xref: /linux/mm/mmap.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 #include <linux/memfd.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 
60 #include "internal.h"
61 
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)	(0)
64 #endif
65 
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76 
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 
80 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
81 void vma_set_page_prot(struct vm_area_struct *vma)
82 {
83 	vm_flags_t vm_flags = vma->vm_flags;
84 	pgprot_t vm_page_prot;
85 
86 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
87 	if (vma_wants_writenotify(vma, vm_page_prot)) {
88 		vm_flags &= ~VM_SHARED;
89 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
90 	}
91 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
92 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
93 }
94 
95 /*
96  * check_brk_limits() - Use platform specific check of range & verify mlock
97  * limits.
98  * @addr: The address to check
99  * @len: The size of increase.
100  *
101  * Return: 0 on success.
102  */
103 static int check_brk_limits(unsigned long addr, unsigned long len)
104 {
105 	unsigned long mapped_addr;
106 
107 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
108 	if (IS_ERR_VALUE(mapped_addr))
109 		return mapped_addr;
110 
111 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
112 		? 0 : -EAGAIN;
113 }
114 
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 	unsigned long newbrk, oldbrk, origbrk;
118 	struct mm_struct *mm = current->mm;
119 	struct vm_area_struct *brkvma, *next = NULL;
120 	unsigned long min_brk;
121 	bool populate = false;
122 	LIST_HEAD(uf);
123 	struct vma_iterator vmi;
124 
125 	if (mmap_write_lock_killable(mm))
126 		return -EINTR;
127 
128 	origbrk = mm->brk;
129 
130 	min_brk = mm->start_brk;
131 #ifdef CONFIG_COMPAT_BRK
132 	/*
133 	 * CONFIG_COMPAT_BRK can still be overridden by setting
134 	 * randomize_va_space to 2, which will still cause mm->start_brk
135 	 * to be arbitrarily shifted
136 	 */
137 	if (!current->brk_randomized)
138 		min_brk = mm->end_data;
139 #endif
140 	if (brk < min_brk)
141 		goto out;
142 
143 	/*
144 	 * Check against rlimit here. If this check is done later after the test
145 	 * of oldbrk with newbrk then it can escape the test and let the data
146 	 * segment grow beyond its set limit the in case where the limit is
147 	 * not page aligned -Ram Gupta
148 	 */
149 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
150 			      mm->end_data, mm->start_data))
151 		goto out;
152 
153 	newbrk = PAGE_ALIGN(brk);
154 	oldbrk = PAGE_ALIGN(mm->brk);
155 	if (oldbrk == newbrk) {
156 		mm->brk = brk;
157 		goto success;
158 	}
159 
160 	/* Always allow shrinking brk. */
161 	if (brk <= mm->brk) {
162 		/* Search one past newbrk */
163 		vma_iter_init(&vmi, mm, newbrk);
164 		brkvma = vma_find(&vmi, oldbrk);
165 		if (!brkvma || brkvma->vm_start >= oldbrk)
166 			goto out; /* mapping intersects with an existing non-brk vma. */
167 		/*
168 		 * mm->brk must be protected by write mmap_lock.
169 		 * do_vmi_align_munmap() will drop the lock on success,  so
170 		 * update it before calling do_vma_munmap().
171 		 */
172 		mm->brk = brk;
173 		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
174 					/* unlock = */ true))
175 			goto out;
176 
177 		goto success_unlocked;
178 	}
179 
180 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
181 		goto out;
182 
183 	/*
184 	 * Only check if the next VMA is within the stack_guard_gap of the
185 	 * expansion area
186 	 */
187 	vma_iter_init(&vmi, mm, oldbrk);
188 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
189 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
190 		goto out;
191 
192 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
193 	/* Ok, looks good - let it rip. */
194 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
195 		goto out;
196 
197 	mm->brk = brk;
198 	if (mm->def_flags & VM_LOCKED)
199 		populate = true;
200 
201 success:
202 	mmap_write_unlock(mm);
203 success_unlocked:
204 	userfaultfd_unmap_complete(mm, &uf);
205 	if (populate)
206 		mm_populate(oldbrk, newbrk - oldbrk);
207 	return brk;
208 
209 out:
210 	mm->brk = origbrk;
211 	mmap_write_unlock(mm);
212 	return origbrk;
213 }
214 
215 /*
216  * If a hint addr is less than mmap_min_addr change hint to be as
217  * low as possible but still greater than mmap_min_addr
218  */
219 static inline unsigned long round_hint_to_min(unsigned long hint)
220 {
221 	hint &= PAGE_MASK;
222 	if (((void *)hint != NULL) &&
223 	    (hint < mmap_min_addr))
224 		return PAGE_ALIGN(mmap_min_addr);
225 	return hint;
226 }
227 
228 bool mlock_future_ok(struct mm_struct *mm, vm_flags_t vm_flags,
229 			unsigned long bytes)
230 {
231 	unsigned long locked_pages, limit_pages;
232 
233 	if (!(vm_flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
234 		return true;
235 
236 	locked_pages = bytes >> PAGE_SHIFT;
237 	locked_pages += mm->locked_vm;
238 
239 	limit_pages = rlimit(RLIMIT_MEMLOCK);
240 	limit_pages >>= PAGE_SHIFT;
241 
242 	return locked_pages <= limit_pages;
243 }
244 
245 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
246 {
247 	if (S_ISREG(inode->i_mode))
248 		return MAX_LFS_FILESIZE;
249 
250 	if (S_ISBLK(inode->i_mode))
251 		return MAX_LFS_FILESIZE;
252 
253 	if (S_ISSOCK(inode->i_mode))
254 		return MAX_LFS_FILESIZE;
255 
256 	/* Special "we do even unsigned file positions" case */
257 	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
258 		return 0;
259 
260 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
261 	return ULONG_MAX;
262 }
263 
264 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
265 				unsigned long pgoff, unsigned long len)
266 {
267 	u64 maxsize = file_mmap_size_max(file, inode);
268 
269 	if (maxsize && len > maxsize)
270 		return false;
271 	maxsize -= len;
272 	if (pgoff > maxsize >> PAGE_SHIFT)
273 		return false;
274 	return true;
275 }
276 
277 /**
278  * do_mmap() - Perform a userland memory mapping into the current process
279  * address space of length @len with protection bits @prot, mmap flags @flags
280  * (from which VMA flags will be inferred), and any additional VMA flags to
281  * apply @vm_flags. If this is a file-backed mapping then the file is specified
282  * in @file and page offset into the file via @pgoff.
283  *
284  * This function does not perform security checks on the file and assumes, if
285  * @uf is non-NULL, the caller has provided a list head to track unmap events
286  * for userfaultfd @uf.
287  *
288  * It also simply indicates whether memory population is required by setting
289  * @populate, which must be non-NULL, expecting the caller to actually perform
290  * this task itself if appropriate.
291  *
292  * This function will invoke architecture-specific (and if provided and
293  * relevant, file system-specific) logic to determine the most appropriate
294  * unmapped area in which to place the mapping if not MAP_FIXED.
295  *
296  * Callers which require userland mmap() behaviour should invoke vm_mmap(),
297  * which is also exported for module use.
298  *
299  * Those which require this behaviour less security checks, userfaultfd and
300  * populate behaviour, and who handle the mmap write lock themselves, should
301  * call this function.
