1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39
40 struct mempolicy;
41 struct anon_vma;
42 struct anon_vma_chain;
43 struct user_struct;
44 struct pt_regs;
45 struct folio_batch;
46
47 void arch_mm_preinit(void);
48 void mm_core_init(void);
49 void init_mm_internals(void);
50
51 extern atomic_long_t _totalram_pages;
totalram_pages(void)52 static inline unsigned long totalram_pages(void)
53 {
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56
totalram_pages_inc(void)57 static inline void totalram_pages_inc(void)
58 {
59 atomic_long_inc(&_totalram_pages);
60 }
61
totalram_pages_dec(void)62 static inline void totalram_pages_dec(void)
63 {
64 atomic_long_dec(&_totalram_pages);
65 }
66
totalram_pages_add(long count)67 static inline void totalram_pages_add(long count)
68 {
69 atomic_long_add(count, &_totalram_pages);
70 }
71
72 extern void * high_memory;
73
74 /*
75 * Convert between pages and MB
76 * 20 is the shift for 1MB (2^20 = 1MB)
77 * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages)
78 * So (20 - PAGE_SHIFT) converts between pages and MB
79 */
80 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT))
81 #define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
82
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107
108 #include <asm/page.h>
109 #include <asm/processor.h>
110
111 #ifndef __pa_symbol
112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114
115 #ifndef page_to_virt
116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118
119 #ifndef lm_alias
120 #define lm_alias(x) __va(__pa_symbol(x))
121 #endif
122
123 /*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X) (0)
132 #endif
133
134 /*
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
139 */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
146 */
147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 unsigned long *_pp = (void *)page;
151
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 96);
156
157 switch (sizeof(struct page)) {
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
164 case 80:
165 _pp[9] = 0;
166 fallthrough;
167 case 72:
168 _pp[8] = 0;
169 fallthrough;
170 case 64:
171 _pp[7] = 0;
172 fallthrough;
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182 }
183 #else
184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186
187 /*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203 #define MAPCOUNT_ELF_CORE_MARGIN (5)
204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206 extern int sysctl_max_map_count;
207
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210
211 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
212 bool page_range_contiguous(const struct page *page, unsigned long nr_pages);
213 #else
page_range_contiguous(const struct page * page,unsigned long nr_pages)214 static inline bool page_range_contiguous(const struct page *page,
215 unsigned long nr_pages)
216 {
217 return true;
218 }
219 #endif
220
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224 /* to align the pointer to the (prev) page boundary */
225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226
227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229
230 /**
231 * folio_page_idx - Return the number of a page in a folio.
232 * @folio: The folio.
233 * @page: The folio page.
234 *
235 * This function expects that the page is actually part of the folio.
236 * The returned number is relative to the start of the folio.
237 */
folio_page_idx(const struct folio * folio,const struct page * page)238 static inline unsigned long folio_page_idx(const struct folio *folio,
239 const struct page *page)
240 {
241 return page - &folio->page;
242 }
243
lru_to_folio(struct list_head * head)244 static inline struct folio *lru_to_folio(struct list_head *head)
245 {
246 return list_entry((head)->prev, struct folio, lru);
247 }
248
249 void setup_initial_init_mm(void *start_code, void *end_code,
250 void *end_data, void *brk);
251
252 /*
253 * Linux kernel virtual memory manager primitives.
254 * The idea being to have a "virtual" mm in the same way
255 * we have a virtual fs - giving a cleaner interface to the
256 * mm details, and allowing different kinds of memory mappings
257 * (from shared memory to executable loading to arbitrary
258 * mmap() functions).
259 */
260
261 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
262 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
263 void vm_area_free(struct vm_area_struct *);
264
265 #ifndef CONFIG_MMU
266 extern struct rb_root nommu_region_tree;
267 extern struct rw_semaphore nommu_region_sem;
268
269 extern unsigned int kobjsize(const void *objp);
270 #endif
271
272 /*
273 * vm_flags in vm_area_struct, see mm_types.h.
274 * When changing, update also include/trace/events/mmflags.h
275 */
276 #define VM_NONE 0x00000000
277
278 #define VM_READ 0x00000001 /* currently active flags */
279 #define VM_WRITE 0x00000002
280 #define VM_EXEC 0x00000004
281 #define VM_SHARED 0x00000008
282
283 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
284 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
285 #define VM_MAYWRITE 0x00000020
286 #define VM_MAYEXEC 0x00000040
287 #define VM_MAYSHARE 0x00000080
288
289 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
290 #ifdef CONFIG_MMU
291 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
292 #else /* CONFIG_MMU */
293 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
294 #define VM_UFFD_MISSING 0
295 #endif /* CONFIG_MMU */
296 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
297 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
298
299 #define VM_LOCKED 0x00002000
300 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
301
302 /* Used by sys_madvise() */
303 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
304 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
305
306 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
307 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
308 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
309 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
310 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
311 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
312 #define VM_SYNC 0x00800000 /* Synchronous page faults */
313 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
314 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
315 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
316
317 #ifdef CONFIG_MEM_SOFT_DIRTY
318 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
319 #else
320 # define VM_SOFTDIRTY 0
321 #endif
322
323 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
324 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
325 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
326 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
327
328 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
329 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
335 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
336 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
337 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
338 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
339 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
340 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
341 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
342 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
343 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
344
345 #ifdef CONFIG_ARCH_HAS_PKEYS
346 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
347 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
348 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
349 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
350 #if CONFIG_ARCH_PKEY_BITS > 3
351 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
352 #else
353 # define VM_PKEY_BIT3 0
354 #endif
355 #if CONFIG_ARCH_PKEY_BITS > 4
356 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
357 #else
358 # define VM_PKEY_BIT4 0
359 #endif
360 #endif /* CONFIG_ARCH_HAS_PKEYS */
361
362 #ifdef CONFIG_X86_USER_SHADOW_STACK
363 /*
364 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365 * support core mm.
366 *
367 * These VMAs will get a single end guard page. This helps userspace protect
368 * itself from attacks. A single page is enough for current shadow stack archs
369 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
370 * for more details on the guard size.
371 */
372 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
373 #endif
374
375 #if defined(CONFIG_ARM64_GCS)
376 /*
377 * arm64's Guarded Control Stack implements similar functionality and
378 * has similar constraints to shadow stacks.
379 */
380 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
381 #endif
382
383 #ifndef VM_SHADOW_STACK
384 # define VM_SHADOW_STACK VM_NONE
385 #endif
386
387 #if defined(CONFIG_PPC64)
388 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
389 #elif defined(CONFIG_PARISC)
390 # define VM_GROWSUP VM_ARCH_1
391 #elif defined(CONFIG_SPARC64)
392 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
393 # define VM_ARCH_CLEAR VM_SPARC_ADI
394 #elif defined(CONFIG_ARM64)
395 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
396 # define VM_ARCH_CLEAR VM_ARM64_BTI
397 #elif !defined(CONFIG_MMU)
398 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
399 #endif
400
401 #if defined(CONFIG_ARM64_MTE)
402 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
403 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
404 #else
405 # define VM_MTE VM_NONE
406 # define VM_MTE_ALLOWED VM_NONE
407 #endif
408
409 #ifndef VM_GROWSUP
410 # define VM_GROWSUP VM_NONE
411 #endif
412
413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414 # define VM_UFFD_MINOR_BIT 41
415 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417 # define VM_UFFD_MINOR VM_NONE
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
419
420 /*
421 * This flag is used to connect VFIO to arch specific KVM code. It
422 * indicates that the memory under this VMA is safe for use with any
423 * non-cachable memory type inside KVM. Some VFIO devices, on some
424 * platforms, are thought to be unsafe and can cause machine crashes
425 * if KVM does not lock down the memory type.
426 */
427 #ifdef CONFIG_64BIT
428 #define VM_ALLOW_ANY_UNCACHED_BIT 39
429 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #else
431 #define VM_ALLOW_ANY_UNCACHED VM_NONE
432 #endif
433
434 #ifdef CONFIG_64BIT
435 #define VM_DROPPABLE_BIT 40
436 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
437 #elif defined(CONFIG_PPC32)
438 #define VM_DROPPABLE VM_ARCH_1
439 #else
440 #define VM_DROPPABLE VM_NONE
441 #endif
442
443 #ifdef CONFIG_64BIT
444 #define VM_SEALED_BIT 42
445 #define VM_SEALED BIT(VM_SEALED_BIT)
446 #else
447 #define VM_SEALED VM_NONE
448 #endif
449
450 /* Bits set in the VMA until the stack is in its final location */
451 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
452
453 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
454
455 /* Common data flag combinations */
456 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
457 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
458 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
459 VM_MAYWRITE | VM_MAYEXEC)
460 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
461 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
462
463 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
464 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
465 #endif
466
467 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
468 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
469 #endif
470
471 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
472
473 #ifdef CONFIG_STACK_GROWSUP
474 #define VM_STACK VM_GROWSUP
475 #define VM_STACK_EARLY VM_GROWSDOWN
476 #else
477 #define VM_STACK VM_GROWSDOWN
478 #define VM_STACK_EARLY 0
479 #endif
480
481 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
482
483 /* VMA basic access permission flags */
484 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
485
486
487 /*
488 * Special vmas that are non-mergable, non-mlock()able.
489 */
490 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
491
492 /* This mask prevents VMA from being scanned with khugepaged */
493 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
494
495 /* This mask defines which mm->def_flags a process can inherit its parent */
496 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
497
498 /* This mask represents all the VMA flag bits used by mlock */
499 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
500
501 /* Arch-specific flags to clear when updating VM flags on protection change */
502 #ifndef VM_ARCH_CLEAR
503 # define VM_ARCH_CLEAR VM_NONE
504 #endif
505 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
506
507 /*
508 * mapping from the currently active vm_flags protection bits (the
509 * low four bits) to a page protection mask..
510 */
511
512 /*
513 * The default fault flags that should be used by most of the
514 * arch-specific page fault handlers.
515 */
516 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
517 FAULT_FLAG_KILLABLE | \
518 FAULT_FLAG_INTERRUPTIBLE)
519
520 /**
521 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
522 * @flags: Fault flags.
523 *
524 * This is mostly used for places where we want to try to avoid taking
525 * the mmap_lock for too long a time when waiting for another condition
526 * to change, in which case we can try to be polite to release the
527 * mmap_lock in the first round to avoid potential starvation of other
528 * processes that would also want the mmap_lock.
529 *
530 * Return: true if the page fault allows retry and this is the first
531 * attempt of the fault handling; false otherwise.
532 */
fault_flag_allow_retry_first(enum fault_flag flags)533 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
534 {
535 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
536 (!(flags & FAULT_FLAG_TRIED));
537 }
538
539 #define FAULT_FLAG_TRACE \
540 { FAULT_FLAG_WRITE, "WRITE" }, \
541 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
542 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
543 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
544 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
545 { FAULT_FLAG_TRIED, "TRIED" }, \
546 { FAULT_FLAG_USER, "USER" }, \
547 { FAULT_FLAG_REMOTE, "REMOTE" }, \
548 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
549 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
550 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
551
552 /*
553 * vm_fault is filled by the pagefault handler and passed to the vma's
554 * ->fault function. The vma's ->fault is responsible for returning a bitmask
555 * of VM_FAULT_xxx flags that give details about how the fault was handled.
556 *
557 * MM layer fills up gfp_mask for page allocations but fault handler might
558 * alter it if its implementation requires a different allocation context.
559 *
560 * pgoff should be used in favour of virtual_address, if possible.
561 */
562 struct vm_fault {
563 const struct {
564 struct vm_area_struct *vma; /* Target VMA */
565 gfp_t gfp_mask; /* gfp mask to be used for allocations */
566 pgoff_t pgoff; /* Logical page offset based on vma */
567 unsigned long address; /* Faulting virtual address - masked */
568 unsigned long real_address; /* Faulting virtual address - unmasked */
569 };
570 enum fault_flag flags; /* FAULT_FLAG_xxx flags
571 * XXX: should really be 'const' */
572 pmd_t *pmd; /* Pointer to pmd entry matching
573 * the 'address' */
574 pud_t *pud; /* Pointer to pud entry matching
575 * the 'address'
576 */
577 union {
578 pte_t orig_pte; /* Value of PTE at the time of fault */
579 pmd_t orig_pmd; /* Value of PMD at the time of fault,
580 * used by PMD fault only.
581 */
582 };
583
584 struct page *cow_page; /* Page handler may use for COW fault */
585 struct page *page; /* ->fault handlers should return a
586 * page here, unless VM_FAULT_NOPAGE
587 * is set (which is also implied by
588 * VM_FAULT_ERROR).
589 */
590 /* These three entries are valid only while holding ptl lock */
591 pte_t *pte; /* Pointer to pte entry matching
592 * the 'address'. NULL if the page
593 * table hasn't been allocated.
594 */
595 spinlock_t *ptl; /* Page table lock.
596 * Protects pte page table if 'pte'
597 * is not NULL, otherwise pmd.
598 */
599 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
600 * vm_ops->map_pages() sets up a page
601 * table from atomic context.
602 * do_fault_around() pre-allocates
603 * page table to avoid allocation from
604 * atomic context.
605 */
606 };
607
608 /*
609 * These are the virtual MM functions - opening of an area, closing and
610 * unmapping it (needed to keep files on disk up-to-date etc), pointer
611 * to the functions called when a no-page or a wp-page exception occurs.
612 */
613 struct vm_operations_struct {
614 void (*open)(struct vm_area_struct * area);
615 /**
616 * @close: Called when the VMA is being removed from the MM.
617 * Context: User context. May sleep. Caller holds mmap_lock.
618 */
619 void (*close)(struct vm_area_struct * area);
620 /* Called any time before splitting to check if it's allowed */
621 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
622 int (*mremap)(struct vm_area_struct *area);
623 /*
624 * Called by mprotect() to make driver-specific permission
625 * checks before mprotect() is finalised. The VMA must not
626 * be modified. Returns 0 if mprotect() can proceed.
627 */
628 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
629 unsigned long end, unsigned long newflags);
630 vm_fault_t (*fault)(struct vm_fault *vmf);
631 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
632 vm_fault_t (*map_pages)(struct vm_fault *vmf,
633 pgoff_t start_pgoff, pgoff_t end_pgoff);
634 unsigned long (*pagesize)(struct vm_area_struct * area);
635
636 /* notification that a previously read-only page is about to become
637 * writable, if an error is returned it will cause a SIGBUS */
638 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
639
640 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
641 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
642
643 /* called by access_process_vm when get_user_pages() fails, typically
644 * for use by special VMAs. See also generic_access_phys() for a generic
645 * implementation useful for any iomem mapping.
646 */
647 int (*access)(struct vm_area_struct *vma, unsigned long addr,
648 void *buf, int len, int write);
649
650 /* Called by the /proc/PID/maps code to ask the vma whether it
651 * has a special name. Returning non-NULL will also cause this
652 * vma to be dumped unconditionally. */
653 const char *(*name)(struct vm_area_struct *vma);
654
655 #ifdef CONFIG_NUMA
656 /*
657 * set_policy() op must add a reference to any non-NULL @new mempolicy
658 * to hold the policy upon return. Caller should pass NULL @new to
659 * remove a policy and fall back to surrounding context--i.e. do not
660 * install a MPOL_DEFAULT policy, nor the task or system default
661 * mempolicy.
662 */
663 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
664
665 /*
666 * get_policy() op must add reference [mpol_get()] to any policy at
667 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
668 * in mm/mempolicy.c will do this automatically.
669 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
670 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
671 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
672 * must return NULL--i.e., do not "fallback" to task or system default
673 * policy.
674 */
675 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
676 unsigned long addr, pgoff_t *ilx);
677 #endif
678 #ifdef CONFIG_FIND_NORMAL_PAGE
679 /*
680 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
681 * allows for returning a "normal" page from vm_normal_page() even
682 * though the PTE indicates that the "struct page" either does not exist
683 * or should not be touched: "special".
