1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47
48 atomic_long_t mmap_pages_allocated;
49
50
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58
59 /*
60 * Return the total memory allocated for this pointer, not
61 * just what the caller asked for.
62 *
63 * Doesn't have to be accurate, i.e. may have races.
64 */
kobjsize(const void * objp)65 unsigned int kobjsize(const void *objp)
66 {
67 struct folio *folio;
68
69 /*
70 * If the object we have should not have ksize performed on it,
71 * return size of 0
72 */
73 if (!objp || !virt_addr_valid(objp))
74 return 0;
75
76 folio = virt_to_folio(objp);
77
78 /*
79 * If the allocator sets PageSlab, we know the pointer came from
80 * kmalloc().
81 */
82 if (folio_test_slab(folio))
83 return ksize(objp);
84
85 /*
86 * If it's not a large folio, see if we have a matching VMA
87 * region. This test is intentionally done in reverse order,
88 * so if there's no VMA, we still fall through and hand back
89 * PAGE_SIZE for 0-order folios.
90 */
91 if (!folio_test_large(folio)) {
92 struct vm_area_struct *vma;
93
94 vma = find_vma(current->mm, (unsigned long)objp);
95 if (vma)
96 return vma->vm_end - vma->vm_start;
97 }
98
99 /*
100 * The ksize() function is only guaranteed to work for pointers
101 * returned by kmalloc(). So handle arbitrary pointers here.
102 */
103 return folio_size(folio);
104 }
105
vfree(const void * addr)106 void vfree(const void *addr)
107 {
108 kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 /*
115 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 * returns only a logical address.
117 */
118 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121
vrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int node)122 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
123 gfp_t flags, int node)
124 {
125 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
126 }
127
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)128 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
129 unsigned long start, unsigned long end, gfp_t gfp_mask,
130 pgprot_t prot, unsigned long vm_flags, int node,
131 const void *caller)
132 {
133 return __vmalloc_noprof(size, gfp_mask);
134 }
135
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)136 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
137 int node, const void *caller)
138 {
139 return __vmalloc_noprof(size, gfp_mask);
140 }
141
__vmalloc_user_flags(unsigned long size,gfp_t flags)142 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
143 {
144 void *ret;
145
146 ret = __vmalloc(size, flags);
147 if (ret) {
148 struct vm_area_struct *vma;
149
150 mmap_write_lock(current->mm);
151 vma = find_vma(current->mm, (unsigned long)ret);
152 if (vma)
153 vm_flags_set(vma, VM_USERMAP);
154 mmap_write_unlock(current->mm);
155 }
156
157 return ret;
158 }
159
vmalloc_user_noprof(unsigned long size)160 void *vmalloc_user_noprof(unsigned long size)
161 {
162 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
163 }
164 EXPORT_SYMBOL(vmalloc_user_noprof);
165
vmalloc_to_page(const void * addr)166 struct page *vmalloc_to_page(const void *addr)
167 {
168 return virt_to_page(addr);
169 }
170 EXPORT_SYMBOL(vmalloc_to_page);
171
vmalloc_to_pfn(const void * addr)172 unsigned long vmalloc_to_pfn(const void *addr)
173 {
174 return page_to_pfn(virt_to_page(addr));
175 }
176 EXPORT_SYMBOL(vmalloc_to_pfn);
177
vread_iter(struct iov_iter * iter,const char * addr,size_t count)178 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
179 {
180 /* Don't allow overflow */
181 if ((unsigned long) addr + count < count)
182 count = -(unsigned long) addr;
183
184 return copy_to_iter(addr, count, iter);
185 }
186
187 /*
188 * vmalloc - allocate virtually contiguous memory
189 *
190 * @size: allocation size
191 *
192 * Allocate enough pages to cover @size from the page level
193 * allocator and map them into contiguous kernel virtual space.
194 *
195 * For tight control over page level allocator and protection flags
196 * use __vmalloc() instead.
197 */
vmalloc_noprof(unsigned long size)198 void *vmalloc_noprof(unsigned long size)
199 {
200 return __vmalloc_noprof(size, GFP_KERNEL);
201 }
202 EXPORT_SYMBOL(vmalloc_noprof);
203
204 /*
205 * vmalloc_huge_node - allocate virtually contiguous memory, on a node
206 *
207 * @size: allocation size
208 * @gfp_mask: flags for the page level allocator
209 * @node: node to use for allocation or NUMA_NO_NODE
210 *
211 * Allocate enough pages to cover @size from the page level
212 * allocator and map them into contiguous kernel virtual space.
213 *
214 * Due to NOMMU implications the node argument and HUGE page attribute is
215 * ignored.
216 */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)217 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
218 {
219 return __vmalloc_noprof(size, gfp_mask);
220 }
221
222 /*
223 * vzalloc - allocate virtually contiguous memory with zero fill
224 *
225 * @size: allocation size
226 *
227 * Allocate enough pages to cover @size from the page level
228 * allocator and map them into contiguous kernel virtual space.
229 * The memory allocated is set to zero.
230 *
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
233 */
vzalloc_noprof(unsigned long size)234 void *vzalloc_noprof(unsigned long size)
235 {
236 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
237 }
238 EXPORT_SYMBOL(vzalloc_noprof);
239
240 /**
241 * vmalloc_node - allocate memory on a specific node
242 * @size: allocation size
243 * @node: numa node
244 *
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 *
248 * For tight control over page level allocator and protection flags
249 * use __vmalloc() instead.
250 */
vmalloc_node_noprof(unsigned long size,int node)251 void *vmalloc_node_noprof(unsigned long size, int node)
252 {
253 return vmalloc_noprof(size);
254 }
255 EXPORT_SYMBOL(vmalloc_node_noprof);
256
257 /**
258 * vzalloc_node - allocate memory on a specific node with zero fill
259 * @size: allocation size
260 * @node: numa node
261 *
262 * Allocate enough pages to cover @size from the page level
263 * allocator and map them into contiguous kernel virtual space.
264 * The memory allocated is set to zero.
265 *
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
268 */
vzalloc_node_noprof(unsigned long size,int node)269 void *vzalloc_node_noprof(unsigned long size, int node)
270 {
271 return vzalloc_noprof(size);
272 }
273 EXPORT_SYMBOL(vzalloc_node_noprof);
274
275 /**
276 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
277 * @size: allocation size
278 *
279 * Allocate enough 32bit PA addressable pages to cover @size from the
280 * page level allocator and map them into contiguous kernel virtual space.
281 */
vmalloc_32_noprof(unsigned long size)282 void *vmalloc_32_noprof(unsigned long size)
283 {
284 return __vmalloc_noprof(size, GFP_KERNEL);
285 }
286 EXPORT_SYMBOL(vmalloc_32_noprof);
287
288 /**
289 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
290 * @size: allocation size
291 *
292 * The resulting memory area is 32bit addressable and zeroed so it can be
293 * mapped to userspace without leaking data.
294 *
295 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
296 * remap_vmalloc_range() are permissible.