302  *
303  * Note that the returned address may reside within a merged VMA if an
304  * appropriate merge were to take place, so it doesn't necessarily specify the
305  * start of a VMA, rather only the start of a valid mapped range of length
306  * @len bytes, rounded down to the nearest page size.
307  *
308  * The caller must write-lock current->mm->mmap_lock.
309  *
310  * @file: An optional struct file pointer describing the file which is to be
311  * mapped, if a file-backed mapping.
312  * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the
313  * address at which to perform this mapping. See mmap (2) for details. Must be
314  * page-aligned.
315  * @len: The length of the mapping. Will be page-aligned and must be at least 1
316  * page in size.
317  * @prot: Protection bits describing access required to the mapping. See mmap
318  * (2) for details.
319  * @flags: Flags specifying how the mapping should be performed, see mmap (2)
320  * for details.
321  * @vm_flags: VMA flags which should be set by default, or 0 otherwise.
322  * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise.
323  * @populate: A pointer to a value which will be set to 0 if no population of
324  * the range is required, or the number of bytes to populate if it is. Must be
325  * non-NULL. See mmap (2) for details as to under what circumstances population
326  * of the range occurs.
327  * @uf: An optional pointer to a list head to track userfaultfd unmap events
328  * should unmapping events arise. If provided, it is up to the caller to manage
329  * this.
330  *
331  * Returns: Either an error, or the address at which the requested mapping has
332  * been performed.
333  */
334 unsigned long do_mmap(struct file *file, unsigned long addr,
335 			unsigned long len, unsigned long prot,
336 			unsigned long flags, vm_flags_t vm_flags,
337 			unsigned long pgoff, unsigned long *populate,
338 			struct list_head *uf)
339 {
340 	struct mm_struct *mm = current->mm;
341 	int pkey = 0;
342 
343 	*populate = 0;
344 
345 	mmap_assert_write_locked(mm);
346 
347 	if (!len)
348 		return -EINVAL;
349 
350 	/*
351 	 * Does the application expect PROT_READ to imply PROT_EXEC?
352 	 *
353 	 * (the exception is when the underlying filesystem is noexec
354 	 *  mounted, in which case we don't add PROT_EXEC.)
355 	 */
356 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
357 		if (!(file && path_noexec(&file->f_path)))
358 			prot |= PROT_EXEC;
359 
360 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
361 	if (flags & MAP_FIXED_NOREPLACE)
362 		flags |= MAP_FIXED;
363 
364 	if (!(flags & MAP_FIXED))
365 		addr = round_hint_to_min(addr);
366 
367 	/* Careful about overflows.. */
368 	len = PAGE_ALIGN(len);
369 	if (!len)
370 		return -ENOMEM;
371 
372 	/* offset overflow? */
373 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
374 		return -EOVERFLOW;
375 
376 	/* Too many mappings? */
377 	if (mm->map_count > sysctl_max_map_count)
378 		return -ENOMEM;
379 
380 	/*
381 	 * addr is returned from get_unmapped_area,
382 	 * There are two cases:
383 	 * 1> MAP_FIXED == false
384 	 *	unallocated memory, no need to check sealing.
385 	 * 1> MAP_FIXED == true
386 	 *	sealing is checked inside mmap_region when
387 	 *	do_vmi_munmap is called.
388 	 */
389 
390 	if (prot == PROT_EXEC) {
391 		pkey = execute_only_pkey(mm);
392 		if (pkey < 0)
393 			pkey = 0;
394 	}
395 
396 	/* Do simple checking here so the lower-level routines won't have
397 	 * to. we assume access permissions have been handled by the open
398 	 * of the memory object, so we don't do any here.
399 	 */
400 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
401 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
402 
403 	/* Obtain the address to map to. we verify (or select) it and ensure
404 	 * that it represents a valid section of the address space.
405 	 */
406 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
407 	if (IS_ERR_VALUE(addr))
408 		return addr;
409 
410 	if (flags & MAP_FIXED_NOREPLACE) {
411 		if (find_vma_intersection(mm, addr, addr + len))
412 			return -EEXIST;
413 	}
414 
415 	if (flags & MAP_LOCKED)
416 		if (!can_do_mlock())
417 			return -EPERM;
418 
419 	if (!mlock_future_ok(mm, vm_flags, len))
420 		return -EAGAIN;
421 
422 	if (file) {
423 		struct inode *inode = file_inode(file);
424 		unsigned long flags_mask;
425 		int err;
426 
427 		if (!file_mmap_ok(file, inode, pgoff, len))
428 			return -EOVERFLOW;
429 
430 		flags_mask = LEGACY_MAP_MASK;
431 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
432 			flags_mask |= MAP_SYNC;
433 
434 		switch (flags & MAP_TYPE) {
435 		case MAP_SHARED:
436 			/*
437 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
438 			 * flags. E.g. MAP_SYNC is dangerous to use with
439 			 * MAP_SHARED as you don't know which consistency model
440 			 * you will get. We silently ignore unsupported flags
441 			 * with MAP_SHARED to preserve backward compatibility.
442 			 */
443 			flags &= LEGACY_MAP_MASK;
444 			fallthrough;
445 		case MAP_SHARED_VALIDATE:
446 			if (flags & ~flags_mask)
447 				return -EOPNOTSUPP;
448 			if (prot & PROT_WRITE) {
449 				if (!(file->f_mode & FMODE_WRITE))
450 					return -EACCES;
451 				if (IS_SWAPFILE(file->f_mapping->host))
452 					return -ETXTBSY;
453 			}
454 
455 			/*
456 			 * Make sure we don't allow writing to an append-only
457 			 * file..
458 			 */
459 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
460 				return -EACCES;
461 
462 			vm_flags |= VM_SHARED | VM_MAYSHARE;
463 			if (!(file->f_mode & FMODE_WRITE))
464 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
465 			fallthrough;
466 		case MAP_PRIVATE:
467 			if (!(file->f_mode & FMODE_READ))
468 				return -EACCES;
469 			if (path_noexec(&file->f_path)) {
470 				if (vm_flags & VM_EXEC)
471 					return -EPERM;
472 				vm_flags &= ~VM_MAYEXEC;
473 			}
474 
475 			if (!can_mmap_file(file))
476 				return -ENODEV;
477 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
478 				return -EINVAL;
479 			break;
480 
481 		default:
482 			return -EINVAL;
483 		}
484 
485 		/*
486 		 * Check to see if we are violating any seals and update VMA
487 		 * flags if necessary to avoid future seal violations.
488 		 */
489 		err = memfd_check_seals_mmap(file, &vm_flags);
490 		if (err)
491 			return (unsigned long)err;
492 	} else {
493 		switch (flags & MAP_TYPE) {
494 		case MAP_SHARED:
495 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
496 				return -EINVAL;
497 			/*
498 			 * Ignore pgoff.
499 			 */
500 			pgoff = 0;
501 			vm_flags |= VM_SHARED | VM_MAYSHARE;
502 			break;
503 		case MAP_DROPPABLE:
504 			if (VM_DROPPABLE == VM_NONE)
505 				return -ENOTSUPP;
506 			/*
507 			 * A locked or stack area makes no sense to be droppable.
508 			 *
509 			 * Also, since droppable pages can just go away at any time
510 			 * it makes no sense to copy them on fork or dump them.
511 			 *
512 			 * And don't attempt to combine with hugetlb for now.
