xref: /linux/fs/namespace.c (revision 415d34b92c1f921a9ff3c38f56319cbc5536f642)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37 
38 #include "pnode.h"
39 #include "internal.h"
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mhash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58 
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 	if (!str)
63 		return 0;
64 	mphash_entries = simple_strtoul(str, &str, 0);
65 	return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68 
69 static char * __initdata initramfs_options;
initramfs_options_setup(char * str)70 static int __init initramfs_options_setup(char *str)
71 {
72 	initramfs_options = str;
73 	return 1;
74 }
75 
76 __setup("initramfs_options=", initramfs_options_setup);
77 
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81 
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85 
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93 
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 				      up_read(&namespace_sem))
99 
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101 
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105 
106 enum mount_kattr_flags_t {
107 	MOUNT_KATTR_RECURSE		= (1 << 0),
108 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
109 };
110 
111 struct mount_kattr {
112 	unsigned int attr_set;
113 	unsigned int attr_clr;
114 	unsigned int propagation;
115 	unsigned int lookup_flags;
116 	enum mount_kattr_flags_t kflags;
117 	struct user_namespace *mnt_userns;
118 	struct mnt_idmap *mnt_idmap;
119 };
120 
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124 
125 /*
126  * vfsmount lock may be taken for read to prevent changes to the
127  * vfsmount hash, ie. during mountpoint lookups or walking back
128  * up the tree.
129  *
130  * It should be taken for write in all cases where the vfsmount
131  * tree or hash is modified or when a vfsmount structure is modified.
132  */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134 
mnt_ns_release(struct mnt_namespace * ns)135 static void mnt_ns_release(struct mnt_namespace *ns)
136 {
137 	/* keep alive for {list,stat}mount() */
138 	if (ns && refcount_dec_and_test(&ns->passive)) {
139 		fsnotify_mntns_delete(ns);
140 		put_user_ns(ns->user_ns);
141 		kfree(ns);
142 	}
143 }
144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 	    if (!IS_ERR(_T)) mnt_ns_release(_T))
146 
mnt_ns_release_rcu(struct rcu_head * rcu)147 static void mnt_ns_release_rcu(struct rcu_head *rcu)
148 {
149 	mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150 }
151 
mnt_ns_tree_remove(struct mnt_namespace * ns)152 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153 {
154 	/* remove from global mount namespace list */
155 	if (ns_tree_active(ns))
156 		ns_tree_remove(ns);
157 
158 	call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159 }
160 
161 /*
162  * Lookup a mount namespace by id and take a passive reference count. Taking a
163  * passive reference means the mount namespace can be emptied if e.g., the last
164  * task holding an active reference exits. To access the mounts of the
165  * namespace the @namespace_sem must first be acquired. If the namespace has
166  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167  * see that the mount rbtree of the namespace is empty.
168  *
169  * Note the lookup is lockless protected by a sequence counter. We only
170  * need to guard against false negatives as false positives aren't
171  * possible. So if we didn't find a mount namespace and the sequence
172  * counter has changed we need to retry. If the sequence counter is
173  * still the same we know the search actually failed.
174  */
lookup_mnt_ns(u64 mnt_ns_id)175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176 {
177 	struct mnt_namespace *mnt_ns;
178 	struct ns_common *ns;
179 
180 	guard(rcu)();
181 	ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 	if (!ns)
183 		return NULL;
184 
185 	/*
186 	 * The last reference count is put with RCU delay so we can
187 	 * unconditonally acquire a reference here.
188 	 */
189 	mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 	refcount_inc(&mnt_ns->passive);
191 	return mnt_ns;
192 }
193 
lock_mount_hash(void)194 static inline void lock_mount_hash(void)
195 {
196 	write_seqlock(&mount_lock);
197 }
198 
unlock_mount_hash(void)199 static inline void unlock_mount_hash(void)
200 {
201 	write_sequnlock(&mount_lock);
202 }
203 
m_hash(struct vfsmount * mnt,struct dentry * dentry)204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205 {
206 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 	tmp = tmp + (tmp >> m_hash_shift);
209 	return &mount_hashtable[tmp & m_hash_mask];
210 }
211 
mp_hash(struct dentry * dentry)212 static inline struct hlist_head *mp_hash(struct dentry *dentry)
213 {
214 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 	tmp = tmp + (tmp >> mp_hash_shift);
216 	return &mountpoint_hashtable[tmp & mp_hash_mask];
217 }
218 
mnt_alloc_id(struct mount * mnt)219 static int mnt_alloc_id(struct mount *mnt)
220 {
221 	int res;
222 
223 	xa_lock(&mnt_id_xa);
224 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 	if (!res)
226 		mnt->mnt_id_unique = ++mnt_id_ctr;
227 	xa_unlock(&mnt_id_xa);
228 	return res;
229 }
230 
mnt_free_id(struct mount * mnt)231 static void mnt_free_id(struct mount *mnt)
232 {
233 	xa_erase(&mnt_id_xa, mnt->mnt_id);
234 }
235 
236 /*
237  * Allocate a new peer group ID
238  */
mnt_alloc_group_id(struct mount * mnt)239 static int mnt_alloc_group_id(struct mount *mnt)
240 {
241 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242 
243 	if (res < 0)
244 		return res;
245 	mnt->mnt_group_id = res;
246 	return 0;
247 }
248 
249 /*
250  * Release a peer group ID
251  */
mnt_release_group_id(struct mount * mnt)252 void mnt_release_group_id(struct mount *mnt)
253 {
254 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 	mnt->mnt_group_id = 0;
256 }
257 
258 /*
259  * vfsmount lock must be held for read
260  */
mnt_add_count(struct mount * mnt,int n)261 static inline void mnt_add_count(struct mount *mnt, int n)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265 #else
266 	preempt_disable();
267 	mnt->mnt_count += n;
268 	preempt_enable();
269 #endif
270 }
271 
272 /*
273  * vfsmount lock must be held for write
274  */
mnt_get_count(struct mount * mnt)275 int mnt_get_count(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	int count = 0;
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu) {
282 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 	}
284 
285 	return count;
286 #else
287 	return mnt->mnt_count;
288 #endif
289 }
290 
alloc_vfsmnt(const char * name)291 static struct mount *alloc_vfsmnt(const char *name)
292 {
293 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 	if (mnt) {
295 		int err;
296 
297 		err = mnt_alloc_id(mnt);
298 		if (err)
299 			goto out_free_cache;
300 
301 		if (name)
302 			mnt->mnt_devname = kstrdup_const(name,
303 							 GFP_KERNEL_ACCOUNT);
304 		else
305 			mnt->mnt_devname = "none";
306 		if (!mnt->mnt_devname)
307 			goto out_free_id;
308 
309 #ifdef CONFIG_SMP
310 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 		if (!mnt->mnt_pcp)
312 			goto out_free_devname;
313 
314 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315 #else
316 		mnt->mnt_count = 1;
317 		mnt->mnt_writers = 0;
318 #endif
319 
320 		INIT_HLIST_NODE(&mnt->mnt_hash);
321 		INIT_LIST_HEAD(&mnt->mnt_child);
322 		INIT_LIST_HEAD(&mnt->mnt_mounts);
323 		INIT_LIST_HEAD(&mnt->mnt_list);
324 		INIT_LIST_HEAD(&mnt->mnt_expire);
325 		INIT_LIST_HEAD(&mnt->mnt_share);
326 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 		INIT_HLIST_NODE(&mnt->mnt_slave);
328 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 		RB_CLEAR_NODE(&mnt->mnt_node);
331 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 	}
333 	return mnt;
334 
335 #ifdef CONFIG_SMP
336 out_free_devname:
337 	kfree_const(mnt->mnt_devname);
338 #endif
339 out_free_id:
340 	mnt_free_id(mnt);
341 out_free_cache:
342 	kmem_cache_free(mnt_cache, mnt);
343 	return NULL;
344 }
345 
346 /*
347  * Most r/o checks on a fs are for operations that take
348  * discrete amounts of time, like a write() or unlink().
349  * We must keep track of when those operations start
350  * (for permission checks) and when they end, so that
351  * we can determine when writes are able to occur to
352  * a filesystem.
353  */
354 /*
355  * __mnt_is_readonly: check whether a mount is read-only
356  * @mnt: the mount to check for its write status
357  *
358  * This shouldn't be used directly ouside of the VFS.
359  * It does not guarantee that the filesystem will stay
360  * r/w, just that it is right *now*.  This can not and
361  * should not be used in place of IS_RDONLY(inode).
362  * mnt_want/drop_write() will _keep_ the filesystem
363  * r/w.
364  */
__mnt_is_readonly(const struct vfsmount * mnt)365 bool __mnt_is_readonly(const struct vfsmount *mnt)
366 {
367 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368 }
369 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370 
mnt_inc_writers(struct mount * mnt)371 static inline void mnt_inc_writers(struct mount *mnt)
372 {
373 #ifdef CONFIG_SMP
374 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375 #else
376 	mnt->mnt_writers++;
377 #endif
378 }
379 
mnt_dec_writers(struct mount * mnt)380 static inline void mnt_dec_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384 #else
385 	mnt->mnt_writers--;
386 #endif
387 }
388 
mnt_get_writers(struct mount * mnt)389 static unsigned int mnt_get_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 	unsigned int count = 0;
393 	int cpu;
394 
395 	for_each_possible_cpu(cpu) {
396 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 	}
398 
399 	return count;
400 #else
401 	return mnt->mnt_writers;
402 #endif
403 }
404 
mnt_is_readonly(const struct vfsmount * mnt)405 static int mnt_is_readonly(const struct vfsmount *mnt)
406 {
407 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 		return 1;
409 	/*
410 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 	 * making sure if we don't see s_readonly_remount set yet, we also will
412 	 * not see any superblock / mount flag changes done by remount.
413 	 * It also pairs with the barrier in sb_end_ro_state_change()
414 	 * assuring that if we see s_readonly_remount already cleared, we will
415 	 * see the values of superblock / mount flags updated by remount.
416 	 */
417 	smp_rmb();
418 	return __mnt_is_readonly(mnt);
419 }
420 
421 /*
422  * Most r/o & frozen checks on a fs are for operations that take discrete
423  * amounts of time, like a write() or unlink().  We must keep track of when
424  * those operations start (for permission checks) and when they end, so that we
425  * can determine when writes are able to occur to a filesystem.
426  */
427 /**
428  * mnt_get_write_access - get write access to a mount without freeze protection
429  * @m: the mount on which to take a write
430  *
431  * This tells the low-level filesystem that a write is about to be performed to
432  * it, and makes sure that writes are allowed (mnt it read-write) before
433  * returning success. This operation does not protect against filesystem being
434  * frozen. When the write operation is finished, mnt_put_write_access() must be
435  * called. This is effectively a refcount.
436  */
mnt_get_write_access(struct vfsmount * m)437 int mnt_get_write_access(struct vfsmount *m)
438 {
439 	struct mount *mnt = real_mount(m);
440 	int ret = 0;
441 
442 	preempt_disable();
443 	mnt_inc_writers(mnt);
444 	/*
445 	 * The store to mnt_inc_writers must be visible before we pass
446 	 * WRITE_HOLD loop below, so that the slowpath can see our
447 	 * incremented count after it has set WRITE_HOLD.
448 	 */
449 	smp_mb();
450 	might_lock(&mount_lock.lock);
451 	while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 			cpu_relax();
454 		} else {
455 			/*
456 			 * This prevents priority inversion, if the task
457 			 * setting WRITE_HOLD got preempted on a remote
458 			 * CPU, and it prevents life lock if the task setting
459 			 * WRITE_HOLD has a lower priority and is bound to
460 			 * the same CPU as the task that is spinning here.
461 			 */
462 			preempt_enable();
463 			read_seqlock_excl(&mount_lock);
464 			read_sequnlock_excl(&mount_lock);
465 			preempt_disable();
466 		}
467 	}
468 	/*
469 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 	 * sure that if we see WRITE_HOLD cleared, we will also see
471 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 	 * mnt_is_readonly() and bail in case we are racing with remount
473 	 * read-only.
474 	 */
475 	smp_rmb();
476 	if (mnt_is_readonly(m)) {
477 		mnt_dec_writers(mnt);
478 		ret = -EROFS;
479 	}
480 	preempt_enable();
481 
482 	return ret;
483 }
484 EXPORT_SYMBOL_GPL(mnt_get_write_access);
485 
486 /**
487  * mnt_want_write - get write access to a mount
488  * @m: the mount on which to take a write
489  *
490  * This tells the low-level filesystem that a write is about to be performed to
491  * it, and makes sure that writes are allowed (mount is read-write, filesystem
492  * is not frozen) before returning success.  When the write operation is
493  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
494  */
mnt_want_write(struct vfsmount * m)495 int mnt_want_write(struct vfsmount *m)
496 {
497 	int ret;
498 
499 	sb_start_write(m->mnt_sb);
500 	ret = mnt_get_write_access(m);
501 	if (ret)
502 		sb_end_write(m->mnt_sb);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write);
506 
507 /**
508  * mnt_get_write_access_file - get write access to a file's mount
509  * @file: the file who's mount on which to take a write
510  *
511  * This is like mnt_get_write_access, but if @file is already open for write it
512  * skips incrementing mnt_writers (since the open file already has a reference)
513  * and instead only does the check for emergency r/o remounts.  This must be
514  * paired with mnt_put_write_access_file.
515  */
mnt_get_write_access_file(struct file * file)516 int mnt_get_write_access_file(struct file *file)
517 {
518 	if (file->f_mode & FMODE_WRITER) {
519 		/*
520 		 * Superblock may have become readonly while there are still
521 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 		 */
523 		if (__mnt_is_readonly(file->f_path.mnt))
524 			return -EROFS;
525 		return 0;
526 	}
527 	return mnt_get_write_access(file->f_path.mnt);
528 }
529 
530 /**
531  * mnt_want_write_file - get write access to a file's mount
532  * @file: the file who's mount on which to take a write
533  *
534  * This is like mnt_want_write, but if the file is already open for writing it
535  * skips incrementing mnt_writers (since the open file already has a reference)
536  * and instead only does the freeze protection and the check for emergency r/o
537  * remounts.  This must be paired with mnt_drop_write_file.
538  */
mnt_want_write_file(struct file * file)539 int mnt_want_write_file(struct file *file)
540 {
541 	int ret;
542 
543 	sb_start_write(file_inode(file)->i_sb);
544 	ret = mnt_get_write_access_file(file);
545 	if (ret)
546 		sb_end_write(file_inode(file)->i_sb);
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(mnt_want_write_file);
550 
551 /**
552  * mnt_put_write_access - give up write access to a mount
553  * @mnt: the mount on which to give up write access
554  *
555  * Tells the low-level filesystem that we are done
556  * performing writes to it.  Must be matched with
557  * mnt_get_write_access() call above.
558  */
mnt_put_write_access(struct vfsmount * mnt)559 void mnt_put_write_access(struct vfsmount *mnt)
560 {
561 	preempt_disable();
562 	mnt_dec_writers(real_mount(mnt));
563 	preempt_enable();
564 }
565 EXPORT_SYMBOL_GPL(mnt_put_write_access);
566 
567 /**
568  * mnt_drop_write - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done performing writes to it and
572  * also allows filesystem to be frozen again.  Must be matched with
573  * mnt_want_write() call above.
574  */
mnt_drop_write(struct vfsmount * mnt)575 void mnt_drop_write(struct vfsmount *mnt)
576 {
577 	mnt_put_write_access(mnt);
578 	sb_end_write(mnt->mnt_sb);
579 }
580 EXPORT_SYMBOL_GPL(mnt_drop_write);
581 
mnt_put_write_access_file(struct file * file)582 void mnt_put_write_access_file(struct file *file)
583 {
584 	if (!(file->f_mode & FMODE_WRITER))
585 		mnt_put_write_access(file->f_path.mnt);
586 }
587 
mnt_drop_write_file(struct file * file)588 void mnt_drop_write_file(struct file *file)
589 {
590 	mnt_put_write_access_file(file);
591 	sb_end_write(file_inode(file)->i_sb);
592 }
593 EXPORT_SYMBOL(mnt_drop_write_file);
594 
595 /**
596  * mnt_hold_writers - prevent write access to the given mount
597  * @mnt: mnt to prevent write access to
598  *
599  * Prevents write access to @mnt if there are no active writers for @mnt.
600  * This function needs to be called and return successfully before changing
601  * properties of @mnt that need to remain stable for callers with write access
602  * to @mnt.
603  *
604  * After this functions has been called successfully callers must pair it with
605  * a call to mnt_unhold_writers() in order to stop preventing write access to
606  * @mnt.
607  *
608  * Context: This function expects to be in mount_locked_reader scope serializing
609  *          setting WRITE_HOLD.
610  * Return: On success 0 is returned.
611  *	   On error, -EBUSY is returned.
612  */
mnt_hold_writers(struct mount * mnt)613 static inline int mnt_hold_writers(struct mount *mnt)
614 {
615 	set_write_hold(mnt);
616 	/*
617 	 * After storing WRITE_HOLD, we'll read the counters. This store
618 	 * should be visible before we do.
619 	 */
620 	smp_mb();
621 
622 	/*
623 	 * With writers on hold, if this value is zero, then there are
624 	 * definitely no active writers (although held writers may subsequently
625 	 * increment the count, they'll have to wait, and decrement it after
626 	 * seeing MNT_READONLY).
627 	 *
628 	 * It is OK to have counter incremented on one CPU and decremented on
629 	 * another: the sum will add up correctly. The danger would be when we
630 	 * sum up each counter, if we read a counter before it is incremented,
631 	 * but then read another CPU's count which it has been subsequently
632 	 * decremented from -- we would see more decrements than we should.
633 	 * WRITE_HOLD protects against this scenario, because
634 	 * mnt_want_write first increments count, then smp_mb, then spins on
635 	 * WRITE_HOLD, so it can't be decremented by another CPU while
636 	 * we're counting up here.
637 	 */
638 	if (mnt_get_writers(mnt) > 0)
639 		return -EBUSY;
640 
641 	return 0;
642 }
643 
644 /**
645  * mnt_unhold_writers - stop preventing write access to the given mount
646  * @mnt: mnt to stop preventing write access to
647  *
648  * Stop preventing write access to @mnt allowing callers to gain write access
649  * to @mnt again.
650  *
651  * This function can only be called after a call to mnt_hold_writers().
652  *
653  * Context: This function expects to be in the same mount_locked_reader scope
654  * as the matching mnt_hold_writers().
655  */
mnt_unhold_writers(struct mount * mnt)656 static inline void mnt_unhold_writers(struct mount *mnt)
657 {
658 	if (!test_write_hold(mnt))
659 		return;
660 	/*
661 	 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 	 * that become unheld will see MNT_READONLY.
663 	 */
664 	smp_wmb();
665 	clear_write_hold(mnt);
666 }
667 
mnt_del_instance(struct mount * m)668 static inline void mnt_del_instance(struct mount *m)
669 {
670 	struct mount **p = m->mnt_pprev_for_sb;
671 	struct mount *next = m->mnt_next_for_sb;
672 
673 	if (next)
674 		next->mnt_pprev_for_sb = p;
675 	*p = next;
676 }
677 
mnt_add_instance(struct mount * m,struct super_block * s)678 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679 {
680 	struct mount *first = s->s_mounts;
681 
682 	if (first)
683 		first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 	m->mnt_next_for_sb = first;
685 	m->mnt_pprev_for_sb = &s->s_mounts;
686 	s->s_mounts = m;
687 }
688 
mnt_make_readonly(struct mount * mnt)689 static int mnt_make_readonly(struct mount *mnt)
690 {
691 	int ret;
692 
693 	ret = mnt_hold_writers(mnt);
694 	if (!ret)
695 		mnt->mnt.mnt_flags |= MNT_READONLY;
696 	mnt_unhold_writers(mnt);
697 	return ret;
698 }
699 
sb_prepare_remount_readonly(struct super_block * sb)700 int sb_prepare_remount_readonly(struct super_block *sb)
701 {
702 	int err = 0;
703 
704 	/* Racy optimization.  Recheck the counter under WRITE_HOLD */
705 	if (atomic_long_read(&sb->s_remove_count))
706 		return -EBUSY;
707 
708 	guard(mount_locked_reader)();
709 
710 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 		if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 			err = mnt_hold_writers(m);
713 			if (err)
714 				break;
715 		}
716 	}
717 	if (!err && atomic_long_read(&sb->s_remove_count))
718 		err = -EBUSY;
719 
720 	if (!err)
721 		sb_start_ro_state_change(sb);
722 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 		if (test_write_hold(m))
724 			clear_write_hold(m);
725 	}
726 
727 	return err;
728 }
729 
free_vfsmnt(struct mount * mnt)730 static void free_vfsmnt(struct mount *mnt)
731 {
732 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 	kfree_const(mnt->mnt_devname);
734 #ifdef CONFIG_SMP
735 	free_percpu(mnt->mnt_pcp);
736 #endif
737 	kmem_cache_free(mnt_cache, mnt);
738 }
739 
delayed_free_vfsmnt(struct rcu_head * head)740 static void delayed_free_vfsmnt(struct rcu_head *head)
741 {
742 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743 }
744 
745 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747 {
748 	struct mount *mnt;
749 	if (read_seqretry(&mount_lock, seq))
750 		return 1;
751 	if (bastard == NULL)
752 		return 0;
753 	mnt = real_mount(bastard);
754 	mnt_add_count(mnt, 1);
755 	smp_mb();		// see mntput_no_expire() and do_umount()
756 	if (likely(!read_seqretry(&mount_lock, seq)))
757 		return 0;
758 	lock_mount_hash();
759 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 		mnt_add_count(mnt, -1);
761 		unlock_mount_hash();
762 		return 1;
763 	}
764 	unlock_mount_hash();
765 	/* caller will mntput() */
766 	return -1;
767 }
768 
769 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771 {
772 	int res = __legitimize_mnt(bastard, seq);
773 	if (likely(!res))
774 		return true;
775 	if (unlikely(res < 0)) {
776 		rcu_read_unlock();
777 		mntput(bastard);
778 		rcu_read_lock();
779 	}
780 	return false;
781 }
782 
783 /**
784  * __lookup_mnt - mount hash lookup
785  * @mnt:	parent mount
786  * @dentry:	dentry of mountpoint
787  *
788  * If @mnt has a child mount @c mounted on @dentry find and return it.
789  * Caller must either hold the spinlock component of @mount_lock or
790  * hold rcu_read_lock(), sample the seqcount component before the call
791  * and recheck it afterwards.
792  *
793  * Return: The child of @mnt mounted on @dentry or %NULL.
794  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796 {
797 	struct hlist_head *head = m_hash(mnt, dentry);
798 	struct mount *p;
799 
800 	hlist_for_each_entry_rcu(p, head, mnt_hash)
801 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 			return p;
803 	return NULL;
804 }
805 
806 /**
807  * lookup_mnt - Return the child mount mounted at given location
808  * @path:	location in the namespace
809  *
810  * Acquires and returns a new reference to mount at given location
811  * or %NULL if nothing is mounted there.
812  */
lookup_mnt(const struct path * path)813 struct vfsmount *lookup_mnt(const struct path *path)
814 {
815 	struct mount *child_mnt;
816 	struct vfsmount *m;
817 	unsigned seq;
818 
819 	rcu_read_lock();
820 	do {
821 		seq = read_seqbegin(&mount_lock);
822 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 		m = child_mnt ? &child_mnt->mnt : NULL;
824 	} while (!legitimize_mnt(m, seq));
825 	rcu_read_unlock();
826 	return m;
827 }
828 
829 /*
830  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831  *                         current mount namespace.
832  *
833  * The common case is dentries are not mountpoints at all and that
834  * test is handled inline.  For the slow case when we are actually
835  * dealing with a mountpoint of some kind, walk through all of the
836  * mounts in the current mount namespace and test to see if the dentry
837  * is a mountpoint.
838  *
839  * The mount_hashtable is not usable in the context because we
840  * need to identify all mounts that may be in the current mount
841  * namespace not just a mount that happens to have some specified
842  * parent mount.
