement provides barriers,
1362 * so mnt_get_writers() below is safe.
1363 */
1364 WARN_ON(mnt_get_writers(mnt));
1365 if (unlikely(mnt->mnt_pins.first))
1366 mnt_pin_kill(mnt);
1367 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 hlist_del(&m->mnt_umount);
1369 mntput(&m->mnt);
1370 }
1371 fsnotify_vfsmount_delete(&mnt->mnt);
1372 dput(mnt->mnt.mnt_root);
1373 deactivate_super(mnt->mnt.mnt_sb);
1374 mnt_free_id(mnt);
1375 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1376 }
1377
__cleanup_mnt(struct rcu_head * head)1378 static void __cleanup_mnt(struct rcu_head *head)
1379 {
1380 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1381 }
1382
1383 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1384 static void delayed_mntput(struct work_struct *unused)
1385 {
1386 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 struct mount *m, *t;
1388
1389 llist_for_each_entry_safe(m, t, node, mnt_llist)
1390 cleanup_mnt(m);
1391 }
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393
mntput_no_expire(struct mount * mnt)1394 static void mntput_no_expire(struct mount *mnt)
1395 {
1396 LIST_HEAD(list);
1397 int count;
1398
1399 rcu_read_lock();
1400 if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 /*
1402 * Since we don't do lock_mount_hash() here,
1403 * ->mnt_ns can change under us. However, if it's
1404 * non-NULL, then there's a reference that won't
1405 * be dropped until after an RCU delay done after
1406 * turning ->mnt_ns NULL. So if we observe it
1407 * non-NULL under rcu_read_lock(), the reference
1408 * we are dropping is not the final one.
1409 */
1410 mnt_add_count(mnt, -1);
1411 rcu_read_unlock();
1412 return;
1413 }
1414 lock_mount_hash();
1415 /*
1416 * make sure that if __legitimize_mnt() has not seen us grab
1417 * mount_lock, we'll see their refcount increment here.
1418 */
1419 smp_mb();
1420 mnt_add_count(mnt, -1);
1421 count = mnt_get_count(mnt);
1422 if (count != 0) {
1423 WARN_ON(count < 0);
1424 rcu_read_unlock();
1425 unlock_mount_hash();
1426 return;
1427 }
1428 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 rcu_read_unlock();
1430 unlock_mount_hash();
1431 return;
1432 }
1433 mnt->mnt.mnt_flags |= MNT_DOOMED;
1434 rcu_read_unlock();
1435
1436 list_del(&mnt->mnt_instance);
1437
1438 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 struct mount *p, *tmp;
1440 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1441 __put_mountpoint(unhash_mnt(p), &list);
1442 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1443 }
1444 }
1445 unlock_mount_hash();
1446 shrink_dentry_list(&list);
1447
1448 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 struct task_struct *task = current;
1450 if (likely(!(task->flags & PF_KTHREAD))) {
1451 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1453 return;
1454 }
1455 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 schedule_delayed_work(&delayed_mntput_work, 1);
1457 return;
1458 }
1459 cleanup_mnt(mnt);
1460 }
1461
mntput(struct vfsmount * mnt)1462 void mntput(struct vfsmount *mnt)
1463 {
1464 if (mnt) {
1465 struct mount *m = real_mount(mnt);
1466 /* avoid cacheline pingpong */
1467 if (unlikely(m->mnt_expiry_mark))
1468 WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 mntput_no_expire(m);
1470 }
1471 }
1472 EXPORT_SYMBOL(mntput);
1473
mntget(struct vfsmount * mnt)1474 struct vfsmount *mntget(struct vfsmount *mnt)
1475 {
1476 if (mnt)
1477 mnt_add_count(real_mount(mnt), 1);
1478 return mnt;
1479 }
1480 EXPORT_SYMBOL(mntget);
1481
1482 /*
1483 * Make a mount point inaccessible to new lookups.
1484 * Because there may still be current users, the caller MUST WAIT
1485 * for an RCU grace period before destroying the mount point.
1486 */
mnt_make_shortterm(struct vfsmount * mnt)1487 void mnt_make_shortterm(struct vfsmount *mnt)
1488 {
1489 if (mnt)
1490 real_mount(mnt)->mnt_ns = NULL;
1491 }
1492
1493 /**
1494 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495 * @path: path to check
1496 *
1497 * d_mountpoint() can only be used reliably to establish if a dentry is
1498 * not mounted in any namespace and that common case is handled inline.
1499 * d_mountpoint() isn't aware of the possibility there may be multiple
1500 * mounts using a given dentry in a different namespace. This function
1501 * checks if the passed in path is a mountpoint rather than the dentry
1502 * alone.
1503 */
path_is_mountpoint(const struct path * path)1504 bool path_is_mountpoint(const struct path *path)
1505 {
1506 unsigned seq;
1507 bool res;
1508
1509 if (!d_mountpoint(path->dentry))
1510 return false;
1511
1512 rcu_read_lock();
1513 do {
1514 seq = read_seqbegin(&mount_lock);
1515 res = __path_is_mountpoint(path);
1516 } while (read_seqretry(&mount_lock, seq));
1517 rcu_read_unlock();
1518
1519 return res;
1520 }
1521 EXPORT_SYMBOL(path_is_mountpoint);
1522
mnt_clone_internal(const struct path * path)1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1524 {
1525 struct mount *p;
1526 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1527 if (IS_ERR(p))
1528 return ERR_CAST(p);
1529 p->mnt.mnt_flags |= MNT_INTERNAL;
1530 return &p->mnt;
1531 }
1532
1533 /*
1534 * Returns the mount which either has the specified mnt_id, or has the next
1535 * smallest id afer the specified one.
1536 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 {
1539 struct rb_node *node = ns->mounts.rb_node;
1540 struct mount *ret = NULL;
1541
1542 while (node) {
1543 struct mount *m = node_to_mount(node);
1544
1545 if (mnt_id <= m->mnt_id_unique) {
1546 ret = node_to_mount(node);
1547 if (mnt_id == m->mnt_id_unique)
1548 break;
1549 node = node->rb_left;
1550 } else {
1551 node = node->rb_right;
1552 }
1553 }
1554 return ret;
1555 }
1556
1557 /*
1558 * Returns the mount which either has the specified mnt_id, or has the next
1559 * greater id before the specified one.
1560 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 {
1563 struct rb_node *node = ns->mounts.rb_node;
1564 struct mount *ret = NULL;
1565
1566 while (node) {
1567 struct mount *m = node_to_mount(node);
1568
1569 if (mnt_id >= m->mnt_id_unique) {
1570 ret = node_to_mount(node);
1571 if (mnt_id == m->mnt_id_unique)
1572 break;
1573 node = node->rb_right;
1574 } else {
1575 node = node->rb_left;
1576 }
1577 }
1578 return ret;
1579 }
1580
1581 #ifdef CONFIG_PROC_FS
1582
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1584 static void *m_start(struct seq_file *m, loff_t *pos)
1585 {
1586 struct proc_mounts *p = m->private;
1587
1588 down_read(&namespace_sem);
1589
1590 return mnt_find_id_at(p->ns, *pos);
1591 }
1592
m_next(struct seq_file * m,void * v,loff_t * pos)1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 {
1595 struct mount *next = NULL, *mnt = v;
1596 struct rb_node *node = rb_next(&mnt->mnt_node);
1597
1598 ++*pos;
1599 if (node) {
1600 next = node_to_mount(node);
1601 *pos = next->mnt_id_unique;
1602 }
1603 return next;
1604 }
1605
m_stop(struct seq_file * m,void * v)1606 static void m_stop(struct seq_file *m, void *v)
1607 {
1608 up_read(&namespace_sem);
1609 }
1610
m_show(struct seq_file * m,void * v)1611 static int m_show(struct seq_file *m, void *v)
1612 {
1613 struct proc_mounts *p = m->private;
1614 struct mount *r = v;
1615 return p->show(m, &r->mnt);
1616 }
1617
1618 const struct seq_operations mounts_op = {
1619 .start = m_start,
1620 .next = m_next,
1621 .stop = m_stop,
1622 .show = m_show,
1623 };
1624
1625 #endif /* CONFIG_PROC_FS */
1626
1627 /**
1628 * may_umount_tree - check if a mount tree is busy
1629 * @m: root of mount tree
1630 *
1631 * This is called to check if a tree of mounts has any
1632 * open files, pwds, chroots or sub mounts that are
1633 * busy.
1634 */
may_umount_tree(struct vfsmount * m)1635 int may_umount_tree(struct vfsmount *m)
1636 {
1637 struct mount *mnt = real_mount(m);
1638 int actual_refs = 0;
1639 int minimum_refs = 0;
1640 struct mount *p;
1641 BUG_ON(!m);
1642
1643 /* write lock needed for mnt_get_count */
1644 lock_mount_hash();
1645 for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 actual_refs += mnt_get_count(p);
1647 minimum_refs += 2;
1648 }
1649 unlock_mount_hash();
1650
1651 if (actual_refs > minimum_refs)
1652 return 0;
1653
1654 return 1;
1655 }
1656
1657 EXPORT_SYMBOL(may_umount_tree);
1658
1659 /**
1660 * may_umount - check if a mount point is busy
1661 * @mnt: root of mount
1662 *
1663 * This is called to check if a mount point has any
1664 * open files, pwds, chroots or sub mounts. If the
1665 * mount has sub mounts this will return busy
1666 * regardless of whether the sub mounts are busy.
1667 *
1668 * Doesn't take quota and stuff into account. IOW, in some cases it will
1669 * give false negatives. The main reason why it's here is that we need
1670 * a non-destructive way to look for easily umountable filesystems.
1671 */
may_umount(struct vfsmount * mnt)1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 int ret = 1;
1675 down_read(&namespace_sem);
1676 lock_mount_hash();
1677 if (propagate_mount_busy(real_mount(mnt), 2))
1678 ret = 0;
1679 unlock_mount_hash();
1680 up_read(&namespace_sem);
1681 return ret;
1682 }
1683
1684 EXPORT_SYMBOL(may_umount);
1685
namespace_unlock(void)1686 static void namespace_unlock(void)
1687 {
1688 struct hlist_head head;
1689 struct hlist_node *p;
1690 struct mount *m;
1691 LIST_HEAD(list);
1692
1693 hlist_move_list(&unmounted, &head);
1694 list_splice_init(&ex_mountpoints, &list);
1695
1696 up_write(&namespace_sem);
1697
1698 shrink_dentry_list(&list);
1699
1700 if (likely(hlist_empty(&head)))
1701 return;
1702
1703 synchronize_rcu_expedited();
1704
1705 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 hlist_del(&m->mnt_umount);
1707 mntput(&m->mnt);
1708 }
1709 }
1710
namespace_lock(void)1711 static inline void namespace_lock(void)
1712 {
1713 down_write(&namespace_sem);
1714 }
1715
1716 enum umount_tree_flags {
1717 UMOUNT_SYNC = 1,
1718 UMOUNT_PROPAGATE = 2,
1719 UMOUNT_CONNECTED = 4,
1720 };
1721
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 {
1724 /* Leaving mounts connected is only valid for lazy umounts */
1725 if (how & UMOUNT_SYNC)
1726 return true;
1727
1728 /* A mount without a parent has nothing to be connected to */
1729 if (!mnt_has_parent(mnt))
1730 return true;
1731
1732 /* Because the reference counting rules change when mounts are
1733 * unmounted and connected, umounted mounts may not be
1734 * connected to mounted mounts.
1735 */
1736 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1737 return true;
1738
1739 /* Has it been requested that the mount remain connected? */
1740 if (how & UMOUNT_CONNECTED)
1741 return false;
1742
1743 /* Is the mount locked such that it needs to remain connected? */
1744 if (IS_MNT_LOCKED(mnt))
1745 return false;
1746
1747 /* By default disconnect the mount */
1748 return true;
1749 }
1750
1751 /*
1752 * mount_lock must be held
1753 * namespace_sem must be held for write
1754 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 {
1757 LIST_HEAD(tmp_list);
1758 struct mount *p;
1759
1760 if (how & UMOUNT_PROPAGATE)
1761 propagate_mount_unlock(mnt);
1762
1763 /* Gather the mounts to umount */
1764 for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 p->mnt.mnt_flags |= MNT_UMOUNT;
1766 if (mnt_ns_attached(p))
1767 move_from_ns(p, &tmp_list);
1768 else
1769 list_move(&p->mnt_list, &tmp_list);
1770 }
1771
1772 /* Hide the mounts from mnt_mounts */
1773 list_for_each_entry(p, &tmp_list, mnt_list) {
1774 list_del_init(&p->mnt_child);
1775 }
1776
1777 /* Add propagated mounts to the tmp_list */
1778 if (how & UMOUNT_PROPAGATE)
1779 propagate_umount(&tmp_list);
1780
1781 while (!list_empty(&tmp_list)) {
1782 struct mnt_namespace *ns;
1783 bool disconnect;
1784 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 list_del_init(&p->mnt_expire);
1786 list_del_init(&p->mnt_list);
1787 ns = p->mnt_ns;
1788 if (ns) {
1789 ns->nr_mounts--;
1790 __touch_mnt_namespace(ns);
1791 }
1792 p->mnt_ns = NULL;
1793 if (how & UMOUNT_SYNC)
1794 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795
1796 disconnect = disconnect_mount(p, how);
1797 if (mnt_has_parent(p)) {
1798 mnt_add_count(p->mnt_parent, -1);
1799 if (!disconnect) {
1800 /* Don't forget about p */
1801 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1802 } else {
1803 umount_mnt(p);
1804 }
1805 }
1806 change_mnt_propagation(p, MS_PRIVATE);
1807 if (disconnect)
1808 hlist_add_head(&p->mnt_umount, &unmounted);
1809 }
1810 }
1811
1812 static void shrink_submounts(struct mount *mnt);
1813
do_umount_root(struct super_block * sb)1814 static int do_umount_root(struct super_block *sb)
1815 {
1816 int ret = 0;
1817
1818 down_write(&sb->s_umount);
1819 if (!sb_rdonly(sb)) {
1820 struct fs_context *fc;
1821
1822 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1823 SB_RDONLY);
1824 if (IS_ERR(fc)) {
1825 ret = PTR_ERR(fc);
1826 } else {
1827 ret = parse_monolithic_mount_data(fc, NULL);
1828 if (!ret)
1829 ret = reconfigure_super(fc);
1830 put_fs_context(fc);
1831 }
1832 }
1833 up_write(&sb->s_umount);
1834 return ret;
1835 }
1836
do_umount(struct mount * mnt,int flags)1837 static int do_umount(struct mount *mnt, int flags)
1838 {
1839 struct super_block *sb = mnt->mnt.mnt_sb;
1840 int retval;
1841
1842 retval = security_sb_umount(&mnt->mnt, flags);
1843 if (retval)
1844 return retval;
1845
1846 /*
1847 * Allow userspace to request a mountpoint be expired rather than
1848 * unmounting unconditionally. Unmount only happens if:
1849 * (1) the mark is already set (the mark is cleared by mntput())
1850 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 */
1852 if (flags & MNT_EXPIRE) {
1853 if (&mnt->mnt == current->fs->root.mnt ||
1854 flags & (MNT_FORCE | MNT_DETACH))
1855 return -EINVAL;
1856
1857 /*
1858 * probably don't strictly need the lock here if we examined
1859 * all race cases, but it's a slowpath.
1860 */
1861 lock_mount_hash();
1862 if (mnt_get_count(mnt) != 2) {
1863 unlock_mount_hash();
1864 return -EBUSY;
1865 }
1866 unlock_mount_hash();
1867
1868 if (!xchg(&mnt->mnt_expiry_mark, 1))
1869 return -EAGAIN;
1870 }
1871
1872 /*
1873 * If we may have to abort operations to get out of this
1874 * mount, and they will themselves hold resources we must
1875 * allow the fs to do things. In the Unix tradition of
1876 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 * might fail to complete on the first run through as other tasks
1878 * must return, and the like. Thats for the mount program to worry
1879 * about for the moment.
1880 */
1881
1882 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 sb->s_op->umount_begin(sb);
1884 }
1885
1886 /*
1887 * No sense to grab the lock for this test, but test itself looks
1888 * somewhat bogus. Suggestions for better replacement?
1889 * Ho-hum... In principle, we might treat that as umount + switch
1890 * to rootfs. GC would eventually take care of the old vfsmount.
1891 * Actually it makes sense, especially if rootfs would contain a
1892 * /reboot - static binary that would close all descriptors and
1893 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 */
1895 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 /*
1897 * Special case for "unmounting" root ...
1898 * we just try to remount it readonly.
1899 */
1900 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 return -EPERM;
1902 return do_umount_root(sb);
1903 }
1904
1905 namespace_lock();
1906 lock_mount_hash();
1907
1908 /* Recheck MNT_LOCKED with the locks held */
1909 retval = -EINVAL;
1910 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1911 goto out;
1912
1913 event++;
1914 if (flags & MNT_DETACH) {
1915 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1916 umount_tree(mnt, UMOUNT_PROPAGATE);
1917 retval = 0;
1918 } else {
1919 shrink_submounts(mnt);
1920 retval = -EBUSY;
1921 if (!propagate_mount_busy(mnt, 2)) {
1922 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1923 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1924 retval = 0;
1925 }
1926 }
1927 out:
1928 unlock_mount_hash();
1929 namespace_unlock();
1930 return retval;
1931 }
1932
1933 /*
1934 * __detach_mounts - lazily unmount all mounts on the specified dentry
1935 *
1936 * During unlink, rmdir, and d_drop it is possible to loose the path
1937 * to an existing mountpoint, and wind up leaking the mount.