513 			 */
514 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
515 			        return -EINVAL;
516 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
517 			        return -EINVAL;
518 
519 			vm_flags |= VM_DROPPABLE;
520 
521 			/*
522 			 * If the pages can be dropped, then it doesn't make
523 			 * sense to reserve them.
524 			 */
525 			vm_flags |= VM_NORESERVE;
526 
527 			/*
528 			 * Likewise, they're volatile enough that they
529 			 * shouldn't survive forks or coredumps.
530 			 */
531 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
532 			fallthrough;
533 		case MAP_PRIVATE:
534 			/*
535 			 * Set pgoff according to addr for anon_vma.
536 			 */
537 			pgoff = addr >> PAGE_SHIFT;
538 			break;
539 		default:
540 			return -EINVAL;
541 		}
542 	}
543 
544 	/*
545 	 * Set 'VM_NORESERVE' if we should not account for the
546 	 * memory use of this mapping.
547 	 */
548 	if (flags & MAP_NORESERVE) {
549 		/* We honor MAP_NORESERVE if allowed to overcommit */
550 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
551 			vm_flags |= VM_NORESERVE;
552 
553 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
554 		if (file && is_file_hugepages(file))
555 			vm_flags |= VM_NORESERVE;
556 	}
557 
558 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
559 	if (!IS_ERR_VALUE(addr) &&
560 	    ((vm_flags & VM_LOCKED) ||
561 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
562 		*populate = len;
563 	return addr;
564 }
565 
566 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
567 			      unsigned long prot, unsigned long flags,
568 			      unsigned long fd, unsigned long pgoff)
569 {
570 	struct file *file = NULL;
571 	unsigned long retval;
572 
573 	if (!(flags & MAP_ANONYMOUS)) {
574 		audit_mmap_fd(fd, flags);
575 		file = fget(fd);
576 		if (!file)
577 			return -EBADF;
578 		if (is_file_hugepages(file)) {
579 			len = ALIGN(len, huge_page_size(hstate_file(file)));
580 		} else if (unlikely(flags & MAP_HUGETLB)) {
581 			retval = -EINVAL;
582 			goto out_fput;
583 		}
584 	} else if (flags & MAP_HUGETLB) {
585 		struct hstate *hs;
586 
587 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
588 		if (!hs)
589 			return -EINVAL;
590 
591 		len = ALIGN(len, huge_page_size(hs));
592 		/*
593 		 * VM_NORESERVE is used because the reservations will be
594 		 * taken when vm_ops->mmap() is called
595 		 */
596 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
597 				VM_NORESERVE,
598 				HUGETLB_ANONHUGE_INODE,
599 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
600 		if (IS_ERR(file))
601 			return PTR_ERR(file);
602 	}
603 
604 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
605 out_fput:
606 	if (file)
607 		fput(file);
608 	return retval;
609 }
610 
611 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
612 		unsigned long, prot, unsigned long, flags,
613 		unsigned long, fd, unsigned long, pgoff)
614 {
615 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
616 }
617 
618 #ifdef __ARCH_WANT_SYS_OLD_MMAP
619 struct mmap_arg_struct {
620 	unsigned long addr;
621 	unsigned long len;
622 	unsigned long prot;
623 	unsigned long flags;
624 	unsigned long fd;
625 	unsigned long offset;
626 };
627 
628 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
629 {
630 	struct mmap_arg_struct a;
631 
632 	if (copy_from_user(&a, arg, sizeof(a)))
633 		return -EFAULT;
634 	if (offset_in_page(a.offset))
635 		return -EINVAL;
636 
637 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
638 			       a.offset >> PAGE_SHIFT);
639 }
640 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
641 
642 /*
643  * Determine if the allocation needs to ensure that there is no
644  * existing mapping within it's guard gaps, for use as start_gap.
645  */
646 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
647 {
648 	if (vm_flags & VM_SHADOW_STACK)
649 		return PAGE_SIZE;
650 
651 	return 0;
652 }
653 
654 /*
655  * Search for an unmapped address range.
656  *
657  * We are looking for a range that:
658  * - does not intersect with any VMA;
659  * - is contained within the [low_limit, high_limit) interval;
660  * - is at least the desired size.
661  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
662  */
663 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
664 {
665 	unsigned long addr;
666 
667 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
668 		addr = unmapped_area_topdown(info);
669 	else
670 		addr = unmapped_area(info);
671 
672 	trace_vm_unmapped_area(addr, info);
673 	return addr;
674 }
675 
676 /* Get an address range which is currently unmapped.
677  * For shmat() with addr=0.
678  *
679  * Ugly calling convention alert:
680  * Return value with the low bits set means error value,
681  * ie
682  *	if (ret & ~PAGE_MASK)
683  *		error = ret;
684  *
685  * This function "knows" that -ENOMEM has the bits set.
686  */
687 unsigned long
688 generic_get_unmapped_area(struct file *filp, unsigned long addr,
689 			  unsigned long len, unsigned long pgoff,
690 			  unsigned long flags, vm_flags_t vm_flags)
691 {
692 	struct mm_struct *mm = current->mm;
693 	struct vm_area_struct *vma, *prev;
694 	struct vm_unmapped_area_info info = {};
695 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
696 
697 	if (len > mmap_end - mmap_min_addr)
698 		return -ENOMEM;
699 
700 	if (flags & MAP_FIXED)
701 		return addr;
702 
703 	if (addr) {
704 		addr = PAGE_ALIGN(addr);
705 		vma = find_vma_prev(mm, addr, &prev);
706 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
707 		    (!vma || addr + len <= vm_start_gap(vma)) &&
708 		    (!prev || addr >= vm_end_gap(prev)))
709 			return addr;
710 	}
711 
712 	info.length = len;
713 	info.low_limit = mm->mmap_base;
714 	info.high_limit = mmap_end;
715 	info.start_gap = stack_guard_placement(vm_flags);
716 	if (filp && is_file_hugepages(filp))
717 		info.align_mask = huge_page_mask_align(filp);
718 	return vm_unmapped_area(&info);
719 }
720 
721 #ifndef HAVE_ARCH_UNMAPPED_AREA
722 unsigned long
723 arch_get_unmapped_area(struct file *filp, unsigned long addr,
724 		       unsigned long len, unsigned long pgoff,
725 		       unsigned long flags, vm_flags_t vm_flags)
726 {
727 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
728 					 vm_flags);
729 }
730 #endif
731 
732 /*
733  * This mmap-allocator allocates new areas top-down from below the
734  * stack's low limit (the base):
735  */
736 unsigned long
737 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
738 				  unsigned long len, unsigned long pgoff,
739 				  unsigned long flags, vm_flags_t vm_flags)
740 {
741 	struct vm_area_struct *vma, *prev;
742 	struct mm_struct *mm = current->mm;
743 	struct vm_unmapped_area_info info = {};
744 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
745 
746 	/* requested length too big for entire address space */
747 	if (len > mmap_end - mmap_min_addr)
748 		return -ENOMEM;
749 
750 	if (flags & MAP_FIXED)
751 		return addr;
752 
753 	/* requesting a specific address */
754 	if (addr) {
755 		addr = PAGE_ALIGN(addr);
756 		vma = find_vma_prev(mm, addr, &prev);
757 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
758 				(!vma || addr + len <= vm_start_gap(vma)) &&
759 				(!prev || addr >= vm_end_gap(prev)))
760 			return addr;
761 	}
762 
763 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
764 	info.length = len;
765 	info.low_limit = PAGE_SIZE;
766 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
767 	info.start_gap = stack_guard_placement(vm_flags);
768 	if (filp && is_file_hugepages(filp))
769 		info.align_mask = huge_page_mask_align(filp);
770 	addr = vm_unmapped_area(&info);
771 
772 	/*
773 	 * A failed mmap() very likely causes application failure,
774 	 * so fall back to the bottom-up function here. This scenario
775 	 * can happen with large stack limits and large mmap()
776 	 * allocations.