684 *
685 * Do not add new users: this really only works when a "normal" page
686 * was mapped, but then the PTE got changed to something weird (+
687 * marked special) that would not make pte_pfn() identify the originally
688 * inserted page.
689 */
690 struct page *(*find_normal_page)(struct vm_area_struct *vma,
691 unsigned long addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 };
694
695 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)696 static inline void vma_numab_state_init(struct vm_area_struct *vma)
697 {
698 vma->numab_state = NULL;
699 }
vma_numab_state_free(struct vm_area_struct * vma)700 static inline void vma_numab_state_free(struct vm_area_struct *vma)
701 {
702 kfree(vma->numab_state);
703 }
704 #else
vma_numab_state_init(struct vm_area_struct * vma)705 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)706 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
707 #endif /* CONFIG_NUMA_BALANCING */
708
709 /*
710 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
711 * declared in this header.
712 */
713 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)714 static inline void release_fault_lock(struct vm_fault *vmf)
715 {
716 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
717 vma_end_read(vmf->vma);
718 else
719 mmap_read_unlock(vmf->vma->vm_mm);
720 }
721
assert_fault_locked(const struct vm_fault * vmf)722 static inline void assert_fault_locked(const struct vm_fault *vmf)
723 {
724 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
725 vma_assert_locked(vmf->vma);
726 else
727 mmap_assert_locked(vmf->vma->vm_mm);
728 }
729 #else
release_fault_lock(struct vm_fault * vmf)730 static inline void release_fault_lock(struct vm_fault *vmf)
731 {
732 mmap_read_unlock(vmf->vma->vm_mm);
733 }
734
assert_fault_locked(const struct vm_fault * vmf)735 static inline void assert_fault_locked(const struct vm_fault *vmf)
736 {
737 mmap_assert_locked(vmf->vma->vm_mm);
738 }
739 #endif /* CONFIG_PER_VMA_LOCK */
740
mm_flags_test(int flag,const struct mm_struct * mm)741 static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
742 {
743 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
744 }
745
mm_flags_test_and_set(int flag,struct mm_struct * mm)746 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm)
747 {
748 return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
749 }
750
mm_flags_test_and_clear(int flag,struct mm_struct * mm)751 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm)
752 {
753 return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
754 }
755
mm_flags_set(int flag,struct mm_struct * mm)756 static inline void mm_flags_set(int flag, struct mm_struct *mm)
757 {
758 set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
759 }
760
mm_flags_clear(int flag,struct mm_struct * mm)761 static inline void mm_flags_clear(int flag, struct mm_struct *mm)
762 {
763 clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
764 }
765
mm_flags_clear_all(struct mm_struct * mm)766 static inline void mm_flags_clear_all(struct mm_struct *mm)
767 {
768 bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS);
769 }
770
771 extern const struct vm_operations_struct vma_dummy_vm_ops;
772
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)773 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
774 {
775 memset(vma, 0, sizeof(*vma));
776 vma->vm_mm = mm;
777 vma->vm_ops = &vma_dummy_vm_ops;
778 INIT_LIST_HEAD(&vma->anon_vma_chain);
779 vma_lock_init(vma, false);
780 }
781
782 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)783 static inline void vm_flags_init(struct vm_area_struct *vma,
784 vm_flags_t flags)
785 {
786 ACCESS_PRIVATE(vma, __vm_flags) = flags;
787 }
788
789 /*
790 * Use when VMA is part of the VMA tree and modifications need coordination
791 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
792 * it should be locked explicitly beforehand.
793 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)794 static inline void vm_flags_reset(struct vm_area_struct *vma,
795 vm_flags_t flags)
796 {
797 vma_assert_write_locked(vma);
798 vm_flags_init(vma, flags);
799 }
800
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)801 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
802 vm_flags_t flags)
803 {
804 vma_assert_write_locked(vma);
805 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
806 }
807
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)808 static inline void vm_flags_set(struct vm_area_struct *vma,
809 vm_flags_t flags)
810 {
811 vma_start_write(vma);
812 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
813 }
814
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)815 static inline void vm_flags_clear(struct vm_area_struct *vma,
816 vm_flags_t flags)
817 {
818 vma_start_write(vma);
819 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
820 }
821
822 /*
823 * Use only if VMA is not part of the VMA tree or has no other users and
824 * therefore needs no locking.
825 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)826 static inline void __vm_flags_mod(struct vm_area_struct *vma,
827 vm_flags_t set, vm_flags_t clear)
828 {
829 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
830 }
831
832 /*
833 * Use only when the order of set/clear operations is unimportant, otherwise
834 * use vm_flags_{set|clear} explicitly.
835 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)836 static inline void vm_flags_mod(struct vm_area_struct *vma,
837 vm_flags_t set, vm_flags_t clear)
838 {
839 vma_start_write(vma);
840 __vm_flags_mod(vma, set, clear);
841 }
842
vma_set_anonymous(struct vm_area_struct * vma)843 static inline void vma_set_anonymous(struct vm_area_struct *vma)
844 {
845 vma->vm_ops = NULL;
846 }
847
vma_is_anonymous(struct vm_area_struct * vma)848 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
849 {
850 return !vma->vm_ops;
851 }
852
853 /*
854 * Indicate if the VMA is a heap for the given task; for
855 * /proc/PID/maps that is the heap of the main task.
856 */
vma_is_initial_heap(const struct vm_area_struct * vma)857 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
858 {
859 return vma->vm_start < vma->vm_mm->brk &&
860 vma->vm_end > vma->vm_mm->start_brk;
861 }
862
863 /*
864 * Indicate if the VMA is a stack for the given task; for
865 * /proc/PID/maps that is the stack of the main task.
866 */
vma_is_initial_stack(const struct vm_area_struct * vma)867 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
868 {
869 /*
870 * We make no effort to guess what a given thread considers to be
871 * its "stack". It's not even well-defined for programs written
872 * languages like Go.
873 */
874 return vma->vm_start <= vma->vm_mm->start_stack &&
875 vma->vm_end >= vma->vm_mm->start_stack;
876 }
877
vma_is_temporary_stack(const struct vm_area_struct * vma)878 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma)
879 {
880 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
881
882 if (!maybe_stack)
883 return false;
884
885 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
886 VM_STACK_INCOMPLETE_SETUP)
887 return true;
888
889 return false;
890 }
891
vma_is_foreign(const struct vm_area_struct * vma)892 static inline bool vma_is_foreign(const struct vm_area_struct *vma)
893 {
894 if (!current->mm)
895 return true;
896
897 if (current->mm != vma->vm_mm)
898 return true;
899
900 return false;
901 }
902
vma_is_accessible(const struct vm_area_struct * vma)903 static inline bool vma_is_accessible(const struct vm_area_struct *vma)
904 {
905 return vma->vm_flags & VM_ACCESS_FLAGS;
906 }
907
is_shared_maywrite(vm_flags_t vm_flags)908 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
909 {
910 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
911 (VM_SHARED | VM_MAYWRITE);
912 }
913
vma_is_shared_maywrite(const struct vm_area_struct * vma)914 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma)
915 {
916 return is_shared_maywrite(vma->vm_flags);
917 }
918
919 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)920 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
921 {
922 return mas_find(&vmi->mas, max - 1);
923 }
924
vma_next(struct vma_iterator * vmi)925 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
926 {
927 /*
928 * Uses mas_find() to get the first VMA when the iterator starts.
929 * Calling mas_next() could skip the first entry.
930 */
931 return mas_find(&vmi->mas, ULONG_MAX);
932 }
933
934 static inline
vma_iter_next_range(struct vma_iterator * vmi)935 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
936 {
937 return mas_next_range(&vmi->mas, ULONG_MAX);
938 }
939
940
vma_prev(struct vma_iterator * vmi)941 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
942 {
943 return mas_prev(&vmi->mas, 0);
944 }
945
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)946 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
947 unsigned long start, unsigned long end, gfp_t gfp)
948 {
949 __mas_set_range(&vmi->mas, start, end - 1);
950 mas_store_gfp(&vmi->mas, NULL, gfp);
951 if (unlikely(mas_is_err(&vmi->mas)))
952 return -ENOMEM;
953
954 return 0;
955 }
956
957 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)958 static inline void vma_iter_free(struct vma_iterator *vmi)
959 {
960 mas_destroy(&vmi->mas);
961 }
962
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)963 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
964 struct vm_area_struct *vma)
965 {
966 vmi->mas.index = vma->vm_start;
967 vmi->mas.last = vma->vm_end - 1;
968 mas_store(&vmi->mas, vma);
969 if (unlikely(mas_is_err(&vmi->mas)))
970 return -ENOMEM;
971
972 vma_mark_attached(vma);
973 return 0;
974 }
975
vma_iter_invalidate(struct vma_iterator * vmi)976 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
977 {
978 mas_pause(&vmi->mas);
979 }
980
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)981 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
982 {
983 mas_set(&vmi->mas, addr);
984 }
985
986 #define for_each_vma(__vmi, __vma) \
987 while (((__vma) = vma_next(&(__vmi))) != NULL)
988
989 /* The MM code likes to work with exclusive end addresses */
990 #define for_each_vma_range(__vmi, __vma, __end) \
991 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
992
993 #ifdef CONFIG_SHMEM
994 /*
995 * The vma_is_shmem is not inline because it is used only by slow
996 * paths in userfault.
997 */
998 bool vma_is_shmem(const struct vm_area_struct *vma);
999 bool vma_is_anon_shmem(const struct vm_area_struct *vma);
1000 #else
vma_is_shmem(const struct vm_area_struct * vma)1001 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(const struct vm_area_struct * vma)1002 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; }
1003 #endif
1004
1005 int vma_is_stack_for_current(const struct vm_area_struct *vma);
1006
1007 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1008 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1009
1010 struct mmu_gather;
1011 struct inode;
1012
1013 extern void prep_compound_page(struct page *page, unsigned int order);
1014
folio_large_order(const struct folio * folio)1015 static inline unsigned int folio_large_order(const struct folio *folio)
1016 {
1017 return folio->_flags_1 & 0xff;
1018 }
1019
1020 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1021 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1022 {
1023 return folio->_nr_pages;
1024 }
1025 #else
folio_large_nr_pages(const struct folio * folio)1026 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1027 {
1028 return 1L << folio_large_order(folio);
1029 }
1030 #endif
1031
1032 /*
1033 * compound_order() can be called without holding a reference, which means
1034 * that niceties like page_folio() don't work. These callers should be
1035 * prepared to handle wild return values. For example, PG_head may be
1036 * set before the order is initialised, or this may be a tail page.
1037 * See compaction.c for some good examples.
1038 */
compound_order(const struct page * page)1039 static inline unsigned int compound_order(const struct page *page)
1040 {
1041 const struct folio *folio = (struct folio *)page;
1042
1043 if (!test_bit(PG_head, &folio->flags.f))
1044 return 0;
1045 return folio_large_order(folio);
1046 }
1047
1048 /**
1049 * folio_order - The allocation order of a folio.
1050 * @folio: The folio.
1051 *
1052 * A folio is composed of 2^order pages. See get_order() for the definition
1053 * of order.
1054 *
1055 * Return: The order of the folio.
1056 */
folio_order(const struct folio * folio)1057 static inline unsigned int folio_order(const struct folio *folio)
1058 {
1059 if (!folio_test_large(folio))
1060 return 0;
1061 return folio_large_order(folio);
1062 }
1063
1064 /**
1065 * folio_reset_order - Reset the folio order and derived _nr_pages
1066 * @folio: The folio.
1067 *
1068 * Reset the order and derived _nr_pages to 0. Must only be used in the
1069 * process of splitting large folios.
1070 */
folio_reset_order(struct folio * folio)1071 static inline void folio_reset_order(struct folio *folio)
1072 {
1073 if (WARN_ON_ONCE(!folio_test_large(folio)))
1074 return;
1075 folio->_flags_1 &= ~0xffUL;
1076 #ifdef NR_PAGES_IN_LARGE_FOLIO
1077 folio->_nr_pages = 0;
1078 #endif
1079 }
1080
1081 #include <linux/huge_mm.h>
1082
1083 /*
1084 * Methods to modify the page usage count.
1085 *
1086 * What counts for a page usage:
1087 * - cache mapping (page->mapping)
1088 * - private data (page->private)
1089 * - page mapped in a task's page tables, each mapping
1090 * is counted separately
1091 *
1092 * Also, many kernel routines increase the page count before a critical
1093 * routine so they can be sure the page doesn't go away from under them.
1094 */
1095
1096 /*
1097 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1098 */
put_page_testzero(struct page * page)1099 static inline int put_page_testzero(struct page *page)
1100 {
1101 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1102 return page_ref_dec_and_test(page);
1103 }
1104
folio_put_testzero(struct folio * folio)1105 static inline int folio_put_testzero(struct folio *folio)
1106 {
1107 return put_page_testzero(&folio->page);
1108 }
1109
1110 /*
1111 * Try to grab a ref unless the page has a refcount of zero, return false if
1112 * that is the case.
1113 * This can be called when MMU is off so it must not access
1114 * any of the virtual mappings.
1115 */
get_page_unless_zero(struct page * page)1116 static inline bool get_page_unless_zero(struct page *page)
1117 {
1118 return page_ref_add_unless(page, 1, 0);
1119 }
1120
folio_get_nontail_page(struct page * page)1121 static inline struct folio *folio_get_nontail_page(struct page *page)
1122 {
1123 if (unlikely(!get_page_unless_zero(page)))
1124 return NULL;
1125 return (struct folio *)page;
1126 }
1127
1128 extern int page_is_ram(unsigned long pfn);
1129
1130 enum {
1131 REGION_INTERSECTS,
1132 REGION_DISJOINT,
1133 REGION_MIXED,
1134 };
1135
1136 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1137 unsigned long desc);
1138
1139 /* Support for virtually mapped pages */
1140 struct page *vmalloc_to_page(const void *addr);
1141 unsigned long vmalloc_to_pfn(const void *addr);
1142
1143 /*
1144 * Determine if an address is within the vmalloc range
1145 *
1146 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1147 * is no special casing required.
1148 */
1149 #ifdef CONFIG_MMU
1150 extern bool is_vmalloc_addr(const void *x);
1151 extern int is_vmalloc_or_module_addr(const void *x);
1152 #else
is_vmalloc_addr(const void * x)1153 static inline bool is_vmalloc_addr(const void *x)
1154 {
1155 return false;
1156 }
is_vmalloc_or_module_addr(const void * x)1157 static inline int is_vmalloc_or_module_addr(const void *x)
1158 {
1159 return 0;
1160 }
1161 #endif
1162
1163 /*
1164 * How many times the entire folio is mapped as a single unit (eg by a
1165 * PMD or PUD entry). This is probably not what you want, except for
1166 * debugging purposes or implementation of other core folio_*() primitives.
1167 */
folio_entire_mapcount(const struct folio * folio)1168 static inline int folio_entire_mapcount(const struct folio *folio)
1169 {
1170 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1171 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1172 return 0;
1173 return atomic_read(&folio->_entire_mapcount) + 1;
1174 }
1175
folio_large_mapcount(const struct folio * folio)1176 static inline int folio_large_mapcount(const struct folio *folio)
1177 {
1178 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1179 return atomic_read(&folio->_large_mapcount) + 1;
1180 }
1181
1182 /**
1183 * folio_mapcount() - Number of mappings of this folio.
1184 * @folio: The folio.
1185 *
1186 * The folio mapcount corresponds to the number of present user page table
1187 * entries that reference any part of a folio. Each such present user page
1188 * table entry must be paired with exactly on folio reference.
1189 *
1190 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1191 * exactly once.
1192 *
1193 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1194 * references the entire folio counts exactly once, even when such special
1195 * page table entries are comprised of multiple ordinary page table entries.