297 */
vmalloc_32_user_noprof(unsigned long size)298 void *vmalloc_32_user_noprof(unsigned long size)
299 {
300 /*
301 * We'll have to sort out the ZONE_DMA bits for 64-bit,
302 * but for now this can simply use vmalloc_user() directly.
303 */
304 return vmalloc_user_noprof(size);
305 }
306 EXPORT_SYMBOL(vmalloc_32_user_noprof);
307
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)308 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
309 {
310 BUG();
311 return NULL;
312 }
313 EXPORT_SYMBOL(vmap);
314
vunmap(const void * addr)315 void vunmap(const void *addr)
316 {
317 BUG();
318 }
319 EXPORT_SYMBOL(vunmap);
320
vm_map_ram(struct page ** pages,unsigned int count,int node)321 void *vm_map_ram(struct page **pages, unsigned int count, int node)
322 {
323 BUG();
324 return NULL;
325 }
326 EXPORT_SYMBOL(vm_map_ram);
327
vm_unmap_ram(const void * mem,unsigned int count)328 void vm_unmap_ram(const void *mem, unsigned int count)
329 {
330 BUG();
331 }
332 EXPORT_SYMBOL(vm_unmap_ram);
333
vm_unmap_aliases(void)334 void vm_unmap_aliases(void)
335 {
336 }
337 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
338
free_vm_area(struct vm_struct * area)339 void free_vm_area(struct vm_struct *area)
340 {
341 BUG();
342 }
343 EXPORT_SYMBOL_GPL(free_vm_area);
344
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)345 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
346 struct page *page)
347 {
348 return -EINVAL;
349 }
350 EXPORT_SYMBOL(vm_insert_page);
351
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)352 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
353 struct page **pages, unsigned long *num)
354 {
355 return -EINVAL;
356 }
357 EXPORT_SYMBOL(vm_insert_pages);
358
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)359 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
360 unsigned long num)
361 {
362 return -EINVAL;
363 }
364 EXPORT_SYMBOL(vm_map_pages);
365
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)366 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
367 unsigned long num)
368 {
369 return -EINVAL;
370 }
371 EXPORT_SYMBOL(vm_map_pages_zero);
372
373 /*
374 * sys_brk() for the most part doesn't need the global kernel
375 * lock, except when an application is doing something nasty
376 * like trying to un-brk an area that has already been mapped
377 * to a regular file. in this case, the unmapping will need
378 * to invoke file system routines that need the global lock.
379 */
SYSCALL_DEFINE1(brk,unsigned long,brk)380 SYSCALL_DEFINE1(brk, unsigned long, brk)
381 {
382 struct mm_struct *mm = current->mm;
383
384 if (brk < mm->start_brk || brk > mm->context.end_brk)
385 return mm->brk;
386
387 if (mm->brk == brk)
388 return mm->brk;
389
390 /*
391 * Always allow shrinking brk
392 */
393 if (brk <= mm->brk) {
394 mm->brk = brk;
395 return brk;
396 }
397
398 /*
399 * Ok, looks good - let it rip.
400 */
401 flush_icache_user_range(mm->brk, brk);
402 return mm->brk = brk;
403 }
404
405 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
406
407 static const struct ctl_table nommu_table[] = {
408 {
409 .procname = "nr_trim_pages",
410 .data = &sysctl_nr_trim_pages,
411 .maxlen = sizeof(sysctl_nr_trim_pages),
412 .mode = 0644,
413 .proc_handler = proc_dointvec_minmax,
414 .extra1 = SYSCTL_ZERO,
415 },
416 };
417
418 /*
419 * initialise the percpu counter for VM and region record slabs, initialise VMA
420 * state.
421 */
mmap_init(void)422 void __init mmap_init(void)
423 {
424 int ret;
425
426 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
427 VM_BUG_ON(ret);
428 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
429 register_sysctl_init("vm", nommu_table);
430 vma_state_init();
431 }
432
433 /*
434 * validate the region tree
435 * - the caller must hold the region lock
436 */
437 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)438 static noinline void validate_nommu_regions(void)
439 {
440 struct vm_region *region, *last;
441 struct rb_node *p, *lastp;
442
443 lastp = rb_first(&nommu_region_tree);
444 if (!lastp)
445 return;
446
447 last = rb_entry(lastp, struct vm_region, vm_rb);
448 BUG_ON(last->vm_end <= last->vm_start);
449 BUG_ON(last->vm_top < last->vm_end);
450
451 while ((p = rb_next(lastp))) {
452 region = rb_entry(p, struct vm_region, vm_rb);
453 last = rb_entry(lastp, struct vm_region, vm_rb);
454
455 BUG_ON(region->vm_end <= region->vm_start);
456 BUG_ON(region->vm_top < region->vm_end);
457 BUG_ON(region->vm_start < last->vm_top);
458
459 lastp = p;
460 }
461 }
462 #else
validate_nommu_regions(void)463 static void validate_nommu_regions(void)
464 {
465 }
466 #endif
467
468 /*
469 * add a region into the global tree
470 */
add_nommu_region(struct vm_region * region)471 static void add_nommu_region(struct vm_region *region)
472 {
473 struct vm_region *pregion;
474 struct rb_node **p, *parent;
475
476 validate_nommu_regions();
477
478 parent = NULL;
479 p = &nommu_region_tree.rb_node;
480 while (*p) {
481 parent = *p;
482 pregion = rb_entry(parent, struct vm_region, vm_rb);
483 if (region->vm_start < pregion->vm_start)
484 p = &(*p)->rb_left;
485 else if (region->vm_start > pregion->vm_start)
486 p = &(*p)->rb_right;
487 else if (pregion == region)
488 return;
489 else
490 BUG();
491 }
492
493 rb_link_node(®ion->vm_rb, parent, p);
494 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
495
496 validate_nommu_regions();
497 }
498
499 /*
500 * delete a region from the global tree
501 */
delete_nommu_region(struct vm_region * region)502 static void delete_nommu_region(struct vm_region *region)
503 {
504 BUG_ON(!nommu_region_tree.rb_node);
505
506 validate_nommu_regions();
507 rb_erase(®ion->vm_rb, &nommu_region_tree);
508 validate_nommu_regions();
509 }
510
511 /*
512 * free a contiguous series of pages
513 */
free_page_series(unsigned long from,unsigned long to)514 static void free_page_series(unsigned long from, unsigned long to)
515 {
516 for (; from < to; from += PAGE_SIZE) {