777 	 */
778 	if (offset_in_page(addr)) {
779 		VM_BUG_ON(addr != -ENOMEM);
780 		info.flags = 0;
781 		info.low_limit = TASK_UNMAPPED_BASE;
782 		info.high_limit = mmap_end;
783 		addr = vm_unmapped_area(&info);
784 	}
785 
786 	return addr;
787 }
788 
789 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
790 unsigned long
791 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
792 			       unsigned long len, unsigned long pgoff,
793 			       unsigned long flags, vm_flags_t vm_flags)
794 {
795 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
796 						 vm_flags);
797 }
798 #endif
799 
800 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
801 					   unsigned long addr, unsigned long len,
802 					   unsigned long pgoff, unsigned long flags,
803 					   vm_flags_t vm_flags)
804 {
805 	if (test_bit(MMF_TOPDOWN, &mm->flags))
806 		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
807 						      flags, vm_flags);
808 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
809 }
810 
811 unsigned long
812 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
813 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
814 {
815 	unsigned long (*get_area)(struct file *, unsigned long,
816 				  unsigned long, unsigned long, unsigned long)
817 				  = NULL;
818 
819 	unsigned long error = arch_mmap_check(addr, len, flags);
820 	if (error)
821 		return error;
822 
823 	/* Careful about overflows.. */
824 	if (len > TASK_SIZE)
825 		return -ENOMEM;
826 
827 	if (file) {
828 		if (file->f_op->get_unmapped_area)
829 			get_area = file->f_op->get_unmapped_area;
830 	} else if (flags & MAP_SHARED) {
831 		/*
832 		 * mmap_region() will call shmem_zero_setup() to create a file,
833 		 * so use shmem's get_unmapped_area in case it can be huge.
834 		 */
835 		get_area = shmem_get_unmapped_area;
836 	}
837 
838 	/* Always treat pgoff as zero for anonymous memory. */
839 	if (!file)
840 		pgoff = 0;
841 
842 	if (get_area) {
843 		addr = get_area(file, addr, len, pgoff, flags);
844 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
845 		   && !addr /* no hint */
846 		   && IS_ALIGNED(len, PMD_SIZE)) {
847 		/* Ensures that larger anonymous mappings are THP aligned. */
848 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
849 						     pgoff, flags, vm_flags);
850 	} else {
851 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
852 						    pgoff, flags, vm_flags);
853 	}
854 	if (IS_ERR_VALUE(addr))
855 		return addr;
856 
857 	if (addr > TASK_SIZE - len)
858 		return -ENOMEM;
859 	if (offset_in_page(addr))
860 		return -EINVAL;
861 
862 	error = security_mmap_addr(addr);
863 	return error ? error : addr;
864 }
865 
866 unsigned long
867 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
868 		     unsigned long addr, unsigned long len,
869 		     unsigned long pgoff, unsigned long flags)
870 {
871 	return mm_get_unmapped_area_vmflags(mm, file, addr, len,
872 					    pgoff, flags, 0);
873 }
874 EXPORT_SYMBOL(mm_get_unmapped_area);
875 
876 /**
877  * find_vma_intersection() - Look up the first VMA which intersects the interval
878  * @mm: The process address space.
879  * @start_addr: The inclusive start user address.
880  * @end_addr: The exclusive end user address.
881  *
882  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
883  * start_addr < end_addr.
884  */
885 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
886 					     unsigned long start_addr,
887 					     unsigned long end_addr)
888 {
889 	unsigned long index = start_addr;
890 
891 	mmap_assert_locked(mm);
892 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
893 }
894 EXPORT_SYMBOL(find_vma_intersection);
895 
896 /**
897  * find_vma() - Find the VMA for a given address, or the next VMA.
898  * @mm: The mm_struct to check
899  * @addr: The address
900  *
901  * Returns: The VMA associated with addr, or the next VMA.
902  * May return %NULL in the case of no VMA at addr or above.
903  */
904 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
905 {
906 	unsigned long index = addr;
907 
908 	mmap_assert_locked(mm);
909 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
910 }
911 EXPORT_SYMBOL(find_vma);
912 
913 /**
914  * find_vma_prev() - Find the VMA for a given address, or the next vma and
915  * set %pprev to the previous VMA, if any.
916  * @mm: The mm_struct to check
917  * @addr: The address
918  * @pprev: The pointer to set to the previous VMA
919  *
920  * Note that RCU lock is missing here since the external mmap_lock() is used
921  * instead.
922  *
923  * Returns: The VMA associated with @addr, or the next vma.
924  * May return %NULL in the case of no vma at addr or above.
925  */
926 struct vm_area_struct *
927 find_vma_prev(struct mm_struct *mm, unsigned long addr,
928 			struct vm_area_struct **pprev)
929 {
930 	struct vm_area_struct *vma;
931 	VMA_ITERATOR(vmi, mm, addr);
932 
933 	vma = vma_iter_load(&vmi);
934 	*pprev = vma_prev(&vmi);
935 	if (!vma)
936 		vma = vma_next(&vmi);
937 	return vma;
938 }
939 
940 /* enforced gap between the expanding stack and other mappings. */
941 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
942 
943 static int __init cmdline_parse_stack_guard_gap(char *p)
944 {
945 	unsigned long val;
946 	char *endptr;
947 
948 	val = simple_strtoul(p, &endptr, 10);
949 	if (!*endptr)
950 		stack_guard_gap = val << PAGE_SHIFT;
951 
952 	return 1;
953 }
954 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
955 
956 #ifdef CONFIG_STACK_GROWSUP
957 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
958 {
959 	return expand_upwards(vma, address);
960 }
961 
962 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
963 {
964 	struct vm_area_struct *vma, *prev;
965 
966 	addr &= PAGE_MASK;
967 	vma = find_vma_prev(mm, addr, &prev);
968 	if (vma && (vma->vm_start <= addr))
969 		return vma;
970 	if (!prev)
971 		return NULL;
972 	if (expand_stack_locked(prev, addr))
973 		return NULL;
974 	if (prev->vm_flags & VM_LOCKED)
975 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
976 	return prev;
977 }
978 #else
979 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
980 {
981 	return expand_downwards(vma, address);
982 }
983 
984 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
985 {
986 	struct vm_area_struct *vma;
987 	unsigned long start;
988 
989 	addr &= PAGE_MASK;
990 	vma = find_vma(mm, addr);
991 	if (!vma)
992 		return NULL;
993 	if (vma->vm_start <= addr)
994 		return vma;
995 	start = vma->vm_start;
996 	if (expand_stack_locked(vma, addr))
997 		return NULL;
998 	if (vma->vm_flags & VM_LOCKED)
999 		populate_vma_page_range(vma, addr, start, NULL);
1000 	return vma;
1001 }
1002 #endif
1003 
1004 #if defined(CONFIG_STACK_GROWSUP)
1005 
1006 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1007 #define vma_expand_down(vma, addr) (-EFAULT)
1008 
1009 #else
1010 
1011 #define vma_expand_up(vma,addr) (-EFAULT)
1012 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1013 
1014 #endif
1015 
1016 /*
1017  * expand_stack(): legacy interface for page faulting. Don't use unless
1018  * you have to.
