1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/userfaultfd.c
4 *
5 * Copyright (C) 2015 Red Hat, Inc.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/hugetlb.h>
17 #include <linux/shmem_fs.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include "internal.h"
21 #include "swap.h"
22
23 static __always_inline
validate_dst_vma(struct vm_area_struct * dst_vma,unsigned long dst_end)24 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end)
25 {
26 /* Make sure that the dst range is fully within dst_vma. */
27 if (dst_end > dst_vma->vm_end)
28 return false;
29
30 /*
31 * Check the vma is registered in uffd, this is required to
32 * enforce the VM_MAYWRITE check done at uffd registration
33 * time.
34 */
35 if (!dst_vma->vm_userfaultfd_ctx.ctx)
36 return false;
37
38 return true;
39 }
40
41 static __always_inline
find_vma_and_prepare_anon(struct mm_struct * mm,unsigned long addr)42 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm,
43 unsigned long addr)
44 {
45 struct vm_area_struct *vma;
46
47 mmap_assert_locked(mm);
48 vma = vma_lookup(mm, addr);
49 if (!vma)
50 vma = ERR_PTR(-ENOENT);
51 else if (!(vma->vm_flags & VM_SHARED) &&
52 unlikely(anon_vma_prepare(vma)))
53 vma = ERR_PTR(-ENOMEM);
54
55 return vma;
56 }
57
58 #ifdef CONFIG_PER_VMA_LOCK
59 /*
60 * uffd_lock_vma() - Lookup and lock vma corresponding to @address.
61 * @mm: mm to search vma in.
62 * @address: address that the vma should contain.
63 *
64 * Should be called without holding mmap_lock.
65 *
66 * Return: A locked vma containing @address, -ENOENT if no vma is found, or
67 * -ENOMEM if anon_vma couldn't be allocated.
68 */
uffd_lock_vma(struct mm_struct * mm,unsigned long address)69 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm,
70 unsigned long address)
71 {
72 struct vm_area_struct *vma;
73
74 vma = lock_vma_under_rcu(mm, address);
75 if (vma) {
76 /*
77 * We know we're going to need to use anon_vma, so check
78 * that early.
79 */
80 if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma))
81 vma_end_read(vma);
82 else
83 return vma;
84 }
85
86 mmap_read_lock(mm);
87 vma = find_vma_and_prepare_anon(mm, address);
88 if (!IS_ERR(vma)) {
89 /*
90 * We cannot use vma_start_read() as it may fail due to
91 * false locked (see comment in vma_start_read()). We
92 * can avoid that by directly locking vm_lock under
93 * mmap_lock, which guarantees that nobody can lock the
94 * vma for write (vma_start_write()) under us.
95 */
96 down_read(&vma->vm_lock->lock);
97 }
98
99 mmap_read_unlock(mm);
100 return vma;
101 }
102
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)103 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
104 unsigned long dst_start,
105 unsigned long len)
106 {
107 struct vm_area_struct *dst_vma;
108
109 dst_vma = uffd_lock_vma(dst_mm, dst_start);
110 if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len))
111 return dst_vma;
112
113 vma_end_read(dst_vma);
114 return ERR_PTR(-ENOENT);
115 }
116
uffd_mfill_unlock(struct vm_area_struct * vma)117 static void uffd_mfill_unlock(struct vm_area_struct *vma)
118 {
119 vma_end_read(vma);
120 }
121
122 #else
123
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)124 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
125 unsigned long dst_start,
126 unsigned long len)
127 {
128 struct vm_area_struct *dst_vma;
129
130 mmap_read_lock(dst_mm);
131 dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start);
132 if (IS_ERR(dst_vma))
133 goto out_unlock;
134
135 if (validate_dst_vma(dst_vma, dst_start + len))
136 return dst_vma;
137
138 dst_vma = ERR_PTR(-ENOENT);
139 out_unlock:
140 mmap_read_unlock(dst_mm);
141 return dst_vma;
142 }
143
uffd_mfill_unlock(struct vm_area_struct * vma)144 static void uffd_mfill_unlock(struct vm_area_struct *vma)
145 {
146 mmap_read_unlock(vma->vm_mm);
147 }
148 #endif
149
150 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */
mfill_file_over_size(struct vm_area_struct * dst_vma,unsigned long dst_addr)151 static bool mfill_file_over_size(struct vm_area_struct *dst_vma,
152 unsigned long dst_addr)
153 {
154 struct inode *inode;
155 pgoff_t offset, max_off;
156
157 if (!dst_vma->vm_file)
158 return false;
159
160 inode = dst_vma->vm_file->f_inode;
161 offset = linear_page_index(dst_vma, dst_addr);
162 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
163 return offset >= max_off;
164 }
165
166 /*
167 * Install PTEs, to map dst_addr (within dst_vma) to page.
168 *
169 * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
170 * and anon, and for both shared and private VMAs.
171 */
mfill_atomic_install_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,struct page * page,bool newly_allocated,uffd_flags_t flags)172 int mfill_atomic_install_pte(pmd_t *dst_pmd,
173 struct vm_area_struct *dst_vma,
174 unsigned long dst_addr, struct page *page,
175 bool newly_allocated, uffd_flags_t flags)
176 {
177 int ret;
178 struct mm_struct *dst_mm = dst_vma->vm_mm;
179 pte_t _dst_pte, *dst_pte;
180 bool writable = dst_vma->vm_flags & VM_WRITE;
181 bool vm_shared = dst_vma->vm_flags & VM_SHARED;
182 spinlock_t *ptl;
183 struct folio *folio = page_folio(page);
184 bool page_in_cache = folio_mapping(folio);
185
186 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
187 _dst_pte = pte_mkdirty(_dst_pte);
188 if (page_in_cache && !vm_shared)
189 writable = false;
190 if (writable)
191 _dst_pte = pte_mkwrite(_dst_pte, dst_vma);
192 if (flags & MFILL_ATOMIC_WP)
193 _dst_pte = pte_mkuffd_wp(_dst_pte);
194
195 ret = -EAGAIN;
196 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
197 if (!dst_pte)
198 goto out;
199
200 if (mfill_file_over_size(dst_vma, dst_addr)) {
201 ret = -EFAULT;
202 goto out_unlock;
203 }
204
205 ret = -EEXIST;
206 /*
207 * We allow to overwrite a pte marker: consider when both MISSING|WP
208 * registered, we firstly wr-protect a none pte which has no page cache
209 * page backing it, then access the page.
210 */
211 if (!pte_none_mostly(ptep_get(dst_pte)))
212 goto out_unlock;
213
214 if (page_in_cache) {
215 /* Usually, cache pages are already added to LRU */
216 if (newly_allocated)
217 folio_add_lru(folio);
218 folio_add_file_rmap_pte(folio, page, dst_vma);
219 } else {
220 folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE);
221 folio_add_lru_vma(folio, dst_vma);
222 }
223
224 /*
225 * Must happen after rmap, as mm_counter() checks mapping (via
226 * PageAnon()), which is set by __page_set_anon_rmap().
227 */
228 inc_mm_counter(dst_mm, mm_counter(folio));
229
230 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
231
232 /* No need to invalidate - it was non-present before */
233 update_mmu_cache(dst_vma, dst_addr, dst_pte);
234 ret = 0;
235 out_unlock:
236 pte_unmap_unlock(dst_pte, ptl);
237 out:
238 return ret;
239 }
240
mfill_atomic_pte_copy(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)241 static int mfill_atomic_pte_copy(pmd_t *dst_pmd,
242 struct vm_area_struct *dst_vma,
243 unsigned long dst_addr,
244 unsigned long src_addr,
245 uffd_flags_t flags,
246 struct folio **foliop)
247 {
248 void *kaddr;
249 int ret;
250 struct folio *folio;
251
252 if (!*foliop) {
253 ret = -ENOMEM;
254 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma,
255 dst_addr);
256 if (!folio)
257 goto out;
258
259 kaddr = kmap_local_folio(folio, 0);
260 /*
261 * The read mmap_lock is held here. Despite the
262 * mmap_lock being read recursive a deadlock is still
263 * possible if a writer has taken a lock. For example:
264 *
265 * process A thread 1 takes read lock on own mmap_lock
266 * process A thread 2 calls mmap, blocks taking write lock
267 * process B thread 1 takes page fault, read lock on own mmap lock
268 * process B thread 2 calls mmap, blocks taking write lock
269 * process A thread 1 blocks taking read lock on process B
270 * process B thread 1 blocks taking read lock on process A
271 *
272 * Disable page faults to prevent potential deadlock
273 * and retry the copy outside the mmap_lock.