1196 *
1197 * Will report 0 for pages which cannot be mapped into userspace, such as
1198 * slab, page tables and similar.
1199 *
1200 * Return: The number of times this folio is mapped.
1201 */
folio_mapcount(const struct folio * folio)1202 static inline int folio_mapcount(const struct folio *folio)
1203 {
1204 int mapcount;
1205
1206 if (likely(!folio_test_large(folio))) {
1207 mapcount = atomic_read(&folio->_mapcount) + 1;
1208 if (page_mapcount_is_type(mapcount))
1209 mapcount = 0;
1210 return mapcount;
1211 }
1212 return folio_large_mapcount(folio);
1213 }
1214
1215 /**
1216 * folio_mapped - Is this folio mapped into userspace?
1217 * @folio: The folio.
1218 *
1219 * Return: True if any page in this folio is referenced by user page tables.
1220 */
folio_mapped(const struct folio * folio)1221 static inline bool folio_mapped(const struct folio *folio)
1222 {
1223 return folio_mapcount(folio) >= 1;
1224 }
1225
1226 /*
1227 * Return true if this page is mapped into pagetables.
1228 * For compound page it returns true if any sub-page of compound page is mapped,
1229 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1230 */
page_mapped(const struct page * page)1231 static inline bool page_mapped(const struct page *page)
1232 {
1233 return folio_mapped(page_folio(page));
1234 }
1235
virt_to_head_page(const void * x)1236 static inline struct page *virt_to_head_page(const void *x)
1237 {
1238 struct page *page = virt_to_page(x);
1239
1240 return compound_head(page);
1241 }
1242
virt_to_folio(const void * x)1243 static inline struct folio *virt_to_folio(const void *x)
1244 {
1245 struct page *page = virt_to_page(x);
1246
1247 return page_folio(page);
1248 }
1249
1250 void __folio_put(struct folio *folio);
1251
1252 void split_page(struct page *page, unsigned int order);
1253 void folio_copy(struct folio *dst, struct folio *src);
1254 int folio_mc_copy(struct folio *dst, struct folio *src);
1255
1256 unsigned long nr_free_buffer_pages(void);
1257
1258 /* Returns the number of bytes in this potentially compound page. */
page_size(const struct page * page)1259 static inline unsigned long page_size(const struct page *page)
1260 {
1261 return PAGE_SIZE << compound_order(page);
1262 }
1263
1264 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1265 static inline unsigned int page_shift(struct page *page)
1266 {
1267 return PAGE_SHIFT + compound_order(page);
1268 }
1269
1270 /**
1271 * thp_order - Order of a transparent huge page.
1272 * @page: Head page of a transparent huge page.
1273 */
thp_order(struct page * page)1274 static inline unsigned int thp_order(struct page *page)
1275 {
1276 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1277 return compound_order(page);
1278 }
1279
1280 /**
1281 * thp_size - Size of a transparent huge page.
1282 * @page: Head page of a transparent huge page.
1283 *
1284 * Return: Number of bytes in this page.
1285 */
thp_size(struct page * page)1286 static inline unsigned long thp_size(struct page *page)
1287 {
1288 return PAGE_SIZE << thp_order(page);
1289 }
1290
1291 #ifdef CONFIG_MMU
1292 /*
1293 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1294 * servicing faults for write access. In the normal case, do always want
1295 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1296 * that do not have writing enabled, when used by access_process_vm.
1297 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1298 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1299 {
1300 if (likely(vma->vm_flags & VM_WRITE))
1301 pte = pte_mkwrite(pte, vma);
1302 return pte;
1303 }
1304
1305 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1306 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1307 struct page *page, unsigned int nr, unsigned long addr);
1308
1309 vm_fault_t finish_fault(struct vm_fault *vmf);
1310 #endif
1311
1312 /*
1313 * Multiple processes may "see" the same page. E.g. for untouched
1314 * mappings of /dev/null, all processes see the same page full of
1315 * zeroes, and text pages of executables and shared libraries have
1316 * only one copy in memory, at most, normally.
1317 *
1318 * For the non-reserved pages, page_count(page) denotes a reference count.
1319 * page_count() == 0 means the page is free. page->lru is then used for
1320 * freelist management in the buddy allocator.
1321 * page_count() > 0 means the page has been allocated.
1322 *
1323 * Pages are allocated by the slab allocator in order to provide memory
1324 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1325 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1326 * unless a particular usage is carefully commented. (the responsibility of
1327 * freeing the kmalloc memory is the caller's, of course).
1328 *
1329 * A page may be used by anyone else who does a __get_free_page().
1330 * In this case, page_count still tracks the references, and should only
1331 * be used through the normal accessor functions. The top bits of page->flags
1332 * and page->virtual store page management information, but all other fields
1333 * are unused and could be used privately, carefully. The management of this
1334 * page is the responsibility of the one who allocated it, and those who have
1335 * subsequently been given references to it.
1336 *
1337 * The other pages (we may call them "pagecache pages") are completely
1338 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1339 * The following discussion applies only to them.
1340 *
1341 * A pagecache page contains an opaque `private' member, which belongs to the
1342 * page's address_space. Usually, this is the address of a circular list of
1343 * the page's disk buffers. PG_private must be set to tell the VM to call
1344 * into the filesystem to release these pages.
1345 *
1346 * A folio may belong to an inode's memory mapping. In this case,
1347 * folio->mapping points to the inode, and folio->index is the file
1348 * offset of the folio, in units of PAGE_SIZE.
1349 *
1350 * If pagecache pages are not associated with an inode, they are said to be
1351 * anonymous pages. These may become associated with the swapcache, and in that
1352 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1353 *
1354 * In either case (swapcache or inode backed), the pagecache itself holds one
1355 * reference to the page. Setting PG_private should also increment the
1356 * refcount. The each user mapping also has a reference to the page.
1357 *
1358 * The pagecache pages are stored in a per-mapping radix tree, which is
1359 * rooted at mapping->i_pages, and indexed by offset.
1360 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1361 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1362 *
1363 * All pagecache pages may be subject to I/O:
1364 * - inode pages may need to be read from disk,
1365 * - inode pages which have been modified and are MAP_SHARED may need
1366 * to be written back to the inode on disk,
1367 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1368 * modified may need to be swapped out to swap space and (later) to be read
1369 * back into memory.
1370 */
1371
1372 /* 127: arbitrary random number, small enough to assemble well */
1373 #define folio_ref_zero_or_close_to_overflow(folio) \
1374 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1375
1376 /**
1377 * folio_get - Increment the reference count on a folio.
1378 * @folio: The folio.
1379 *
1380 * Context: May be called in any context, as long as you know that
1381 * you have a refcount on the folio. If you do not already have one,
1382 * folio_try_get() may be the right interface for you to use.
1383 */
folio_get(struct folio * folio)1384 static inline void folio_get(struct folio *folio)
1385 {
1386 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1387 folio_ref_inc(folio);
1388 }
1389
get_page(struct page * page)1390 static inline void get_page(struct page *page)
1391 {
1392 struct folio *folio = page_folio(page);
1393 if (WARN_ON_ONCE(folio_test_slab(folio)))
1394 return;
1395 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1396 return;
1397 folio_get(folio);
1398 }
1399
try_get_page(struct page * page)1400 static inline __must_check bool try_get_page(struct page *page)
1401 {
1402 page = compound_head(page);
1403 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1404 return false;
1405 page_ref_inc(page);
1406 return true;
1407 }
1408
1409 /**
1410 * folio_put - Decrement the reference count on a folio.
1411 * @folio: The folio.
1412 *
1413 * If the folio's reference count reaches zero, the memory will be
1414 * released back to the page allocator and may be used by another
1415 * allocation immediately. Do not access the memory or the struct folio
1416 * after calling folio_put() unless you can be sure that it wasn't the
1417 * last reference.
1418 *
1419 * Context: May be called in process or interrupt context, but not in NMI
1420 * context. May be called while holding a spinlock.
1421 */
folio_put(struct folio * folio)1422 static inline void folio_put(struct folio *folio)
1423 {
1424 if (folio_put_testzero(folio))
1425 __folio_put(folio);
1426 }
1427
1428 /**
1429 * folio_put_refs - Reduce the reference count on a folio.
1430 * @folio: The folio.
1431 * @refs: The amount to subtract from the folio's reference count.
1432 *
1433 * If the folio's reference count reaches zero, the memory will be
1434 * released back to the page allocator and may be used by another
1435 * allocation immediately. Do not access the memory or the struct folio
1436 * after calling folio_put_refs() unless you can be sure that these weren't
1437 * the last references.
1438 *
1439 * Context: May be called in process or interrupt context, but not in NMI
1440 * context. May be called while holding a spinlock.
1441 */
folio_put_refs(struct folio * folio,int refs)1442 static inline void folio_put_refs(struct folio *folio, int refs)
1443 {
1444 if (folio_ref_sub_and_test(folio, refs))
1445 __folio_put(folio);
1446 }
1447
1448 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1449
1450 /*
1451 * union release_pages_arg - an array of pages or folios
1452 *
1453 * release_pages() releases a simple array of multiple pages, and
1454 * accepts various different forms of said page array: either
1455 * a regular old boring array of pages, an array of folios, or
1456 * an array of encoded page pointers.
1457 *
1458 * The transparent union syntax for this kind of "any of these
1459 * argument types" is all kinds of ugly, so look away.
1460 */
1461 typedef union {
1462 struct page **pages;
1463 struct folio **folios;
1464 struct encoded_page **encoded_pages;
1465 } release_pages_arg __attribute__ ((__transparent_union__));
1466
1467 void release_pages(release_pages_arg, int nr);
1468
1469 /**
1470 * folios_put - Decrement the reference count on an array of folios.
1471 * @folios: The folios.
1472 *
1473 * Like folio_put(), but for a batch of folios. This is more efficient
1474 * than writing the loop yourself as it will optimise the locks which need
1475 * to be taken if the folios are freed. The folios batch is returned
1476 * empty and ready to be reused for another batch; there is no need to
1477 * reinitialise it.
1478 *
1479 * Context: May be called in process or interrupt context, but not in NMI
1480 * context. May be called while holding a spinlock.
1481 */
folios_put(struct folio_batch * folios)1482 static inline void folios_put(struct folio_batch *folios)
1483 {
1484 folios_put_refs(folios, NULL);
1485 }
1486
put_page(struct page * page)1487 static inline void put_page(struct page *page)
1488 {
1489 struct folio *folio = page_folio(page);
1490
1491 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1492 return;
1493
1494 folio_put(folio);
1495 }
1496
1497 /*
1498 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1499 * the page's refcount so that two separate items are tracked: the original page
1500 * reference count, and also a new count of how many pin_user_pages() calls were
1501 * made against the page. ("gup-pinned" is another term for the latter).
1502 *
1503 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1504 * distinct from normal pages. As such, the unpin_user_page() call (and its
1505 * variants) must be used in order to release gup-pinned pages.
1506 *
1507 * Choice of value:
1508 *
1509 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1510 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1511 * simpler, due to the fact that adding an even power of two to the page
1512 * refcount has the effect of using only the upper N bits, for the code that
1513 * counts up using the bias value. This means that the lower bits are left for
1514 * the exclusive use of the original code that increments and decrements by one
1515 * (or at least, by much smaller values than the bias value).
1516 *
1517 * Of course, once the lower bits overflow into the upper bits (and this is
1518 * OK, because subtraction recovers the original values), then visual inspection
1519 * no longer suffices to directly view the separate counts. However, for normal
1520 * applications that don't have huge page reference counts, this won't be an
1521 * issue.
1522 *
1523 * Locking: the lockless algorithm described in folio_try_get_rcu()
1524 * provides safe operation for get_user_pages(), folio_mkclean() and
1525 * other calls that race to set up page table entries.
1526 */
1527 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1528
1529 void unpin_user_page(struct page *page);
1530 void unpin_folio(struct folio *folio);
1531 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1532 bool make_dirty);
1533 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1534 bool make_dirty);
1535 void unpin_user_pages(struct page **pages, unsigned long npages);
1536 void unpin_user_folio(struct folio *folio, unsigned long npages);
1537 void unpin_folios(struct folio **folios, unsigned long nfolios);
1538
is_cow_mapping(vm_flags_t flags)1539 static inline bool is_cow_mapping(vm_flags_t flags)
1540 {
1541 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1542 }
1543
1544 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1545 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1546 {
1547 /*
1548 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1549 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1550 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1551 * underlying memory if ptrace is active, so this is only possible if
1552 * ptrace does not apply. Note that there is no mprotect() to upgrade
1553 * write permissions later.
1554 */
1555 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1556 }
1557 #endif
1558
1559 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1560 #define SECTION_IN_PAGE_FLAGS
1561 #endif
1562
1563 /*
1564 * The identification function is mainly used by the buddy allocator for
1565 * determining if two pages could be buddies. We are not really identifying
1566 * the zone since we could be using the section number id if we do not have
1567 * node id available in page flags.
1568 * We only guarantee that it will return the same value for two combinable
1569 * pages in a zone.