1019  *
1020  * This is called with the mm locked for reading, drops the lock, takes
1021  * the lock for writing, tries to look up a vma again, expands it if
1022  * necessary, and downgrades the lock to reading again.
1023  *
1024  * If no vma is found or it can't be expanded, it returns NULL and has
1025  * dropped the lock.
1026  */
1027 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1028 {
1029 	struct vm_area_struct *vma, *prev;
1030 
1031 	mmap_read_unlock(mm);
1032 	if (mmap_write_lock_killable(mm))
1033 		return NULL;
1034 
1035 	vma = find_vma_prev(mm, addr, &prev);
1036 	if (vma && vma->vm_start <= addr)
1037 		goto success;
1038 
1039 	if (prev && !vma_expand_up(prev, addr)) {
1040 		vma = prev;
1041 		goto success;
1042 	}
1043 
1044 	if (vma && !vma_expand_down(vma, addr))
1045 		goto success;
1046 
1047 	mmap_write_unlock(mm);
1048 	return NULL;
1049 
1050 success:
1051 	mmap_write_downgrade(mm);
1052 	return vma;
1053 }
1054 
1055 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1056  * @mm: The mm_struct
1057  * @start: The start address to munmap
1058  * @len: The length to be munmapped.
1059  * @uf: The userfaultfd list_head
1060  *
1061  * Return: 0 on success, error otherwise.
1062  */
1063 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1064 	      struct list_head *uf)
1065 {
1066 	VMA_ITERATOR(vmi, mm, start);
1067 
1068 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1069 }
1070 
1071 int vm_munmap(unsigned long start, size_t len)
1072 {
1073 	return __vm_munmap(start, len, false);
1074 }
1075 EXPORT_SYMBOL(vm_munmap);
1076 
1077 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1078 {
1079 	addr = untagged_addr(addr);
1080 	return __vm_munmap(addr, len, true);
1081 }
1082 
1083 
1084 /*
1085  * Emulation of deprecated remap_file_pages() syscall.
1086  */
1087 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1088 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1089 {
1090 
1091 	struct mm_struct *mm = current->mm;
1092 	struct vm_area_struct *vma;
1093 	unsigned long populate = 0;
1094 	unsigned long ret = -EINVAL;
1095 	struct file *file;
1096 	vm_flags_t vm_flags;
1097 
1098 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1099 		     current->comm, current->pid);
1100 
1101 	if (prot)
1102 		return ret;
1103 	start = start & PAGE_MASK;
1104 	size = size & PAGE_MASK;
1105 
1106 	if (start + size <= start)
1107 		return ret;
1108 
1109 	/* Does pgoff wrap? */
1110 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1111 		return ret;
1112 
1113 	if (mmap_read_lock_killable(mm))
1114 		return -EINTR;
1115 
1116 	/*
1117 	 * Look up VMA under read lock first so we can perform the security
1118 	 * without holding locks (which can be problematic). We reacquire a
1119 	 * write lock later and check nothing changed underneath us.
1120 	 */
1121 	vma = vma_lookup(mm, start);
1122 
1123 	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1124 		mmap_read_unlock(mm);
1125 		return -EINVAL;
1126 	}
1127 
1128 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1129 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1130 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1131 
1132 	flags &= MAP_NONBLOCK;
1133 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1134 	if (vma->vm_flags & VM_LOCKED)
1135 		flags |= MAP_LOCKED;
1136 
1137 	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1138 	vm_flags = vma->vm_flags;
1139 	file = get_file(vma->vm_file);
1140 
1141 	mmap_read_unlock(mm);
1142 
1143 	/* Call outside mmap_lock to be consistent with other callers. */
1144 	ret = security_mmap_file(file, prot, flags);
1145 	if (ret) {
1146 		fput(file);
1147 		return ret;
1148 	}
1149 
1150 	ret = -EINVAL;
1151 
1152 	/* OK security check passed, take write lock + let it rip. */
1153 	if (mmap_write_lock_killable(mm)) {
1154 		fput(file);
1155 		return -EINTR;
1156 	}
1157 
1158 	vma = vma_lookup(mm, start);
1159 
1160 	if (!vma)
1161 		goto out;
1162 
1163 	/* Make sure things didn't change under us. */
1164 	if (vma->vm_flags != vm_flags)
1165 		goto out;
1166 	if (vma->vm_file != file)
1167 		goto out;
1168 
1169 	if (start + size > vma->vm_end) {
1170 		VMA_ITERATOR(vmi, mm, vma->vm_end);
1171 		struct vm_area_struct *next, *prev = vma;
1172 
1173 		for_each_vma_range(vmi, next, start + size) {
1174 			/* hole between vmas ? */
1175 			if (next->vm_start != prev->vm_end)
1176 				goto out;
1177 
1178 			if (next->vm_file != vma->vm_file)
1179 				goto out;
1180 
1181 			if (next->vm_flags != vma->vm_flags)
1182 				goto out;
1183 
1184 			if (start + size <= next->vm_end)
1185 				break;
1186 
1187 			prev = next;
1188 		}
1189 
1190 		if (!next)
1191 			goto out;
1192 	}
1193 
1194 	ret = do_mmap(vma->vm_file, start, size,
1195 			prot, flags, 0, pgoff, &populate, NULL);
1196 out:
1197 	mmap_write_unlock(mm);
1198 	fput(file);
1199 	if (populate)
1200 		mm_populate(ret, populate);
1201 	if (!IS_ERR_VALUE(ret))
1202 		ret = 0;
1203 	return ret;
1204 }
1205 
1206 int vm_brk_flags(unsigned long addr, unsigned long request, vm_flags_t vm_flags)
1207 {
1208 	struct mm_struct *mm = current->mm;
1209 	struct vm_area_struct *vma = NULL;
1210 	unsigned long len;
1211 	int ret;
1212 	bool populate;
1213 	LIST_HEAD(uf);
1214 	VMA_ITERATOR(vmi, mm, addr);
1215 
1216 	len = PAGE_ALIGN(request);
1217 	if (len < request)
1218 		return -ENOMEM;
1219 	if (!len)
1220 		return 0;
1221 
1222 	/* Until we need other flags, refuse anything except VM_EXEC. */
1223 	if ((vm_flags & (~VM_EXEC)) != 0)
1224 		return -EINVAL;
1225 
1226 	if (mmap_write_lock_killable(mm))
1227 		return -EINTR;
1228 
1229 	ret = check_brk_limits(addr, len);
1230 	if (ret)
1231 		goto limits_failed;
1232 
1233 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1234 	if (ret)
1235 		goto munmap_failed;
1236 
1237 	vma = vma_prev(&vmi);
1238 	ret = do_brk_flags(&vmi, vma, addr, len, vm_flags);
1239 	populate = ((mm->def_flags & VM_LOCKED) != 0);
1240 	mmap_write_unlock(mm);
1241 	userfaultfd_unmap_complete(mm, &uf);
1242 	if (populate && !ret)
1243 		mm_populate(addr, len);
1244 	return ret;
1245 
1246 munmap_failed:
1247 limits_failed:
1248 	mmap_write_unlock(mm);
1249 	return ret;
1250 }
1251 EXPORT_SYMBOL(vm_brk_flags);
1252 
1253 /* Release all mmaps. */
1254 void exit_mmap(struct mm_struct *mm)
1255 {
1256 	struct mmu_gather tlb;
1257 	struct vm_area_struct *vma;
1258 	unsigned long nr_accounted = 0;
1259 	VMA_ITERATOR(vmi, mm, 0);
1260 	int count = 0;
1261 
1262 	/* mm's last user has gone, and its about to be pulled down */
1263 	mmu_notifier_release(mm);
1264 
1265 	mmap_read_lock(mm);
1266 	arch_exit_mmap(mm);
1267 
1268 	vma = vma_next(&vmi);
1269 	if (!vma || unlikely(xa_is_zero(vma))) {
1270 		/* Can happen if dup_mmap() received an OOM */
1271 		mmap_read_unlock(mm);
1272 		mmap_write_lock(mm);
1273 		goto destroy;
1274 	}
1275 
1276 	flush_cache_mm(mm);
1277 	tlb_gather_mmu_fullmm(&tlb, mm);
1278 	/* update_hiwater_rss(mm) here? but nobody should be looking */
1279 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1280 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1281 	mmap_read_unlock(mm);
1282 
1283 	/*
1284 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1285 	 * because the memory has been already freed.