274 */
275 pagefault_disable();
276 ret = copy_from_user(kaddr, (const void __user *) src_addr,
277 PAGE_SIZE);
278 pagefault_enable();
279 kunmap_local(kaddr);
280
281 /* fallback to copy_from_user outside mmap_lock */
282 if (unlikely(ret)) {
283 ret = -ENOENT;
284 *foliop = folio;
285 /* don't free the page */
286 goto out;
287 }
288
289 flush_dcache_folio(folio);
290 } else {
291 folio = *foliop;
292 *foliop = NULL;
293 }
294
295 /*
296 * The memory barrier inside __folio_mark_uptodate makes sure that
297 * preceding stores to the page contents become visible before
298 * the set_pte_at() write.
299 */
300 __folio_mark_uptodate(folio);
301
302 ret = -ENOMEM;
303 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
304 goto out_release;
305
306 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
307 &folio->page, true, flags);
308 if (ret)
309 goto out_release;
310 out:
311 return ret;
312 out_release:
313 folio_put(folio);
314 goto out;
315 }
316
mfill_atomic_pte_zeroed_folio(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)317 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd,
318 struct vm_area_struct *dst_vma,
319 unsigned long dst_addr)
320 {
321 struct folio *folio;
322 int ret = -ENOMEM;
323
324 folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr);
325 if (!folio)
326 return ret;
327
328 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
329 goto out_put;
330
331 /*
332 * The memory barrier inside __folio_mark_uptodate makes sure that
333 * zeroing out the folio become visible before mapping the page
334 * using set_pte_at(). See do_anonymous_page().
335 */
336 __folio_mark_uptodate(folio);
337
338 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
339 &folio->page, true, 0);
340 if (ret)
341 goto out_put;
342
343 return 0;
344 out_put:
345 folio_put(folio);
346 return ret;
347 }
348
mfill_atomic_pte_zeropage(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)349 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd,
350 struct vm_area_struct *dst_vma,
351 unsigned long dst_addr)
352 {
353 pte_t _dst_pte, *dst_pte;
354 spinlock_t *ptl;
355 int ret;
356
357 if (mm_forbids_zeropage(dst_vma->vm_mm))
358 return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr);
359
360 _dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
361 dst_vma->vm_page_prot));
362 ret = -EAGAIN;
363 dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl);
364 if (!dst_pte)
365 goto out;
366 if (mfill_file_over_size(dst_vma, dst_addr)) {
367 ret = -EFAULT;
368 goto out_unlock;
369 }
370 ret = -EEXIST;
371 if (!pte_none(ptep_get(dst_pte)))
372 goto out_unlock;
373 set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte);
374 /* No need to invalidate - it was non-present before */
375 update_mmu_cache(dst_vma, dst_addr, dst_pte);
376 ret = 0;
377 out_unlock:
378 pte_unmap_unlock(dst_pte, ptl);
379 out:
380 return ret;
381 }
382
383 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
mfill_atomic_pte_continue(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)384 static int mfill_atomic_pte_continue(pmd_t *dst_pmd,
385 struct vm_area_struct *dst_vma,
386 unsigned long dst_addr,
387 uffd_flags_t flags)
388 {
389 struct inode *inode = file_inode(dst_vma->vm_file);
390 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
391 struct folio *folio;
392 struct page *page;
393 int ret;
394
395 ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC);
396 /* Our caller expects us to return -EFAULT if we failed to find folio */
397 if (ret == -ENOENT)
398 ret = -EFAULT;
399 if (ret)
400 goto out;
401 if (!folio) {
402 ret = -EFAULT;
403 goto out;
404 }
405
406 page = folio_file_page(folio, pgoff);
407 if (PageHWPoison(page)) {
408 ret = -EIO;
409 goto out_release;
410 }
411
412 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
413 page, false, flags);
414 if (ret)
415 goto out_release;
416
417 folio_unlock(folio);
418 ret = 0;
419 out:
420 return ret;
421 out_release:
422 folio_unlock(folio);
423 folio_put(folio);
424 goto out;
425 }
426
427 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */
mfill_atomic_pte_poison(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)428 static int mfill_atomic_pte_poison(pmd_t *dst_pmd,
429 struct vm_area_struct *dst_vma,
430 unsigned long dst_addr,
431 uffd_flags_t flags)
432 {
433 int ret;
434 struct mm_struct *dst_mm = dst_vma->vm_mm;
435 pte_t _dst_pte, *dst_pte;
436 spinlock_t *ptl;
437
438 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
439 ret = -EAGAIN;
440 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
441 if (!dst_pte)
442 goto out;
443
444 if (mfill_file_over_size(dst_vma, dst_addr)) {
445 ret = -EFAULT;
446 goto out_unlock;
447 }
448
449 ret = -EEXIST;
450 /* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */
451 if (!pte_none(ptep_get(dst_pte)))
452 goto out_unlock;
453
454 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
455
456 /* No need to invalidate - it was non-present before */
457 update_mmu_cache(dst_vma, dst_addr, dst_pte);
458 ret = 0;
459 out_unlock:
460 pte_unmap_unlock(dst_pte, ptl);
461 out:
462 return ret;
463 }
464
mm_alloc_pmd(struct mm_struct * mm,unsigned long address)465 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
466 {
467 pgd_t *pgd;
468 p4d_t *p4d;
469 pud_t *pud;
470
471 pgd = pgd_offset(mm, address);
472 p4d = p4d_alloc(mm, pgd, address);
473 if (!p4d)
474 return NULL;
475 pud = pud_alloc(mm, p4d, address);
476 if (!pud)
477 return NULL;
478 /*
479 * Note that we didn't run this because the pmd was
480 * missing, the *pmd may be already established and in
481 * turn it may also be a trans_huge_pmd.
482 */
483 return pmd_alloc(mm, pud, address);
484 }
485
486 #ifdef CONFIG_HUGETLB_PAGE
487 /*
488 * mfill_atomic processing for HUGETLB vmas. Note that this routine is
489 * called with either vma-lock or mmap_lock held, it will release the lock
490 * before returning.
491 */
mfill_atomic_hugetlb(struct userfaultfd_ctx * ctx,struct vm_area_struct * dst_vma,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)492 static __always_inline ssize_t mfill_atomic_hugetlb(
493 struct userfaultfd_ctx *ctx,
494 struct vm_area_struct *dst_vma,
495 unsigned long dst_start,
496 unsigned long src_start,
497 unsigned long len,
498 uffd_flags_t flags)
499 {
500 struct mm_struct *dst_mm = dst_vma->vm_mm;
501 ssize_t err;
502 pte_t *dst_pte;
503 unsigned long src_addr, dst_addr;
504 long copied;
505 struct folio *folio;
506 unsigned long vma_hpagesize;
507 pgoff_t idx;
508 u32 hash;
509 struct address_space *mapping;
510
511 /*
512 * There is no default zero huge page for all huge page sizes as
513 * supported by hugetlb. A PMD_SIZE huge pages may exist as used
514 * by THP. Since we can not reliably insert a zero page, this
515 * feature is not supported.
516 */
517 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) {
518 up_read(&ctx->map_changing_lock);
519 uffd_mfill_unlock(dst_vma);
520 return -EINVAL;
521 }
522
523 src_addr = src_start;
524 dst_addr = dst_start;
525 copied = 0;
526 folio = NULL;
527 vma_hpagesize = vma_kernel_pagesize(dst_vma);
528
529 /*
530 * Validate alignment based on huge page size
531 */
532 err = -EINVAL;
533 if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
534 goto out_unlock;
535
536 retry:
537 /*
538 * On routine entry dst_vma is set. If we had to drop mmap_lock and
539 * retry, dst_vma will be set to NULL and we must lookup again.
540 */
541 if (!dst_vma) {
542 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
543 if (IS_ERR(dst_vma)) {
544 err = PTR_ERR(dst_vma);
545 goto out;
546 }
547
548 err = -ENOENT;
549 if (!is_vm_hugetlb_page(dst_vma))
550 goto out_unlock_vma;
551
552 err = -EINVAL;
553 if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
554 goto out_unlock_vma;
555
556 /*
557 * If memory mappings are changing because of non-cooperative
558 * operation (e.g. mremap) running in parallel, bail out and
559 * request the user to retry later
560 */
561 down_read(&ctx->map_changing_lock);
562 err = -EAGAIN;
563 if (atomic_read(&ctx->mmap_changing))
564 goto out_unlock;
565 }
566
567 while (src_addr < src_start + len) {
568 BUG_ON(dst_addr >= dst_start + len);
569
570 /*
571 * Serialize via vma_lock and hugetlb_fault_mutex.
