1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/perf_event.h>
23 #include <asm/tlb.h>
24
25 #include "mm_internal.h"
26
27 #ifdef CONFIG_PARAVIRT
28 # define STATIC_NOPV
29 #else
30 # define STATIC_NOPV static
31 # define __flush_tlb_local native_flush_tlb_local
32 # define __flush_tlb_global native_flush_tlb_global
33 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
34 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
35 #endif
36
37 /*
38 * TLB flushing, formerly SMP-only
39 * c/o Linus Torvalds.
40 *
41 * These mean you can really definitely utterly forget about
42 * writing to user space from interrupts. (Its not allowed anyway).
43 *
44 * Optimizations Manfred Spraul <manfred@colorfullife.com>
45 *
46 * More scalable flush, from Andi Kleen
47 *
48 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
49 */
50
51 /*
52 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
53 * stored in cpu_tlb_state.last_user_mm_spec.
54 */
55 #define LAST_USER_MM_IBPB 0x1UL
56 #define LAST_USER_MM_L1D_FLUSH 0x2UL
57 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
58
59 /* Bits to set when tlbstate and flush is (re)initialized */
60 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
61
62 /*
63 * The x86 feature is called PCID (Process Context IDentifier). It is similar
64 * to what is traditionally called ASID on the RISC processors.
65 *
66 * We don't use the traditional ASID implementation, where each process/mm gets
67 * its own ASID and flush/restart when we run out of ASID space.
68 *
69 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
70 * that came by on this CPU, allowing cheaper switch_mm between processes on
71 * this CPU.
72 *
73 * We end up with different spaces for different things. To avoid confusion we
74 * use different names for each of them:
75 *
76 * ASID - [0, TLB_NR_DYN_ASIDS-1]
77 * the canonical identifier for an mm
78 *
79 * kPCID - [1, TLB_NR_DYN_ASIDS]
80 * the value we write into the PCID part of CR3; corresponds to the
81 * ASID+1, because PCID 0 is special.
82 *
83 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
84 * for KPTI each mm has two address spaces and thus needs two
85 * PCID values, but we can still do with a single ASID denomination
86 * for each mm. Corresponds to kPCID + 2048.
87 *
88 */
89
90 /*
91 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
92 * user/kernel switches
93 */
94 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
95 # define PTI_CONSUMED_PCID_BITS 1
96 #else
97 # define PTI_CONSUMED_PCID_BITS 0
98 #endif
99
100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
101
102 /*
103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
104 * for them being zero-based. Another -1 is because PCID 0 is reserved for
105 * use by non-PCID-aware users.
106 */
107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
108
109 /*
110 * Given @asid, compute kPCID
111 */
kern_pcid(u16 asid)112 static inline u16 kern_pcid(u16 asid)
113 {
114 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
115
116 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
117 /*
118 * Make sure that the dynamic ASID space does not conflict with the
119 * bit we are using to switch between user and kernel ASIDs.
120 */
121 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
122
123 /*
124 * The ASID being passed in here should have respected the
125 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
126 */
127 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
128 #endif
129 /*
130 * The dynamically-assigned ASIDs that get passed in are small
131 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
132 * so do not bother to clear it.
133 *
134 * If PCID is on, ASID-aware code paths put the ASID+1 into the
135 * PCID bits. This serves two purposes. It prevents a nasty
136 * situation in which PCID-unaware code saves CR3, loads some other
137 * value (with PCID == 0), and then restores CR3, thus corrupting
138 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
139 * that any bugs involving loading a PCID-enabled CR3 with
140 * CR4.PCIDE off will trigger deterministically.
141 */
142 return asid + 1;
143 }
144
145 /*
146 * Given @asid, compute uPCID
147 */
user_pcid(u16 asid)148 static inline u16 user_pcid(u16 asid)
149 {
150 u16 ret = kern_pcid(asid);
151 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
152 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
153 #endif
154 return ret;
155 }
156
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
158 {
159 unsigned long cr3 = __sme_pa(pgd) | lam;
160
161 if (static_cpu_has(X86_FEATURE_PCID)) {
162 cr3 |= kern_pcid(asid);
163 } else {
164 VM_WARN_ON_ONCE(asid != 0);
165 }
166
167 return cr3;
168 }
169
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)170 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
171 unsigned long lam)
172 {
173 /*
174 * Use boot_cpu_has() instead of this_cpu_has() as this function
175 * might be called during early boot. This should work even after
176 * boot because all CPU's the have same capabilities:
177 */
178 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
179 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
180 }
181
182 /*
183 * We get here when we do something requiring a TLB invalidation
184 * but could not go invalidate all of the contexts. We do the
185 * necessary invalidation by clearing out the 'ctx_id' which
186 * forces a TLB flush when the context is loaded.
187 */
clear_asid_other(void)188 static void clear_asid_other(void)
189 {
190 u16 asid;
191
192 /*
193 * This is only expected to be set if we have disabled
194 * kernel _PAGE_GLOBAL pages.
