xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u64			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 		struct {
78 			u64	va;
79 			u32	mkey;
80 			u32	fault_byte_count;
81 			u32     prefetch_before_byte_count;
82 			u32     prefetch_after_byte_count;
83 			u8	flags;
84 		} memory;
85 	};
86 
87 	struct mlx5_ib_pf_eq	*eq;
88 	struct work_struct	work;
89 };
90 
91 #define MAX_PREFETCH_LEN (4*1024*1024U)
92 
93 /* Timeout in ms to wait for an active mmu notifier to complete when handling
94  * a pagefault. */
95 #define MMU_NOTIFIER_TIMEOUT 1000
96 
97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
102 
103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
104 
105 static u64 mlx5_imr_ksm_entries;
106 
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
108 			struct mlx5_ib_mr *imr, int flags)
109 {
110 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
111 	struct mlx5_klm *end = pklm + nentries;
112 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
113 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
114 			     cpu_to_be32(imr->null_mmkey.key) :
115 			     mr_to_mdev(imr)->mkeys.null_mkey;
116 	u64 va =
117 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
118 
119 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
120 		for (; pklm != end; pklm++, idx++, va += step) {
121 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
122 			pklm->key = key;
123 			pklm->va = cpu_to_be64(va);
124 		}
125 		return;
126 	}
127 
128 	/*
129 	 * The locking here is pretty subtle. Ideally the implicit_children
130 	 * xarray would be protected by the umem_mutex, however that is not
131 	 * possible. Instead this uses a weaker update-then-lock pattern:
132 	 *
133 	 *    xa_store()
134 	 *    mutex_lock(umem_mutex)
135 	 *     mlx5r_umr_update_xlt()
136 	 *    mutex_unlock(umem_mutex)
137 	 *    destroy lkey
138 	 *
139 	 * ie any change the xarray must be followed by the locked update_xlt
140 	 * before destroying.
141 	 *
142 	 * The umem_mutex provides the acquire/release semantic needed to make
143 	 * the xa_store() visible to a racing thread.
144 	 */
145 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
146 
147 	for (; pklm != end; pklm++, idx++, va += step) {
148 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
149 
150 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
151 		if (mtt) {
152 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
153 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
154 		} else {
155 			pklm->key = key;
156 			pklm->va = cpu_to_be64(va);
157 		}
158 	}
159 }
160 
umem_dma_to_mtt(dma_addr_t umem_dma)161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
162 {
163 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
164 
165 	if (umem_dma & ODP_READ_ALLOWED_BIT)
166 		mtt_entry |= MLX5_IB_MTT_READ;
167 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
168 		mtt_entry |= MLX5_IB_MTT_WRITE;
169 
170 	return mtt_entry;
171 }
172 
populate_mtt(__be64 * pas,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
174 			 struct mlx5_ib_mr *mr, int flags)
175 {
176 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
177 	dma_addr_t pa;
178 	size_t i;
179 
180 	if (flags & MLX5_IB_UPD_XLT_ZAP)
181 		return;
182 
183 	for (i = 0; i < nentries; i++) {
184 		pa = odp->dma_list[idx + i];
185 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
186 	}
187 }
188 
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
190 			   struct mlx5_ib_mr *mr, int flags)
191 {
192 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
193 		populate_klm(xlt, idx, nentries, mr, flags);
194 	} else {
195 		populate_mtt(xlt, idx, nentries, mr, flags);
196 	}
197 }
198 
199 /*
200  * This must be called after the mr has been removed from implicit_children.
201  * NOTE: The MR does not necessarily have to be
202  * empty here, parallel page faults could have raced with the free process and
203  * added pages to it.
204  */
free_implicit_child_mr_work(struct work_struct * work)205 static void free_implicit_child_mr_work(struct work_struct *work)
206 {
207 	struct mlx5_ib_mr *mr =
208 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
209 	struct mlx5_ib_mr *imr = mr->parent;
210 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
211 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
212 
213 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
214 
215 	mutex_lock(&odp_imr->umem_mutex);
216 	mlx5r_umr_update_xlt(mr->parent,
217 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
218 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
219 	mutex_unlock(&odp_imr->umem_mutex);
220 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
221 
222 	mlx5r_deref_odp_mkey(&imr->mmkey);
223 }
224 
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
226 {
227 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
228 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
229 	struct mlx5_ib_mr *imr = mr->parent;
230 
231 	/*
232 	 * If userspace is racing freeing the parent implicit ODP MR then we can
233 	 * loose the race with parent destruction. In this case
234 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
235 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
236 	 * we are under its umem_mutex.