1938 * detach_mounts allows lazily unmounting those mounts instead of
1939 * leaking them.
1940 *
1941 * The caller may hold dentry->d_inode->i_mutex.
1942 */
__detach_mounts(struct dentry * dentry)1943 void __detach_mounts(struct dentry *dentry)
1944 {
1945 struct mountpoint *mp;
1946 struct mount *mnt;
1947
1948 namespace_lock();
1949 lock_mount_hash();
1950 mp = lookup_mountpoint(dentry);
1951 if (!mp)
1952 goto out_unlock;
1953
1954 event++;
1955 while (!hlist_empty(&mp->m_list)) {
1956 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1957 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1958 umount_mnt(mnt);
1959 hlist_add_head(&mnt->mnt_umount, &unmounted);
1960 }
1961 else umount_tree(mnt, UMOUNT_CONNECTED);
1962 }
1963 put_mountpoint(mp);
1964 out_unlock:
1965 unlock_mount_hash();
1966 namespace_unlock();
1967 }
1968
1969 /*
1970 * Is the caller allowed to modify his namespace?
1971 */
may_mount(void)1972 bool may_mount(void)
1973 {
1974 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1975 }
1976
warn_mandlock(void)1977 static void warn_mandlock(void)
1978 {
1979 pr_warn_once("=======================================================\n"
1980 "WARNING: The mand mount option has been deprecated and\n"
1981 " and is ignored by this kernel. Remove the mand\n"
1982 " option from the mount to silence this warning.\n"
1983 "=======================================================\n");
1984 }
1985
can_umount(const struct path * path,int flags)1986 static int can_umount(const struct path *path, int flags)
1987 {
1988 struct mount *mnt = real_mount(path->mnt);
1989
1990 if (!may_mount())
1991 return -EPERM;
1992 if (!path_mounted(path))
1993 return -EINVAL;
1994 if (!check_mnt(mnt))
1995 return -EINVAL;
1996 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1997 return -EINVAL;
1998 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1999 return -EPERM;
2000 return 0;
2001 }
2002
2003 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2004 int path_umount(struct path *path, int flags)
2005 {
2006 struct mount *mnt = real_mount(path->mnt);
2007 int ret;
2008
2009 ret = can_umount(path, flags);
2010 if (!ret)
2011 ret = do_umount(mnt, flags);
2012
2013 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2014 dput(path->dentry);
2015 mntput_no_expire(mnt);
2016 return ret;
2017 }
2018
ksys_umount(char __user * name,int flags)2019 static int ksys_umount(char __user *name, int flags)
2020 {
2021 int lookup_flags = LOOKUP_MOUNTPOINT;
2022 struct path path;
2023 int ret;
2024
2025 // basic validity checks done first
2026 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2027 return -EINVAL;
2028
2029 if (!(flags & UMOUNT_NOFOLLOW))
2030 lookup_flags |= LOOKUP_FOLLOW;
2031 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2032 if (ret)
2033 return ret;
2034 return path_umount(&path, flags);
2035 }
2036
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2037 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2038 {
2039 return ksys_umount(name, flags);
2040 }
2041
2042 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2043
2044 /*
2045 * The 2.0 compatible umount. No flags.
2046 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2047 SYSCALL_DEFINE1(oldumount, char __user *, name)
2048 {
2049 return ksys_umount(name, 0);
2050 }
2051
2052 #endif
2053
is_mnt_ns_file(struct dentry * dentry)2054 static bool is_mnt_ns_file(struct dentry *dentry)
2055 {
2056 struct ns_common *ns;
2057
2058 /* Is this a proxy for a mount namespace? */
2059 if (dentry->d_op != &ns_dentry_operations)
2060 return false;
2061
2062 ns = d_inode(dentry)->i_private;
2063
2064 return ns->ops == &mntns_operations;
2065 }
2066
from_mnt_ns(struct mnt_namespace * mnt)2067 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2068 {
2069 return &mnt->ns;
2070 }
2071
__lookup_next_mnt_ns(struct mnt_namespace * mntns,bool previous)2072 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2073 {
2074 guard(read_lock)(&mnt_ns_tree_lock);
2075 for (;;) {
2076 struct rb_node *node;
2077
2078 if (previous)
2079 node = rb_prev(&mntns->mnt_ns_tree_node);
2080 else
2081 node = rb_next(&mntns->mnt_ns_tree_node);
2082 if (!node)
2083 return ERR_PTR(-ENOENT);
2084
2085 mntns = node_to_mnt_ns(node);
2086 node = &mntns->mnt_ns_tree_node;
2087
2088 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2089 continue;
2090
2091 /*
2092 * Holding mnt_ns_tree_lock prevents the mount namespace from
2093 * being freed but it may well be on it's deathbed. We want an
2094 * active reference, not just a passive one here as we're
2095 * persisting the mount namespace.
2096 */
2097 if (!refcount_inc_not_zero(&mntns->ns.count))
2098 continue;
2099
2100 return mntns;
2101 }
2102 }
2103
mnt_ns_loop(struct dentry * dentry)2104 static bool mnt_ns_loop(struct dentry *dentry)
2105 {
2106 /* Could bind mounting the mount namespace inode cause a
2107 * mount namespace loop?
2108 */
2109 struct mnt_namespace *mnt_ns;
2110 if (!is_mnt_ns_file(dentry))
2111 return false;
2112
2113 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2114 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2115 }
2116
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2117 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2118 int flag)
2119 {
2120 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2121 *dst_parent, *dst_mnt;
2122
2123 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2124 return ERR_PTR(-EINVAL);
2125
2126 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2127 return ERR_PTR(-EINVAL);
2128
2129 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2130 if (IS_ERR(dst_mnt))
2131 return dst_mnt;
2132
2133 src_parent = src_root;
2134 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2135
2136 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2137 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2138 continue;
2139
2140 for (src_mnt = src_root_child; src_mnt;
2141 src_mnt = next_mnt(src_mnt, src_root_child)) {
2142 if (!(flag & CL_COPY_UNBINDABLE) &&
2143 IS_MNT_UNBINDABLE(src_mnt)) {
2144 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2145 /* Both unbindable and locked. */
2146 dst_mnt = ERR_PTR(-EPERM);
2147 goto out;
2148 } else {
2149 src_mnt = skip_mnt_tree(src_mnt);
2150 continue;
2151 }
2152 }
2153 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2154 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2155 src_mnt = skip_mnt_tree(src_mnt);
2156 continue;
2157 }
2158 while (src_parent != src_mnt->mnt_parent) {
2159 src_parent = src_parent->mnt_parent;
2160 dst_mnt = dst_mnt->mnt_parent;
2161 }
2162
2163 src_parent = src_mnt;
2164 dst_parent = dst_mnt;
2165 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2166 if (IS_ERR(dst_mnt))
2167 goto out;
2168 lock_mount_hash();
2169 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2170 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2171 unlock_mount_hash();
2172 }
2173 }
2174 return res;
2175
2176 out:
2177 if (res) {
2178 lock_mount_hash();
2179 umount_tree(res, UMOUNT_SYNC);
2180 unlock_mount_hash();
2181 }
2182 return dst_mnt;
2183 }
2184
2185 /* Caller should check returned pointer for errors */
2186
collect_mounts(const struct path * path)2187 struct vfsmount *collect_mounts(const struct path *path)
2188 {
2189 struct mount *tree;
2190 namespace_lock();
2191 if (!check_mnt(real_mount(path->mnt)))
2192 tree = ERR_PTR(-EINVAL);
2193 else
2194 tree = copy_tree(real_mount(path->mnt), path->dentry,
2195 CL_COPY_ALL | CL_PRIVATE);
2196 namespace_unlock();
2197 if (IS_ERR(tree))
2198 return ERR_CAST(tree);
2199 return &tree->mnt;
2200 }
2201
2202 static void free_mnt_ns(struct mnt_namespace *);
2203 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2204
dissolve_on_fput(struct vfsmount * mnt)2205 void dissolve_on_fput(struct vfsmount *mnt)
2206 {
2207 struct mnt_namespace *ns;
2208 namespace_lock();
2209 lock_mount_hash();
2210 ns = real_mount(mnt)->mnt_ns;
2211 if (ns) {
2212 if (is_anon_ns(ns))
2213 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2214 else
2215 ns = NULL;
2216 }
2217 unlock_mount_hash();
2218 namespace_unlock();
2219 if (ns)
2220 free_mnt_ns(ns);
2221 }
2222
drop_collected_mounts(struct vfsmount * mnt)2223 void drop_collected_mounts(struct vfsmount *mnt)
2224 {
2225 namespace_lock();
2226 lock_mount_hash();
2227 umount_tree(real_mount(mnt), 0);
2228 unlock_mount_hash();
2229 namespace_unlock();
2230 }
2231
has_locked_children(struct mount * mnt,struct dentry * dentry)2232 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2233 {
2234 struct mount *child;
2235
2236 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2237 if (!is_subdir(child->mnt_mountpoint, dentry))
2238 continue;
2239
2240 if (child->mnt.mnt_flags & MNT_LOCKED)
2241 return true;
2242 }
2243 return false;
2244 }
2245
2246 /**
2247 * clone_private_mount - create a private clone of a path
2248 * @path: path to clone
2249 *
2250 * This creates a new vfsmount, which will be the clone of @path. The new mount
2251 * will not be attached anywhere in the namespace and will be private (i.e.
2252 * changes to the originating mount won't be propagated into this).
2253 *
2254 * Release with mntput().
2255 */
clone_private_mount(const struct path * path)2256 struct vfsmount *clone_private_mount(const struct path *path)
2257 {
2258 struct mount *old_mnt = real_mount(path->mnt);
2259 struct mount *new_mnt;
2260
2261 down_read(&namespace_sem);
2262 if (IS_MNT_UNBINDABLE(old_mnt))
2263 goto invalid;
2264
2265 if (!check_mnt(old_mnt))
2266 goto invalid;
2267
2268 if (has_locked_children(old_mnt, path->dentry))
2269 goto invalid;
2270
2271 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2272 up_read(&namespace_sem);
2273
2274 if (IS_ERR(new_mnt))
2275 return ERR_CAST(new_mnt);
2276
2277 /* Longterm mount to be removed by kern_unmount*() */
2278 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2279
2280 return &new_mnt->mnt;
2281
2282 invalid:
2283 up_read(&namespace_sem);
2284 return ERR_PTR(-EINVAL);
2285 }
2286 EXPORT_SYMBOL_GPL(clone_private_mount);
2287
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2288 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2289 struct vfsmount *root)
2290 {
2291 struct mount *mnt;
2292 int res = f(root, arg);
2293 if (res)
2294 return res;
2295 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2296 res = f(&mnt->mnt, arg);
2297 if (res)
2298 return res;
2299 }
2300 return 0;
2301 }
2302
lock_mnt_tree(struct mount * mnt)2303 static void lock_mnt_tree(struct mount *mnt)
2304 {
2305 struct mount *p;
2306
2307 for (p = mnt; p; p = next_mnt(p, mnt)) {
2308 int flags = p->mnt.mnt_flags;
2309 /* Don't allow unprivileged users to change mount flags */
2310 flags |= MNT_LOCK_ATIME;
2311
2312 if (flags & MNT_READONLY)
2313 flags |= MNT_LOCK_READONLY;
2314
2315 if (flags & MNT_NODEV)
2316 flags |= MNT_LOCK_NODEV;
2317
2318 if (flags & MNT_NOSUID)
2319 flags |= MNT_LOCK_NOSUID;
2320
2321 if (flags & MNT_NOEXEC)
2322 flags |= MNT_LOCK_NOEXEC;
2323 /* Don't allow unprivileged users to reveal what is under a mount */
2324 if (list_empty(&p->mnt_expire))
2325 flags |= MNT_LOCKED;
2326 p->mnt.mnt_flags = flags;
2327 }
2328 }
2329
cleanup_group_ids(struct mount * mnt,struct mount * end)2330 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2331 {
2332 struct mount *p;
2333
2334 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2335 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2336 mnt_release_group_id(p);
2337 }
2338 }
2339
invent_group_ids(struct mount * mnt,bool recurse)2340 static int invent_group_ids(struct mount *mnt, bool recurse)
2341 {
2342 struct mount *p;
2343
2344 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2345 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2346 int err = mnt_alloc_group_id(p);
2347 if (err) {
2348 cleanup_group_ids(mnt, p);
2349 return err;
2350 }
2351 }
2352 }
2353
2354 return 0;
2355 }
2356
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2357 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2358 {
2359 unsigned int max = READ_ONCE(sysctl_mount_max);
2360 unsigned int mounts = 0;
2361 struct mount *p;
2362
2363 if (ns->nr_mounts >= max)
2364 return -ENOSPC;
2365 max -= ns->nr_mounts;
2366 if (ns->pending_mounts >= max)
2367 return -ENOSPC;
2368 max -= ns->pending_mounts;
2369
2370 for (p = mnt; p; p = next_mnt(p, mnt))
2371 mounts++;
2372
2373 if (mounts > max)
2374 return -ENOSPC;
2375
2376 ns->pending_mounts += mounts;
2377 return 0;
2378 }
2379
2380 enum mnt_tree_flags_t {
2381 MNT_TREE_MOVE = BIT(0),
2382 MNT_TREE_BENEATH = BIT(1),
2383 };
2384
2385 /**
2386 * attach_recursive_mnt - attach a source mount tree
2387 * @source_mnt: mount tree to be attached
2388 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2389 * @dest_mp: the mountpoint @source_mnt will be mounted at
2390 * @flags: modify how @source_mnt is supposed to be attached
2391 *
2392 * NOTE: in the table below explains the semantics when a source mount
2393 * of a given type is attached to a destination mount of a given type.
2394 * ---------------------------------------------------------------------------
2395 * | BIND MOUNT OPERATION |
2396 * |**************************************************************************
2397 * | source-->| shared | private | slave | unbindable |
2398 * | dest | | | | |
2399 * | | | | | | |
2400 * | v | | | | |
2401 * |**************************************************************************
2402 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2403 * | | | | | |
2404 * |non-shared| shared (+) | private | slave (*) | invalid |
2405 * ***************************************************************************
2406 * A bind operation clones the source mount and mounts the clone on the
2407 * destination mount.
2408 *
2409 * (++) the cloned mount is propagated to all the mounts in the propagation
2410 * tree of the destination mount and the cloned mount is added to
2411 * the peer group of the source mount.
2412 * (+) the cloned mount is created under the destination mount and is marked
2413 * as shared. The cloned mount is added to the peer group of the source
2414 * mount.
2415 * (+++) the mount is propagated to all the mounts in the propagation tree
2416 * of the destination mount and the cloned mount is made slave
2417 * of the same master as that of the source mount. The cloned mount
2418 * is marked as 'shared and slave'.
2419 * (*) the cloned mount is made a slave of the same master as that of the
2420 * source mount.
2421 *
2422 * ---------------------------------------------------------------------------
2423 * | MOVE MOUNT OPERATION |
2424 * |**************************************************************************
2425 * | source-->| shared | private | slave | unbindable |
2426 * | dest | | | | |
2427 * | | | | | | |
2428 * | v | | | | |
2429 * |**************************************************************************
2430 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2431 * | | | | | |
2432 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2433 * ***************************************************************************
2434 *
2435 * (+) the mount is moved to the destination. And is then propagated to
2436 * all the mounts in the propagation tree of the destination mount.
2437 * (+*) the mount is moved to the destination.
2438 * (+++) the mount is moved to the destination and is then propagated to
2439 * all the mounts belonging to the destination mount's propagation tree.
2440 * the mount is marked as 'shared and slave'.
2441 * (*) the mount continues to be a slave at the new location.
2442 *
2443 * if the source mount is a tree, the operations explained above is
2444 * applied to each mount in the tree.
2445 * Must be called without spinlocks held, since this function can sleep
2446 * in allocations.
2447 *
2448 * Context: The function expects namespace_lock() to be held.
2449 * Return: If @source_mnt was successfully attached 0 is returned.
2450 * Otherwise a negative error code is returned.
2451 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2452 static int attach_recursive_mnt(struct mount *source_mnt,
2453 struct mount *top_mnt,
2454 struct mountpoint *dest_mp,
2455 enum mnt_tree_flags_t flags)
2456 {
2457 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2458 HLIST_HEAD(tree_list);
2459 struct mnt_namespace *ns = top_mnt->mnt_ns;
2460 struct mountpoint *smp;
2461 struct mount *child, *dest_mnt, *p;
2462 struct hlist_node *n;
2463 int err = 0;
2464 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2465
2466 /*
2467 * Preallocate a mountpoint in case the new mounts need to be
2468 * mounted beneath mounts on the same mountpoint.