572 * vma_lock ensures the dst_pte remains valid even
573 * in the case of shared pmds. fault mutex prevents
574 * races with other faulting threads.
575 */
576 idx = linear_page_index(dst_vma, dst_addr);
577 mapping = dst_vma->vm_file->f_mapping;
578 hash = hugetlb_fault_mutex_hash(mapping, idx);
579 mutex_lock(&hugetlb_fault_mutex_table[hash]);
580 hugetlb_vma_lock_read(dst_vma);
581
582 err = -ENOMEM;
583 dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
584 if (!dst_pte) {
585 hugetlb_vma_unlock_read(dst_vma);
586 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
587 goto out_unlock;
588 }
589
590 if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) &&
591 !huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
592 err = -EEXIST;
593 hugetlb_vma_unlock_read(dst_vma);
594 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
595 goto out_unlock;
596 }
597
598 err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr,
599 src_addr, flags, &folio);
600
601 hugetlb_vma_unlock_read(dst_vma);
602 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
603
604 cond_resched();
605
606 if (unlikely(err == -ENOENT)) {
607 up_read(&ctx->map_changing_lock);
608 uffd_mfill_unlock(dst_vma);
609 BUG_ON(!folio);
610
611 err = copy_folio_from_user(folio,
612 (const void __user *)src_addr, true);
613 if (unlikely(err)) {
614 err = -EFAULT;
615 goto out;
616 }
617
618 dst_vma = NULL;
619 goto retry;
620 } else
621 BUG_ON(folio);
622
623 if (!err) {
624 dst_addr += vma_hpagesize;
625 src_addr += vma_hpagesize;
626 copied += vma_hpagesize;
627
628 if (fatal_signal_pending(current))
629 err = -EINTR;
630 }
631 if (err)
632 break;
633 }
634
635 out_unlock:
636 up_read(&ctx->map_changing_lock);
637 out_unlock_vma:
638 uffd_mfill_unlock(dst_vma);
639 out:
640 if (folio)
641 folio_put(folio);
642 BUG_ON(copied < 0);
643 BUG_ON(err > 0);
644 BUG_ON(!copied && !err);
645 return copied ? copied : err;
646 }
647 #else /* !CONFIG_HUGETLB_PAGE */
648 /* fail at build time if gcc attempts to use this */
649 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx,
650 struct vm_area_struct *dst_vma,
651 unsigned long dst_start,
652 unsigned long src_start,
653 unsigned long len,
654 uffd_flags_t flags);
655 #endif /* CONFIG_HUGETLB_PAGE */
656
mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)657 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd,
658 struct vm_area_struct *dst_vma,
659 unsigned long dst_addr,
660 unsigned long src_addr,
661 uffd_flags_t flags,
662 struct folio **foliop)
663 {
664 ssize_t err;
665
666 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
667 return mfill_atomic_pte_continue(dst_pmd, dst_vma,
668 dst_addr, flags);
669 } else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
670 return mfill_atomic_pte_poison(dst_pmd, dst_vma,
671 dst_addr, flags);
672 }
673
674 /*
675 * The normal page fault path for a shmem will invoke the
676 * fault, fill the hole in the file and COW it right away. The
677 * result generates plain anonymous memory. So when we are
678 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
679 * generate anonymous memory directly without actually filling
680 * the hole. For the MAP_PRIVATE case the robustness check
681 * only happens in the pagetable (to verify it's still none)
682 * and not in the radix tree.
683 */
684 if (!(dst_vma->vm_flags & VM_SHARED)) {
685 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY))
686 err = mfill_atomic_pte_copy(dst_pmd, dst_vma,
687 dst_addr, src_addr,
688 flags, foliop);
689 else
690 err = mfill_atomic_pte_zeropage(dst_pmd,
691 dst_vma, dst_addr);
692 } else {
693 err = shmem_mfill_atomic_pte(dst_pmd, dst_vma,
694 dst_addr, src_addr,
695 flags, foliop);
696 }
697
698 return err;
699 }
700
mfill_atomic(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)701 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx,
702 unsigned long dst_start,
703 unsigned long src_start,
704 unsigned long len,
705 uffd_flags_t flags)
706 {
707 struct mm_struct *dst_mm = ctx->mm;
708 struct vm_area_struct *dst_vma;
709 ssize_t err;
710 pmd_t *dst_pmd;
711 unsigned long src_addr, dst_addr;
712 long copied;
713 struct folio *folio;
714
715 /*
716 * Sanitize the command parameters:
717 */
718 BUG_ON(dst_start & ~PAGE_MASK);
719 BUG_ON(len & ~PAGE_MASK);
720
721 /* Does the address range wrap, or is the span zero-sized? */
722 BUG_ON(src_start + len <= src_start);
723 BUG_ON(dst_start + len <= dst_start);
724
725 src_addr = src_start;
726 dst_addr = dst_start;
727 copied = 0;
728 folio = NULL;
729 retry:
730 /*
731 * Make sure the vma is not shared, that the dst range is
732 * both valid and fully within a single existing vma.
733 */
734 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
735 if (IS_ERR(dst_vma)) {
736 err = PTR_ERR(dst_vma);
737 goto out;
738 }
739
740 /*
741 * If memory mappings are changing because of non-cooperative
742 * operation (e.g. mremap) running in parallel, bail out and
743 * request the user to retry later
744 */
745 down_read(&ctx->map_changing_lock);
746 err = -EAGAIN;
747 if (atomic_read(&ctx->mmap_changing))
748 goto out_unlock;
749
750 err = -EINVAL;
751 /*
752 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
753 * it will overwrite vm_ops, so vma_is_anonymous must return false.
754 */
755 if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
756 dst_vma->vm_flags & VM_SHARED))
757 goto out_unlock;
758
759 /*
760 * validate 'mode' now that we know the dst_vma: don't allow
761 * a wrprotect copy if the userfaultfd didn't register as WP.
762 */
763 if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP))
764 goto out_unlock;
765
766 /*
767 * If this is a HUGETLB vma, pass off to appropriate routine
768 */
769 if (is_vm_hugetlb_page(dst_vma))
770 return mfill_atomic_hugetlb(ctx, dst_vma, dst_start,
771 src_start, len, flags);
772
773 if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
774 goto out_unlock;
775 if (!vma_is_shmem(dst_vma) &&
776 uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE))
777 goto out_unlock;
778
779 while (src_addr < src_start + len) {
780 pmd_t dst_pmdval;
781
782 BUG_ON(dst_addr >= dst_start + len);
783
784 dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
785 if (unlikely(!dst_pmd)) {
786 err = -ENOMEM;
787 break;
788 }
789
790 dst_pmdval = pmdp_get_lockless(dst_pmd);
791 if (unlikely(pmd_none(dst_pmdval)) &&
792 unlikely(__pte_alloc(dst_mm, dst_pmd))) {
793 err = -ENOMEM;
794 break;
795 }
796 dst_pmdval = pmdp_get_lockless(dst_pmd);
797 /*
798 * If the dst_pmd is THP don't override it and just be strict.
799 * (This includes the case where the PMD used to be THP and
800 * changed back to none after __pte_alloc().)
801 */
802 if (unlikely(!pmd_present(dst_pmdval) || pmd_trans_huge(dst_pmdval) ||
803 pmd_devmap(dst_pmdval))) {
804 err = -EEXIST;
805 break;
806 }
807 if (unlikely(pmd_bad(dst_pmdval))) {
808 err = -EFAULT;
809 break;
810 }
811 /*
812 * For shmem mappings, khugepaged is allowed to remove page
813 * tables under us; pte_offset_map_lock() will deal with that.