237 	 */
238 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
239 		return;
240 
241 	xa_lock(&imr->implicit_children);
242 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
243 	    mr) {
244 		xa_unlock(&imr->implicit_children);
245 		mlx5r_deref_odp_mkey(&imr->mmkey);
246 		return;
247 	}
248 
249 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
250 		__xa_erase(&mr_to_mdev(mr)->odp_mkeys,
251 			   mlx5_base_mkey(mr->mmkey.key));
252 	xa_unlock(&imr->implicit_children);
253 
254 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
255 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
256 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
257 }
258 
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)259 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
260 				     const struct mmu_notifier_range *range,
261 				     unsigned long cur_seq)
262 {
263 	struct ib_umem_odp *umem_odp =
264 		container_of(mni, struct ib_umem_odp, notifier);
265 	struct mlx5_ib_mr *mr;
266 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
267 	u64 idx = 0, blk_start_idx = 0;
268 	u64 invalidations = 0;
269 	unsigned long start;
270 	unsigned long end;
271 	int in_block = 0;
272 	u64 addr;
273 
274 	if (!mmu_notifier_range_blockable(range))
275 		return false;
276 
277 	mutex_lock(&umem_odp->umem_mutex);
278 	mmu_interval_set_seq(mni, cur_seq);
279 	/*
280 	 * If npages is zero then umem_odp->private may not be setup yet. This
281 	 * does not complete until after the first page is mapped for DMA.
282 	 */
283 	if (!umem_odp->npages)
284 		goto out;
285 	mr = umem_odp->private;
286 	if (!mr)
287 		goto out;
288 
289 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
290 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
291 
292 	/*
293 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
294 	 * while we are doing the invalidation, no page fault will attempt to
295 	 * overwrite the same MTTs.  Concurent invalidations might race us,
296 	 * but they will write 0s as well, so no difference in the end result.
297 	 */
298 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
299 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
300 		/*
301 		 * Strive to write the MTTs in chunks, but avoid overwriting
302 		 * non-existing MTTs. The huristic here can be improved to
303 		 * estimate the cost of another UMR vs. the cost of bigger
304 		 * UMR.
305 		 */
306 		if (umem_odp->dma_list[idx] &
307 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
308 			if (!in_block) {
309 				blk_start_idx = idx;
310 				in_block = 1;
311 			}
312 		} else {
313 			u64 umr_offset = idx & umr_block_mask;
314 
315 			if (in_block && umr_offset == 0) {
316 				mlx5r_umr_update_xlt(mr, blk_start_idx,
317 						     idx - blk_start_idx, 0,
318 						     MLX5_IB_UPD_XLT_ZAP |
319 						     MLX5_IB_UPD_XLT_ATOMIC);
320 				in_block = 0;
321 				/* Count page invalidations */
322 				invalidations += idx - blk_start_idx + 1;
323 			}
324 		}
325 	}
326 	if (in_block) {
327 		mlx5r_umr_update_xlt(mr, blk_start_idx,
328 				     idx - blk_start_idx + 1, 0,
329 				     MLX5_IB_UPD_XLT_ZAP |
330 				     MLX5_IB_UPD_XLT_ATOMIC);
331 		/* Count page invalidations */
332 		invalidations += idx - blk_start_idx + 1;
333 	}
334 
335 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
336 
337 	/*
338 	 * We are now sure that the device will not access the
339 	 * memory. We can safely unmap it, and mark it as dirty if
340 	 * needed.