517 struct page *page = virt_to_page((void *)from);
518
519 atomic_long_dec(&mmap_pages_allocated);
520 put_page(page);
521 }
522 }
523
524 /*
525 * release a reference to a region
526 * - the caller must hold the region semaphore for writing, which this releases
527 * - the region may not have been added to the tree yet, in which case vm_top
528 * will equal vm_start
529 */
__put_nommu_region(struct vm_region * region)530 static void __put_nommu_region(struct vm_region *region)
531 __releases(nommu_region_sem)
532 {
533 BUG_ON(!nommu_region_tree.rb_node);
534
535 if (--region->vm_usage == 0) {
536 if (region->vm_top > region->vm_start)
537 delete_nommu_region(region);
538 up_write(&nommu_region_sem);
539
540 if (region->vm_file)
541 fput(region->vm_file);
542
543 /* IO memory and memory shared directly out of the pagecache
544 * from ramfs/tmpfs mustn't be released here */
545 if (region->vm_flags & VM_MAPPED_COPY)
546 free_page_series(region->vm_start, region->vm_top);
547 kmem_cache_free(vm_region_jar, region);
548 } else {
549 up_write(&nommu_region_sem);
550 }
551 }
552
553 /*
554 * release a reference to a region
555 */
put_nommu_region(struct vm_region * region)556 static void put_nommu_region(struct vm_region *region)
557 {
558 down_write(&nommu_region_sem);
559 __put_nommu_region(region);
560 }
561
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)562 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
563 {
564 vma->vm_mm = mm;
565
566 /* add the VMA to the mapping */
567 if (vma->vm_file) {
568 struct address_space *mapping = vma->vm_file->f_mapping;
569
570 i_mmap_lock_write(mapping);
571 flush_dcache_mmap_lock(mapping);
572 vma_interval_tree_insert(vma, &mapping->i_mmap);
573 flush_dcache_mmap_unlock(mapping);
574 i_mmap_unlock_write(mapping);
575 }
576 }
577
cleanup_vma_from_mm(struct vm_area_struct * vma)578 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
579 {
580 vma->vm_mm->map_count--;
581 /* remove the VMA from the mapping */
582 if (vma->vm_file) {
583 struct address_space *mapping;
584 mapping = vma->vm_file->f_mapping;
585
586 i_mmap_lock_write(mapping);
587 flush_dcache_mmap_lock(mapping);
588 vma_interval_tree_remove(vma, &mapping->i_mmap);
589 flush_dcache_mmap_unlock(mapping);
590 i_mmap_unlock_write(mapping);
591 }
592 }
593
594 /*
595 * delete a VMA from its owning mm_struct and address space
596 */
delete_vma_from_mm(struct vm_area_struct * vma)597 static int delete_vma_from_mm(struct vm_area_struct *vma)
598 {
599 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
600
601 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
602 if (vma_iter_prealloc(&vmi, NULL)) {
603 pr_warn("Allocation of vma tree for process %d failed\n",
604 current->pid);
605 return -ENOMEM;
606 }
607 cleanup_vma_from_mm(vma);
608
609 /* remove from the MM's tree and list */
610 vma_iter_clear(&vmi);
611 return 0;
612 }
613 /*
614 * destroy a VMA record
615 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)616 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
617 {
618 vma_close(vma);
619 if (vma->vm_file)
620 fput(vma->vm_file);
621 put_nommu_region(vma->vm_region);
622 vm_area_free(vma);
623 }
624
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)625 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
626 unsigned long start_addr,
627 unsigned long end_addr)
628 {
629 unsigned long index = start_addr;
630
631 mmap_assert_locked(mm);
632 return mt_find(&mm->mm_mt, &index, end_addr - 1);
633 }
634 EXPORT_SYMBOL(find_vma_intersection);
635
636 /*
637 * look up the first VMA in which addr resides, NULL if none
638 * - should be called with mm->mmap_lock at least held readlocked
639 */
find_vma(struct mm_struct * mm,unsigned long addr)640 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
641 {
642 VMA_ITERATOR(vmi, mm, addr);
643
644 return vma_iter_load(&vmi);
645 }
646 EXPORT_SYMBOL(find_vma);
647
648 /*
649 * expand a stack to a given address
650 * - not supported under NOMMU conditions
651 */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)652 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
653 {
654 return -ENOMEM;
655 }
656
expand_stack(struct mm_struct * mm,unsigned long addr)657 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
658 {
659 mmap_read_unlock(mm);
660 return NULL;
661 }
662
663 /*
664 * look up the first VMA exactly that exactly matches addr
665 * - should be called with mm->mmap_lock at least held readlocked
666 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)667 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
668 unsigned long addr,
669 unsigned long len)
670 {
671 struct vm_area_struct *vma;
672 unsigned long end = addr + len;
673 VMA_ITERATOR(vmi, mm, addr);
674
675 vma = vma_iter_load(&vmi);
676 if (!vma)
677 return NULL;
678 if (vma->vm_start != addr)
679 return NULL;
680 if (vma->vm_end != end)
681 return NULL;
682
683 return vma;
684 }
685
686 /*
687 * determine whether a mapping should be permitted and, if so, what sort of
688 * mapping we're capable of supporting
689 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)690 static int validate_mmap_request(struct file *file,
691 unsigned long addr,
692 unsigned long len,
693 unsigned long prot,
694 unsigned long flags,
695 unsigned long pgoff,
696 unsigned long *_capabilities)
697 {
698 unsigned long capabilities, rlen;
699 int ret;
700
701 /* do the simple checks first */
702 if (flags & MAP_FIXED)
703 return -EINVAL;
704
705 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
706 (flags & MAP_TYPE) != MAP_SHARED)
707 return -EINVAL;
708
709 if (!len)
710 return -EINVAL;
711
712 /* Careful about overflows.. */
713 rlen = PAGE_ALIGN(len);
714 if (!rlen || rlen > TASK_SIZE)
715 return -ENOMEM;
716
717 /* offset overflow? */
718 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
719 return -EOVERFLOW;
720
721 if (file) {
722 /* files must support mmap */
723 if (!can_mmap_file(file))
724 return -ENODEV;
725