1570 */
page_zone_id(struct page * page)1571 static inline int page_zone_id(struct page *page)
1572 {
1573 return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK;
1574 }
1575
1576 #ifdef NODE_NOT_IN_PAGE_FLAGS
1577 int memdesc_nid(memdesc_flags_t mdf);
1578 #else
memdesc_nid(memdesc_flags_t mdf)1579 static inline int memdesc_nid(memdesc_flags_t mdf)
1580 {
1581 return (mdf.f >> NODES_PGSHIFT) & NODES_MASK;
1582 }
1583 #endif
1584
page_to_nid(const struct page * page)1585 static inline int page_to_nid(const struct page *page)
1586 {
1587 return memdesc_nid(PF_POISONED_CHECK(page)->flags);
1588 }
1589
folio_nid(const struct folio * folio)1590 static inline int folio_nid(const struct folio *folio)
1591 {
1592 return memdesc_nid(folio->flags);
1593 }
1594
1595 #ifdef CONFIG_NUMA_BALANCING
1596 /* page access time bits needs to hold at least 4 seconds */
1597 #define PAGE_ACCESS_TIME_MIN_BITS 12
1598 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1599 #define PAGE_ACCESS_TIME_BUCKETS \
1600 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1601 #else
1602 #define PAGE_ACCESS_TIME_BUCKETS 0
1603 #endif
1604
1605 #define PAGE_ACCESS_TIME_MASK \
1606 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1607
cpu_pid_to_cpupid(int cpu,int pid)1608 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1609 {
1610 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1611 }
1612
cpupid_to_pid(int cpupid)1613 static inline int cpupid_to_pid(int cpupid)
1614 {
1615 return cpupid & LAST__PID_MASK;
1616 }
1617
cpupid_to_cpu(int cpupid)1618 static inline int cpupid_to_cpu(int cpupid)
1619 {
1620 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1621 }
1622
cpupid_to_nid(int cpupid)1623 static inline int cpupid_to_nid(int cpupid)
1624 {
1625 return cpu_to_node(cpupid_to_cpu(cpupid));
1626 }
1627
cpupid_pid_unset(int cpupid)1628 static inline bool cpupid_pid_unset(int cpupid)
1629 {
1630 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1631 }
1632
cpupid_cpu_unset(int cpupid)1633 static inline bool cpupid_cpu_unset(int cpupid)
1634 {
1635 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1636 }
1637
__cpupid_match_pid(pid_t task_pid,int cpupid)1638 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1639 {
1640 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1641 }
1642
1643 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1644 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1645 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1646 {
1647 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1648 }
1649
folio_last_cpupid(struct folio * folio)1650 static inline int folio_last_cpupid(struct folio *folio)
1651 {
1652 return folio->_last_cpupid;
1653 }
page_cpupid_reset_last(struct page * page)1654 static inline void page_cpupid_reset_last(struct page *page)
1655 {
1656 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1657 }
1658 #else
folio_last_cpupid(struct folio * folio)1659 static inline int folio_last_cpupid(struct folio *folio)
1660 {
1661 return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1662 }
1663
1664 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1665
page_cpupid_reset_last(struct page * page)1666 static inline void page_cpupid_reset_last(struct page *page)
1667 {
1668 page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1669 }
1670 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1671
folio_xchg_access_time(struct folio * folio,int time)1672 static inline int folio_xchg_access_time(struct folio *folio, int time)
1673 {
1674 int last_time;
1675
1676 last_time = folio_xchg_last_cpupid(folio,
1677 time >> PAGE_ACCESS_TIME_BUCKETS);
1678 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1679 }
1680
vma_set_access_pid_bit(struct vm_area_struct * vma)1681 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1682 {
1683 unsigned int pid_bit;
1684
1685 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1686 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1687 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1688 }
1689 }
1690
1691 bool folio_use_access_time(struct folio *folio);
1692 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1693 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1694 {
1695 return folio_nid(folio); /* XXX */
1696 }
1697
folio_xchg_access_time(struct folio * folio,int time)1698 static inline int folio_xchg_access_time(struct folio *folio, int time)
1699 {
1700 return 0;
1701 }
1702
folio_last_cpupid(struct folio * folio)1703 static inline int folio_last_cpupid(struct folio *folio)
1704 {
1705 return folio_nid(folio); /* XXX */
1706 }
1707
cpupid_to_nid(int cpupid)1708 static inline int cpupid_to_nid(int cpupid)
1709 {
1710 return -1;
1711 }
1712
cpupid_to_pid(int cpupid)1713 static inline int cpupid_to_pid(int cpupid)
1714 {
1715 return -1;
1716 }
1717
cpupid_to_cpu(int cpupid)1718 static inline int cpupid_to_cpu(int cpupid)
1719 {
1720 return -1;
1721 }
1722
cpu_pid_to_cpupid(int nid,int pid)1723 static inline int cpu_pid_to_cpupid(int nid, int pid)
1724 {
1725 return -1;
1726 }
1727
cpupid_pid_unset(int cpupid)1728 static inline bool cpupid_pid_unset(int cpupid)
1729 {
1730 return true;
1731 }
1732
page_cpupid_reset_last(struct page * page)1733 static inline void page_cpupid_reset_last(struct page *page)
1734 {
1735 }
1736
cpupid_match_pid(struct task_struct * task,int cpupid)1737 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1738 {
1739 return false;
1740 }
1741
vma_set_access_pid_bit(struct vm_area_struct * vma)1742 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1743 {
1744 }
folio_use_access_time(struct folio * folio)1745 static inline bool folio_use_access_time(struct folio *folio)
1746 {
1747 return false;
1748 }
1749 #endif /* CONFIG_NUMA_BALANCING */
1750
1751 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1752
1753 /*
1754 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1755 * setting tags for all pages to native kernel tag value 0xff, as the default
1756 * value 0x00 maps to 0xff.
1757 */
1758
page_kasan_tag(const struct page * page)1759 static inline u8 page_kasan_tag(const struct page *page)
1760 {
1761 u8 tag = KASAN_TAG_KERNEL;
1762
1763 if (kasan_enabled()) {
1764 tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1765 tag ^= 0xff;
1766 }
1767
1768 return tag;
1769 }
1770
page_kasan_tag_set(struct page * page,u8 tag)1771 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1772 {
1773 unsigned long old_flags, flags;
1774
1775 if (!kasan_enabled())
1776 return;
1777
1778 tag ^= 0xff;
1779 old_flags = READ_ONCE(page->flags.f);
1780 do {
1781 flags = old_flags;
1782 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1783 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1784 } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags)));
1785 }
1786
page_kasan_tag_reset(struct page * page)1787 static inline void page_kasan_tag_reset(struct page *page)
1788 {
1789 if (kasan_enabled())
1790 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1791 }
1792
1793 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1794
page_kasan_tag(const struct page * page)1795 static inline u8 page_kasan_tag(const struct page *page)
1796 {
1797 return 0xff;
1798 }
1799
page_kasan_tag_set(struct page * page,u8 tag)1800 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1801 static inline void page_kasan_tag_reset(struct page *page) { }
1802
1803 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1804
page_zone(const struct page * page)1805 static inline struct zone *page_zone(const struct page *page)
1806 {
1807 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1808 }
1809
page_pgdat(const struct page * page)1810 static inline pg_data_t *page_pgdat(const struct page *page)
1811 {
1812 return NODE_DATA(page_to_nid(page));
1813 }
1814
folio_pgdat(const struct folio * folio)1815 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1816 {
1817 return NODE_DATA(folio_nid(folio));
1818 }
1819
folio_zone(const struct folio * folio)1820 static inline struct zone *folio_zone(const struct folio *folio)
1821 {
1822 return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)];
1823 }
1824
1825 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1826 static inline void set_page_section(struct page *page, unsigned long section)
1827 {
1828 page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1829 page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1830 }
1831
memdesc_section(memdesc_flags_t mdf)1832 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
1833 {
1834 return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1835 }
1836 #endif
1837
1838 /**
1839 * folio_pfn - Return the Page Frame Number of a folio.
1840 * @folio: The folio.
1841 *
1842 * A folio may contain multiple pages. The pages have consecutive
1843 * Page Frame Numbers.
1844 *
1845 * Return: The Page Frame Number of the first page in the folio.
1846 */
folio_pfn(const struct folio * folio)1847 static inline unsigned long folio_pfn(const struct folio *folio)
1848 {
1849 return page_to_pfn(&folio->page);
1850 }
1851
pfn_folio(unsigned long pfn)1852 static inline struct folio *pfn_folio(unsigned long pfn)
1853 {
1854 return page_folio(pfn_to_page(pfn));
1855 }
1856
1857 #ifdef CONFIG_MMU
mk_pte(const struct page * page,pgprot_t pgprot)1858 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot)
1859 {
1860 return pfn_pte(page_to_pfn(page), pgprot);
1861 }
1862
1863 /**
1864 * folio_mk_pte - Create a PTE for this folio
1865 * @folio: The folio to create a PTE for
1866 * @pgprot: The page protection bits to use
1867 *
1868 * Create a page table entry for the first page of this folio.
1869 * This is suitable for passing to set_ptes().
1870 *
1871 * Return: A page table entry suitable for mapping this folio.
1872 */
folio_mk_pte(const struct folio * folio,pgprot_t pgprot)1873 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot)
1874 {
1875 return pfn_pte(folio_pfn(folio), pgprot);
1876 }
1877
1878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1879 /**
1880 * folio_mk_pmd - Create a PMD for this folio
1881 * @folio: The folio to create a PMD for
1882 * @pgprot: The page protection bits to use
1883 *
1884 * Create a page table entry for the first page of this folio.
1885 * This is suitable for passing to set_pmd_at().
1886 *
1887 * Return: A page table entry suitable for mapping this folio.
1888 */
folio_mk_pmd(const struct folio * folio,pgprot_t pgprot)1889 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot)
1890 {
1891 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1892 }
1893
1894 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1895 /**
1896 * folio_mk_pud - Create a PUD for this folio
1897 * @folio: The folio to create a PUD for
1898 * @pgprot: The page protection bits to use
1899 *
1900 * Create a page table entry for the first page of this folio.
1901 * This is suitable for passing to set_pud_at().
1902 *
1903 * Return: A page table entry suitable for mapping this folio.
1904 */
folio_mk_pud(const struct folio * folio,pgprot_t pgprot)1905 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot)
1906 {
1907 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1908 }
1909 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1911 #endif /* CONFIG_MMU */
1912
folio_has_pincount(const struct folio * folio)1913 static inline bool folio_has_pincount(const struct folio *folio)
1914 {
1915 if (IS_ENABLED(CONFIG_64BIT))
1916 return folio_test_large(folio);
1917 return folio_order(folio) > 1;
1918 }
1919
1920 /**
1921 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1922 * @folio: The folio.
1923 *
1924 * This function checks if a folio has been pinned via a call to
1925 * a function in the pin_user_pages() family.
1926 *
1927 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1928 * because it means "definitely not pinned for DMA", but true means "probably
1929 * pinned for DMA, but possibly a false positive due to having at least
1930 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1931 *
1932 * False positives are OK, because: a) it's unlikely for a folio to
1933 * get that many refcounts, and b) all the callers of this routine are
1934 * expected to be able to deal gracefully with a false positive.
1935 *
1936 * For most large folios, the result will be exactly correct. That's because
1937 * we have more tracking data available: the _pincount field is used
1938 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1939 *
1940 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1941 *
1942 * Return: True, if it is likely that the folio has been "dma-pinned".
1943 * False, if the folio is definitely not dma-pinned.
1944 */
folio_maybe_dma_pinned(struct folio * folio)1945 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1946 {
1947 if (folio_has_pincount(folio))
1948 return atomic_read(&folio->_pincount) > 0;
1949
1950 /*
1951 * folio_ref_count() is signed. If that refcount overflows, then
1952 * folio_ref_count() returns a negative value, and callers will avoid
1953 * further incrementing the refcount.
1954 *
1955 * Here, for that overflow case, use the sign bit to count a little
1956 * bit higher via unsigned math, and thus still get an accurate result.
1957 */
1958 return ((unsigned int)folio_ref_count(folio)) >=
1959 GUP_PIN_COUNTING_BIAS;
1960 }
1961
1962 /*
1963 * This should most likely only be called during fork() to see whether we
1964 * should break the cow immediately for an anon page on the src mm.
1965 *
1966 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1967 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1969 struct folio *folio)
1970 {
1971 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1972
1973 if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))
1974 return false;
1975
1976 return folio_maybe_dma_pinned(folio);
1977 }
1978
1979 /**
1980 * is_zero_page - Query if a page is a zero page
1981 * @page: The page to query
1982 *
1983 * This returns true if @page is one of the permanent zero pages.
1984 */
is_zero_page(const struct page * page)1985 static inline bool is_zero_page(const struct page *page)
1986 {
1987 return is_zero_pfn(page_to_pfn(page));
1988 }
1989
1990 /**
1991 * is_zero_folio - Query if a folio is a zero page
1992 * @folio: The folio to query
1993 *
1994 * This returns true if @folio is one of the permanent zero pages.
1995 */
is_zero_folio(const struct folio * folio)1996 static inline bool is_zero_folio(const struct folio *folio)
1997 {
1998 return is_zero_page(&folio->page);
1999 }
2000
2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2002 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2003 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2004 {
2005 #ifdef CONFIG_CMA
2006 int mt = folio_migratetype(folio);
2007
2008 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2009 return false;
2010 #endif
2011 /* The zero page can be "pinned" but gets special handling. */
2012 if (is_zero_folio(folio))
2013 return true;
2014
2015 /* Coherent device memory must always allow eviction. */
2016 if (folio_is_device_coherent(folio))
2017 return false;
2018
2019 /*
2020 * Filesystems can only tolerate transient delays to truncate and
2021 * hole-punch operations
2022 */
2023 if (folio_is_fsdax(folio))
2024 return false;
2025
2026 /* Otherwise, non-movable zone folios can be pinned. */
2027 return !folio_is_zone_movable(folio);
2028
2029 }
2030 #else
folio_is_longterm_pinnable(struct folio * folio)2031 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2032 {
2033 return true;
2034 }
2035 #endif
2036
set_page_zone(struct page * page,enum zone_type zone)2037 static inline void set_page_zone(struct page *page, enum zone_type zone)
2038 {
2039 page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT);
2040 page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2041 }
2042
set_page_node(struct page * page,unsigned long node)2043 static inline void set_page_node(struct page *page, unsigned long node)
2044 {
2045 page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT);
2046 page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT;
2047 }
2048
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2049 static inline void set_page_links(struct page *page, enum zone_type zone,
2050 unsigned long node, unsigned long pfn)
2051 {
2052 set_page_zone(page, zone);
2053 set_page_node(page, node);
2054 #ifdef SECTION_IN_PAGE_FLAGS
2055 set_page_section(page, pfn_to_section_nr(pfn));
2056 #endif
2057 }
2058
2059 /**
2060 * folio_nr_pages - The number of pages in the folio.
2061 * @folio: The folio.
2062 *
2063 * Return: A positive power of two.
2064 */
folio_nr_pages(const struct folio * folio)2065 static inline unsigned long folio_nr_pages(const struct folio *folio)
2066 {
2067 if (!folio_test_large(folio))
2068 return 1;
2069 return folio_large_nr_pages(folio);
2070 }
2071
2072 #if !defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE)
2073 /*
2074 * We don't expect any folios that exceed buddy sizes (and consequently
2075 * memory sections).
2076 */
2077 #define MAX_FOLIO_ORDER MAX_PAGE_ORDER
2078 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
2079 /*
2080 * Only pages within a single memory section are guaranteed to be
2081 * contiguous. By limiting folios to a single memory section, all folio
2082 * pages are guaranteed to be contiguous.
2083 */
2084 #define MAX_FOLIO_ORDER PFN_SECTION_SHIFT
2085 #else
2086 /*
2087 * There is no real limit on the folio size. We limit them to the maximum we
2088 * currently expect (e.g., hugetlb, dax).
2089 */
2090 #define MAX_FOLIO_ORDER PUD_ORDER
2091 #endif
2092
2093 #define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER)
2094
2095 /*
2096 * compound_nr() returns the number of pages in this potentially compound
2097 * page. compound_nr() can be called on a tail page, and is defined to
2098 * return 1 in that case.
2099 */
compound_nr(const struct page * page)2100 static inline unsigned long compound_nr(const struct page *page)
2101 {
2102 const struct folio *folio = (struct folio *)page;
2103
2104 if (!test_bit(PG_head, &folio->flags.f))
2105 return 1;
2106 return folio_large_nr_pages(folio);
2107 }
2108
2109 /**
2110 * folio_next - Move to the next physical folio.
2111 * @folio: The folio we're currently operating on.
2112 *
2113 * If you have physically contiguous memory which may span more than
2114 * one folio (eg a &struct bio_vec), use this function to move from one
2115 * folio to the next. Do not use it if the memory is only virtually
2116 * contiguous as the folios are almost certainly not adjacent to each
2117 * other. This is the folio equivalent to writing ``page++``.
2118 *
2119 * Context: We assume that the folios are refcounted and/or locked at a
2120 * higher level and do not adjust the reference counts.
2121 * Return: The next struct folio.
2122 */
folio_next(struct folio * folio)2123 static inline struct folio *folio_next(struct folio *folio)
2124 {
2125 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2126 }
2127
2128 /**
2129 * folio_shift - The size of the memory described by this folio.
2130 * @folio: The folio.
2131 *
2132 * A folio represents a number of bytes which is a power-of-two in size.
2133 * This function tells you which power-of-two the folio is. See also
2134 * folio_size() and folio_order().
2135 *
2136 * Context: The caller should have a reference on the folio to prevent
2137 * it from being split. It is not necessary for the folio to be locked.
2138 * Return: The base-2 logarithm of the size of this folio.
2139 */
folio_shift(const struct folio * folio)2140 static inline unsigned int folio_shift(const struct folio *folio)
2141 {
2142 return PAGE_SHIFT + folio_order(folio);
2143 }
2144
2145 /**
2146 * folio_size - The number of bytes in a folio.
2147 * @folio: The folio.
2148 *
2149 * Context: The caller should have a reference on the folio to prevent
2150 * it from being split. It is not necessary for the folio to be locked.
2151 * Return: The number of bytes in this folio.
2152 */
folio_size(const struct folio * folio)2153 static inline size_t folio_size(const struct folio *folio)
2154 {
2155 return PAGE_SIZE << folio_order(folio);
2156 }
2157
2158 /**
2159 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2160 * tables of more than one MM
2161 * @folio: The folio.