341 	 */
342 
343 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
344 
345 	if (unlikely(!umem_odp->npages && mr->parent))
346 		destroy_unused_implicit_child_mr(mr);
347 out:
348 	mutex_unlock(&umem_odp->umem_mutex);
349 	return true;
350 }
351 
352 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
353 	.invalidate = mlx5_ib_invalidate_range,
354 };
355 
internal_fill_odp_caps(struct mlx5_ib_dev * dev)356 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
357 {
358 	struct ib_odp_caps *caps = &dev->odp_caps;
359 
360 	memset(caps, 0, sizeof(*caps));
361 
362 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
363 		return;
364 
365 	caps->general_caps = IB_ODP_SUPPORT;
366 
367 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
368 		dev->odp_max_size = U64_MAX;
369 	else
370 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
371 
372 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
373 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
374 
375 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
376 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
377 
378 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
379 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
380 
381 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
382 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
383 
384 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
385 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
386 
387 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
388 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
389 
390 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
391 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
392 
393 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
394 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
395 
396 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
397 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
398 
399 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
400 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
401 
402 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
403 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
404 
405 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
406 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
407 
408 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
409 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
410 
411 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
412 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
413 
414 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
415 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
416 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
417 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
418 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
419 }
420 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)421 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
422 				      struct mlx5_pagefault *pfault,
423 				      int error)
424 {
425 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
426 		     pfault->wqe.wq_num : pfault->token;
427 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
428 	void *info;
429 	int err;
430 
431 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
432 
433 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
434 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
435 				    page_fault_info.mem_page_fault_info);
436 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
437 			 pfault->token & 0xffffffff);
438 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
439 			 (pfault->token >> 32) & 0xffff);
440 		MLX5_SET(mem_page_fault_info, info, error, !!error);
441 	} else {
442 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
443 				    page_fault_info.trans_page_fault_info);
444 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
445 			 pfault->type);
446 		MLX5_SET(trans_page_fault_info, info, fault_token,
447 			 pfault->token);
448 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
449 		MLX5_SET(trans_page_fault_info, info, error, !!error);
450 	}
451 
452 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
453 	if (err)
454 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
455 			    wq_num, err);
456 }
457 
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)458 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
459 						unsigned long idx)
460 {
461 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
462 	struct ib_umem_odp *odp;
463 	struct mlx5_ib_mr *mr;
464 	struct mlx5_ib_mr *ret;
465 	int err;
466 
467 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
468 				      idx * MLX5_IMR_MTT_SIZE,
469 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
470 	if (IS_ERR(odp))
471 		return ERR_CAST(odp);
472 
473 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
474 				 MLX5_MKC_ACCESS_MODE_MTT,
475 				 MLX5_IMR_MTT_ENTRIES);
476 	if (IS_ERR(mr)) {
477 		ib_umem_odp_release(odp);
478 		return mr;
479 	}
480 
481 	mr->access_flags = imr->access_flags;
482 	mr->ibmr.pd = imr->ibmr.pd;
483 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
484 	mr->umem = &odp->umem;
485 	mr->ibmr.lkey = mr->mmkey.key;
486 	mr->ibmr.rkey = mr->mmkey.key;
487 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
488 	mr->parent = imr;
489 	odp->private = mr;
490 
491 	/*
492 	 * First refcount is owned by the xarray and second refconut
493 	 * is returned to the caller.
494 	 */
495 	refcount_set(&mr->mmkey.usecount, 2);
496 
497 	err = mlx5r_umr_update_xlt(mr, 0,
498 				   MLX5_IMR_MTT_ENTRIES,
499 				   PAGE_SHIFT,
500 				   MLX5_IB_UPD_XLT_ZAP |
501 				   MLX5_IB_UPD_XLT_ENABLE);
502 	if (err) {
503 		ret = ERR_PTR(err);
504 		goto out_mr;
505 	}
506 
507 	xa_lock(&imr->implicit_children);
508 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
509 			   GFP_KERNEL);
510 	if (unlikely(ret)) {
511 		if (xa_is_err(ret)) {
512 			ret = ERR_PTR(xa_err(ret));
513 			goto out_lock;
514 		}
515 		/*
516 		 * Another thread beat us to creating the child mr, use
517 		 * theirs.