195 */
196 if (!static_cpu_has(X86_FEATURE_PTI)) {
197 WARN_ON_ONCE(1);
198 return;
199 }
200
201 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
202 /* Do not need to flush the current asid */
203 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
204 continue;
205 /*
206 * Make sure the next time we go to switch to
207 * this asid, we do a flush:
208 */
209 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
210 }
211 this_cpu_write(cpu_tlbstate.invalidate_other, false);
212 }
213
214 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
215
216
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)217 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
218 u16 *new_asid, bool *need_flush)
219 {
220 u16 asid;
221
222 if (!static_cpu_has(X86_FEATURE_PCID)) {
223 *new_asid = 0;
224 *need_flush = true;
225 return;
226 }
227
228 if (this_cpu_read(cpu_tlbstate.invalidate_other))
229 clear_asid_other();
230
231 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
232 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
233 next->context.ctx_id)
234 continue;
235
236 *new_asid = asid;
237 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
238 next_tlb_gen);
239 return;
240 }
241
242 /*
243 * We don't currently own an ASID slot on this CPU.
244 * Allocate a slot.
245 */
246 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
247 if (*new_asid >= TLB_NR_DYN_ASIDS) {
248 *new_asid = 0;
249 this_cpu_write(cpu_tlbstate.next_asid, 1);
250 }
251 *need_flush = true;
252 }
253
254 /*
255 * Given an ASID, flush the corresponding user ASID. We can delay this
256 * until the next time we switch to it.
257 *
258 * See SWITCH_TO_USER_CR3.
259 */
invalidate_user_asid(u16 asid)260 static inline void invalidate_user_asid(u16 asid)
261 {
262 /* There is no user ASID if address space separation is off */
263 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
264 return;
265
266 /*
267 * We only have a single ASID if PCID is off and the CR3
268 * write will have flushed it.
269 */
270 if (!cpu_feature_enabled(X86_FEATURE_PCID))
271 return;
272
273 if (!static_cpu_has(X86_FEATURE_PTI))
274 return;
275
276 __set_bit(kern_pcid(asid),
277 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
278 }
279
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)280 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
281 bool need_flush)
282 {
283 unsigned long new_mm_cr3;
284
285 if (need_flush) {
286 invalidate_user_asid(new_asid);
287 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
288 } else {
289 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
290 }
291
292 /*
293 * Caution: many callers of this function expect
294 * that load_cr3() is serializing and orders TLB
295 * fills with respect to the mm_cpumask writes.
296 */
297 write_cr3(new_mm_cr3);
298 }
299
leave_mm(void)300 void leave_mm(void)
301 {
302 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
303
304 /*
305 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
306 * If so, our callers still expect us to flush the TLB, but there
307 * aren't any user TLB entries in init_mm to worry about.
308 *
309 * This needs to happen before any other sanity checks due to
310 * intel_idle's shenanigans.
311 */
312 if (loaded_mm == &init_mm)
313 return;
314
315 /* Warn if we're not lazy. */
316 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
317
318 switch_mm(NULL, &init_mm, NULL);
319 }
320 EXPORT_SYMBOL_GPL(leave_mm);
321
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)322 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
323 struct task_struct *tsk)
324 {
325 unsigned long flags;
326
327 local_irq_save(flags);
328 switch_mm_irqs_off(NULL, next, tsk);
329 local_irq_restore(flags);
330 }
331
332 /*
333 * Invoked from return to user/guest by a task that opted-in to L1D
334 * flushing but ended up running on an SMT enabled core due to wrong
335 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
336 * contract which this task requested.
337 */
l1d_flush_force_sigbus(struct callback_head * ch)338 static void l1d_flush_force_sigbus(struct callback_head *ch)
339 {
340 force_sig(SIGBUS);
341 }
342
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)343 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
344 struct task_struct *next)
345 {
346 /* Flush L1D if the outgoing task requests it */
347 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
348 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
349
350 /* Check whether the incoming task opted in for L1D flush */
351 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
352 return;
353
354 /*
355 * Validate that it is not running on an SMT sibling as this would
356 * make the exercise pointless because the siblings share L1D. If
357 * it runs on a SMT sibling, notify it with SIGBUS on return to
358 * user/guest
359 */
360 if (this_cpu_read(cpu_info.smt_active)) {
361 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
362 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
363 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
364 }
365 }
366
mm_mangle_tif_spec_bits(struct task_struct * next)367 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
368 {
369 unsigned long next_tif = read_task_thread_flags(next);
370 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
371
372 /*
373 * Ensure that the bit shift above works as expected and the two flags
374 * end up in bit 0 and 1.
