xref: /linux/include/linux/mmu_notifier.h (revision f4b0c4b508364fde023e4f7b9f23f7e38c663dfe)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/mmap_lock.h>
9 #include <linux/srcu.h>
10 #include <linux/interval_tree.h>
11 
12 struct mmu_notifier_subscriptions;
13 struct mmu_notifier;
14 struct mmu_notifier_range;
15 struct mmu_interval_notifier;
16 
17 /**
18  * enum mmu_notifier_event - reason for the mmu notifier callback
19  * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
20  * move the range
21  *
22  * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
23  * madvise() or replacing a page by another one, ...).
24  *
25  * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
26  * ie using the vma access permission (vm_page_prot) to update the whole range
27  * is enough no need to inspect changes to the CPU page table (mprotect()
28  * syscall)
29  *
30  * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
31  * pages in the range so to mirror those changes the user must inspect the CPU
32  * page table (from the end callback).
33  *
34  * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
35  * access flags). User should soft dirty the page in the end callback to make
36  * sure that anyone relying on soft dirtiness catch pages that might be written
37  * through non CPU mappings.
38  *
39  * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
40  * that the mm refcount is zero and the range is no longer accessible.
41  *
42  * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
43  * a device driver to possibly ignore the invalidation if the
44  * owner field matches the driver's device private pgmap owner.
45  *
46  * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no
47  * longer have exclusive access to the page. When sent during creation of an
48  * exclusive range the owner will be initialised to the value provided by the
49  * caller of make_device_exclusive_range(), otherwise the owner will be NULL.
50  */
51 enum mmu_notifier_event {
52 	MMU_NOTIFY_UNMAP = 0,
53 	MMU_NOTIFY_CLEAR,
54 	MMU_NOTIFY_PROTECTION_VMA,
55 	MMU_NOTIFY_PROTECTION_PAGE,
56 	MMU_NOTIFY_SOFT_DIRTY,
57 	MMU_NOTIFY_RELEASE,
58 	MMU_NOTIFY_MIGRATE,
59 	MMU_NOTIFY_EXCLUSIVE,
60 };
61 
62 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
63 
64 struct mmu_notifier_ops {
65 	/*
66 	 * Called either by mmu_notifier_unregister or when the mm is
67 	 * being destroyed by exit_mmap, always before all pages are
68 	 * freed. This can run concurrently with other mmu notifier
69 	 * methods (the ones invoked outside the mm context) and it
70 	 * should tear down all secondary mmu mappings and freeze the
71 	 * secondary mmu. If this method isn't implemented you've to
72 	 * be sure that nothing could possibly write to the pages
73 	 * through the secondary mmu by the time the last thread with
74 	 * tsk->mm == mm exits.
75 	 *
76 	 * As side note: the pages freed after ->release returns could
77 	 * be immediately reallocated by the gart at an alias physical
78 	 * address with a different cache model, so if ->release isn't
79 	 * implemented because all _software_ driven memory accesses
80 	 * through the secondary mmu are terminated by the time the
81 	 * last thread of this mm quits, you've also to be sure that
82 	 * speculative _hardware_ operations can't allocate dirty
83 	 * cachelines in the cpu that could not be snooped and made
84 	 * coherent with the other read and write operations happening
85 	 * through the gart alias address, so leading to memory
86 	 * corruption.
87 	 */
88 	void (*release)(struct mmu_notifier *subscription,
89 			struct mm_struct *mm);
90 
91 	/*
92 	 * clear_flush_young is called after the VM is
93 	 * test-and-clearing the young/accessed bitflag in the
94 	 * pte. This way the VM will provide proper aging to the
95 	 * accesses to the page through the secondary MMUs and not
96 	 * only to the ones through the Linux pte.
97 	 * Start-end is necessary in case the secondary MMU is mapping the page
98 	 * at a smaller granularity than the primary MMU.
99 	 */
100 	int (*clear_flush_young)(struct mmu_notifier *subscription,
101 				 struct mm_struct *mm,
102 				 unsigned long start,
103 				 unsigned long end);
104 
105 	/*
106 	 * clear_young is a lightweight version of clear_flush_young. Like the
107 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
108 	 * in the secondary pte, but it may omit flushing the secondary tlb.
109 	 */
110 	int (*clear_young)(struct mmu_notifier *subscription,
111 			   struct mm_struct *mm,
112 			   unsigned long start,
113 			   unsigned long end);
114 
115 	/*
116 	 * test_young is called to check the young/accessed bitflag in
117 	 * the secondary pte. This is used to know if the page is
118 	 * frequently used without actually clearing the flag or tearing
119 	 * down the secondary mapping on the page.