814 */
815
816 err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr,
817 src_addr, flags, &folio);
818 cond_resched();
819
820 if (unlikely(err == -ENOENT)) {
821 void *kaddr;
822
823 up_read(&ctx->map_changing_lock);
824 uffd_mfill_unlock(dst_vma);
825 BUG_ON(!folio);
826
827 kaddr = kmap_local_folio(folio, 0);
828 err = copy_from_user(kaddr,
829 (const void __user *) src_addr,
830 PAGE_SIZE);
831 kunmap_local(kaddr);
832 if (unlikely(err)) {
833 err = -EFAULT;
834 goto out;
835 }
836 flush_dcache_folio(folio);
837 goto retry;
838 } else
839 BUG_ON(folio);
840
841 if (!err) {
842 dst_addr += PAGE_SIZE;
843 src_addr += PAGE_SIZE;
844 copied += PAGE_SIZE;
845
846 if (fatal_signal_pending(current))
847 err = -EINTR;
848 }
849 if (err)
850 break;
851 }
852
853 out_unlock:
854 up_read(&ctx->map_changing_lock);
855 uffd_mfill_unlock(dst_vma);
856 out:
857 if (folio)
858 folio_put(folio);
859 BUG_ON(copied < 0);
860 BUG_ON(err > 0);
861 BUG_ON(!copied && !err);
862 return copied ? copied : err;
863 }
864
mfill_atomic_copy(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)865 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start,
866 unsigned long src_start, unsigned long len,
867 uffd_flags_t flags)
868 {
869 return mfill_atomic(ctx, dst_start, src_start, len,
870 uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY));
871 }
872
mfill_atomic_zeropage(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len)873 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx,
874 unsigned long start,
875 unsigned long len)
876 {
877 return mfill_atomic(ctx, start, 0, len,
878 uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE));
879 }
880
mfill_atomic_continue(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)881 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start,
882 unsigned long len, uffd_flags_t flags)
883 {
884
885 /*
886 * A caller might reasonably assume that UFFDIO_CONTINUE contains an
887 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by
888 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to
889 * subsequent loads from the page through the newly mapped address range.
890 */
891 smp_wmb();
892
893 return mfill_atomic(ctx, start, 0, len,
894 uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE));
895 }
896
mfill_atomic_poison(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)897 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start,
898 unsigned long len, uffd_flags_t flags)
899 {
900 return mfill_atomic(ctx, start, 0, len,
901 uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON));
902 }
903
uffd_wp_range(struct vm_area_struct * dst_vma,unsigned long start,unsigned long len,bool enable_wp)904 long uffd_wp_range(struct vm_area_struct *dst_vma,
905 unsigned long start, unsigned long len, bool enable_wp)
906 {
907 unsigned int mm_cp_flags;
908 struct mmu_gather tlb;
909 long ret;
910
911 VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end,
912 "The address range exceeds VMA boundary.\n");
913 if (enable_wp)
914 mm_cp_flags = MM_CP_UFFD_WP;
915 else
916 mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
917
918 /*
919 * vma->vm_page_prot already reflects that uffd-wp is enabled for this
920 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
921 * to be write-protected as default whenever protection changes.
922 * Try upgrading write permissions manually.
923 */
924 if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
925 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
926 tlb_gather_mmu(&tlb, dst_vma->vm_mm);
927 ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
928 tlb_finish_mmu(&tlb);
929
930 return ret;
931 }
932
mwriteprotect_range(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,bool enable_wp)933 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start,
934 unsigned long len, bool enable_wp)
935 {
936 struct mm_struct *dst_mm = ctx->mm;
937 unsigned long end = start + len;
938 unsigned long _start, _end;
939 struct vm_area_struct *dst_vma;
940 unsigned long page_mask;
941 long err;
942 VMA_ITERATOR(vmi, dst_mm, start);
943
944 /*
945 * Sanitize the command parameters:
946 */
947 BUG_ON(start & ~PAGE_MASK);
948 BUG_ON(len & ~PAGE_MASK);
949
950 /* Does the address range wrap, or is the span zero-sized? */
951 BUG_ON(start + len <= start);
952
953 mmap_read_lock(dst_mm);
954
955 /*
956 * If memory mappings are changing because of non-cooperative
957 * operation (e.g. mremap) running in parallel, bail out and
958 * request the user to retry later
959 */
960 down_read(&ctx->map_changing_lock);
961 err = -EAGAIN;
962 if (atomic_read(&ctx->mmap_changing))
963 goto out_unlock;
964
965 err = -ENOENT;
966 for_each_vma_range(vmi, dst_vma, end) {
967
968 if (!userfaultfd_wp(dst_vma)) {
969 err = -ENOENT;
970 break;
971 }
972
973 if (is_vm_hugetlb_page(dst_vma)) {
974 err = -EINVAL;
975 page_mask = vma_kernel_pagesize(dst_vma) - 1;
976 if ((start & page_mask) || (len & page_mask))
977 break;
978 }
979
980 _start = max(dst_vma->vm_start, start);
981 _end = min(dst_vma->vm_end, end);
982
983 err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp);
984
985 /* Return 0 on success, <0 on failures */
986 if (err < 0)
987 break;
988 err = 0;
989 }
990 out_unlock:
991 up_read(&ctx->map_changing_lock);
992 mmap_read_unlock(dst_mm);
993 return err;
994 }
995
996
double_pt_lock(spinlock_t * ptl1,spinlock_t * ptl2)997 void double_pt_lock(spinlock_t *ptl1,
998 spinlock_t *ptl2)
999 __acquires(ptl1)
1000 __acquires(ptl2)
1001 {
1002 if (ptl1 > ptl2)
1003 swap(ptl1, ptl2);
1004 /* lock in virtual address order to avoid lock inversion */
1005 spin_lock(ptl1);
1006 if (ptl1 != ptl2)
1007 spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
1008 else
1009 __acquire(ptl2);
1010 }
1011
double_pt_unlock(spinlock_t * ptl1,spinlock_t * ptl2)1012 void double_pt_unlock(spinlock_t *ptl1,
1013 spinlock_t *ptl2)
1014 __releases(ptl1)
1015 __releases(ptl2)
1016 {
1017 spin_unlock(ptl1);
1018 if (ptl1 != ptl2)
1019 spin_unlock(ptl2);
1020 else
1021 __release(ptl2);
1022 }
1023
is_pte_pages_stable(pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval)1024 static inline bool is_pte_pages_stable(pte_t *dst_pte, pte_t *src_pte,
1025 pte_t orig_dst_pte, pte_t orig_src_pte,
1026 pmd_t *dst_pmd, pmd_t dst_pmdval)
1027 {
1028 return pte_same(ptep_get(src_pte), orig_src_pte) &&
1029 pte_same(ptep_get(dst_pte), orig_dst_pte) &&
1030 pmd_same(dst_pmdval, pmdp_get_lockless(dst_pmd));
1031 }
1032
move_present_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio)1033 static int move_present_pte(struct mm_struct *mm,
1034 struct vm_area_struct *dst_vma,
1035 struct vm_area_struct *src_vma,
1036 unsigned long dst_addr, unsigned long src_addr,
1037 pte_t *dst_pte, pte_t *src_pte,
1038 pte_t orig_dst_pte, pte_t orig_src_pte,
1039 pmd_t *dst_pmd, pmd_t dst_pmdval,
1040 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1041 struct folio *src_folio)
1042 {
1043 int err = 0;
1044
1045 double_pt_lock(dst_ptl, src_ptl);
1046
1047 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1048 dst_pmd, dst_pmdval)) {
1049 err = -EAGAIN;
1050 goto out;
1051 }
1052 if (folio_test_large(src_folio) ||
1053 folio_maybe_dma_pinned(src_folio) ||
1054 !PageAnonExclusive(&src_folio->page)) {
1055 err = -EBUSY;
1056 goto out;
1057 }
1058
1059 orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte);
1060 /* Folio got pinned from under us. Put it back and fail the move. */
1061 if (folio_maybe_dma_pinned(src_folio)) {
1062 set_pte_at(mm, src_addr, src_pte, orig_src_pte);
1063 err = -EBUSY;
1064 goto out;
1065 }
1066
1067 folio_move_anon_rmap(src_folio, dst_vma);
1068 src_folio->index = linear_page_index(dst_vma, dst_addr);
1069
1070 orig_dst_pte = mk_pte(&src_folio->page, dst_vma->vm_page_prot);
1071 /* Follow mremap() behavior and treat the entry dirty after the move */
1072 orig_dst_pte = pte_mkwrite(pte_mkdirty(orig_dst_pte), dst_vma);
1073
1074 set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte);
1075 out:
1076 double_pt_unlock(dst_ptl, src_ptl);
1077 return err;
1078 }
1079
move_swap_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio)1080 static int move_swap_pte(struct mm_struct *mm, struct vm_area_struct *dst_vma,
1081 unsigned long dst_addr, unsigned long src_addr,
1082 pte_t *dst_pte, pte_t *src_pte,
1083 pte_t orig_dst_pte, pte_t orig_src_pte,
1084 pmd_t *dst_pmd, pmd_t dst_pmdval,
1085 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1086 struct folio *src_folio)
1087 {
1088 double_pt_lock(dst_ptl, src_ptl);
1089
1090 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1091 dst_pmd, dst_pmdval)) {
1092 double_pt_unlock(dst_ptl, src_ptl);
1093 return -EAGAIN;
1094 }
1095
1096 /*
1097 * The src_folio resides in the swapcache, requiring an update to its
1098 * index and mapping to align with the dst_vma, where a swap-in may
1099 * occur and hit the swapcache after moving the PTE.