375 */
376 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
377
378 return (unsigned long)next->mm | spec_bits;
379 }
380
cond_mitigation(struct task_struct * next)381 static void cond_mitigation(struct task_struct *next)
382 {
383 unsigned long prev_mm, next_mm;
384
385 if (!next || !next->mm)
386 return;
387
388 next_mm = mm_mangle_tif_spec_bits(next);
389 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
390
391 /*
392 * Avoid user/user BTB poisoning by flushing the branch predictor
393 * when switching between processes. This stops one process from
394 * doing Spectre-v2 attacks on another.
395 *
396 * Both, the conditional and the always IBPB mode use the mm
397 * pointer to avoid the IBPB when switching between tasks of the
398 * same process. Using the mm pointer instead of mm->context.ctx_id
399 * opens a hypothetical hole vs. mm_struct reuse, which is more or
400 * less impossible to control by an attacker. Aside of that it
401 * would only affect the first schedule so the theoretically
402 * exposed data is not really interesting.
403 */
404 if (static_branch_likely(&switch_mm_cond_ibpb)) {
405 /*
406 * This is a bit more complex than the always mode because
407 * it has to handle two cases:
408 *
409 * 1) Switch from a user space task (potential attacker)
410 * which has TIF_SPEC_IB set to a user space task
411 * (potential victim) which has TIF_SPEC_IB not set.
412 *
413 * 2) Switch from a user space task (potential attacker)
414 * which has TIF_SPEC_IB not set to a user space task
415 * (potential victim) which has TIF_SPEC_IB set.
416 *
417 * This could be done by unconditionally issuing IBPB when
418 * a task which has TIF_SPEC_IB set is either scheduled in
419 * or out. Though that results in two flushes when:
420 *
421 * - the same user space task is scheduled out and later
422 * scheduled in again and only a kernel thread ran in
423 * between.
424 *
425 * - a user space task belonging to the same process is
426 * scheduled in after a kernel thread ran in between
427 *
428 * - a user space task belonging to the same process is
429 * scheduled in immediately.
430 *
431 * Optimize this with reasonably small overhead for the
432 * above cases. Mangle the TIF_SPEC_IB bit into the mm
433 * pointer of the incoming task which is stored in
434 * cpu_tlbstate.last_user_mm_spec for comparison.
435 *
436 * Issue IBPB only if the mm's are different and one or
437 * both have the IBPB bit set.
438 */
439 if (next_mm != prev_mm &&
440 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
441 indirect_branch_prediction_barrier();
442 }
443
444 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
445 /*
446 * Only flush when switching to a user space task with a
447 * different context than the user space task which ran
448 * last on this CPU.
449 */
450 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
451 (unsigned long)next->mm)
452 indirect_branch_prediction_barrier();
453 }
454
455 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
456 /*
457 * Flush L1D when the outgoing task requested it and/or
458 * check whether the incoming task requested L1D flushing
459 * and ended up on an SMT sibling.
460 */
461 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
462 l1d_flush_evaluate(prev_mm, next_mm, next);
463 }
464
465 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
466 }
467
468 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)469 static inline void cr4_update_pce_mm(struct mm_struct *mm)
470 {
471 if (static_branch_unlikely(&rdpmc_always_available_key) ||
472 (!static_branch_unlikely(&rdpmc_never_available_key) &&
473 atomic_read(&mm->context.perf_rdpmc_allowed))) {
474 /*
475 * Clear the existing dirty counters to
476 * prevent the leak for an RDPMC task.
477 */
478 perf_clear_dirty_counters();
479 cr4_set_bits_irqsoff(X86_CR4_PCE);
480 } else
481 cr4_clear_bits_irqsoff(X86_CR4_PCE);
482 }
483
cr4_update_pce(void * ignored)484 void cr4_update_pce(void *ignored)
485 {
486 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
487 }
488
489 #else
cr4_update_pce_mm(struct mm_struct * mm)490 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
491 #endif
492
493 /*
494 * This optimizes when not actually switching mm's. Some architectures use the
495 * 'unused' argument for this optimization, but x86 must use
496 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
497 * 'current->active_mm' up to date.
498 */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)499 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
500 struct task_struct *tsk)
501 {
502 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
503 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
504 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
505 unsigned cpu = smp_processor_id();
506 unsigned long new_lam;
507 u64 next_tlb_gen;
508 bool need_flush;
509 u16 new_asid;
510
511 /* We don't want flush_tlb_func() to run concurrently with us. */
512 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
513 WARN_ON_ONCE(!irqs_disabled());
514
515 /*
516 * Verify that CR3 is what we think it is. This will catch
517 * hypothetical buggy code that directly switches to swapper_pg_dir
518 * without going through leave_mm() / switch_mm_irqs_off() or that
519 * does something like write_cr3(read_cr3_pa()).
520 *
521 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
522 * isn't free.
523 */
524 #ifdef CONFIG_DEBUG_VM
525 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
526 tlbstate_lam_cr3_mask()))) {
527 /*
528 * If we were to BUG here, we'd be very likely to kill
529 * the system so hard that we don't see the call trace.