518 		 */
519 		refcount_inc(&ret->mmkey.usecount);
520 		goto out_lock;
521 	}
522 
523 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
524 		ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
525 				 &mr->mmkey, GFP_KERNEL);
526 		if (xa_is_err(ret)) {
527 			ret = ERR_PTR(xa_err(ret));
528 			__xa_erase(&imr->implicit_children, idx);
529 			goto out_lock;
530 		}
531 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
532 	}
533 	xa_unlock(&imr->implicit_children);
534 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
535 	return mr;
536 
537 out_lock:
538 	xa_unlock(&imr->implicit_children);
539 out_mr:
540 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
541 	return ret;
542 }
543 
544 /*
545  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
546  * and each implicit MR needs to assign a private null mkey to get the page
547  * faults on.
548  * The null mkey is created with the properties to enable getting the page
549  * fault for every time it is accessed and having all relevant access flags.
550  */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)551 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
552 				       struct mlx5_ib_mr *imr,
553 				       struct mlx5_ib_pd *pd)
554 {
555 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
556 	void *mkc;
557 	u32 *in;
558 	int err;
559 
560 	in = kzalloc(inlen, GFP_KERNEL);
561 	if (!in)
562 		return -ENOMEM;
563 
564 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
565 	MLX5_SET(create_mkey_in, in, pg_access, 1);
566 
567 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
568 	MLX5_SET(mkc, mkc, a, 1);
569 	MLX5_SET(mkc, mkc, rw, 1);
570 	MLX5_SET(mkc, mkc, rr, 1);
571 	MLX5_SET(mkc, mkc, lw, 1);
572 	MLX5_SET(mkc, mkc, lr, 1);
573 	MLX5_SET(mkc, mkc, free, 0);
574 	MLX5_SET(mkc, mkc, umr_en, 0);
575 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
576 
577 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
578 	MLX5_SET(mkc, mkc, log_page_size, 61);
579 	MLX5_SET(mkc, mkc, length64, 1);
580 	MLX5_SET(mkc, mkc, pd, pd->pdn);
581 	MLX5_SET64(mkc, mkc, start_addr, 0);
582 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
583 
584 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
585 	if (err)
586 		goto free_in;
587 
588 	imr->null_mmkey.type = MLX5_MKEY_NULL;
589 
590 free_in:
591 	kfree(in);
592 	return err;
593 }
594 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)595 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
596 					     int access_flags)
597 {
598 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
599 	struct ib_umem_odp *umem_odp;
600 	struct mlx5_ib_mr *imr;
601 	int err;
602 
603 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
604 		return ERR_PTR(-EOPNOTSUPP);
605 
606 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
607 	if (IS_ERR(umem_odp))
608 		return ERR_CAST(umem_odp);
609 
610 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
611 				  mlx5_imr_ksm_entries);
612 	if (IS_ERR(imr)) {
613 		ib_umem_odp_release(umem_odp);
614 		return imr;
615 	}
616 
617 	imr->access_flags = access_flags;
618 	imr->ibmr.pd = &pd->ibpd;
619 	imr->ibmr.iova = 0;
620 	imr->umem = &umem_odp->umem;
621 	imr->ibmr.lkey = imr->mmkey.key;
622 	imr->ibmr.rkey = imr->mmkey.key;
623 	imr->ibmr.device = &dev->ib_dev;
624 	imr->is_odp_implicit = true;
625 	xa_init(&imr->implicit_children);
626 
627 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
628 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
629 		if (err)
630 			goto out_mr;
631 
632 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
633 		if (err)
634 			goto out_mr;
635 	}
636 
637 	err = mlx5r_umr_update_xlt(imr, 0,
638 				   mlx5_imr_ksm_entries,
639 				   MLX5_KSM_PAGE_SHIFT,
640 				   MLX5_IB_UPD_XLT_INDIRECT |
641 				   MLX5_IB_UPD_XLT_ZAP |
642 				   MLX5_IB_UPD_XLT_ENABLE);
643 	if (err)
644 		goto out_mr;
645 
646 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
647 	if (err)
648 		goto out_mr;
649 
650 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
651 	return imr;
652 out_mr:
653 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
654 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
655 	return ERR_PTR(err);
656 }
657 
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)658 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
659 {
660 	struct mlx5_ib_mr *mtt;
661 	unsigned long idx;
662 
663 	/*
664 	 * If this is an implicit MR it is already invalidated so we can just
665 	 * delete the children mkeys.