1100 */
1101 if (src_folio) {
1102 folio_move_anon_rmap(src_folio, dst_vma);
1103 src_folio->index = linear_page_index(dst_vma, dst_addr);
1104 }
1105
1106 orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
1107 set_pte_at(mm, dst_addr, dst_pte, orig_src_pte);
1108 double_pt_unlock(dst_ptl, src_ptl);
1109
1110 return 0;
1111 }
1112
move_zeropage_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl)1113 static int move_zeropage_pte(struct mm_struct *mm,
1114 struct vm_area_struct *dst_vma,
1115 struct vm_area_struct *src_vma,
1116 unsigned long dst_addr, unsigned long src_addr,
1117 pte_t *dst_pte, pte_t *src_pte,
1118 pte_t orig_dst_pte, pte_t orig_src_pte,
1119 pmd_t *dst_pmd, pmd_t dst_pmdval,
1120 spinlock_t *dst_ptl, spinlock_t *src_ptl)
1121 {
1122 pte_t zero_pte;
1123
1124 double_pt_lock(dst_ptl, src_ptl);
1125 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1126 dst_pmd, dst_pmdval)) {
1127 double_pt_unlock(dst_ptl, src_ptl);
1128 return -EAGAIN;
1129 }
1130
1131 zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
1132 dst_vma->vm_page_prot));
1133 ptep_clear_flush(src_vma, src_addr, src_pte);
1134 set_pte_at(mm, dst_addr, dst_pte, zero_pte);
1135 double_pt_unlock(dst_ptl, src_ptl);
1136
1137 return 0;
1138 }
1139
1140
1141 /*
1142 * The mmap_lock for reading is held by the caller. Just move the page
1143 * from src_pmd to dst_pmd if possible, and return true if succeeded
1144 * in moving the page.
1145 */
move_pages_pte(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,__u64 mode)1146 static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd,
1147 struct vm_area_struct *dst_vma,
1148 struct vm_area_struct *src_vma,
1149 unsigned long dst_addr, unsigned long src_addr,
1150 __u64 mode)
1151 {
1152 swp_entry_t entry;
1153 struct swap_info_struct *si = NULL;
1154 pte_t orig_src_pte, orig_dst_pte;
1155 pte_t src_folio_pte;
1156 spinlock_t *src_ptl, *dst_ptl;
1157 pte_t *src_pte = NULL;
1158 pte_t *dst_pte = NULL;
1159 pmd_t dummy_pmdval;
1160 pmd_t dst_pmdval;
1161 struct folio *src_folio = NULL;
1162 struct anon_vma *src_anon_vma = NULL;
1163 struct mmu_notifier_range range;
1164 int err = 0;
1165
1166 flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE);
1167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1168 src_addr, src_addr + PAGE_SIZE);
1169 mmu_notifier_invalidate_range_start(&range);
1170 retry:
1171 /*
1172 * Use the maywrite version to indicate that dst_pte will be modified,
1173 * since dst_pte needs to be none, the subsequent pte_same() check
1174 * cannot prevent the dst_pte page from being freed concurrently, so we
1175 * also need to abtain dst_pmdval and recheck pmd_same() later.
1176 */
1177 dst_pte = pte_offset_map_rw_nolock(mm, dst_pmd, dst_addr, &dst_pmdval,
1178 &dst_ptl);
1179
1180 /* Retry if a huge pmd materialized from under us */
1181 if (unlikely(!dst_pte)) {
1182 err = -EAGAIN;
1183 goto out;
1184 }
1185
1186 /*
1187 * Unlike dst_pte, the subsequent pte_same() check can ensure the
1188 * stability of the src_pte page, so there is no need to get pmdval,
1189 * just pass a dummy variable to it.
1190 */
1191 src_pte = pte_offset_map_rw_nolock(mm, src_pmd, src_addr, &dummy_pmdval,
1192 &src_ptl);
1193
1194 /*
1195 * We held the mmap_lock for reading so MADV_DONTNEED
1196 * can zap transparent huge pages under us, or the
1197 * transparent huge page fault can establish new
1198 * transparent huge pages under us.
1199 */
1200 if (unlikely(!src_pte)) {
1201 err = -EAGAIN;
1202 goto out;
1203 }
1204
1205 /* Sanity checks before the operation */
1206 if (pmd_none(*dst_pmd) || pmd_none(*src_pmd) ||
1207 pmd_trans_huge(*dst_pmd) || pmd_trans_huge(*src_pmd)) {
1208 err = -EINVAL;
1209 goto out;
1210 }
1211
1212 spin_lock(dst_ptl);
1213 orig_dst_pte = ptep_get(dst_pte);
1214 spin_unlock(dst_ptl);
1215 if (!pte_none(orig_dst_pte)) {
1216 err = -EEXIST;
1217 goto out;
1218 }
1219
1220 spin_lock(src_ptl);
1221 orig_src_pte = ptep_get(src_pte);
1222 spin_unlock(src_ptl);
1223 if (pte_none(orig_src_pte)) {
1224 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES))
1225 err = -ENOENT;
1226 else /* nothing to do to move a hole */
1227 err = 0;
1228 goto out;
1229 }
1230
1231 /* If PTE changed after we locked the folio them start over */
1232 if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) {
1233 err = -EAGAIN;
1234 goto out;
1235 }
1236
1237 if (pte_present(orig_src_pte)) {
1238 if (is_zero_pfn(pte_pfn(orig_src_pte))) {
1239 err = move_zeropage_pte(mm, dst_vma, src_vma,
1240 dst_addr, src_addr, dst_pte, src_pte,
1241 orig_dst_pte, orig_src_pte,
1242 dst_pmd, dst_pmdval, dst_ptl, src_ptl);
1243 goto out;
1244 }
1245
1246 /*
1247 * Pin and lock both source folio and anon_vma. Since we are in
1248 * RCU read section, we can't block, so on contention have to
1249 * unmap the ptes, obtain the lock and retry.
1250 */
1251 if (!src_folio) {
1252 struct folio *folio;
1253 bool locked;
1254
1255 /*
1256 * Pin the page while holding the lock to be sure the
1257 * page isn't freed under us
1258 */
1259 spin_lock(src_ptl);
1260 if (!pte_same(orig_src_pte, ptep_get(src_pte))) {
1261 spin_unlock(src_ptl);
1262 err = -EAGAIN;
1263 goto out;
1264 }
1265
1266 folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
1267 if (!folio || !PageAnonExclusive(&folio->page)) {
1268 spin_unlock(src_ptl);
1269 err = -EBUSY;
1270 goto out;
1271 }
1272
1273 locked = folio_trylock(folio);
1274 /*
1275 * We avoid waiting for folio lock with a raised
1276 * refcount for large folios because extra refcounts
1277 * will result in split_folio() failing later and
1278 * retrying. If multiple tasks are trying to move a
1279 * large folio we can end up livelocking.
1280 */
1281 if (!locked && folio_test_large(folio)) {
1282 spin_unlock(src_ptl);
1283 err = -EAGAIN;
1284 goto out;
1285 }
1286
1287 folio_get(folio);
1288 src_folio = folio;
1289 src_folio_pte = orig_src_pte;
1290 spin_unlock(src_ptl);
1291
1292 if (!locked) {
1293 pte_unmap(src_pte);
1294 pte_unmap(dst_pte);
1295 src_pte = dst_pte = NULL;
1296 /* now we can block and wait */
1297 folio_lock(src_folio);
1298 goto retry;
1299 }
1300
1301 if (WARN_ON_ONCE(!folio_test_anon(src_folio))) {
1302 err = -EBUSY;
1303 goto out;
1304 }
1305 }
1306
1307 /* at this point we have src_folio locked */
1308 if (folio_test_large(src_folio)) {
1309 /* split_folio() can block */
1310 pte_unmap(src_pte);
1311 pte_unmap(dst_pte);
1312 src_pte = dst_pte = NULL;
1313 err = split_folio(src_folio);
1314 if (err)
1315 goto out;
1316 /* have to reacquire the folio after it got split */
1317 folio_unlock(src_folio);
1318 folio_put(src_folio);
1319 src_folio = NULL;
1320 goto retry;
1321 }
1322
1323 if (!src_anon_vma) {
1324 /*
1325 * folio_referenced walks the anon_vma chain
1326 * without the folio lock. Serialize against it with
1327 * the anon_vma lock, the folio lock is not enough.