530 * Try to recover instead by ignoring the error and doing
531 * a global flush to minimize the chance of corruption.
532 *
533 * (This is far from being a fully correct recovery.
534 * Architecturally, the CPU could prefetch something
535 * back into an incorrect ASID slot and leave it there
536 * to cause trouble down the road. It's better than
537 * nothing, though.)
538 */
539 __flush_tlb_all();
540 }
541 #endif
542 if (was_lazy)
543 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
544
545 /*
546 * The membarrier system call requires a full memory barrier and
547 * core serialization before returning to user-space, after
548 * storing to rq->curr, when changing mm. This is because
549 * membarrier() sends IPIs to all CPUs that are in the target mm
550 * to make them issue memory barriers. However, if another CPU
551 * switches to/from the target mm concurrently with
552 * membarrier(), it can cause that CPU not to receive an IPI
553 * when it really should issue a memory barrier. Writing to CR3
554 * provides that full memory barrier and core serializing
555 * instruction.
556 */
557 if (prev == next) {
558 /* Not actually switching mm's */
559 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
560 next->context.ctx_id);
561
562 /*
563 * If this races with another thread that enables lam, 'new_lam'
564 * might not match tlbstate_lam_cr3_mask().
565 */
566
567 /*
568 * Even in lazy TLB mode, the CPU should stay set in the
569 * mm_cpumask. The TLB shootdown code can figure out from
570 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
571 */
572 if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
573 !cpumask_test_cpu(cpu, mm_cpumask(next))))
574 cpumask_set_cpu(cpu, mm_cpumask(next));
575
576 /*
577 * If the CPU is not in lazy TLB mode, we are just switching
578 * from one thread in a process to another thread in the same
579 * process. No TLB flush required.
580 */
581 if (!was_lazy)
582 return;
583
584 /*
585 * Read the tlb_gen to check whether a flush is needed.
586 * If the TLB is up to date, just use it.
587 * The barrier synchronizes with the tlb_gen increment in
588 * the TLB shootdown code.
589 */
590 smp_mb();
591 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
592 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
593 next_tlb_gen)
594 return;
595
596 /*
597 * TLB contents went out of date while we were in lazy
598 * mode. Fall through to the TLB switching code below.
599 */
600 new_asid = prev_asid;
601 need_flush = true;
602 } else {
603 /*
604 * Apply process to process speculation vulnerability
605 * mitigations if applicable.
606 */
607 cond_mitigation(tsk);
608
609 /*
610 * Stop remote flushes for the previous mm.
611 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
612 * but the bitmap manipulation can cause cache line contention.
613 */
614 if (prev != &init_mm) {
615 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
616 mm_cpumask(prev)));
617 cpumask_clear_cpu(cpu, mm_cpumask(prev));
618 }
619
620 /* Start receiving IPIs and then read tlb_gen (and LAM below) */
621 if (next != &init_mm)
622 cpumask_set_cpu(cpu, mm_cpumask(next));
623 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
624
625 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
626
627 /* Let nmi_uaccess_okay() know that we're changing CR3. */
628 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
629 barrier();
630 }
631
632 new_lam = mm_lam_cr3_mask(next);
633 if (need_flush) {
634 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
635 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
636 load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
637
638 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
639 } else {
640 /* The new ASID is already up to date. */
641 load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
642
643 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
644 }
645
646 /* Make sure we write CR3 before loaded_mm. */
647 barrier();
648
649 this_cpu_write(cpu_tlbstate.loaded_mm, next);
650 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
651 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
652
653 if (next != prev) {
654 cr4_update_pce_mm(next);
655 switch_ldt(prev, next);
656 }
657 }
658
659 /*
660 * Please ignore the name of this function. It should be called
661 * switch_to_kernel_thread().
662 *
663 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
664 * kernel thread or other context without an mm. Acceptable implementations
665 * include doing nothing whatsoever, switching to init_mm, or various clever
666 * lazy tricks to try to minimize TLB flushes.
667 *
668 * The scheduler reserves the right to call enter_lazy_tlb() several times
669 * in a row. It will notify us that we're going back to a real mm by
670 * calling switch_mm_irqs_off().
671 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)672 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
673 {
674 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
675 return;
676
677 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
678 }
679
680 /*
681 * Call this when reinitializing a CPU. It fixes the following potential
682 * problems:
683 *
684 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
685 * because the CPU was taken down and came back up with CR3's PCID
686 * bits clear. CPU hotplug can do this.
687 *
688 * - The TLB contains junk in slots corresponding to inactive ASIDs.
689 *
690 * - The CPU went so far out to lunch that it may have missed a TLB
691 * flush.