666 	 */
667 	xa_for_each(&mr->implicit_children, idx, mtt) {
668 		xa_erase(&mr->implicit_children, idx);
669 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
670 	}
671 
672 	if (mr->null_mmkey.key) {
673 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
674 			 mlx5_base_mkey(mr->null_mmkey.key));
675 
676 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
677 				       mr->null_mmkey.key);
678 	}
679 }
680 
681 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
682 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
683 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)684 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
685 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
686 			     u32 flags)
687 {
688 	int page_shift, ret, np;
689 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
690 	u64 access_mask;
691 	u64 start_idx;
692 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
693 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
694 
695 	if (flags & MLX5_PF_FLAGS_ENABLE)
696 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
697 
698 	page_shift = odp->page_shift;
699 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
700 	access_mask = ODP_READ_ALLOWED_BIT;
701 
702 	if (odp->umem.writable && !downgrade)
703 		access_mask |= ODP_WRITE_ALLOWED_BIT;
704 
705 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
706 	if (np < 0)
707 		return np;
708 
709 	/*
710 	 * No need to check whether the MTTs really belong to this MR, since
711 	 * ib_umem_odp_map_dma_and_lock already checks this.
712 	 */
713 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
714 	mutex_unlock(&odp->umem_mutex);
715 
716 	if (ret < 0) {
717 		if (ret != -EAGAIN)
718 			mlx5_ib_err(mr_to_mdev(mr),
719 				    "Failed to update mkey page tables\n");
720 		goto out;
721 	}
722 
723 	if (bytes_mapped) {
724 		u32 new_mappings = (np << page_shift) -
725 			(user_va - round_down(user_va, 1 << page_shift));
726 
727 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
728 	}
729 
730 	return np << (page_shift - PAGE_SHIFT);
731 
732 out:
733 	return ret;
734 }
735 
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)736 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
737 				 struct ib_umem_odp *odp_imr, u64 user_va,
738 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
739 {
740 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
741 	unsigned long upd_start_idx = end_idx + 1;
742 	unsigned long upd_len = 0;
743 	unsigned long npages = 0;
744 	int err;
745 	int ret;
746 
747 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
748 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
749 		return -EFAULT;
750 
751 	/* Fault each child mr that intersects with our interval. */
752 	while (bcnt) {
753 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
754 		struct ib_umem_odp *umem_odp;
755 		struct mlx5_ib_mr *mtt;
756 		u64 len;
757 
758 		xa_lock(&imr->implicit_children);
759 		mtt = xa_load(&imr->implicit_children, idx);
760 		if (unlikely(!mtt)) {
761 			xa_unlock(&imr->implicit_children);
762 			mtt = implicit_get_child_mr(imr, idx);
763 			if (IS_ERR(mtt)) {
764 				ret = PTR_ERR(mtt);
765 				goto out;
766 			}
767 			upd_start_idx = min(upd_start_idx, idx);
768 			upd_len = idx - upd_start_idx + 1;
769 		} else {
770 			refcount_inc(&mtt->mmkey.usecount);
771 			xa_unlock(&imr->implicit_children);
772 		}
773 
774 		umem_odp = to_ib_umem_odp(mtt->umem);
775 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
776 		      user_va;
777 
778 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
779 					bytes_mapped, flags);
780 
781 		mlx5r_deref_odp_mkey(&mtt->mmkey);
782 
783 		if (ret < 0)
784 			goto out;
785 		user_va += len;
786 		bcnt -= len;
787 		npages += ret;
788 	}
789 
790 	ret = npages;
791 
792 	/*
793 	 * Any time the implicit_children are changed we must perform an
794 	 * update of the xlt before exiting to ensure the HW and the
795 	 * implicit_children remains synchronized.
796 	 */
797 out:
798 	if (likely(!upd_len))
799 		return ret;
800 
801 	/*
802 	 * Notice this is not strictly ordered right, the KSM is updated after
803 	 * the implicit_children is updated, so a parallel page fault could
804 	 * see a MR that is not yet visible in the KSM.  This is similar to a
805 	 * parallel page fault seeing a MR that is being concurrently removed
806 	 * from the KSM. Both of these improbable situations are resolved
807 	 * safely by resuming the HW and then taking another page fault. The
808 	 * next pagefault handler will see the new information.