843  */
__is_local_mountpoint(const struct dentry * dentry)844 bool __is_local_mountpoint(const struct dentry *dentry)
845 {
846 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 	struct mount *mnt, *n;
848 
849 	guard(namespace_shared)();
850 
851 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 		if (mnt->mnt_mountpoint == dentry)
853 			return true;
854 
855 	return false;
856 }
857 
858 struct pinned_mountpoint {
859 	struct hlist_node node;
860 	struct mountpoint *mp;
861 	struct mount *parent;
862 };
863 
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865 {
866 	struct hlist_head *chain = mp_hash(dentry);
867 	struct mountpoint *mp;
868 
869 	hlist_for_each_entry(mp, chain, m_hash) {
870 		if (mp->m_dentry == dentry) {
871 			hlist_add_head(&m->node, &mp->m_list);
872 			m->mp = mp;
873 			return true;
874 		}
875 	}
876 	return false;
877 }
878 
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880 {
881 	struct mountpoint *mp __free(kfree) = NULL;
882 	bool found;
883 	int ret;
884 
885 	if (d_mountpoint(dentry)) {
886 		/* might be worth a WARN_ON() */
887 		if (d_unlinked(dentry))
888 			return -ENOENT;
889 mountpoint:
890 		read_seqlock_excl(&mount_lock);
891 		found = lookup_mountpoint(dentry, m);
892 		read_sequnlock_excl(&mount_lock);
893 		if (found)
894 			return 0;
895 	}
896 
897 	if (!mp)
898 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 	if (!mp)
900 		return -ENOMEM;
901 
902 	/* Exactly one processes may set d_mounted */
903 	ret = d_set_mounted(dentry);
904 
905 	/* Someone else set d_mounted? */
906 	if (ret == -EBUSY)
907 		goto mountpoint;
908 
909 	/* The dentry is not available as a mountpoint? */
910 	if (ret)
911 		return ret;
912 
913 	/* Add the new mountpoint to the hash table */
914 	read_seqlock_excl(&mount_lock);
915 	mp->m_dentry = dget(dentry);
916 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 	INIT_HLIST_HEAD(&mp->m_list);
918 	hlist_add_head(&m->node, &mp->m_list);
919 	m->mp = no_free_ptr(mp);
920 	read_sequnlock_excl(&mount_lock);
921 	return 0;
922 }
923 
924 /*
925  * vfsmount lock must be held.  Additionally, the caller is responsible
926  * for serializing calls for given disposal list.
927  */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929 {
930 	if (hlist_empty(&mp->m_list)) {
931 		struct dentry *dentry = mp->m_dentry;
932 		spin_lock(&dentry->d_lock);
933 		dentry->d_flags &= ~DCACHE_MOUNTED;
934 		spin_unlock(&dentry->d_lock);
935 		dput_to_list(dentry, list);
936 		hlist_del(&mp->m_hash);
937 		kfree(mp);
938 	}
939 }
940 
941 /*
942  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943  */
unpin_mountpoint(struct pinned_mountpoint * m)944 static void unpin_mountpoint(struct pinned_mountpoint *m)
945 {
946 	if (m->mp) {
947 		hlist_del(&m->node);
948 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 	}
950 }
951 
check_mnt(const struct mount * mnt)952 static inline int check_mnt(const struct mount *mnt)
953 {
954 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
955 }
956 
check_anonymous_mnt(struct mount * mnt)957 static inline bool check_anonymous_mnt(struct mount *mnt)
958 {
959 	u64 seq;
960 
961 	if (!is_anon_ns(mnt->mnt_ns))
962 		return false;
963 
964 	seq = mnt->mnt_ns->seq_origin;
965 	return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966 }
967 
968 /*
969  * vfsmount lock must be held for write
970  */
touch_mnt_namespace(struct mnt_namespace * ns)971 static void touch_mnt_namespace(struct mnt_namespace *ns)
972 {
973 	if (ns) {
974 		ns->event = ++event;
975 		wake_up_interruptible(&ns->poll);
976 	}
977 }
978 
979 /*
980  * vfsmount lock must be held for write
981  */
__touch_mnt_namespace(struct mnt_namespace * ns)982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
983 {
984 	if (ns && ns->event != event) {
985 		ns->event = event;
986 		wake_up_interruptible(&ns->poll);
987 	}
988 }
989 
990 /*
991  * locks: mount_lock[write_seqlock]
992  */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994 {
995 	struct mountpoint *mp;
996 	struct mount *parent = mnt->mnt_parent;
997 	if (unlikely(parent->overmount == mnt))
998 		parent->overmount = NULL;
999 	mnt->mnt_parent = mnt;
1000 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 	list_del_init(&mnt->mnt_child);
1002 	hlist_del_init_rcu(&mnt->mnt_hash);
1003 	hlist_del_init(&mnt->mnt_mp_list);
1004 	mp = mnt->mnt_mp;
1005 	mnt->mnt_mp = NULL;
1006 	maybe_free_mountpoint(mp, shrink_list);
1007 }
1008 
1009 /*
1010  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011  */
umount_mnt(struct mount * mnt)1012 static void umount_mnt(struct mount *mnt)
1013 {
1014 	__umount_mnt(mnt, &ex_mountpoints);
1015 }
1016 
1017 /*
1018  * vfsmount lock must be held for write
1019  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1020 void mnt_set_mountpoint(struct mount *mnt,
1021 			struct mountpoint *mp,
1022 			struct mount *child_mnt)
1023 {
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
make_visible(struct mount * mnt)1030 static void make_visible(struct mount *mnt)
1031 {
1032 	struct mount *parent = mnt->mnt_parent;
1033 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 		parent->overmount = mnt;
1035 	hlist_add_head_rcu(&mnt->mnt_hash,
1036 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038 }
1039 
1040 /**
1041  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042  *              list of child mounts
1043  * @parent:  the parent
1044  * @mnt:     the new mount
1045  * @mp:      the new mountpoint
1046  *
1047  * Mount @mnt at @mp on @parent. Then attach @mnt
1048  * to @parent's child mount list and to @mount_hashtable.
1049  *
1050  * Note, when make_visible() is called @mnt->mnt_parent already points
1051  * to the correct parent.
1052  *
1053  * Context: This function expects namespace_lock() and lock_mount_hash()
1054  *          to have been acquired in that order.
1055  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1056 static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 		       struct mountpoint *mp)
1058 {
1059 	mnt_set_mountpoint(parent, mp, mnt);
1060 	make_visible(mnt);
1061 }
1062 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064 {
1065 	struct mountpoint *old_mp = mnt->mnt_mp;
1066 
1067 	list_del_init(&mnt->mnt_child);
1068 	hlist_del_init(&mnt->mnt_mp_list);
1069 	hlist_del_init_rcu(&mnt->mnt_hash);
1070 
1071 	attach_mnt(mnt, parent, mp);
1072 
1073 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074 }
1075 
node_to_mount(struct rb_node * node)1076 static inline struct mount *node_to_mount(struct rb_node *node)
1077 {
1078 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079 }
1080 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082 {
1083 	struct rb_node **link = &ns->mounts.rb_node;
1084 	struct rb_node *parent = NULL;
1085 	bool mnt_first_node = true, mnt_last_node = true;
1086 
1087 	WARN_ON(mnt_ns_attached(mnt));
1088 	mnt->mnt_ns = ns;
1089 	while (*link) {
1090 		parent = *link;
1091 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 			link = &parent->rb_left;
1093 			mnt_last_node = false;
1094 		} else {
1095 			link = &parent->rb_right;
1096 			mnt_first_node = false;
1097 		}
1098 	}
1099 
1100 	if (mnt_last_node)
1101 		ns->mnt_last_node = &mnt->mnt_node;
1102 	if (mnt_first_node)
1103 		ns->mnt_first_node = &mnt->mnt_node;
1104 	rb_link_node(&mnt->mnt_node, parent, link);
1105 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106 
1107 	mnt_notify_add(mnt);
1108 }
1109 
next_mnt(struct mount * p,struct mount * root)1110 static struct mount *next_mnt(struct mount *p, struct mount *root)
1111 {
1112 	struct list_head *next = p->mnt_mounts.next;
1113 	if (next == &p->mnt_mounts) {
1114 		while (1) {
1115 			if (p == root)
1116 				return NULL;
1117 			next = p->mnt_child.next;
1118 			if (next != &p->mnt_parent->mnt_mounts)
1119 				break;
1120 			p = p->mnt_parent;
1121 		}
1122 	}
1123 	return list_entry(next, struct mount, mnt_child);
1124 }
1125 
skip_mnt_tree(struct mount * p)1126 static struct mount *skip_mnt_tree(struct mount *p)
1127 {
1128 	struct list_head *prev = p->mnt_mounts.prev;
1129 	while (prev != &p->mnt_mounts) {
1130 		p = list_entry(prev, struct mount, mnt_child);
1131 		prev = p->mnt_mounts.prev;
1132 	}
1133 	return p;
1134 }
1135 
1136 /*
1137  * vfsmount lock must be held for write
1138  */
commit_tree(struct mount * mnt)1139 static void commit_tree(struct mount *mnt)
1140 {
1141 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142 
1143 	if (!mnt_ns_attached(mnt)) {
1144 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 			mnt_add_to_ns(n, m);
1146 		n->nr_mounts += n->pending_mounts;
1147 		n->pending_mounts = 0;
1148 	}
1149 
1150 	make_visible(mnt);
1151 	touch_mnt_namespace(n);
1152 }
1153 
setup_mnt(struct mount * m,struct dentry * root)1154 static void setup_mnt(struct mount *m, struct dentry *root)
1155 {
1156 	struct super_block *s = root->d_sb;
1157 
1158 	atomic_inc(&s->s_active);
1159 	m->mnt.mnt_sb = s;
1160 	m->mnt.mnt_root = dget(root);
1161 	m->mnt_mountpoint = m->mnt.mnt_root;
1162 	m->mnt_parent = m;
1163 
1164 	guard(mount_locked_reader)();
1165 	mnt_add_instance(m, s);
1166 }
1167 
1168 /**
1169  * vfs_create_mount - Create a mount for a configured superblock
1170  * @fc: The configuration context with the superblock attached
1171  *
1172  * Create a mount to an already configured superblock.  If necessary, the
1173  * caller should invoke vfs_get_tree() before calling this.
1174  *
1175  * Note that this does not attach the mount to anything.
1176  */
vfs_create_mount(struct fs_context * fc)1177 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178 {
1179 	struct mount *mnt;
1180 
1181 	if (!fc->root)
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	mnt = alloc_vfsmnt(fc->source);
1185 	if (!mnt)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	if (fc->sb_flags & SB_KERNMOUNT)
1189 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1190 
1191 	setup_mnt(mnt, fc->root);
1192 
1193 	return &mnt->mnt;
1194 }
1195 EXPORT_SYMBOL(vfs_create_mount);
1196 
fc_mount(struct fs_context * fc)1197 struct vfsmount *fc_mount(struct fs_context *fc)
1198 {
1199 	int err = vfs_get_tree(fc);
1200 	if (!err) {
1201 		up_write(&fc->root->d_sb->s_umount);
1202 		return vfs_create_mount(fc);
1203 	}
1204 	return ERR_PTR(err);
1205 }
1206 EXPORT_SYMBOL(fc_mount);
1207 
fc_mount_longterm(struct fs_context * fc)1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209 {
1210 	struct vfsmount *mnt = fc_mount(fc);
1211 	if (!IS_ERR(mnt))
1212 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 	return mnt;
1214 }
1215 EXPORT_SYMBOL(fc_mount_longterm);
1216 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 				int flags, const char *name,
1219 				void *data)
1220 {
1221 	struct fs_context *fc;
1222 	struct vfsmount *mnt;
1223 	int ret = 0;
1224 
1225 	if (!type)
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	fc = fs_context_for_mount(type, flags);
1229 	if (IS_ERR(fc))
1230 		return ERR_CAST(fc);
1231 
1232 	if (name)
1233 		ret = vfs_parse_fs_string(fc, "source", name);
1234 	if (!ret)
1235 		ret = parse_monolithic_mount_data(fc, data);
1236 	if (!ret)
1237 		mnt = fc_mount(fc);
1238 	else
1239 		mnt = ERR_PTR(ret);
1240 
1241 	put_fs_context(fc);
1242 	return mnt;
1243 }
1244 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245 
clone_mnt(struct mount * old,struct dentry * root,int flag)1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 					int flag)
1248 {
1249 	struct mount *mnt;
1250 	int err;
1251 
1252 	mnt = alloc_vfsmnt(old->mnt_devname);
1253 	if (!mnt)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 			     ~MNT_INTERNAL_FLAGS;
1258 
1259 	if (flag & (CL_SLAVE | CL_PRIVATE))
1260 		mnt->mnt_group_id = 0; /* not a peer of original */
1261 	else
1262 		mnt->mnt_group_id = old->mnt_group_id;
1263 
1264 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 		err = mnt_alloc_group_id(mnt);
1266 		if (err)
1267 			goto out_free;
1268 	}
1269 
1270 	if (mnt->mnt_group_id)
1271 		set_mnt_shared(mnt);
1272 
1273 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274 
1275 	setup_mnt(mnt, root);
1276 
1277 	if (flag & CL_PRIVATE)	// we are done with it
1278 		return mnt;
1279 
1280 	if (peers(mnt, old))
1281 		list_add(&mnt->mnt_share, &old->mnt_share);
1282 
1283 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 		mnt->mnt_master = old;
1286 	} else if (IS_MNT_SLAVE(old)) {
1287 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 		mnt->mnt_master = old->mnt_master;
1289 	}
1290 	return mnt;
1291 
1292  out_free:
1293 	mnt_free_id(mnt);
1294 	free_vfsmnt(mnt);
1295 	return ERR_PTR(err);
1296 }
1297 
cleanup_mnt(struct mount * mnt)1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 	struct hlist_node *p;
1301 	struct mount *m;
1302 	/*
1303 	 * The warning here probably indicates that somebody messed
1304 	 * up a mnt_want/drop_write() pair.  If this happens, the
1305 	 * filesystem was probably unable to make r/w->r/o transitions.
1306 	 * The locking used to deal with mnt_count decrement provides barriers,
1307 	 * so mnt_get_writers() below is safe.
1308 	 */
1309 	WARN_ON(mnt_get_writers(mnt));
1310 	if (unlikely(mnt->mnt_pins.first))
1311 		mnt_pin_kill(mnt);
1312 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 		hlist_del(&m->mnt_umount);
1314 		mntput(&m->mnt);
1315 	}
1316 	fsnotify_vfsmount_delete(&mnt->mnt);
1317 	dput(mnt->mnt.mnt_root);
1318 	deactivate_super(mnt->mnt.mnt_sb);
1319 	mnt_free_id(mnt);
1320 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322 
__cleanup_mnt(struct rcu_head * head)1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327 
1328 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 	struct mount *m, *t;
1333 
1334 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 		cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338 
mntput_no_expire_slowpath(struct mount * mnt)1339 static void noinline mntput_no_expire_slowpath(struct mount *mnt)
1340 {
1341 	LIST_HEAD(list);
1342 	int count;
1343 
1344 	VFS_BUG_ON(mnt->mnt_ns);
1345 	lock_mount_hash();
1346 	/*
1347 	 * make sure that if __legitimize_mnt() has not seen us grab
1348 	 * mount_lock, we'll see their refcount increment here.
1349 	 */
1350 	smp_mb();
1351 	mnt_add_count(mnt, -1);
1352 	count = mnt_get_count(mnt);
1353 	if (count != 0) {
1354 		WARN_ON(count < 0);
1355 		rcu_read_unlock();
1356 		unlock_mount_hash();
1357 		return;
1358 	}
1359 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1360 		rcu_read_unlock();
1361 		unlock_mount_hash();
1362 		return;
1363 	}
1364 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1365 	rcu_read_unlock();
1366 
1367 	mnt_del_instance(mnt);
1368 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1369 		list_del(&mnt->mnt_expire);
1370 
1371 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1372 		struct mount *p, *tmp;
1373 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1374 			__umount_mnt(p, &list);
1375 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1376 		}
1377 	}
1378 	unlock_mount_hash();
1379 	shrink_dentry_list(&list);
1380 
1381 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1382 		struct task_struct *task = current;
1383 		if (likely(!(task->flags & PF_KTHREAD))) {
1384 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1385 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1386 				return;
1387 		}
1388 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1389 			schedule_delayed_work(&delayed_mntput_work, 1);
1390 		return;
1391 	}
1392 	cleanup_mnt(mnt);
1393 }
1394 
mntput_no_expire(struct mount * mnt)1395 static void mntput_no_expire(struct mount *mnt)
1396 {
1397 	rcu_read_lock();
1398 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1399 		/*
1400 		 * Since we don't do lock_mount_hash() here,
1401 		 * ->mnt_ns can change under us.  However, if it's
1402 		 * non-NULL, then there's a reference that won't
1403 		 * be dropped until after an RCU delay done after
1404 		 * turning ->mnt_ns NULL.  So if we observe it
1405 		 * non-NULL under rcu_read_lock(), the reference
1406 		 * we are dropping is not the final one.
1407 		 */
1408 		mnt_add_count(mnt, -1);
1409 		rcu_read_unlock();
1410 		return;
1411 	}
1412 	mntput_no_expire_slowpath(mnt);
1413 }
1414 
mntput(struct vfsmount * mnt)1415 void mntput(struct vfsmount *mnt)
1416 {
1417 	if (mnt) {
1418 		struct mount *m = real_mount(mnt);
1419 		/* avoid cacheline pingpong */
1420 		if (unlikely(m->mnt_expiry_mark))
1421 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1422 		mntput_no_expire(m);
1423 	}
1424 }
1425 EXPORT_SYMBOL(mntput);
1426 
mntget(struct vfsmount * mnt)1427 struct vfsmount *mntget(struct vfsmount *mnt)
1428 {
1429 	if (mnt)
1430 		mnt_add_count(real_mount(mnt), 1);
1431 	return mnt;
1432 }
1433 EXPORT_SYMBOL(mntget);
1434 
1435 /*
1436  * Make a mount point inaccessible to new lookups.
1437  * Because there may still be current users, the caller MUST WAIT
1438  * for an RCU grace period before destroying the mount point.
1439  */
mnt_make_shortterm(struct vfsmount * mnt)1440 void mnt_make_shortterm(struct vfsmount *mnt)
1441 {
1442 	if (mnt)
1443 		real_mount(mnt)->mnt_ns = NULL;
1444 }
1445 
1446 /**
1447  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1448  * @path: path to check
1449  *
1450  *  d_mountpoint() can only be used reliably to establish if a dentry is
1451  *  not mounted in any namespace and that common case is handled inline.
1452  *  d_mountpoint() isn't aware of the possibility there may be multiple
1453  *  mounts using a given dentry in a different namespace. This function
1454  *  checks if the passed in path is a mountpoint rather than the dentry
1455  *  alone.
1456  */
path_is_mountpoint(const struct path * path)1457 bool path_is_mountpoint(const struct path *path)
1458 {
1459 	unsigned seq;
1460 	bool res;
1461 
1462 	if (!d_mountpoint(path->dentry))
1463 		return false;
1464 
1465 	rcu_read_lock();
1466 	do {
1467 		seq = read_seqbegin(&mount_lock);
1468 		res = __path_is_mountpoint(path);
1469 	} while (read_seqretry(&mount_lock, seq));
1470 	rcu_read_unlock();
1471 
1472 	return res;
1473 }
1474 EXPORT_SYMBOL(path_is_mountpoint);
1475 
mnt_clone_internal(const struct path * path)1476 struct vfsmount *mnt_clone_internal(const struct path *path)
1477 {
1478 	struct mount *p;
1479 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1480 	if (IS_ERR(p))
1481 		return ERR_CAST(p);
1482 	p->mnt.mnt_flags |= MNT_INTERNAL;
1483 	return &p->mnt;
1484 }
1485 
1486 /*
1487  * Returns the mount which either has the specified mnt_id, or has the next
1488  * smallest id afer the specified one.
1489  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1490 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1491 {
1492 	struct rb_node *node = ns->mounts.rb_node;
1493 	struct mount *ret = NULL;
1494 
1495 	while (node) {
1496 		struct mount *m = node_to_mount(node);
1497 
1498 		if (mnt_id <= m->mnt_id_unique) {
1499 			ret = node_to_mount(node);
1500 			if (mnt_id == m->mnt_id_unique)
1501 				break;
1502 			node = node->rb_left;
1503 		} else {
1504 			node = node->rb_right;
1505 		}
1506 	}
1507 	return ret;
1508 }
1509 
1510 /*
1511  * Returns the mount which either has the specified mnt_id, or has the next
1512  * greater id before the specified one.
1513  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1514 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1515 {
1516 	struct rb_node *node = ns->mounts.rb_node;
1517 	struct mount *ret = NULL;
1518 
1519 	while (node) {
1520 		struct mount *m = node_to_mount(node);
1521 
1522 		if (mnt_id >= m->mnt_id_unique) {
1523 			ret = node_to_mount(node);
1524 			if (mnt_id == m->mnt_id_unique)
1525 				break;
1526 			node = node->rb_right;
1527 		} else {
1528 			node = node->rb_left;
1529 		}
1530 	}
1531 	return ret;
1532 }
1533 
1534 #ifdef CONFIG_PROC_FS
1535 
1536 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1537 static void *m_start(struct seq_file *m, loff_t *pos)
1538 {
1539 	struct proc_mounts *p = m->private;
1540 
1541 	down_read(&namespace_sem);
1542 
1543 	return mnt_find_id_at(p->ns, *pos);
1544 }
1545 
m_next(struct seq_file * m,void * v,loff_t * pos)1546 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1547 {
1548 	struct mount *next = NULL, *mnt = v;
1549 	struct rb_node *node = rb_next(&mnt->mnt_node);
1550 
1551 	++*pos;
1552 	if (node) {
1553 		next = node_to_mount(node);
1554 		*pos = next->mnt_id_unique;
1555 	}
1556 	return next;
1557 }
1558 
m_stop(struct seq_file * m,void * v)1559 static void m_stop(struct seq_file *m, void *v)
1560 {
1561 	up_read(&namespace_sem);
1562 }
1563 
m_show(struct seq_file * m,void * v)1564 static int m_show(struct seq_file *m, void *v)
1565 {
1566 	struct proc_mounts *p = m->private;
1567 	struct mount *r = v;
1568 	return p->show(m, &r->mnt);
1569 }
1570 
1571 const struct seq_operations mounts_op = {
1572 	.start	= m_start,
1573 	.next	= m_next,
1574 	.stop	= m_stop,
1575 	.show	= m_show,
1576 };
1577 
1578 #endif  /* CONFIG_PROC_FS */
1579 
1580 /**
1581  * may_umount_tree - check if a mount tree is busy
1582  * @m: root of mount tree
1583  *
1584  * This is called to check if a tree of mounts has any
1585  * open files, pwds, chroots or sub mounts that are
1586  * busy.
1587  */
may_umount_tree(struct vfsmount * m)1588 int may_umount_tree(struct vfsmount *m)
1589 {
1590 	struct mount *mnt = real_mount(m);
1591 	bool busy = false;
1592 
1593 	/* write lock needed for mnt_get_count */
1594 	lock_mount_hash();
1595 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1596 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1597 			busy = true;
1598 			break;
1599 		}
1600 	}
1601 	unlock_mount_hash();
1602 
1603 	return !busy;
1604 }
1605 
1606 EXPORT_SYMBOL(may_umount_tree);
1607 
1608 /**
1609  * may_umount - check if a mount point is busy
1610  * @mnt: root of mount
1611  *
1612  * This is called to check if a mount point has any
1613  * open files, pwds, chroots or sub mounts. If the
1614  * mount has sub mounts this will return busy
1615  * regardless of whether the sub mounts are busy.
1616  *
1617  * Doesn't take quota and stuff into account. IOW, in some cases it will
1618  * give false negatives. The main reason why it's here is that we need
1619  * a non-destructive way to look for easily umountable filesystems.
1620  */
may_umount(struct vfsmount * mnt)1621 int may_umount(struct vfsmount *mnt)
1622 {
1623 	int ret = 1;
1624 	down_read(&namespace_sem);
1625 	lock_mount_hash();
1626 	if (propagate_mount_busy(real_mount(mnt), 2))
1627 		ret = 0;
1628 	unlock_mount_hash();
1629 	up_read(&namespace_sem);
1630 	return ret;
1631 }
1632 
1633 EXPORT_SYMBOL(may_umount);
1634 
1635 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1636 static void mnt_notify(struct mount *p)
1637 {
1638 	if (!p->prev_ns && p->mnt_ns) {
1639 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1640 	} else if (p->prev_ns && !p->mnt_ns) {
1641 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1642 	} else if (p->prev_ns == p->mnt_ns) {
1643 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1644 	} else {
1645 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1646 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1647 	}
1648 	p->prev_ns = p->mnt_ns;
1649 }
1650 
notify_mnt_list(void)1651 static void notify_mnt_list(void)
1652 {
1653 	struct mount *m, *tmp;
1654 	/*
1655 	 * Notify about mounts that were added/reparented/detached/remain
1656 	 * connected after unmount.