692 */
initialize_tlbstate_and_flush(void)693 void initialize_tlbstate_and_flush(void)
694 {
695 int i;
696 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
697 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
698 unsigned long lam = mm_lam_cr3_mask(mm);
699 unsigned long cr3 = __read_cr3();
700
701 /* Assert that CR3 already references the right mm. */
702 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
703
704 /* LAM expected to be disabled */
705 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
706 WARN_ON(lam);
707
708 /*
709 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
710 * doesn't work like other CR4 bits because it can only be set from
711 * long mode.)
712 */
713 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
714 !(cr4_read_shadow() & X86_CR4_PCIDE));
715
716 /* Disable LAM, force ASID 0 and force a TLB flush. */
717 write_cr3(build_cr3(mm->pgd, 0, 0));
718
719 /* Reinitialize tlbstate. */
720 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
721 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
722 this_cpu_write(cpu_tlbstate.next_asid, 1);
723 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
724 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
725 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
726
727 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
728 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
729 }
730
731 /*
732 * flush_tlb_func()'s memory ordering requirement is that any
733 * TLB fills that happen after we flush the TLB are ordered after we
734 * read active_mm's tlb_gen. We don't need any explicit barriers
735 * because all x86 flush operations are serializing and the
736 * atomic64_read operation won't be reordered by the compiler.
737 */
flush_tlb_func(void * info)738 static void flush_tlb_func(void *info)
739 {
740 /*
741 * We have three different tlb_gen values in here. They are:
742 *
743 * - mm_tlb_gen: the latest generation.
744 * - local_tlb_gen: the generation that this CPU has already caught
745 * up to.
746 * - f->new_tlb_gen: the generation that the requester of the flush
747 * wants us to catch up to.
748 */
749 const struct flush_tlb_info *f = info;
750 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
751 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
752 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
753 bool local = smp_processor_id() == f->initiating_cpu;
754 unsigned long nr_invalidate = 0;
755 u64 mm_tlb_gen;
756
757 /* This code cannot presently handle being reentered. */
758 VM_WARN_ON(!irqs_disabled());
759
760 if (!local) {
761 inc_irq_stat(irq_tlb_count);
762 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
763
764 /* Can only happen on remote CPUs */
765 if (f->mm && f->mm != loaded_mm)
766 return;
767 }
768
769 if (unlikely(loaded_mm == &init_mm))
770 return;
771
772 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
773 loaded_mm->context.ctx_id);
774
775 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
776 /*
777 * We're in lazy mode. We need to at least flush our
778 * paging-structure cache to avoid speculatively reading
779 * garbage into our TLB. Since switching to init_mm is barely
780 * slower than a minimal flush, just switch to init_mm.
781 *
782 * This should be rare, with native_flush_tlb_multi() skipping
783 * IPIs to lazy TLB mode CPUs.
784 */
785 switch_mm_irqs_off(NULL, &init_mm, NULL);
786 return;
787 }
788
789 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
790 f->new_tlb_gen <= local_tlb_gen)) {
791 /*
792 * The TLB is already up to date in respect to f->new_tlb_gen.
793 * While the core might be still behind mm_tlb_gen, checking
794 * mm_tlb_gen unnecessarily would have negative caching effects
795 * so avoid it.
796 */
797 return;
798 }
799
800 /*
801 * Defer mm_tlb_gen reading as long as possible to avoid cache
802 * contention.
803 */
804 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
805
806 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
807 /*
808 * There's nothing to do: we're already up to date. This can
809 * happen if two concurrent flushes happen -- the first flush to
810 * be handled can catch us all the way up, leaving no work for
811 * the second flush.
812 */
813 goto done;
814 }
815
816 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
817 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
818
819 /*
820 * If we get to this point, we know that our TLB is out of date.
821 * This does not strictly imply that we need to flush (it's
822 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
823 * going to need to flush in the very near future, so we might
824 * as well get it over with.
825 *
826 * The only question is whether to do a full or partial flush.
827 *
828 * We do a partial flush if requested and two extra conditions
829 * are met:
830 *
831 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
832 * we've always done all needed flushes to catch up to
833 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
834 * f->new_tlb_gen == 3, then we know that the flush needed to bring
835 * us up to date for tlb_gen 3 is the partial flush we're
836 * processing.
837 *
838 * As an example of why this check is needed, suppose that there
839 * are two concurrent flushes. The first is a full flush that
840 * changes context.tlb_gen from 1 to 2. The second is a partial
841 * flush that changes context.tlb_gen from 2 to 3. If they get
842 * processed on this CPU in reverse order, we'll see
843 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
844 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
845 * 3, we'd be break the invariant: we'd update local_tlb_gen above
846 * 1 without the full flush that's needed for tlb_gen 2.
847 *
848 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
849 * Partial TLB flushes are not all that much cheaper than full TLB
850 * flushes, so it seems unlikely that it would be a performance win
851 * to do a partial flush if that won't bring our TLB fully up to
852 * date. By doing a full flush instead, we can increase
853 * local_tlb_gen all the way to mm_tlb_gen and we can probably
854 * avoid another flush in the very near future.