120 	 */
121 	int (*test_young)(struct mmu_notifier *subscription,
122 			  struct mm_struct *mm,
123 			  unsigned long address);
124 
125 	/*
126 	 * invalidate_range_start() and invalidate_range_end() must be
127 	 * paired and are called only when the mmap_lock and/or the
128 	 * locks protecting the reverse maps are held. If the subsystem
129 	 * can't guarantee that no additional references are taken to
130 	 * the pages in the range, it has to implement the
131 	 * invalidate_range() notifier to remove any references taken
132 	 * after invalidate_range_start().
133 	 *
134 	 * Invalidation of multiple concurrent ranges may be
135 	 * optionally permitted by the driver. Either way the
136 	 * establishment of sptes is forbidden in the range passed to
137 	 * invalidate_range_begin/end for the whole duration of the
138 	 * invalidate_range_begin/end critical section.
139 	 *
140 	 * invalidate_range_start() is called when all pages in the
141 	 * range are still mapped and have at least a refcount of one.
142 	 *
143 	 * invalidate_range_end() is called when all pages in the
144 	 * range have been unmapped and the pages have been freed by
145 	 * the VM.
146 	 *
147 	 * The VM will remove the page table entries and potentially
148 	 * the page between invalidate_range_start() and
149 	 * invalidate_range_end(). If the page must not be freed
150 	 * because of pending I/O or other circumstances then the
151 	 * invalidate_range_start() callback (or the initial mapping
152 	 * by the driver) must make sure that the refcount is kept
153 	 * elevated.
154 	 *
155 	 * If the driver increases the refcount when the pages are
156 	 * initially mapped into an address space then either
157 	 * invalidate_range_start() or invalidate_range_end() may
158 	 * decrease the refcount. If the refcount is decreased on
159 	 * invalidate_range_start() then the VM can free pages as page
160 	 * table entries are removed.  If the refcount is only
161 	 * dropped on invalidate_range_end() then the driver itself
162 	 * will drop the last refcount but it must take care to flush
163 	 * any secondary tlb before doing the final free on the
164 	 * page. Pages will no longer be referenced by the linux
165 	 * address space but may still be referenced by sptes until
166 	 * the last refcount is dropped.
167 	 *
168 	 * If blockable argument is set to false then the callback cannot
169 	 * sleep and has to return with -EAGAIN if sleeping would be required.
170 	 * 0 should be returned otherwise. Please note that notifiers that can
171 	 * fail invalidate_range_start are not allowed to implement
172 	 * invalidate_range_end, as there is no mechanism for informing the
173 	 * notifier that its start failed.
174 	 */
175 	int (*invalidate_range_start)(struct mmu_notifier *subscription,
176 				      const struct mmu_notifier_range *range);
177 	void (*invalidate_range_end)(struct mmu_notifier *subscription,
178 				     const struct mmu_notifier_range *range);
179 
180 	/*
181 	 * arch_invalidate_secondary_tlbs() is used to manage a non-CPU TLB
182 	 * which shares page-tables with the CPU. The
183 	 * invalidate_range_start()/end() callbacks should not be implemented as
184 	 * invalidate_secondary_tlbs() already catches the points in time when
185 	 * an external TLB needs to be flushed.
186 	 *
187 	 * This requires arch_invalidate_secondary_tlbs() to be called while
188 	 * holding the ptl spin-lock and therefore this callback is not allowed
189 	 * to sleep.
190 	 *
191 	 * This is called by architecture code whenever invalidating a TLB
192 	 * entry. It is assumed that any secondary TLB has the same rules for
193 	 * when invalidations are required. If this is not the case architecture
194 	 * code will need to call this explicitly when required for secondary
195 	 * TLB invalidation.
196 	 */
197 	void (*arch_invalidate_secondary_tlbs)(
198 					struct mmu_notifier *subscription,
199 					struct mm_struct *mm,
200 					unsigned long start,
201 					unsigned long end);
202 
203 	/*
204 	 * These callbacks are used with the get/put interface to manage the
205 	 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
206 	 * notifier for use with the mm.
207 	 *
208 	 * free_notifier() is only called after the mmu_notifier has been
209 	 * fully put, calls to any ops callback are prevented and no ops
210 	 * callbacks are currently running. It is called from a SRCU callback
211 	 * and cannot sleep.
212 	 */
213 	struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
214 	void (*free_notifier)(struct mmu_notifier *subscription);
215 };
216 
217 /*
218  * The notifier chains are protected by mmap_lock and/or the reverse map
219  * semaphores. Notifier chains are only changed when all reverse maps and
220  * the mmap_lock locks are taken.