2469 */
2470 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2471 if (IS_ERR(smp))
2472 return PTR_ERR(smp);
2473
2474 /* Is there space to add these mounts to the mount namespace? */
2475 if (!moving) {
2476 err = count_mounts(ns, source_mnt);
2477 if (err)
2478 goto out;
2479 }
2480
2481 if (beneath)
2482 dest_mnt = top_mnt->mnt_parent;
2483 else
2484 dest_mnt = top_mnt;
2485
2486 if (IS_MNT_SHARED(dest_mnt)) {
2487 err = invent_group_ids(source_mnt, true);
2488 if (err)
2489 goto out;
2490 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2491 }
2492 lock_mount_hash();
2493 if (err)
2494 goto out_cleanup_ids;
2495
2496 if (IS_MNT_SHARED(dest_mnt)) {
2497 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2498 set_mnt_shared(p);
2499 }
2500
2501 if (moving) {
2502 if (beneath)
2503 dest_mp = smp;
2504 unhash_mnt(source_mnt);
2505 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2506 touch_mnt_namespace(source_mnt->mnt_ns);
2507 } else {
2508 if (source_mnt->mnt_ns) {
2509 LIST_HEAD(head);
2510
2511 /* move from anon - the caller will destroy */
2512 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2513 move_from_ns(p, &head);
2514 list_del_init(&head);
2515 }
2516 if (beneath)
2517 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2518 else
2519 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2520 commit_tree(source_mnt);
2521 }
2522
2523 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2524 struct mount *q;
2525 hlist_del_init(&child->mnt_hash);
2526 q = __lookup_mnt(&child->mnt_parent->mnt,
2527 child->mnt_mountpoint);
2528 if (q)
2529 mnt_change_mountpoint(child, smp, q);
2530 /* Notice when we are propagating across user namespaces */
2531 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2532 lock_mnt_tree(child);
2533 child->mnt.mnt_flags &= ~MNT_LOCKED;
2534 commit_tree(child);
2535 }
2536 put_mountpoint(smp);
2537 unlock_mount_hash();
2538
2539 return 0;
2540
2541 out_cleanup_ids:
2542 while (!hlist_empty(&tree_list)) {
2543 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2544 child->mnt_parent->mnt_ns->pending_mounts = 0;
2545 umount_tree(child, UMOUNT_SYNC);
2546 }
2547 unlock_mount_hash();
2548 cleanup_group_ids(source_mnt, NULL);
2549 out:
2550 ns->pending_mounts = 0;
2551
2552 read_seqlock_excl(&mount_lock);
2553 put_mountpoint(smp);
2554 read_sequnlock_excl(&mount_lock);
2555
2556 return err;
2557 }
2558
2559 /**
2560 * do_lock_mount - lock mount and mountpoint
2561 * @path: target path
2562 * @beneath: whether the intention is to mount beneath @path
2563 *
2564 * Follow the mount stack on @path until the top mount @mnt is found. If
2565 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2566 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2567 * until nothing is stacked on top of it anymore.
2568 *
2569 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2570 * against concurrent removal of the new mountpoint from another mount
2571 * namespace.
2572 *
2573 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2574 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2575 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2576 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2577 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2578 * on top of it for @beneath.
2579 *
2580 * In addition, @beneath needs to make sure that @mnt hasn't been
2581 * unmounted or moved from its current mountpoint in between dropping
2582 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2583 * being unmounted would be detected later by e.g., calling
2584 * check_mnt(mnt) in the function it's called from. For the @beneath
2585 * case however, it's useful to detect it directly in do_lock_mount().
2586 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2587 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2588 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2589 *
2590 * Return: Either the target mountpoint on the top mount or the top
2591 * mount's mountpoint.
2592 */
do_lock_mount(struct path * path,bool beneath)2593 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2594 {
2595 struct vfsmount *mnt = path->mnt;
2596 struct dentry *dentry;
2597 struct mountpoint *mp = ERR_PTR(-ENOENT);
2598
2599 for (;;) {
2600 struct mount *m;
2601
2602 if (beneath) {
2603 m = real_mount(mnt);
2604 read_seqlock_excl(&mount_lock);
2605 dentry = dget(m->mnt_mountpoint);
2606 read_sequnlock_excl(&mount_lock);
2607 } else {
2608 dentry = path->dentry;
2609 }
2610
2611 inode_lock(dentry->d_inode);
2612 if (unlikely(cant_mount(dentry))) {
2613 inode_unlock(dentry->d_inode);
2614 goto out;
2615 }
2616
2617 namespace_lock();
2618
2619 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2620 namespace_unlock();
2621 inode_unlock(dentry->d_inode);
2622 goto out;
2623 }
2624
2625 mnt = lookup_mnt(path);
2626 if (likely(!mnt))
2627 break;
2628
2629 namespace_unlock();
2630 inode_unlock(dentry->d_inode);
2631 if (beneath)
2632 dput(dentry);
2633 path_put(path);
2634 path->mnt = mnt;
2635 path->dentry = dget(mnt->mnt_root);
2636 }
2637
2638 mp = get_mountpoint(dentry);
2639 if (IS_ERR(mp)) {
2640 namespace_unlock();
2641 inode_unlock(dentry->d_inode);
2642 }
2643
2644 out:
2645 if (beneath)
2646 dput(dentry);
2647
2648 return mp;
2649 }
2650
lock_mount(struct path * path)2651 static inline struct mountpoint *lock_mount(struct path *path)
2652 {
2653 return do_lock_mount(path, false);
2654 }
2655
unlock_mount(struct mountpoint * where)2656 static void unlock_mount(struct mountpoint *where)
2657 {
2658 struct dentry *dentry = where->m_dentry;
2659
2660 read_seqlock_excl(&mount_lock);
2661 put_mountpoint(where);
2662 read_sequnlock_excl(&mount_lock);
2663
2664 namespace_unlock();
2665 inode_unlock(dentry->d_inode);
2666 }
2667
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2668 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2669 {
2670 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2671 return -EINVAL;
2672
2673 if (d_is_dir(mp->m_dentry) !=
2674 d_is_dir(mnt->mnt.mnt_root))
2675 return -ENOTDIR;
2676
2677 return attach_recursive_mnt(mnt, p, mp, 0);
2678 }
2679
2680 /*
2681 * Sanity check the flags to change_mnt_propagation.
2682 */
2683
flags_to_propagation_type(int ms_flags)2684 static int flags_to_propagation_type(int ms_flags)
2685 {
2686 int type = ms_flags & ~(MS_REC | MS_SILENT);
2687
2688 /* Fail if any non-propagation flags are set */
2689 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2690 return 0;
2691 /* Only one propagation flag should be set */
2692 if (!is_power_of_2(type))
2693 return 0;
2694 return type;
2695 }
2696
2697 /*
2698 * recursively change the type of the mountpoint.
2699 */
do_change_type(struct path * path,int ms_flags)2700 static int do_change_type(struct path *path, int ms_flags)
2701 {
2702 struct mount *m;
2703 struct mount *mnt = real_mount(path->mnt);
2704 int recurse = ms_flags & MS_REC;
2705 int type;
2706 int err = 0;
2707
2708 if (!path_mounted(path))
2709 return -EINVAL;
2710
2711 type = flags_to_propagation_type(ms_flags);
2712 if (!type)
2713 return -EINVAL;
2714
2715 namespace_lock();
2716 if (type == MS_SHARED) {
2717 err = invent_group_ids(mnt, recurse);
2718 if (err)
2719 goto out_unlock;
2720 }
2721
2722 lock_mount_hash();
2723 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2724 change_mnt_propagation(m, type);
2725 unlock_mount_hash();
2726
2727 out_unlock:
2728 namespace_unlock();
2729 return err;
2730 }
2731
__do_loopback(struct path * old_path,int recurse)2732 static struct mount *__do_loopback(struct path *old_path, int recurse)
2733 {
2734 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2735
2736 if (IS_MNT_UNBINDABLE(old))
2737 return mnt;
2738
2739 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2740 return mnt;
2741
2742 if (!recurse && has_locked_children(old, old_path->dentry))
2743 return mnt;
2744
2745 if (recurse)
2746 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2747 else
2748 mnt = clone_mnt(old, old_path->dentry, 0);
2749
2750 if (!IS_ERR(mnt))
2751 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2752
2753 return mnt;
2754 }
2755
2756 /*
2757 * do loopback mount.
2758 */
do_loopback(struct path * path,const char * old_name,int recurse)2759 static int do_loopback(struct path *path, const char *old_name,
2760 int recurse)
2761 {
2762 struct path old_path;
2763 struct mount *mnt = NULL, *parent;
2764 struct mountpoint *mp;
2765 int err;
2766 if (!old_name || !*old_name)
2767 return -EINVAL;
2768 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2769 if (err)
2770 return err;
2771
2772 err = -EINVAL;
2773 if (mnt_ns_loop(old_path.dentry))
2774 goto out;
2775
2776 mp = lock_mount(path);
2777 if (IS_ERR(mp)) {
2778 err = PTR_ERR(mp);
2779 goto out;
2780 }
2781
2782 parent = real_mount(path->mnt);
2783 if (!check_mnt(parent))
2784 goto out2;
2785
2786 mnt = __do_loopback(&old_path, recurse);
2787 if (IS_ERR(mnt)) {
2788 err = PTR_ERR(mnt);
2789 goto out2;
2790 }
2791
2792 err = graft_tree(mnt, parent, mp);
2793 if (err) {
2794 lock_mount_hash();
2795 umount_tree(mnt, UMOUNT_SYNC);
2796 unlock_mount_hash();
2797 }
2798 out2:
2799 unlock_mount(mp);
2800 out:
2801 path_put(&old_path);
2802 return err;
2803 }
2804
open_detached_copy(struct path * path,bool recursive)2805 static struct file *open_detached_copy(struct path *path, bool recursive)
2806 {
2807 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2808 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2809 struct mount *mnt, *p;
2810 struct file *file;
2811
2812 if (IS_ERR(ns))
2813 return ERR_CAST(ns);
2814
2815 namespace_lock();
2816 mnt = __do_loopback(path, recursive);
2817 if (IS_ERR(mnt)) {
2818 namespace_unlock();
2819 free_mnt_ns(ns);
2820 return ERR_CAST(mnt);
2821 }
2822
2823 lock_mount_hash();
2824 for (p = mnt; p; p = next_mnt(p, mnt)) {
2825 mnt_add_to_ns(ns, p);
2826 ns->nr_mounts++;
2827 }
2828 ns->root = mnt;
2829 mntget(&mnt->mnt);
2830 unlock_mount_hash();
2831 namespace_unlock();
2832
2833 mntput(path->mnt);
2834 path->mnt = &mnt->mnt;
2835 file = dentry_open(path, O_PATH, current_cred());
2836 if (IS_ERR(file))
2837 dissolve_on_fput(path->mnt);
2838 else
2839 file->f_mode |= FMODE_NEED_UNMOUNT;
2840 return file;
2841 }
2842
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2843 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2844 {
2845 struct file *file;
2846 struct path path;
2847 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2848 bool detached = flags & OPEN_TREE_CLONE;
2849 int error;
2850 int fd;
2851
2852 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2853
2854 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2855 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2856 OPEN_TREE_CLOEXEC))
2857 return -EINVAL;
2858
2859 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2860 return -EINVAL;
2861
2862 if (flags & AT_NO_AUTOMOUNT)
2863 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2864 if (flags & AT_SYMLINK_NOFOLLOW)
2865 lookup_flags &= ~LOOKUP_FOLLOW;
2866 if (flags & AT_EMPTY_PATH)
2867 lookup_flags |= LOOKUP_EMPTY;
2868
2869 if (detached && !may_mount())
2870 return -EPERM;
2871
2872 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2873 if (fd < 0)
2874 return fd;
2875
2876 error = user_path_at(dfd, filename, lookup_flags, &path);
2877 if (unlikely(error)) {
2878 file = ERR_PTR(error);
2879 } else {
2880 if (detached)
2881 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2882 else
2883 file = dentry_open(&path, O_PATH, current_cred());
2884 path_put(&path);
2885 }
2886 if (IS_ERR(file)) {
2887 put_unused_fd(fd);
2888 return PTR_ERR(file);
2889 }
2890 fd_install(fd, file);
2891 return fd;
2892 }
2893
2894 /*
2895 * Don't allow locked mount flags to be cleared.
2896 *
2897 * No locks need to be held here while testing the various MNT_LOCK
2898 * flags because those flags can never be cleared once they are set.
2899 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2900 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2901 {
2902 unsigned int fl = mnt->mnt.mnt_flags;
2903
2904 if ((fl & MNT_LOCK_READONLY) &&
2905 !(mnt_flags & MNT_READONLY))
2906 return false;
2907
2908 if ((fl & MNT_LOCK_NODEV) &&
2909 !(mnt_flags & MNT_NODEV))
2910 return false;
2911
2912 if ((fl & MNT_LOCK_NOSUID) &&
2913 !(mnt_flags & MNT_NOSUID))
2914 return false;
2915
2916 if ((fl & MNT_LOCK_NOEXEC) &&
2917 !(mnt_flags & MNT_NOEXEC))
2918 return false;
2919
2920 if ((fl & MNT_LOCK_ATIME) &&
2921 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2922 return false;
2923
2924 return true;
2925 }
2926
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2927 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2928 {
2929 bool readonly_request = (mnt_flags & MNT_READONLY);
2930
2931 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2932 return 0;
2933
2934 if (readonly_request)
2935 return mnt_make_readonly(mnt);
2936
2937 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2938 return 0;
2939 }
2940
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2941 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2942 {
2943 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2944 mnt->mnt.mnt_flags = mnt_flags;
2945 touch_mnt_namespace(mnt->mnt_ns);
2946 }
2947
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2948 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2949 {
2950 struct super_block *sb = mnt->mnt_sb;
2951
2952 if (!__mnt_is_readonly(mnt) &&
2953 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2954 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2955 char *buf, *mntpath;
2956
2957 buf = (char *)__get_free_page(GFP_KERNEL);
2958 if (buf)
2959 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2960 else
2961 mntpath = ERR_PTR(-ENOMEM);
2962 if (IS_ERR(mntpath))
2963 mntpath = "(unknown)";
2964
2965 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2966 sb->s_type->name,
2967 is_mounted(mnt) ? "remounted" : "mounted",
2968 mntpath, &sb->s_time_max,
2969 (unsigned long long)sb->s_time_max);
2970
2971 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2972 if (buf)
2973 free_page((unsigned long)buf);
2974 }
2975 }
2976
2977 /*
2978 * Handle reconfiguration of the mountpoint only without alteration of the
2979 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2980 * to mount(2).
2981 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2982 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2983 {
2984 struct super_block *sb = path->mnt->mnt_sb;
2985 struct mount *mnt = real_mount(path->mnt);
2986 int ret;
2987
2988 if (!check_mnt(mnt))
2989 return -EINVAL;
2990
2991 if (!path_mounted(path))
2992 return -EINVAL;
2993
2994 if (!can_change_locked_flags(mnt, mnt_flags))
2995 return -EPERM;
2996
2997 /*
2998 * We're only checking whether the superblock is read-only not
2999 * changing it, so only take down_read(&sb->s_umount).
3000 */
3001 down_read(&sb->s_umount);
3002 lock_mount_hash();
3003 ret = change_mount_ro_state(mnt, mnt_flags);
3004 if (ret == 0)
3005 set_mount_attributes(mnt, mnt_flags);
3006 unlock_mount_hash();
3007 up_read(&sb->s_umount);
3008
3009 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3010
3011 return ret;
3012 }
3013
3014 /*
3015 * change filesystem flags. dir should be a physical root of filesystem.
3016 * If you've mounted a non-root directory somewhere and want to do remount
3017 * on it - tough luck.
3018 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3019 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3020 int mnt_flags, void *data)
3021 {
3022 int err;
3023 struct super_block *sb = path->mnt->mnt_sb;
3024 struct mount *mnt = real_mount(path->mnt);
3025 struct fs_context *fc;
3026
3027 if (!check_mnt(mnt))
3028 return -EINVAL;
3029
3030 if (!path_mounted(path))
3031 return -EINVAL;
3032
3033 if (!can_change_locked_flags(mnt, mnt_flags))
3034 return -EPERM;
3035
3036 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3037 if (IS_ERR(fc))
3038 return PTR_ERR(fc);
3039
3040 /*
3041 * Indicate to the filesystem that the remount request is coming
3042 * from the legacy mount system call.
3043 */
3044 fc->oldapi = true;
3045
3046 err = parse_monolithic_mount_data(fc, data);
3047 if (!err) {
3048 down_write(&sb->s_umount);
3049 err = -EPERM;
3050 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3051 err = reconfigure_super(fc);
3052 if (!err) {
3053 lock_mount_hash();
3054 set_mount_attributes(mnt, mnt_flags);
3055 unlock_mount_hash();
3056 }
3057 }
3058 up_write(&sb->s_umount);
3059 }
3060
3061 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3062
3063 put_fs_context(fc);
3064 return err;
3065 }
3066
tree_contains_unbindable(struct mount * mnt)3067 static inline int tree_contains_unbindable(struct mount *mnt)
3068 {
3069 struct mount *p;
3070 for (p = mnt; p; p = next_mnt(p, mnt)) {
3071 if (IS_MNT_UNBINDABLE(p))
3072 return 1;
3073 }
3074 return 0;
3075 }
3076
3077 /*
3078 * Check that there aren't references to earlier/same mount namespaces in the
3079 * specified subtree. Such references can act as pins for mount namespaces
3080 * that aren't checked by the mount-cycle checking code, thereby allowing
3081 * cycles to be made.