855 */
856 if (f->end != TLB_FLUSH_ALL &&
857 f->new_tlb_gen == local_tlb_gen + 1 &&
858 f->new_tlb_gen == mm_tlb_gen) {
859 /* Partial flush */
860 unsigned long addr = f->start;
861
862 /* Partial flush cannot have invalid generations */
863 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
864
865 /* Partial flush must have valid mm */
866 VM_WARN_ON(f->mm == NULL);
867
868 nr_invalidate = (f->end - f->start) >> f->stride_shift;
869
870 while (addr < f->end) {
871 flush_tlb_one_user(addr);
872 addr += 1UL << f->stride_shift;
873 }
874 if (local)
875 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
876 } else {
877 /* Full flush. */
878 nr_invalidate = TLB_FLUSH_ALL;
879
880 flush_tlb_local();
881 if (local)
882 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
883 }
884
885 /* Both paths above update our state to mm_tlb_gen. */
886 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
887
888 /* Tracing is done in a unified manner to reduce the code size */
889 done:
890 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
891 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
892 TLB_LOCAL_MM_SHOOTDOWN,
893 nr_invalidate);
894 }
895
tlb_is_not_lazy(int cpu,void * data)896 static bool tlb_is_not_lazy(int cpu, void *data)
897 {
898 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
899 }
900
901 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
902 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
903
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)904 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
905 const struct flush_tlb_info *info)
906 {
907 /*
908 * Do accounting and tracing. Note that there are (and have always been)
909 * cases in which a remote TLB flush will be traced, but eventually
910 * would not happen.
911 */
912 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
913 if (info->end == TLB_FLUSH_ALL)
914 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
915 else
916 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
917 (info->end - info->start) >> PAGE_SHIFT);
918
919 /*
920 * If no page tables were freed, we can skip sending IPIs to
921 * CPUs in lazy TLB mode. They will flush the CPU themselves
922 * at the next context switch.
923 *
924 * However, if page tables are getting freed, we need to send the
925 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
926 * up on the new contents of what used to be page tables, while
927 * doing a speculative memory access.
928 */
929 if (info->freed_tables)
930 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
931 else
932 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
933 (void *)info, 1, cpumask);
934 }
935
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)936 void flush_tlb_multi(const struct cpumask *cpumask,
937 const struct flush_tlb_info *info)
938 {
939 __flush_tlb_multi(cpumask, info);
940 }
941
942 /*
943 * See Documentation/arch/x86/tlb.rst for details. We choose 33
944 * because it is large enough to cover the vast majority (at
945 * least 95%) of allocations, and is small enough that we are
946 * confident it will not cause too much overhead. Each single
947 * flush is about 100 ns, so this caps the maximum overhead at
948 * _about_ 3,000 ns.
949 *
950 * This is in units of pages.
951 */
952 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
953
954 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
955
956 #ifdef CONFIG_DEBUG_VM
957 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
958 #endif
959
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)960 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
961 unsigned long start, unsigned long end,
962 unsigned int stride_shift, bool freed_tables,
963 u64 new_tlb_gen)
964 {
965 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
966
967 #ifdef CONFIG_DEBUG_VM
968 /*
969 * Ensure that the following code is non-reentrant and flush_tlb_info
970 * is not overwritten. This means no TLB flushing is initiated by
971 * interrupt handlers and machine-check exception handlers.
972 */
973 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
974 #endif
975
976 info->start = start;
977 info->end = end;
978 info->mm = mm;
979 info->stride_shift = stride_shift;
980 info->freed_tables = freed_tables;
981 info->new_tlb_gen = new_tlb_gen;
982 info->initiating_cpu = smp_processor_id();
983
984 return info;
985 }
986
put_flush_tlb_info(void)987 static void put_flush_tlb_info(void)
988 {
989 #ifdef CONFIG_DEBUG_VM
990 /* Complete reentrancy prevention checks */
991 barrier();
992 this_cpu_dec(flush_tlb_info_idx);
993 #endif
994 }
995
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)996 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
997 unsigned long end, unsigned int stride_shift,
998 bool freed_tables)
999 {
1000 struct flush_tlb_info *info;
1001 u64 new_tlb_gen;
1002 int cpu;
1003
1004 cpu = get_cpu();
1005
1006 /* Should we flush just the requested range? */
1007 if ((end == TLB_FLUSH_ALL) ||
1008 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1009 start = 0;
1010 end = TLB_FLUSH_ALL;
1011 }
1012
1013 /* This is also a barrier that synchronizes with switch_mm(). */
1014 new_tlb_gen = inc_mm_tlb_gen(mm);
1015
1016 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1017 new_tlb_gen);
1018
1019 /*
1020 * flush_tlb_multi() is not optimized for the common case in which only
1021 * a local TLB flush is needed. Optimize this use-case by calling
1022 * flush_tlb_func_local() directly in this case.