726 /* work out if what we've got could possibly be shared
727 * - we support chardevs that provide their own "memory"
728 * - we support files/blockdevs that are memory backed
729 */
730 if (file->f_op->mmap_capabilities) {
731 capabilities = file->f_op->mmap_capabilities(file);
732 } else {
733 /* no explicit capabilities set, so assume some
734 * defaults */
735 switch (file_inode(file)->i_mode & S_IFMT) {
736 case S_IFREG:
737 case S_IFBLK:
738 capabilities = NOMMU_MAP_COPY;
739 break;
740
741 case S_IFCHR:
742 capabilities =
743 NOMMU_MAP_DIRECT |
744 NOMMU_MAP_READ |
745 NOMMU_MAP_WRITE;
746 break;
747
748 default:
749 return -EINVAL;
750 }
751 }
752
753 /* eliminate any capabilities that we can't support on this
754 * device */
755 if (!file->f_op->get_unmapped_area)
756 capabilities &= ~NOMMU_MAP_DIRECT;
757 if (!(file->f_mode & FMODE_CAN_READ))
758 capabilities &= ~NOMMU_MAP_COPY;
759
760 /* The file shall have been opened with read permission. */
761 if (!(file->f_mode & FMODE_READ))
762 return -EACCES;
763
764 if (flags & MAP_SHARED) {
765 /* do checks for writing, appending and locking */
766 if ((prot & PROT_WRITE) &&
767 !(file->f_mode & FMODE_WRITE))
768 return -EACCES;
769
770 if (IS_APPEND(file_inode(file)) &&
771 (file->f_mode & FMODE_WRITE))
772 return -EACCES;
773
774 if (!(capabilities & NOMMU_MAP_DIRECT))
775 return -ENODEV;
776
777 /* we mustn't privatise shared mappings */
778 capabilities &= ~NOMMU_MAP_COPY;
779 } else {
780 /* we're going to read the file into private memory we
781 * allocate */
782 if (!(capabilities & NOMMU_MAP_COPY))
783 return -ENODEV;
784
785 /* we don't permit a private writable mapping to be
786 * shared with the backing device */
787 if (prot & PROT_WRITE)
788 capabilities &= ~NOMMU_MAP_DIRECT;
789 }
790
791 if (capabilities & NOMMU_MAP_DIRECT) {
792 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
793 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
794 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
795 ) {
796 capabilities &= ~NOMMU_MAP_DIRECT;
797 if (flags & MAP_SHARED) {
798 pr_warn("MAP_SHARED not completely supported on !MMU\n");
799 return -EINVAL;
800 }
801 }
802 }
803
804 /* handle executable mappings and implied executable
805 * mappings */
806 if (path_noexec(&file->f_path)) {
807 if (prot & PROT_EXEC)
808 return -EPERM;
809 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
810 /* handle implication of PROT_EXEC by PROT_READ */
811 if (current->personality & READ_IMPLIES_EXEC) {
812 if (capabilities & NOMMU_MAP_EXEC)
813 prot |= PROT_EXEC;
814 }
815 } else if ((prot & PROT_READ) &&
816 (prot & PROT_EXEC) &&
817 !(capabilities & NOMMU_MAP_EXEC)
818 ) {
819 /* backing file is not executable, try to copy */
820 capabilities &= ~NOMMU_MAP_DIRECT;
821 }
822 } else {
823 /* anonymous mappings are always memory backed and can be
824 * privately mapped
825 */
826 capabilities = NOMMU_MAP_COPY;
827
828 /* handle PROT_EXEC implication by PROT_READ */
829 if ((prot & PROT_READ) &&
830 (current->personality & READ_IMPLIES_EXEC))
831 prot |= PROT_EXEC;
832 }
833
834 /* allow the security API to have its say */
835 ret = security_mmap_addr(addr);
836 if (ret < 0)
837 return ret;
838
839 /* looks okay */
840 *_capabilities = capabilities;
841 return 0;
842 }
843
844 /*
845 * we've determined that we can make the mapping, now translate what we
846 * now know into VMA flags
847 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)848 static vm_flags_t determine_vm_flags(struct file *file,
849 unsigned long prot,
850 unsigned long flags,
851 unsigned long capabilities)
852 {
853 vm_flags_t vm_flags;
854
855 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
856
857 if (!file) {
858 /*
859 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
860 * there is no fork().
861 */
862 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
863 } else if (flags & MAP_PRIVATE) {
864 /* MAP_PRIVATE file mapping */
865 if (capabilities & NOMMU_MAP_DIRECT)
866 vm_flags |= (capabilities & NOMMU_VMFLAGS);
867 else
868 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
869
870 if (!(prot & PROT_WRITE) && !current->ptrace)
871 /*
872 * R/O private file mapping which cannot be used to
873 * modify memory, especially also not via active ptrace
874 * (e.g., set breakpoints) or later by upgrading
875 * permissions (no mprotect()). We can try overlaying
876 * the file mapping, which will work e.g., on chardevs,
877 * ramfs/tmpfs/shmfs and romfs/cramf.
878 */
879 vm_flags |= VM_MAYOVERLAY;
880 } else {
881 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
882 vm_flags |= VM_SHARED | VM_MAYSHARE |
883 (capabilities & NOMMU_VMFLAGS);
884 }
885
886 return vm_flags;
887 }
888
889 /*
890 * set up a shared mapping on a file (the driver or filesystem provides and
891 * pins the storage)
892 */
do_mmap_shared_file(struct vm_area_struct * vma)893 static int do_mmap_shared_file(struct vm_area_struct *vma)
894 {
895 int ret;
896
897 ret = mmap_file(vma->vm_file, vma);
898 if (ret == 0) {
899 vma->vm_region->vm_top = vma->vm_region->vm_end;
900 return 0;
901 }
902 if (ret != -ENOSYS)
903 return ret;
904
905 /* getting -ENOSYS indicates that direct mmap isn't possible (as
906 * opposed to tried but failed) so we can only give a suitable error as
907 * it's not possible to make a private copy if MAP_SHARED was given */
908 return -ENODEV;
909 }
910
911 /*
912 * set up a private mapping or an anonymous shared mapping
913 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)914 static int do_mmap_private(struct vm_area_struct *vma,
915 struct vm_region *region,
916 unsigned long len,
917 unsigned long capabilities)
918 {
919 unsigned long total, point;
920 void *base;
921 int ret, order;
922
923 /*
924 * Invoke the file's mapping function so that it can keep track of
925 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
926 * it may attempt to share, which will make is_nommu_shared_mapping()
927 * happy.