3082 */
check_for_nsfs_mounts(struct mount * subtree)3083 static bool check_for_nsfs_mounts(struct mount *subtree)
3084 {
3085 struct mount *p;
3086 bool ret = false;
3087
3088 lock_mount_hash();
3089 for (p = subtree; p; p = next_mnt(p, subtree))
3090 if (mnt_ns_loop(p->mnt.mnt_root))
3091 goto out;
3092
3093 ret = true;
3094 out:
3095 unlock_mount_hash();
3096 return ret;
3097 }
3098
do_set_group(struct path * from_path,struct path * to_path)3099 static int do_set_group(struct path *from_path, struct path *to_path)
3100 {
3101 struct mount *from, *to;
3102 int err;
3103
3104 from = real_mount(from_path->mnt);
3105 to = real_mount(to_path->mnt);
3106
3107 namespace_lock();
3108
3109 err = -EINVAL;
3110 /* To and From must be mounted */
3111 if (!is_mounted(&from->mnt))
3112 goto out;
3113 if (!is_mounted(&to->mnt))
3114 goto out;
3115
3116 err = -EPERM;
3117 /* We should be allowed to modify mount namespaces of both mounts */
3118 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3119 goto out;
3120 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3121 goto out;
3122
3123 err = -EINVAL;
3124 /* To and From paths should be mount roots */
3125 if (!path_mounted(from_path))
3126 goto out;
3127 if (!path_mounted(to_path))
3128 goto out;
3129
3130 /* Setting sharing groups is only allowed across same superblock */
3131 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3132 goto out;
3133
3134 /* From mount root should be wider than To mount root */
3135 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3136 goto out;
3137
3138 /* From mount should not have locked children in place of To's root */
3139 if (has_locked_children(from, to->mnt.mnt_root))
3140 goto out;
3141
3142 /* Setting sharing groups is only allowed on private mounts */
3143 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3144 goto out;
3145
3146 /* From should not be private */
3147 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3148 goto out;
3149
3150 if (IS_MNT_SLAVE(from)) {
3151 struct mount *m = from->mnt_master;
3152
3153 list_add(&to->mnt_slave, &m->mnt_slave_list);
3154 to->mnt_master = m;
3155 }
3156
3157 if (IS_MNT_SHARED(from)) {
3158 to->mnt_group_id = from->mnt_group_id;
3159 list_add(&to->mnt_share, &from->mnt_share);
3160 lock_mount_hash();
3161 set_mnt_shared(to);
3162 unlock_mount_hash();
3163 }
3164
3165 err = 0;
3166 out:
3167 namespace_unlock();
3168 return err;
3169 }
3170
3171 /**
3172 * path_overmounted - check if path is overmounted
3173 * @path: path to check
3174 *
3175 * Check if path is overmounted, i.e., if there's a mount on top of
3176 * @path->mnt with @path->dentry as mountpoint.
3177 *
3178 * Context: This function expects namespace_lock() to be held.
3179 * Return: If path is overmounted true is returned, false if not.
3180 */
path_overmounted(const struct path * path)3181 static inline bool path_overmounted(const struct path *path)
3182 {
3183 rcu_read_lock();
3184 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3185 rcu_read_unlock();
3186 return true;
3187 }
3188 rcu_read_unlock();
3189 return false;
3190 }
3191
3192 /**
3193 * can_move_mount_beneath - check that we can mount beneath the top mount
3194 * @from: mount to mount beneath
3195 * @to: mount under which to mount
3196 * @mp: mountpoint of @to
3197 *
3198 * - Make sure that @to->dentry is actually the root of a mount under
3199 * which we can mount another mount.
3200 * - Make sure that nothing can be mounted beneath the caller's current
3201 * root or the rootfs of the namespace.
3202 * - Make sure that the caller can unmount the topmost mount ensuring
3203 * that the caller could reveal the underlying mountpoint.
3204 * - Ensure that nothing has been mounted on top of @from before we
3205 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3206 * - Prevent mounting beneath a mount if the propagation relationship
3207 * between the source mount, parent mount, and top mount would lead to
3208 * nonsensical mount trees.
3209 *
3210 * Context: This function expects namespace_lock() to be held.
3211 * Return: On success 0, and on error a negative error code is returned.
3212 */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3213 static int can_move_mount_beneath(const struct path *from,
3214 const struct path *to,
3215 const struct mountpoint *mp)
3216 {
3217 struct mount *mnt_from = real_mount(from->mnt),
3218 *mnt_to = real_mount(to->mnt),
3219 *parent_mnt_to = mnt_to->mnt_parent;
3220
3221 if (!mnt_has_parent(mnt_to))
3222 return -EINVAL;
3223
3224 if (!path_mounted(to))
3225 return -EINVAL;
3226
3227 if (IS_MNT_LOCKED(mnt_to))
3228 return -EINVAL;
3229
3230 /* Avoid creating shadow mounts during mount propagation. */
3231 if (path_overmounted(from))
3232 return -EINVAL;
3233
3234 /*
3235 * Mounting beneath the rootfs only makes sense when the
3236 * semantics of pivot_root(".", ".") are used.
3237 */
3238 if (&mnt_to->mnt == current->fs->root.mnt)
3239 return -EINVAL;
3240 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3241 return -EINVAL;
3242
3243 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3244 if (p == mnt_to)
3245 return -EINVAL;
3246
3247 /*
3248 * If the parent mount propagates to the child mount this would
3249 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3250 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3251 * defeats the whole purpose of mounting beneath another mount.
3252 */
3253 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3254 return -EINVAL;
3255
3256 /*
3257 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3258 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3259 * Afterwards @mnt_from would be mounted on top of
3260 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3261 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3262 * already mounted on @mnt_from, @mnt_to would ultimately be
3263 * remounted on top of @c. Afterwards, @mnt_from would be
3264 * covered by a copy @c of @mnt_from and @c would be covered by
3265 * @mnt_from itself. This defeats the whole purpose of mounting
3266 * @mnt_from beneath @mnt_to.
3267 */
3268 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3269 return -EINVAL;
3270
3271 return 0;
3272 }
3273
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3274 static int do_move_mount(struct path *old_path, struct path *new_path,
3275 bool beneath)
3276 {
3277 struct mnt_namespace *ns;
3278 struct mount *p;
3279 struct mount *old;
3280 struct mount *parent;
3281 struct mountpoint *mp, *old_mp;
3282 int err;
3283 bool attached;
3284 enum mnt_tree_flags_t flags = 0;
3285
3286 mp = do_lock_mount(new_path, beneath);
3287 if (IS_ERR(mp))
3288 return PTR_ERR(mp);
3289
3290 old = real_mount(old_path->mnt);
3291 p = real_mount(new_path->mnt);
3292 parent = old->mnt_parent;
3293 attached = mnt_has_parent(old);
3294 if (attached)
3295 flags |= MNT_TREE_MOVE;
3296 old_mp = old->mnt_mp;
3297 ns = old->mnt_ns;
3298
3299 err = -EINVAL;
3300 /* The mountpoint must be in our namespace. */
3301 if (!check_mnt(p))
3302 goto out;
3303
3304 /* The thing moved must be mounted... */
3305 if (!is_mounted(&old->mnt))
3306 goto out;
3307
3308 /* ... and either ours or the root of anon namespace */
3309 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3310 goto out;
3311
3312 if (old->mnt.mnt_flags & MNT_LOCKED)
3313 goto out;
3314
3315 if (!path_mounted(old_path))
3316 goto out;
3317
3318 if (d_is_dir(new_path->dentry) !=
3319 d_is_dir(old_path->dentry))
3320 goto out;
3321 /*
3322 * Don't move a mount residing in a shared parent.
3323 */
3324 if (attached && IS_MNT_SHARED(parent))
3325 goto out;
3326
3327 if (beneath) {
3328 err = can_move_mount_beneath(old_path, new_path, mp);
3329 if (err)
3330 goto out;
3331
3332 err = -EINVAL;
3333 p = p->mnt_parent;
3334 flags |= MNT_TREE_BENEATH;
3335 }
3336
3337 /*
3338 * Don't move a mount tree containing unbindable mounts to a destination
3339 * mount which is shared.
3340 */
3341 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3342 goto out;
3343 err = -ELOOP;
3344 if (!check_for_nsfs_mounts(old))
3345 goto out;
3346 for (; mnt_has_parent(p); p = p->mnt_parent)
3347 if (p == old)
3348 goto out;
3349
3350 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3351 if (err)
3352 goto out;
3353
3354 /* if the mount is moved, it should no longer be expire
3355 * automatically */
3356 list_del_init(&old->mnt_expire);
3357 if (attached)
3358 put_mountpoint(old_mp);
3359 out:
3360 unlock_mount(mp);
3361 if (!err) {
3362 if (attached)
3363 mntput_no_expire(parent);
3364 else
3365 free_mnt_ns(ns);
3366 }
3367 return err;
3368 }
3369
do_move_mount_old(struct path * path,const char * old_name)3370 static int do_move_mount_old(struct path *path, const char *old_name)
3371 {
3372 struct path old_path;
3373 int err;
3374
3375 if (!old_name || !*old_name)
3376 return -EINVAL;
3377
3378 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3379 if (err)
3380 return err;
3381
3382 err = do_move_mount(&old_path, path, false);
3383 path_put(&old_path);
3384 return err;
3385 }
3386
3387 /*
3388 * add a mount into a namespace's mount tree
3389 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3390 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3391 const struct path *path, int mnt_flags)
3392 {
3393 struct mount *parent = real_mount(path->mnt);
3394
3395 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3396
3397 if (unlikely(!check_mnt(parent))) {
3398 /* that's acceptable only for automounts done in private ns */
3399 if (!(mnt_flags & MNT_SHRINKABLE))
3400 return -EINVAL;
3401 /* ... and for those we'd better have mountpoint still alive */
3402 if (!parent->mnt_ns)
3403 return -EINVAL;
3404 }
3405
3406 /* Refuse the same filesystem on the same mount point */
3407 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3408 return -EBUSY;
3409
3410 if (d_is_symlink(newmnt->mnt.mnt_root))
3411 return -EINVAL;
3412
3413 newmnt->mnt.mnt_flags = mnt_flags;
3414 return graft_tree(newmnt, parent, mp);
3415 }
3416
3417 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3418
3419 /*
3420 * Create a new mount using a superblock configuration and request it
3421 * be added to the namespace tree.
3422 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3423 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3424 unsigned int mnt_flags)
3425 {
3426 struct vfsmount *mnt;
3427 struct mountpoint *mp;
3428 struct super_block *sb = fc->root->d_sb;
3429 int error;
3430
3431 error = security_sb_kern_mount(sb);
3432 if (!error && mount_too_revealing(sb, &mnt_flags))
3433 error = -EPERM;
3434
3435 if (unlikely(error)) {
3436 fc_drop_locked(fc);
3437 return error;
3438 }
3439
3440 up_write(&sb->s_umount);
3441
3442 mnt = vfs_create_mount(fc);
3443 if (IS_ERR(mnt))
3444 return PTR_ERR(mnt);
3445
3446 mnt_warn_timestamp_expiry(mountpoint, mnt);
3447
3448 mp = lock_mount(mountpoint);
3449 if (IS_ERR(mp)) {
3450 mntput(mnt);
3451 return PTR_ERR(mp);
3452 }
3453 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3454 unlock_mount(mp);
3455 if (error < 0)
3456 mntput(mnt);
3457 return error;
3458 }
3459
3460 /*
3461 * create a new mount for userspace and request it to be added into the
3462 * namespace's tree
3463 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3464 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3465 int mnt_flags, const char *name, void *data)
3466 {
3467 struct file_system_type *type;
3468 struct fs_context *fc;
3469 const char *subtype = NULL;
3470 int err = 0;
3471
3472 if (!fstype)
3473 return -EINVAL;
3474
3475 type = get_fs_type(fstype);
3476 if (!type)
3477 return -ENODEV;
3478
3479 if (type->fs_flags & FS_HAS_SUBTYPE) {
3480 subtype = strchr(fstype, '.');
3481 if (subtype) {
3482 subtype++;
3483 if (!*subtype) {
3484 put_filesystem(type);
3485 return -EINVAL;
3486 }
3487 }
3488 }
3489
3490 fc = fs_context_for_mount(type, sb_flags);
3491 put_filesystem(type);
3492 if (IS_ERR(fc))
3493 return PTR_ERR(fc);
3494
3495 /*
3496 * Indicate to the filesystem that the mount request is coming
3497 * from the legacy mount system call.
3498 */
3499 fc->oldapi = true;
3500
3501 if (subtype)
3502 err = vfs_parse_fs_string(fc, "subtype",
3503 subtype, strlen(subtype));
3504 if (!err && name)
3505 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3506 if (!err)
3507 err = parse_monolithic_mount_data(fc, data);
3508 if (!err && !mount_capable(fc))
3509 err = -EPERM;
3510 if (!err)
3511 err = vfs_get_tree(fc);
3512 if (!err)
3513 err = do_new_mount_fc(fc, path, mnt_flags);
3514
3515 put_fs_context(fc);
3516 return err;
3517 }
3518
finish_automount(struct vfsmount * m,const struct path * path)3519 int finish_automount(struct vfsmount *m, const struct path *path)
3520 {
3521 struct dentry *dentry = path->dentry;
3522 struct mountpoint *mp;
3523 struct mount *mnt;
3524 int err;
3525
3526 if (!m)
3527 return 0;
3528 if (IS_ERR(m))
3529 return PTR_ERR(m);
3530
3531 mnt = real_mount(m);
3532 /* The new mount record should have at least 2 refs to prevent it being
3533 * expired before we get a chance to add it
3534 */
3535 BUG_ON(mnt_get_count(mnt) < 2);
3536
3537 if (m->mnt_sb == path->mnt->mnt_sb &&
3538 m->mnt_root == dentry) {
3539 err = -ELOOP;
3540 goto discard;
3541 }
3542
3543 /*
3544 * we don't want to use lock_mount() - in this case finding something
3545 * that overmounts our mountpoint to be means "quitely drop what we've
3546 * got", not "try to mount it on top".
3547 */
3548 inode_lock(dentry->d_inode);
3549 namespace_lock();
3550 if (unlikely(cant_mount(dentry))) {
3551 err = -ENOENT;
3552 goto discard_locked;
3553 }
3554 if (path_overmounted(path)) {
3555 err = 0;
3556 goto discard_locked;
3557 }
3558 mp = get_mountpoint(dentry);
3559 if (IS_ERR(mp)) {
3560 err = PTR_ERR(mp);
3561 goto discard_locked;
3562 }
3563
3564 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3565 unlock_mount(mp);
3566 if (unlikely(err))
3567 goto discard;
3568 mntput(m);
3569 return 0;
3570
3571 discard_locked:
3572 namespace_unlock();
3573 inode_unlock(dentry->d_inode);
3574 discard:
3575 /* remove m from any expiration list it may be on */
3576 if (!list_empty(&mnt->mnt_expire)) {
3577 namespace_lock();
3578 list_del_init(&mnt->mnt_expire);
3579 namespace_unlock();
3580 }
3581 mntput(m);
3582 mntput(m);
3583 return err;
3584 }
3585
3586 /**
3587 * mnt_set_expiry - Put a mount on an expiration list
3588 * @mnt: The mount to list.
3589 * @expiry_list: The list to add the mount to.
3590 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3591 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3592 {
3593 namespace_lock();
3594
3595 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3596
3597 namespace_unlock();
3598 }
3599 EXPORT_SYMBOL(mnt_set_expiry);
3600
3601 /*
3602 * process a list of expirable mountpoints with the intent of discarding any
3603 * mountpoints that aren't in use and haven't been touched since last we came
3604 * here
3605 */
mark_mounts_for_expiry(struct list_head * mounts)3606 void mark_mounts_for_expiry(struct list_head *mounts)
3607 {
3608 struct mount *mnt, *next;
3609 LIST_HEAD(graveyard);
3610
3611 if (list_empty(mounts))
3612 return;
3613
3614 namespace_lock();
3615 lock_mount_hash();
3616
3617 /* extract from the expiration list every vfsmount that matches the
3618 * following criteria:
3619 * - only referenced by its parent vfsmount
3620 * - still marked for expiry (marked on the last call here; marks are
3621 * cleared by mntput())
3622 */
3623 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3624 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3625 propagate_mount_busy(mnt, 1))
3626 continue;
3627 list_move(&mnt->mnt_expire, &graveyard);
3628 }
3629 while (!list_empty(&graveyard)) {
3630 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3631 touch_mnt_namespace(mnt->mnt_ns);
3632 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3633 }
3634 unlock_mount_hash();
3635 namespace_unlock();
3636 }
3637
3638 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3639
3640 /*
3641 * Ripoff of 'select_parent()'
3642 *
3643 * search the list of submounts for a given mountpoint, and move any
3644 * shrinkable submounts to the 'graveyard' list.