1023 */
1024 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1025 flush_tlb_multi(mm_cpumask(mm), info);
1026 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1027 lockdep_assert_irqs_enabled();
1028 local_irq_disable();
1029 flush_tlb_func(info);
1030 local_irq_enable();
1031 }
1032
1033 put_flush_tlb_info();
1034 put_cpu();
1035 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1036 }
1037
1038
do_flush_tlb_all(void * info)1039 static void do_flush_tlb_all(void *info)
1040 {
1041 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1042 __flush_tlb_all();
1043 }
1044
flush_tlb_all(void)1045 void flush_tlb_all(void)
1046 {
1047 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1048 on_each_cpu(do_flush_tlb_all, NULL, 1);
1049 }
1050
do_kernel_range_flush(void * info)1051 static void do_kernel_range_flush(void *info)
1052 {
1053 struct flush_tlb_info *f = info;
1054 unsigned long addr;
1055
1056 /* flush range by one by one 'invlpg' */
1057 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1058 flush_tlb_one_kernel(addr);
1059 }
1060
flush_tlb_kernel_range(unsigned long start,unsigned long end)1061 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1062 {
1063 /* Balance as user space task's flush, a bit conservative */
1064 if (end == TLB_FLUSH_ALL ||
1065 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1066 on_each_cpu(do_flush_tlb_all, NULL, 1);
1067 } else {
1068 struct flush_tlb_info *info;
1069
1070 preempt_disable();
1071 info = get_flush_tlb_info(NULL, start, end, 0, false,
1072 TLB_GENERATION_INVALID);
1073
1074 on_each_cpu(do_kernel_range_flush, info, 1);
1075
1076 put_flush_tlb_info();
1077 preempt_enable();
1078 }
1079 }
1080
1081 /*
1082 * This can be used from process context to figure out what the value of
1083 * CR3 is without needing to do a (slow) __read_cr3().
1084 *
1085 * It's intended to be used for code like KVM that sneakily changes CR3
1086 * and needs to restore it. It needs to be used very carefully.
1087 */
__get_current_cr3_fast(void)1088 unsigned long __get_current_cr3_fast(void)
1089 {
1090 unsigned long cr3 =
1091 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1092 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1093 tlbstate_lam_cr3_mask());
1094
1095 /* For now, be very restrictive about when this can be called. */
1096 VM_WARN_ON(in_nmi() || preemptible());
1097
1098 VM_BUG_ON(cr3 != __read_cr3());
1099 return cr3;
1100 }
1101 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1102
1103 /*
1104 * Flush one page in the kernel mapping
1105 */
flush_tlb_one_kernel(unsigned long addr)1106 void flush_tlb_one_kernel(unsigned long addr)
1107 {
1108 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1109
1110 /*
1111 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1112 * paravirt equivalent. Even with PCID, this is sufficient: we only
1113 * use PCID if we also use global PTEs for the kernel mapping, and
1114 * INVLPG flushes global translations across all address spaces.
1115 *
1116 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1117 * __flush_tlb_one_user() will flush the given address for the current
1118 * kernel address space and for its usermode counterpart, but it does
1119 * not flush it for other address spaces.
1120 */
1121 flush_tlb_one_user(addr);
1122
1123 if (!static_cpu_has(X86_FEATURE_PTI))
1124 return;
1125
1126 /*
1127 * See above. We need to propagate the flush to all other address
1128 * spaces. In principle, we only need to propagate it to kernelmode
1129 * address spaces, but the extra bookkeeping we would need is not
1130 * worth it.
1131 */
1132 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1133 }
1134
1135 /*
1136 * Flush one page in the user mapping
1137 */
native_flush_tlb_one_user(unsigned long addr)1138 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1139 {
1140 u32 loaded_mm_asid;
1141 bool cpu_pcide;
1142
1143 /* Flush 'addr' from the kernel PCID: */
1144 invlpg(addr);
1145
1146 /* If PTI is off there is no user PCID and nothing to flush. */
1147 if (!static_cpu_has(X86_FEATURE_PTI))
1148 return;
1149
1150 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1151 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1152
1153 /*
1154 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1155 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1156 * #GP's even if called before CR4.PCIDE has been initialized.
1157 */
1158 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1159 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1160 else
1161 invalidate_user_asid(loaded_mm_asid);
1162 }
1163
flush_tlb_one_user(unsigned long addr)1164 void flush_tlb_one_user(unsigned long addr)
1165 {
1166 __flush_tlb_one_user(addr);
1167 }
1168
1169 /*
1170 * Flush everything
1171 */
native_flush_tlb_global(void)1172 STATIC_NOPV void native_flush_tlb_global(void)
1173 {
1174 unsigned long flags;
1175
1176 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1177 /*
1178 * Using INVPCID is considerably faster than a pair of writes
1179 * to CR4 sandwiched inside an IRQ flag save/restore.