928 */
929 if (capabilities & NOMMU_MAP_DIRECT) {
930 ret = mmap_file(vma->vm_file, vma);
931 /* shouldn't return success if we're not sharing */
932 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
933 ret = -ENOSYS;
934 if (ret == 0) {
935 vma->vm_region->vm_top = vma->vm_region->vm_end;
936 return 0;
937 }
938 if (ret != -ENOSYS)
939 return ret;
940
941 /* getting an ENOSYS error indicates that direct mmap isn't
942 * possible (as opposed to tried but failed) so we'll try to
943 * make a private copy of the data and map that instead */
944 }
945
946
947 /* allocate some memory to hold the mapping
948 * - note that this may not return a page-aligned address if the object
949 * we're allocating is smaller than a page
950 */
951 order = get_order(len);
952 total = 1 << order;
953 point = len >> PAGE_SHIFT;
954
955 /* we don't want to allocate a power-of-2 sized page set */
956 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
957 total = point;
958
959 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
960 if (!base)
961 goto enomem;
962
963 atomic_long_add(total, &mmap_pages_allocated);
964
965 vm_flags_set(vma, VM_MAPPED_COPY);
966 region->vm_flags = vma->vm_flags;
967 region->vm_start = (unsigned long) base;
968 region->vm_end = region->vm_start + len;
969 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
970
971 vma->vm_start = region->vm_start;
972 vma->vm_end = region->vm_start + len;
973
974 if (vma->vm_file) {
975 /* read the contents of a file into the copy */
976 loff_t fpos;
977
978 fpos = vma->vm_pgoff;
979 fpos <<= PAGE_SHIFT;
980
981 ret = kernel_read(vma->vm_file, base, len, &fpos);
982 if (ret < 0)
983 goto error_free;
984
985 /* clear the last little bit */
986 if (ret < len)
987 memset(base + ret, 0, len - ret);
988
989 } else {
990 vma_set_anonymous(vma);
991 }
992
993 return 0;
994
995 error_free:
996 free_page_series(region->vm_start, region->vm_top);
997 region->vm_start = vma->vm_start = 0;
998 region->vm_end = vma->vm_end = 0;
999 region->vm_top = 0;
1000 return ret;
1001
1002 enomem:
1003 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1004 len, current->pid, current->comm);
1005 show_mem();
1006 return -ENOMEM;
1007 }
1008
1009 /*
1010 * handle mapping creation for uClinux
1011 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1012 unsigned long do_mmap(struct file *file,
1013 unsigned long addr,
1014 unsigned long len,
1015 unsigned long prot,
1016 unsigned long flags,
1017 vm_flags_t vm_flags,
1018 unsigned long pgoff,
1019 unsigned long *populate,
1020 struct list_head *uf)
1021 {
1022 struct vm_area_struct *vma;
1023 struct vm_region *region;
1024 struct rb_node *rb;
1025 unsigned long capabilities, result;
1026 int ret;
1027 VMA_ITERATOR(vmi, current->mm, 0);
1028
1029 *populate = 0;
1030
1031 /* decide whether we should attempt the mapping, and if so what sort of
1032 * mapping */
1033 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1034 &capabilities);
1035 if (ret < 0)
1036 return ret;
1037
1038 /* we ignore the address hint */
1039 addr = 0;
1040 len = PAGE_ALIGN(len);
1041
1042 /* we've determined that we can make the mapping, now translate what we
1043 * now know into VMA flags */
1044 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1045
1046
1047 /* we're going to need to record the mapping */
1048 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1049 if (!region)
1050 goto error_getting_region;
1051
1052 vma = vm_area_alloc(current->mm);
1053 if (!vma)
1054 goto error_getting_vma;
1055
1056 region->vm_usage = 1;
1057 region->vm_flags = vm_flags;
1058 region->vm_pgoff = pgoff;
1059
1060 vm_flags_init(vma, vm_flags);
1061 vma->vm_pgoff = pgoff;
1062
1063 if (file) {
1064 region->vm_file = get_file(file);
1065 vma->vm_file = get_file(file);
1066 }
1067
1068 down_write(&nommu_region_sem);
1069
1070 /* if we want to share, we need to check for regions created by other
1071 * mmap() calls that overlap with our proposed mapping
1072 * - we can only share with a superset match on most regular files
1073 * - shared mappings on character devices and memory backed files are
1074 * permitted to overlap inexactly as far as we are concerned for in
1075 * these cases, sharing is handled in the driver or filesystem rather
1076 * than here
1077 */
1078 if (is_nommu_shared_mapping(vm_flags)) {
1079 struct vm_region *pregion;
1080 unsigned long pglen, rpglen, pgend, rpgend, start;
1081
1082 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 pgend = pgoff + pglen;
1084
1085 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1086 pregion = rb_entry(rb, struct vm_region, vm_rb);
1087
1088 if (!is_nommu_shared_mapping(pregion->vm_flags))
1089 continue;
1090
1091 /* search for overlapping mappings on the same file */
1092 if (file_inode(pregion->vm_file) !=
1093 file_inode(file))
1094 continue;
1095
1096 if (pregion->vm_pgoff >= pgend)
1097 continue;
1098
1099 rpglen = pregion->vm_end - pregion->vm_start;
1100 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101 rpgend = pregion->vm_pgoff + rpglen;
1102 if (pgoff >= rpgend)
1103 continue;
1104
1105 /* handle inexactly overlapping matches between
1106 * mappings */
1107 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1108 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1109 /* new mapping is not a subset of the region */
1110 if (!(capabilities & NOMMU_MAP_DIRECT))
1111 goto sharing_violation;
1112 continue;
1113 }
1114
1115 /* we've found a region we can share */
1116 pregion->vm_usage++;
1117 vma->vm_region = pregion;
1118 start = pregion->vm_start;
1119 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1120 vma->vm_start = start;
1121 vma->vm_end = start + len;
1122
1123 if (pregion->vm_flags & VM_MAPPED_COPY)
1124 vm_flags_set(vma, VM_MAPPED_COPY);
1125 else {
1126 ret = do_mmap_shared_file(vma);
1127 if (ret < 0) {
1128 vma->vm_region = NULL;
1129 vma->vm_start = 0;
1130 vma->vm_end = 0;
1131 pregion->vm_usage--;
1132 pregion = NULL;
1133 goto error_just_free;
1134 }
1135 }
1136 fput(region->vm_file);
1137 kmem_cache_free(vm_region_jar, region);
1138 region = pregion;
1139 result = start;
1140 goto share;
1141 }
1142
1143 /* obtain the address at which to make a shared mapping
1144 * - this is the hook for quasi-memory character devices to
1145 * tell us the location of a shared mapping
1146 */
1147 if (capabilities & NOMMU_MAP_DIRECT) {
1148 addr = file->f_op->get_unmapped_area(file, addr, len,
1149 pgoff, flags);
1150 if (IS_ERR_VALUE(addr)) {
1151 ret = addr;
1152 if (ret != -ENOSYS)
1153 goto error_just_free;
1154
1155 /* the driver refused to tell us where to site
1156 * the mapping so we'll have to attempt to copy
1157 * it */
1158 ret = -ENODEV;
1159 if (!(capabilities & NOMMU_MAP_COPY))
1160 goto error_just_free;
1161
1162 capabilities &= ~NOMMU_MAP_DIRECT;
1163 } else {
1164 vma->vm_start = region->vm_start = addr;
1165 vma->vm_end = region->vm_end = addr + len;
1166 }
1167 }
1168 }
1169
1170 vma->vm_region = region;
1171
1172 /* set up the mapping
1173 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1174 */
1175 if (file && vma->vm_flags & VM_SHARED)
1176 ret = do_mmap_shared_file(vma);
1177 else
1178 ret = do_mmap_private(vma, region, len, capabilities);
1179 if (ret < 0)
1180 goto error_just_free;