1657 	 */
1658 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1659 		mnt_notify(m);
1660 		list_del_init(&m->to_notify);
1661 	}
1662 }
1663 
need_notify_mnt_list(void)1664 static bool need_notify_mnt_list(void)
1665 {
1666 	return !list_empty(&notify_list);
1667 }
1668 #else
notify_mnt_list(void)1669 static void notify_mnt_list(void)
1670 {
1671 }
1672 
need_notify_mnt_list(void)1673 static bool need_notify_mnt_list(void)
1674 {
1675 	return false;
1676 }
1677 #endif
1678 
1679 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1680 static void namespace_unlock(void)
1681 {
1682 	struct hlist_head head;
1683 	struct hlist_node *p;
1684 	struct mount *m;
1685 	struct mnt_namespace *ns = emptied_ns;
1686 	LIST_HEAD(list);
1687 
1688 	hlist_move_list(&unmounted, &head);
1689 	list_splice_init(&ex_mountpoints, &list);
1690 	emptied_ns = NULL;
1691 
1692 	if (need_notify_mnt_list()) {
1693 		/*
1694 		 * No point blocking out concurrent readers while notifications
1695 		 * are sent. This will also allow statmount()/listmount() to run
1696 		 * concurrently.
1697 		 */
1698 		downgrade_write(&namespace_sem);
1699 		notify_mnt_list();
1700 		up_read(&namespace_sem);
1701 	} else {
1702 		up_write(&namespace_sem);
1703 	}
1704 	if (unlikely(ns)) {
1705 		/* Make sure we notice when we leak mounts. */
1706 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1707 		free_mnt_ns(ns);
1708 	}
1709 
1710 	shrink_dentry_list(&list);
1711 
1712 	if (likely(hlist_empty(&head)))
1713 		return;
1714 
1715 	synchronize_rcu_expedited();
1716 
1717 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1718 		hlist_del(&m->mnt_umount);
1719 		mntput(&m->mnt);
1720 	}
1721 }
1722 
namespace_lock(void)1723 static inline void namespace_lock(void)
1724 {
1725 	down_write(&namespace_sem);
1726 }
1727 
1728 enum umount_tree_flags {
1729 	UMOUNT_SYNC = 1,
1730 	UMOUNT_PROPAGATE = 2,
1731 	UMOUNT_CONNECTED = 4,
1732 };
1733 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1734 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1735 {
1736 	/* Leaving mounts connected is only valid for lazy umounts */
1737 	if (how & UMOUNT_SYNC)
1738 		return true;
1739 
1740 	/* A mount without a parent has nothing to be connected to */
1741 	if (!mnt_has_parent(mnt))
1742 		return true;
1743 
1744 	/* Because the reference counting rules change when mounts are
1745 	 * unmounted and connected, umounted mounts may not be
1746 	 * connected to mounted mounts.
1747 	 */
1748 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1749 		return true;
1750 
1751 	/* Has it been requested that the mount remain connected? */
1752 	if (how & UMOUNT_CONNECTED)
1753 		return false;
1754 
1755 	/* Is the mount locked such that it needs to remain connected? */
1756 	if (IS_MNT_LOCKED(mnt))
1757 		return false;
1758 
1759 	/* By default disconnect the mount */
1760 	return true;
1761 }
1762 
1763 /*
1764  * mount_lock must be held
1765  * namespace_sem must be held for write
1766  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1767 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1768 {
1769 	LIST_HEAD(tmp_list);
1770 	struct mount *p;
1771 
1772 	if (how & UMOUNT_PROPAGATE)
1773 		propagate_mount_unlock(mnt);
1774 
1775 	/* Gather the mounts to umount */
1776 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1777 		p->mnt.mnt_flags |= MNT_UMOUNT;
1778 		if (mnt_ns_attached(p))
1779 			move_from_ns(p);
1780 		list_add_tail(&p->mnt_list, &tmp_list);
1781 	}
1782 
1783 	/* Hide the mounts from mnt_mounts */
1784 	list_for_each_entry(p, &tmp_list, mnt_list) {
1785 		list_del_init(&p->mnt_child);
1786 	}
1787 
1788 	/* Add propagated mounts to the tmp_list */
1789 	if (how & UMOUNT_PROPAGATE)
1790 		propagate_umount(&tmp_list);
1791 
1792 	bulk_make_private(&tmp_list);
1793 
1794 	while (!list_empty(&tmp_list)) {
1795 		struct mnt_namespace *ns;
1796 		bool disconnect;
1797 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1798 		list_del_init(&p->mnt_expire);
1799 		list_del_init(&p->mnt_list);
1800 		ns = p->mnt_ns;
1801 		if (ns) {
1802 			ns->nr_mounts--;
1803 			__touch_mnt_namespace(ns);
1804 		}
1805 		p->mnt_ns = NULL;
1806 		if (how & UMOUNT_SYNC)
1807 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1808 
1809 		disconnect = disconnect_mount(p, how);
1810 		if (mnt_has_parent(p)) {
1811 			if (!disconnect) {
1812 				/* Don't forget about p */
1813 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1814 			} else {
1815 				umount_mnt(p);
1816 			}
1817 		}
1818 		if (disconnect)
1819 			hlist_add_head(&p->mnt_umount, &unmounted);
1820 
1821 		/*
1822 		 * At this point p->mnt_ns is NULL, notification will be queued
1823 		 * only if
1824 		 *
1825 		 *  - p->prev_ns is non-NULL *and*
1826 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1827 		 *
1828 		 * This will preclude queuing the mount if this is a cleanup
1829 		 * after a failed copy_tree() or destruction of an anonymous
1830 		 * namespace, etc.
1831 		 */
1832 		mnt_notify_add(p);
1833 	}
1834 }
1835 
1836 static void shrink_submounts(struct mount *mnt);
1837 
do_umount_root(struct super_block * sb)1838 static int do_umount_root(struct super_block *sb)
1839 {
1840 	int ret = 0;
1841 
1842 	down_write(&sb->s_umount);
1843 	if (!sb_rdonly(sb)) {
1844 		struct fs_context *fc;
1845 
1846 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1847 						SB_RDONLY);
1848 		if (IS_ERR(fc)) {
1849 			ret = PTR_ERR(fc);
1850 		} else {
1851 			ret = parse_monolithic_mount_data(fc, NULL);
1852 			if (!ret)
1853 				ret = reconfigure_super(fc);
1854 			put_fs_context(fc);
1855 		}
1856 	}
1857 	up_write(&sb->s_umount);
1858 	return ret;
1859 }
1860 
do_umount(struct mount * mnt,int flags)1861 static int do_umount(struct mount *mnt, int flags)
1862 {
1863 	struct super_block *sb = mnt->mnt.mnt_sb;
1864 	int retval;
1865 
1866 	retval = security_sb_umount(&mnt->mnt, flags);
1867 	if (retval)
1868 		return retval;
1869 
1870 	/*
1871 	 * Allow userspace to request a mountpoint be expired rather than
1872 	 * unmounting unconditionally. Unmount only happens if:
1873 	 *  (1) the mark is already set (the mark is cleared by mntput())
1874 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1875 	 */
1876 	if (flags & MNT_EXPIRE) {
1877 		if (&mnt->mnt == current->fs->root.mnt ||
1878 		    flags & (MNT_FORCE | MNT_DETACH))
1879 			return -EINVAL;
1880 
1881 		/*
1882 		 * probably don't strictly need the lock here if we examined
1883 		 * all race cases, but it's a slowpath.
1884 		 */
1885 		lock_mount_hash();
1886 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1887 			unlock_mount_hash();
1888 			return -EBUSY;
1889 		}
1890 		unlock_mount_hash();
1891 
1892 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1893 			return -EAGAIN;
1894 	}
1895 
1896 	/*
1897 	 * If we may have to abort operations to get out of this
1898 	 * mount, and they will themselves hold resources we must
1899 	 * allow the fs to do things. In the Unix tradition of
1900 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1901 	 * might fail to complete on the first run through as other tasks
1902 	 * must return, and the like. Thats for the mount program to worry
1903 	 * about for the moment.
1904 	 */
1905 
1906 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1907 		sb->s_op->umount_begin(sb);
1908 	}
1909 
1910 	/*
1911 	 * No sense to grab the lock for this test, but test itself looks
1912 	 * somewhat bogus. Suggestions for better replacement?
1913 	 * Ho-hum... In principle, we might treat that as umount + switch
1914 	 * to rootfs. GC would eventually take care of the old vfsmount.
1915 	 * Actually it makes sense, especially if rootfs would contain a
1916 	 * /reboot - static binary that would close all descriptors and
1917 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1918 	 */
1919 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1920 		/*
1921 		 * Special case for "unmounting" root ...
1922 		 * we just try to remount it readonly.
1923 		 */
1924 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1925 			return -EPERM;
1926 		return do_umount_root(sb);
1927 	}
1928 
1929 	namespace_lock();
1930 	lock_mount_hash();
1931 
1932 	/* Repeat the earlier racy checks, now that we are holding the locks */
1933 	retval = -EINVAL;
1934 	if (!check_mnt(mnt))
1935 		goto out;
1936 
1937 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1938 		goto out;
1939 
1940 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1941 		goto out;
1942 
1943 	event++;
1944 	if (flags & MNT_DETACH) {
1945 		umount_tree(mnt, UMOUNT_PROPAGATE);
1946 		retval = 0;
1947 	} else {
1948 		smp_mb(); // paired with __legitimize_mnt()
1949 		shrink_submounts(mnt);
1950 		retval = -EBUSY;
1951 		if (!propagate_mount_busy(mnt, 2)) {
1952 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1953 			retval = 0;
1954 		}
1955 	}
1956 out:
1957 	unlock_mount_hash();
1958 	namespace_unlock();
1959 	return retval;
1960 }
1961 
1962 /*
1963  * __detach_mounts - lazily unmount all mounts on the specified dentry
1964  *
1965  * During unlink, rmdir, and d_drop it is possible to loose the path
1966  * to an existing mountpoint, and wind up leaking the mount.
1967  * detach_mounts allows lazily unmounting those mounts instead of
1968  * leaking them.
1969  *
1970  * The caller may hold dentry->d_inode->i_rwsem.
1971  */
__detach_mounts(struct dentry * dentry)1972 void __detach_mounts(struct dentry *dentry)
1973 {
1974 	struct pinned_mountpoint mp = {};
1975 	struct mount *mnt;
1976 
1977 	guard(namespace_excl)();
1978 	guard(mount_writer)();
1979 
1980 	if (!lookup_mountpoint(dentry, &mp))
1981 		return;
1982 
1983 	event++;
1984 	while (mp.node.next) {
1985 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1986 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1987 			umount_mnt(mnt);
1988 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1989 		}
1990 		else umount_tree(mnt, UMOUNT_CONNECTED);
1991 	}
1992 	unpin_mountpoint(&mp);
1993 }
1994 
1995 /*
1996  * Is the caller allowed to modify his namespace?
1997  */
may_mount(void)1998 bool may_mount(void)
1999 {
2000 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2001 }
2002 
warn_mandlock(void)2003 static void warn_mandlock(void)
2004 {
2005 	pr_warn_once("=======================================================\n"
2006 		     "WARNING: The mand mount option has been deprecated and\n"
2007 		     "         and is ignored by this kernel. Remove the mand\n"
2008 		     "         option from the mount to silence this warning.\n"
2009 		     "=======================================================\n");
2010 }
2011 
can_umount(const struct path * path,int flags)2012 static int can_umount(const struct path *path, int flags)
2013 {
2014 	struct mount *mnt = real_mount(path->mnt);
2015 	struct super_block *sb = path->dentry->d_sb;
2016 
2017 	if (!may_mount())
2018 		return -EPERM;
2019 	if (!path_mounted(path))
2020 		return -EINVAL;
2021 	if (!check_mnt(mnt))
2022 		return -EINVAL;
2023 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2024 		return -EINVAL;
2025 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2026 		return -EPERM;
2027 	return 0;
2028 }
2029 
2030 // caller is responsible for flags being sane
path_umount(const struct path * path,int flags)2031 int path_umount(const struct path *path, int flags)
2032 {
2033 	struct mount *mnt = real_mount(path->mnt);
2034 	int ret;
2035 
2036 	ret = can_umount(path, flags);
2037 	if (!ret)
2038 		ret = do_umount(mnt, flags);
2039 
2040 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2041 	dput(path->dentry);
2042 	mntput_no_expire(mnt);
2043 	return ret;
2044 }
2045 
ksys_umount(char __user * name,int flags)2046 static int ksys_umount(char __user *name, int flags)
2047 {
2048 	int lookup_flags = LOOKUP_MOUNTPOINT;
2049 	struct path path;
2050 	int ret;
2051 
2052 	// basic validity checks done first
2053 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2054 		return -EINVAL;
2055 
2056 	if (!(flags & UMOUNT_NOFOLLOW))
2057 		lookup_flags |= LOOKUP_FOLLOW;
2058 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2059 	if (ret)
2060 		return ret;
2061 	return path_umount(&path, flags);
2062 }
2063 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2064 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2065 {
2066 	return ksys_umount(name, flags);
2067 }
2068 
2069 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2070 
2071 /*
2072  *	The 2.0 compatible umount. No flags.
2073  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2074 SYSCALL_DEFINE1(oldumount, char __user *, name)
2075 {
2076 	return ksys_umount(name, 0);
2077 }
2078 
2079 #endif
2080 
is_mnt_ns_file(struct dentry * dentry)2081 static bool is_mnt_ns_file(struct dentry *dentry)
2082 {
2083 	struct ns_common *ns;
2084 
2085 	/* Is this a proxy for a mount namespace? */
2086 	if (dentry->d_op != &ns_dentry_operations)
2087 		return false;
2088 
2089 	ns = d_inode(dentry)->i_private;
2090 
2091 	return ns->ops == &mntns_operations;
2092 }
2093 
from_mnt_ns(struct mnt_namespace * mnt)2094 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2095 {
2096 	return &mnt->ns;
2097 }
2098 
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2099 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2100 {
2101 	struct ns_common *ns;
2102 
2103 	guard(rcu)();
2104 
2105 	for (;;) {
2106 		ns = ns_tree_adjoined_rcu(mntns, previous);
2107 		if (IS_ERR(ns))
2108 			return ERR_CAST(ns);
2109 
2110 		mntns = to_mnt_ns(ns);
2111 
2112 		/*
2113 		 * The last passive reference count is put with RCU
2114 		 * delay so accessing the mount namespace is not just
2115 		 * safe but all relevant members are still valid.
2116 		 */
2117 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2118 			continue;
2119 
2120 		/*
2121 		 * We need an active reference count as we're persisting
2122 		 * the mount namespace and it might already be on its
2123 		 * deathbed.
2124 		 */
2125 		if (!ns_ref_get(mntns))
2126 			continue;
2127 
2128 		return mntns;
2129 	}
2130 }
2131 
mnt_ns_from_dentry(struct dentry * dentry)2132 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2133 {
2134 	if (!is_mnt_ns_file(dentry))
2135 		return NULL;
2136 
2137 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2138 }
2139 
mnt_ns_loop(struct dentry * dentry)2140 static bool mnt_ns_loop(struct dentry *dentry)
2141 {
2142 	/* Could bind mounting the mount namespace inode cause a
2143 	 * mount namespace loop?
2144 	 */
2145 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2146 
2147 	if (!mnt_ns)
2148 		return false;
2149 
2150 	return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2151 }
2152 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2153 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2154 					int flag)
2155 {
2156 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2157 		*dst_parent, *dst_mnt;
2158 
2159 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2163 		return ERR_PTR(-EINVAL);
2164 
2165 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2166 	if (IS_ERR(dst_mnt))
2167 		return dst_mnt;
2168 
2169 	src_parent = src_root;
2170 
2171 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2172 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2173 			continue;
2174 
2175 		for (src_mnt = src_root_child; src_mnt;
2176 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2177 			if (!(flag & CL_COPY_UNBINDABLE) &&
2178 			    IS_MNT_UNBINDABLE(src_mnt)) {
2179 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2180 					/* Both unbindable and locked. */
2181 					dst_mnt = ERR_PTR(-EPERM);
2182 					goto out;
2183 				} else {
2184 					src_mnt = skip_mnt_tree(src_mnt);
2185 					continue;
2186 				}
2187 			}
2188 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2189 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2190 				src_mnt = skip_mnt_tree(src_mnt);
2191 				continue;
2192 			}
2193 			while (src_parent != src_mnt->mnt_parent) {
2194 				src_parent = src_parent->mnt_parent;
2195 				dst_mnt = dst_mnt->mnt_parent;
2196 			}
2197 
2198 			src_parent = src_mnt;
2199 			dst_parent = dst_mnt;
2200 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2201 			if (IS_ERR(dst_mnt))
2202 				goto out;
2203 			lock_mount_hash();
2204 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2205 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2206 			if (unlikely(flag & CL_EXPIRE)) {
2207 				/* stick the duplicate mount on the same expiry
2208 				 * list as the original if that was on one */
2209 				if (!list_empty(&src_mnt->mnt_expire))
2210 					list_add(&dst_mnt->mnt_expire,
2211 						 &src_mnt->mnt_expire);
2212 			}
2213 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2214 			unlock_mount_hash();
2215 		}
2216 	}
2217 	return res;
2218 
2219 out:
2220 	if (res) {
2221 		lock_mount_hash();
2222 		umount_tree(res, UMOUNT_SYNC);
2223 		unlock_mount_hash();
2224 	}
2225 	return dst_mnt;
2226 }
2227 
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2228 static inline bool extend_array(struct path **res, struct path **to_free,
2229 				unsigned n, unsigned *count, unsigned new_count)
2230 {
2231 	struct path *p;
2232 
2233 	if (likely(n < *count))
2234 		return true;
2235 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2236 	if (p && *count)
2237 		memcpy(p, *res, *count * sizeof(struct path));
2238 	*count = new_count;
2239 	kfree(*to_free);
2240 	*to_free = *res = p;
2241 	return p;
2242 }
2243 
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2244 const struct path *collect_paths(const struct path *path,
2245 			      struct path *prealloc, unsigned count)
2246 {
2247 	struct mount *root = real_mount(path->mnt);
2248 	struct mount *child;
2249 	struct path *res = prealloc, *to_free = NULL;
2250 	unsigned n = 0;
2251 
2252 	guard(namespace_shared)();
2253 
2254 	if (!check_mnt(root))
2255 		return ERR_PTR(-EINVAL);
2256 	if (!extend_array(&res, &to_free, 0, &count, 32))
2257 		return ERR_PTR(-ENOMEM);
2258 	res[n++] = *path;
2259 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2260 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2261 			continue;
2262 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2263 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2264 				return ERR_PTR(-ENOMEM);
2265 			res[n].mnt = &m->mnt;
2266 			res[n].dentry = m->mnt.mnt_root;
2267 			n++;
2268 		}
2269 	}
2270 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2271 		return ERR_PTR(-ENOMEM);
2272 	memset(res + n, 0, (count - n) * sizeof(struct path));
2273 	for (struct path *p = res; p->mnt; p++)
2274 		path_get(p);
2275 	return res;
2276 }
2277 
drop_collected_paths(const struct path * paths,const struct path * prealloc)2278 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2279 {
2280 	for (const struct path *p = paths; p->mnt; p++)
2281 		path_put(p);
2282 	if (paths != prealloc)
2283 		kfree(paths);
2284 }
2285 
2286 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2287 
dissolve_on_fput(struct vfsmount * mnt)2288 void dissolve_on_fput(struct vfsmount *mnt)
2289 {
2290 	struct mount *m = real_mount(mnt);
2291 
2292 	/*
2293 	 * m used to be the root of anon namespace; if it still is one,
2294 	 * we need to dissolve the mount tree and free that namespace.
2295 	 * Let's try to avoid taking namespace_sem if we can determine
2296 	 * that there's nothing to do without it - rcu_read_lock() is
2297 	 * enough to make anon_ns_root() memory-safe and once m has
2298 	 * left its namespace, it's no longer our concern, since it will
2299 	 * never become a root of anon ns again.
2300 	 */
2301 
2302 	scoped_guard(rcu) {
2303 		if (!anon_ns_root(m))
2304 			return;
2305 	}
2306 
2307 	scoped_guard(namespace_excl) {
2308 		if (!anon_ns_root(m))
2309 			return;
2310 
2311 		emptied_ns = m->mnt_ns;
2312 		lock_mount_hash();
2313 		umount_tree(m, UMOUNT_CONNECTED);
2314 		unlock_mount_hash();
2315 	}
2316 }
2317 
2318 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
__has_locked_children(struct mount * mnt,struct dentry * dentry)2319 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2320 {
2321 	struct mount *child;
2322 
2323 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2324 		if (!is_subdir(child->mnt_mountpoint, dentry))
2325 			continue;
2326 
2327 		if (child->mnt.mnt_flags & MNT_LOCKED)
2328 			return true;
2329 	}
2330 	return false;
2331 }
2332 
has_locked_children(struct mount * mnt,struct dentry * dentry)2333 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2334 {
2335 	guard(mount_locked_reader)();
2336 	return __has_locked_children(mnt, dentry);
2337 }
2338 
2339 /*
2340  * Check that there aren't references to earlier/same mount namespaces in the
2341  * specified subtree.  Such references can act as pins for mount namespaces
2342  * that aren't checked by the mount-cycle checking code, thereby allowing
2343  * cycles to be made.
2344  *
2345  * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2346  */
check_for_nsfs_mounts(struct mount * subtree)2347 static bool check_for_nsfs_mounts(struct mount *subtree)
2348 {
2349 	for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2350 		if (mnt_ns_loop(p->mnt.mnt_root))
2351 			return false;
2352 	return true;
2353 }
2354 
2355 /**
2356  * clone_private_mount - create a private clone of a path
2357  * @path: path to clone
2358  *
2359  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2360  * will not be attached anywhere in the namespace and will be private (i.e.
2361  * changes to the originating mount won't be propagated into this).
2362  *
2363  * This assumes caller has called or done the equivalent of may_mount().
2364  *
2365  * Release with mntput().
2366  */
clone_private_mount(const struct path * path)2367 struct vfsmount *clone_private_mount(const struct path *path)
2368 {
2369 	struct mount *old_mnt = real_mount(path->mnt);
2370 	struct mount *new_mnt;
2371 
2372 	guard(namespace_shared)();
2373 
2374 	if (IS_MNT_UNBINDABLE(old_mnt))
2375 		return ERR_PTR(-EINVAL);
2376 
2377 	/*
2378 	 * Make sure the source mount is acceptable.
2379 	 * Anything mounted in our mount namespace is allowed.
2380 	 * Otherwise, it must be the root of an anonymous mount
2381 	 * namespace, and we need to make sure no namespace
2382 	 * loops get created.
2383 	 */
2384 	if (!check_mnt(old_mnt)) {
2385 		if (!anon_ns_root(old_mnt))
2386 			return ERR_PTR(-EINVAL);
2387 
2388 		if (!check_for_nsfs_mounts(old_mnt))
2389 			return ERR_PTR(-EINVAL);
2390 	}
2391 
2392 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2393 		return ERR_PTR(-EPERM);
2394 
2395 	if (__has_locked_children(old_mnt, path->dentry))
2396 		return ERR_PTR(-EINVAL);
2397 
2398 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2399 	if (IS_ERR(new_mnt))
2400 		return ERR_PTR(-EINVAL);
2401 
2402 	/* Longterm mount to be removed by kern_unmount*() */
2403 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2404 	return &new_mnt->mnt;
2405 }
2406 EXPORT_SYMBOL_GPL(clone_private_mount);
2407 
lock_mnt_tree(struct mount * mnt)2408 static void lock_mnt_tree(struct mount *mnt)
2409 {
2410 	struct mount *p;
2411 
2412 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 		int flags = p->mnt.mnt_flags;
2414 		/* Don't allow unprivileged users to change mount flags */
2415 		flags |= MNT_LOCK_ATIME;
2416 
2417 		if (flags & MNT_READONLY)
2418 			flags |= MNT_LOCK_READONLY;
2419 
2420 		if (flags & MNT_NODEV)
2421 			flags |= MNT_LOCK_NODEV;
2422 
2423 		if (flags & MNT_NOSUID)
2424 			flags |= MNT_LOCK_NOSUID;
2425 
2426 		if (flags & MNT_NOEXEC)
2427 			flags |= MNT_LOCK_NOEXEC;
2428 		/* Don't allow unprivileged users to reveal what is under a mount */
2429 		if (list_empty(&p->mnt_expire) && p != mnt)
2430 			flags |= MNT_LOCKED;
2431 		p->mnt.mnt_flags = flags;
2432 	}
2433 }
2434 
cleanup_group_ids(struct mount * mnt,struct mount * end)2435 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2436 {
2437 	struct mount *p;
2438 
2439 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2440 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2441 			mnt_release_group_id(p);
2442 	}
2443 }
2444 
invent_group_ids(struct mount * mnt,bool recurse)2445 static int invent_group_ids(struct mount *mnt, bool recurse)
2446 {
2447 	struct mount *p;
2448 
2449 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2450 		if (!p->mnt_group_id) {
2451 			int err = mnt_alloc_group_id(p);
2452 			if (err) {
2453 				cleanup_group_ids(mnt, p);
2454 				return err;
2455 			}
2456 		}
2457 	}
2458 
2459 	return 0;
2460 }
2461 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2462 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2463 {
2464 	unsigned int max = READ_ONCE(sysctl_mount_max);
2465 	unsigned int mounts = 0;
2466 	struct mount *p;
2467 
2468 	if (ns->nr_mounts >= max)
2469 		return -ENOSPC;
2470 	max -= ns->nr_mounts;
2471 	if (ns->pending_mounts >= max)
2472 		return -ENOSPC;
2473 	max -= ns->pending_mounts;
2474 
2475 	for (p = mnt; p; p = next_mnt(p, mnt))
2476 		mounts++;
2477 
2478 	if (mounts > max)
2479 		return -ENOSPC;
2480 
2481 	ns->pending_mounts += mounts;
2482 	return 0;
2483 }
2484 
2485 enum mnt_tree_flags_t {
2486 	MNT_TREE_BENEATH = BIT(0),
2487 	MNT_TREE_PROPAGATION = BIT(1),
2488 };
2489 
2490 /**
2491  * attach_recursive_mnt - attach a source mount tree
2492  * @source_mnt: mount tree to be attached
2493  * @dest:	the context for mounting at the place where the tree should go
2494  *
2495  *  NOTE: in the table below explains the semantics when a source mount
2496  *  of a given type is attached to a destination mount of a given type.