221  *
222  * Therefore notifier chains can only be traversed when either
223  *
224  * 1. mmap_lock is held.
225  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
226  * 3. No other concurrent thread can access the list (release)
227  */
228 struct mmu_notifier {
229 	struct hlist_node hlist;
230 	const struct mmu_notifier_ops *ops;
231 	struct mm_struct *mm;
232 	struct rcu_head rcu;
233 	unsigned int users;
234 };
235 
236 /**
237  * struct mmu_interval_notifier_ops
238  * @invalidate: Upon return the caller must stop using any SPTEs within this
239  *              range. This function can sleep. Return false only if sleeping
240  *              was required but mmu_notifier_range_blockable(range) is false.
241  */
242 struct mmu_interval_notifier_ops {
243 	bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
244 			   const struct mmu_notifier_range *range,
245 			   unsigned long cur_seq);
246 };
247 
248 struct mmu_interval_notifier {
249 	struct interval_tree_node interval_tree;
250 	const struct mmu_interval_notifier_ops *ops;
251 	struct mm_struct *mm;
252 	struct hlist_node deferred_item;
253 	unsigned long invalidate_seq;
254 };
255 
256 #ifdef CONFIG_MMU_NOTIFIER
257 
258 #ifdef CONFIG_LOCKDEP
259 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
260 #endif
261 
262 struct mmu_notifier_range {
263 	struct mm_struct *mm;
264 	unsigned long start;
265 	unsigned long end;
266 	unsigned flags;
267 	enum mmu_notifier_event event;
268 	void *owner;
269 };
270 
mm_has_notifiers(struct mm_struct * mm)271 static inline int mm_has_notifiers(struct mm_struct *mm)
272 {
273 	return unlikely(mm->notifier_subscriptions);
274 }
275 
276 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
277 					     struct mm_struct *mm);
278 static inline struct mmu_notifier *
mmu_notifier_get(const struct mmu_notifier_ops * ops,struct mm_struct * mm)279 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
280 {
281 	struct mmu_notifier *ret;
282 
283 	mmap_write_lock(mm);
284 	ret = mmu_notifier_get_locked(ops, mm);
285 	mmap_write_unlock(mm);
286 	return ret;
287 }
288 void mmu_notifier_put(struct mmu_notifier *subscription);
289 void mmu_notifier_synchronize(void);
290 
291 extern int mmu_notifier_register(struct mmu_notifier *subscription,
292 				 struct mm_struct *mm);
293 extern int __mmu_notifier_register(struct mmu_notifier *subscription,
294 				   struct mm_struct *mm);
295 extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
296 				    struct mm_struct *mm);
297 
298 unsigned long
299 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
300 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
301 				 struct mm_struct *mm, unsigned long start,
302 				 unsigned long length,
303 				 const struct mmu_interval_notifier_ops *ops);
304 int mmu_interval_notifier_insert_locked(
305 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
306 	unsigned long start, unsigned long length,
307 	const struct mmu_interval_notifier_ops *ops);
308 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
309 
310 /**
311  * mmu_interval_set_seq - Save the invalidation sequence
312  * @interval_sub - The subscription passed to invalidate
313  * @cur_seq - The cur_seq passed to the invalidate() callback
314  *
315  * This must be called unconditionally from the invalidate callback of a
316  * struct mmu_interval_notifier_ops under the same lock that is used to call
317  * mmu_interval_read_retry(). It updates the sequence number for later use by
318  * mmu_interval_read_retry(). The provided cur_seq will always be odd.
319  *
320  * If the caller does not call mmu_interval_read_begin() or
321  * mmu_interval_read_retry() then this call is not required.
322  */
323 static inline void
mmu_interval_set_seq(struct mmu_interval_notifier * interval_sub,unsigned long cur_seq)324 mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
325 		     unsigned long cur_seq)
326 {
327 	WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
328 }
329 
330 /**
331  * mmu_interval_read_retry - End a read side critical section against a VA range
332  * interval_sub: The subscription
333  * seq: The return of the paired mmu_interval_read_begin()
334  *
335  * This MUST be called under a user provided lock that is also held
336  * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
337  *
338  * Each call should be paired with a single mmu_interval_read_begin() and
339  * should be used to conclude the read side.
340  *
341  * Returns true if an invalidation collided with this critical section, and
342  * the caller should retry.