1181 add_nommu_region(region);
1182
1183 /* clear anonymous mappings that don't ask for uninitialized data */
1184 if (!vma->vm_file &&
1185 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1186 !(flags & MAP_UNINITIALIZED)))
1187 memset((void *)region->vm_start, 0,
1188 region->vm_end - region->vm_start);
1189
1190 /* okay... we have a mapping; now we have to register it */
1191 result = vma->vm_start;
1192
1193 current->mm->total_vm += len >> PAGE_SHIFT;
1194
1195 share:
1196 BUG_ON(!vma->vm_region);
1197 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1198 if (vma_iter_prealloc(&vmi, vma))
1199 goto error_just_free;
1200
1201 setup_vma_to_mm(vma, current->mm);
1202 current->mm->map_count++;
1203 /* add the VMA to the tree */
1204 vma_iter_store_new(&vmi, vma);
1205
1206 /* we flush the region from the icache only when the first executable
1207 * mapping of it is made */
1208 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209 flush_icache_user_range(region->vm_start, region->vm_end);
1210 region->vm_icache_flushed = true;
1211 }
1212
1213 up_write(&nommu_region_sem);
1214
1215 return result;
1216
1217 error_just_free:
1218 up_write(&nommu_region_sem);
1219 error:
1220 vma_iter_free(&vmi);
1221 if (region->vm_file)
1222 fput(region->vm_file);
1223 kmem_cache_free(vm_region_jar, region);
1224 if (vma->vm_file)
1225 fput(vma->vm_file);
1226 vm_area_free(vma);
1227 return ret;
1228
1229 sharing_violation:
1230 up_write(&nommu_region_sem);
1231 pr_warn("Attempt to share mismatched mappings\n");
1232 ret = -EINVAL;
1233 goto error;
1234
1235 error_getting_vma:
1236 kmem_cache_free(vm_region_jar, region);
1237 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238 len, current->pid);
1239 show_mem();
1240 return -ENOMEM;
1241
1242 error_getting_region:
1243 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244 len, current->pid);
1245 show_mem();
1246 return -ENOMEM;
1247 }
1248
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1249 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1250 unsigned long prot, unsigned long flags,
1251 unsigned long fd, unsigned long pgoff)
1252 {
1253 struct file *file = NULL;
1254 unsigned long retval = -EBADF;
1255
1256 audit_mmap_fd(fd, flags);
1257 if (!(flags & MAP_ANONYMOUS)) {
1258 file = fget(fd);
1259 if (!file)
1260 goto out;
1261 }
1262
1263 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1264
1265 if (file)
1266 fput(file);
1267 out:
1268 return retval;
1269 }
1270
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1271 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272 unsigned long, prot, unsigned long, flags,
1273 unsigned long, fd, unsigned long, pgoff)
1274 {
1275 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1276 }
1277
1278 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1279 struct mmap_arg_struct {
1280 unsigned long addr;
1281 unsigned long len;
1282 unsigned long prot;
1283 unsigned long flags;
1284 unsigned long fd;
1285 unsigned long offset;
1286 };
1287
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1288 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1289 {
1290 struct mmap_arg_struct a;
1291
1292 if (copy_from_user(&a, arg, sizeof(a)))
1293 return -EFAULT;
1294 if (offset_in_page(a.offset))
1295 return -EINVAL;
1296
1297 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1298 a.offset >> PAGE_SHIFT);
1299 }
1300 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1301
1302 /*
1303 * split a vma into two pieces at address 'addr', a new vma is allocated either
1304 * for the first part or the tail.
1305 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1306 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1307 unsigned long addr, int new_below)
1308 {
1309 struct vm_area_struct *new;
1310 struct vm_region *region;
1311 unsigned long npages;
1312 struct mm_struct *mm;
1313
1314 /* we're only permitted to split anonymous regions (these should have
1315 * only a single usage on the region) */
1316 if (vma->vm_file)
1317 return -ENOMEM;
1318
1319 mm = vma->vm_mm;
1320 if (mm->map_count >= sysctl_max_map_count)
1321 return -ENOMEM;
1322
1323 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1324 if (!region)
1325 return -ENOMEM;
1326
1327 new = vm_area_dup(vma);
1328 if (!new)
1329 goto err_vma_dup;
1330
1331 /* most fields are the same, copy all, and then fixup */
1332 *region = *vma->vm_region;
1333 new->vm_region = region;
1334
1335 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1336
1337 if (new_below) {
1338 region->vm_top = region->vm_end = new->vm_end = addr;
1339 } else {
1340 region->vm_start = new->vm_start = addr;
1341 region->vm_pgoff = new->vm_pgoff += npages;
1342 }
1343
1344 vma_iter_config(vmi, new->vm_start, new->vm_end);
1345 if (vma_iter_prealloc(vmi, vma)) {
1346 pr_warn("Allocation of vma tree for process %d failed\n",
1347 current->pid);
1348 goto err_vmi_preallocate;
1349 }
1350
1351 if (new->vm_ops && new->vm_ops->open)
1352 new->vm_ops->open(new);
1353
1354 down_write(&nommu_region_sem);
1355 delete_nommu_region(vma->vm_region);
1356 if (new_below) {
1357 vma->vm_region->vm_start = vma->vm_start = addr;
1358 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1359 } else {
1360 vma->vm_region->vm_end = vma->vm_end = addr;
1361 vma->vm_region->vm_top = addr;
1362 }
1363 add_nommu_region(vma->vm_region);
1364 add_nommu_region(new->vm_region);
1365 up_write(&nommu_region_sem);
1366
1367 setup_vma_to_mm(vma, mm);
1368 setup_vma_to_mm(new, mm);
1369 vma_iter_store_new(vmi, new);
1370 mm->map_count++;
1371 return 0;
1372
1373 err_vmi_preallocate:
1374 vm_area_free(new);
1375 err_vma_dup:
1376 kmem_cache_free(vm_region_jar, region);
1377 return -ENOMEM;
1378 }
1379
1380 /*
1381 * shrink a VMA by removing the specified chunk from either the beginning or
1382 * the end
1383 */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1384 static int vmi_shrink_vma(struct vma_iterator *vmi,
1385 struct vm_area_struct *vma,
1386 unsigned long from, unsigned long to)
1387 {
1388 struct vm_region *region;
1389
1390 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1391 * and list */
1392 if (from > vma->vm_start) {
1393 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1394 return -ENOMEM;
1395 vma->vm_end = from;
1396 } else {
1397 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1398 return -ENOMEM;
1399 vma->vm_start = to;
1400 }
1401
1402 /* cut the backing region down to size */
1403 region = vma->vm_region;
1404 BUG_ON(region->vm_usage != 1);
1405
1406 down_write(&nommu_region_sem);
1407 delete_nommu_region(region);
1408 if (from > region->vm_start) {
1409 to = region->vm_top;
1410 region->vm_top = region->vm_end = from;
1411 } else {
1412 region->vm_start = to;
1413 }
1414 add_nommu_region(region);
1415 up_write(&nommu_region_sem);
1416
1417 free_page_series(from, to);
1418 return 0;
1419 }
1420
1421 /*
1422 * release a mapping
1423 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1424 * VMA, though it need not cover the whole VMA
1425 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1426 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1427 {
1428 VMA_ITERATOR(vmi, mm, start);
1429 struct vm_area_struct *vma;
1430 unsigned long end;
1431 int ret = 0;
1432
1433 len = PAGE_ALIGN(len);