2497  * ---------------------------------------------------------------------------
2498  * |         BIND MOUNT OPERATION                                            |
2499  * |**************************************************************************
2500  * | source-->| shared        |       private  |       slave    | unbindable |
2501  * | dest     |               |                |                |            |
2502  * |   |      |               |                |                |            |
2503  * |   v      |               |                |                |            |
2504  * |**************************************************************************
2505  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2506  * |          |               |                |                |            |
2507  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2508  * ***************************************************************************
2509  * A bind operation clones the source mount and mounts the clone on the
2510  * destination mount.
2511  *
2512  * (++)  the cloned mount is propagated to all the mounts in the propagation
2513  * 	 tree of the destination mount and the cloned mount is added to
2514  * 	 the peer group of the source mount.
2515  * (+)   the cloned mount is created under the destination mount and is marked
2516  *       as shared. The cloned mount is added to the peer group of the source
2517  *       mount.
2518  * (+++) the mount is propagated to all the mounts in the propagation tree
2519  *       of the destination mount and the cloned mount is made slave
2520  *       of the same master as that of the source mount. The cloned mount
2521  *       is marked as 'shared and slave'.
2522  * (*)   the cloned mount is made a slave of the same master as that of the
2523  * 	 source mount.
2524  *
2525  * ---------------------------------------------------------------------------
2526  * |         		MOVE MOUNT OPERATION                                 |
2527  * |**************************************************************************
2528  * | source-->| shared        |       private  |       slave    | unbindable |
2529  * | dest     |               |                |                |            |
2530  * |   |      |               |                |                |            |
2531  * |   v      |               |                |                |            |
2532  * |**************************************************************************
2533  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2534  * |          |               |                |                |            |
2535  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2536  * ***************************************************************************
2537  *
2538  * (+)  the mount is moved to the destination. And is then propagated to
2539  * 	all the mounts in the propagation tree of the destination mount.
2540  * (+*)  the mount is moved to the destination.
2541  * (+++)  the mount is moved to the destination and is then propagated to
2542  * 	all the mounts belonging to the destination mount's propagation tree.
2543  * 	the mount is marked as 'shared and slave'.
2544  * (*)	the mount continues to be a slave at the new location.
2545  *
2546  * if the source mount is a tree, the operations explained above is
2547  * applied to each mount in the tree.
2548  * Must be called without spinlocks held, since this function can sleep
2549  * in allocations.
2550  *
2551  * Context: The function expects namespace_lock() to be held.
2552  * Return: If @source_mnt was successfully attached 0 is returned.
2553  *         Otherwise a negative error code is returned.
2554  */
attach_recursive_mnt(struct mount * source_mnt,const struct pinned_mountpoint * dest)2555 static int attach_recursive_mnt(struct mount *source_mnt,
2556 				const struct pinned_mountpoint *dest)
2557 {
2558 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2559 	struct mount *dest_mnt = dest->parent;
2560 	struct mountpoint *dest_mp = dest->mp;
2561 	HLIST_HEAD(tree_list);
2562 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2563 	struct pinned_mountpoint root = {};
2564 	struct mountpoint *shorter = NULL;
2565 	struct mount *child, *p;
2566 	struct mount *top;
2567 	struct hlist_node *n;
2568 	int err = 0;
2569 	bool moving = mnt_has_parent(source_mnt);
2570 
2571 	/*
2572 	 * Preallocate a mountpoint in case the new mounts need to be
2573 	 * mounted beneath mounts on the same mountpoint.
2574 	 */
2575 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2576 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2577 			shorter = top->mnt_mp;
2578 	}
2579 	err = get_mountpoint(top->mnt.mnt_root, &root);
2580 	if (err)
2581 		return err;
2582 
2583 	/* Is there space to add these mounts to the mount namespace? */
2584 	if (!moving) {
2585 		err = count_mounts(ns, source_mnt);
2586 		if (err)
2587 			goto out;
2588 	}
2589 
2590 	if (IS_MNT_SHARED(dest_mnt)) {
2591 		err = invent_group_ids(source_mnt, true);
2592 		if (err)
2593 			goto out;
2594 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2595 	}
2596 	lock_mount_hash();
2597 	if (err)
2598 		goto out_cleanup_ids;
2599 
2600 	if (IS_MNT_SHARED(dest_mnt)) {
2601 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2602 			set_mnt_shared(p);
2603 	}
2604 
2605 	if (moving) {
2606 		umount_mnt(source_mnt);
2607 		mnt_notify_add(source_mnt);
2608 		/* if the mount is moved, it should no longer be expired
2609 		 * automatically */
2610 		list_del_init(&source_mnt->mnt_expire);
2611 	} else {
2612 		if (source_mnt->mnt_ns) {
2613 			/* move from anon - the caller will destroy */
2614 			emptied_ns = source_mnt->mnt_ns;
2615 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2616 				move_from_ns(p);
2617 		}
2618 	}
2619 
2620 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2621 	/*
2622 	 * Now the original copy is in the same state as the secondaries -
2623 	 * its root attached to mountpoint, but not hashed and all mounts
2624 	 * in it are either in our namespace or in no namespace at all.
2625 	 * Add the original to the list of copies and deal with the
2626 	 * rest of work for all of them uniformly.
2627 	 */
2628 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2629 
2630 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2631 		struct mount *q;
2632 		hlist_del_init(&child->mnt_hash);
2633 		/* Notice when we are propagating across user namespaces */
2634 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2635 			lock_mnt_tree(child);
2636 		q = __lookup_mnt(&child->mnt_parent->mnt,
2637 				 child->mnt_mountpoint);
2638 		commit_tree(child);
2639 		if (q) {
2640 			struct mount *r = topmost_overmount(child);
2641 			struct mountpoint *mp = root.mp;
2642 
2643 			if (unlikely(shorter) && child != source_mnt)
2644 				mp = shorter;
2645 			mnt_change_mountpoint(r, mp, q);
2646 		}
2647 	}
2648 	unpin_mountpoint(&root);
2649 	unlock_mount_hash();
2650 
2651 	return 0;
2652 
2653  out_cleanup_ids:
2654 	while (!hlist_empty(&tree_list)) {
2655 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2656 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2657 		umount_tree(child, UMOUNT_SYNC);
2658 	}
2659 	unlock_mount_hash();
2660 	cleanup_group_ids(source_mnt, NULL);
2661  out:
2662 	ns->pending_mounts = 0;
2663 
2664 	read_seqlock_excl(&mount_lock);
2665 	unpin_mountpoint(&root);
2666 	read_sequnlock_excl(&mount_lock);
2667 
2668 	return err;
2669 }
2670 
where_to_mount(const struct path * path,struct dentry ** dentry,bool beneath)2671 static inline struct mount *where_to_mount(const struct path *path,
2672 					   struct dentry **dentry,
2673 					   bool beneath)
2674 {
2675 	struct mount *m;
2676 
2677 	if (unlikely(beneath)) {
2678 		m = topmost_overmount(real_mount(path->mnt));
2679 		*dentry = m->mnt_mountpoint;
2680 		return m->mnt_parent;
2681 	}
2682 	m = __lookup_mnt(path->mnt, path->dentry);
2683 	if (unlikely(m)) {
2684 		m = topmost_overmount(m);
2685 		*dentry = m->mnt.mnt_root;
2686 		return m;
2687 	}
2688 	*dentry = path->dentry;
2689 	return real_mount(path->mnt);
2690 }
2691 
2692 /**
2693  * do_lock_mount - acquire environment for mounting
2694  * @path:	target path
2695  * @res:	context to set up
2696  * @beneath:	whether the intention is to mount beneath @path
2697  *
2698  * To mount something at given location, we need
2699  *	namespace_sem locked exclusive
2700  *	inode of dentry we are mounting on locked exclusive
2701  *	struct mountpoint for that dentry
2702  *	struct mount we are mounting on
2703  *
2704  * Results are stored in caller-supplied context (pinned_mountpoint);
2705  * on success we have res->parent and res->mp pointing to parent and
2706  * mountpoint respectively and res->node inserted into the ->m_list
2707  * of the mountpoint, making sure the mountpoint won't disappear.
2708  * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2709  * left NULL, res->node - empty.
2710  * In case of success do_lock_mount returns with locks acquired (in
2711  * proper order - inode lock nests outside of namespace_sem).
2712  *
2713  * Request to mount on overmounted location is treated as "mount on
2714  * top of whatever's overmounting it"; request to mount beneath
2715  * a location - "mount immediately beneath the topmost mount at that
2716  * place".
2717  *
2718  * In all cases the location must not have been unmounted and the
2719  * chosen mountpoint must be allowed to be mounted on.  For "beneath"
2720  * case we also require the location to be at the root of a mount
2721  * that has a parent (i.e. is not a root of some namespace).
2722  */
do_lock_mount(const struct path * path,struct pinned_mountpoint * res,bool beneath)2723 static void do_lock_mount(const struct path *path,
2724 			  struct pinned_mountpoint *res,
2725 			  bool beneath)
2726 {
2727 	int err;
2728 
2729 	if (unlikely(beneath) && !path_mounted(path)) {
2730 		res->parent = ERR_PTR(-EINVAL);
2731 		return;
2732 	}
2733 
2734 	do {
2735 		struct dentry *dentry, *d;
2736 		struct mount *m, *n;
2737 
2738 		scoped_guard(mount_locked_reader) {
2739 			m = where_to_mount(path, &dentry, beneath);
2740 			if (&m->mnt != path->mnt) {
2741 				mntget(&m->mnt);
2742 				dget(dentry);
2743 			}
2744 		}
2745 
2746 		inode_lock(dentry->d_inode);
2747 		namespace_lock();
2748 
2749 		// check if the chain of mounts (if any) has changed.
2750 		scoped_guard(mount_locked_reader)
2751 			n = where_to_mount(path, &d, beneath);
2752 
2753 		if (unlikely(n != m || dentry != d))
2754 			err = -EAGAIN;		// something moved, retry
2755 		else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2756 			err = -ENOENT;		// not to be mounted on
2757 		else if (beneath && &m->mnt == path->mnt && !m->overmount)
2758 			err = -EINVAL;
2759 		else
2760 			err = get_mountpoint(dentry, res);
2761 
2762 		if (unlikely(err)) {
2763 			res->parent = ERR_PTR(err);
2764 			namespace_unlock();
2765 			inode_unlock(dentry->d_inode);
2766 		} else {
2767 			res->parent = m;
2768 		}
2769 		/*
2770 		 * Drop the temporary references.  This is subtle - on success
2771 		 * we are doing that under namespace_sem, which would normally
2772 		 * be forbidden.  However, in that case we are guaranteed that
2773 		 * refcounts won't reach zero, since we know that path->mnt
2774 		 * is mounted and thus all mounts reachable from it are pinned
2775 		 * and stable, along with their mountpoints and roots.
2776 		 */
2777 		if (&m->mnt != path->mnt) {
2778 			dput(dentry);
2779 			mntput(&m->mnt);
2780 		}
2781 	} while (err == -EAGAIN);
2782 }
2783 
__unlock_mount(struct pinned_mountpoint * m)2784 static void __unlock_mount(struct pinned_mountpoint *m)
2785 {
2786 	inode_unlock(m->mp->m_dentry->d_inode);
2787 	read_seqlock_excl(&mount_lock);
2788 	unpin_mountpoint(m);
2789 	read_sequnlock_excl(&mount_lock);
2790 	namespace_unlock();
2791 }
2792 
unlock_mount(struct pinned_mountpoint * m)2793 static inline void unlock_mount(struct pinned_mountpoint *m)
2794 {
2795 	if (!IS_ERR(m->parent))
2796 		__unlock_mount(m);
2797 }
2798 
2799 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2800 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2801 	do_lock_mount((path), &mp, (beneath))
2802 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2803 #define LOCK_MOUNT_EXACT(mp, path) \
2804 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2805 	lock_mount_exact((path), &mp)
2806 
graft_tree(struct mount * mnt,const struct pinned_mountpoint * mp)2807 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2808 {
2809 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2810 		return -EINVAL;
2811 
2812 	if (d_is_dir(mp->mp->m_dentry) !=
2813 	      d_is_dir(mnt->mnt.mnt_root))
2814 		return -ENOTDIR;
2815 
2816 	return attach_recursive_mnt(mnt, mp);
2817 }
2818 
may_change_propagation(const struct mount * m)2819 static int may_change_propagation(const struct mount *m)
2820 {
2821         struct mnt_namespace *ns = m->mnt_ns;
2822 
2823 	 // it must be mounted in some namespace
2824 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2825 		 return -EINVAL;
2826 	 // and the caller must be admin in userns of that namespace
2827 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2828 		 return -EPERM;
2829 	 return 0;
2830 }
2831 
2832 /*
2833  * Sanity check the flags to change_mnt_propagation.
2834  */
2835 
flags_to_propagation_type(int ms_flags)2836 static int flags_to_propagation_type(int ms_flags)
2837 {
2838 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2839 
2840 	/* Fail if any non-propagation flags are set */
2841 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2842 		return 0;
2843 	/* Only one propagation flag should be set */
2844 	if (!is_power_of_2(type))
2845 		return 0;
2846 	return type;
2847 }
2848 
2849 /*
2850  * recursively change the type of the mountpoint.
2851  */
do_change_type(const struct path * path,int ms_flags)2852 static int do_change_type(const struct path *path, int ms_flags)
2853 {
2854 	struct mount *m;
2855 	struct mount *mnt = real_mount(path->mnt);
2856 	int recurse = ms_flags & MS_REC;
2857 	int type;
2858 	int err;
2859 
2860 	if (!path_mounted(path))
2861 		return -EINVAL;
2862 
2863 	type = flags_to_propagation_type(ms_flags);
2864 	if (!type)
2865 		return -EINVAL;
2866 
2867 	guard(namespace_excl)();
2868 
2869 	err = may_change_propagation(mnt);
2870 	if (err)
2871 		return err;
2872 
2873 	if (type == MS_SHARED) {
2874 		err = invent_group_ids(mnt, recurse);
2875 		if (err)
2876 			return err;
2877 	}
2878 
2879 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2880 		change_mnt_propagation(m, type);
2881 
2882 	return 0;
2883 }
2884 
2885 /* may_copy_tree() - check if a mount tree can be copied
2886  * @path: path to the mount tree to be copied
2887  *
2888  * This helper checks if the caller may copy the mount tree starting
2889  * from @path->mnt. The caller may copy the mount tree under the
2890  * following circumstances:
2891  *
2892  * (1) The caller is located in the mount namespace of the mount tree.
2893  *     This also implies that the mount does not belong to an anonymous
2894  *     mount namespace.
2895  * (2) The caller tries to copy an nfs mount referring to a mount
2896  *     namespace, i.e., the caller is trying to copy a mount namespace
2897  *     entry from nsfs.
2898  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2899  * (4) The caller is trying to copy a mount tree that belongs to an
2900  *     anonymous mount namespace.
2901  *
2902  *     For that to be safe, this helper enforces that the origin mount
2903  *     namespace the anonymous mount namespace was created from is the
2904  *     same as the caller's mount namespace by comparing the sequence
2905  *     numbers.
2906  *
2907  *     This is not strictly necessary. The current semantics of the new
2908  *     mount api enforce that the caller must be located in the same
2909  *     mount namespace as the mount tree it interacts with. Using the
2910  *     origin sequence number preserves these semantics even for
2911  *     anonymous mount namespaces. However, one could envision extending
2912  *     the api to directly operate across mount namespace if needed.
2913  *
2914  *     The ownership of a non-anonymous mount namespace such as the
2915  *     caller's cannot change.
2916  *     => We know that the caller's mount namespace is stable.
2917  *
2918  *     If the origin sequence number of the anonymous mount namespace is
2919  *     the same as the sequence number of the caller's mount namespace.
2920  *     => The owning namespaces are the same.
2921  *
2922  *     ==> The earlier capability check on the owning namespace of the
2923  *         caller's mount namespace ensures that the caller has the
2924  *         ability to copy the mount tree.
2925  *
2926  * Returns true if the mount tree can be copied, false otherwise.
2927  */
may_copy_tree(const struct path * path)2928 static inline bool may_copy_tree(const struct path *path)
2929 {
2930 	struct mount *mnt = real_mount(path->mnt);
2931 	const struct dentry_operations *d_op;
2932 
2933 	if (check_mnt(mnt))
2934 		return true;
2935 
2936 	d_op = path->dentry->d_op;
2937 	if (d_op == &ns_dentry_operations)
2938 		return true;
2939 
2940 	if (d_op == &pidfs_dentry_operations)
2941 		return true;
2942 
2943 	if (!is_mounted(path->mnt))
2944 		return false;
2945 
2946 	return check_anonymous_mnt(mnt);
2947 }
2948 
2949 
__do_loopback(const struct path * old_path,int recurse)2950 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2951 {
2952 	struct mount *old = real_mount(old_path->mnt);
2953 
2954 	if (IS_MNT_UNBINDABLE(old))
2955 		return ERR_PTR(-EINVAL);
2956 
2957 	if (!may_copy_tree(old_path))
2958 		return ERR_PTR(-EINVAL);
2959 
2960 	if (!recurse && __has_locked_children(old, old_path->dentry))
2961 		return ERR_PTR(-EINVAL);
2962 
2963 	if (recurse)
2964 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2965 	else
2966 		return clone_mnt(old, old_path->dentry, 0);
2967 }
2968 
2969 /*
2970  * do loopback mount.
2971  */
do_loopback(const struct path * path,const char * old_name,int recurse)2972 static int do_loopback(const struct path *path, const char *old_name,
2973 		       int recurse)
2974 {
2975 	struct path old_path __free(path_put) = {};
2976 	struct mount *mnt = NULL;
2977 	int err;
2978 	if (!old_name || !*old_name)
2979 		return -EINVAL;
2980 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2981 	if (err)
2982 		return err;
2983 
2984 	if (mnt_ns_loop(old_path.dentry))
2985 		return -EINVAL;
2986 
2987 	LOCK_MOUNT(mp, path);
2988 	if (IS_ERR(mp.parent))
2989 		return PTR_ERR(mp.parent);
2990 
2991 	if (!check_mnt(mp.parent))
2992 		return -EINVAL;
2993 
2994 	mnt = __do_loopback(&old_path, recurse);
2995 	if (IS_ERR(mnt))
2996 		return PTR_ERR(mnt);
2997 
2998 	err = graft_tree(mnt, &mp);
2999 	if (err) {
3000 		lock_mount_hash();
3001 		umount_tree(mnt, UMOUNT_SYNC);
3002 		unlock_mount_hash();
3003 	}
3004 	return err;
3005 }
3006 
get_detached_copy(const struct path * path,bool recursive)3007 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3008 {
3009 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3010 	struct user_namespace *user_ns = mnt_ns->user_ns;
3011 	struct mount *mnt, *p;
3012 
3013 	ns = alloc_mnt_ns(user_ns, true);
3014 	if (IS_ERR(ns))
3015 		return ns;
3016 
3017 	guard(namespace_excl)();
3018 
3019 	/*
3020 	 * Record the sequence number of the source mount namespace.
3021 	 * This needs to hold namespace_sem to ensure that the mount
3022 	 * doesn't get attached.
3023 	 */
3024 	if (is_mounted(path->mnt)) {
3025 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3026 		if (is_anon_ns(src_mnt_ns))
3027 			ns->seq_origin = src_mnt_ns->seq_origin;
3028 		else
3029 			ns->seq_origin = src_mnt_ns->ns.ns_id;
3030 	}
3031 
3032 	mnt = __do_loopback(path, recursive);
3033 	if (IS_ERR(mnt)) {
3034 		emptied_ns = ns;
3035 		return ERR_CAST(mnt);
3036 	}
3037 
3038 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3039 		mnt_add_to_ns(ns, p);
3040 		ns->nr_mounts++;
3041 	}
3042 	ns->root = mnt;
3043 	return ns;
3044 }
3045 
open_detached_copy(struct path * path,bool recursive)3046 static struct file *open_detached_copy(struct path *path, bool recursive)
3047 {
3048 	struct mnt_namespace *ns = get_detached_copy(path, recursive);
3049 	struct file *file;
3050 
3051 	if (IS_ERR(ns))
3052 		return ERR_CAST(ns);
3053 
3054 	mntput(path->mnt);
3055 	path->mnt = mntget(&ns->root->mnt);
3056 	file = dentry_open(path, O_PATH, current_cred());
3057 	if (IS_ERR(file))
3058 		dissolve_on_fput(path->mnt);
3059 	else
3060 		file->f_mode |= FMODE_NEED_UNMOUNT;
3061 	return file;
3062 }
3063 
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3064 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3065 {
3066 	int ret;
3067 	struct path path __free(path_put) = {};
3068 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3069 	bool detached = flags & OPEN_TREE_CLONE;
3070 
3071 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3072 
3073 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3074 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3075 		      OPEN_TREE_CLOEXEC))
3076 		return ERR_PTR(-EINVAL);
3077 
3078 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3079 		return ERR_PTR(-EINVAL);
3080 
3081 	if (flags & AT_NO_AUTOMOUNT)
3082 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3083 	if (flags & AT_SYMLINK_NOFOLLOW)
3084 		lookup_flags &= ~LOOKUP_FOLLOW;
3085 	if (flags & AT_EMPTY_PATH)
3086 		lookup_flags |= LOOKUP_EMPTY;
3087 
3088 	if (detached && !may_mount())
3089 		return ERR_PTR(-EPERM);
3090 
3091 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3092 	if (unlikely(ret))
3093 		return ERR_PTR(ret);
3094 
3095 	if (detached)
3096 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3097 
3098 	return dentry_open(&path, O_PATH, current_cred());
3099 }
3100 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3101 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3102 {
3103 	int fd;
3104 	struct file *file __free(fput) = NULL;
3105 
3106 	file = vfs_open_tree(dfd, filename, flags);
3107 	if (IS_ERR(file))
3108 		return PTR_ERR(file);
3109 
3110 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3111 	if (fd < 0)
3112 		return fd;
3113 
3114 	fd_install(fd, no_free_ptr(file));
3115 	return fd;
3116 }
3117 
3118 /*
3119  * Don't allow locked mount flags to be cleared.
3120  *
3121  * No locks need to be held here while testing the various MNT_LOCK
3122  * flags because those flags can never be cleared once they are set.
3123  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3124 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3125 {
3126 	unsigned int fl = mnt->mnt.mnt_flags;
3127 
3128 	if ((fl & MNT_LOCK_READONLY) &&
3129 	    !(mnt_flags & MNT_READONLY))
3130 		return false;
3131 
3132 	if ((fl & MNT_LOCK_NODEV) &&
3133 	    !(mnt_flags & MNT_NODEV))
3134 		return false;
3135 
3136 	if ((fl & MNT_LOCK_NOSUID) &&
3137 	    !(mnt_flags & MNT_NOSUID))
3138 		return false;
3139 
3140 	if ((fl & MNT_LOCK_NOEXEC) &&
3141 	    !(mnt_flags & MNT_NOEXEC))
3142 		return false;
3143 
3144 	if ((fl & MNT_LOCK_ATIME) &&
3145 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3146 		return false;
3147 
3148 	return true;
3149 }
3150 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3151 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3152 {
3153 	bool readonly_request = (mnt_flags & MNT_READONLY);
3154 
3155 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3156 		return 0;
3157 
3158 	if (readonly_request)
3159 		return mnt_make_readonly(mnt);
3160 
3161 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3162 	return 0;
3163 }
3164 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3165 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3166 {
3167 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3168 	mnt->mnt.mnt_flags = mnt_flags;
3169 	touch_mnt_namespace(mnt->mnt_ns);
3170 }
3171 
mnt_warn_timestamp_expiry(const struct path * mountpoint,struct vfsmount * mnt)3172 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3173 				      struct vfsmount *mnt)
3174 {
3175 	struct super_block *sb = mnt->mnt_sb;
3176 
3177 	if (!__mnt_is_readonly(mnt) &&
3178 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3179 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3180 		char *buf, *mntpath;
3181 
3182 		buf = (char *)__get_free_page(GFP_KERNEL);
3183 		if (buf)
3184 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3185 		else
3186 			mntpath = ERR_PTR(-ENOMEM);
3187 		if (IS_ERR(mntpath))
3188 			mntpath = "(unknown)";
3189 
3190 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3191 			sb->s_type->name,
3192 			is_mounted(mnt) ? "remounted" : "mounted",
3193 			mntpath, &sb->s_time_max,
3194 			(unsigned long long)sb->s_time_max);
3195 
3196 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3197 		if (buf)
3198 			free_page((unsigned long)buf);
3199 	}
3200 }
3201 
3202 /*
3203  * Handle reconfiguration of the mountpoint only without alteration of the
3204  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3205  * to mount(2).