2162 *
2163 * This function checks if the folio maybe currently mapped into more than one
2164 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2165 * MM ("mapped exclusively").
2166 *
2167 * For KSM folios, this function also returns "mapped shared" when a folio is
2168 * mapped multiple times into the same MM, because the individual page mappings
2169 * are independent.
2170 *
2171 * For small anonymous folios and anonymous hugetlb folios, the return
2172 * value will be exactly correct: non-KSM folios can only be mapped at most once
2173 * into an MM, and they cannot be partially mapped. KSM folios are
2174 * considered shared even if mapped multiple times into the same MM.
2175 *
2176 * For other folios, the result can be fuzzy:
2177 * #. For partially-mappable large folios (THP), the return value can wrongly
2178 * indicate "mapped shared" (false positive) if a folio was mapped by
2179 * more than two MMs at one point in time.
2180 * #. For pagecache folios (including hugetlb), the return value can wrongly
2181 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2182 * cover the same file range.
2183 *
2184 * Further, this function only considers current page table mappings that
2185 * are tracked using the folio mapcount(s).
2186 *
2187 * This function does not consider:
2188 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2189 * pagecache, temporary unmapping for migration).
2190 * #. If the folio is mapped differently (VM_PFNMAP).
2191 * #. If hugetlb page table sharing applies. Callers might want to check
2192 * hugetlb_pmd_shared().
2193 *
2194 * Return: Whether the folio is estimated to be mapped into more than one MM.
2195 */
folio_maybe_mapped_shared(struct folio * folio)2196 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2197 {
2198 int mapcount = folio_mapcount(folio);
2199
2200 /* Only partially-mappable folios require more care. */
2201 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2202 return mapcount > 1;
2203
2204 /*
2205 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2206 * simply assume "mapped shared", nobody should really care
2207 * about this for arbitrary kernel allocations.
2208 */
2209 if (!IS_ENABLED(CONFIG_MM_ID))
2210 return true;
2211
2212 /*
2213 * A single mapping implies "mapped exclusively", even if the
2214 * folio flag says something different: it's easier to handle this
2215 * case here instead of on the RMAP hot path.
2216 */
2217 if (mapcount <= 1)
2218 return false;
2219 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2220 }
2221
2222 /**
2223 * folio_expected_ref_count - calculate the expected folio refcount
2224 * @folio: the folio
2225 *
2226 * Calculate the expected folio refcount, taking references from the pagecache,
2227 * swapcache, PG_private and page table mappings into account. Useful in
2228 * combination with folio_ref_count() to detect unexpected references (e.g.,
2229 * GUP or other temporary references).
2230 *
2231 * Does currently not consider references from the LRU cache. If the folio
2232 * was isolated from the LRU (which is the case during migration or split),
2233 * the LRU cache does not apply.
2234 *
2235 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2236 * locked will return a stable result.
2237 *
2238 * Calling this function on a mapped folio will not result in a stable result,
2239 * because nothing stops additional page table mappings from coming (e.g.,
2240 * fork()) or going (e.g., munmap()).
2241 *
2242 * Calling this function without the folio lock will also not result in a
2243 * stable result: for example, the folio might get dropped from the swapcache
2244 * concurrently.
2245 *
2246 * However, even when called without the folio lock or on a mapped folio,
2247 * this function can be used to detect unexpected references early (for example,
2248 * if it makes sense to even lock the folio and unmap it).
2249 *
2250 * The caller must add any reference (e.g., from folio_try_get()) it might be
2251 * holding itself to the result.
2252 *
2253 * Returns the expected folio refcount.
2254 */
folio_expected_ref_count(const struct folio * folio)2255 static inline int folio_expected_ref_count(const struct folio *folio)
2256 {
2257 const int order = folio_order(folio);
2258 int ref_count = 0;
2259
2260 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2261 return 0;
2262
2263 if (folio_test_anon(folio)) {
2264 /* One reference per page from the swapcache. */
2265 ref_count += folio_test_swapcache(folio) << order;
2266 } else {
2267 /* One reference per page from the pagecache. */
2268 ref_count += !!folio->mapping << order;
2269 /* One reference from PG_private. */
2270 ref_count += folio_test_private(folio);
2271 }
2272
2273 /* One reference per page table mapping. */
2274 return ref_count + folio_mapcount(folio);
2275 }
2276
2277 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2278 static inline int arch_make_folio_accessible(struct folio *folio)
2279 {
2280 return 0;
2281 }
2282 #endif
2283
2284 /*
2285 * Some inline functions in vmstat.h depend on page_zone()
2286 */
2287 #include <linux/vmstat.h>
2288
2289 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2290 #define HASHED_PAGE_VIRTUAL
2291 #endif
2292
2293 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2294 static inline void *page_address(const struct page *page)
2295 {
2296 return page->virtual;
2297 }
set_page_address(struct page * page,void * address)2298 static inline void set_page_address(struct page *page, void *address)
2299 {
2300 page->virtual = address;
2301 }
2302 #define page_address_init() do { } while(0)
2303 #endif
2304
2305 #if defined(HASHED_PAGE_VIRTUAL)
2306 void *page_address(const struct page *page);
2307 void set_page_address(struct page *page, void *virtual);
2308 void page_address_init(void);
2309 #endif
2310
lowmem_page_address(const struct page * page)2311 static __always_inline void *lowmem_page_address(const struct page *page)
2312 {
2313 return page_to_virt(page);
2314 }
2315
2316 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2317 #define page_address(page) lowmem_page_address(page)
2318 #define set_page_address(page, address) do { } while(0)
2319 #define page_address_init() do { } while(0)
2320 #endif
2321
folio_address(const struct folio * folio)2322 static inline void *folio_address(const struct folio *folio)
2323 {
2324 return page_address(&folio->page);
2325 }
2326
2327 /*
2328 * Return true only if the page has been allocated with
2329 * ALLOC_NO_WATERMARKS and the low watermark was not
2330 * met implying that the system is under some pressure.
2331 */
page_is_pfmemalloc(const struct page * page)2332 static inline bool page_is_pfmemalloc(const struct page *page)
2333 {
2334 /*
2335 * lru.next has bit 1 set if the page is allocated from the
2336 * pfmemalloc reserves. Callers may simply overwrite it if
2337 * they do not need to preserve that information.
2338 */
2339 return (uintptr_t)page->lru.next & BIT(1);
2340 }
2341
2342 /*
2343 * Return true only if the folio has been allocated with
2344 * ALLOC_NO_WATERMARKS and the low watermark was not
2345 * met implying that the system is under some pressure.
2346 */
folio_is_pfmemalloc(const struct folio * folio)2347 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2348 {
2349 /*
2350 * lru.next has bit 1 set if the page is allocated from the
2351 * pfmemalloc reserves. Callers may simply overwrite it if
2352 * they do not need to preserve that information.
2353 */
2354 return (uintptr_t)folio->lru.next & BIT(1);
2355 }
2356
2357 /*
2358 * Only to be called by the page allocator on a freshly allocated
2359 * page.
2360 */
set_page_pfmemalloc(struct page * page)2361 static inline void set_page_pfmemalloc(struct page *page)
2362 {
2363 page->lru.next = (void *)BIT(1);
2364 }
2365
clear_page_pfmemalloc(struct page * page)2366 static inline void clear_page_pfmemalloc(struct page *page)
2367 {
2368 page->lru.next = NULL;
2369 }
2370
2371 /*
2372 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2373 */
2374 extern void pagefault_out_of_memory(void);
2375
2376 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2377 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2378
2379 /*
2380 * Parameter block passed down to zap_pte_range in exceptional cases.
2381 */
2382 struct zap_details {
2383 struct folio *single_folio; /* Locked folio to be unmapped */
2384 bool even_cows; /* Zap COWed private pages too? */
2385 bool reclaim_pt; /* Need reclaim page tables? */
2386 zap_flags_t zap_flags; /* Extra flags for zapping */
2387 };
2388
2389 /*
2390 * Whether to drop the pte markers, for example, the uffd-wp information for
2391 * file-backed memory. This should only be specified when we will completely
2392 * drop the page in the mm, either by truncation or unmapping of the vma. By
2393 * default, the flag is not set.
2394 */
2395 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2396 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2397 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2398
2399 #ifdef CONFIG_SCHED_MM_CID
2400 void sched_mm_cid_before_execve(struct task_struct *t);
2401 void sched_mm_cid_after_execve(struct task_struct *t);
2402 void sched_mm_cid_fork(struct task_struct *t);
2403 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2404 static inline int task_mm_cid(struct task_struct *t)
2405 {
2406 return t->mm_cid;
2407 }
2408 #else
sched_mm_cid_before_execve(struct task_struct * t)2409 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2410 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2411 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2412 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2413 static inline int task_mm_cid(struct task_struct *t)
2414 {
2415 /*
2416 * Use the processor id as a fall-back when the mm cid feature is
2417 * disabled. This provides functional per-cpu data structure accesses
2418 * in user-space, althrough it won't provide the memory usage benefits.
2419 */
2420 return raw_smp_processor_id();
2421 }
2422 #endif
2423
2424 #ifdef CONFIG_MMU
2425 extern bool can_do_mlock(void);
2426 #else
can_do_mlock(void)2427 static inline bool can_do_mlock(void) { return false; }
2428 #endif
2429 extern int user_shm_lock(size_t, struct ucounts *);
2430 extern void user_shm_unlock(size_t, struct ucounts *);
2431
2432 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2433 pte_t pte);
2434 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2435 pte_t pte);
2436 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2437 unsigned long addr, pmd_t pmd);
2438 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2439 pmd_t pmd);
2440 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr,
2441 pud_t pud);
2442
2443 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2444 unsigned long size);
2445 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2446 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2447 static inline void zap_vma_pages(struct vm_area_struct *vma)
2448 {
2449 zap_page_range_single(vma, vma->vm_start,
2450 vma->vm_end - vma->vm_start, NULL);
2451 }
2452 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2453 struct vm_area_struct *start_vma, unsigned long start,
2454 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2455
2456 struct mmu_notifier_range;
2457
2458 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2459 unsigned long end, unsigned long floor, unsigned long ceiling);
2460 int
2461 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2462 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2463 void *buf, int len, int write);
2464
2465 struct follow_pfnmap_args {
2466 /**
2467 * Inputs:
2468 * @vma: Pointer to @vm_area_struct struct
2469 * @address: the virtual address to walk
2470 */
2471 struct vm_area_struct *vma;
2472 unsigned long address;
2473 /**
2474 * Internals:
2475 *
2476 * The caller shouldn't touch any of these.
2477 */
2478 spinlock_t *lock;
2479 pte_t *ptep;
2480 /**
2481 * Outputs:
2482 *
2483 * @pfn: the PFN of the address
2484 * @addr_mask: address mask covering pfn
2485 * @pgprot: the pgprot_t of the mapping
2486 * @writable: whether the mapping is writable
2487 * @special: whether the mapping is a special mapping (real PFN maps)
2488 */
2489 unsigned long pfn;
2490 unsigned long addr_mask;
2491 pgprot_t pgprot;
2492 bool writable;
2493 bool special;
2494 };
2495 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2496 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2497
2498 extern void truncate_pagecache(struct inode *inode, loff_t new);
2499 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2500 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2501 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2502 int generic_error_remove_folio(struct address_space *mapping,
2503 struct folio *folio);
2504
2505 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2506 unsigned long address, struct pt_regs *regs);
2507
2508 #ifdef CONFIG_MMU
2509 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2510 unsigned long address, unsigned int flags,
2511 struct pt_regs *regs);
2512 extern int fixup_user_fault(struct mm_struct *mm,
2513 unsigned long address, unsigned int fault_flags,
2514 bool *unlocked);
2515 void unmap_mapping_pages(struct address_space *mapping,
2516 pgoff_t start, pgoff_t nr, bool even_cows);
2517 void unmap_mapping_range(struct address_space *mapping,
2518 loff_t const holebegin, loff_t const holelen, int even_cows);
2519 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2520 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2521 unsigned long address, unsigned int flags,
2522 struct pt_regs *regs)
2523 {
2524 /* should never happen if there's no MMU */
2525 BUG();
2526 return VM_FAULT_SIGBUS;
2527 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2528 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2529 unsigned int fault_flags, bool *unlocked)
2530 {
2531 /* should never happen if there's no MMU */
2532 BUG();
2533 return -EFAULT;
2534 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2535 static inline void unmap_mapping_pages(struct address_space *mapping,
2536 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2537 static inline void unmap_mapping_range(struct address_space *mapping,
2538 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2539 #endif
2540
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2541 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2542 loff_t const holebegin, loff_t const holelen)
2543 {
2544 unmap_mapping_range(mapping, holebegin, holelen, 0);
2545 }
2546
2547 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2548 unsigned long addr);
2549
2550 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2551 void *buf, int len, unsigned int gup_flags);
2552 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2553 void *buf, int len, unsigned int gup_flags);
2554
2555 #ifdef CONFIG_BPF_SYSCALL
2556 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2557 void *buf, int len, unsigned int gup_flags);
2558 #endif
2559
2560 long get_user_pages_remote(struct mm_struct *mm,
2561 unsigned long start, unsigned long nr_pages,
2562 unsigned int gup_flags, struct page **pages,
2563 int *locked);
2564 long pin_user_pages_remote(struct mm_struct *mm,
2565 unsigned long start, unsigned long nr_pages,
2566 unsigned int gup_flags, struct page **pages,
2567 int *locked);
2568
2569 /*
2570 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2571 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2572 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2573 unsigned long addr,
2574 int gup_flags,
2575 struct vm_area_struct **vmap)
2576 {
2577 struct page *page;
2578 struct vm_area_struct *vma;
2579 int got;
2580
2581 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2582 return ERR_PTR(-EINVAL);
2583
2584 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2585
2586 if (got < 0)
2587 return ERR_PTR(got);
2588
2589 vma = vma_lookup(mm, addr);
2590 if (WARN_ON_ONCE(!vma)) {
2591 put_page(page);
2592 return ERR_PTR(-EINVAL);
2593 }
2594
2595 *vmap = vma;
2596 return page;
2597 }
2598
2599 long get_user_pages(unsigned long start, unsigned long nr_pages,
2600 unsigned int gup_flags, struct page **pages);
2601 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2602 unsigned int gup_flags, struct page **pages);
2603 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2604 struct page **pages, unsigned int gup_flags);
2605 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2606 struct page **pages, unsigned int gup_flags);
2607 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2608 struct folio **folios, unsigned int max_folios,
2609 pgoff_t *offset);
2610 int folio_add_pins(struct folio *folio, unsigned int pins);
2611
2612 int get_user_pages_fast(unsigned long start, int nr_pages,
2613 unsigned int gup_flags, struct page **pages);
2614 int pin_user_pages_fast(unsigned long start, int nr_pages,
2615 unsigned int gup_flags, struct page **pages);
2616 void folio_add_pin(struct folio *folio);
2617
2618 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2619 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2620 const struct task_struct *task, bool bypass_rlim);
2621
2622 struct kvec;
2623 struct page *get_dump_page(unsigned long addr, int *locked);
2624
2625 bool folio_mark_dirty(struct folio *folio);
2626 bool folio_mark_dirty_lock(struct folio *folio);
2627 bool set_page_dirty(struct page *page);
2628 int set_page_dirty_lock(struct page *page);
2629
2630 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2631
2632 /*
2633 * Flags used by change_protection(). For now we make it a bitmap so
2634 * that we can pass in multiple flags just like parameters. However
2635 * for now all the callers are only use one of the flags at the same
2636 * time.
2637 */
2638 /*
2639 * Whether we should manually check if we can map individual PTEs writable,
2640 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2641 * PTEs automatically in a writable mapping.