1180 *
1181 * Note, this works with CR4.PCIDE=0 or 1.
1182 */
1183 invpcid_flush_all();
1184 return;
1185 }
1186
1187 /*
1188 * Read-modify-write to CR4 - protect it from preemption and
1189 * from interrupts. (Use the raw variant because this code can
1190 * be called from deep inside debugging code.)
1191 */
1192 raw_local_irq_save(flags);
1193
1194 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1195
1196 raw_local_irq_restore(flags);
1197 }
1198
1199 /*
1200 * Flush the entire current user mapping
1201 */
native_flush_tlb_local(void)1202 STATIC_NOPV void native_flush_tlb_local(void)
1203 {
1204 /*
1205 * Preemption or interrupts must be disabled to protect the access
1206 * to the per CPU variable and to prevent being preempted between
1207 * read_cr3() and write_cr3().
1208 */
1209 WARN_ON_ONCE(preemptible());
1210
1211 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1212
1213 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1214 native_write_cr3(__native_read_cr3());
1215 }
1216
flush_tlb_local(void)1217 void flush_tlb_local(void)
1218 {
1219 __flush_tlb_local();
1220 }
1221
1222 /*
1223 * Flush everything
1224 */
__flush_tlb_all(void)1225 void __flush_tlb_all(void)
1226 {
1227 /*
1228 * This is to catch users with enabled preemption and the PGE feature
1229 * and don't trigger the warning in __native_flush_tlb().
1230 */
1231 VM_WARN_ON_ONCE(preemptible());
1232
1233 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1234 __flush_tlb_global();
1235 } else {
1236 /*
1237 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1238 */
1239 flush_tlb_local();
1240 }
1241 }
1242 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1243
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1244 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1245 {
1246 struct flush_tlb_info *info;
1247
1248 int cpu = get_cpu();
1249
1250 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1251 TLB_GENERATION_INVALID);
1252 /*
1253 * flush_tlb_multi() is not optimized for the common case in which only
1254 * a local TLB flush is needed. Optimize this use-case by calling
1255 * flush_tlb_func_local() directly in this case.
1256 */
1257 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1258 flush_tlb_multi(&batch->cpumask, info);
1259 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1260 lockdep_assert_irqs_enabled();
1261 local_irq_disable();
1262 flush_tlb_func(info);
1263 local_irq_enable();
1264 }
1265
1266 cpumask_clear(&batch->cpumask);
1267
1268 put_flush_tlb_info();
1269 put_cpu();
1270 }
1271
1272 /*
1273 * Blindly accessing user memory from NMI context can be dangerous
1274 * if we're in the middle of switching the current user task or
1275 * switching the loaded mm. It can also be dangerous if we
1276 * interrupted some kernel code that was temporarily using a
1277 * different mm.
1278 */
nmi_uaccess_okay(void)1279 bool nmi_uaccess_okay(void)
1280 {
1281 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1282 struct mm_struct *current_mm = current->mm;
1283
1284 VM_WARN_ON_ONCE(!loaded_mm);
1285
1286 /*
1287 * The condition we want to check is
1288 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1289 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1290 * is supposed to be reasonably fast.
1291 *
1292 * Instead, we check the almost equivalent but somewhat conservative
1293 * condition below, and we rely on the fact that switch_mm_irqs_off()
1294 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1295 */
1296 if (loaded_mm != current_mm)
1297 return false;
1298
1299 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1300
1301 return true;
1302 }
1303
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1304 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1305 size_t count, loff_t *ppos)
1306 {
1307 char buf[32];
1308 unsigned int len;
1309
1310 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1311 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1312 }
1313
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1314 static ssize_t tlbflush_write_file(struct file *file,
1315 const char __user *user_buf, size_t count, loff_t *ppos)
1316 {
1317 char buf[32];
1318 ssize_t len;
1319 int ceiling;
1320
1321 len = min(count, sizeof(buf) - 1);
1322 if (copy_from_user(buf, user_buf, len))
1323 return -EFAULT;
1324
1325 buf[len] = '\0';
1326 if (kstrtoint(buf, 0, &ceiling))
1327 return -EINVAL;
1328
1329 if (ceiling < 0)
1330 return -EINVAL;
1331
1332 tlb_single_page_flush_ceiling = ceiling;
1333 return count;
1334 }
1335
1336 static const struct file_operations fops_tlbflush = {
1337 .read = tlbflush_read_file,
1338 .write = tlbflush_write_file,
1339 .llseek = default_llseek,
1340 };
1341
create_tlb_single_page_flush_ceiling(void)1342 static int __init create_tlb_single_page_flush_ceiling(void)
1343 {
1344 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1345 arch_debugfs_dir, NULL, &fops_tlbflush);
1346 return 0;
1347 }
1348 late_initcall(create_tlb_single_page_flush_ceiling);
1349