1286 	 */
1287 	set_bit(MMF_OOM_SKIP, &mm->flags);
1288 	mmap_write_lock(mm);
1289 	mt_clear_in_rcu(&mm->mm_mt);
1290 	vma_iter_set(&vmi, vma->vm_end);
1291 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1292 		      USER_PGTABLES_CEILING, true);
1293 	tlb_finish_mmu(&tlb);
1294 
1295 	/*
1296 	 * Walk the list again, actually closing and freeing it, with preemption
1297 	 * enabled, without holding any MM locks besides the unreachable
1298 	 * mmap_write_lock.
1299 	 */
1300 	vma_iter_set(&vmi, vma->vm_end);
1301 	do {
1302 		if (vma->vm_flags & VM_ACCOUNT)
1303 			nr_accounted += vma_pages(vma);
1304 		vma_mark_detached(vma);
1305 		remove_vma(vma);
1306 		count++;
1307 		cond_resched();
1308 		vma = vma_next(&vmi);
1309 	} while (vma && likely(!xa_is_zero(vma)));
1310 
1311 	BUG_ON(count != mm->map_count);
1312 
1313 	trace_exit_mmap(mm);
1314 destroy:
1315 	__mt_destroy(&mm->mm_mt);
1316 	mmap_write_unlock(mm);
1317 	vm_unacct_memory(nr_accounted);
1318 }
1319 
1320 /*
1321  * Return true if the calling process may expand its vm space by the passed
1322  * number of pages
1323  */
1324 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1325 {
1326 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1327 		return false;
1328 
1329 	if (is_data_mapping(flags) &&
1330 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1331 		/* Workaround for Valgrind */
1332 		if (rlimit(RLIMIT_DATA) == 0 &&
1333 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1334 			return true;
1335 
1336 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1337 			     current->comm, current->pid,
1338 			     (mm->data_vm + npages) << PAGE_SHIFT,
1339 			     rlimit(RLIMIT_DATA),
1340 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1341 
1342 		if (!ignore_rlimit_data)
1343 			return false;
1344 	}
1345 
1346 	return true;
1347 }
1348 
1349 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1350 {
1351 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1352 
1353 	if (is_exec_mapping(flags))
1354 		mm->exec_vm += npages;
1355 	else if (is_stack_mapping(flags))
1356 		mm->stack_vm += npages;
1357 	else if (is_data_mapping(flags))
1358 		mm->data_vm += npages;
1359 }
1360 
1361 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1362 
1363 /*
1364  * Close hook, called for unmap() and on the old vma for mremap().
1365  *
1366  * Having a close hook prevents vma merging regardless of flags.
1367  */
1368 static void special_mapping_close(struct vm_area_struct *vma)
1369 {
1370 	const struct vm_special_mapping *sm = vma->vm_private_data;
1371 
1372 	if (sm->close)
1373 		sm->close(sm, vma);
1374 }
1375 
1376 static const char *special_mapping_name(struct vm_area_struct *vma)
1377 {
1378 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1379 }
1380 
1381 static int special_mapping_mremap(struct vm_area_struct *new_vma)
1382 {
1383 	struct vm_special_mapping *sm = new_vma->vm_private_data;
1384 
1385 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1386 		return -EFAULT;
1387 
1388 	if (sm->mremap)
1389 		return sm->mremap(sm, new_vma);
1390 
1391 	return 0;
1392 }
1393 
1394 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1395 {
1396 	/*
1397 	 * Forbid splitting special mappings - kernel has expectations over
1398 	 * the number of pages in mapping. Together with VM_DONTEXPAND
1399 	 * the size of vma should stay the same over the special mapping's
1400 	 * lifetime.
1401 	 */
1402 	return -EINVAL;
1403 }
1404 
1405 static const struct vm_operations_struct special_mapping_vmops = {
1406 	.close = special_mapping_close,
1407 	.fault = special_mapping_fault,
1408 	.mremap = special_mapping_mremap,
1409 	.name = special_mapping_name,
1410 	/* vDSO code relies that VVAR can't be accessed remotely */
1411 	.access = NULL,
1412 	.may_split = special_mapping_split,
1413 };
1414 
1415 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1416 {
1417 	struct vm_area_struct *vma = vmf->vma;
1418 	pgoff_t pgoff;
1419 	struct page **pages;
1420 	struct vm_special_mapping *sm = vma->vm_private_data;
1421 
1422 	if (sm->fault)
1423 		return sm->fault(sm, vmf->vma, vmf);
1424 
1425 	pages = sm->pages;
1426 
1427 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1428 		pgoff--;
1429 
1430 	if (*pages) {
1431 		struct page *page = *pages;
1432 		get_page(page);
1433 		vmf->page = page;
1434 		return 0;
1435 	}
1436 
1437 	return VM_FAULT_SIGBUS;
1438 }
1439 
1440 static struct vm_area_struct *__install_special_mapping(
1441 	struct mm_struct *mm,
1442 	unsigned long addr, unsigned long len,
1443 	vm_flags_t vm_flags, void *priv,
1444 	const struct vm_operations_struct *ops)
1445 {
1446 	int ret;
1447 	struct vm_area_struct *vma;
1448 
1449 	vma = vm_area_alloc(mm);
1450 	if (unlikely(vma == NULL))
1451 		return ERR_PTR(-ENOMEM);
1452 
1453 	vma_set_range(vma, addr, addr + len, 0);
1454 	vm_flags_init(vma, (vm_flags | mm->def_flags |
1455 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
1456 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1457 
1458 	vma->vm_ops = ops;
1459 	vma->vm_private_data = priv;
1460 
1461 	ret = insert_vm_struct(mm, vma);
1462 	if (ret)
1463 		goto out;
1464 
1465 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1466 
1467 	perf_event_mmap(vma);
1468 
1469 	return vma;
1470 
1471 out:
1472 	vm_area_free(vma);
1473 	return ERR_PTR(ret);
1474 }
1475 
1476 bool vma_is_special_mapping(const struct vm_area_struct *vma,
1477 	const struct vm_special_mapping *sm)
1478 {
1479 	return vma->vm_private_data == sm &&
1480 		vma->vm_ops == &special_mapping_vmops;
1481 }
1482 
1483 /*
1484  * Called with mm->mmap_lock held for writing.