2642 */
2643 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2644 /* Whether this protection change is for NUMA hints */
2645 #define MM_CP_PROT_NUMA (1UL << 1)
2646 /* Whether this change is for write protecting */
2647 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2648 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2649 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2650 MM_CP_UFFD_WP_RESOLVE)
2651
2652 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2653 pte_t pte);
2654 extern long change_protection(struct mmu_gather *tlb,
2655 struct vm_area_struct *vma, unsigned long start,
2656 unsigned long end, unsigned long cp_flags);
2657 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2658 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2659 unsigned long start, unsigned long end, vm_flags_t newflags);
2660
2661 /*
2662 * doesn't attempt to fault and will return short.
2663 */
2664 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2665 unsigned int gup_flags, struct page **pages);
2666
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2667 static inline bool get_user_page_fast_only(unsigned long addr,
2668 unsigned int gup_flags, struct page **pagep)
2669 {
2670 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2671 }
2672 /*
2673 * per-process(per-mm_struct) statistics.
2674 */
get_mm_counter(struct mm_struct * mm,int member)2675 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2676 {
2677 return percpu_counter_read_positive(&mm->rss_stat[member]);
2678 }
2679
get_mm_counter_sum(struct mm_struct * mm,int member)2680 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2681 {
2682 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2683 }
2684
2685 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2686
add_mm_counter(struct mm_struct * mm,int member,long value)2687 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2688 {
2689 percpu_counter_add(&mm->rss_stat[member], value);
2690
2691 mm_trace_rss_stat(mm, member);
2692 }
2693
inc_mm_counter(struct mm_struct * mm,int member)2694 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2695 {
2696 percpu_counter_inc(&mm->rss_stat[member]);
2697
2698 mm_trace_rss_stat(mm, member);
2699 }
2700
dec_mm_counter(struct mm_struct * mm,int member)2701 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2702 {
2703 percpu_counter_dec(&mm->rss_stat[member]);
2704
2705 mm_trace_rss_stat(mm, member);
2706 }
2707
2708 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2709 static inline int mm_counter_file(struct folio *folio)
2710 {
2711 if (folio_test_swapbacked(folio))
2712 return MM_SHMEMPAGES;
2713 return MM_FILEPAGES;
2714 }
2715
mm_counter(struct folio * folio)2716 static inline int mm_counter(struct folio *folio)
2717 {
2718 if (folio_test_anon(folio))
2719 return MM_ANONPAGES;
2720 return mm_counter_file(folio);
2721 }
2722
get_mm_rss(struct mm_struct * mm)2723 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2724 {
2725 return get_mm_counter(mm, MM_FILEPAGES) +
2726 get_mm_counter(mm, MM_ANONPAGES) +
2727 get_mm_counter(mm, MM_SHMEMPAGES);
2728 }
2729
get_mm_hiwater_rss(struct mm_struct * mm)2730 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2731 {
2732 return max(mm->hiwater_rss, get_mm_rss(mm));
2733 }
2734
get_mm_hiwater_vm(struct mm_struct * mm)2735 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2736 {
2737 return max(mm->hiwater_vm, mm->total_vm);
2738 }
2739
update_hiwater_rss(struct mm_struct * mm)2740 static inline void update_hiwater_rss(struct mm_struct *mm)
2741 {
2742 unsigned long _rss = get_mm_rss(mm);
2743
2744 if (data_race(mm->hiwater_rss) < _rss)
2745 data_race(mm->hiwater_rss = _rss);
2746 }
2747
update_hiwater_vm(struct mm_struct * mm)2748 static inline void update_hiwater_vm(struct mm_struct *mm)
2749 {
2750 if (mm->hiwater_vm < mm->total_vm)
2751 mm->hiwater_vm = mm->total_vm;
2752 }
2753
reset_mm_hiwater_rss(struct mm_struct * mm)2754 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2755 {
2756 mm->hiwater_rss = get_mm_rss(mm);
2757 }
2758
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2759 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2760 struct mm_struct *mm)
2761 {
2762 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2763
2764 if (*maxrss < hiwater_rss)
2765 *maxrss = hiwater_rss;
2766 }
2767
2768 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2769 static inline int pte_special(pte_t pte)
2770 {
2771 return 0;
2772 }
2773
pte_mkspecial(pte_t pte)2774 static inline pte_t pte_mkspecial(pte_t pte)
2775 {
2776 return pte;
2777 }
2778 #endif
2779
2780 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2781 static inline bool pmd_special(pmd_t pmd)
2782 {
2783 return false;
2784 }
2785
pmd_mkspecial(pmd_t pmd)2786 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2787 {
2788 return pmd;
2789 }
2790 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2791
2792 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2793 static inline bool pud_special(pud_t pud)
2794 {
2795 return false;
2796 }
2797
pud_mkspecial(pud_t pud)2798 static inline pud_t pud_mkspecial(pud_t pud)
2799 {
2800 return pud;
2801 }
2802 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2803
2804 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2805 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2806 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2807 spinlock_t **ptl)
2808 {
2809 pte_t *ptep;
2810 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2811 return ptep;
2812 }
2813
2814 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2815 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2816 unsigned long address)
2817 {
2818 return 0;
2819 }
2820 #else
2821 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2822 #endif
2823
2824 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2825 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2826 unsigned long address)
2827 {
2828 return 0;
2829 }
mm_inc_nr_puds(struct mm_struct * mm)2830 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2831 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2832
2833 #else
2834 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2835
mm_inc_nr_puds(struct mm_struct * mm)2836 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2837 {
2838 if (mm_pud_folded(mm))
2839 return;
2840 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2841 }
2842
mm_dec_nr_puds(struct mm_struct * mm)2843 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2844 {
2845 if (mm_pud_folded(mm))
2846 return;
2847 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2848 }
2849 #endif
2850
2851 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2852 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2853 unsigned long address)
2854 {
2855 return 0;
2856 }
2857
mm_inc_nr_pmds(struct mm_struct * mm)2858 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2859 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2860
2861 #else
2862 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2863
mm_inc_nr_pmds(struct mm_struct * mm)2864 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2865 {
2866 if (mm_pmd_folded(mm))
2867 return;
2868 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2869 }
2870
mm_dec_nr_pmds(struct mm_struct * mm)2871 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2872 {
2873 if (mm_pmd_folded(mm))
2874 return;
2875 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2876 }
2877 #endif
2878
2879 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2880 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2881 {
2882 atomic_long_set(&mm->pgtables_bytes, 0);
2883 }
2884
mm_pgtables_bytes(const struct mm_struct * mm)2885 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2886 {
2887 return atomic_long_read(&mm->pgtables_bytes);
2888 }
2889
mm_inc_nr_ptes(struct mm_struct * mm)2890 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2891 {
2892 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2893 }
2894
mm_dec_nr_ptes(struct mm_struct * mm)2895 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2896 {
2897 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2898 }
2899 #else
2900
mm_pgtables_bytes_init(struct mm_struct * mm)2901 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2902 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2903 {
2904 return 0;
2905 }
2906
mm_inc_nr_ptes(struct mm_struct * mm)2907 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2908 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2909 #endif
2910
2911 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2912 int __pte_alloc_kernel(pmd_t *pmd);
2913
2914 #if defined(CONFIG_MMU)
2915
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2916 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2917 unsigned long address)
2918 {
2919 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2920 NULL : p4d_offset(pgd, address);
2921 }
2922
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2923 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2924 unsigned long address)
2925 {
2926 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2927 NULL : pud_offset(p4d, address);
2928 }
2929
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2930 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2931 {
2932 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2933 NULL: pmd_offset(pud, address);
2934 }
2935 #endif /* CONFIG_MMU */
2936
2937 enum pt_flags {
2938 PT_reserved = PG_reserved,
2939 /* High bits are used for zone/node/section */
2940 };
2941
virt_to_ptdesc(const void * x)2942 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2943 {
2944 return page_ptdesc(virt_to_page(x));
2945 }
2946
2947 /**
2948 * ptdesc_address - Virtual address of page table.
2949 * @pt: Page table descriptor.
2950 *
2951 * Return: The first byte of the page table described by @pt.
2952 */
ptdesc_address(const struct ptdesc * pt)2953 static inline void *ptdesc_address(const struct ptdesc *pt)
2954 {
2955 return folio_address(ptdesc_folio(pt));
2956 }
2957
pagetable_is_reserved(struct ptdesc * pt)2958 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2959 {
2960 return test_bit(PT_reserved, &pt->pt_flags.f);
2961 }
2962
2963 /**
2964 * pagetable_alloc - Allocate pagetables
2965 * @gfp: GFP flags
2966 * @order: desired pagetable order
2967 *
2968 * pagetable_alloc allocates memory for page tables as well as a page table
2969 * descriptor to describe that memory.
2970 *
2971 * Return: The ptdesc describing the allocated page tables.
2972 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2973 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2974 {
2975 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2976
2977 return page_ptdesc(page);
2978 }
2979 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2980
2981 /**
2982 * pagetable_free - Free pagetables
2983 * @pt: The page table descriptor
2984 *
2985 * pagetable_free frees the memory of all page tables described by a page
2986 * table descriptor and the memory for the descriptor itself.
2987 */
pagetable_free(struct ptdesc * pt)2988 static inline void pagetable_free(struct ptdesc *pt)
2989 {
2990 struct page *page = ptdesc_page(pt);
2991
2992 __free_pages(page, compound_order(page));
2993 }
2994
2995 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2996 #if ALLOC_SPLIT_PTLOCKS
2997 void __init ptlock_cache_init(void);
2998 bool ptlock_alloc(struct ptdesc *ptdesc);
2999 void ptlock_free(struct ptdesc *ptdesc);
3000
ptlock_ptr(struct ptdesc * ptdesc)3001 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3002 {
3003 return ptdesc->ptl;
3004 }
3005 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3006 static inline void ptlock_cache_init(void)
3007 {
3008 }
3009
ptlock_alloc(struct ptdesc * ptdesc)3010 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3011 {
3012 return true;
3013 }
3014
ptlock_free(struct ptdesc * ptdesc)3015 static inline void ptlock_free(struct ptdesc *ptdesc)
3016 {
3017 }
3018
ptlock_ptr(struct ptdesc * ptdesc)3019 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3020 {
3021 return &ptdesc->ptl;
3022 }
3023 #endif /* ALLOC_SPLIT_PTLOCKS */
3024
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3025 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3026 {
3027 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3028 }
3029
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3030 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3031 {
3032 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3033 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3034 return ptlock_ptr(virt_to_ptdesc(pte));
3035 }
3036
ptlock_init(struct ptdesc * ptdesc)3037 static inline bool ptlock_init(struct ptdesc *ptdesc)
3038 {
3039 /*
3040 * prep_new_page() initialize page->private (and therefore page->ptl)
3041 * with 0. Make sure nobody took it in use in between.
3042 *
3043 * It can happen if arch try to use slab for page table allocation:
3044 * slab code uses page->slab_cache, which share storage with page->ptl.
3045 */
3046 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3047 if (!ptlock_alloc(ptdesc))
3048 return false;
3049 spin_lock_init(ptlock_ptr(ptdesc));
3050 return true;
3051 }
3052
3053 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3054 /*
3055 * We use mm->page_table_lock to guard all pagetable pages of the mm.
3056 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3057 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3058 {
3059 return &mm->page_table_lock;
3060 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3061 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3062 {
3063 return &mm->page_table_lock;
3064 }
ptlock_cache_init(void)3065 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3066 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3067 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3068 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3069
ptdesc_nr_pages(const struct ptdesc * ptdesc)3070 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc)
3071 {
3072 return compound_nr(ptdesc_page(ptdesc));
3073 }
3074
__pagetable_ctor(struct ptdesc * ptdesc)3075 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3076 {
3077 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3078
3079 __SetPageTable(ptdesc_page(ptdesc));
3080 mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc));
3081 }
3082
pagetable_dtor(struct ptdesc * ptdesc)3083 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3084 {
3085 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3086
3087 ptlock_free(ptdesc);
3088 __ClearPageTable(ptdesc_page(ptdesc));
3089 mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc));
3090 }
3091
pagetable_dtor_free(struct ptdesc * ptdesc)3092 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3093 {
3094 pagetable_dtor(ptdesc);
3095 pagetable_free(ptdesc);
3096 }
3097
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3098 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3099 struct ptdesc *ptdesc)
3100 {
3101 if (mm != &init_mm && !ptlock_init(ptdesc))
3102 return false;
3103 __pagetable_ctor(ptdesc);
3104 return true;
3105 }
3106
3107 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3108 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3109 pmd_t *pmdvalp)
3110 {
3111 pte_t *pte;
3112
3113 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3114 return pte;
3115 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3116 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3117 {
3118 return __pte_offset_map(pmd, addr, NULL);
3119 }
3120
3121 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3122 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3123 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3124 unsigned long addr, spinlock_t **ptlp)
3125 {
3126 pte_t *pte;
3127
3128 __cond_lock(RCU, __cond_lock(*ptlp,
3129 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3130 return pte;
3131 }
3132
3133 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3134 unsigned long addr, spinlock_t **ptlp);
3135 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3136 unsigned long addr, pmd_t *pmdvalp,
3137 spinlock_t **ptlp);
3138
3139 #define pte_unmap_unlock(pte, ptl) do { \
3140 spin_unlock(ptl); \
3141 pte_unmap(pte); \
3142 } while (0)
3143
3144 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3145
3146 #define pte_alloc_map(mm, pmd, address) \
3147 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3148
3149 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3150 (pte_alloc(mm, pmd) ? \
3151 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3152
3153 #define pte_alloc_kernel(pmd, address) \
3154 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3155 NULL: pte_offset_kernel(pmd, address))
3156
3157 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3158
pmd_pgtable_page(pmd_t * pmd)3159 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3160 {
3161 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3162 return virt_to_page((void *)((unsigned long) pmd & mask));
3163 }
3164
pmd_ptdesc(pmd_t * pmd)3165 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3166 {
3167 return page_ptdesc(pmd_pgtable_page(pmd));
3168 }
3169
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3170 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3171 {
3172 return ptlock_ptr(pmd_ptdesc(pmd));
3173 }
3174
pmd_ptlock_init(struct ptdesc * ptdesc)3175 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3176 {
3177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3178 ptdesc->pmd_huge_pte = NULL;
3179 #endif
3180 return ptlock_init(ptdesc);
3181 }
3182
3183 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3184
3185 #else
3186
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3187 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3188 {
3189 return &mm->page_table_lock;
3190 }
3191
pmd_ptlock_init(struct ptdesc * ptdesc)3192 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3193
3194 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3195
3196 #endif
3197
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3198 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3199 {
3200 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3201 spin_lock(ptl);
3202 return ptl;
3203 }
3204
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3205 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3206 struct ptdesc *ptdesc)
3207 {
3208 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3209 return false;
3210 ptdesc_pmd_pts_init(ptdesc);
3211 __pagetable_ctor(ptdesc);
3212 return true;
3213 }
3214
3215 /*
3216 * No scalability reason to split PUD locks yet, but follow the same pattern
3217 * as the PMD locks to make it easier if we decide to. The VM should not be
3218 * considered ready to switch to split PUD locks yet; there may be places
3219 * which need to be converted from page_table_lock.
3220 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3221 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3222 {
3223 return &mm->page_table_lock;
3224 }
3225
pud_lock(struct mm_struct * mm,pud_t * pud)3226 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3227 {
3228 spinlock_t *ptl = pud_lockptr(mm, pud);
3229
3230 spin_lock(ptl);
3231 return ptl;
3232 }
3233
pagetable_pud_ctor(struct ptdesc * ptdesc)3234 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3235 {
3236 __pagetable_ctor(ptdesc);
3237 }
3238
pagetable_p4d_ctor(struct ptdesc * ptdesc)3239 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3240 {
3241 __pagetable_ctor(ptdesc);
3242 }
3243
pagetable_pgd_ctor(struct ptdesc * ptdesc)3244 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3245 {
3246 __pagetable_ctor(ptdesc);
3247 }
3248
3249 extern void __init pagecache_init(void);
3250 extern void free_initmem(void);
3251
3252 /*
3253 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3254 * into the buddy system. The freed pages will be poisoned with pattern
3255 * "poison" if it's within range [0, UCHAR_MAX].