343  */
344 static inline bool
mmu_interval_read_retry(struct mmu_interval_notifier * interval_sub,unsigned long seq)345 mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
346 			unsigned long seq)
347 {
348 	return interval_sub->invalidate_seq != seq;
349 }
350 
351 /**
352  * mmu_interval_check_retry - Test if a collision has occurred
353  * interval_sub: The subscription
354  * seq: The return of the matching mmu_interval_read_begin()
355  *
356  * This can be used in the critical section between mmu_interval_read_begin()
357  * and mmu_interval_read_retry().  A return of true indicates an invalidation
358  * has collided with this critical region and a future
359  * mmu_interval_read_retry() will return true.
360  *
361  * False is not reliable and only suggests a collision may not have
362  * occurred. It can be called many times and does not have to hold the user
363  * provided lock.
364  *
365  * This call can be used as part of loops and other expensive operations to
366  * expedite a retry.
367  */
368 static inline bool
mmu_interval_check_retry(struct mmu_interval_notifier * interval_sub,unsigned long seq)369 mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
370 			 unsigned long seq)
371 {
372 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
373 	return READ_ONCE(interval_sub->invalidate_seq) != seq;
374 }
375 
376 extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
377 extern void __mmu_notifier_release(struct mm_struct *mm);
378 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
379 					  unsigned long start,
380 					  unsigned long end);
381 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
382 				      unsigned long start,
383 				      unsigned long end);
384 extern int __mmu_notifier_test_young(struct mm_struct *mm,
385 				     unsigned long address);
386 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
387 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r);
388 extern void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
389 					unsigned long start, unsigned long end);
390 extern bool
391 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
392 
393 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)394 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
395 {
396 	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
397 }
398 
mmu_notifier_release(struct mm_struct * mm)399 static inline void mmu_notifier_release(struct mm_struct *mm)
400 {
401 	if (mm_has_notifiers(mm))
402 		__mmu_notifier_release(mm);
403 }
404 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)405 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
406 					  unsigned long start,
407 					  unsigned long end)
408 {
409 	if (mm_has_notifiers(mm))
410 		return __mmu_notifier_clear_flush_young(mm, start, end);
411 	return 0;
412 }
413 
mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)414 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
415 					   unsigned long start,
416 					   unsigned long end)
417 {
418 	if (mm_has_notifiers(mm))
419 		return __mmu_notifier_clear_young(mm, start, end);
420 	return 0;
421 }
422 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)423 static inline int mmu_notifier_test_young(struct mm_struct *mm,
424 					  unsigned long address)
425 {
426 	if (mm_has_notifiers(mm))
427 		return __mmu_notifier_test_young(mm, address);
428 	return 0;
429 }
430 
431 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)432 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
433 {
434 	might_sleep();
435 
436 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
437 	if (mm_has_notifiers(range->mm)) {
438 		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
439 		__mmu_notifier_invalidate_range_start(range);
440 	}
441 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
442 }
443 
444 /*
445  * This version of mmu_notifier_invalidate_range_start() avoids blocking, but it
446  * can return an error if a notifier can't proceed without blocking, in which
447  * case you're not allowed to modify PTEs in the specified range.
448  *
449  * This is mainly intended for OOM handling.
450  */
451 static inline int __must_check
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)452 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
453 {
454 	int ret = 0;
455 
456 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
457 	if (mm_has_notifiers(range->mm)) {
458 		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
459 		ret = __mmu_notifier_invalidate_range_start(range);
460 	}
461 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
462 	return ret;
463 }
464 
465 static inline void
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)466 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
467 {
468 	if (mmu_notifier_range_blockable(range))
469 		might_sleep();
470 
471 	if (mm_has_notifiers(range->mm))
472 		__mmu_notifier_invalidate_range_end(range);
473 }
474 
mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct * mm,unsigned long start,unsigned long end)475 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
476 					unsigned long start, unsigned long end)
477 {
478 	if (mm_has_notifiers(mm))
479 		__mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
480 }
481 
mmu_notifier_subscriptions_init(struct mm_struct * mm)482 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
483 {
484 	mm->notifier_subscriptions = NULL;
485 }
486 
mmu_notifier_subscriptions_destroy(struct mm_struct * mm)487 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
488 {
489 	if (mm_has_notifiers(mm))
490 		__mmu_notifier_subscriptions_destroy(mm);
491 }
492 
493 