1434 if (len == 0)
1435 return -EINVAL;
1436
1437 end = start + len;
1438
1439 /* find the first potentially overlapping VMA */
1440 vma = vma_find(&vmi, end);
1441 if (!vma) {
1442 static int limit;
1443 if (limit < 5) {
1444 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1445 current->pid, current->comm,
1446 start, start + len - 1);
1447 limit++;
1448 }
1449 return -EINVAL;
1450 }
1451
1452 /* we're allowed to split an anonymous VMA but not a file-backed one */
1453 if (vma->vm_file) {
1454 do {
1455 if (start > vma->vm_start)
1456 return -EINVAL;
1457 if (end == vma->vm_end)
1458 goto erase_whole_vma;
1459 vma = vma_find(&vmi, end);
1460 } while (vma);
1461 return -EINVAL;
1462 } else {
1463 /* the chunk must be a subset of the VMA found */
1464 if (start == vma->vm_start && end == vma->vm_end)
1465 goto erase_whole_vma;
1466 if (start < vma->vm_start || end > vma->vm_end)
1467 return -EINVAL;
1468 if (offset_in_page(start))
1469 return -EINVAL;
1470 if (end != vma->vm_end && offset_in_page(end))
1471 return -EINVAL;
1472 if (start != vma->vm_start && end != vma->vm_end) {
1473 ret = split_vma(&vmi, vma, start, 1);
1474 if (ret < 0)
1475 return ret;
1476 }
1477 return vmi_shrink_vma(&vmi, vma, start, end);
1478 }
1479
1480 erase_whole_vma:
1481 if (delete_vma_from_mm(vma))
1482 ret = -ENOMEM;
1483 else
1484 delete_vma(mm, vma);
1485 return ret;
1486 }
1487
vm_munmap(unsigned long addr,size_t len)1488 int vm_munmap(unsigned long addr, size_t len)
1489 {
1490 struct mm_struct *mm = current->mm;
1491 int ret;
1492
1493 mmap_write_lock(mm);
1494 ret = do_munmap(mm, addr, len, NULL);
1495 mmap_write_unlock(mm);
1496 return ret;
1497 }
1498 EXPORT_SYMBOL(vm_munmap);
1499
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1500 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1501 {
1502 return vm_munmap(addr, len);
1503 }
1504
1505 /*
1506 * release all the mappings made in a process's VM space
1507 */
exit_mmap(struct mm_struct * mm)1508 void exit_mmap(struct mm_struct *mm)
1509 {
1510 VMA_ITERATOR(vmi, mm, 0);
1511 struct vm_area_struct *vma;
1512
1513 if (!mm)
1514 return;
1515
1516 mm->total_vm = 0;
1517
1518 /*
1519 * Lock the mm to avoid assert complaining even though this is the only
1520 * user of the mm
1521 */
1522 mmap_write_lock(mm);
1523 for_each_vma(vmi, vma) {
1524 cleanup_vma_from_mm(vma);
1525 delete_vma(mm, vma);
1526 cond_resched();
1527 }
1528 __mt_destroy(&mm->mm_mt);
1529 mmap_write_unlock(mm);
1530 }
1531
1532 /*
1533 * expand (or shrink) an existing mapping, potentially moving it at the same
1534 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1535 *
1536 * under NOMMU conditions, we only permit changing a mapping's size, and only
1537 * as long as it stays within the region allocated by do_mmap_private() and the
1538 * block is not shareable
1539 *
1540 * MREMAP_FIXED is not supported under NOMMU conditions
1541 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1542 static unsigned long do_mremap(unsigned long addr,
1543 unsigned long old_len, unsigned long new_len,
1544 unsigned long flags, unsigned long new_addr)
1545 {
1546 struct vm_area_struct *vma;
1547
1548 /* insanity checks first */
1549 old_len = PAGE_ALIGN(old_len);
1550 new_len = PAGE_ALIGN(new_len);
1551 if (old_len == 0 || new_len == 0)
1552 return (unsigned long) -EINVAL;
1553
1554 if (offset_in_page(addr))
1555 return -EINVAL;
1556
1557 if (flags & MREMAP_FIXED && new_addr != addr)
1558 return (unsigned long) -EINVAL;
1559
1560 vma = find_vma_exact(current->mm, addr, old_len);
1561 if (!vma)
1562 return (unsigned long) -EINVAL;
1563
1564 if (vma->vm_end != vma->vm_start + old_len)
1565 return (unsigned long) -EFAULT;
1566
1567 if (is_nommu_shared_mapping(vma->vm_flags))
1568 return (unsigned long) -EPERM;
1569
1570 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1571 return (unsigned long) -ENOMEM;
1572
1573 /* all checks complete - do it */
1574 vma->vm_end = vma->vm_start + new_len;
1575 return vma->vm_start;
1576 }
1577
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1578 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1579 unsigned long, new_len, unsigned long, flags,
1580 unsigned long, new_addr)
1581 {
1582 unsigned long ret;
1583
1584 mmap_write_lock(current->mm);
1585 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1586 mmap_write_unlock(current->mm);
1587 return ret;
1588 }
1589
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1590 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1591 unsigned long pfn, unsigned long size, pgprot_t prot)
1592 {
1593 if (addr != (pfn << PAGE_SHIFT))
1594 return -EINVAL;
1595
1596 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(remap_pfn_range);
1600
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1601 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1602 {
1603 unsigned long pfn = start >> PAGE_SHIFT;
1604 unsigned long vm_len = vma->vm_end - vma->vm_start;
1605
1606 pfn += vma->vm_pgoff;
1607 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1608 }
1609 EXPORT_SYMBOL(vm_iomap_memory);
1610
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1611 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1612 unsigned long pgoff)
1613 {
1614 unsigned int size = vma->vm_end - vma->vm_start;
1615
1616 if (!(vma->vm_flags & VM_USERMAP))
1617 return -EINVAL;
1618
1619 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1620 vma->vm_end = vma->vm_start + size;
1621
1622 return 0;
1623 }
1624 EXPORT_SYMBOL(remap_vmalloc_range);
1625
filemap_fault(struct vm_fault * vmf)1626 vm_fault_t filemap_fault(struct vm_fault *vmf)
1627 {
1628 BUG();
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(filemap_fault);
1632
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1633 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1634 pgoff_t start_pgoff, pgoff_t end_pgoff)
1635 {
1636 BUG();
1637 return 0;
1638 }
1639 EXPORT_SYMBOL(filemap_map_pages);
1640
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1641 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1642 void *buf, int len, unsigned int gup_flags)
1643 {
1644 struct vm_area_struct *vma;
1645 int write = gup_flags & FOLL_WRITE;
1646
1647 if (mmap_read_lock_killable(mm))
1648 return 0;
1649
1650 /* the access must start within one of the target process's mappings */
1651 vma = find_vma(mm, addr);
1652 if (vma) {
1653 /* don't overrun this mapping */
1654 if (addr + len >= vma->vm_end)
1655 len = vma->vm_end - addr;
1656
1657 /* only read or write mappings where it is permitted */
1658 if (write && vma->vm_flags & VM_MAYWRITE)
1659 copy_to_user_page(vma, NULL, addr,
1660 (void *) addr, buf, len);
1661 else if (!write && vma->vm_flags & VM_MAYREAD)
1662 copy_from_user_page(vma, NULL, addr,
1663 buf, (void *) addr, len);
1664 else
1665 len = 0;
1666 } else {
1667 len = 0;
1668 }
1669
1670 mmap_read_unlock(mm);
1671
1672 return len;
1673 }
1674
1675 /**
1676 * access_remote_vm - access another process' address space
1677 * @mm: the mm_struct of the target address space
1678 * @addr: start address to access
1679 * @buf: source or destination buffer
1680 * @len: number of bytes to transfer
1681 * @gup_flags: flags modifying lookup behaviour
1682 *
1683 * The caller must hold a reference on @mm.