3645 */
select_submounts(struct mount * parent,struct list_head * graveyard)3646 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3647 {
3648 struct mount *this_parent = parent;
3649 struct list_head *next;
3650 int found = 0;
3651
3652 repeat:
3653 next = this_parent->mnt_mounts.next;
3654 resume:
3655 while (next != &this_parent->mnt_mounts) {
3656 struct list_head *tmp = next;
3657 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3658
3659 next = tmp->next;
3660 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3661 continue;
3662 /*
3663 * Descend a level if the d_mounts list is non-empty.
3664 */
3665 if (!list_empty(&mnt->mnt_mounts)) {
3666 this_parent = mnt;
3667 goto repeat;
3668 }
3669
3670 if (!propagate_mount_busy(mnt, 1)) {
3671 list_move_tail(&mnt->mnt_expire, graveyard);
3672 found++;
3673 }
3674 }
3675 /*
3676 * All done at this level ... ascend and resume the search
3677 */
3678 if (this_parent != parent) {
3679 next = this_parent->mnt_child.next;
3680 this_parent = this_parent->mnt_parent;
3681 goto resume;
3682 }
3683 return found;
3684 }
3685
3686 /*
3687 * process a list of expirable mountpoints with the intent of discarding any
3688 * submounts of a specific parent mountpoint
3689 *
3690 * mount_lock must be held for write
3691 */
shrink_submounts(struct mount * mnt)3692 static void shrink_submounts(struct mount *mnt)
3693 {
3694 LIST_HEAD(graveyard);
3695 struct mount *m;
3696
3697 /* extract submounts of 'mountpoint' from the expiration list */
3698 while (select_submounts(mnt, &graveyard)) {
3699 while (!list_empty(&graveyard)) {
3700 m = list_first_entry(&graveyard, struct mount,
3701 mnt_expire);
3702 touch_mnt_namespace(m->mnt_ns);
3703 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3704 }
3705 }
3706 }
3707
copy_mount_options(const void __user * data)3708 static void *copy_mount_options(const void __user * data)
3709 {
3710 char *copy;
3711 unsigned left, offset;
3712
3713 if (!data)
3714 return NULL;
3715
3716 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3717 if (!copy)
3718 return ERR_PTR(-ENOMEM);
3719
3720 left = copy_from_user(copy, data, PAGE_SIZE);
3721
3722 /*
3723 * Not all architectures have an exact copy_from_user(). Resort to
3724 * byte at a time.
3725 */
3726 offset = PAGE_SIZE - left;
3727 while (left) {
3728 char c;
3729 if (get_user(c, (const char __user *)data + offset))
3730 break;
3731 copy[offset] = c;
3732 left--;
3733 offset++;
3734 }
3735
3736 if (left == PAGE_SIZE) {
3737 kfree(copy);
3738 return ERR_PTR(-EFAULT);
3739 }
3740
3741 return copy;
3742 }
3743
copy_mount_string(const void __user * data)3744 static char *copy_mount_string(const void __user *data)
3745 {
3746 return data ? strndup_user(data, PATH_MAX) : NULL;
3747 }
3748
3749 /*
3750 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3751 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3752 *
3753 * data is a (void *) that can point to any structure up to
3754 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3755 * information (or be NULL).
3756 *
3757 * Pre-0.97 versions of mount() didn't have a flags word.
3758 * When the flags word was introduced its top half was required
3759 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3760 * Therefore, if this magic number is present, it carries no information
3761 * and must be discarded.
3762 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3763 int path_mount(const char *dev_name, struct path *path,
3764 const char *type_page, unsigned long flags, void *data_page)
3765 {
3766 unsigned int mnt_flags = 0, sb_flags;
3767 int ret;
3768
3769 /* Discard magic */
3770 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3771 flags &= ~MS_MGC_MSK;
3772
3773 /* Basic sanity checks */
3774 if (data_page)
3775 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3776
3777 if (flags & MS_NOUSER)
3778 return -EINVAL;
3779
3780 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3781 if (ret)
3782 return ret;
3783 if (!may_mount())
3784 return -EPERM;
3785 if (flags & SB_MANDLOCK)
3786 warn_mandlock();
3787
3788 /* Default to relatime unless overriden */
3789 if (!(flags & MS_NOATIME))
3790 mnt_flags |= MNT_RELATIME;
3791
3792 /* Separate the per-mountpoint flags */
3793 if (flags & MS_NOSUID)
3794 mnt_flags |= MNT_NOSUID;
3795 if (flags & MS_NODEV)
3796 mnt_flags |= MNT_NODEV;
3797 if (flags & MS_NOEXEC)
3798 mnt_flags |= MNT_NOEXEC;
3799 if (flags & MS_NOATIME)
3800 mnt_flags |= MNT_NOATIME;
3801 if (flags & MS_NODIRATIME)
3802 mnt_flags |= MNT_NODIRATIME;
3803 if (flags & MS_STRICTATIME)
3804 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3805 if (flags & MS_RDONLY)
3806 mnt_flags |= MNT_READONLY;
3807 if (flags & MS_NOSYMFOLLOW)
3808 mnt_flags |= MNT_NOSYMFOLLOW;
3809
3810 /* The default atime for remount is preservation */
3811 if ((flags & MS_REMOUNT) &&
3812 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3813 MS_STRICTATIME)) == 0)) {
3814 mnt_flags &= ~MNT_ATIME_MASK;
3815 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3816 }
3817
3818 sb_flags = flags & (SB_RDONLY |
3819 SB_SYNCHRONOUS |
3820 SB_MANDLOCK |
3821 SB_DIRSYNC |
3822 SB_SILENT |
3823 SB_POSIXACL |
3824 SB_LAZYTIME |
3825 SB_I_VERSION);
3826
3827 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3828 return do_reconfigure_mnt(path, mnt_flags);
3829 if (flags & MS_REMOUNT)
3830 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3831 if (flags & MS_BIND)
3832 return do_loopback(path, dev_name, flags & MS_REC);
3833 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3834 return do_change_type(path, flags);
3835 if (flags & MS_MOVE)
3836 return do_move_mount_old(path, dev_name);
3837
3838 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3839 data_page);
3840 }
3841
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3842 long do_mount(const char *dev_name, const char __user *dir_name,
3843 const char *type_page, unsigned long flags, void *data_page)
3844 {
3845 struct path path;
3846 int ret;
3847
3848 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3849 if (ret)
3850 return ret;
3851 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3852 path_put(&path);
3853 return ret;
3854 }
3855
inc_mnt_namespaces(struct user_namespace * ns)3856 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3857 {
3858 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3859 }
3860
dec_mnt_namespaces(struct ucounts * ucounts)3861 static void dec_mnt_namespaces(struct ucounts *ucounts)
3862 {
3863 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3864 }
3865
free_mnt_ns(struct mnt_namespace * ns)3866 static void free_mnt_ns(struct mnt_namespace *ns)
3867 {
3868 if (!is_anon_ns(ns))
3869 ns_free_inum(&ns->ns);
3870 dec_mnt_namespaces(ns->ucounts);
3871 mnt_ns_tree_remove(ns);
3872 }
3873
3874 /*
3875 * Assign a sequence number so we can detect when we attempt to bind
3876 * mount a reference to an older mount namespace into the current
3877 * mount namespace, preventing reference counting loops. A 64bit
3878 * number incrementing at 10Ghz will take 12,427 years to wrap which
3879 * is effectively never, so we can ignore the possibility.
3880 */
3881 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3882
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3883 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3884 {
3885 struct mnt_namespace *new_ns;
3886 struct ucounts *ucounts;
3887 int ret;
3888
3889 ucounts = inc_mnt_namespaces(user_ns);
3890 if (!ucounts)
3891 return ERR_PTR(-ENOSPC);
3892
3893 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3894 if (!new_ns) {
3895 dec_mnt_namespaces(ucounts);
3896 return ERR_PTR(-ENOMEM);
3897 }
3898 if (!anon) {
3899 ret = ns_alloc_inum(&new_ns->ns);
3900 if (ret) {
3901 kfree(new_ns);
3902 dec_mnt_namespaces(ucounts);
3903 return ERR_PTR(ret);
3904 }
3905 }
3906 new_ns->ns.ops = &mntns_operations;
3907 if (!anon)
3908 new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
3909 refcount_set(&new_ns->ns.count, 1);
3910 refcount_set(&new_ns->passive, 1);
3911 new_ns->mounts = RB_ROOT;
3912 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3913 init_waitqueue_head(&new_ns->poll);
3914 new_ns->user_ns = get_user_ns(user_ns);
3915 new_ns->ucounts = ucounts;
3916 return new_ns;
3917 }
3918
3919 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3920 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3921 struct user_namespace *user_ns, struct fs_struct *new_fs)
3922 {
3923 struct mnt_namespace *new_ns;
3924 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3925 struct mount *p, *q;
3926 struct mount *old;
3927 struct mount *new;
3928 int copy_flags;
3929
3930 BUG_ON(!ns);
3931
3932 if (likely(!(flags & CLONE_NEWNS))) {
3933 get_mnt_ns(ns);
3934 return ns;
3935 }
3936
3937 old = ns->root;
3938
3939 new_ns = alloc_mnt_ns(user_ns, false);
3940 if (IS_ERR(new_ns))
3941 return new_ns;
3942
3943 namespace_lock();
3944 /* First pass: copy the tree topology */
3945 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3946 if (user_ns != ns->user_ns)
3947 copy_flags |= CL_SHARED_TO_SLAVE;
3948 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3949 if (IS_ERR(new)) {
3950 namespace_unlock();
3951 ns_free_inum(&new_ns->ns);
3952 dec_mnt_namespaces(new_ns->ucounts);
3953 mnt_ns_release(new_ns);
3954 return ERR_CAST(new);
3955 }
3956 if (user_ns != ns->user_ns) {
3957 lock_mount_hash();
3958 lock_mnt_tree(new);
3959 unlock_mount_hash();
3960 }
3961 new_ns->root = new;
3962
3963 /*
3964 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3965 * as belonging to new namespace. We have already acquired a private
3966 * fs_struct, so tsk->fs->lock is not needed.
3967 */
3968 p = old;
3969 q = new;
3970 while (p) {
3971 mnt_add_to_ns(new_ns, q);
3972 new_ns->nr_mounts++;
3973 if (new_fs) {
3974 if (&p->mnt == new_fs->root.mnt) {
3975 new_fs->root.mnt = mntget(&q->mnt);
3976 rootmnt = &p->mnt;
3977 }
3978 if (&p->mnt == new_fs->pwd.mnt) {
3979 new_fs->pwd.mnt = mntget(&q->mnt);
3980 pwdmnt = &p->mnt;
3981 }
3982 }
3983 p = next_mnt(p, old);
3984 q = next_mnt(q, new);
3985 if (!q)
3986 break;
3987 // an mntns binding we'd skipped?
3988 while (p->mnt.mnt_root != q->mnt.mnt_root)
3989 p = next_mnt(skip_mnt_tree(p), old);
3990 }
3991 mnt_ns_tree_add(new_ns);
3992 namespace_unlock();
3993
3994 if (rootmnt)
3995 mntput(rootmnt);
3996 if (pwdmnt)
3997 mntput(pwdmnt);
3998
3999 return new_ns;
4000 }
4001
mount_subtree(struct vfsmount * m,const char * name)4002 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4003 {
4004 struct mount *mnt = real_mount(m);
4005 struct mnt_namespace *ns;
4006 struct super_block *s;
4007 struct path path;
4008 int err;
4009
4010 ns = alloc_mnt_ns(&init_user_ns, true);
4011 if (IS_ERR(ns)) {
4012 mntput(m);
4013 return ERR_CAST(ns);
4014 }
4015 ns->root = mnt;
4016 ns->nr_mounts++;
4017 mnt_add_to_ns(ns, mnt);
4018
4019 err = vfs_path_lookup(m->mnt_root, m,
4020 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4021
4022 put_mnt_ns(ns);
4023
4024 if (err)
4025 return ERR_PTR(err);
4026
4027 /* trade a vfsmount reference for active sb one */
4028 s = path.mnt->mnt_sb;
4029 atomic_inc(&s->s_active);
4030 mntput(path.mnt);
4031 /* lock the sucker */
4032 down_write(&s->s_umount);
4033 /* ... and return the root of (sub)tree on it */
4034 return path.dentry;
4035 }
4036 EXPORT_SYMBOL(mount_subtree);
4037
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4038 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4039 char __user *, type, unsigned long, flags, void __user *, data)
4040 {
4041 int ret;
4042 char *kernel_type;
4043 char *kernel_dev;
4044 void *options;
4045
4046 kernel_type = copy_mount_string(type);
4047 ret = PTR_ERR(kernel_type);
4048 if (IS_ERR(kernel_type))
4049 goto out_type;
4050
4051 kernel_dev = copy_mount_string(dev_name);
4052 ret = PTR_ERR(kernel_dev);
4053 if (IS_ERR(kernel_dev))
4054 goto out_dev;
4055
4056 options = copy_mount_options(data);
4057 ret = PTR_ERR(options);
4058 if (IS_ERR(options))
4059 goto out_data;
4060
4061 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4062
4063 kfree(options);
4064 out_data:
4065 kfree(kernel_dev);
4066 out_dev:
4067 kfree(kernel_type);
4068 out_type:
4069 return ret;
4070 }
4071
4072 #define FSMOUNT_VALID_FLAGS \
4073 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4074 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4075 MOUNT_ATTR_NOSYMFOLLOW)
4076
4077 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4078
4079 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4080 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4081
attr_flags_to_mnt_flags(u64 attr_flags)4082 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4083 {
4084 unsigned int mnt_flags = 0;
4085
4086 if (attr_flags & MOUNT_ATTR_RDONLY)
4087 mnt_flags |= MNT_READONLY;
4088 if (attr_flags & MOUNT_ATTR_NOSUID)
4089 mnt_flags |= MNT_NOSUID;
4090 if (attr_flags & MOUNT_ATTR_NODEV)
4091 mnt_flags |= MNT_NODEV;
4092 if (attr_flags & MOUNT_ATTR_NOEXEC)
4093 mnt_flags |= MNT_NOEXEC;
4094 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4095 mnt_flags |= MNT_NODIRATIME;
4096 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4097 mnt_flags |= MNT_NOSYMFOLLOW;
4098
4099 return mnt_flags;
4100 }
4101
4102 /*
4103 * Create a kernel mount representation for a new, prepared superblock
4104 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4105 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4106 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4107 unsigned int, attr_flags)
4108 {
4109 struct mnt_namespace *ns;
4110 struct fs_context *fc;
4111 struct file *file;
4112 struct path newmount;
4113 struct mount *mnt;
4114 unsigned int mnt_flags = 0;
4115 long ret;
4116
4117 if (!may_mount())
4118 return -EPERM;
4119
4120 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4121 return -EINVAL;
4122
4123 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4124 return -EINVAL;
4125
4126 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4127
4128 switch (attr_flags & MOUNT_ATTR__ATIME) {
4129 case MOUNT_ATTR_STRICTATIME:
4130 break;
4131 case MOUNT_ATTR_NOATIME:
4132 mnt_flags |= MNT_NOATIME;
4133 break;
4134 case MOUNT_ATTR_RELATIME:
4135 mnt_flags |= MNT_RELATIME;
4136 break;
4137 default:
4138 return -EINVAL;
4139 }
4140
4141 CLASS(fd, f)(fs_fd);
4142 if (fd_empty(f))
4143 return -EBADF;
4144
4145 if (fd_file(f)->f_op != &fscontext_fops)
4146 return -EINVAL;
4147
4148 fc = fd_file(f)->private_data;
4149
4150 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4151 if (ret < 0)
4152 return ret;
4153
4154 /* There must be a valid superblock or we can't mount it */
4155 ret = -EINVAL;
4156 if (!fc->root)
4157 goto err_unlock;
4158
4159 ret = -EPERM;
4160 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4161 pr_warn("VFS: Mount too revealing\n");
4162 goto err_unlock;
4163 }
4164
4165 ret = -EBUSY;
4166 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4167 goto err_unlock;
4168
4169 if (fc->sb_flags & SB_MANDLOCK)
4170 warn_mandlock();
4171
4172 newmount.mnt = vfs_create_mount(fc);
4173 if (IS_ERR(newmount.mnt)) {
4174 ret = PTR_ERR(newmount.mnt);
4175 goto err_unlock;
4176 }
4177 newmount.dentry = dget(fc->root);
4178 newmount.mnt->mnt_flags = mnt_flags;
4179
4180 /* We've done the mount bit - now move the file context into more or
4181 * less the same state as if we'd done an fspick(). We don't want to
4182 * do any memory allocation or anything like that at this point as we
4183 * don't want to have to handle any errors incurred.
4184 */
4185 vfs_clean_context(fc);
4186
4187 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4188 if (IS_ERR(ns)) {
4189 ret = PTR_ERR(ns);
4190 goto err_path;
4191 }
4192 mnt = real_mount(newmount.mnt);
4193 ns->root = mnt;
4194 ns->nr_mounts = 1;
4195 mnt_add_to_ns(ns, mnt);
4196 mntget(newmount.mnt);
4197
4198 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4199 * it, not just simply put it.