1485  * Insert a new vma covering the given region, with the given flags.
1486  * Its pages are supplied by the given array of struct page *.
1487  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1488  * The region past the last page supplied will always produce SIGBUS.
1489  * The array pointer and the pages it points to are assumed to stay alive
1490  * for as long as this mapping might exist.
1491  */
1492 struct vm_area_struct *_install_special_mapping(
1493 	struct mm_struct *mm,
1494 	unsigned long addr, unsigned long len,
1495 	vm_flags_t vm_flags, const struct vm_special_mapping *spec)
1496 {
1497 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1498 					&special_mapping_vmops);
1499 }
1500 
1501 #ifdef CONFIG_SYSCTL
1502 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1503 		defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1504 int sysctl_legacy_va_layout;
1505 #endif
1506 
1507 static const struct ctl_table mmap_table[] = {
1508 		{
1509 				.procname       = "max_map_count",
1510 				.data           = &sysctl_max_map_count,
1511 				.maxlen         = sizeof(sysctl_max_map_count),
1512 				.mode           = 0644,
1513 				.proc_handler   = proc_dointvec_minmax,
1514 				.extra1         = SYSCTL_ZERO,
1515 		},
1516 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1517 		defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1518 		{
1519 				.procname       = "legacy_va_layout",
1520 				.data           = &sysctl_legacy_va_layout,
1521 				.maxlen         = sizeof(sysctl_legacy_va_layout),
1522 				.mode           = 0644,
1523 				.proc_handler   = proc_dointvec_minmax,
1524 				.extra1         = SYSCTL_ZERO,
1525 		},
1526 #endif
1527 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
1528 		{
1529 				.procname       = "mmap_rnd_bits",
1530 				.data           = &mmap_rnd_bits,
1531 				.maxlen         = sizeof(mmap_rnd_bits),
1532 				.mode           = 0600,
1533 				.proc_handler   = proc_dointvec_minmax,
1534 				.extra1         = (void *)&mmap_rnd_bits_min,
1535 				.extra2         = (void *)&mmap_rnd_bits_max,
1536 		},
1537 #endif
1538 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
1539 		{
1540 				.procname       = "mmap_rnd_compat_bits",
1541 				.data           = &mmap_rnd_compat_bits,
1542 				.maxlen         = sizeof(mmap_rnd_compat_bits),
1543 				.mode           = 0600,
1544 				.proc_handler   = proc_dointvec_minmax,
1545 				.extra1         = (void *)&mmap_rnd_compat_bits_min,
1546 				.extra2         = (void *)&mmap_rnd_compat_bits_max,
1547 		},
1548 #endif
1549 };
1550 #endif /* CONFIG_SYSCTL */
1551 
1552 /*
1553  * initialise the percpu counter for VM, initialise VMA state.
1554  */
1555 void __init mmap_init(void)
1556 {
1557 	int ret;
1558 
1559 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1560 	VM_BUG_ON(ret);
1561 #ifdef CONFIG_SYSCTL
1562 	register_sysctl_init("vm", mmap_table);
1563 #endif
1564 	vma_state_init();
1565 }
1566 
1567 /*
1568  * Initialise sysctl_user_reserve_kbytes.
1569  *
1570  * This is intended to prevent a user from starting a single memory hogging
1571  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1572  * mode.
1573  *
1574  * The default value is min(3% of free memory, 128MB)
1575  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1576  */
1577 static int init_user_reserve(void)
1578 {
1579 	unsigned long free_kbytes;
1580 
1581 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1582 
1583 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1584 	return 0;
1585 }
1586 subsys_initcall(init_user_reserve);
1587 
1588 /*
1589  * Initialise sysctl_admin_reserve_kbytes.
1590  *
1591  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1592  * to log in and kill a memory hogging process.
1593  *
1594  * Systems with more than 256MB will reserve 8MB, enough to recover
1595  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1596  * only reserve 3% of free pages by default.
1597  */
1598 static int init_admin_reserve(void)
1599 {
1600 	unsigned long free_kbytes;
1601 
1602 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1603 
1604 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1605 	return 0;
1606 }
1607 subsys_initcall(init_admin_reserve);
1608 
1609 /*
1610  * Reinititalise user and admin reserves if memory is added or removed.
1611  *
1612  * The default user reserve max is 128MB, and the default max for the
1613  * admin reserve is 8MB. These are usually, but not always, enough to
1614  * enable recovery from a memory hogging process using login/sshd, a shell,
1615  * and tools like top. It may make sense to increase or even disable the
1616  * reserve depending on the existence of swap or variations in the recovery
1617  * tools. So, the admin may have changed them.
1618  *
1619  * If memory is added and the reserves have been eliminated or increased above
1620  * the default max, then we'll trust the admin.
1621  *
1622  * If memory is removed and there isn't enough free memory, then we
1623  * need to reset the reserves.
1624  *
1625  * Otherwise keep the reserve set by the admin.
1626  */
1627 static int reserve_mem_notifier(struct notifier_block *nb,
1628 			     unsigned long action, void *data)
1629 {
1630 	unsigned long tmp, free_kbytes;
1631 
1632 	switch (action) {
1633 	case MEM_ONLINE:
1634 		/* Default max is 128MB. Leave alone if modified by operator. */
1635 		tmp = sysctl_user_reserve_kbytes;
1636 		if (tmp > 0 && tmp < SZ_128K)
1637 			init_user_reserve();
1638 
1639 		/* Default max is 8MB.  Leave alone if modified by operator. */
1640 		tmp = sysctl_admin_reserve_kbytes;
1641 		if (tmp > 0 && tmp < SZ_8K)
1642 			init_admin_reserve();
1643 
1644 		break;
1645 	case MEM_OFFLINE:
1646 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1647 
1648 		if (sysctl_user_reserve_kbytes > free_kbytes) {
1649 			init_user_reserve();
1650 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
1651 				sysctl_user_reserve_kbytes);
1652 		}
1653 
1654 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
1655 			init_admin_reserve();
1656 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
1657 				sysctl_admin_reserve_kbytes);
1658 		}
1659 		break;
1660 	default:
1661 		break;
1662 	}
1663 	return NOTIFY_OK;
1664 }
1665 
1666 static int __meminit init_reserve_notifier(void)
1667 {
1668 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
1669 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
1670 
1671 	return 0;
1672 }
1673 subsys_initcall(init_reserve_notifier);
1674 
1675 /*
1676  * Obtain a read lock on mm->mmap_lock, if the specified address is below the
1677  * start of the VMA, the intent is to perform a write, and it is a
1678  * downward-growing stack, then attempt to expand the stack to contain it.
1679  *
1680  * This function is intended only for obtaining an argument page from an ELF
1681  * image, and is almost certainly NOT what you want to use for any other
1682  * purpose.
1683  *
1684  * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the
1685  * VMA referenced must not be linked in any user-visible tree, i.e. it must be a
1686  * new VMA being mapped.
1687  *
1688  * The function assumes that addr is either contained within the VMA or below
1689  * it, and makes no attempt to validate this value beyond that.
1690  *
1691  * Returns true if the read lock was obtained and a stack was perhaps expanded,
1692  * false if the stack expansion failed.
1693  *
1694  * On stack expansion the function temporarily acquires an mmap write lock
1695  * before downgrading it.