1328 */
1329 src_anon_vma = folio_get_anon_vma(src_folio);
1330 if (!src_anon_vma) {
1331 /* page was unmapped from under us */
1332 err = -EAGAIN;
1333 goto out;
1334 }
1335 if (!anon_vma_trylock_write(src_anon_vma)) {
1336 pte_unmap(src_pte);
1337 pte_unmap(dst_pte);
1338 src_pte = dst_pte = NULL;
1339 /* now we can block and wait */
1340 anon_vma_lock_write(src_anon_vma);
1341 goto retry;
1342 }
1343 }
1344
1345 err = move_present_pte(mm, dst_vma, src_vma,
1346 dst_addr, src_addr, dst_pte, src_pte,
1347 orig_dst_pte, orig_src_pte, dst_pmd,
1348 dst_pmdval, dst_ptl, src_ptl, src_folio);
1349 } else {
1350 struct folio *folio = NULL;
1351
1352 entry = pte_to_swp_entry(orig_src_pte);
1353 if (non_swap_entry(entry)) {
1354 if (is_migration_entry(entry)) {
1355 pte_unmap(src_pte);
1356 pte_unmap(dst_pte);
1357 src_pte = dst_pte = NULL;
1358 migration_entry_wait(mm, src_pmd, src_addr);
1359 err = -EAGAIN;
1360 } else
1361 err = -EFAULT;
1362 goto out;
1363 }
1364
1365 if (!pte_swp_exclusive(orig_src_pte)) {
1366 err = -EBUSY;
1367 goto out;
1368 }
1369
1370 si = get_swap_device(entry);
1371 if (unlikely(!si)) {
1372 err = -EAGAIN;
1373 goto out;
1374 }
1375 /*
1376 * Verify the existence of the swapcache. If present, the folio's
1377 * index and mapping must be updated even when the PTE is a swap
1378 * entry. The anon_vma lock is not taken during this process since
1379 * the folio has already been unmapped, and the swap entry is
1380 * exclusive, preventing rmap walks.
1381 *
1382 * For large folios, return -EBUSY immediately, as split_folio()
1383 * also returns -EBUSY when attempting to split unmapped large
1384 * folios in the swapcache. This issue needs to be resolved
1385 * separately to allow proper handling.
1386 */
1387 if (!src_folio)
1388 folio = filemap_get_folio(swap_address_space(entry),
1389 swap_cache_index(entry));
1390 if (!IS_ERR_OR_NULL(folio)) {
1391 if (folio_test_large(folio)) {
1392 err = -EBUSY;
1393 folio_put(folio);
1394 goto out;
1395 }
1396 src_folio = folio;
1397 src_folio_pte = orig_src_pte;
1398 if (!folio_trylock(src_folio)) {
1399 pte_unmap(src_pte);
1400 pte_unmap(dst_pte);
1401 src_pte = dst_pte = NULL;
1402 put_swap_device(si);
1403 si = NULL;
1404 /* now we can block and wait */
1405 folio_lock(src_folio);
1406 goto retry;
1407 }
1408 }
1409 err = move_swap_pte(mm, dst_vma, dst_addr, src_addr, dst_pte, src_pte,
1410 orig_dst_pte, orig_src_pte, dst_pmd, dst_pmdval,
1411 dst_ptl, src_ptl, src_folio);
1412 }
1413
1414 out:
1415 if (src_anon_vma) {
1416 anon_vma_unlock_write(src_anon_vma);
1417 put_anon_vma(src_anon_vma);
1418 }
1419 if (src_folio) {
1420 folio_unlock(src_folio);
1421 folio_put(src_folio);
1422 }
1423 if (dst_pte)
1424 pte_unmap(dst_pte);
1425 if (src_pte)
1426 pte_unmap(src_pte);
1427 mmu_notifier_invalidate_range_end(&range);
1428 if (si)
1429 put_swap_device(si);
1430
1431 return err;
1432 }
1433
1434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1435 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1436 unsigned long src_addr,
1437 unsigned long src_end)
1438 {
1439 return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) ||
1440 src_end - src_addr < HPAGE_PMD_SIZE;
1441 }
1442 #else
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1443 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1444 unsigned long src_addr,
1445 unsigned long src_end)
1446 {
1447 /* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */
1448 return false;
1449 }
1450 #endif
1451
vma_move_compatible(struct vm_area_struct * vma)1452 static inline bool vma_move_compatible(struct vm_area_struct *vma)
1453 {
1454 return !(vma->vm_flags & (VM_PFNMAP | VM_IO | VM_HUGETLB |
1455 VM_MIXEDMAP | VM_SHADOW_STACK));
1456 }
1457
validate_move_areas(struct userfaultfd_ctx * ctx,struct vm_area_struct * src_vma,struct vm_area_struct * dst_vma)1458 static int validate_move_areas(struct userfaultfd_ctx *ctx,
1459 struct vm_area_struct *src_vma,
1460 struct vm_area_struct *dst_vma)
1461 {
1462 /* Only allow moving if both have the same access and protection */
1463 if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) ||
1464 pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot))
1465 return -EINVAL;
1466
1467 /* Only allow moving if both are mlocked or both aren't */
1468 if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED))
1469 return -EINVAL;
1470
1471 /*
1472 * For now, we keep it simple and only move between writable VMAs.
1473 * Access flags are equal, therefore cheching only the source is enough.
1474 */
1475 if (!(src_vma->vm_flags & VM_WRITE))
1476 return -EINVAL;
1477
1478 /* Check if vma flags indicate content which can be moved */
1479 if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma))
1480 return -EINVAL;
1481
1482 /* Ensure dst_vma is registered in uffd we are operating on */
1483 if (!dst_vma->vm_userfaultfd_ctx.ctx ||
1484 dst_vma->vm_userfaultfd_ctx.ctx != ctx)
1485 return -EINVAL;
1486
1487 /* Only allow moving across anonymous vmas */
1488 if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma))
1489 return -EINVAL;
1490
1491 return 0;
1492 }
1493
1494 static __always_inline
find_vmas_mm_locked(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1495 int find_vmas_mm_locked(struct mm_struct *mm,
1496 unsigned long dst_start,
1497 unsigned long src_start,
1498 struct vm_area_struct **dst_vmap,
1499 struct vm_area_struct **src_vmap)
1500 {
1501 struct vm_area_struct *vma;
1502
1503 mmap_assert_locked(mm);
1504 vma = find_vma_and_prepare_anon(mm, dst_start);
1505 if (IS_ERR(vma))
1506 return PTR_ERR(vma);
1507
1508 *dst_vmap = vma;
1509 /* Skip finding src_vma if src_start is in dst_vma */
1510 if (src_start >= vma->vm_start && src_start < vma->vm_end)
1511 goto out_success;
1512
1513 vma = vma_lookup(mm, src_start);
1514 if (!vma)
1515 return -ENOENT;
1516 out_success:
1517 *src_vmap = vma;
1518 return 0;
1519 }
1520
1521 #ifdef CONFIG_PER_VMA_LOCK
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1522 static int uffd_move_lock(struct mm_struct *mm,
1523 unsigned long dst_start,
1524 unsigned long src_start,
1525 struct vm_area_struct **dst_vmap,
1526 struct vm_area_struct **src_vmap)
1527 {
1528 struct vm_area_struct *vma;
1529 int err;
1530
1531 vma = uffd_lock_vma(mm, dst_start);
1532 if (IS_ERR(vma))
1533 return PTR_ERR(vma);
1534
1535 *dst_vmap = vma;
1536 /*
1537 * Skip finding src_vma if src_start is in dst_vma. This also ensures
1538 * that we don't lock the same vma twice.
1539 */
1540 if (src_start >= vma->vm_start && src_start < vma->vm_end) {
1541 *src_vmap = vma;
1542 return 0;
1543 }
1544
1545 /*
1546 * Using uffd_lock_vma() to get src_vma can lead to following deadlock:
1547 *
1548 * Thread1 Thread2
1549 * ------- -------
1550 * vma_start_read(dst_vma)
1551 * mmap_write_lock(mm)
1552 * vma_start_write(src_vma)
1553 * vma_start_read(src_vma)
1554 * mmap_read_lock(mm)
1555 * vma_start_write(dst_vma)
1556 */
1557 *src_vmap = lock_vma_under_rcu(mm, src_start);
1558 if (likely(*src_vmap))
1559 return 0;
1560
1561 /* Undo any locking and retry in mmap_lock critical section */
1562 vma_end_read(*dst_vmap);
1563
1564 mmap_read_lock(mm);
1565 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1566 if (!err) {
1567 /*
1568 * See comment in uffd_lock_vma() as to why not using
1569 * vma_start_read() here.