4200 */
4201 file = dentry_open(&newmount, O_PATH, fc->cred);
4202 if (IS_ERR(file)) {
4203 dissolve_on_fput(newmount.mnt);
4204 ret = PTR_ERR(file);
4205 goto err_path;
4206 }
4207 file->f_mode |= FMODE_NEED_UNMOUNT;
4208
4209 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4210 if (ret >= 0)
4211 fd_install(ret, file);
4212 else
4213 fput(file);
4214
4215 err_path:
4216 path_put(&newmount);
4217 err_unlock:
4218 mutex_unlock(&fc->uapi_mutex);
4219 return ret;
4220 }
4221
4222 /*
4223 * Move a mount from one place to another. In combination with
4224 * fsopen()/fsmount() this is used to install a new mount and in combination
4225 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4226 * a mount subtree.
4227 *
4228 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4229 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4230 SYSCALL_DEFINE5(move_mount,
4231 int, from_dfd, const char __user *, from_pathname,
4232 int, to_dfd, const char __user *, to_pathname,
4233 unsigned int, flags)
4234 {
4235 struct path from_path, to_path;
4236 unsigned int lflags;
4237 int ret = 0;
4238
4239 if (!may_mount())
4240 return -EPERM;
4241
4242 if (flags & ~MOVE_MOUNT__MASK)
4243 return -EINVAL;
4244
4245 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4246 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4247 return -EINVAL;
4248
4249 /* If someone gives a pathname, they aren't permitted to move
4250 * from an fd that requires unmount as we can't get at the flag
4251 * to clear it afterwards.
4252 */
4253 lflags = 0;
4254 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4255 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4256 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4257
4258 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4259 if (ret < 0)
4260 return ret;
4261
4262 lflags = 0;
4263 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4264 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4265 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4266
4267 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4268 if (ret < 0)
4269 goto out_from;
4270
4271 ret = security_move_mount(&from_path, &to_path);
4272 if (ret < 0)
4273 goto out_to;
4274
4275 if (flags & MOVE_MOUNT_SET_GROUP)
4276 ret = do_set_group(&from_path, &to_path);
4277 else
4278 ret = do_move_mount(&from_path, &to_path,
4279 (flags & MOVE_MOUNT_BENEATH));
4280
4281 out_to:
4282 path_put(&to_path);
4283 out_from:
4284 path_put(&from_path);
4285 return ret;
4286 }
4287
4288 /*
4289 * Return true if path is reachable from root
4290 *
4291 * namespace_sem or mount_lock is held
4292 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4293 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4294 const struct path *root)
4295 {
4296 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4297 dentry = mnt->mnt_mountpoint;
4298 mnt = mnt->mnt_parent;
4299 }
4300 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4301 }
4302
path_is_under(const struct path * path1,const struct path * path2)4303 bool path_is_under(const struct path *path1, const struct path *path2)
4304 {
4305 bool res;
4306 read_seqlock_excl(&mount_lock);
4307 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4308 read_sequnlock_excl(&mount_lock);
4309 return res;
4310 }
4311 EXPORT_SYMBOL(path_is_under);
4312
4313 /*
4314 * pivot_root Semantics:
4315 * Moves the root file system of the current process to the directory put_old,
4316 * makes new_root as the new root file system of the current process, and sets
4317 * root/cwd of all processes which had them on the current root to new_root.
4318 *
4319 * Restrictions:
4320 * The new_root and put_old must be directories, and must not be on the
4321 * same file system as the current process root. The put_old must be
4322 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4323 * pointed to by put_old must yield the same directory as new_root. No other
4324 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4325 *
4326 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4327 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4328 * in this situation.
4329 *
4330 * Notes:
4331 * - we don't move root/cwd if they are not at the root (reason: if something
4332 * cared enough to change them, it's probably wrong to force them elsewhere)
4333 * - it's okay to pick a root that isn't the root of a file system, e.g.
4334 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4335 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4336 * first.
4337 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4338 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4339 const char __user *, put_old)
4340 {
4341 struct path new, old, root;
4342 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4343 struct mountpoint *old_mp, *root_mp;
4344 int error;
4345
4346 if (!may_mount())
4347 return -EPERM;
4348
4349 error = user_path_at(AT_FDCWD, new_root,
4350 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4351 if (error)
4352 goto out0;
4353
4354 error = user_path_at(AT_FDCWD, put_old,
4355 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4356 if (error)
4357 goto out1;
4358
4359 error = security_sb_pivotroot(&old, &new);
4360 if (error)
4361 goto out2;
4362
4363 get_fs_root(current->fs, &root);
4364 old_mp = lock_mount(&old);
4365 error = PTR_ERR(old_mp);
4366 if (IS_ERR(old_mp))
4367 goto out3;
4368
4369 error = -EINVAL;
4370 new_mnt = real_mount(new.mnt);
4371 root_mnt = real_mount(root.mnt);
4372 old_mnt = real_mount(old.mnt);
4373 ex_parent = new_mnt->mnt_parent;
4374 root_parent = root_mnt->mnt_parent;
4375 if (IS_MNT_SHARED(old_mnt) ||
4376 IS_MNT_SHARED(ex_parent) ||
4377 IS_MNT_SHARED(root_parent))
4378 goto out4;
4379 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4380 goto out4;
4381 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4382 goto out4;
4383 error = -ENOENT;
4384 if (d_unlinked(new.dentry))
4385 goto out4;
4386 error = -EBUSY;
4387 if (new_mnt == root_mnt || old_mnt == root_mnt)
4388 goto out4; /* loop, on the same file system */
4389 error = -EINVAL;
4390 if (!path_mounted(&root))
4391 goto out4; /* not a mountpoint */
4392 if (!mnt_has_parent(root_mnt))
4393 goto out4; /* not attached */
4394 if (!path_mounted(&new))
4395 goto out4; /* not a mountpoint */
4396 if (!mnt_has_parent(new_mnt))
4397 goto out4; /* not attached */
4398 /* make sure we can reach put_old from new_root */
4399 if (!is_path_reachable(old_mnt, old.dentry, &new))
4400 goto out4;
4401 /* make certain new is below the root */
4402 if (!is_path_reachable(new_mnt, new.dentry, &root))
4403 goto out4;
4404 lock_mount_hash();
4405 umount_mnt(new_mnt);
4406 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4407 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4408 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4409 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4410 }
4411 /* mount old root on put_old */
4412 attach_mnt(root_mnt, old_mnt, old_mp, false);
4413 /* mount new_root on / */
4414 attach_mnt(new_mnt, root_parent, root_mp, false);
4415 mnt_add_count(root_parent, -1);
4416 touch_mnt_namespace(current->nsproxy->mnt_ns);
4417 /* A moved mount should not expire automatically */
4418 list_del_init(&new_mnt->mnt_expire);
4419 put_mountpoint(root_mp);
4420 unlock_mount_hash();
4421 chroot_fs_refs(&root, &new);
4422 error = 0;
4423 out4:
4424 unlock_mount(old_mp);
4425 if (!error)
4426 mntput_no_expire(ex_parent);
4427 out3:
4428 path_put(&root);
4429 out2:
4430 path_put(&old);
4431 out1:
4432 path_put(&new);
4433 out0:
4434 return error;
4435 }
4436
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4437 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4438 {
4439 unsigned int flags = mnt->mnt.mnt_flags;
4440
4441 /* flags to clear */
4442 flags &= ~kattr->attr_clr;
4443 /* flags to raise */
4444 flags |= kattr->attr_set;
4445
4446 return flags;
4447 }
4448
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4449 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4450 {
4451 struct vfsmount *m = &mnt->mnt;
4452 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4453
4454 if (!kattr->mnt_idmap)
4455 return 0;
4456
4457 /*
4458 * Creating an idmapped mount with the filesystem wide idmapping
4459 * doesn't make sense so block that. We don't allow mushy semantics.
4460 */
4461 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4462 return -EINVAL;
4463
4464 /*
4465 * Once a mount has been idmapped we don't allow it to change its
4466 * mapping. It makes things simpler and callers can just create
4467 * another bind-mount they can idmap if they want to.
4468 */
4469 if (is_idmapped_mnt(m))
4470 return -EPERM;
4471
4472 /* The underlying filesystem doesn't support idmapped mounts yet. */
4473 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4474 return -EINVAL;
4475
4476 /* The filesystem has turned off idmapped mounts. */
4477 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4478 return -EINVAL;
4479
4480 /* We're not controlling the superblock. */
4481 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4482 return -EPERM;
4483
4484 /* Mount has already been visible in the filesystem hierarchy. */
4485 if (!is_anon_ns(mnt->mnt_ns))
4486 return -EINVAL;
4487
4488 return 0;
4489 }
4490
4491 /**
4492 * mnt_allow_writers() - check whether the attribute change allows writers
4493 * @kattr: the new mount attributes
4494 * @mnt: the mount to which @kattr will be applied
4495 *
4496 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4497 *
4498 * Return: true if writers need to be held, false if not
4499 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4500 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4501 const struct mount *mnt)
4502 {
4503 return (!(kattr->attr_set & MNT_READONLY) ||
4504 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4505 !kattr->mnt_idmap;
4506 }
4507
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4508 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4509 {
4510 struct mount *m;
4511 int err;
4512
4513 for (m = mnt; m; m = next_mnt(m, mnt)) {
4514 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4515 err = -EPERM;
4516 break;
4517 }
4518
4519 err = can_idmap_mount(kattr, m);
4520 if (err)
4521 break;
4522
4523 if (!mnt_allow_writers(kattr, m)) {
4524 err = mnt_hold_writers(m);
4525 if (err)
4526 break;
4527 }
4528
4529 if (!kattr->recurse)
4530 return 0;
4531 }
4532
4533 if (err) {
4534 struct mount *p;
4535
4536 /*
4537 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4538 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4539 * mounts and needs to take care to include the first mount.
4540 */
4541 for (p = mnt; p; p = next_mnt(p, mnt)) {
4542 /* If we had to hold writers unblock them. */
4543 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4544 mnt_unhold_writers(p);
4545
4546 /*
4547 * We're done once the first mount we changed got
4548 * MNT_WRITE_HOLD unset.
4549 */
4550 if (p == m)
4551 break;
4552 }
4553 }
4554 return err;
4555 }
4556
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4557 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4558 {
4559 if (!kattr->mnt_idmap)
4560 return;
4561
4562 /*
4563 * Pairs with smp_load_acquire() in mnt_idmap().
4564 *
4565 * Since we only allow a mount to change the idmapping once and
4566 * verified this in can_idmap_mount() we know that the mount has
4567 * @nop_mnt_idmap attached to it. So there's no need to drop any
4568 * references.
4569 */
4570 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4571 }
4572
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4573 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4574 {
4575 struct mount *m;
4576
4577 for (m = mnt; m; m = next_mnt(m, mnt)) {
4578 unsigned int flags;
4579
4580 do_idmap_mount(kattr, m);
4581 flags = recalc_flags(kattr, m);
4582 WRITE_ONCE(m->mnt.mnt_flags, flags);
4583
4584 /* If we had to hold writers unblock them. */
4585 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4586 mnt_unhold_writers(m);
4587
4588 if (kattr->propagation)
4589 change_mnt_propagation(m, kattr->propagation);
4590 if (!kattr->recurse)
4591 break;
4592 }
4593 touch_mnt_namespace(mnt->mnt_ns);
4594 }
4595
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4596 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4597 {
4598 struct mount *mnt = real_mount(path->mnt);
4599 int err = 0;
4600
4601 if (!path_mounted(path))
4602 return -EINVAL;
4603
4604 if (kattr->mnt_userns) {
4605 struct mnt_idmap *mnt_idmap;
4606
4607 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4608 if (IS_ERR(mnt_idmap))
4609 return PTR_ERR(mnt_idmap);
4610 kattr->mnt_idmap = mnt_idmap;
4611 }
4612
4613 if (kattr->propagation) {
4614 /*
4615 * Only take namespace_lock() if we're actually changing
4616 * propagation.
4617 */
4618 namespace_lock();
4619 if (kattr->propagation == MS_SHARED) {
4620 err = invent_group_ids(mnt, kattr->recurse);
4621 if (err) {
4622 namespace_unlock();
4623 return err;
4624 }
4625 }
4626 }
4627
4628 err = -EINVAL;
4629 lock_mount_hash();
4630
4631 /* Ensure that this isn't anything purely vfs internal. */
4632 if (!is_mounted(&mnt->mnt))
4633 goto out;
4634
4635 /*
4636 * If this is an attached mount make sure it's located in the callers
4637 * mount namespace. If it's not don't let the caller interact with it.
4638 *
4639 * If this mount doesn't have a parent it's most often simply a
4640 * detached mount with an anonymous mount namespace. IOW, something
4641 * that's simply not attached yet. But there are apparently also users
4642 * that do change mount properties on the rootfs itself. That obviously
4643 * neither has a parent nor is it a detached mount so we cannot
4644 * unconditionally check for detached mounts.
4645 */
4646 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4647 goto out;
4648
4649 /*
4650 * First, we get the mount tree in a shape where we can change mount
4651 * properties without failure. If we succeeded to do so we commit all
4652 * changes and if we failed we clean up.
4653 */
4654 err = mount_setattr_prepare(kattr, mnt);
4655 if (!err)
4656 mount_setattr_commit(kattr, mnt);
4657
4658 out:
4659 unlock_mount_hash();
4660
4661 if (kattr->propagation) {
4662 if (err)
4663 cleanup_group_ids(mnt, NULL);
4664 namespace_unlock();
4665 }
4666
4667 return err;
4668 }
4669
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4670 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4671 struct mount_kattr *kattr, unsigned int flags)
4672 {
4673 struct ns_common *ns;
4674 struct user_namespace *mnt_userns;
4675
4676 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4677 return 0;
4678
4679 /*
4680 * We currently do not support clearing an idmapped mount. If this ever
4681 * is a use-case we can revisit this but for now let's keep it simple
4682 * and not allow it.
4683 */
4684 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4685 return -EINVAL;
4686
4687 if (attr->userns_fd > INT_MAX)
4688 return -EINVAL;
4689
4690 CLASS(fd, f)(attr->userns_fd);
4691 if (fd_empty(f))
4692 return -EBADF;
4693
4694 if (!proc_ns_file(fd_file(f)))
4695 return -EINVAL;
4696
4697 ns = get_proc_ns(file_inode(fd_file(f)));
4698 if (ns->ops->type != CLONE_NEWUSER)
4699 return -EINVAL;
4700
4701 /*
4702 * The initial idmapping cannot be used to create an idmapped
4703 * mount. We use the initial idmapping as an indicator of a mount
4704 * that is not idmapped. It can simply be passed into helpers that
4705 * are aware of idmapped mounts as a convenient shortcut. A user
4706 * can just create a dedicated identity mapping to achieve the same
4707 * result.
4708 */
4709 mnt_userns = container_of(ns, struct user_namespace, ns);
4710 if (mnt_userns == &init_user_ns)
4711 return -EPERM;
4712
4713 /* We're not controlling the target namespace. */
4714 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4715 return -EPERM;
4716
4717 kattr->mnt_userns = get_user_ns(mnt_userns);
4718 return 0;
4719 }
4720
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4721 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4722 struct mount_kattr *kattr, unsigned int flags)
4723 {
4724 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4725
4726 if (flags & AT_NO_AUTOMOUNT)
4727 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4728 if (flags & AT_SYMLINK_NOFOLLOW)
4729 lookup_flags &= ~LOOKUP_FOLLOW;
4730 if (flags & AT_EMPTY_PATH)
4731 lookup_flags |= LOOKUP_EMPTY;
4732
4733 *kattr = (struct mount_kattr) {
4734 .lookup_flags = lookup_flags,
4735 .recurse = !!(flags & AT_RECURSIVE),
4736 };
4737
4738 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4739 return -EINVAL;
4740 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4741 return -EINVAL;
4742 kattr->propagation = attr->propagation;
4743
4744 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4745 return -EINVAL;
4746
4747 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4748 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4749
4750 /*
4751 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4752 * users wanting to transition to a different atime setting cannot
4753 * simply specify the atime setting in @attr_set, but must also
4754 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4755 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4756 * @attr_clr and that @attr_set can't have any atime bits set if
4757 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4758 */
4759 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4760 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4761 return -EINVAL;
4762
4763 /*
4764 * Clear all previous time settings as they are mutually
4765 * exclusive.