1696  */
1697 bool mmap_read_lock_maybe_expand(struct mm_struct *mm,
1698 				 struct vm_area_struct *new_vma,
1699 				 unsigned long addr, bool write)
1700 {
1701 	if (!write || addr >= new_vma->vm_start) {
1702 		mmap_read_lock(mm);
1703 		return true;
1704 	}
1705 
1706 	if (!(new_vma->vm_flags & VM_GROWSDOWN))
1707 		return false;
1708 
1709 	mmap_write_lock(mm);
1710 	if (expand_downwards(new_vma, addr)) {
1711 		mmap_write_unlock(mm);
1712 		return false;
1713 	}
1714 
1715 	mmap_write_downgrade(mm);
1716 	return true;
1717 }
1718 
1719 __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1720 {
1721 	struct vm_area_struct *mpnt, *tmp;
1722 	int retval;
1723 	unsigned long charge = 0;
1724 	LIST_HEAD(uf);
1725 	VMA_ITERATOR(vmi, mm, 0);
1726 
1727 	if (mmap_write_lock_killable(oldmm))
1728 		return -EINTR;
1729 	flush_cache_dup_mm(oldmm);
1730 	uprobe_dup_mmap(oldmm, mm);
1731 	/*
1732 	 * Not linked in yet - no deadlock potential:
1733 	 */
1734 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
1735 
1736 	/* No ordering required: file already has been exposed. */
1737 	dup_mm_exe_file(mm, oldmm);
1738 
1739 	mm->total_vm = oldmm->total_vm;
1740 	mm->data_vm = oldmm->data_vm;
1741 	mm->exec_vm = oldmm->exec_vm;
1742 	mm->stack_vm = oldmm->stack_vm;
1743 
1744 	/* Use __mt_dup() to efficiently build an identical maple tree. */
1745 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
1746 	if (unlikely(retval))
1747 		goto out;
1748 
1749 	mt_clear_in_rcu(vmi.mas.tree);
1750 	for_each_vma(vmi, mpnt) {
1751 		struct file *file;
1752 
1753 		vma_start_write(mpnt);
1754 		if (mpnt->vm_flags & VM_DONTCOPY) {
1755 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
1756 						    mpnt->vm_end, GFP_KERNEL);
1757 			if (retval)
1758 				goto loop_out;
1759 
1760 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
1761 			continue;
1762 		}
1763 		charge = 0;
1764 		/*
1765 		 * Don't duplicate many vmas if we've been oom-killed (for
1766 		 * example)
1767 		 */
1768 		if (fatal_signal_pending(current)) {
1769 			retval = -EINTR;
1770 			goto loop_out;
1771 		}
1772 		if (mpnt->vm_flags & VM_ACCOUNT) {
1773 			unsigned long len = vma_pages(mpnt);
1774 
1775 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
1776 				goto fail_nomem;
1777 			charge = len;
1778 		}
1779 
1780 		tmp = vm_area_dup(mpnt);
1781 		if (!tmp)
1782 			goto fail_nomem;
1783 		retval = vma_dup_policy(mpnt, tmp);
1784 		if (retval)
1785 			goto fail_nomem_policy;
1786 		tmp->vm_mm = mm;
1787 		retval = dup_userfaultfd(tmp, &uf);
1788 		if (retval)
1789 			goto fail_nomem_anon_vma_fork;
1790 		if (tmp->vm_flags & VM_WIPEONFORK) {
1791 			/*
1792 			 * VM_WIPEONFORK gets a clean slate in the child.
1793 			 * Don't prepare anon_vma until fault since we don't
1794 			 * copy page for current vma.
1795 			 */
1796 			tmp->anon_vma = NULL;
1797 		} else if (anon_vma_fork(tmp, mpnt))
1798 			goto fail_nomem_anon_vma_fork;
1799 		vm_flags_clear(tmp, VM_LOCKED_MASK);
1800 		/*
1801 		 * Copy/update hugetlb private vma information.
1802 		 */
1803 		if (is_vm_hugetlb_page(tmp))
1804 			hugetlb_dup_vma_private(tmp);
1805 
1806 		/*
1807 		 * Link the vma into the MT. After using __mt_dup(), memory
1808 		 * allocation is not necessary here, so it cannot fail.
1809 		 */
1810 		vma_iter_bulk_store(&vmi, tmp);
1811 
1812 		mm->map_count++;
1813 
1814 		if (tmp->vm_ops && tmp->vm_ops->open)
1815 			tmp->vm_ops->open(tmp);
1816 
1817 		file = tmp->vm_file;
1818 		if (file) {
1819 			struct address_space *mapping = file->f_mapping;
1820 
1821 			get_file(file);
1822 			i_mmap_lock_write(mapping);
1823 			if (vma_is_shared_maywrite(tmp))
1824 				mapping_allow_writable(mapping);
1825 			flush_dcache_mmap_lock(mapping);
1826 			/* insert tmp into the share list, just after mpnt */
1827 			vma_interval_tree_insert_after(tmp, mpnt,
1828 					&mapping->i_mmap);
1829 			flush_dcache_mmap_unlock(mapping);
1830 			i_mmap_unlock_write(mapping);
1831 		}
1832 
1833 		if (!(tmp->vm_flags & VM_WIPEONFORK))
1834 			retval = copy_page_range(tmp, mpnt);
1835 
1836 		if (retval) {
1837 			mpnt = vma_next(&vmi);
1838 			goto loop_out;
1839 		}
1840 	}
1841 	/* a new mm has just been created */
1842 	retval = arch_dup_mmap(oldmm, mm);
1843 loop_out:
1844 	vma_iter_free(&vmi);
1845 	if (!retval) {
1846 		mt_set_in_rcu(vmi.mas.tree);
1847 		ksm_fork(mm, oldmm);
1848 		khugepaged_fork(mm, oldmm);
1849 	} else {
1850 
1851 		/*
1852 		 * The entire maple tree has already been duplicated. If the
1853 		 * mmap duplication fails, mark the failure point with
1854 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
1855 		 * stop releasing VMAs that have not been duplicated after this
1856 		 * point.
1857 		 */
1858 		if (mpnt) {
1859 			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
1860 			mas_store(&vmi.mas, XA_ZERO_ENTRY);
1861 			/* Avoid OOM iterating a broken tree */
1862 			set_bit(MMF_OOM_SKIP, &mm->flags);
1863 		}
1864 		/*
1865 		 * The mm_struct is going to exit, but the locks will be dropped
1866 		 * first.  Set the mm_struct as unstable is advisable as it is
1867 		 * not fully initialised.
1868 		 */
1869 		set_bit(MMF_UNSTABLE, &mm->flags);
1870 	}
1871 out:
1872 	mmap_write_unlock(mm);
1873 	flush_tlb_mm(oldmm);
1874 	mmap_write_unlock(oldmm);
1875 	if (!retval)
1876 		dup_userfaultfd_complete(&uf);
1877 	else
1878 		dup_userfaultfd_fail(&uf);
1879 	return retval;
1880 
1881 fail_nomem_anon_vma_fork:
1882 	mpol_put(vma_policy(tmp));
1883 fail_nomem_policy:
1884 	vm_area_free(tmp);
1885 fail_nomem:
1886 	retval = -ENOMEM;
1887 	vm_unacct_memory(charge);
1888 	goto loop_out;
1889 }
1890