3206  */
do_reconfigure_mnt(const struct path * path,unsigned int mnt_flags)3207 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3208 {
3209 	struct super_block *sb = path->mnt->mnt_sb;
3210 	struct mount *mnt = real_mount(path->mnt);
3211 	int ret;
3212 
3213 	if (!check_mnt(mnt))
3214 		return -EINVAL;
3215 
3216 	if (!path_mounted(path))
3217 		return -EINVAL;
3218 
3219 	if (!can_change_locked_flags(mnt, mnt_flags))
3220 		return -EPERM;
3221 
3222 	/*
3223 	 * We're only checking whether the superblock is read-only not
3224 	 * changing it, so only take down_read(&sb->s_umount).
3225 	 */
3226 	down_read(&sb->s_umount);
3227 	lock_mount_hash();
3228 	ret = change_mount_ro_state(mnt, mnt_flags);
3229 	if (ret == 0)
3230 		set_mount_attributes(mnt, mnt_flags);
3231 	unlock_mount_hash();
3232 	up_read(&sb->s_umount);
3233 
3234 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3235 
3236 	return ret;
3237 }
3238 
3239 /*
3240  * change filesystem flags. dir should be a physical root of filesystem.
3241  * If you've mounted a non-root directory somewhere and want to do remount
3242  * on it - tough luck.
3243  */
do_remount(const struct path * path,int sb_flags,int mnt_flags,void * data)3244 static int do_remount(const struct path *path, int sb_flags,
3245 		      int mnt_flags, void *data)
3246 {
3247 	int err;
3248 	struct super_block *sb = path->mnt->mnt_sb;
3249 	struct mount *mnt = real_mount(path->mnt);
3250 	struct fs_context *fc;
3251 
3252 	if (!check_mnt(mnt))
3253 		return -EINVAL;
3254 
3255 	if (!path_mounted(path))
3256 		return -EINVAL;
3257 
3258 	if (!can_change_locked_flags(mnt, mnt_flags))
3259 		return -EPERM;
3260 
3261 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3262 	if (IS_ERR(fc))
3263 		return PTR_ERR(fc);
3264 
3265 	/*
3266 	 * Indicate to the filesystem that the remount request is coming
3267 	 * from the legacy mount system call.
3268 	 */
3269 	fc->oldapi = true;
3270 
3271 	err = parse_monolithic_mount_data(fc, data);
3272 	if (!err) {
3273 		down_write(&sb->s_umount);
3274 		err = -EPERM;
3275 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3276 			err = reconfigure_super(fc);
3277 			if (!err) {
3278 				lock_mount_hash();
3279 				set_mount_attributes(mnt, mnt_flags);
3280 				unlock_mount_hash();
3281 			}
3282 		}
3283 		up_write(&sb->s_umount);
3284 	}
3285 
3286 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3287 
3288 	put_fs_context(fc);
3289 	return err;
3290 }
3291 
tree_contains_unbindable(struct mount * mnt)3292 static inline int tree_contains_unbindable(struct mount *mnt)
3293 {
3294 	struct mount *p;
3295 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3296 		if (IS_MNT_UNBINDABLE(p))
3297 			return 1;
3298 	}
3299 	return 0;
3300 }
3301 
do_set_group(const struct path * from_path,const struct path * to_path)3302 static int do_set_group(const struct path *from_path, const struct path *to_path)
3303 {
3304 	struct mount *from = real_mount(from_path->mnt);
3305 	struct mount *to = real_mount(to_path->mnt);
3306 	int err;
3307 
3308 	guard(namespace_excl)();
3309 
3310 	err = may_change_propagation(from);
3311 	if (err)
3312 		return err;
3313 	err = may_change_propagation(to);
3314 	if (err)
3315 		return err;
3316 
3317 	/* To and From paths should be mount roots */
3318 	if (!path_mounted(from_path))
3319 		return -EINVAL;
3320 	if (!path_mounted(to_path))
3321 		return -EINVAL;
3322 
3323 	/* Setting sharing groups is only allowed across same superblock */
3324 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3325 		return -EINVAL;
3326 
3327 	/* From mount root should be wider than To mount root */
3328 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3329 		return -EINVAL;
3330 
3331 	/* From mount should not have locked children in place of To's root */
3332 	if (__has_locked_children(from, to->mnt.mnt_root))
3333 		return -EINVAL;
3334 
3335 	/* Setting sharing groups is only allowed on private mounts */
3336 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3337 		return -EINVAL;
3338 
3339 	/* From should not be private */
3340 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3341 		return -EINVAL;
3342 
3343 	if (IS_MNT_SLAVE(from)) {
3344 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3345 		to->mnt_master = from->mnt_master;
3346 	}
3347 
3348 	if (IS_MNT_SHARED(from)) {
3349 		to->mnt_group_id = from->mnt_group_id;
3350 		list_add(&to->mnt_share, &from->mnt_share);
3351 		set_mnt_shared(to);
3352 	}
3353 	return 0;
3354 }
3355 
3356 /**
3357  * path_overmounted - check if path is overmounted
3358  * @path: path to check
3359  *
3360  * Check if path is overmounted, i.e., if there's a mount on top of
3361  * @path->mnt with @path->dentry as mountpoint.
3362  *
3363  * Context: namespace_sem must be held at least shared.
3364  * MUST NOT be called under lock_mount_hash() (there one should just
3365  * call __lookup_mnt() and check if it returns NULL).
3366  * Return: If path is overmounted true is returned, false if not.
3367  */
path_overmounted(const struct path * path)3368 static inline bool path_overmounted(const struct path *path)
3369 {
3370 	unsigned seq = read_seqbegin(&mount_lock);
3371 	bool no_child;
3372 
3373 	rcu_read_lock();
3374 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3375 	rcu_read_unlock();
3376 	if (need_seqretry(&mount_lock, seq)) {
3377 		read_seqlock_excl(&mount_lock);
3378 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3379 		read_sequnlock_excl(&mount_lock);
3380 	}
3381 	return unlikely(!no_child);
3382 }
3383 
3384 /*
3385  * Check if there is a possibly empty chain of descent from p1 to p2.
3386  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3387  */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3388 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3389 {
3390 	while (p2 != p1 && mnt_has_parent(p2))
3391 		p2 = p2->mnt_parent;
3392 	return p2 == p1;
3393 }
3394 
3395 /**
3396  * can_move_mount_beneath - check that we can mount beneath the top mount
3397  * @mnt_from: mount we are trying to move
3398  * @mnt_to:   mount under which to mount
3399  * @mp:   mountpoint of @mnt_to
3400  *
3401  * - Make sure that nothing can be mounted beneath the caller's current
3402  *   root or the rootfs of the namespace.
3403  * - Make sure that the caller can unmount the topmost mount ensuring
3404  *   that the caller could reveal the underlying mountpoint.
3405  * - Ensure that nothing has been mounted on top of @mnt_from before we
3406  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3407  * - Prevent mounting beneath a mount if the propagation relationship
3408  *   between the source mount, parent mount, and top mount would lead to
3409  *   nonsensical mount trees.
3410  *
3411  * Context: This function expects namespace_lock() to be held.
3412  * Return: On success 0, and on error a negative error code is returned.
3413  */
can_move_mount_beneath(const struct mount * mnt_from,const struct mount * mnt_to,const struct mountpoint * mp)3414 static int can_move_mount_beneath(const struct mount *mnt_from,
3415 				  const struct mount *mnt_to,
3416 				  const struct mountpoint *mp)
3417 {
3418 	struct mount *parent_mnt_to = mnt_to->mnt_parent;
3419 
3420 	if (IS_MNT_LOCKED(mnt_to))
3421 		return -EINVAL;
3422 
3423 	/* Avoid creating shadow mounts during mount propagation. */
3424 	if (mnt_from->overmount)
3425 		return -EINVAL;
3426 
3427 	/*
3428 	 * Mounting beneath the rootfs only makes sense when the
3429 	 * semantics of pivot_root(".", ".") are used.
3430 	 */
3431 	if (&mnt_to->mnt == current->fs->root.mnt)
3432 		return -EINVAL;
3433 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3434 		return -EINVAL;
3435 
3436 	if (mount_is_ancestor(mnt_to, mnt_from))
3437 		return -EINVAL;
3438 
3439 	/*
3440 	 * If the parent mount propagates to the child mount this would
3441 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3442 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3443 	 * defeats the whole purpose of mounting beneath another mount.
3444 	 */
3445 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3446 		return -EINVAL;
3447 
3448 	/*
3449 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3450 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3451 	 * Afterwards @mnt_from would be mounted on top of
3452 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3453 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3454 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3455 	 * remounted on top of @c. Afterwards, @mnt_from would be
3456 	 * covered by a copy @c of @mnt_from and @c would be covered by
3457 	 * @mnt_from itself. This defeats the whole purpose of mounting
3458 	 * @mnt_from beneath @mnt_to.
3459 	 */
3460 	if (check_mnt(mnt_from) &&
3461 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3462 		return -EINVAL;
3463 
3464 	return 0;
3465 }
3466 
3467 /* may_use_mount() - check if a mount tree can be used
3468  * @mnt: vfsmount to be used
3469  *
3470  * This helper checks if the caller may use the mount tree starting
3471  * from @path->mnt. The caller may use the mount tree under the
3472  * following circumstances:
3473  *
3474  * (1) The caller is located in the mount namespace of the mount tree.
3475  *     This also implies that the mount does not belong to an anonymous
3476  *     mount namespace.
3477  * (2) The caller is trying to use a mount tree that belongs to an
3478  *     anonymous mount namespace.
3479  *
3480  *     For that to be safe, this helper enforces that the origin mount
3481  *     namespace the anonymous mount namespace was created from is the
3482  *     same as the caller's mount namespace by comparing the sequence
3483  *     numbers.
3484  *
3485  *     The ownership of a non-anonymous mount namespace such as the
3486  *     caller's cannot change.
3487  *     => We know that the caller's mount namespace is stable.
3488  *
3489  *     If the origin sequence number of the anonymous mount namespace is
3490  *     the same as the sequence number of the caller's mount namespace.
3491  *     => The owning namespaces are the same.
3492  *
3493  *     ==> The earlier capability check on the owning namespace of the
3494  *         caller's mount namespace ensures that the caller has the
3495  *         ability to use the mount tree.
3496  *
3497  * Returns true if the mount tree can be used, false otherwise.
3498  */
may_use_mount(struct mount * mnt)3499 static inline bool may_use_mount(struct mount *mnt)
3500 {
3501 	if (check_mnt(mnt))
3502 		return true;
3503 
3504 	/*
3505 	 * Make sure that noone unmounted the target path or somehow
3506 	 * managed to get their hands on something purely kernel
3507 	 * internal.
3508 	 */
3509 	if (!is_mounted(&mnt->mnt))
3510 		return false;
3511 
3512 	return check_anonymous_mnt(mnt);
3513 }
3514 
do_move_mount(const struct path * old_path,const struct path * new_path,enum mnt_tree_flags_t flags)3515 static int do_move_mount(const struct path *old_path,
3516 			 const struct path *new_path,
3517 			 enum mnt_tree_flags_t flags)
3518 {
3519 	struct mount *old = real_mount(old_path->mnt);
3520 	int err;
3521 	bool beneath = flags & MNT_TREE_BENEATH;
3522 
3523 	if (!path_mounted(old_path))
3524 		return -EINVAL;
3525 
3526 	if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3527 		return -EINVAL;
3528 
3529 	LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3530 	if (IS_ERR(mp.parent))
3531 		return PTR_ERR(mp.parent);
3532 
3533 	if (check_mnt(old)) {
3534 		/* if the source is in our namespace... */
3535 		/* ... it should be detachable from parent */
3536 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3537 			return -EINVAL;
3538 		/* ... which should not be shared */
3539 		if (IS_MNT_SHARED(old->mnt_parent))
3540 			return -EINVAL;
3541 		/* ... and the target should be in our namespace */
3542 		if (!check_mnt(mp.parent))
3543 			return -EINVAL;
3544 	} else {
3545 		/*
3546 		 * otherwise the source must be the root of some anon namespace.
3547 		 */
3548 		if (!anon_ns_root(old))
3549 			return -EINVAL;
3550 		/*
3551 		 * Bail out early if the target is within the same namespace -
3552 		 * subsequent checks would've rejected that, but they lose
3553 		 * some corner cases if we check it early.
3554 		 */
3555 		if (old->mnt_ns == mp.parent->mnt_ns)
3556 			return -EINVAL;
3557 		/*
3558 		 * Target should be either in our namespace or in an acceptable
3559 		 * anon namespace, sensu check_anonymous_mnt().
3560 		 */
3561 		if (!may_use_mount(mp.parent))
3562 			return -EINVAL;
3563 	}
3564 
3565 	if (beneath) {
3566 		struct mount *over = real_mount(new_path->mnt);
3567 
3568 		if (mp.parent != over->mnt_parent)
3569 			over = mp.parent->overmount;
3570 		err = can_move_mount_beneath(old, over, mp.mp);
3571 		if (err)
3572 			return err;
3573 	}
3574 
3575 	/*
3576 	 * Don't move a mount tree containing unbindable mounts to a destination
3577 	 * mount which is shared.
3578 	 */
3579 	if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3580 		return -EINVAL;
3581 	if (!check_for_nsfs_mounts(old))
3582 		return -ELOOP;
3583 	if (mount_is_ancestor(old, mp.parent))
3584 		return -ELOOP;
3585 
3586 	return attach_recursive_mnt(old, &mp);
3587 }
3588 
do_move_mount_old(const struct path * path,const char * old_name)3589 static int do_move_mount_old(const struct path *path, const char *old_name)
3590 {
3591 	struct path old_path __free(path_put) = {};
3592 	int err;
3593 
3594 	if (!old_name || !*old_name)
3595 		return -EINVAL;
3596 
3597 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3598 	if (err)
3599 		return err;
3600 
3601 	return do_move_mount(&old_path, path, 0);
3602 }
3603 
3604 /*
3605  * add a mount into a namespace's mount tree
3606  */
do_add_mount(struct mount * newmnt,const struct pinned_mountpoint * mp,int mnt_flags)3607 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3608 			int mnt_flags)
3609 {
3610 	struct mount *parent = mp->parent;
3611 
3612 	if (IS_ERR(parent))
3613 		return PTR_ERR(parent);
3614 
3615 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3616 
3617 	if (unlikely(!check_mnt(parent))) {
3618 		/* that's acceptable only for automounts done in private ns */
3619 		if (!(mnt_flags & MNT_SHRINKABLE))
3620 			return -EINVAL;
3621 		/* ... and for those we'd better have mountpoint still alive */
3622 		if (!parent->mnt_ns)
3623 			return -EINVAL;
3624 	}
3625 
3626 	/* Refuse the same filesystem on the same mount point */
3627 	if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3628 	    parent->mnt.mnt_root == mp->mp->m_dentry)
3629 		return -EBUSY;
3630 
3631 	if (d_is_symlink(newmnt->mnt.mnt_root))
3632 		return -EINVAL;
3633 
3634 	newmnt->mnt.mnt_flags = mnt_flags;
3635 	return graft_tree(newmnt, mp);
3636 }
3637 
3638 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3639 
3640 /*
3641  * Create a new mount using a superblock configuration and request it
3642  * be added to the namespace tree.
3643  */
do_new_mount_fc(struct fs_context * fc,const struct path * mountpoint,unsigned int mnt_flags)3644 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3645 			   unsigned int mnt_flags)
3646 {
3647 	struct super_block *sb;
3648 	struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3649 	int error;
3650 
3651 	if (IS_ERR(mnt))
3652 		return PTR_ERR(mnt);
3653 
3654 	sb = fc->root->d_sb;
3655 	error = security_sb_kern_mount(sb);
3656 	if (unlikely(error))
3657 		return error;
3658 
3659 	if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3660 		errorfcp(fc, "VFS", "Mount too revealing");
3661 		return -EPERM;
3662 	}
3663 
3664 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3665 
3666 	LOCK_MOUNT(mp, mountpoint);
3667 	error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3668 	if (!error)
3669 		retain_and_null_ptr(mnt); // consumed on success
3670 	return error;
3671 }
3672 
3673 /*
3674  * create a new mount for userspace and request it to be added into the
3675  * namespace's tree
3676  */
do_new_mount(const struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3677 static int do_new_mount(const struct path *path, const char *fstype,
3678 			int sb_flags, int mnt_flags,
3679 			const char *name, void *data)
3680 {
3681 	struct file_system_type *type;
3682 	struct fs_context *fc;
3683 	const char *subtype = NULL;
3684 	int err = 0;
3685 
3686 	if (!fstype)
3687 		return -EINVAL;
3688 
3689 	type = get_fs_type(fstype);
3690 	if (!type)
3691 		return -ENODEV;
3692 
3693 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3694 		subtype = strchr(fstype, '.');
3695 		if (subtype) {
3696 			subtype++;
3697 			if (!*subtype) {
3698 				put_filesystem(type);
3699 				return -EINVAL;
3700 			}
3701 		}
3702 	}
3703 
3704 	fc = fs_context_for_mount(type, sb_flags);
3705 	put_filesystem(type);
3706 	if (IS_ERR(fc))
3707 		return PTR_ERR(fc);
3708 
3709 	/*
3710 	 * Indicate to the filesystem that the mount request is coming
3711 	 * from the legacy mount system call.
3712 	 */
3713 	fc->oldapi = true;
3714 
3715 	if (subtype)
3716 		err = vfs_parse_fs_string(fc, "subtype", subtype);
3717 	if (!err && name)
3718 		err = vfs_parse_fs_string(fc, "source", name);
3719 	if (!err)
3720 		err = parse_monolithic_mount_data(fc, data);
3721 	if (!err && !mount_capable(fc))
3722 		err = -EPERM;
3723 	if (!err)
3724 		err = do_new_mount_fc(fc, path, mnt_flags);
3725 
3726 	put_fs_context(fc);
3727 	return err;
3728 }
3729 
lock_mount_exact(const struct path * path,struct pinned_mountpoint * mp)3730 static void lock_mount_exact(const struct path *path,
3731 			     struct pinned_mountpoint *mp)
3732 {
3733 	struct dentry *dentry = path->dentry;
3734 	int err;
3735 
3736 	inode_lock(dentry->d_inode);
3737 	namespace_lock();
3738 	if (unlikely(cant_mount(dentry)))
3739 		err = -ENOENT;
3740 	else if (path_overmounted(path))
3741 		err = -EBUSY;
3742 	else
3743 		err = get_mountpoint(dentry, mp);
3744 	if (unlikely(err)) {
3745 		namespace_unlock();
3746 		inode_unlock(dentry->d_inode);
3747 		mp->parent = ERR_PTR(err);
3748 	} else {
3749 		mp->parent = real_mount(path->mnt);
3750 	}
3751 }
3752 
finish_automount(struct vfsmount * __m,const struct path * path)3753 int finish_automount(struct vfsmount *__m, const struct path *path)
3754 {
3755 	struct vfsmount *m __free(mntput) = __m;
3756 	struct mount *mnt;
3757 	int err;
3758 
3759 	if (!m)
3760 		return 0;
3761 	if (IS_ERR(m))
3762 		return PTR_ERR(m);
3763 
3764 	mnt = real_mount(m);
3765 
3766 	if (m->mnt_root == path->dentry)
3767 		return -ELOOP;
3768 
3769 	/*
3770 	 * we don't want to use LOCK_MOUNT() - in this case finding something
3771 	 * that overmounts our mountpoint to be means "quitely drop what we've
3772 	 * got", not "try to mount it on top".
3773 	 */
3774 	LOCK_MOUNT_EXACT(mp, path);
3775 	if (mp.parent == ERR_PTR(-EBUSY))
3776 		return 0;
3777 
3778 	err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3779 	if (likely(!err))
3780 		retain_and_null_ptr(m);
3781 	return err;
3782 }
3783 
3784 /**
3785  * mnt_set_expiry - Put a mount on an expiration list
3786  * @mnt: The mount to list.
3787  * @expiry_list: The list to add the mount to.
3788  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3789 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3790 {
3791 	guard(mount_locked_reader)();
3792 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3793 }
3794 EXPORT_SYMBOL(mnt_set_expiry);
3795 
3796 /*
3797  * process a list of expirable mountpoints with the intent of discarding any
3798  * mountpoints that aren't in use and haven't been touched since last we came
3799  * here
3800  */
mark_mounts_for_expiry(struct list_head * mounts)3801 void mark_mounts_for_expiry(struct list_head *mounts)
3802 {
3803 	struct mount *mnt, *next;
3804 	LIST_HEAD(graveyard);
3805 
3806 	if (list_empty(mounts))
3807 		return;
3808 
3809 	guard(namespace_excl)();
3810 	guard(mount_writer)();
3811 
3812 	/* extract from the expiration list every vfsmount that matches the
3813 	 * following criteria:
3814 	 * - already mounted
3815 	 * - only referenced by its parent vfsmount
3816 	 * - still marked for expiry (marked on the last call here; marks are
3817 	 *   cleared by mntput())
3818 	 */
3819 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3820 		if (!is_mounted(&mnt->mnt))
3821 			continue;
3822 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3823 			propagate_mount_busy(mnt, 1))
3824 			continue;
3825 		list_move(&mnt->mnt_expire, &graveyard);
3826 	}
3827 	while (!list_empty(&graveyard)) {
3828 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3829 		touch_mnt_namespace(mnt->mnt_ns);
3830 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3831 	}
3832 }
3833 
3834 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3835 
3836 /*
3837  * Ripoff of 'select_parent()'
3838  *
3839  * search the list of submounts for a given mountpoint, and move any
3840  * shrinkable submounts to the 'graveyard' list.
3841  */
select_submounts(struct mount * parent,struct list_head * graveyard)3842 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3843 {
3844 	struct mount *this_parent = parent;
3845 	struct list_head *next;
3846 	int found = 0;
3847 
3848 repeat:
3849 	next = this_parent->mnt_mounts.next;
3850 resume:
3851 	while (next != &this_parent->mnt_mounts) {
3852 		struct list_head *tmp = next;
3853 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3854 
3855 		next = tmp->next;
3856 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3857 			continue;
3858 		/*
3859 		 * Descend a level if the d_mounts list is non-empty.
3860 		 */
3861 		if (!list_empty(&mnt->mnt_mounts)) {
3862 			this_parent = mnt;
3863 			goto repeat;
3864 		}
3865 
3866 		if (!propagate_mount_busy(mnt, 1)) {
3867 			list_move_tail(&mnt->mnt_expire, graveyard);
3868 			found++;
3869 		}
3870 	}
3871 	/*
3872 	 * All done at this level ... ascend and resume the search
3873 	 */
3874 	if (this_parent != parent) {
3875 		next = this_parent->mnt_child.next;
3876 		this_parent = this_parent->mnt_parent;
3877 		goto resume;
3878 	}
3879 	return found;
3880 }
3881 
3882 /*
3883  * process a list of expirable mountpoints with the intent of discarding any
3884  * submounts of a specific parent mountpoint
3885  *
3886  * mount_lock must be held for write
3887  */
shrink_submounts(struct mount * mnt)3888 static void shrink_submounts(struct mount *mnt)
3889 {
3890 	LIST_HEAD(graveyard);
3891 	struct mount *m;
3892 
3893 	/* extract submounts of 'mountpoint' from the expiration list */
3894 	while (select_submounts(mnt, &graveyard)) {
3895 		while (!list_empty(&graveyard)) {
3896 			m = list_first_entry(&graveyard, struct mount,
3897 						mnt_expire);
3898 			touch_mnt_namespace(m->mnt_ns);
3899 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3900 		}
3901 	}
3902 }
3903 
copy_mount_options(const void __user * data)3904 static void *copy_mount_options(const void __user * data)
3905 {
3906 	char *copy;
3907 	unsigned left, offset;
3908 
3909 	if (!data)
3910 		return NULL;
3911 
3912 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3913 	if (!copy)
3914 		return ERR_PTR(-ENOMEM);
3915 
3916 	left = copy_from_user(copy, data, PAGE_SIZE);
3917 
3918 	/*
3919 	 * Not all architectures have an exact copy_from_user(). Resort to
3920 	 * byte at a time.