4766 */
4767 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4768 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4769 case MOUNT_ATTR_RELATIME:
4770 kattr->attr_set |= MNT_RELATIME;
4771 break;
4772 case MOUNT_ATTR_NOATIME:
4773 kattr->attr_set |= MNT_NOATIME;
4774 break;
4775 case MOUNT_ATTR_STRICTATIME:
4776 break;
4777 default:
4778 return -EINVAL;
4779 }
4780 } else {
4781 if (attr->attr_set & MOUNT_ATTR__ATIME)
4782 return -EINVAL;
4783 }
4784
4785 return build_mount_idmapped(attr, usize, kattr, flags);
4786 }
4787
finish_mount_kattr(struct mount_kattr * kattr)4788 static void finish_mount_kattr(struct mount_kattr *kattr)
4789 {
4790 put_user_ns(kattr->mnt_userns);
4791 kattr->mnt_userns = NULL;
4792
4793 if (kattr->mnt_idmap)
4794 mnt_idmap_put(kattr->mnt_idmap);
4795 }
4796
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4797 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4798 unsigned int, flags, struct mount_attr __user *, uattr,
4799 size_t, usize)
4800 {
4801 int err;
4802 struct path target;
4803 struct mount_attr attr;
4804 struct mount_kattr kattr;
4805
4806 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4807
4808 if (flags & ~(AT_EMPTY_PATH |
4809 AT_RECURSIVE |
4810 AT_SYMLINK_NOFOLLOW |
4811 AT_NO_AUTOMOUNT))
4812 return -EINVAL;
4813
4814 if (unlikely(usize > PAGE_SIZE))
4815 return -E2BIG;
4816 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4817 return -EINVAL;
4818
4819 if (!may_mount())
4820 return -EPERM;
4821
4822 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4823 if (err)
4824 return err;
4825
4826 /* Don't bother walking through the mounts if this is a nop. */
4827 if (attr.attr_set == 0 &&
4828 attr.attr_clr == 0 &&
4829 attr.propagation == 0)
4830 return 0;
4831
4832 err = build_mount_kattr(&attr, usize, &kattr, flags);
4833 if (err)
4834 return err;
4835
4836 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4837 if (!err) {
4838 err = do_mount_setattr(&target, &kattr);
4839 path_put(&target);
4840 }
4841 finish_mount_kattr(&kattr);
4842 return err;
4843 }
4844
show_path(struct seq_file * m,struct dentry * root)4845 int show_path(struct seq_file *m, struct dentry *root)
4846 {
4847 if (root->d_sb->s_op->show_path)
4848 return root->d_sb->s_op->show_path(m, root);
4849
4850 seq_dentry(m, root, " \t\n\\");
4851 return 0;
4852 }
4853
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)4854 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4855 {
4856 struct mount *mnt = mnt_find_id_at(ns, id);
4857
4858 if (!mnt || mnt->mnt_id_unique != id)
4859 return NULL;
4860
4861 return &mnt->mnt;
4862 }
4863
4864 struct kstatmount {
4865 struct statmount __user *buf;
4866 size_t bufsize;
4867 struct vfsmount *mnt;
4868 u64 mask;
4869 struct path root;
4870 struct statmount sm;
4871 struct seq_file seq;
4872 };
4873
mnt_to_attr_flags(struct vfsmount * mnt)4874 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4875 {
4876 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4877 u64 attr_flags = 0;
4878
4879 if (mnt_flags & MNT_READONLY)
4880 attr_flags |= MOUNT_ATTR_RDONLY;
4881 if (mnt_flags & MNT_NOSUID)
4882 attr_flags |= MOUNT_ATTR_NOSUID;
4883 if (mnt_flags & MNT_NODEV)
4884 attr_flags |= MOUNT_ATTR_NODEV;
4885 if (mnt_flags & MNT_NOEXEC)
4886 attr_flags |= MOUNT_ATTR_NOEXEC;
4887 if (mnt_flags & MNT_NODIRATIME)
4888 attr_flags |= MOUNT_ATTR_NODIRATIME;
4889 if (mnt_flags & MNT_NOSYMFOLLOW)
4890 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4891
4892 if (mnt_flags & MNT_NOATIME)
4893 attr_flags |= MOUNT_ATTR_NOATIME;
4894 else if (mnt_flags & MNT_RELATIME)
4895 attr_flags |= MOUNT_ATTR_RELATIME;
4896 else
4897 attr_flags |= MOUNT_ATTR_STRICTATIME;
4898
4899 if (is_idmapped_mnt(mnt))
4900 attr_flags |= MOUNT_ATTR_IDMAP;
4901
4902 return attr_flags;
4903 }
4904
mnt_to_propagation_flags(struct mount * m)4905 static u64 mnt_to_propagation_flags(struct mount *m)
4906 {
4907 u64 propagation = 0;
4908
4909 if (IS_MNT_SHARED(m))
4910 propagation |= MS_SHARED;
4911 if (IS_MNT_SLAVE(m))
4912 propagation |= MS_SLAVE;
4913 if (IS_MNT_UNBINDABLE(m))
4914 propagation |= MS_UNBINDABLE;
4915 if (!propagation)
4916 propagation |= MS_PRIVATE;
4917
4918 return propagation;
4919 }
4920
statmount_sb_basic(struct kstatmount * s)4921 static void statmount_sb_basic(struct kstatmount *s)
4922 {
4923 struct super_block *sb = s->mnt->mnt_sb;
4924
4925 s->sm.mask |= STATMOUNT_SB_BASIC;
4926 s->sm.sb_dev_major = MAJOR(sb->s_dev);
4927 s->sm.sb_dev_minor = MINOR(sb->s_dev);
4928 s->sm.sb_magic = sb->s_magic;
4929 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4930 }
4931
statmount_mnt_basic(struct kstatmount * s)4932 static void statmount_mnt_basic(struct kstatmount *s)
4933 {
4934 struct mount *m = real_mount(s->mnt);
4935
4936 s->sm.mask |= STATMOUNT_MNT_BASIC;
4937 s->sm.mnt_id = m->mnt_id_unique;
4938 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4939 s->sm.mnt_id_old = m->mnt_id;
4940 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4941 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4942 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4943 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4944 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4945 }
4946
statmount_propagate_from(struct kstatmount * s)4947 static void statmount_propagate_from(struct kstatmount *s)
4948 {
4949 struct mount *m = real_mount(s->mnt);
4950
4951 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4952 if (IS_MNT_SLAVE(m))
4953 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
4954 }
4955
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)4956 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4957 {
4958 int ret;
4959 size_t start = seq->count;
4960
4961 ret = show_path(seq, s->mnt->mnt_root);
4962 if (ret)
4963 return ret;
4964
4965 if (unlikely(seq_has_overflowed(seq)))
4966 return -EAGAIN;
4967
4968 /*
4969 * Unescape the result. It would be better if supplied string was not
4970 * escaped in the first place, but that's a pretty invasive change.
4971 */
4972 seq->buf[seq->count] = '\0';
4973 seq->count = start;
4974 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4975 return 0;
4976 }
4977
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)4978 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4979 {
4980 struct vfsmount *mnt = s->mnt;
4981 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4982 int err;
4983
4984 err = seq_path_root(seq, &mnt_path, &s->root, "");
4985 return err == SEQ_SKIP ? 0 : err;
4986 }
4987
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)4988 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4989 {
4990 struct super_block *sb = s->mnt->mnt_sb;
4991
4992 seq_puts(seq, sb->s_type->name);
4993 return 0;
4994 }
4995
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)4996 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
4997 {
4998 struct super_block *sb = s->mnt->mnt_sb;
4999
5000 if (sb->s_subtype)
5001 seq_puts(seq, sb->s_subtype);
5002 }
5003
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5004 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5005 {
5006 struct super_block *sb = s->mnt->mnt_sb;
5007 struct mount *r = real_mount(s->mnt);
5008
5009 if (sb->s_op->show_devname) {
5010 size_t start = seq->count;
5011 int ret;
5012
5013 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5014 if (ret)
5015 return ret;
5016
5017 if (unlikely(seq_has_overflowed(seq)))
5018 return -EAGAIN;
5019
5020 /* Unescape the result */
5021 seq->buf[seq->count] = '\0';
5022 seq->count = start;
5023 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5024 } else if (r->mnt_devname) {
5025 seq_puts(seq, r->mnt_devname);
5026 }
5027 return 0;
5028 }
5029
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5030 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5031 {
5032 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5033 s->sm.mnt_ns_id = ns->seq;
5034 }
5035
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5036 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5037 {
5038 struct vfsmount *mnt = s->mnt;
5039 struct super_block *sb = mnt->mnt_sb;
5040 int err;
5041
5042 if (sb->s_op->show_options) {
5043 size_t start = seq->count;
5044
5045 err = sb->s_op->show_options(seq, mnt->mnt_root);
5046 if (err)
5047 return err;
5048
5049 if (unlikely(seq_has_overflowed(seq)))
5050 return -EAGAIN;
5051
5052 if (seq->count == start)
5053 return 0;
5054
5055 /* skip leading comma */
5056 memmove(seq->buf + start, seq->buf + start + 1,
5057 seq->count - start - 1);
5058 seq->count--;
5059 }
5060
5061 return 0;
5062 }
5063
statmount_opt_process(struct seq_file * seq,size_t start)5064 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5065 {
5066 char *buf_end, *opt_end, *src, *dst;
5067 int count = 0;
5068
5069 if (unlikely(seq_has_overflowed(seq)))
5070 return -EAGAIN;
5071
5072 buf_end = seq->buf + seq->count;
5073 dst = seq->buf + start;
5074 src = dst + 1; /* skip initial comma */
5075
5076 if (src >= buf_end) {
5077 seq->count = start;
5078 return 0;
5079 }
5080
5081 *buf_end = '\0';
5082 for (; src < buf_end; src = opt_end + 1) {
5083 opt_end = strchrnul(src, ',');
5084 *opt_end = '\0';
5085 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5086 if (WARN_ON_ONCE(++count == INT_MAX))
5087 return -EOVERFLOW;
5088 }
5089 seq->count = dst - 1 - seq->buf;
5090 return count;
5091 }
5092
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5093 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5094 {
5095 struct vfsmount *mnt = s->mnt;
5096 struct super_block *sb = mnt->mnt_sb;
5097 size_t start = seq->count;
5098 int err;
5099
5100 if (!sb->s_op->show_options)
5101 return 0;
5102
5103 err = sb->s_op->show_options(seq, mnt->mnt_root);
5104 if (err)
5105 return err;
5106
5107 err = statmount_opt_process(seq, start);
5108 if (err < 0)
5109 return err;
5110
5111 s->sm.opt_num = err;
5112 return 0;
5113 }
5114
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5115 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5116 {
5117 struct vfsmount *mnt = s->mnt;
5118 struct super_block *sb = mnt->mnt_sb;
5119 size_t start = seq->count;
5120 int err;
5121
5122 err = security_sb_show_options(seq, sb);
5123 if (err)
5124 return err;
5125
5126 err = statmount_opt_process(seq, start);
5127 if (err < 0)
5128 return err;
5129
5130 s->sm.opt_sec_num = err;
5131 return 0;
5132 }
5133
statmount_string(struct kstatmount * s,u64 flag)5134 static int statmount_string(struct kstatmount *s, u64 flag)
5135 {
5136 int ret = 0;
5137 size_t kbufsize;
5138 struct seq_file *seq = &s->seq;
5139 struct statmount *sm = &s->sm;
5140 u32 start = seq->count;
5141
5142 switch (flag) {
5143 case STATMOUNT_FS_TYPE:
5144 sm->fs_type = start;
5145 ret = statmount_fs_type(s, seq);
5146 break;
5147 case STATMOUNT_MNT_ROOT:
5148 sm->mnt_root = start;
5149 ret = statmount_mnt_root(s, seq);
5150 break;
5151 case STATMOUNT_MNT_POINT:
5152 sm->mnt_point = start;
5153 ret = statmount_mnt_point(s, seq);
5154 break;
5155 case STATMOUNT_MNT_OPTS:
5156 sm->mnt_opts = start;
5157 ret = statmount_mnt_opts(s, seq);
5158 break;
5159 case STATMOUNT_OPT_ARRAY:
5160 sm->opt_array = start;
5161 ret = statmount_opt_array(s, seq);
5162 break;
5163 case STATMOUNT_OPT_SEC_ARRAY:
5164 sm->opt_sec_array = start;
5165 ret = statmount_opt_sec_array(s, seq);
5166 break;
5167 case STATMOUNT_FS_SUBTYPE:
5168 sm->fs_subtype = start;
5169 statmount_fs_subtype(s, seq);
5170 break;
5171 case STATMOUNT_SB_SOURCE:
5172 sm->sb_source = start;
5173 ret = statmount_sb_source(s, seq);
5174 break;
5175 default:
5176 WARN_ON_ONCE(true);
5177 return -EINVAL;
5178 }
5179
5180 /*
5181 * If nothing was emitted, return to avoid setting the flag
5182 * and terminating the buffer.
5183 */
5184 if (seq->count == start)
5185 return ret;
5186 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5187 return -EOVERFLOW;
5188 if (kbufsize >= s->bufsize)
5189 return -EOVERFLOW;
5190
5191 /* signal a retry */
5192 if (unlikely(seq_has_overflowed(seq)))
5193 return -EAGAIN;
5194
5195 if (ret)
5196 return ret;
5197
5198 seq->buf[seq->count++] = '\0';
5199 sm->mask |= flag;
5200 return 0;
5201 }
5202
copy_statmount_to_user(struct kstatmount * s)5203 static int copy_statmount_to_user(struct kstatmount *s)
5204 {
5205 struct statmount *sm = &s->sm;
5206 struct seq_file *seq = &s->seq;
5207 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5208 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5209
5210 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5211 return -EFAULT;
5212
5213 /* Return the number of bytes copied to the buffer */
5214 sm->size = copysize + seq->count;
5215 if (copy_to_user(s->buf, sm, copysize))
5216 return -EFAULT;
5217
5218 return 0;
5219 }
5220
listmnt_next(struct mount * curr,bool reverse)5221 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5222 {
5223 struct rb_node *node;
5224
5225 if (reverse)
5226 node = rb_prev(&curr->mnt_node);
5227 else
5228 node = rb_next(&curr->mnt_node);
5229
5230 return node_to_mount(node);
5231 }
5232
grab_requested_root(struct mnt_namespace * ns,struct path * root)5233 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5234 {
5235 struct mount *first, *child;
5236
5237 rwsem_assert_held(&namespace_sem);
5238
5239 /* We're looking at our own ns, just use get_fs_root. */
5240 if (ns == current->nsproxy->mnt_ns) {
5241 get_fs_root(current->fs, root);
5242 return 0;
5243 }
5244
5245 /*
5246 * We have to find the first mount in our ns and use that, however it
5247 * may not exist, so handle that properly.
5248 */
5249 if (RB_EMPTY_ROOT(&ns->mounts))
5250 return -ENOENT;
5251
5252 first = child = ns->root;
5253 for (;;) {
5254 child = listmnt_next(child, false);
5255 if (!child)
5256 return -ENOENT;
5257 if (child->mnt_parent == first)
5258 break;
5259 }
5260
5261 root->mnt = mntget(&child->mnt);
5262 root->dentry = dget(root->mnt->mnt_root);
5263 return 0;
5264 }
5265
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5266 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5267 struct mnt_namespace *ns)
5268 {
5269 struct path root __free(path_put) = {};
5270 struct mount *m;
5271 int err;
5272
5273 /* Has the namespace already been emptied? */
5274 if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5275 return -ENOENT;
5276
5277 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5278 if (!s->mnt)
5279 return -ENOENT;
5280
5281 err = grab_requested_root(ns, &root);
5282 if (err)
5283 return err;
5284
5285 /*
5286 * Don't trigger audit denials. We just want to determine what
5287 * mounts to show users.
5288 */
5289 m = real_mount(s->mnt);
5290 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5291 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5292 return -EPERM;
5293
5294 err = security_sb_statfs(s->mnt->mnt_root);
5295 if (err)
5296 return err;
5297
5298 s->root = root;
5299 if (s->mask & STATMOUNT_SB_BASIC)
5300 statmount_sb_basic(s);
5301
5302 if (s->mask & STATMOUNT_MNT_BASIC)
5303 statmount_mnt_basic(s);
5304
5305 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5306 statmount_propagate_from(s);
5307
5308 if (s->mask & STATMOUNT_FS_TYPE)
5309 err = statmount_string(s, STATMOUNT_FS_TYPE);
5310
5311 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5312 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5313
5314 if (!err && s->mask & STATMOUNT_MNT_POINT)
5315 err = statmount_string(s, STATMOUNT_MNT_POINT);
5316
5317 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5318 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5319
5320 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5321 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5322
5323 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5324 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5325
5326 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5327 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5328
5329 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5330 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5331
5332 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5333 statmount_mnt_ns_id(s, ns);
5334
5335 if (err)
5336 return err;
5337
5338 return 0;
5339 }
5340
retry_statmount(const long ret,size_t * seq_size)5341 static inline bool retry_statmount(const long ret, size_t *seq_size)
5342 {
5343 if (likely(ret != -EAGAIN))
5344 return false;
5345 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5346 return false;
5347 if (unlikely(*seq_size > MAX_RW_COUNT))
5348 return false;
5349 return true;
5350 }
5351
5352 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5353 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5354 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5355 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5356
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5357 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5358 struct statmount __user *buf, size_t bufsize,
5359 size_t seq_size)
5360 {
5361 if (!access_ok(buf, bufsize))
5362 return -EFAULT;
5363
5364 memset(ks, 0, sizeof(*ks));
5365 ks->mask = kreq->param;
5366 ks->buf = buf;
5367 ks->bufsize = bufsize;
5368
5369 if (ks->mask & STATMOUNT_STRING_REQ) {
5370 if (bufsize == sizeof(ks->sm))
5371 return -EOVERFLOW;
5372
5373 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5374 if (!ks->seq.buf)
5375 return -ENOMEM;
5376
5377 ks->seq.size = seq_size;
5378 }
5379
5380 return 0;
5381 }
5382
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5383 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5384 struct mnt_id_req *kreq)
5385 {
5386 int ret;
5387 size_t usize;
5388
5389 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5390
5391 ret = get_user(usize, &req->size);
5392 if (ret)
5393 return -EFAULT;
5394 if (unlikely(usize > PAGE_SIZE))
5395 return -E2BIG;
5396 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5397 return -EINVAL;
5398 memset(kreq, 0, sizeof(*kreq));
5399 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5400 if (ret)
5401 return ret;
5402 if (kreq->spare != 0)
5403 return -EINVAL;
5404 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5405 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5406 return -EINVAL;
5407 return 0;
5408 }
5409
5410 /*
5411 * If the user requested a specific mount namespace id, look that up and return
5412 * that, or if not simply grab a passive reference on our mount namespace and
5413 * return that.