1570 */
1571 down_read(&(*dst_vmap)->vm_lock->lock);
1572 if (*dst_vmap != *src_vmap)
1573 down_read_nested(&(*src_vmap)->vm_lock->lock,
1574 SINGLE_DEPTH_NESTING);
1575 }
1576 mmap_read_unlock(mm);
1577 return err;
1578 }
1579
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1580 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1581 struct vm_area_struct *src_vma)
1582 {
1583 vma_end_read(src_vma);
1584 if (src_vma != dst_vma)
1585 vma_end_read(dst_vma);
1586 }
1587
1588 #else
1589
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1590 static int uffd_move_lock(struct mm_struct *mm,
1591 unsigned long dst_start,
1592 unsigned long src_start,
1593 struct vm_area_struct **dst_vmap,
1594 struct vm_area_struct **src_vmap)
1595 {
1596 int err;
1597
1598 mmap_read_lock(mm);
1599 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1600 if (err)
1601 mmap_read_unlock(mm);
1602 return err;
1603 }
1604
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1605 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1606 struct vm_area_struct *src_vma)
1607 {
1608 mmap_assert_locked(src_vma->vm_mm);
1609 mmap_read_unlock(dst_vma->vm_mm);
1610 }
1611 #endif
1612
1613 /**
1614 * move_pages - move arbitrary anonymous pages of an existing vma
1615 * @ctx: pointer to the userfaultfd context
1616 * @dst_start: start of the destination virtual memory range
1617 * @src_start: start of the source virtual memory range
1618 * @len: length of the virtual memory range
1619 * @mode: flags from uffdio_move.mode
1620 *
1621 * It will either use the mmap_lock in read mode or per-vma locks
1622 *
1623 * move_pages() remaps arbitrary anonymous pages atomically in zero
1624 * copy. It only works on non shared anonymous pages because those can
1625 * be relocated without generating non linear anon_vmas in the rmap
1626 * code.
1627 *
1628 * It provides a zero copy mechanism to handle userspace page faults.
1629 * The source vma pages should have mapcount == 1, which can be
1630 * enforced by using madvise(MADV_DONTFORK) on src vma.
1631 *
1632 * The thread receiving the page during the userland page fault
1633 * will receive the faulting page in the source vma through the network,
1634 * storage or any other I/O device (MADV_DONTFORK in the source vma
1635 * avoids move_pages() to fail with -EBUSY if the process forks before
1636 * move_pages() is called), then it will call move_pages() to map the
1637 * page in the faulting address in the destination vma.
1638 *
1639 * This userfaultfd command works purely via pagetables, so it's the
1640 * most efficient way to move physical non shared anonymous pages
1641 * across different virtual addresses. Unlike mremap()/mmap()/munmap()
1642 * it does not create any new vmas. The mapping in the destination
1643 * address is atomic.
1644 *
1645 * It only works if the vma protection bits are identical from the
1646 * source and destination vma.
1647 *
1648 * It can remap non shared anonymous pages within the same vma too.
1649 *
1650 * If the source virtual memory range has any unmapped holes, or if
1651 * the destination virtual memory range is not a whole unmapped hole,
1652 * move_pages() will fail respectively with -ENOENT or -EEXIST. This
1653 * provides a very strict behavior to avoid any chance of memory
1654 * corruption going unnoticed if there are userland race conditions.
1655 * Only one thread should resolve the userland page fault at any given
1656 * time for any given faulting address. This means that if two threads
1657 * try to both call move_pages() on the same destination address at the
1658 * same time, the second thread will get an explicit error from this
1659 * command.
1660 *
1661 * The command retval will return "len" is successful. The command
1662 * however can be interrupted by fatal signals or errors. If
1663 * interrupted it will return the number of bytes successfully
1664 * remapped before the interruption if any, or the negative error if
1665 * none. It will never return zero. Either it will return an error or
1666 * an amount of bytes successfully moved. If the retval reports a
1667 * "short" remap, the move_pages() command should be repeated by
1668 * userland with src+retval, dst+reval, len-retval if it wants to know
1669 * about the error that interrupted it.
1670 *
1671 * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to
1672 * prevent -ENOENT errors to materialize if there are holes in the
1673 * source virtual range that is being remapped. The holes will be
1674 * accounted as successfully remapped in the retval of the
1675 * command. This is mostly useful to remap hugepage naturally aligned
1676 * virtual regions without knowing if there are transparent hugepage
1677 * in the regions or not, but preventing the risk of having to split
1678 * the hugepmd during the remap.
1679 *
1680 * If there's any rmap walk that is taking the anon_vma locks without
1681 * first obtaining the folio lock (the only current instance is
1682 * folio_referenced), they will have to verify if the folio->mapping
1683 * has changed after taking the anon_vma lock. If it changed they
1684 * should release the lock and retry obtaining a new anon_vma, because
1685 * it means the anon_vma was changed by move_pages() before the lock
1686 * could be obtained. This is the only additional complexity added to
1687 * the rmap code to provide this anonymous page remapping functionality.
1688 */
move_pages(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,__u64 mode)1689 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start,
1690 unsigned long src_start, unsigned long len, __u64 mode)
1691 {
1692 struct mm_struct *mm = ctx->mm;
1693 struct vm_area_struct *src_vma, *dst_vma;
1694 unsigned long src_addr, dst_addr;
1695 pmd_t *src_pmd, *dst_pmd;
1696 long err = -EINVAL;
1697 ssize_t moved = 0;
1698
1699 /* Sanitize the command parameters. */
1700 if (WARN_ON_ONCE(src_start & ~PAGE_MASK) ||
1701 WARN_ON_ONCE(dst_start & ~PAGE_MASK) ||
1702 WARN_ON_ONCE(len & ~PAGE_MASK))
1703 goto out;
1704
1705 /* Does the address range wrap, or is the span zero-sized? */
1706 if (WARN_ON_ONCE(src_start + len <= src_start) ||
1707 WARN_ON_ONCE(dst_start + len <= dst_start))
1708 goto out;
1709
1710 err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma);
1711 if (err)
1712 goto out;
1713
1714 /* Re-check after taking map_changing_lock */
1715 err = -EAGAIN;
1716 down_read(&ctx->map_changing_lock);
1717 if (likely(atomic_read(&ctx->mmap_changing)))
1718 goto out_unlock;
1719 /*
1720 * Make sure the vma is not shared, that the src and dst remap
1721 * ranges are both valid and fully within a single existing
1722 * vma.
1723 */
1724 err = -EINVAL;
1725 if (src_vma->vm_flags & VM_SHARED)
1726 goto out_unlock;
1727 if (src_start + len > src_vma->vm_end)
1728 goto out_unlock;
1729
1730 if (dst_vma->vm_flags & VM_SHARED)
1731 goto out_unlock;
1732 if (dst_start + len > dst_vma->vm_end)
1733 goto out_unlock;
1734
1735 err = validate_move_areas(ctx, src_vma, dst_vma);
1736 if (err)
1737 goto out_unlock;
1738
1739 for (src_addr = src_start, dst_addr = dst_start;
1740 src_addr < src_start + len;) {
1741 spinlock_t *ptl;
1742 pmd_t dst_pmdval;
1743 unsigned long step_size;
1744
1745 /*
1746 * Below works because anonymous area would not have a
1747 * transparent huge PUD. If file-backed support is added,
1748 * that case would need to be handled here.
1749 */
1750 src_pmd = mm_find_pmd(mm, src_addr);
1751 if (unlikely(!src_pmd)) {
1752 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1753 err = -ENOENT;
1754 break;
1755 }
1756 src_pmd = mm_alloc_pmd(mm, src_addr);
1757 if (unlikely(!src_pmd)) {
1758 err = -ENOMEM;
1759 break;
1760 }
1761 }
1762 dst_pmd = mm_alloc_pmd(mm, dst_addr);
1763 if (unlikely(!dst_pmd)) {
1764 err = -ENOMEM;
1765 break;
1766 }
1767
1768 dst_pmdval = pmdp_get_lockless(dst_pmd);
1769 /*
1770 * If the dst_pmd is mapped as THP don't override it and just
1771 * be strict. If dst_pmd changes into TPH after this check, the
1772 * move_pages_huge_pmd() will detect the change and retry
1773 * while move_pages_pte() will detect the change and fail.