3256 * Return pages freed into the buddy system.
3257 */
3258 extern unsigned long free_reserved_area(void *start, void *end,
3259 int poison, const char *s);
3260
3261 extern void adjust_managed_page_count(struct page *page, long count);
3262
3263 extern void reserve_bootmem_region(phys_addr_t start,
3264 phys_addr_t end, int nid);
3265
3266 /* Free the reserved page into the buddy system, so it gets managed. */
3267 void free_reserved_page(struct page *page);
3268
mark_page_reserved(struct page * page)3269 static inline void mark_page_reserved(struct page *page)
3270 {
3271 SetPageReserved(page);
3272 adjust_managed_page_count(page, -1);
3273 }
3274
free_reserved_ptdesc(struct ptdesc * pt)3275 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3276 {
3277 free_reserved_page(ptdesc_page(pt));
3278 }
3279
3280 /*
3281 * Default method to free all the __init memory into the buddy system.
3282 * The freed pages will be poisoned with pattern "poison" if it's within
3283 * range [0, UCHAR_MAX].
3284 * Return pages freed into the buddy system.
3285 */
free_initmem_default(int poison)3286 static inline unsigned long free_initmem_default(int poison)
3287 {
3288 extern char __init_begin[], __init_end[];
3289
3290 return free_reserved_area(&__init_begin, &__init_end,
3291 poison, "unused kernel image (initmem)");
3292 }
3293
get_num_physpages(void)3294 static inline unsigned long get_num_physpages(void)
3295 {
3296 int nid;
3297 unsigned long phys_pages = 0;
3298
3299 for_each_online_node(nid)
3300 phys_pages += node_present_pages(nid);
3301
3302 return phys_pages;
3303 }
3304
3305 /*
3306 * Using memblock node mappings, an architecture may initialise its
3307 * zones, allocate the backing mem_map and account for memory holes in an
3308 * architecture independent manner.
3309 *
3310 * An architecture is expected to register range of page frames backed by
3311 * physical memory with memblock_add[_node]() before calling
3312 * free_area_init() passing in the PFN each zone ends at. At a basic
3313 * usage, an architecture is expected to do something like
3314 *
3315 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3316 * max_highmem_pfn};
3317 * for_each_valid_physical_page_range()
3318 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3319 * free_area_init(max_zone_pfns);
3320 */
3321 void free_area_init(unsigned long *max_zone_pfn);
3322 unsigned long node_map_pfn_alignment(void);
3323 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3324 unsigned long end_pfn);
3325 extern void get_pfn_range_for_nid(unsigned int nid,
3326 unsigned long *start_pfn, unsigned long *end_pfn);
3327
3328 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3329 static inline int early_pfn_to_nid(unsigned long pfn)
3330 {
3331 return 0;
3332 }
3333 #else
3334 /* please see mm/page_alloc.c */
3335 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3336 #endif
3337
3338 extern void mem_init(void);
3339 extern void __init mmap_init(void);
3340
3341 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3342 static inline void show_mem(void)
3343 {
3344 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3345 }
3346 extern long si_mem_available(void);
3347 extern void si_meminfo(struct sysinfo * val);
3348 extern void si_meminfo_node(struct sysinfo *val, int nid);
3349
3350 extern __printf(3, 4)
3351 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3352
3353 extern void setup_per_cpu_pageset(void);
3354
3355 /* nommu.c */
3356 extern atomic_long_t mmap_pages_allocated;
3357 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3358
3359 /* interval_tree.c */
3360 void vma_interval_tree_insert(struct vm_area_struct *node,
3361 struct rb_root_cached *root);
3362 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3363 struct vm_area_struct *prev,
3364 struct rb_root_cached *root);
3365 void vma_interval_tree_remove(struct vm_area_struct *node,
3366 struct rb_root_cached *root);
3367 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3368 unsigned long start, unsigned long last);
3369 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3370 unsigned long start, unsigned long last);
3371
3372 #define vma_interval_tree_foreach(vma, root, start, last) \
3373 for (vma = vma_interval_tree_iter_first(root, start, last); \
3374 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3375
3376 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3377 struct rb_root_cached *root);
3378 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3379 struct rb_root_cached *root);
3380 struct anon_vma_chain *
3381 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3382 unsigned long start, unsigned long last);
3383 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3384 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3385 #ifdef CONFIG_DEBUG_VM_RB
3386 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3387 #endif
3388
3389 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3390 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3391 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3392
3393 /* mmap.c */
3394 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin);
3395 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3396 extern void exit_mmap(struct mm_struct *);
3397 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3398 unsigned long addr, bool write);
3399
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3400 static inline int check_data_rlimit(unsigned long rlim,
3401 unsigned long new,
3402 unsigned long start,
3403 unsigned long end_data,
3404 unsigned long start_data)
3405 {
3406 if (rlim < RLIM_INFINITY) {
3407 if (((new - start) + (end_data - start_data)) > rlim)
3408 return -ENOSPC;
3409 }
3410
3411 return 0;
3412 }
3413
3414 extern int mm_take_all_locks(struct mm_struct *mm);
3415 extern void mm_drop_all_locks(struct mm_struct *mm);
3416
3417 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3418 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3419 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3420 extern struct file *get_task_exe_file(struct task_struct *task);
3421
3422 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3423 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3424
3425 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3426 const struct vm_special_mapping *sm);
3427 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3428 unsigned long addr, unsigned long len,
3429 vm_flags_t vm_flags,
3430 const struct vm_special_mapping *spec);
3431
3432 unsigned long randomize_stack_top(unsigned long stack_top);
3433 unsigned long randomize_page(unsigned long start, unsigned long range);
3434
3435 unsigned long
3436 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3437 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3438
3439 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3440 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3441 unsigned long pgoff, unsigned long flags)
3442 {
3443 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3444 }
3445
3446 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3447 unsigned long len, unsigned long prot, unsigned long flags,
3448 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3449 struct list_head *uf);
3450 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3451 unsigned long start, size_t len, struct list_head *uf,
3452 bool unlock);
3453 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3454 struct mm_struct *mm, unsigned long start,
3455 unsigned long end, struct list_head *uf, bool unlock);
3456 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3457 struct list_head *uf);
3458 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3459
3460 #ifdef CONFIG_MMU
3461 extern int __mm_populate(unsigned long addr, unsigned long len,
3462 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3463 static inline void mm_populate(unsigned long addr, unsigned long len)
3464 {
3465 /* Ignore errors */
3466 (void) __mm_populate(addr, len, 1);
3467 }
3468 #else
mm_populate(unsigned long addr,unsigned long len)3469 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3470 #endif
3471
3472 /* This takes the mm semaphore itself */
3473 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3474 extern int vm_munmap(unsigned long, size_t);
3475 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3476 unsigned long, unsigned long,
3477 unsigned long, unsigned long);
3478
3479 struct vm_unmapped_area_info {
3480 #define VM_UNMAPPED_AREA_TOPDOWN 1
3481 unsigned long flags;
3482 unsigned long length;
3483 unsigned long low_limit;
3484 unsigned long high_limit;
3485 unsigned long align_mask;
3486 unsigned long align_offset;
3487 unsigned long start_gap;
3488 };
3489
3490 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3491
3492 /* truncate.c */
3493 extern void truncate_inode_pages(struct address_space *, loff_t);
3494 extern void truncate_inode_pages_range(struct address_space *,
3495 loff_t lstart, loff_t lend);
3496 extern void truncate_inode_pages_final(struct address_space *);
3497
3498 /* generic vm_area_ops exported for stackable file systems */
3499 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3500 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3501 pgoff_t start_pgoff, pgoff_t end_pgoff);
3502 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3503
3504 extern unsigned long stack_guard_gap;
3505 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3506 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3507 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3508
3509 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3510 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3511 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3512 struct vm_area_struct **pprev);
3513
3514 /*
3515 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3516 * NULL if none. Assume start_addr < end_addr.
3517 */
3518 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3519 unsigned long start_addr, unsigned long end_addr);
3520
3521 /**
3522 * vma_lookup() - Find a VMA at a specific address
3523 * @mm: The process address space.
3524 * @addr: The user address.
3525 *
3526 * Return: The vm_area_struct at the given address, %NULL otherwise.
3527 */
3528 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3529 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3530 {
3531 return mtree_load(&mm->mm_mt, addr);
3532 }
3533
stack_guard_start_gap(const struct vm_area_struct * vma)3534 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma)
3535 {
3536 if (vma->vm_flags & VM_GROWSDOWN)
3537 return stack_guard_gap;
3538
3539 /* See reasoning around the VM_SHADOW_STACK definition */
3540 if (vma->vm_flags & VM_SHADOW_STACK)
3541 return PAGE_SIZE;
3542
3543 return 0;
3544 }
3545
vm_start_gap(const struct vm_area_struct * vma)3546 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma)
3547 {
3548 unsigned long gap = stack_guard_start_gap(vma);
3549 unsigned long vm_start = vma->vm_start;
3550
3551 vm_start -= gap;
3552 if (vm_start > vma->vm_start)
3553 vm_start = 0;
3554 return vm_start;
3555 }
3556
vm_end_gap(const struct vm_area_struct * vma)3557 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma)
3558 {
3559 unsigned long vm_end = vma->vm_end;
3560
3561 if (vma->vm_flags & VM_GROWSUP) {
3562 vm_end += stack_guard_gap;
3563 if (vm_end < vma->vm_end)
3564 vm_end = -PAGE_SIZE;
3565 }
3566 return vm_end;
3567 }
3568
vma_pages(const struct vm_area_struct * vma)3569 static inline unsigned long vma_pages(const struct vm_area_struct *vma)
3570 {
3571 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3572 }
3573
3574 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3575 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3576 unsigned long vm_start, unsigned long vm_end)
3577 {
3578 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3579
3580 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3581 vma = NULL;
3582
3583 return vma;
3584 }
3585
range_in_vma(const struct vm_area_struct * vma,unsigned long start,unsigned long end)3586 static inline bool range_in_vma(const struct vm_area_struct *vma,
3587 unsigned long start, unsigned long end)
3588 {
3589 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3590 }
3591
3592 #ifdef CONFIG_MMU
3593 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3594 void vma_set_page_prot(struct vm_area_struct *vma);
3595 #else
vm_get_page_prot(vm_flags_t vm_flags)3596 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3597 {
3598 return __pgprot(0);
3599 }
vma_set_page_prot(struct vm_area_struct * vma)3600 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3601 {
3602 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3603 }
3604 #endif
3605
3606 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3607
3608 #ifdef CONFIG_NUMA_BALANCING
3609 unsigned long change_prot_numa(struct vm_area_struct *vma,
3610 unsigned long start, unsigned long end);
3611 #endif
3612
3613 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3614 unsigned long addr);
3615 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3616 unsigned long pfn, unsigned long size, pgprot_t);
3617 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3618 unsigned long pfn, unsigned long size, pgprot_t prot);
3619 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3620 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3621 struct page **pages, unsigned long *num);
3622 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3623 unsigned long num);
3624 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3625 unsigned long num);
3626 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3627 bool write);
3628 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3629 unsigned long pfn);
3630 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3631 unsigned long pfn, pgprot_t pgprot);
3632 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3633 unsigned long pfn);
3634 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3635 unsigned long addr, unsigned long pfn);
3636 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3637
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3638 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3639 unsigned long addr, struct page *page)
3640 {
3641 int err = vm_insert_page(vma, addr, page);
3642
3643 if (err == -ENOMEM)
3644 return VM_FAULT_OOM;
3645 if (err < 0 && err != -EBUSY)
3646 return VM_FAULT_SIGBUS;
3647
3648 return VM_FAULT_NOPAGE;
3649 }
3650
3651 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3652 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3653 unsigned long addr, unsigned long pfn,
3654 unsigned long size, pgprot_t prot)
3655 {
3656 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3657 }
3658 #endif
3659
vmf_error(int err)3660 static inline vm_fault_t vmf_error(int err)
3661 {
3662 if (err == -ENOMEM)
3663 return VM_FAULT_OOM;
3664 else if (err == -EHWPOISON)
3665 return VM_FAULT_HWPOISON;
3666 return VM_FAULT_SIGBUS;
3667 }
3668
3669 /*
3670 * Convert errno to return value for ->page_mkwrite() calls.
3671 *
3672 * This should eventually be merged with vmf_error() above, but will need a
3673 * careful audit of all vmf_error() callers.
3674 */
vmf_fs_error(int err)3675 static inline vm_fault_t vmf_fs_error(int err)
3676 {
3677 if (err == 0)
3678 return VM_FAULT_LOCKED;
3679 if (err == -EFAULT || err == -EAGAIN)
3680 return VM_FAULT_NOPAGE;
3681 if (err == -ENOMEM)
3682 return VM_FAULT_OOM;
3683 /* -ENOSPC, -EDQUOT, -EIO ... */
3684 return VM_FAULT_SIGBUS;
3685 }
3686
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3687 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3688 {
3689 if (vm_fault & VM_FAULT_OOM)
3690 return -ENOMEM;
3691 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3692 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3693 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3694 return -EFAULT;
3695 return 0;
3696 }
3697
3698 /*
3699 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3700 * a (NUMA hinting) fault is required.
3701 */
gup_can_follow_protnone(const struct vm_area_struct * vma,unsigned int flags)3702 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma,
3703 unsigned int flags)
3704 {
3705 /*
3706 * If callers don't want to honor NUMA hinting faults, no need to
3707 * determine if we would actually have to trigger a NUMA hinting fault.
3708 */
3709 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3710 return true;
3711
3712 /*
3713 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3714 *
3715 * Requiring a fault here even for inaccessible VMAs would mean that
3716 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3717 * refuses to process NUMA hinting faults in inaccessible VMAs.
3718 */
3719 return !vma_is_accessible(vma);
3720 }
3721
3722 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3723 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3724 unsigned long size, pte_fn_t fn, void *data);
3725 extern int apply_to_existing_page_range(struct mm_struct *mm,
3726 unsigned long address, unsigned long size,
3727 pte_fn_t fn, void *data);
3728
3729 #ifdef CONFIG_PAGE_POISONING
3730 extern void __kernel_poison_pages(struct page *page, int numpages);
3731 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3732 extern bool _page_poisoning_enabled_early;
3733 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3734 static inline bool page_poisoning_enabled(void)
3735 {
3736 return _page_poisoning_enabled_early;
3737 }
3738 /*
3739 * For use in fast paths after init_mem_debugging() has run, or when a
3740 * false negative result is not harmful when called too early.
3741 */
page_poisoning_enabled_static(void)3742 static inline bool page_poisoning_enabled_static(void)
3743 {
3744 return static_branch_unlikely(&_page_poisoning_enabled);
3745 }
kernel_poison_pages(struct page * page,int numpages)3746 static inline void kernel_poison_pages(struct page *page, int numpages)
3747 {
3748 if (page_poisoning_enabled_static())
3749 __kernel_poison_pages(page, numpages);
3750 }
kernel_unpoison_pages(struct page * page,int numpages)3751 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3752 {
3753 if (page_poisoning_enabled_static())
3754 __kernel_unpoison_pages(page, numpages);
3755 }
3756 #else
page_poisoning_enabled(void)3757 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3758 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3759 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3760 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3761 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3762 #endif
3763
3764 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3765 static inline bool want_init_on_alloc(gfp_t flags)
3766 {
3767 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3768 &init_on_alloc))
3769 return true;
3770 return flags & __GFP_ZERO;
3771 }
3772
3773 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3774 static inline bool want_init_on_free(void)
3775 {
3776 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3777 &init_on_free);
3778 }
3779
3780 extern bool _debug_pagealloc_enabled_early;
3781 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3782
debug_pagealloc_enabled(void)3783 static inline bool debug_pagealloc_enabled(void)
3784 {
3785 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3786 _debug_pagealloc_enabled_early;
3787 }
3788
3789 /*
3790 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3791 * or when a false negative result is not harmful when called too early.