5414 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5415 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5416 {
5417 struct mnt_namespace *mnt_ns;
5418
5419 if (kreq->mnt_ns_id && kreq->spare)
5420 return ERR_PTR(-EINVAL);
5421
5422 if (kreq->mnt_ns_id)
5423 return lookup_mnt_ns(kreq->mnt_ns_id);
5424
5425 if (kreq->spare) {
5426 struct ns_common *ns;
5427
5428 CLASS(fd, f)(kreq->spare);
5429 if (fd_empty(f))
5430 return ERR_PTR(-EBADF);
5431
5432 if (!proc_ns_file(fd_file(f)))
5433 return ERR_PTR(-EINVAL);
5434
5435 ns = get_proc_ns(file_inode(fd_file(f)));
5436 if (ns->ops->type != CLONE_NEWNS)
5437 return ERR_PTR(-EINVAL);
5438
5439 mnt_ns = to_mnt_ns(ns);
5440 } else {
5441 mnt_ns = current->nsproxy->mnt_ns;
5442 }
5443
5444 refcount_inc(&mnt_ns->passive);
5445 return mnt_ns;
5446 }
5447
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5448 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5449 struct statmount __user *, buf, size_t, bufsize,
5450 unsigned int, flags)
5451 {
5452 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5453 struct kstatmount *ks __free(kfree) = NULL;
5454 struct mnt_id_req kreq;
5455 /* We currently support retrieval of 3 strings. */
5456 size_t seq_size = 3 * PATH_MAX;
5457 int ret;
5458
5459 if (flags)
5460 return -EINVAL;
5461
5462 ret = copy_mnt_id_req(req, &kreq);
5463 if (ret)
5464 return ret;
5465
5466 ns = grab_requested_mnt_ns(&kreq);
5467 if (!ns)
5468 return -ENOENT;
5469
5470 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5471 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5472 return -ENOENT;
5473
5474 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5475 if (!ks)
5476 return -ENOMEM;
5477
5478 retry:
5479 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5480 if (ret)
5481 return ret;
5482
5483 scoped_guard(rwsem_read, &namespace_sem)
5484 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5485
5486 if (!ret)
5487 ret = copy_statmount_to_user(ks);
5488 kvfree(ks->seq.buf);
5489 if (retry_statmount(ret, &seq_size))
5490 goto retry;
5491 return ret;
5492 }
5493
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5494 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5495 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5496 bool reverse)
5497 {
5498 struct path root __free(path_put) = {};
5499 struct path orig;
5500 struct mount *r, *first;
5501 ssize_t ret;
5502
5503 rwsem_assert_held(&namespace_sem);
5504
5505 ret = grab_requested_root(ns, &root);
5506 if (ret)
5507 return ret;
5508
5509 if (mnt_parent_id == LSMT_ROOT) {
5510 orig = root;
5511 } else {
5512 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5513 if (!orig.mnt)
5514 return -ENOENT;
5515 orig.dentry = orig.mnt->mnt_root;
5516 }
5517
5518 /*
5519 * Don't trigger audit denials. We just want to determine what
5520 * mounts to show users.
5521 */
5522 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5523 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5524 return -EPERM;
5525
5526 ret = security_sb_statfs(orig.dentry);
5527 if (ret)
5528 return ret;
5529
5530 if (!last_mnt_id) {
5531 if (reverse)
5532 first = node_to_mount(rb_last(&ns->mounts));
5533 else
5534 first = node_to_mount(rb_first(&ns->mounts));
5535 } else {
5536 if (reverse)
5537 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5538 else
5539 first = mnt_find_id_at(ns, last_mnt_id + 1);
5540 }
5541
5542 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5543 if (r->mnt_id_unique == mnt_parent_id)
5544 continue;
5545 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5546 continue;
5547 *mnt_ids = r->mnt_id_unique;
5548 mnt_ids++;
5549 nr_mnt_ids--;
5550 ret++;
5551 }
5552 return ret;
5553 }
5554
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5555 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5556 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5557 {
5558 u64 *kmnt_ids __free(kvfree) = NULL;
5559 const size_t maxcount = 1000000;
5560 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5561 struct mnt_id_req kreq;
5562 u64 last_mnt_id;
5563 ssize_t ret;
5564
5565 if (flags & ~LISTMOUNT_REVERSE)
5566 return -EINVAL;
5567
5568 /*
5569 * If the mount namespace really has more than 1 million mounts the
5570 * caller must iterate over the mount namespace (and reconsider their
5571 * system design...).
5572 */
5573 if (unlikely(nr_mnt_ids > maxcount))
5574 return -EOVERFLOW;
5575
5576 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5577 return -EFAULT;
5578
5579 ret = copy_mnt_id_req(req, &kreq);
5580 if (ret)
5581 return ret;
5582
5583 last_mnt_id = kreq.param;
5584 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5585 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5586 return -EINVAL;
5587
5588 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5589 GFP_KERNEL_ACCOUNT);
5590 if (!kmnt_ids)
5591 return -ENOMEM;
5592
5593 ns = grab_requested_mnt_ns(&kreq);
5594 if (!ns)
5595 return -ENOENT;
5596
5597 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5598 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5599 return -ENOENT;
5600
5601 scoped_guard(rwsem_read, &namespace_sem)
5602 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5603 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5604 if (ret <= 0)
5605 return ret;
5606
5607 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5608 return -EFAULT;
5609
5610 return ret;
5611 }
5612
init_mount_tree(void)5613 static void __init init_mount_tree(void)
5614 {
5615 struct vfsmount *mnt;
5616 struct mount *m;
5617 struct mnt_namespace *ns;
5618 struct path root;
5619
5620 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5621 if (IS_ERR(mnt))
5622 panic("Can't create rootfs");
5623
5624 ns = alloc_mnt_ns(&init_user_ns, false);
5625 if (IS_ERR(ns))
5626 panic("Can't allocate initial namespace");
5627 m = real_mount(mnt);
5628 ns->root = m;
5629 ns->nr_mounts = 1;
5630 mnt_add_to_ns(ns, m);
5631 init_task.nsproxy->mnt_ns = ns;
5632 get_mnt_ns(ns);
5633
5634 root.mnt = mnt;
5635 root.dentry = mnt->mnt_root;
5636 mnt->mnt_flags |= MNT_LOCKED;
5637
5638 set_fs_pwd(current->fs, &root);
5639 set_fs_root(current->fs, &root);
5640
5641 mnt_ns_tree_add(ns);
5642 }
5643
mnt_init(void)5644 void __init mnt_init(void)
5645 {
5646 int err;
5647
5648 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5649 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5650
5651 mount_hashtable = alloc_large_system_hash("Mount-cache",
5652 sizeof(struct hlist_head),
5653 mhash_entries, 19,
5654 HASH_ZERO,
5655 &m_hash_shift, &m_hash_mask, 0, 0);
5656 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5657 sizeof(struct hlist_head),
5658 mphash_entries, 19,
5659 HASH_ZERO,
5660 &mp_hash_shift, &mp_hash_mask, 0, 0);
5661
5662 if (!mount_hashtable || !mountpoint_hashtable)
5663 panic("Failed to allocate mount hash table\n");
5664
5665 kernfs_init();
5666
5667 err = sysfs_init();
5668 if (err)
5669 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5670 __func__, err);
5671 fs_kobj = kobject_create_and_add("fs", NULL);
5672 if (!fs_kobj)
5673 printk(KERN_WARNING "%s: kobj create error\n", __func__);
5674 shmem_init();
5675 init_rootfs();
5676 init_mount_tree();
5677 }
5678
put_mnt_ns(struct mnt_namespace * ns)5679 void put_mnt_ns(struct mnt_namespace *ns)
5680 {
5681 if (!refcount_dec_and_test(&ns->ns.count))
5682 return;
5683 drop_collected_mounts(&ns->root->mnt);
5684 free_mnt_ns(ns);
5685 }
5686
kern_mount(struct file_system_type * type)5687 struct vfsmount *kern_mount(struct file_system_type *type)
5688 {
5689 struct vfsmount *mnt;
5690 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5691 if (!IS_ERR(mnt)) {
5692 /*
5693 * it is a longterm mount, don't release mnt until
5694 * we unmount before file sys is unregistered
5695 */
5696 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5697 }
5698 return mnt;
5699 }
5700 EXPORT_SYMBOL_GPL(kern_mount);
5701
kern_unmount(struct vfsmount * mnt)5702 void kern_unmount(struct vfsmount *mnt)
5703 {
5704 /* release long term mount so mount point can be released */
5705 if (!IS_ERR(mnt)) {
5706 mnt_make_shortterm(mnt);
5707 synchronize_rcu(); /* yecchhh... */
5708 mntput(mnt);
5709 }
5710 }
5711 EXPORT_SYMBOL(kern_unmount);
5712
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)5713 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5714 {
5715 unsigned int i;
5716
5717 for (i = 0; i < num; i++)
5718 mnt_make_shortterm(mnt[i]);
5719 synchronize_rcu_expedited();
5720 for (i = 0; i < num; i++)
5721 mntput(mnt[i]);
5722 }
5723 EXPORT_SYMBOL(kern_unmount_array);
5724
our_mnt(struct vfsmount * mnt)5725 bool our_mnt(struct vfsmount *mnt)
5726 {
5727 return check_mnt(real_mount(mnt));
5728 }
5729
current_chrooted(void)5730 bool current_chrooted(void)
5731 {
5732 /* Does the current process have a non-standard root */
5733 struct path ns_root;
5734 struct path fs_root;
5735 bool chrooted;
5736
5737 /* Find the namespace root */
5738 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
5739 ns_root.dentry = ns_root.mnt->mnt_root;
5740 path_get(&ns_root);
5741 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5742 ;
5743
5744 get_fs_root(current->fs, &fs_root);
5745
5746 chrooted = !path_equal(&fs_root, &ns_root);
5747
5748 path_put(&fs_root);
5749 path_put(&ns_root);
5750
5751 return chrooted;
5752 }
5753
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)5754 static bool mnt_already_visible(struct mnt_namespace *ns,
5755 const struct super_block *sb,
5756 int *new_mnt_flags)
5757 {
5758 int new_flags = *new_mnt_flags;
5759 struct mount *mnt, *n;
5760 bool visible = false;
5761
5762 down_read(&namespace_sem);
5763 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5764 struct mount *child;
5765 int mnt_flags;
5766
5767 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5768 continue;
5769
5770 /* This mount is not fully visible if it's root directory
5771 * is not the root directory of the filesystem.
5772 */
5773 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5774 continue;
5775
5776 /* A local view of the mount flags */
5777 mnt_flags = mnt->mnt.mnt_flags;
5778
5779 /* Don't miss readonly hidden in the superblock flags */
5780 if (sb_rdonly(mnt->mnt.mnt_sb))
5781 mnt_flags |= MNT_LOCK_READONLY;
5782
5783 /* Verify the mount flags are equal to or more permissive
5784 * than the proposed new mount.
5785 */
5786 if ((mnt_flags & MNT_LOCK_READONLY) &&
5787 !(new_flags & MNT_READONLY))
5788 continue;
5789 if ((mnt_flags & MNT_LOCK_ATIME) &&
5790 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5791 continue;
5792
5793 /* This mount is not fully visible if there are any
5794 * locked child mounts that cover anything except for
5795 * empty directories.
5796 */
5797 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5798 struct inode *inode = child->mnt_mountpoint->d_inode;
5799 /* Only worry about locked mounts */
5800 if (!(child->mnt.mnt_flags & MNT_LOCKED))
5801 continue;
5802 /* Is the directory permanently empty? */
5803 if (!is_empty_dir_inode(inode))
5804 goto next;
5805 }
5806 /* Preserve the locked attributes */
5807 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5808 MNT_LOCK_ATIME);
5809 visible = true;
5810 goto found;
5811 next: ;
5812 }
5813 found:
5814 up_read(&namespace_sem);
5815 return visible;
5816 }
5817
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)5818 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5819 {
5820 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5821 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5822 unsigned long s_iflags;
5823
5824 if (ns->user_ns == &init_user_ns)
5825 return false;
5826
5827 /* Can this filesystem be too revealing? */
5828 s_iflags = sb->s_iflags;
5829 if (!(s_iflags & SB_I_USERNS_VISIBLE))
5830 return false;
5831
5832 if ((s_iflags & required_iflags) != required_iflags) {
5833 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5834 required_iflags);
5835 return true;
5836 }
5837
5838 return !mnt_already_visible(ns, sb, new_mnt_flags);
5839 }
5840
mnt_may_suid(struct vfsmount * mnt)5841 bool mnt_may_suid(struct vfsmount *mnt)
5842 {
5843 /*
5844 * Foreign mounts (accessed via fchdir or through /proc
5845 * symlinks) are always treated as if they are nosuid. This
5846 * prevents namespaces from trusting potentially unsafe
5847 * suid/sgid bits, file caps, or security labels that originate
5848 * in other namespaces.
5849 */
5850 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5851 current_in_userns(mnt->mnt_sb->s_user_ns);
5852 }
5853
mntns_get(struct task_struct * task)5854 static struct ns_common *mntns_get(struct task_struct *task)
5855 {
5856 struct ns_common *ns = NULL;
5857 struct nsproxy *nsproxy;
5858
5859 task_lock(task);
5860 nsproxy = task->nsproxy;
5861 if (nsproxy) {
5862 ns = &nsproxy->mnt_ns->ns;
5863 get_mnt_ns(to_mnt_ns(ns));
5864 }
5865 task_unlock(task);
5866
5867 return ns;
5868 }
5869
mntns_put(struct ns_common * ns)5870 static void mntns_put(struct ns_common *ns)
5871 {
5872 put_mnt_ns(to_mnt_ns(ns));
5873 }
5874
mntns_install(struct nsset * nsset,struct ns_common * ns)5875 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5876 {
5877 struct nsproxy *nsproxy = nsset->nsproxy;
5878 struct fs_struct *fs = nsset->fs;
5879 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5880 struct user_namespace *user_ns = nsset->cred->user_ns;
5881 struct path root;
5882 int err;
5883
5884 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5885 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5886 !ns_capable(user_ns, CAP_SYS_ADMIN))
5887 return -EPERM;
5888
5889 if (is_anon_ns(mnt_ns))
5890 return -EINVAL;
5891
5892 if (fs->users != 1)
5893 return -EINVAL;
5894
5895 get_mnt_ns(mnt_ns);
5896 old_mnt_ns = nsproxy->mnt_ns;
5897 nsproxy->mnt_ns = mnt_ns;
5898
5899 /* Find the root */
5900 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5901 "/", LOOKUP_DOWN, &root);
5902 if (err) {
5903 /* revert to old namespace */
5904 nsproxy->mnt_ns = old_mnt_ns;
5905 put_mnt_ns(mnt_ns);
5906 return err;
5907 }
5908
5909 put_mnt_ns(old_mnt_ns);
5910
5911 /* Update the pwd and root */
5912 set_fs_pwd(fs, &root);
5913 set_fs_root(fs, &root);
5914
5915 path_put(&root);
5916 return 0;
5917 }
5918
mntns_owner(struct ns_common * ns)5919 static struct user_namespace *mntns_owner(struct ns_common *ns)
5920 {
5921 return to_mnt_ns(ns)->user_ns;
5922 }
5923
5924 const struct proc_ns_operations mntns_operations = {
5925 .name = "mnt",
5926 .type = CLONE_NEWNS,
5927 .get = mntns_get,
5928 .put = mntns_put,
5929 .install = mntns_install,
5930 .owner = mntns_owner,
5931 };
5932
5933 #ifdef CONFIG_SYSCTL
5934 static struct ctl_table fs_namespace_sysctls[] = {
5935 {
5936 .procname = "mount-max",
5937 .data = &sysctl_mount_max,
5938 .maxlen = sizeof(unsigned int),
5939 .mode = 0644,
5940 .proc_handler = proc_dointvec_minmax,
5941 .extra1 = SYSCTL_ONE,
5942 },
5943 };
5944
init_fs_namespace_sysctls(void)5945 static int __init init_fs_namespace_sysctls(void)
5946 {
5947 register_sysctl_init("fs", fs_namespace_sysctls);
5948 return 0;
5949 }
5950 fs_initcall(init_fs_namespace_sysctls);
5951
5952 #endif /* CONFIG_SYSCTL */
5953