1774 */
1775 if (unlikely(pmd_trans_huge(dst_pmdval))) {
1776 err = -EEXIST;
1777 break;
1778 }
1779
1780 ptl = pmd_trans_huge_lock(src_pmd, src_vma);
1781 if (ptl) {
1782 if (pmd_devmap(*src_pmd)) {
1783 spin_unlock(ptl);
1784 err = -ENOENT;
1785 break;
1786 }
1787
1788 /* Check if we can move the pmd without splitting it. */
1789 if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) ||
1790 !pmd_none(dst_pmdval)) {
1791 struct folio *folio = pmd_folio(*src_pmd);
1792
1793 if (!folio || (!is_huge_zero_folio(folio) &&
1794 !PageAnonExclusive(&folio->page))) {
1795 spin_unlock(ptl);
1796 err = -EBUSY;
1797 break;
1798 }
1799
1800 spin_unlock(ptl);
1801 split_huge_pmd(src_vma, src_pmd, src_addr);
1802 /* The folio will be split by move_pages_pte() */
1803 continue;
1804 }
1805
1806 err = move_pages_huge_pmd(mm, dst_pmd, src_pmd,
1807 dst_pmdval, dst_vma, src_vma,
1808 dst_addr, src_addr);
1809 step_size = HPAGE_PMD_SIZE;
1810 } else {
1811 if (pmd_none(*src_pmd)) {
1812 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1813 err = -ENOENT;
1814 break;
1815 }
1816 if (unlikely(__pte_alloc(mm, src_pmd))) {
1817 err = -ENOMEM;
1818 break;
1819 }
1820 }
1821
1822 if (unlikely(pte_alloc(mm, dst_pmd))) {
1823 err = -ENOMEM;
1824 break;
1825 }
1826
1827 err = move_pages_pte(mm, dst_pmd, src_pmd,
1828 dst_vma, src_vma,
1829 dst_addr, src_addr, mode);
1830 step_size = PAGE_SIZE;
1831 }
1832
1833 cond_resched();
1834
1835 if (fatal_signal_pending(current)) {
1836 /* Do not override an error */
1837 if (!err || err == -EAGAIN)
1838 err = -EINTR;
1839 break;
1840 }
1841
1842 if (err) {
1843 if (err == -EAGAIN)
1844 continue;
1845 break;
1846 }
1847
1848 /* Proceed to the next page */
1849 dst_addr += step_size;
1850 src_addr += step_size;
1851 moved += step_size;
1852 }
1853
1854 out_unlock:
1855 up_read(&ctx->map_changing_lock);
1856 uffd_move_unlock(dst_vma, src_vma);
1857 out:
1858 VM_WARN_ON(moved < 0);
1859 VM_WARN_ON(err > 0);
1860 VM_WARN_ON(!moved && !err);
1861 return moved ? moved : err;
1862 }
1863
userfaultfd_set_vm_flags(struct vm_area_struct * vma,vm_flags_t flags)1864 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
1865 vm_flags_t flags)
1866 {
1867 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
1868
1869 vm_flags_reset(vma, flags);
1870 /*
1871 * For shared mappings, we want to enable writenotify while
1872 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
1873 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
1874 */
1875 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
1876 vma_set_page_prot(vma);
1877 }
1878
userfaultfd_set_ctx(struct vm_area_struct * vma,struct userfaultfd_ctx * ctx,unsigned long flags)1879 static void userfaultfd_set_ctx(struct vm_area_struct *vma,
1880 struct userfaultfd_ctx *ctx,
1881 unsigned long flags)
1882 {
1883 vma_start_write(vma);
1884 vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx};
1885 userfaultfd_set_vm_flags(vma,
1886 (vma->vm_flags & ~__VM_UFFD_FLAGS) | flags);
1887 }
1888
userfaultfd_reset_ctx(struct vm_area_struct * vma)1889 void userfaultfd_reset_ctx(struct vm_area_struct *vma)
1890 {
1891 userfaultfd_set_ctx(vma, NULL, 0);
1892 }
1893
userfaultfd_clear_vma(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end)1894 struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi,
1895 struct vm_area_struct *prev,
1896 struct vm_area_struct *vma,
1897 unsigned long start,
1898 unsigned long end)
1899 {
1900 struct vm_area_struct *ret;
1901
1902 /* Reset ptes for the whole vma range if wr-protected */
1903 if (userfaultfd_wp(vma))
1904 uffd_wp_range(vma, start, end - start, false);
1905
1906 ret = vma_modify_flags_uffd(vmi, prev, vma, start, end,
1907 vma->vm_flags & ~__VM_UFFD_FLAGS,
1908 NULL_VM_UFFD_CTX);
1909
1910 /*
1911 * In the vma_merge() successful mprotect-like case 8:
1912 * the next vma was merged into the current one and
1913 * the current one has not been updated yet.
1914 */
1915 if (!IS_ERR(ret))
1916 userfaultfd_reset_ctx(ret);
1917
1918 return ret;
1919 }
1920
1921 /* Assumes mmap write lock taken, and mm_struct pinned. */
userfaultfd_register_range(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long vm_flags,unsigned long start,unsigned long end,bool wp_async)1922 int userfaultfd_register_range(struct userfaultfd_ctx *ctx,
1923 struct vm_area_struct *vma,
1924 unsigned long vm_flags,
1925 unsigned long start, unsigned long end,
1926 bool wp_async)
1927 {
1928 VMA_ITERATOR(vmi, ctx->mm, start);
1929 struct vm_area_struct *prev = vma_prev(&vmi);
1930 unsigned long vma_end;
1931 unsigned long new_flags;
1932
1933 if (vma->vm_start < start)
1934 prev = vma;
1935
1936 for_each_vma_range(vmi, vma, end) {
1937 cond_resched();
1938
1939 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1940 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1941 vma->vm_userfaultfd_ctx.ctx != ctx);
1942 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1943
1944 /*
1945 * Nothing to do: this vma is already registered into this
1946 * userfaultfd and with the right tracking mode too.
1947 */
1948 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1949 (vma->vm_flags & vm_flags) == vm_flags)
1950 goto skip;
1951
1952 if (vma->vm_start > start)
1953 start = vma->vm_start;
1954 vma_end = min(end, vma->vm_end);
1955
1956 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1957 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1958 new_flags,
1959 (struct vm_userfaultfd_ctx){ctx});
1960 if (IS_ERR(vma))
1961 return PTR_ERR(vma);
1962
1963 /*
1964 * In the vma_merge() successful mprotect-like case 8:
1965 * the next vma was merged into the current one and
1966 * the current one has not been updated yet.
1967 */
1968 userfaultfd_set_ctx(vma, ctx, vm_flags);
1969
1970 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1971 hugetlb_unshare_all_pmds(vma);
1972
1973 skip:
1974 prev = vma;
1975 start = vma->vm_end;
1976 }
1977
1978 return 0;
1979 }
1980
userfaultfd_release_new(struct userfaultfd_ctx * ctx)1981 void userfaultfd_release_new(struct userfaultfd_ctx *ctx)
1982 {
1983 struct mm_struct *mm = ctx->mm;
1984 struct vm_area_struct *vma;
1985 VMA_ITERATOR(vmi, mm, 0);
1986
1987 /* the various vma->vm_userfaultfd_ctx still points to it */
1988 mmap_write_lock(mm);
1989 for_each_vma(vmi, vma) {
1990 if (vma->vm_userfaultfd_ctx.ctx == ctx)
1991 userfaultfd_reset_ctx(vma);
1992 }
1993 mmap_write_unlock(mm);
1994 }
1995
userfaultfd_release_all(struct mm_struct * mm,struct userfaultfd_ctx * ctx)1996 void userfaultfd_release_all(struct mm_struct *mm,
1997 struct userfaultfd_ctx *ctx)
1998 {
1999 struct vm_area_struct *vma, *prev;
2000 VMA_ITERATOR(vmi, mm, 0);
2001
2002 if (!mmget_not_zero(mm))
2003 return;
2004
2005 /*
2006 * Flush page faults out of all CPUs. NOTE: all page faults
2007 * must be retried without returning VM_FAULT_SIGBUS if
2008 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
2009 * changes while handle_userfault released the mmap_lock. So
2010 * it's critical that released is set to true (above), before
2011 * taking the mmap_lock for writing.
2012 */
2013 mmap_write_lock(mm);
2014 prev = NULL;
2015 for_each_vma(vmi, vma) {
2016 cond_resched();
2017 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
2018 !!(vma->vm_flags & __VM_UFFD_FLAGS));
2019 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
2020 prev = vma;
2021 continue;
2022 }
2023
2024 vma = userfaultfd_clear_vma(&vmi, prev, vma,
2025 vma->vm_start, vma->vm_end);
2026 prev = vma;
2027 }
2028 mmap_write_unlock(mm);
2029 mmput(mm);
2030 }
2031