3792 */
debug_pagealloc_enabled_static(void)3793 static inline bool debug_pagealloc_enabled_static(void)
3794 {
3795 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3796 return false;
3797
3798 return static_branch_unlikely(&_debug_pagealloc_enabled);
3799 }
3800
3801 /*
3802 * To support DEBUG_PAGEALLOC architecture must ensure that
3803 * __kernel_map_pages() never fails
3804 */
3805 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3806 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3807 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3808 {
3809 if (debug_pagealloc_enabled_static())
3810 __kernel_map_pages(page, numpages, 1);
3811 }
3812
debug_pagealloc_unmap_pages(struct page * page,int numpages)3813 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3814 {
3815 if (debug_pagealloc_enabled_static())
3816 __kernel_map_pages(page, numpages, 0);
3817 }
3818
3819 extern unsigned int _debug_guardpage_minorder;
3820 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3821
debug_guardpage_minorder(void)3822 static inline unsigned int debug_guardpage_minorder(void)
3823 {
3824 return _debug_guardpage_minorder;
3825 }
3826
debug_guardpage_enabled(void)3827 static inline bool debug_guardpage_enabled(void)
3828 {
3829 return static_branch_unlikely(&_debug_guardpage_enabled);
3830 }
3831
page_is_guard(const struct page * page)3832 static inline bool page_is_guard(const struct page *page)
3833 {
3834 if (!debug_guardpage_enabled())
3835 return false;
3836
3837 return PageGuard(page);
3838 }
3839
3840 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3841 static inline bool set_page_guard(struct zone *zone, struct page *page,
3842 unsigned int order)
3843 {
3844 if (!debug_guardpage_enabled())
3845 return false;
3846 return __set_page_guard(zone, page, order);
3847 }
3848
3849 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3850 static inline void clear_page_guard(struct zone *zone, struct page *page,
3851 unsigned int order)
3852 {
3853 if (!debug_guardpage_enabled())
3854 return;
3855 __clear_page_guard(zone, page, order);
3856 }
3857
3858 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3859 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3860 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3861 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3862 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(const struct page * page)3863 static inline bool page_is_guard(const struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3864 static inline bool set_page_guard(struct zone *zone, struct page *page,
3865 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3866 static inline void clear_page_guard(struct zone *zone, struct page *page,
3867 unsigned int order) {}
3868 #endif /* CONFIG_DEBUG_PAGEALLOC */
3869
3870 #ifdef __HAVE_ARCH_GATE_AREA
3871 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3872 extern int in_gate_area_no_mm(unsigned long addr);
3873 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3874 #else
get_gate_vma(struct mm_struct * mm)3875 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3876 {
3877 return NULL;
3878 }
in_gate_area_no_mm(unsigned long addr)3879 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3880 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3881 {
3882 return 0;
3883 }
3884 #endif /* __HAVE_ARCH_GATE_AREA */
3885
3886 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm);
3887
3888 void drop_slab(void);
3889
3890 #ifndef CONFIG_MMU
3891 #define randomize_va_space 0
3892 #else
3893 extern int randomize_va_space;
3894 #endif
3895
3896 const char * arch_vma_name(struct vm_area_struct *vma);
3897 #ifdef CONFIG_MMU
3898 void print_vma_addr(char *prefix, unsigned long rip);
3899 #else
print_vma_addr(char * prefix,unsigned long rip)3900 static inline void print_vma_addr(char *prefix, unsigned long rip)
3901 {
3902 }
3903 #endif
3904
3905 void *sparse_buffer_alloc(unsigned long size);
3906 unsigned long section_map_size(void);
3907 struct page * __populate_section_memmap(unsigned long pfn,
3908 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3909 struct dev_pagemap *pgmap);
3910 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3911 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3912 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3913 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3914 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3915 struct vmem_altmap *altmap, unsigned long ptpfn,
3916 unsigned long flags);
3917 void *vmemmap_alloc_block(unsigned long size, int node);
3918 struct vmem_altmap;
3919 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3920 struct vmem_altmap *altmap);
3921 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3922 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3923 unsigned long addr, unsigned long next);
3924 int vmemmap_check_pmd(pmd_t *pmd, int node,
3925 unsigned long addr, unsigned long next);
3926 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3927 int node, struct vmem_altmap *altmap);
3928 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3929 int node, struct vmem_altmap *altmap);
3930 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3931 struct vmem_altmap *altmap);
3932 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3933 unsigned long headsize);
3934 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3935 unsigned long headsize);
3936 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3937 unsigned long headsize);
3938 void vmemmap_populate_print_last(void);
3939 #ifdef CONFIG_MEMORY_HOTPLUG
3940 void vmemmap_free(unsigned long start, unsigned long end,
3941 struct vmem_altmap *altmap);
3942 #endif
3943
3944 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(const struct vmem_altmap * altmap)3945 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
3946 {
3947 /* number of pfns from base where pfn_to_page() is valid */
3948 if (altmap)
3949 return altmap->reserve + altmap->free;
3950 return 0;
3951 }
3952
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3953 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3954 unsigned long nr_pfns)
3955 {
3956 altmap->alloc -= nr_pfns;
3957 }
3958 #else
vmem_altmap_offset(const struct vmem_altmap * altmap)3959 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
3960 {
3961 return 0;
3962 }
3963
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3964 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3965 unsigned long nr_pfns)
3966 {
3967 }
3968 #endif
3969
3970 #define VMEMMAP_RESERVE_NR 2
3971 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3972 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3973 struct dev_pagemap *pgmap)
3974 {
3975 unsigned long nr_pages;
3976 unsigned long nr_vmemmap_pages;
3977
3978 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3979 return false;
3980
3981 nr_pages = pgmap_vmemmap_nr(pgmap);
3982 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3983 /*
3984 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3985 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3986 */
3987 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3988 }
3989 /*
3990 * If we don't have an architecture override, use the generic rule
3991 */
3992 #ifndef vmemmap_can_optimize
3993 #define vmemmap_can_optimize __vmemmap_can_optimize
3994 #endif
3995
3996 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3997 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3998 struct dev_pagemap *pgmap)
3999 {
4000 return false;
4001 }
4002 #endif
4003
4004 enum mf_flags {
4005 MF_COUNT_INCREASED = 1 << 0,
4006 MF_ACTION_REQUIRED = 1 << 1,
4007 MF_MUST_KILL = 1 << 2,
4008 MF_SOFT_OFFLINE = 1 << 3,
4009 MF_UNPOISON = 1 << 4,
4010 MF_SW_SIMULATED = 1 << 5,
4011 MF_NO_RETRY = 1 << 6,
4012 MF_MEM_PRE_REMOVE = 1 << 7,
4013 };
4014 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4015 unsigned long count, int mf_flags);
4016 extern int memory_failure(unsigned long pfn, int flags);
4017 extern int unpoison_memory(unsigned long pfn);
4018 extern atomic_long_t num_poisoned_pages __read_mostly;
4019 extern int soft_offline_page(unsigned long pfn, int flags);
4020 #ifdef CONFIG_MEMORY_FAILURE
4021 /*
4022 * Sysfs entries for memory failure handling statistics.
4023 */
4024 extern const struct attribute_group memory_failure_attr_group;
4025 extern void memory_failure_queue(unsigned long pfn, int flags);
4026 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4027 bool *migratable_cleared);
4028 void num_poisoned_pages_inc(unsigned long pfn);
4029 void num_poisoned_pages_sub(unsigned long pfn, long i);
4030 #else
memory_failure_queue(unsigned long pfn,int flags)4031 static inline void memory_failure_queue(unsigned long pfn, int flags)
4032 {
4033 }
4034
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4035 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4036 bool *migratable_cleared)
4037 {
4038 return 0;
4039 }
4040
num_poisoned_pages_inc(unsigned long pfn)4041 static inline void num_poisoned_pages_inc(unsigned long pfn)
4042 {
4043 }
4044
num_poisoned_pages_sub(unsigned long pfn,long i)4045 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4046 {
4047 }
4048 #endif
4049
4050 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4051 extern void memblk_nr_poison_inc(unsigned long pfn);
4052 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4053 #else
memblk_nr_poison_inc(unsigned long pfn)4054 static inline void memblk_nr_poison_inc(unsigned long pfn)
4055 {
4056 }
4057
memblk_nr_poison_sub(unsigned long pfn,long i)4058 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4059 {
4060 }
4061 #endif
4062
4063 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4064 static inline int arch_memory_failure(unsigned long pfn, int flags)
4065 {
4066 return -ENXIO;
4067 }
4068 #endif
4069
4070 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4071 static inline bool arch_is_platform_page(u64 paddr)
4072 {
4073 return false;
4074 }
4075 #endif
4076
4077 /*
4078 * Error handlers for various types of pages.
4079 */
4080 enum mf_result {
4081 MF_IGNORED, /* Error: cannot be handled */
4082 MF_FAILED, /* Error: handling failed */
4083 MF_DELAYED, /* Will be handled later */
4084 MF_RECOVERED, /* Successfully recovered */
4085 };
4086
4087 enum mf_action_page_type {
4088 MF_MSG_KERNEL,
4089 MF_MSG_KERNEL_HIGH_ORDER,
4090 MF_MSG_DIFFERENT_COMPOUND,
4091 MF_MSG_HUGE,
4092 MF_MSG_FREE_HUGE,
4093 MF_MSG_GET_HWPOISON,
4094 MF_MSG_UNMAP_FAILED,
4095 MF_MSG_DIRTY_SWAPCACHE,
4096 MF_MSG_CLEAN_SWAPCACHE,
4097 MF_MSG_DIRTY_MLOCKED_LRU,
4098 MF_MSG_CLEAN_MLOCKED_LRU,
4099 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4100 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4101 MF_MSG_DIRTY_LRU,
4102 MF_MSG_CLEAN_LRU,
4103 MF_MSG_TRUNCATED_LRU,
4104 MF_MSG_BUDDY,
4105 MF_MSG_DAX,
4106 MF_MSG_UNSPLIT_THP,
4107 MF_MSG_ALREADY_POISONED,
4108 MF_MSG_UNKNOWN,
4109 };
4110
4111 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4112 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4113 int copy_user_large_folio(struct folio *dst, struct folio *src,
4114 unsigned long addr_hint,
4115 struct vm_area_struct *vma);
4116 long copy_folio_from_user(struct folio *dst_folio,
4117 const void __user *usr_src,
4118 bool allow_pagefault);
4119
4120 /**
4121 * vma_is_special_huge - Are transhuge page-table entries considered special?
4122 * @vma: Pointer to the struct vm_area_struct to consider
4123 *
4124 * Whether transhuge page-table entries are considered "special" following
4125 * the definition in vm_normal_page().
4126 *
4127 * Return: true if transhuge page-table entries should be considered special,
4128 * false otherwise.
4129 */
vma_is_special_huge(const struct vm_area_struct * vma)4130 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4131 {
4132 return vma_is_dax(vma) || (vma->vm_file &&
4133 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4134 }
4135
4136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4137
4138 #if MAX_NUMNODES > 1
4139 void __init setup_nr_node_ids(void);
4140 #else
setup_nr_node_ids(void)4141 static inline void setup_nr_node_ids(void) {}
4142 #endif
4143
4144 extern int memcmp_pages(struct page *page1, struct page *page2);
4145
pages_identical(struct page * page1,struct page * page2)4146 static inline int pages_identical(struct page *page1, struct page *page2)
4147 {
4148 return !memcmp_pages(page1, page2);
4149 }
4150
4151 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4152 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4153 pgoff_t first_index, pgoff_t nr,
4154 pgoff_t bitmap_pgoff,
4155 unsigned long *bitmap,
4156 pgoff_t *start,
4157 pgoff_t *end);
4158
4159 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4160 pgoff_t first_index, pgoff_t nr);
4161 #endif
4162
4163 #ifdef CONFIG_ANON_VMA_NAME
4164 int set_anon_vma_name(unsigned long addr, unsigned long size,
4165 const char __user *uname);
4166 #else
4167 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4168 int set_anon_vma_name(unsigned long addr, unsigned long size,
4169 const char __user *uname)
4170 {
4171 return -EINVAL;
4172 }
4173 #endif
4174
4175 #ifdef CONFIG_UNACCEPTED_MEMORY
4176
4177 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4178 void accept_memory(phys_addr_t start, unsigned long size);
4179
4180 #else
4181
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4182 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4183 unsigned long size)
4184 {
4185 return false;
4186 }
4187
accept_memory(phys_addr_t start,unsigned long size)4188 static inline void accept_memory(phys_addr_t start, unsigned long size)
4189 {
4190 }
4191
4192 #endif
4193
pfn_is_unaccepted_memory(unsigned long pfn)4194 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4195 {
4196 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4197 }
4198
4199 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4200 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4201
4202 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4203 int reserve_mem_release_by_name(const char *name);
4204
4205 #ifdef CONFIG_64BIT
4206 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4207 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4208 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4209 {
4210 /* noop on 32 bit */
4211 return 0;
4212 }
4213 #endif
4214
4215 /*
4216 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4217 * be zeroed or not.
4218 */
user_alloc_needs_zeroing(void)4219 static inline bool user_alloc_needs_zeroing(void)
4220 {
4221 /*
4222 * for user folios, arch with cache aliasing requires cache flush and
4223 * arc changes folio->flags to make icache coherent with dcache, so
4224 * always return false to make caller use
4225 * clear_user_page()/clear_user_highpage().
4226 */
4227 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4228 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4229 &init_on_alloc);
4230 }
4231
4232 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4233 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4234 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4235
4236
4237 /*
4238 * mseal of userspace process's system mappings.
4239 */
4240 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4241 #define VM_SEALED_SYSMAP VM_SEALED
4242 #else
4243 #define VM_SEALED_SYSMAP VM_NONE
4244 #endif
4245
4246 /*
4247 * DMA mapping IDs for page_pool
4248 *
4249 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4250 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4251 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4252 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4253 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4254 * mistake a valid kernel pointer with any of the values we write into this
4255 * field.
4256 *
4257 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4258 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4259 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4260 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4261 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4262 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4263 * VMSPLIT setting.
4264 *
4265 * Altogether, this means that the number of bits available is constrained by
4266 * the size of an unsigned long (at the upper end, subtracting two bits per the
4267 * above), and the definition of PP_SIGNATURE (with or without
4268 * POISON_POINTER_DELTA).
4269 */
4270 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4271 #if POISON_POINTER_DELTA > 0
4272 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4273 * index to not overlap with that if set
4274 */
4275 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4276 #else
4277 /* Always leave out the topmost two; see above. */
4278 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4279 #endif
4280
4281 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4282 PP_DMA_INDEX_SHIFT)
4283
4284 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4285 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4286 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4287 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4288 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4289 */
4290 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4291
4292 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4293 static inline bool page_pool_page_is_pp(const struct page *page)
4294 {
4295 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4296 }
4297 #else
page_pool_page_is_pp(const struct page * page)4298 static inline bool page_pool_page_is_pp(const struct page *page)
4299 {
4300 return false;
4301 }
4302 #endif
4303
4304 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4305 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4306 #define PAGE_SNAPSHOT_PG_IDLE (1 << 2)
4307
4308 struct page_snapshot {
4309 struct folio folio_snapshot;
4310 struct page page_snapshot;
4311 unsigned long pfn;
4312 unsigned long idx;
4313 unsigned long flags;
4314 };
4315
snapshot_page_is_faithful(const struct page_snapshot * ps)4316 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4317 {
4318 return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4319 }
4320
4321 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4322
4323 #endif /* _LINUX_MM_H */
4324