3921 	 */
3922 	offset = PAGE_SIZE - left;
3923 	while (left) {
3924 		char c;
3925 		if (get_user(c, (const char __user *)data + offset))
3926 			break;
3927 		copy[offset] = c;
3928 		left--;
3929 		offset++;
3930 	}
3931 
3932 	if (left == PAGE_SIZE) {
3933 		kfree(copy);
3934 		return ERR_PTR(-EFAULT);
3935 	}
3936 
3937 	return copy;
3938 }
3939 
copy_mount_string(const void __user * data)3940 static char *copy_mount_string(const void __user *data)
3941 {
3942 	return data ? strndup_user(data, PATH_MAX) : NULL;
3943 }
3944 
3945 /*
3946  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3947  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3948  *
3949  * data is a (void *) that can point to any structure up to
3950  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3951  * information (or be NULL).
3952  *
3953  * Pre-0.97 versions of mount() didn't have a flags word.
3954  * When the flags word was introduced its top half was required
3955  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3956  * Therefore, if this magic number is present, it carries no information
3957  * and must be discarded.
3958  */
path_mount(const char * dev_name,const struct path * path,const char * type_page,unsigned long flags,void * data_page)3959 int path_mount(const char *dev_name, const struct path *path,
3960 		const char *type_page, unsigned long flags, void *data_page)
3961 {
3962 	unsigned int mnt_flags = 0, sb_flags;
3963 	int ret;
3964 
3965 	/* Discard magic */
3966 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3967 		flags &= ~MS_MGC_MSK;
3968 
3969 	/* Basic sanity checks */
3970 	if (data_page)
3971 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3972 
3973 	if (flags & MS_NOUSER)
3974 		return -EINVAL;
3975 
3976 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3977 	if (ret)
3978 		return ret;
3979 	if (!may_mount())
3980 		return -EPERM;
3981 	if (flags & SB_MANDLOCK)
3982 		warn_mandlock();
3983 
3984 	/* Default to relatime unless overriden */
3985 	if (!(flags & MS_NOATIME))
3986 		mnt_flags |= MNT_RELATIME;
3987 
3988 	/* Separate the per-mountpoint flags */
3989 	if (flags & MS_NOSUID)
3990 		mnt_flags |= MNT_NOSUID;
3991 	if (flags & MS_NODEV)
3992 		mnt_flags |= MNT_NODEV;
3993 	if (flags & MS_NOEXEC)
3994 		mnt_flags |= MNT_NOEXEC;
3995 	if (flags & MS_NOATIME)
3996 		mnt_flags |= MNT_NOATIME;
3997 	if (flags & MS_NODIRATIME)
3998 		mnt_flags |= MNT_NODIRATIME;
3999 	if (flags & MS_STRICTATIME)
4000 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4001 	if (flags & MS_RDONLY)
4002 		mnt_flags |= MNT_READONLY;
4003 	if (flags & MS_NOSYMFOLLOW)
4004 		mnt_flags |= MNT_NOSYMFOLLOW;
4005 
4006 	/* The default atime for remount is preservation */
4007 	if ((flags & MS_REMOUNT) &&
4008 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4009 		       MS_STRICTATIME)) == 0)) {
4010 		mnt_flags &= ~MNT_ATIME_MASK;
4011 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4012 	}
4013 
4014 	sb_flags = flags & (SB_RDONLY |
4015 			    SB_SYNCHRONOUS |
4016 			    SB_MANDLOCK |
4017 			    SB_DIRSYNC |
4018 			    SB_SILENT |
4019 			    SB_POSIXACL |
4020 			    SB_LAZYTIME |
4021 			    SB_I_VERSION);
4022 
4023 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4024 		return do_reconfigure_mnt(path, mnt_flags);
4025 	if (flags & MS_REMOUNT)
4026 		return do_remount(path, sb_flags, mnt_flags, data_page);
4027 	if (flags & MS_BIND)
4028 		return do_loopback(path, dev_name, flags & MS_REC);
4029 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4030 		return do_change_type(path, flags);
4031 	if (flags & MS_MOVE)
4032 		return do_move_mount_old(path, dev_name);
4033 
4034 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4035 			    data_page);
4036 }
4037 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4038 int do_mount(const char *dev_name, const char __user *dir_name,
4039 		const char *type_page, unsigned long flags, void *data_page)
4040 {
4041 	struct path path __free(path_put) = {};
4042 	int ret;
4043 
4044 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4045 	if (ret)
4046 		return ret;
4047 	return path_mount(dev_name, &path, type_page, flags, data_page);
4048 }
4049 
inc_mnt_namespaces(struct user_namespace * ns)4050 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4051 {
4052 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4053 }
4054 
dec_mnt_namespaces(struct ucounts * ucounts)4055 static void dec_mnt_namespaces(struct ucounts *ucounts)
4056 {
4057 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4058 }
4059 
free_mnt_ns(struct mnt_namespace * ns)4060 static void free_mnt_ns(struct mnt_namespace *ns)
4061 {
4062 	if (!is_anon_ns(ns))
4063 		ns_common_free(ns);
4064 	dec_mnt_namespaces(ns->ucounts);
4065 	mnt_ns_tree_remove(ns);
4066 }
4067 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4068 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4069 {
4070 	struct mnt_namespace *new_ns;
4071 	struct ucounts *ucounts;
4072 	int ret;
4073 
4074 	ucounts = inc_mnt_namespaces(user_ns);
4075 	if (!ucounts)
4076 		return ERR_PTR(-ENOSPC);
4077 
4078 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4079 	if (!new_ns) {
4080 		dec_mnt_namespaces(ucounts);
4081 		return ERR_PTR(-ENOMEM);
4082 	}
4083 
4084 	if (anon)
4085 		ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4086 	else
4087 		ret = ns_common_init(new_ns);
4088 	if (ret) {
4089 		kfree(new_ns);
4090 		dec_mnt_namespaces(ucounts);
4091 		return ERR_PTR(ret);
4092 	}
4093 	ns_tree_gen_id(new_ns);
4094 
4095 	new_ns->is_anon = anon;
4096 	refcount_set(&new_ns->passive, 1);
4097 	new_ns->mounts = RB_ROOT;
4098 	init_waitqueue_head(&new_ns->poll);
4099 	new_ns->user_ns = get_user_ns(user_ns);
4100 	new_ns->ucounts = ucounts;
4101 	return new_ns;
4102 }
4103 
4104 __latent_entropy
copy_mnt_ns(u64 flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4105 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4106 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4107 {
4108 	struct mnt_namespace *new_ns;
4109 	struct vfsmount *rootmnt __free(mntput) = NULL;
4110 	struct vfsmount *pwdmnt __free(mntput) = NULL;
4111 	struct mount *p, *q;
4112 	struct mount *old;
4113 	struct mount *new;
4114 	int copy_flags;
4115 
4116 	BUG_ON(!ns);
4117 
4118 	if (likely(!(flags & CLONE_NEWNS))) {
4119 		get_mnt_ns(ns);
4120 		return ns;
4121 	}
4122 
4123 	old = ns->root;
4124 
4125 	new_ns = alloc_mnt_ns(user_ns, false);
4126 	if (IS_ERR(new_ns))
4127 		return new_ns;
4128 
4129 	guard(namespace_excl)();
4130 	/* First pass: copy the tree topology */
4131 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4132 	if (user_ns != ns->user_ns)
4133 		copy_flags |= CL_SLAVE;
4134 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4135 	if (IS_ERR(new)) {
4136 		emptied_ns = new_ns;
4137 		return ERR_CAST(new);
4138 	}
4139 	if (user_ns != ns->user_ns) {
4140 		guard(mount_writer)();
4141 		lock_mnt_tree(new);
4142 	}
4143 	new_ns->root = new;
4144 
4145 	/*
4146 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4147 	 * as belonging to new namespace.  We have already acquired a private
4148 	 * fs_struct, so tsk->fs->lock is not needed.
4149 	 */
4150 	p = old;
4151 	q = new;
4152 	while (p) {
4153 		mnt_add_to_ns(new_ns, q);
4154 		new_ns->nr_mounts++;
4155 		if (new_fs) {
4156 			if (&p->mnt == new_fs->root.mnt) {
4157 				new_fs->root.mnt = mntget(&q->mnt);
4158 				rootmnt = &p->mnt;
4159 			}
4160 			if (&p->mnt == new_fs->pwd.mnt) {
4161 				new_fs->pwd.mnt = mntget(&q->mnt);
4162 				pwdmnt = &p->mnt;
4163 			}
4164 		}
4165 		p = next_mnt(p, old);
4166 		q = next_mnt(q, new);
4167 		if (!q)
4168 			break;
4169 		// an mntns binding we'd skipped?
4170 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4171 			p = next_mnt(skip_mnt_tree(p), old);
4172 	}
4173 	ns_tree_add_raw(new_ns);
4174 	return new_ns;
4175 }
4176 
mount_subtree(struct vfsmount * m,const char * name)4177 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4178 {
4179 	struct mount *mnt = real_mount(m);
4180 	struct mnt_namespace *ns;
4181 	struct super_block *s;
4182 	struct path path;
4183 	int err;
4184 
4185 	ns = alloc_mnt_ns(&init_user_ns, true);
4186 	if (IS_ERR(ns)) {
4187 		mntput(m);
4188 		return ERR_CAST(ns);
4189 	}
4190 	ns->root = mnt;
4191 	ns->nr_mounts++;
4192 	mnt_add_to_ns(ns, mnt);
4193 
4194 	err = vfs_path_lookup(m->mnt_root, m,
4195 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4196 
4197 	put_mnt_ns(ns);
4198 
4199 	if (err)
4200 		return ERR_PTR(err);
4201 
4202 	/* trade a vfsmount reference for active sb one */
4203 	s = path.mnt->mnt_sb;
4204 	atomic_inc(&s->s_active);
4205 	mntput(path.mnt);
4206 	/* lock the sucker */
4207 	down_write(&s->s_umount);
4208 	/* ... and return the root of (sub)tree on it */
4209 	return path.dentry;
4210 }
4211 EXPORT_SYMBOL(mount_subtree);
4212 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4213 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4214 		char __user *, type, unsigned long, flags, void __user *, data)
4215 {
4216 	int ret;
4217 	char *kernel_type;
4218 	char *kernel_dev;
4219 	void *options;
4220 
4221 	kernel_type = copy_mount_string(type);
4222 	ret = PTR_ERR(kernel_type);
4223 	if (IS_ERR(kernel_type))
4224 		goto out_type;
4225 
4226 	kernel_dev = copy_mount_string(dev_name);
4227 	ret = PTR_ERR(kernel_dev);
4228 	if (IS_ERR(kernel_dev))
4229 		goto out_dev;
4230 
4231 	options = copy_mount_options(data);
4232 	ret = PTR_ERR(options);
4233 	if (IS_ERR(options))
4234 		goto out_data;
4235 
4236 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4237 
4238 	kfree(options);
4239 out_data:
4240 	kfree(kernel_dev);
4241 out_dev:
4242 	kfree(kernel_type);
4243 out_type:
4244 	return ret;
4245 }
4246 
4247 #define FSMOUNT_VALID_FLAGS                                                    \
4248 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4249 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4250 	 MOUNT_ATTR_NOSYMFOLLOW)
4251 
4252 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4253 
4254 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4255 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4256 
attr_flags_to_mnt_flags(u64 attr_flags)4257 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4258 {
4259 	unsigned int mnt_flags = 0;
4260 
4261 	if (attr_flags & MOUNT_ATTR_RDONLY)
4262 		mnt_flags |= MNT_READONLY;
4263 	if (attr_flags & MOUNT_ATTR_NOSUID)
4264 		mnt_flags |= MNT_NOSUID;
4265 	if (attr_flags & MOUNT_ATTR_NODEV)
4266 		mnt_flags |= MNT_NODEV;
4267 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4268 		mnt_flags |= MNT_NOEXEC;
4269 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4270 		mnt_flags |= MNT_NODIRATIME;
4271 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4272 		mnt_flags |= MNT_NOSYMFOLLOW;
4273 
4274 	return mnt_flags;
4275 }
4276 
4277 /*
4278  * Create a kernel mount representation for a new, prepared superblock
4279  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4280  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4281 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4282 		unsigned int, attr_flags)
4283 {
4284 	struct mnt_namespace *ns;
4285 	struct fs_context *fc;
4286 	struct file *file;
4287 	struct path newmount;
4288 	struct mount *mnt;
4289 	unsigned int mnt_flags = 0;
4290 	long ret;
4291 
4292 	if (!may_mount())
4293 		return -EPERM;
4294 
4295 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4296 		return -EINVAL;
4297 
4298 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4299 		return -EINVAL;
4300 
4301 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4302 
4303 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4304 	case MOUNT_ATTR_STRICTATIME:
4305 		break;
4306 	case MOUNT_ATTR_NOATIME:
4307 		mnt_flags |= MNT_NOATIME;
4308 		break;
4309 	case MOUNT_ATTR_RELATIME:
4310 		mnt_flags |= MNT_RELATIME;
4311 		break;
4312 	default:
4313 		return -EINVAL;
4314 	}
4315 
4316 	CLASS(fd, f)(fs_fd);
4317 	if (fd_empty(f))
4318 		return -EBADF;
4319 
4320 	if (fd_file(f)->f_op != &fscontext_fops)
4321 		return -EINVAL;
4322 
4323 	fc = fd_file(f)->private_data;
4324 
4325 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4326 	if (ret < 0)
4327 		return ret;
4328 
4329 	/* There must be a valid superblock or we can't mount it */
4330 	ret = -EINVAL;
4331 	if (!fc->root)
4332 		goto err_unlock;
4333 
4334 	ret = -EPERM;
4335 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4336 		errorfcp(fc, "VFS", "Mount too revealing");
4337 		goto err_unlock;
4338 	}
4339 
4340 	ret = -EBUSY;
4341 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4342 		goto err_unlock;
4343 
4344 	if (fc->sb_flags & SB_MANDLOCK)
4345 		warn_mandlock();
4346 
4347 	newmount.mnt = vfs_create_mount(fc);
4348 	if (IS_ERR(newmount.mnt)) {
4349 		ret = PTR_ERR(newmount.mnt);
4350 		goto err_unlock;
4351 	}
4352 	newmount.dentry = dget(fc->root);
4353 	newmount.mnt->mnt_flags = mnt_flags;
4354 
4355 	/* We've done the mount bit - now move the file context into more or
4356 	 * less the same state as if we'd done an fspick().  We don't want to
4357 	 * do any memory allocation or anything like that at this point as we
4358 	 * don't want to have to handle any errors incurred.
4359 	 */
4360 	vfs_clean_context(fc);
4361 
4362 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4363 	if (IS_ERR(ns)) {
4364 		ret = PTR_ERR(ns);
4365 		goto err_path;
4366 	}
4367 	mnt = real_mount(newmount.mnt);
4368 	ns->root = mnt;
4369 	ns->nr_mounts = 1;
4370 	mnt_add_to_ns(ns, mnt);
4371 	mntget(newmount.mnt);
4372 
4373 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4374 	 * it, not just simply put it.
4375 	 */
4376 	file = dentry_open(&newmount, O_PATH, fc->cred);
4377 	if (IS_ERR(file)) {
4378 		dissolve_on_fput(newmount.mnt);
4379 		ret = PTR_ERR(file);
4380 		goto err_path;
4381 	}
4382 	file->f_mode |= FMODE_NEED_UNMOUNT;
4383 
4384 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4385 	if (ret >= 0)
4386 		fd_install(ret, file);
4387 	else
4388 		fput(file);
4389 
4390 err_path:
4391 	path_put(&newmount);
4392 err_unlock:
4393 	mutex_unlock(&fc->uapi_mutex);
4394 	return ret;
4395 }
4396 
vfs_move_mount(const struct path * from_path,const struct path * to_path,enum mnt_tree_flags_t mflags)4397 static inline int vfs_move_mount(const struct path *from_path,
4398 				 const struct path *to_path,
4399 				 enum mnt_tree_flags_t mflags)
4400 {
4401 	int ret;
4402 
4403 	ret = security_move_mount(from_path, to_path);
4404 	if (ret)
4405 		return ret;
4406 
4407 	if (mflags & MNT_TREE_PROPAGATION)
4408 		return do_set_group(from_path, to_path);
4409 
4410 	return do_move_mount(from_path, to_path, mflags);
4411 }
4412 
4413 /*
4414  * Move a mount from one place to another.  In combination with
4415  * fsopen()/fsmount() this is used to install a new mount and in combination
4416  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4417  * a mount subtree.
4418  *
4419  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4420  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4421 SYSCALL_DEFINE5(move_mount,
4422 		int, from_dfd, const char __user *, from_pathname,
4423 		int, to_dfd, const char __user *, to_pathname,
4424 		unsigned int, flags)
4425 {
4426 	struct path to_path __free(path_put) = {};
4427 	struct path from_path __free(path_put) = {};
4428 	struct filename *to_name __free(putname) = NULL;
4429 	struct filename *from_name __free(putname) = NULL;
4430 	unsigned int lflags, uflags;
4431 	enum mnt_tree_flags_t mflags = 0;
4432 	int ret = 0;
4433 
4434 	if (!may_mount())
4435 		return -EPERM;
4436 
4437 	if (flags & ~MOVE_MOUNT__MASK)
4438 		return -EINVAL;
4439 
4440 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4441 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4442 		return -EINVAL;
4443 
4444 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4445 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4446 
4447 	uflags = 0;
4448 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4449 		uflags = AT_EMPTY_PATH;
4450 
4451 	to_name = getname_maybe_null(to_pathname, uflags);
4452 	if (IS_ERR(to_name))
4453 		return PTR_ERR(to_name);
4454 
4455 	if (!to_name && to_dfd >= 0) {
4456 		CLASS(fd_raw, f_to)(to_dfd);
4457 		if (fd_empty(f_to))
4458 			return -EBADF;
4459 
4460 		to_path = fd_file(f_to)->f_path;
4461 		path_get(&to_path);
4462 	} else {
4463 		lflags = 0;
4464 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4465 			lflags |= LOOKUP_FOLLOW;
4466 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4467 			lflags |= LOOKUP_AUTOMOUNT;
4468 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4469 		if (ret)
4470 			return ret;
4471 	}
4472 
4473 	uflags = 0;
4474 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4475 		uflags = AT_EMPTY_PATH;
4476 
4477 	from_name = getname_maybe_null(from_pathname, uflags);
4478 	if (IS_ERR(from_name))
4479 		return PTR_ERR(from_name);
4480 
4481 	if (!from_name && from_dfd >= 0) {
4482 		CLASS(fd_raw, f_from)(from_dfd);
4483 		if (fd_empty(f_from))
4484 			return -EBADF;
4485 
4486 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4487 	}
4488 
4489 	lflags = 0;
4490 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4491 		lflags |= LOOKUP_FOLLOW;
4492 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4493 		lflags |= LOOKUP_AUTOMOUNT;
4494 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4495 	if (ret)
4496 		return ret;
4497 
4498 	return vfs_move_mount(&from_path, &to_path, mflags);
4499 }
4500 
4501 /*
4502  * Return true if path is reachable from root
4503  *
4504  * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4505  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4506 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4507 			 const struct path *root)
4508 {
4509 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4510 		dentry = mnt->mnt_mountpoint;
4511 		mnt = mnt->mnt_parent;
4512 	}
4513 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4514 }
4515 
path_is_under(const struct path * path1,const struct path * path2)4516 bool path_is_under(const struct path *path1, const struct path *path2)
4517 {
4518 	guard(mount_locked_reader)();
4519 	return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4520 }
4521 EXPORT_SYMBOL(path_is_under);
4522 
4523 /*
4524  * pivot_root Semantics:
4525  * Moves the root file system of the current process to the directory put_old,
4526  * makes new_root as the new root file system of the current process, and sets
4527  * root/cwd of all processes which had them on the current root to new_root.
4528  *
4529  * Restrictions:
4530  * The new_root and put_old must be directories, and  must not be on the
4531  * same file  system as the current process root. The put_old  must  be
4532  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4533  * pointed to by put_old must yield the same directory as new_root. No other
4534  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4535  *
4536  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4537  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4538  * in this situation.
4539  *
4540  * Notes:
4541  *  - we don't move root/cwd if they are not at the root (reason: if something
4542  *    cared enough to change them, it's probably wrong to force them elsewhere)
4543  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4544  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4545  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4546  *    first.
4547  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4548 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4549 		const char __user *, put_old)
4550 {
4551 	struct path new __free(path_put) = {};
4552 	struct path old __free(path_put) = {};
4553 	struct path root __free(path_put) = {};
4554 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4555 	int error;
4556 
4557 	if (!may_mount())
4558 		return -EPERM;
4559 
4560 	error = user_path_at(AT_FDCWD, new_root,
4561 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4562 	if (error)
4563 		return error;
4564 
4565 	error = user_path_at(AT_FDCWD, put_old,
4566 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4567 	if (error)
4568 		return error;
4569 
4570 	error = security_sb_pivotroot(&old, &new);
4571 	if (error)
4572 		return error;
4573 
4574 	get_fs_root(current->fs, &root);
4575 
4576 	LOCK_MOUNT(old_mp, &old);
4577 	old_mnt = old_mp.parent;
4578 	if (IS_ERR(old_mnt))
4579 		return PTR_ERR(old_mnt);
4580 
4581 	new_mnt = real_mount(new.mnt);
4582 	root_mnt = real_mount(root.mnt);
4583 	ex_parent = new_mnt->mnt_parent;
4584 	root_parent = root_mnt->mnt_parent;
4585 	if (IS_MNT_SHARED(old_mnt) ||
4586 		IS_MNT_SHARED(ex_parent) ||
4587 		IS_MNT_SHARED(root_parent))
4588 		return -EINVAL;
4589 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4590 		return -EINVAL;
4591 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4592 		return -EINVAL;
4593 	if (d_unlinked(new.dentry))
4594 		return -ENOENT;
4595 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4596 		return -EBUSY; /* loop, on the same file system  */
4597 	if (!path_mounted(&root))
4598 		return -EINVAL; /* not a mountpoint */
4599 	if (!mnt_has_parent(root_mnt))
4600 		return -EINVAL; /* absolute root */
4601 	if (!path_mounted(&new))
4602 		return -EINVAL; /* not a mountpoint */
4603 	if (!mnt_has_parent(new_mnt))
4604 		return -EINVAL; /* absolute root */
4605 	/* make sure we can reach put_old from new_root */
4606 	if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4607 		return -EINVAL;
4608 	/* make certain new is below the root */
4609 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4610 		return -EINVAL;
4611 	lock_mount_hash();
4612 	umount_mnt(new_mnt);
4613 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4614 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4615 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4616 	}
4617 	/* mount new_root on / */
4618 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4619 	umount_mnt(root_mnt);
4620 	/* mount old root on put_old */
4621 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4622 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4623 	/* A moved mount should not expire automatically */
4624 	list_del_init(&new_mnt->mnt_expire);
4625 	unlock_mount_hash();
4626 	mnt_notify_add(root_mnt);
4627 	mnt_notify_add(new_mnt);
4628 	chroot_fs_refs(&root, &new);
4629 	return 0;
4630 }
4631 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4632 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4633 {
4634 	unsigned int flags = mnt->mnt.mnt_flags;
4635 
4636 	/*  flags to clear */
4637 	flags &= ~kattr->attr_clr;
4638 	/* flags to raise */
4639 	flags |= kattr->attr_set;
4640 
4641 	return flags;
4642 }
4643 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4644 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4645 {
4646 	struct vfsmount *m = &mnt->mnt;
4647 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4648 
4649 	if (!kattr->mnt_idmap)
4650 		return 0;
4651 
4652 	/*
4653 	 * Creating an idmapped mount with the filesystem wide idmapping
4654 	 * doesn't make sense so block that. We don't allow mushy semantics.
4655 	 */
4656 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4657 		return -EINVAL;
4658 
4659 	/*
4660 	 * We only allow an mount to change it's idmapping if it has
4661 	 * never been accessible to userspace.