mmu_notifier_range_init(struct mmu_notifier_range * range,enum mmu_notifier_event event,unsigned flags,struct mm_struct * mm,unsigned long start,unsigned long end)494 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
495 					   enum mmu_notifier_event event,
496 					   unsigned flags,
497 					   struct mm_struct *mm,
498 					   unsigned long start,
499 					   unsigned long end)
500 {
501 	range->event = event;
502 	range->mm = mm;
503 	range->start = start;
504 	range->end = end;
505 	range->flags = flags;
506 }
507 
mmu_notifier_range_init_owner(struct mmu_notifier_range * range,enum mmu_notifier_event event,unsigned int flags,struct mm_struct * mm,unsigned long start,unsigned long end,void * owner)508 static inline void mmu_notifier_range_init_owner(
509 			struct mmu_notifier_range *range,
510 			enum mmu_notifier_event event, unsigned int flags,
511 			struct mm_struct *mm, unsigned long start,
512 			unsigned long end, void *owner)
513 {
514 	mmu_notifier_range_init(range, event, flags, mm, start, end);
515 	range->owner = owner;
516 }
517 
518 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
519 ({									\
520 	int __young;							\
521 	struct vm_area_struct *___vma = __vma;				\
522 	unsigned long ___address = __address;				\
523 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
524 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
525 						  ___address,		\
526 						  ___address +		\
527 							PAGE_SIZE);	\
528 	__young;							\
529 })
530 
531 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
532 ({									\
533 	int __young;							\
534 	struct vm_area_struct *___vma = __vma;				\
535 	unsigned long ___address = __address;				\
536 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
537 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
538 						  ___address,		\
539 						  ___address +		\
540 							PMD_SIZE);	\
541 	__young;							\
542 })
543 
544 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
545 ({									\
546 	int __young;							\
547 	struct vm_area_struct *___vma = __vma;				\
548 	unsigned long ___address = __address;				\
549 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
550 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
551 					    ___address + PAGE_SIZE);	\
552 	__young;							\
553 })
554 
555 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
556 ({									\
557 	int __young;							\
558 	struct vm_area_struct *___vma = __vma;				\
559 	unsigned long ___address = __address;				\
560 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
561 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
562 					    ___address + PMD_SIZE);	\
563 	__young;							\
564 })
565 
566 #else /* CONFIG_MMU_NOTIFIER */
567 
568 struct mmu_notifier_range {
569 	unsigned long start;
570 	unsigned long end;
571 };
572 
_mmu_notifier_range_init(struct mmu_notifier_range * range,unsigned long start,unsigned long end)573 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
574 					    unsigned long start,
575 					    unsigned long end)
576 {
577 	range->start = start;
578 	range->end = end;
579 }
580 
581 #define mmu_notifier_range_init(range,event,flags,mm,start,end)  \
582 	_mmu_notifier_range_init(range, start, end)
583 #define mmu_notifier_range_init_owner(range, event, flags, mm, start, \
584 					end, owner) \
585 	_mmu_notifier_range_init(range, start, end)
586 
587 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)588 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
589 {
590 	return true;
591 }
592 
mm_has_notifiers(struct mm_struct * mm)593 static inline int mm_has_notifiers(struct mm_struct *mm)
594 {
595 	return 0;
596 }
597 
mmu_notifier_release(struct mm_struct * mm)598 static inline void mmu_notifier_release(struct mm_struct *mm)
599 {
600 }
601 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)602 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
603 					  unsigned long start,
604 					  unsigned long end)
605 {
606 	return 0;
607 }
608 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)609 static inline int mmu_notifier_test_young(struct mm_struct *mm,
610 					  unsigned long address)
611 {
612 	return 0;
613 }
614 
615 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)616 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
617 {
618 }
619 
620 static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)621 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
622 {
623 	return 0;
624 }
625 
626 static inline
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)627 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
628 {
629 }
630 
mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct * mm,unsigned long start,unsigned long end)631 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
632 				  unsigned long start, unsigned long end)
633 {
634 }
635 
mmu_notifier_subscriptions_init(struct mm_struct * mm)636 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
637 {
638 }
639 
mmu_notifier_subscriptions_destroy(struct mm_struct * mm)640 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
641 {
642 }
643 
644 #define mmu_notifier_range_update_to_read_only(r) false
645 
646 #define ptep_clear_flush_young_notify ptep_clear_flush_young
647 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
648 #define ptep_clear_young_notify ptep_test_and_clear_young
649 #define pmdp_clear_young_notify pmdp_test_and_clear_young
650 #define	ptep_clear_flush_notify ptep_clear_flush
651 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
652 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
653 
mmu_notifier_synchronize(void)654 static inline void mmu_notifier_synchronize(void)
655 {
656 }
657 
658 #endif /* CONFIG_MMU_NOTIFIER */
659 
660 #endif /* _LINUX_MMU_NOTIFIER_H */
661