1684 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1685 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1686 void *buf, int len, unsigned int gup_flags)
1687 {
1688 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1689 }
1690
1691 /*
1692 * Access another process' address space.
1693 * - source/target buffer must be kernel space
1694 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1695 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1696 unsigned int gup_flags)
1697 {
1698 struct mm_struct *mm;
1699
1700 if (addr + len < addr)
1701 return 0;
1702
1703 mm = get_task_mm(tsk);
1704 if (!mm)
1705 return 0;
1706
1707 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1708
1709 mmput(mm);
1710 return len;
1711 }
1712 EXPORT_SYMBOL_GPL(access_process_vm);
1713
1714 #ifdef CONFIG_BPF_SYSCALL
1715 /*
1716 * Copy a string from another process's address space as given in mm.
1717 * If there is any error return -EFAULT.
1718 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len)1719 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1720 void *buf, int len)
1721 {
1722 unsigned long addr_end;
1723 struct vm_area_struct *vma;
1724 int ret = -EFAULT;
1725
1726 *(char *)buf = '\0';
1727
1728 if (mmap_read_lock_killable(mm))
1729 return ret;
1730
1731 /* the access must start within one of the target process's mappings */
1732 vma = find_vma(mm, addr);
1733 if (!vma)
1734 goto out;
1735
1736 if (check_add_overflow(addr, len, &addr_end))
1737 goto out;
1738
1739 /* don't overrun this mapping */
1740 if (addr_end > vma->vm_end)
1741 len = vma->vm_end - addr;
1742
1743 /* only read mappings where it is permitted */
1744 if (vma->vm_flags & VM_MAYREAD) {
1745 ret = strscpy(buf, (char *)addr, len);
1746 if (ret < 0)
1747 ret = len - 1;
1748 }
1749
1750 out:
1751 mmap_read_unlock(mm);
1752 return ret;
1753 }
1754
1755 /**
1756 * copy_remote_vm_str - copy a string from another process's address space.
1757 * @tsk: the task of the target address space
1758 * @addr: start address to read from
1759 * @buf: destination buffer
1760 * @len: number of bytes to copy
1761 * @gup_flags: flags modifying lookup behaviour (unused)
1762 *
1763 * The caller must hold a reference on @mm.
1764 *
1765 * Return: number of bytes copied from @addr (source) to @buf (destination);
1766 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1767 * buffer. On any error, return -EFAULT.
1768 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1769 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1770 void *buf, int len, unsigned int gup_flags)
1771 {
1772 struct mm_struct *mm;
1773 int ret;
1774
1775 if (unlikely(len == 0))
1776 return 0;
1777
1778 mm = get_task_mm(tsk);
1779 if (!mm) {
1780 *(char *)buf = '\0';
1781 return -EFAULT;
1782 }
1783
1784 ret = __copy_remote_vm_str(mm, addr, buf, len);
1785
1786 mmput(mm);
1787
1788 return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1791 #endif /* CONFIG_BPF_SYSCALL */
1792
1793 /**
1794 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1795 * @inode: The inode to check
1796 * @size: The current filesize of the inode
1797 * @newsize: The proposed filesize of the inode
1798 *
1799 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1800 * make sure that any outstanding VMAs aren't broken and then shrink the
1801 * vm_regions that extend beyond so that do_mmap() doesn't
1802 * automatically grant mappings that are too large.
1803 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1804 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1805 size_t newsize)
1806 {
1807 struct vm_area_struct *vma;
1808 struct vm_region *region;
1809 pgoff_t low, high;
1810 size_t r_size, r_top;
1811
1812 low = newsize >> PAGE_SHIFT;
1813 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1814
1815 down_write(&nommu_region_sem);
1816 i_mmap_lock_read(inode->i_mapping);
1817
1818 /* search for VMAs that fall within the dead zone */
1819 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1820 /* found one - only interested if it's shared out of the page
1821 * cache */
1822 if (vma->vm_flags & VM_SHARED) {
1823 i_mmap_unlock_read(inode->i_mapping);
1824 up_write(&nommu_region_sem);
1825 return -ETXTBSY; /* not quite true, but near enough */
1826 }
1827 }
1828
1829 /* reduce any regions that overlap the dead zone - if in existence,
1830 * these will be pointed to by VMAs that don't overlap the dead zone
1831 *
1832 * we don't check for any regions that start beyond the EOF as there
1833 * shouldn't be any
1834 */
1835 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1836 if (!(vma->vm_flags & VM_SHARED))
1837 continue;
1838
1839 region = vma->vm_region;
1840 r_size = region->vm_top - region->vm_start;
1841 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1842
1843 if (r_top > newsize) {
1844 region->vm_top -= r_top - newsize;
1845 if (region->vm_end > region->vm_top)
1846 region->vm_end = region->vm_top;
1847 }
1848 }
1849
1850 i_mmap_unlock_read(inode->i_mapping);
1851 up_write(&nommu_region_sem);
1852 return 0;
1853 }
1854
1855 /*
1856 * Initialise sysctl_user_reserve_kbytes.
1857 *
1858 * This is intended to prevent a user from starting a single memory hogging
1859 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1860 * mode.
1861 *
1862 * The default value is min(3% of free memory, 128MB)
1863 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1864 */
init_user_reserve(void)1865 static int __meminit init_user_reserve(void)
1866 {
1867 unsigned long free_kbytes;
1868
1869 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1870
1871 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1872 return 0;
1873 }
1874 subsys_initcall(init_user_reserve);
1875
1876 /*
1877 * Initialise sysctl_admin_reserve_kbytes.
1878 *
1879 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1880 * to log in and kill a memory hogging process.
1881 *
1882 * Systems with more than 256MB will reserve 8MB, enough to recover
1883 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1884 * only reserve 3% of free pages by default.
1885 */
init_admin_reserve(void)1886 static int __meminit init_admin_reserve(void)
1887 {
1888 unsigned long free_kbytes;
1889
1890 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1891
1892 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1893 return 0;
1894 }
1895 subsys_initcall(init_admin_reserve);
1896
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)1897 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1898 {
1899 mmap_write_lock(oldmm);
1900 dup_mm_exe_file(mm, oldmm);
1901 mmap_write_unlock(oldmm);
1902 return 0;
1903 }
1904