4662 	 */
4663 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4664 		return -EPERM;
4665 
4666 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4667 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4668 		return -EINVAL;
4669 
4670 	/* The filesystem has turned off idmapped mounts. */
4671 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4672 		return -EINVAL;
4673 
4674 	/* We're not controlling the superblock. */
4675 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4676 		return -EPERM;
4677 
4678 	/* Mount has already been visible in the filesystem hierarchy. */
4679 	if (!is_anon_ns(mnt->mnt_ns))
4680 		return -EINVAL;
4681 
4682 	return 0;
4683 }
4684 
4685 /**
4686  * mnt_allow_writers() - check whether the attribute change allows writers
4687  * @kattr: the new mount attributes
4688  * @mnt: the mount to which @kattr will be applied
4689  *
4690  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4691  *
4692  * Return: true if writers need to be held, false if not
4693  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4694 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4695 				     const struct mount *mnt)
4696 {
4697 	return (!(kattr->attr_set & MNT_READONLY) ||
4698 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4699 	       !kattr->mnt_idmap;
4700 }
4701 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4702 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4703 {
4704 	struct mount *m;
4705 	int err;
4706 
4707 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4708 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4709 			err = -EPERM;
4710 			break;
4711 		}
4712 
4713 		err = can_idmap_mount(kattr, m);
4714 		if (err)
4715 			break;
4716 
4717 		if (!mnt_allow_writers(kattr, m)) {
4718 			err = mnt_hold_writers(m);
4719 			if (err) {
4720 				m = next_mnt(m, mnt);
4721 				break;
4722 			}
4723 		}
4724 
4725 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4726 			return 0;
4727 	}
4728 
4729 	if (err) {
4730 		/* undo all mnt_hold_writers() we'd done */
4731 		for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4732 			mnt_unhold_writers(p);
4733 	}
4734 	return err;
4735 }
4736 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4737 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4738 {
4739 	struct mnt_idmap *old_idmap;
4740 
4741 	if (!kattr->mnt_idmap)
4742 		return;
4743 
4744 	old_idmap = mnt_idmap(&mnt->mnt);
4745 
4746 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4747 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4748 	mnt_idmap_put(old_idmap);
4749 }
4750 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4751 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4752 {
4753 	struct mount *m;
4754 
4755 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4756 		unsigned int flags;
4757 
4758 		do_idmap_mount(kattr, m);
4759 		flags = recalc_flags(kattr, m);
4760 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4761 
4762 		/* If we had to hold writers unblock them. */
4763 		mnt_unhold_writers(m);
4764 
4765 		if (kattr->propagation)
4766 			change_mnt_propagation(m, kattr->propagation);
4767 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4768 			break;
4769 	}
4770 	touch_mnt_namespace(mnt->mnt_ns);
4771 }
4772 
do_mount_setattr(const struct path * path,struct mount_kattr * kattr)4773 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4774 {
4775 	struct mount *mnt = real_mount(path->mnt);
4776 	int err = 0;
4777 
4778 	if (!path_mounted(path))
4779 		return -EINVAL;
4780 
4781 	if (kattr->mnt_userns) {
4782 		struct mnt_idmap *mnt_idmap;
4783 
4784 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4785 		if (IS_ERR(mnt_idmap))
4786 			return PTR_ERR(mnt_idmap);
4787 		kattr->mnt_idmap = mnt_idmap;
4788 	}
4789 
4790 	if (kattr->propagation) {
4791 		/*
4792 		 * Only take namespace_lock() if we're actually changing
4793 		 * propagation.
4794 		 */
4795 		namespace_lock();
4796 		if (kattr->propagation == MS_SHARED) {
4797 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4798 			if (err) {
4799 				namespace_unlock();
4800 				return err;
4801 			}
4802 		}
4803 	}
4804 
4805 	err = -EINVAL;
4806 	lock_mount_hash();
4807 
4808 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4809 		goto out;
4810 
4811 	/*
4812 	 * First, we get the mount tree in a shape where we can change mount
4813 	 * properties without failure. If we succeeded to do so we commit all
4814 	 * changes and if we failed we clean up.
4815 	 */
4816 	err = mount_setattr_prepare(kattr, mnt);
4817 	if (!err)
4818 		mount_setattr_commit(kattr, mnt);
4819 
4820 out:
4821 	unlock_mount_hash();
4822 
4823 	if (kattr->propagation) {
4824 		if (err)
4825 			cleanup_group_ids(mnt, NULL);
4826 		namespace_unlock();
4827 	}
4828 
4829 	return err;
4830 }
4831 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4832 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4833 				struct mount_kattr *kattr)
4834 {
4835 	struct ns_common *ns;
4836 	struct user_namespace *mnt_userns;
4837 
4838 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4839 		return 0;
4840 
4841 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4842 		/*
4843 		 * We can only remove an idmapping if it's never been
4844 		 * exposed to userspace.
4845 		 */
4846 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4847 			return -EINVAL;
4848 
4849 		/*
4850 		 * Removal of idmappings is equivalent to setting
4851 		 * nop_mnt_idmap.
4852 		 */
4853 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4854 			kattr->mnt_idmap = &nop_mnt_idmap;
4855 			return 0;
4856 		}
4857 	}
4858 
4859 	if (attr->userns_fd > INT_MAX)
4860 		return -EINVAL;
4861 
4862 	CLASS(fd, f)(attr->userns_fd);
4863 	if (fd_empty(f))
4864 		return -EBADF;
4865 
4866 	if (!proc_ns_file(fd_file(f)))
4867 		return -EINVAL;
4868 
4869 	ns = get_proc_ns(file_inode(fd_file(f)));
4870 	if (ns->ns_type != CLONE_NEWUSER)
4871 		return -EINVAL;
4872 
4873 	/*
4874 	 * The initial idmapping cannot be used to create an idmapped
4875 	 * mount. We use the initial idmapping as an indicator of a mount
4876 	 * that is not idmapped. It can simply be passed into helpers that
4877 	 * are aware of idmapped mounts as a convenient shortcut. A user
4878 	 * can just create a dedicated identity mapping to achieve the same
4879 	 * result.
4880 	 */
4881 	mnt_userns = container_of(ns, struct user_namespace, ns);
4882 	if (mnt_userns == &init_user_ns)
4883 		return -EPERM;
4884 
4885 	/* We're not controlling the target namespace. */
4886 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4887 		return -EPERM;
4888 
4889 	kattr->mnt_userns = get_user_ns(mnt_userns);
4890 	return 0;
4891 }
4892 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4893 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4894 			     struct mount_kattr *kattr)
4895 {
4896 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4897 		return -EINVAL;
4898 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4899 		return -EINVAL;
4900 	kattr->propagation = attr->propagation;
4901 
4902 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4903 		return -EINVAL;
4904 
4905 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4906 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4907 
4908 	/*
4909 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4910 	 * users wanting to transition to a different atime setting cannot
4911 	 * simply specify the atime setting in @attr_set, but must also
4912 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4913 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4914 	 * @attr_clr and that @attr_set can't have any atime bits set if
4915 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4916 	 */
4917 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4918 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4919 			return -EINVAL;
4920 
4921 		/*
4922 		 * Clear all previous time settings as they are mutually
4923 		 * exclusive.
4924 		 */
4925 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4926 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4927 		case MOUNT_ATTR_RELATIME:
4928 			kattr->attr_set |= MNT_RELATIME;
4929 			break;
4930 		case MOUNT_ATTR_NOATIME:
4931 			kattr->attr_set |= MNT_NOATIME;
4932 			break;
4933 		case MOUNT_ATTR_STRICTATIME:
4934 			break;
4935 		default:
4936 			return -EINVAL;
4937 		}
4938 	} else {
4939 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4940 			return -EINVAL;
4941 	}
4942 
4943 	return build_mount_idmapped(attr, usize, kattr);
4944 }
4945 
finish_mount_kattr(struct mount_kattr * kattr)4946 static void finish_mount_kattr(struct mount_kattr *kattr)
4947 {
4948 	if (kattr->mnt_userns) {
4949 		put_user_ns(kattr->mnt_userns);
4950 		kattr->mnt_userns = NULL;
4951 	}
4952 
4953 	if (kattr->mnt_idmap)
4954 		mnt_idmap_put(kattr->mnt_idmap);
4955 }
4956 
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)4957 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4958 			       struct mount_kattr *kattr)
4959 {
4960 	int ret;
4961 	struct mount_attr attr;
4962 
4963 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4964 
4965 	if (unlikely(usize > PAGE_SIZE))
4966 		return -E2BIG;
4967 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4968 		return -EINVAL;
4969 
4970 	if (!may_mount())
4971 		return -EPERM;
4972 
4973 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4974 	if (ret)
4975 		return ret;
4976 
4977 	/* Don't bother walking through the mounts if this is a nop. */
4978 	if (attr.attr_set == 0 &&
4979 	    attr.attr_clr == 0 &&
4980 	    attr.propagation == 0)
4981 		return 0; /* Tell caller to not bother. */
4982 
4983 	ret = build_mount_kattr(&attr, usize, kattr);
4984 	if (ret < 0)
4985 		return ret;
4986 
4987 	return 1;
4988 }
4989 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4990 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4991 		unsigned int, flags, struct mount_attr __user *, uattr,
4992 		size_t, usize)
4993 {
4994 	int err;
4995 	struct path target;
4996 	struct mount_kattr kattr;
4997 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4998 
4999 	if (flags & ~(AT_EMPTY_PATH |
5000 		      AT_RECURSIVE |
5001 		      AT_SYMLINK_NOFOLLOW |
5002 		      AT_NO_AUTOMOUNT))
5003 		return -EINVAL;
5004 
5005 	if (flags & AT_NO_AUTOMOUNT)
5006 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5007 	if (flags & AT_SYMLINK_NOFOLLOW)
5008 		lookup_flags &= ~LOOKUP_FOLLOW;
5009 	if (flags & AT_EMPTY_PATH)
5010 		lookup_flags |= LOOKUP_EMPTY;
5011 
5012 	kattr = (struct mount_kattr) {
5013 		.lookup_flags	= lookup_flags,
5014 	};
5015 
5016 	if (flags & AT_RECURSIVE)
5017 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5018 
5019 	err = wants_mount_setattr(uattr, usize, &kattr);
5020 	if (err <= 0)
5021 		return err;
5022 
5023 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5024 	if (!err) {
5025 		err = do_mount_setattr(&target, &kattr);
5026 		path_put(&target);
5027 	}
5028 	finish_mount_kattr(&kattr);
5029 	return err;
5030 }
5031 
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5032 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5033 		unsigned, flags, struct mount_attr __user *, uattr,
5034 		size_t, usize)
5035 {
5036 	struct file __free(fput) *file = NULL;
5037 	int fd;
5038 
5039 	if (!uattr && usize)
5040 		return -EINVAL;
5041 
5042 	file = vfs_open_tree(dfd, filename, flags);
5043 	if (IS_ERR(file))
5044 		return PTR_ERR(file);
5045 
5046 	if (uattr) {
5047 		int ret;
5048 		struct mount_kattr kattr = {};
5049 
5050 		if (flags & OPEN_TREE_CLONE)
5051 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5052 		if (flags & AT_RECURSIVE)
5053 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5054 
5055 		ret = wants_mount_setattr(uattr, usize, &kattr);
5056 		if (ret > 0) {
5057 			ret = do_mount_setattr(&file->f_path, &kattr);
5058 			finish_mount_kattr(&kattr);
5059 		}
5060 		if (ret)
5061 			return ret;
5062 	}
5063 
5064 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5065 	if (fd < 0)
5066 		return fd;
5067 
5068 	fd_install(fd, no_free_ptr(file));
5069 	return fd;
5070 }
5071 
show_path(struct seq_file * m,struct dentry * root)5072 int show_path(struct seq_file *m, struct dentry *root)
5073 {
5074 	if (root->d_sb->s_op->show_path)
5075 		return root->d_sb->s_op->show_path(m, root);
5076 
5077 	seq_dentry(m, root, " \t\n\\");
5078 	return 0;
5079 }
5080 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5081 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5082 {
5083 	struct mount *mnt = mnt_find_id_at(ns, id);
5084 
5085 	if (!mnt || mnt->mnt_id_unique != id)
5086 		return NULL;
5087 
5088 	return &mnt->mnt;
5089 }
5090 
5091 struct kstatmount {
5092 	struct statmount __user *buf;
5093 	size_t bufsize;
5094 	struct vfsmount *mnt;
5095 	struct mnt_idmap *idmap;
5096 	u64 mask;
5097 	struct path root;
5098 	struct seq_file seq;
5099 
5100 	/* Must be last --ends in a flexible-array member. */
5101 	struct statmount sm;
5102 };
5103 
mnt_to_attr_flags(struct vfsmount * mnt)5104 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5105 {
5106 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5107 	u64 attr_flags = 0;
5108 
5109 	if (mnt_flags & MNT_READONLY)
5110 		attr_flags |= MOUNT_ATTR_RDONLY;
5111 	if (mnt_flags & MNT_NOSUID)
5112 		attr_flags |= MOUNT_ATTR_NOSUID;
5113 	if (mnt_flags & MNT_NODEV)
5114 		attr_flags |= MOUNT_ATTR_NODEV;
5115 	if (mnt_flags & MNT_NOEXEC)
5116 		attr_flags |= MOUNT_ATTR_NOEXEC;
5117 	if (mnt_flags & MNT_NODIRATIME)
5118 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5119 	if (mnt_flags & MNT_NOSYMFOLLOW)
5120 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5121 
5122 	if (mnt_flags & MNT_NOATIME)
5123 		attr_flags |= MOUNT_ATTR_NOATIME;
5124 	else if (mnt_flags & MNT_RELATIME)
5125 		attr_flags |= MOUNT_ATTR_RELATIME;
5126 	else
5127 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5128 
5129 	if (is_idmapped_mnt(mnt))
5130 		attr_flags |= MOUNT_ATTR_IDMAP;
5131 
5132 	return attr_flags;
5133 }
5134 
mnt_to_propagation_flags(struct mount * m)5135 static u64 mnt_to_propagation_flags(struct mount *m)
5136 {
5137 	u64 propagation = 0;
5138 
5139 	if (IS_MNT_SHARED(m))
5140 		propagation |= MS_SHARED;
5141 	if (IS_MNT_SLAVE(m))
5142 		propagation |= MS_SLAVE;
5143 	if (IS_MNT_UNBINDABLE(m))
5144 		propagation |= MS_UNBINDABLE;
5145 	if (!propagation)
5146 		propagation |= MS_PRIVATE;
5147 
5148 	return propagation;
5149 }
5150 
statmount_sb_basic(struct kstatmount * s)5151 static void statmount_sb_basic(struct kstatmount *s)
5152 {
5153 	struct super_block *sb = s->mnt->mnt_sb;
5154 
5155 	s->sm.mask |= STATMOUNT_SB_BASIC;
5156 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5157 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5158 	s->sm.sb_magic = sb->s_magic;
5159 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5160 }
5161 
statmount_mnt_basic(struct kstatmount * s)5162 static void statmount_mnt_basic(struct kstatmount *s)
5163 {
5164 	struct mount *m = real_mount(s->mnt);
5165 
5166 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5167 	s->sm.mnt_id = m->mnt_id_unique;
5168 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5169 	s->sm.mnt_id_old = m->mnt_id;
5170 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5171 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5172 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5173 	s->sm.mnt_peer_group = m->mnt_group_id;
5174 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5175 }
5176 
statmount_propagate_from(struct kstatmount * s)5177 static void statmount_propagate_from(struct kstatmount *s)
5178 {
5179 	struct mount *m = real_mount(s->mnt);
5180 
5181 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5182 	if (IS_MNT_SLAVE(m))
5183 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5184 }
5185 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5186 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5187 {
5188 	int ret;
5189 	size_t start = seq->count;
5190 
5191 	ret = show_path(seq, s->mnt->mnt_root);
5192 	if (ret)
5193 		return ret;
5194 
5195 	if (unlikely(seq_has_overflowed(seq)))
5196 		return -EAGAIN;
5197 
5198 	/*
5199          * Unescape the result. It would be better if supplied string was not
5200          * escaped in the first place, but that's a pretty invasive change.
5201          */
5202 	seq->buf[seq->count] = '\0';
5203 	seq->count = start;
5204 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5205 	return 0;
5206 }
5207 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5208 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5209 {
5210 	struct vfsmount *mnt = s->mnt;
5211 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5212 	int err;
5213 
5214 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5215 	return err == SEQ_SKIP ? 0 : err;
5216 }
5217 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5218 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5219 {
5220 	struct super_block *sb = s->mnt->mnt_sb;
5221 
5222 	seq_puts(seq, sb->s_type->name);
5223 	return 0;
5224 }
5225 
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5226 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5227 {
5228 	struct super_block *sb = s->mnt->mnt_sb;
5229 
5230 	if (sb->s_subtype)
5231 		seq_puts(seq, sb->s_subtype);
5232 }
5233 
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5234 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5235 {
5236 	struct super_block *sb = s->mnt->mnt_sb;
5237 	struct mount *r = real_mount(s->mnt);
5238 
5239 	if (sb->s_op->show_devname) {
5240 		size_t start = seq->count;
5241 		int ret;
5242 
5243 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5244 		if (ret)
5245 			return ret;
5246 
5247 		if (unlikely(seq_has_overflowed(seq)))
5248 			return -EAGAIN;
5249 
5250 		/* Unescape the result */
5251 		seq->buf[seq->count] = '\0';
5252 		seq->count = start;
5253 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5254 	} else {
5255 		seq_puts(seq, r->mnt_devname);
5256 	}
5257 	return 0;
5258 }
5259 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5260 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5261 {
5262 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5263 	s->sm.mnt_ns_id = ns->ns.ns_id;
5264 }
5265 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5266 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5267 {
5268 	struct vfsmount *mnt = s->mnt;
5269 	struct super_block *sb = mnt->mnt_sb;
5270 	size_t start = seq->count;
5271 	int err;
5272 
5273 	err = security_sb_show_options(seq, sb);
5274 	if (err)
5275 		return err;
5276 
5277 	if (sb->s_op->show_options) {
5278 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5279 		if (err)
5280 			return err;
5281 	}
5282 
5283 	if (unlikely(seq_has_overflowed(seq)))
5284 		return -EAGAIN;
5285 
5286 	if (seq->count == start)
5287 		return 0;
5288 
5289 	/* skip leading comma */
5290 	memmove(seq->buf + start, seq->buf + start + 1,
5291 		seq->count - start - 1);
5292 	seq->count--;
5293 
5294 	return 0;
5295 }
5296 
statmount_opt_process(struct seq_file * seq,size_t start)5297 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5298 {
5299 	char *buf_end, *opt_end, *src, *dst;
5300 	int count = 0;
5301 
5302 	if (unlikely(seq_has_overflowed(seq)))
5303 		return -EAGAIN;
5304 
5305 	buf_end = seq->buf + seq->count;
5306 	dst = seq->buf + start;
5307 	src = dst + 1;	/* skip initial comma */
5308 
5309 	if (src >= buf_end) {
5310 		seq->count = start;
5311 		return 0;
5312 	}
5313 
5314 	*buf_end = '\0';
5315 	for (; src < buf_end; src = opt_end + 1) {
5316 		opt_end = strchrnul(src, ',');
5317 		*opt_end = '\0';
5318 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5319 		if (WARN_ON_ONCE(++count == INT_MAX))
5320 			return -EOVERFLOW;
5321 	}
5322 	seq->count = dst - 1 - seq->buf;
5323 	return count;
5324 }
5325 
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5326 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5327 {
5328 	struct vfsmount *mnt = s->mnt;
5329 	struct super_block *sb = mnt->mnt_sb;
5330 	size_t start = seq->count;
5331 	int err;
5332 
5333 	if (!sb->s_op->show_options)
5334 		return 0;
5335 
5336 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5337 	if (err)
5338 		return err;
5339 
5340 	err = statmount_opt_process(seq, start);
5341 	if (err < 0)
5342 		return err;
5343 
5344 	s->sm.opt_num = err;
5345 	return 0;
5346 }
5347 
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5348 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5349 {
5350 	struct vfsmount *mnt = s->mnt;
5351 	struct super_block *sb = mnt->mnt_sb;
5352 	size_t start = seq->count;
5353 	int err;
5354 
5355 	err = security_sb_show_options(seq, sb);
5356 	if (err)
5357 		return err;
5358 
5359 	err = statmount_opt_process(seq, start);
5360 	if (err < 0)
5361 		return err;
5362 
5363 	s->sm.opt_sec_num = err;
5364 	return 0;
5365 }
5366 
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5367 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5368 {
5369 	int ret;
5370 
5371 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5372 	if (ret < 0)
5373 		return ret;
5374 
5375 	s->sm.mnt_uidmap_num = ret;
5376 	/*
5377 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5378 	 * mappings. This allows userspace to distinguish between a
5379 	 * non-idmapped mount and an idmapped mount where none of the
5380 	 * individual mappings are valid in the caller's idmapping.
5381 	 */
5382 	if (is_valid_mnt_idmap(s->idmap))
5383 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5384 	return 0;
5385 }
5386 
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5387 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5388 {
5389 	int ret;
5390 
5391 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5392 	if (ret < 0)
5393 		return ret;
5394 
5395 	s->sm.mnt_gidmap_num = ret;
5396 	/*
5397 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5398 	 * mappings. This allows userspace to distinguish between a
5399 	 * non-idmapped mount and an idmapped mount where none of the
5400 	 * individual mappings are valid in the caller's idmapping.
5401 	 */
5402 	if (is_valid_mnt_idmap(s->idmap))
5403 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5404 	return 0;
5405 }
5406 
statmount_string(struct kstatmount * s,u64 flag)5407 static int statmount_string(struct kstatmount *s, u64 flag)
5408 {
5409 	int ret = 0;
5410 	size_t kbufsize;
5411 	struct seq_file *seq = &s->seq;
5412 	struct statmount *sm = &s->sm;
5413 	u32 start, *offp;
5414 
5415 	/* Reserve an empty string at the beginning for any unset offsets */
5416 	if (!seq->count)
5417 		seq_putc(seq, 0);
5418 
5419 	start = seq->count;
5420 
5421 	switch (flag) {
5422 	case STATMOUNT_FS_TYPE:
5423 		offp = &sm->fs_type;
5424 		ret = statmount_fs_type(s, seq);
5425 		break;
5426 	case STATMOUNT_MNT_ROOT:
5427 		offp = &sm->mnt_root;
5428 		ret = statmount_mnt_root(s, seq);
5429 		break;
5430 	case STATMOUNT_MNT_POINT:
5431 		offp = &sm->mnt_point;
5432 		ret = statmount_mnt_point(s, seq);
5433 		break;
5434 	case STATMOUNT_MNT_OPTS:
5435 		offp = &sm->mnt_opts;
5436 		ret = statmount_mnt_opts(s, seq);
5437 		break;
5438 	case STATMOUNT_OPT_ARRAY:
5439 		offp = &sm->opt_array;
5440 		ret = statmount_opt_array(s, seq);
5441 		break;
5442 	case STATMOUNT_OPT_SEC_ARRAY:
5443 		offp = &sm->opt_sec_array;
5444 		ret = statmount_opt_sec_array(s, seq);
5445 		break;
5446 	case STATMOUNT_FS_SUBTYPE:
5447 		offp = &sm->fs_subtype;
5448 		statmount_fs_subtype(s, seq);
5449 		break;
5450 	case STATMOUNT_SB_SOURCE:
5451 		offp = &sm->sb_source;
5452 		ret = statmount_sb_source(s, seq);
5453 		break;
5454 	case STATMOUNT_MNT_UIDMAP:
5455 		offp = &sm->mnt_uidmap;
5456 		ret = statmount_mnt_uidmap(s, seq);
5457 		break;
5458 	case STATMOUNT_MNT_GIDMAP:
5459 		offp = &sm->mnt_gidmap;
5460 		ret = statmount_mnt_gidmap(s, seq);
5461 		break;
5462 	default:
5463 		WARN_ON_ONCE(true);
5464 		return -EINVAL;
5465 	}
5466 
5467 	/*
5468 	 * If nothing was emitted, return to avoid setting the flag
5469 	 * and terminating the buffer.
5470 	 */
5471 	if (seq->count == start)
5472 		return ret;
5473 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5474 		return -EOVERFLOW;
5475 	if (kbufsize >= s->bufsize)
5476 		return -EOVERFLOW;
5477 
5478 	/* signal a retry */
5479 	if (unlikely(seq_has_overflowed(seq)))
5480 		return -EAGAIN;
5481 
5482 	if (ret)
5483 		return ret;
5484 
5485 	seq->buf[seq->count++] = '\0';
5486 	sm->mask |= flag;
5487 	*offp = start;
5488 	return 0;
5489 }
5490 
copy_statmount_to_user(struct kstatmount * s)5491 static int copy_statmount_to_user(struct kstatmount *s)
5492 {
5493 	struct statmount *sm = &s->sm;
5494 	struct seq_file *seq = &s->seq;
5495 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5496 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5497 
5498 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5499 		return -EFAULT;
5500 
5501 	/* Return the number of bytes copied to the buffer */
5502 	sm->size = copysize + seq->count;
5503 	if (copy_to_user(s->buf, sm, copysize))
5504 		return -EFAULT;
5505 
5506 	return 0;
5507 }
5508 
listmnt_next(struct mount * curr,bool reverse)5509 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5510 {
5511 	struct rb_node *node;
5512 
5513 	if (reverse)
5514 		node = rb_prev(&curr->mnt_node);
5515 	else
5516 		node = rb_next(&curr->mnt_node);
5517 
5518 	return node_to_mount(node);
5519 }
5520 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5521 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5522 {
5523 	struct mount *first, *child;
5524 
5525 	rwsem_assert_held(&namespace_sem);
5526 
5527 	/* We're looking at our own ns, just use get_fs_root. */
5528 	if (ns == current->nsproxy->mnt_ns) {
5529 		get_fs_root(current->fs, root);
5530 		return 0;
5531 	}
5532 
5533 	/*
5534 	 * We have to find the first mount in our ns and use that, however it
5535 	 * may not exist, so handle that properly.
5536 	 */
5537 	if (mnt_ns_empty(ns))
5538 		return -ENOENT;
5539 
5540 	first = child = ns->root;
5541 	for (;;) {
5542 		child = listmnt_next(child, false);
5543 		if (!child)
5544 			return -ENOENT;
5545 		if (child->mnt_parent == first)
5546 			break;
5547 	}
5548 
5549 	root->mnt = mntget(&child->mnt);
5550 	root->dentry = dget(root->mnt->mnt_root);
5551 	return 0;
5552 }
5553 
5554 /* This must be updated whenever a new flag is added */
5555 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5556 			     STATMOUNT_MNT_BASIC | \
5557 			     STATMOUNT_PROPAGATE_FROM | \
5558 			     STATMOUNT_MNT_ROOT | \
5559 			     STATMOUNT_MNT_POINT | \
5560 			     STATMOUNT_FS_TYPE | \
5561 			     STATMOUNT_MNT_NS_ID | \
5562 			     STATMOUNT_MNT_OPTS | \
5563 			     STATMOUNT_FS_SUBTYPE | \
5564 			     STATMOUNT_SB_SOURCE | \
5565 			     STATMOUNT_OPT_ARRAY | \
5566 			     STATMOUNT_OPT_SEC_ARRAY | \
5567 			     STATMOUNT_SUPPORTED_MASK | \
5568 			     STATMOUNT_MNT_UIDMAP | \
5569 			     STATMOUNT_MNT_GIDMAP)
5570 
5571 /* locks: namespace_shared */
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5572 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5573 			struct mnt_namespace *ns)
5574 {
5575 	struct mount *m;
5576 	int err;
5577 
5578 	/* Has the namespace already been emptied? */
5579 	if (mnt_ns_id && mnt_ns_empty(ns))
5580 		return -ENOENT;
5581 
5582 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5583 	if (!s->mnt)
5584 		return -ENOENT;
5585 
5586 	err = grab_requested_root(ns, &s->root);
5587 	if (err)
5588 		return err;
5589 
5590 	/*
5591 	 * Don't trigger audit denials. We just want to determine what
5592 	 * mounts to show users.
5593 	 */
5594 	m = real_mount(s->mnt);
5595 	if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5596 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5597 		return -EPERM;
5598 
5599 	err = security_sb_statfs(s->mnt->mnt_root);
5600 	if (err)
5601 		return err;
5602 
5603 	/*
5604 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5605 	 * can change concurrently as we only hold the read-side of the
5606 	 * namespace semaphore and mount properties may change with only
5607 	 * the mount lock held.
5608 	 *
5609 	 * We could sample the mount lock sequence counter to detect
5610 	 * those changes and retry. But it's not worth it. Worst that
5611 	 * happens is that the mnt->mnt_idmap pointer is already changed
5612 	 * while mnt->mnt_flags isn't or vica versa. So what.
5613 	 *
5614 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5615 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5616 	 * torn read/write. That's all we care about right now.
5617 	 */
5618 	s->idmap = mnt_idmap(s->mnt);
5619 	if (s->mask & STATMOUNT_MNT_BASIC)
5620 		statmount_mnt_basic(s);
5621 
5622 	if (s->mask & STATMOUNT_SB_BASIC)
5623 		statmount_sb_basic(s);
5624 
5625 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5626 		statmount_propagate_from(s);
5627 
5628 	if (s->mask & STATMOUNT_FS_TYPE)
5629 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5630 
5631 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5632 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5633 
5634 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5635 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5636 
5637 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5638 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5639 
5640 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5641 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5642 
5643 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5644 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5645 
5646 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5647 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5648 
5649 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5650 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5651 
5652 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5653 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5654 
5655 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5656 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5657 
5658 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5659 		statmount_mnt_ns_id(s, ns);
5660 
5661 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5662 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5663 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5664 	}
5665 
5666 	if (err)
5667 		return err;
5668 
5669 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5670 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5671 
5672 	return 0;
5673 }
5674 
retry_statmount(const long ret,size_t * seq_size)5675 static inline bool retry_statmount(const long ret, size_t *seq_size)
5676 {
5677 	if (likely(ret != -EAGAIN))
5678 		return false;
5679 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5680 		return false;
5681 	if (unlikely(*seq_size > MAX_RW_COUNT))
5682 		return false;
5683 	return true;
5684 }
5685 
5686 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5687 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5688 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5689 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5690 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5691 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5692 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5693 			      struct statmount __user *buf, size_t bufsize,
5694 			      size_t seq_size)
5695 {
5696 	if (!access_ok(buf, bufsize))
5697 		return -EFAULT;
5698 
5699 	memset(ks, 0, sizeof(*ks));
5700 	ks->mask = kreq->param;
5701 	ks->buf = buf;
5702 	ks->bufsize = bufsize;
5703 
5704 	if (ks->mask & STATMOUNT_STRING_REQ) {
5705 		if (bufsize == sizeof(ks->sm))
5706 			return -EOVERFLOW;
5707 
5708 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5709 		if (!ks->seq.buf)
5710 			return -ENOMEM;
5711 
5712 		ks->seq.size = seq_size;
5713 	}
5714 
5715 	return 0;
5716 }
5717 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5718 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5719 			   struct mnt_id_req *kreq)
5720 {
5721 	int ret;
5722 	size_t usize;
5723 
5724 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5725 
5726 	ret = get_user(usize, &req->size);
5727 	if (ret)
5728 		return -EFAULT;
5729 	if (unlikely(usize > PAGE_SIZE))
5730 		return -E2BIG;
5731 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5732 		return -EINVAL;
5733 	memset(kreq, 0, sizeof(*kreq));
5734 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5735 	if (ret)
5736 		return ret;
5737 	if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5738 		return -EINVAL;
5739 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5740 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5741 		return -EINVAL;
5742 	return 0;
5743 }
5744 
5745 /*
5746  * If the user requested a specific mount namespace id, look that up and return
5747  * that, or if not simply grab a passive reference on our mount namespace and
5748  * return that.
5749  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5750 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5751 {
5752 	struct mnt_namespace *mnt_ns;
5753 
5754 	if (kreq->mnt_ns_id) {
5755 		mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5756 		if (!mnt_ns)
5757 			return ERR_PTR(-ENOENT);
5758 	} else if (kreq->mnt_ns_fd) {
5759 		struct ns_common *ns;
5760 
5761 		CLASS(fd, f)(kreq->mnt_ns_fd);
5762 		if (fd_empty(f))
5763 			return ERR_PTR(-EBADF);
5764 
5765 		if (!proc_ns_file(fd_file(f)))
5766 			return ERR_PTR(-EINVAL);
5767 
5768 		ns = get_proc_ns(file_inode(fd_file(f)));
5769 		if (ns->ns_type != CLONE_NEWNS)
5770 			return ERR_PTR(-EINVAL);
5771 
5772 		mnt_ns = to_mnt_ns(ns);
5773 		refcount_inc(&mnt_ns->passive);
5774 	} else {
5775 		mnt_ns = current->nsproxy->mnt_ns;
5776 		refcount_inc(&mnt_ns->passive);
5777 	}
5778 
5779 	return mnt_ns;
5780 }
5781 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5782 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5783 		struct statmount __user *, buf, size_t, bufsize,
5784 		unsigned int, flags)
5785 {
5786 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5787 	struct kstatmount *ks __free(kfree) = NULL;
5788 	struct mnt_id_req kreq;
5789 	/* We currently support retrieval of 3 strings. */
5790 	size_t seq_size = 3 * PATH_MAX;
5791 	int ret;
5792 
5793 	if (flags)
5794 		return -EINVAL;
5795 
5796 	ret = copy_mnt_id_req(req, &kreq);
5797 	if (ret)
5798 		return ret;
5799 
5800 	ns = grab_requested_mnt_ns(&kreq);
5801 	if (IS_ERR(ns))
5802 		return PTR_ERR(ns);
5803 
5804 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5805 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5806 		return -ENOENT;
5807 
5808 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5809 	if (!ks)
5810 		return -ENOMEM;
5811 
5812 retry:
5813 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5814 	if (ret)
5815 		return ret;
5816 
5817 	scoped_guard(namespace_shared)
5818 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5819 
5820 	if (!ret)
5821 		ret = copy_statmount_to_user(ks);
5822 	kvfree(ks->seq.buf);
5823 	path_put(&ks->root);
5824 	if (retry_statmount(ret, &seq_size))
5825 		goto retry;
5826 	return ret;
5827 }
5828 
5829 struct klistmount {
5830 	u64 last_mnt_id;
5831 	u64 mnt_parent_id;
5832 	u64 *kmnt_ids;
5833 	u32 nr_mnt_ids;
5834 	struct mnt_namespace *ns;
5835 	struct path root;
5836 };
5837 
5838 /* locks: namespace_shared */
do_listmount(struct klistmount * kls,bool reverse)5839 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5840 {
5841 	struct mnt_namespace *ns = kls->ns;
5842 	u64 mnt_parent_id = kls->mnt_parent_id;
5843 	u64 last_mnt_id = kls->last_mnt_id;
5844 	u64 *mnt_ids = kls->kmnt_ids;
5845 	size_t nr_mnt_ids = kls->nr_mnt_ids;
5846 	struct path orig;
5847 	struct mount *r, *first;
5848 	ssize_t ret;
5849 
5850 	rwsem_assert_held(&namespace_sem);
5851 
5852 	ret = grab_requested_root(ns, &kls->root);
5853 	if (ret)
5854 		return ret;
5855 
5856 	if (mnt_parent_id == LSMT_ROOT) {
5857 		orig = kls->root;
5858 	} else {
5859 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5860 		if (!orig.mnt)
5861 			return -ENOENT;
5862 		orig.dentry = orig.mnt->mnt_root;
5863 	}
5864 
5865 	/*
5866 	 * Don't trigger audit denials. We just want to determine what
5867 	 * mounts to show users.
5868 	 */
5869 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5870 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5871 		return -EPERM;
5872 
5873 	ret = security_sb_statfs(orig.dentry);
5874 	if (ret)
5875 		return ret;
5876 
5877 	if (!last_mnt_id) {
5878 		if (reverse)
5879 			first = node_to_mount(ns->mnt_last_node);
5880 		else
5881 			first = node_to_mount(ns->mnt_first_node);
5882 	} else {
5883 		if (reverse)
5884 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5885 		else
5886 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5887 	}
5888 
5889 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5890 		if (r->mnt_id_unique == mnt_parent_id)
5891 			continue;
5892 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5893 			continue;
5894 		*mnt_ids = r->mnt_id_unique;
5895 		mnt_ids++;
5896 		nr_mnt_ids--;
5897 		ret++;
5898 	}
5899 	return ret;
5900 }
5901 
__free_klistmount_free(const struct klistmount * kls)5902 static void __free_klistmount_free(const struct klistmount *kls)
5903 {
5904 	path_put(&kls->root);
5905 	kvfree(kls->kmnt_ids);
5906 	mnt_ns_release(kls->ns);
5907 }
5908 
prepare_klistmount(struct klistmount * kls,struct mnt_id_req * kreq,size_t nr_mnt_ids)5909 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5910 				     size_t nr_mnt_ids)
5911 {
5912 	u64 last_mnt_id = kreq->param;
5913 	struct mnt_namespace *ns;
5914 
5915 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5916 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5917 		return -EINVAL;
5918 
5919 	kls->last_mnt_id = last_mnt_id;
5920 
5921 	kls->nr_mnt_ids = nr_mnt_ids;
5922 	kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5923 				       GFP_KERNEL_ACCOUNT);
5924 	if (!kls->kmnt_ids)
5925 		return -ENOMEM;
5926 
5927 	ns = grab_requested_mnt_ns(kreq);
5928 	if (IS_ERR(ns))
5929 		return PTR_ERR(ns);
5930 	kls->ns = ns;
5931 
5932 	kls->mnt_parent_id = kreq->mnt_id;
5933 	return 0;
5934 }
5935 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5936 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5937 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5938 {
5939 	struct klistmount kls __free(klistmount_free) = {};
5940 	const size_t maxcount = 1000000;
5941 	struct mnt_id_req kreq;
5942 	ssize_t ret;
5943 
5944 	if (flags & ~LISTMOUNT_REVERSE)
5945 		return -EINVAL;
5946 
5947 	/*
5948 	 * If the mount namespace really has more than 1 million mounts the
5949 	 * caller must iterate over the mount namespace (and reconsider their
5950 	 * system design...).
5951 	 */
5952 	if (unlikely(nr_mnt_ids > maxcount))
5953 		return -EOVERFLOW;
5954 
5955 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5956 		return -EFAULT;
5957 
5958 	ret = copy_mnt_id_req(req, &kreq);
5959 	if (ret)
5960 		return ret;
5961 
5962 	ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5963 	if (ret)
5964 		return ret;
5965 
5966 	if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5967 	    !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5968 		return -ENOENT;
5969 
5970 	/*
5971 	 * We only need to guard against mount topology changes as
5972 	 * listmount() doesn't care about any mount properties.
5973 	 */
5974 	scoped_guard(namespace_shared)
5975 		ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5976 	if (ret <= 0)
5977 		return ret;
5978 
5979 	if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5980 		return -EFAULT;
5981 
5982 	return ret;
5983 }
5984 
5985 struct mnt_namespace init_mnt_ns = {
5986 	.ns		= NS_COMMON_INIT(init_mnt_ns),
5987 	.user_ns	= &init_user_ns,
5988 	.passive	= REFCOUNT_INIT(1),
5989 	.mounts		= RB_ROOT,
5990 	.poll		= __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5991 };
5992 
init_mount_tree(void)5993 static void __init init_mount_tree(void)
5994 {
5995 	struct vfsmount *mnt;
5996 	struct mount *m;
5997 	struct path root;
5998 
5999 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6000 	if (IS_ERR(mnt))
6001 		panic("Can't create rootfs");
6002 
6003 	m = real_mount(mnt);
6004 	init_mnt_ns.root = m;
6005 	init_mnt_ns.nr_mounts = 1;
6006 	mnt_add_to_ns(&init_mnt_ns, m);
6007 	init_task.nsproxy->mnt_ns = &init_mnt_ns;
6008 	get_mnt_ns(&init_mnt_ns);
6009 
6010 	root.mnt = mnt;
6011 	root.dentry = mnt->mnt_root;
6012 
6013 	set_fs_pwd(current->fs, &root);
6014 	set_fs_root(current->fs, &root);
6015 
6016 	ns_tree_add(&init_mnt_ns);
6017 }
6018 
mnt_init(void)6019 void __init mnt_init(void)
6020 {
6021 	int err;
6022 
6023 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6024 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6025 
6026 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6027 				sizeof(struct hlist_head),
6028 				mhash_entries, 19,
6029 				HASH_ZERO,
6030 				&m_hash_shift, &m_hash_mask, 0, 0);
6031 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6032 				sizeof(struct hlist_head),
6033 				mphash_entries, 19,
6034 				HASH_ZERO,
6035 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6036 
6037 	if (!mount_hashtable || !mountpoint_hashtable)
6038 		panic("Failed to allocate mount hash table\n");
6039 
6040 	kernfs_init();
6041 
6042 	err = sysfs_init();
6043 	if (err)
6044 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6045 			__func__, err);
6046 	fs_kobj = kobject_create_and_add("fs", NULL);
6047 	if (!fs_kobj)
6048 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6049 	shmem_init();
6050 	init_rootfs();
6051 	init_mount_tree();
6052 }
6053 
put_mnt_ns(struct mnt_namespace * ns)6054 void put_mnt_ns(struct mnt_namespace *ns)
6055 {
6056 	if (!ns_ref_put(ns))
6057 		return;
6058 	guard(namespace_excl)();
6059 	emptied_ns = ns;
6060 	guard(mount_writer)();
6061 	umount_tree(ns->root, 0);
6062 }
6063 
kern_mount(struct file_system_type * type)6064 struct vfsmount *kern_mount(struct file_system_type *type)
6065 {
6066 	struct vfsmount *mnt;
6067 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6068 	if (!IS_ERR(mnt)) {
6069 		/*
6070 		 * it is a longterm mount, don't release mnt until
6071 		 * we unmount before file sys is unregistered
6072 		*/
6073 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6074 	}
6075 	return mnt;
6076 }
6077 EXPORT_SYMBOL_GPL(kern_mount);
6078 
kern_unmount(struct vfsmount * mnt)6079 void kern_unmount(struct vfsmount *mnt)
6080 {
6081 	/* release long term mount so mount point can be released */
6082 	if (!IS_ERR(mnt)) {
6083 		mnt_make_shortterm(mnt);
6084 		synchronize_rcu();	/* yecchhh... */
6085 		mntput(mnt);
6086 	}
6087 }
6088 EXPORT_SYMBOL(kern_unmount);
6089 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6090 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6091 {
6092 	unsigned int i;
6093 
6094 	for (i = 0; i < num; i++)
6095 		mnt_make_shortterm(mnt[i]);
6096 	synchronize_rcu_expedited();
6097 	for (i = 0; i < num; i++)
6098 		mntput(mnt[i]);
6099 }
6100 EXPORT_SYMBOL(kern_unmount_array);
6101 
our_mnt(struct vfsmount * mnt)6102 bool our_mnt(struct vfsmount *mnt)
6103 {
6104 	return check_mnt(real_mount(mnt));
6105 }
6106 
current_chrooted(void)6107 bool current_chrooted(void)
6108 {
6109 	/* Does the current process have a non-standard root */
6110 	struct path fs_root __free(path_put) = {};
6111 	struct mount *root;
6112 
6113 	get_fs_root(current->fs, &fs_root);
6114 
6115 	/* Find the namespace root */
6116 
6117 	guard(mount_locked_reader)();
6118 
6119 	root = topmost_overmount(current->nsproxy->mnt_ns->root);
6120 
6121 	return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6122 }
6123 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6124 static bool mnt_already_visible(struct mnt_namespace *ns,
6125 				const struct super_block *sb,
6126 				int *new_mnt_flags)
6127 {
6128 	int new_flags = *new_mnt_flags;
6129 	struct mount *mnt, *n;
6130 
6131 	guard(namespace_shared)();
6132 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6133 		struct mount *child;
6134 		int mnt_flags;
6135 
6136 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6137 			continue;
6138 
6139 		/* This mount is not fully visible if it's root directory
6140 		 * is not the root directory of the filesystem.
6141 		 */
6142 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6143 			continue;
6144 
6145 		/* A local view of the mount flags */
6146 		mnt_flags = mnt->mnt.mnt_flags;
6147 
6148 		/* Don't miss readonly hidden in the superblock flags */
6149 		if (sb_rdonly(mnt->mnt.mnt_sb))
6150 			mnt_flags |= MNT_LOCK_READONLY;
6151 
6152 		/* Verify the mount flags are equal to or more permissive
6153 		 * than the proposed new mount.
6154 		 */
6155 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6156 		    !(new_flags & MNT_READONLY))
6157 			continue;
6158 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6159 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6160 			continue;
6161 
6162 		/* This mount is not fully visible if there are any
6163 		 * locked child mounts that cover anything except for
6164 		 * empty directories.
6165 		 */
6166 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6167 			struct inode *inode = child->mnt_mountpoint->d_inode;
6168 			/* Only worry about locked mounts */
6169 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6170 				continue;
6171 			/* Is the directory permanently empty? */
6172 			if (!is_empty_dir_inode(inode))
6173 				goto next;
6174 		}
6175 		/* Preserve the locked attributes */
6176 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6177 					       MNT_LOCK_ATIME);
6178 		return true;
6179 	next:	;
6180 	}
6181 	return false;
6182 }
6183 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6184 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6185 {
6186 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6187 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6188 	unsigned long s_iflags;
6189 
6190 	if (ns->user_ns == &init_user_ns)
6191 		return false;
6192 
6193 	/* Can this filesystem be too revealing? */
6194 	s_iflags = sb->s_iflags;
6195 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6196 		return false;
6197 
6198 	if ((s_iflags & required_iflags) != required_iflags) {
6199 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6200 			  required_iflags);
6201 		return true;
6202 	}
6203 
6204 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6205 }
6206 
mnt_may_suid(struct vfsmount * mnt)6207 bool mnt_may_suid(struct vfsmount *mnt)
6208 {
6209 	/*
6210 	 * Foreign mounts (accessed via fchdir or through /proc
6211 	 * symlinks) are always treated as if they are nosuid.  This
6212 	 * prevents namespaces from trusting potentially unsafe
6213 	 * suid/sgid bits, file caps, or security labels that originate
6214 	 * in other namespaces.
6215 	 */
6216 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6217 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6218 }
6219 
mntns_get(struct task_struct * task)6220 static struct ns_common *mntns_get(struct task_struct *task)
6221 {
6222 	struct ns_common *ns = NULL;
6223 	struct nsproxy *nsproxy;
6224 
6225 	task_lock(task);
6226 	nsproxy = task->nsproxy;
6227 	if (nsproxy) {
6228 		ns = &nsproxy->mnt_ns->ns;
6229 		get_mnt_ns(to_mnt_ns(ns));
6230 	}
6231 	task_unlock(task);
6232 
6233 	return ns;
6234 }
6235 
mntns_put(struct ns_common * ns)6236 static void mntns_put(struct ns_common *ns)
6237 {
6238 	put_mnt_ns(to_mnt_ns(ns));
6239 }
6240 
mntns_install(struct nsset * nsset,struct ns_common * ns)6241 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6242 {
6243 	struct nsproxy *nsproxy = nsset->nsproxy;
6244 	struct fs_struct *fs = nsset->fs;
6245 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6246 	struct user_namespace *user_ns = nsset->cred->user_ns;
6247 	struct path root;
6248 	int err;
6249 
6250 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6251 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6252 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6253 		return -EPERM;
6254 
6255 	if (is_anon_ns(mnt_ns))
6256 		return -EINVAL;
6257 
6258 	if (fs->users != 1)
6259 		return -EINVAL;
6260 
6261 	get_mnt_ns(mnt_ns);
6262 	old_mnt_ns = nsproxy->mnt_ns;
6263 	nsproxy->mnt_ns = mnt_ns;
6264 
6265 	/* Find the root */
6266 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6267 				"/", LOOKUP_DOWN, &root);
6268 	if (err) {
6269 		/* revert to old namespace */
6270 		nsproxy->mnt_ns = old_mnt_ns;
6271 		put_mnt_ns(mnt_ns);
6272 		return err;
6273 	}
6274 
6275 	put_mnt_ns(old_mnt_ns);
6276 
6277 	/* Update the pwd and root */
6278 	set_fs_pwd(fs, &root);
6279 	set_fs_root(fs, &root);
6280 
6281 	path_put(&root);
6282 	return 0;
6283 }
6284 
mntns_owner(struct ns_common * ns)6285 static struct user_namespace *mntns_owner(struct ns_common *ns)
6286 {
6287 	return to_mnt_ns(ns)->user_ns;
6288 }
6289 
6290 const struct proc_ns_operations mntns_operations = {
6291 	.name		= "mnt",
6292 	.get		= mntns_get,
6293 	.put		= mntns_put,
6294 	.install	= mntns_install,
6295 	.owner		= mntns_owner,
6296 };
6297 
6298 #ifdef CONFIG_SYSCTL
6299 static const struct ctl_table fs_namespace_sysctls[] = {
6300 	{
6301 		.procname	= "mount-max",
6302 		.data		= &sysctl_mount_max,
6303 		.maxlen		= sizeof(unsigned int),
6304 		.mode		= 0644,
6305 		.proc_handler	= proc_dointvec_minmax,
6306 		.extra1		= SYSCTL_ONE,
6307 	},
6308 };
6309 
init_fs_namespace_sysctls(void)6310 static int __init init_fs_namespace_sysctls(void)
6311 {
6312 	register_sysctl_init("fs", fs_namespace_sysctls);
6313 	return 0;
6314 }
6315 fs_initcall(init_fs_namespace_sysctls);
6316 
6317 #endif /* CONFIG_SYSCTL */
6318