809 	 */
810 	mutex_lock(&odp_imr->umem_mutex);
811 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
812 				   MLX5_IB_UPD_XLT_INDIRECT |
813 					  MLX5_IB_UPD_XLT_ATOMIC);
814 	mutex_unlock(&odp_imr->umem_mutex);
815 	if (err) {
816 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
817 		return err;
818 	}
819 	return ret;
820 }
821 
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)822 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
823 			       u32 *bytes_mapped, u32 flags)
824 {
825 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
826 	u32 xlt_flags = 0;
827 	int err;
828 	unsigned long page_size;
829 
830 	if (flags & MLX5_PF_FLAGS_ENABLE)
831 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
832 
833 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
834 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
835 	if (err) {
836 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
837 		return err;
838 	}
839 
840 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
841 	if (!page_size) {
842 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
843 		err = -EINVAL;
844 	} else {
845 		if (mr->data_direct)
846 			err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
847 		else
848 			err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
849 	}
850 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
851 
852 	if (err)
853 		return err;
854 
855 	if (bytes_mapped)
856 		*bytes_mapped += bcnt;
857 
858 	return ib_umem_num_pages(mr->umem);
859 }
860 
861 /*
862  * Returns:
863  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
864  *           not accessible, or the MR is no longer valid.
865  *  -EAGAIN/-ENOMEM: The operation should be retried
866  *
867  *  -EINVAL/others: General internal malfunction
868  *  >0: Number of pages mapped
869  */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)870 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
871 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
872 {
873 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
874 
875 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
876 		return -EFAULT;
877 
878 	if (mr->umem->is_dmabuf)
879 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
880 
881 	if (!odp->is_implicit_odp) {
882 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
883 		u64 user_va;
884 
885 		if (check_add_overflow(offset, (u64)odp->umem.address,
886 				       &user_va))
887 			return -EFAULT;
888 
889 		if (permissive_fault) {
890 			if (user_va < ib_umem_start(odp))
891 				user_va = ib_umem_start(odp);
892 			if ((user_va + bcnt) > ib_umem_end(odp))
893 				bcnt = ib_umem_end(odp) - user_va;
894 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
895 				    ib_umem_end(odp) - user_va < bcnt))
896 			return -EFAULT;
897 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
898 					 flags);
899 	}
900 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
901 				     flags);
902 }
903 
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)904 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
905 {
906 	int ret;
907 
908 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
909 				mr->umem->length, NULL,
910 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
911 	return ret >= 0 ? 0 : ret;
912 }
913 
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)914 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
915 {
916 	int ret;
917 
918 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
919 				  MLX5_PF_FLAGS_ENABLE);
920 
921 	return ret >= 0 ? 0 : ret;
922 }
923 
924 struct pf_frame {
925 	struct pf_frame *next;
926 	u32 key;
927 	u64 io_virt;
928 	size_t bcnt;
929 	int depth;
930 };
931 
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)932 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
933 {
934 	if (!mmkey)
935 		return false;
936 	if (mmkey->type == MLX5_MKEY_MW ||
937 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
938 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
939 	return mmkey->key == key;
940 }
941 
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)942 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
943 {
944 	struct mlx5_ib_mkey *mmkey;
945 
946 	xa_lock(&dev->odp_mkeys);
947 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
948 	if (!mmkey) {
949 		mmkey = ERR_PTR(-ENOENT);
950 		goto out;
951 	}
952 	if (!mkey_is_eq(mmkey, key)) {
953 		mmkey = ERR_PTR(-EFAULT);
954 		goto out;
955 	}
956 	refcount_inc(&mmkey->usecount);
957 out:
958 	xa_unlock(&dev->odp_mkeys);
959 
960 	return mmkey;
961 }
962 
963 /*
964  * Handle a single data segment in a page-fault WQE or RDMA region.
965  *
966  * Returns zero on success. The caller may continue to the next data segment.
967  * Can return the following error codes:
968  * -EAGAIN to designate a temporary error. The caller will abort handling the
969  *  page fault and resolve it.
970  * -EFAULT when there's an error mapping the requested pages. The caller will
971  *  abort the page fault handling.
972  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)973 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
974 					 struct ib_pd *pd, u32 key,
975 					 u64 io_virt, size_t bcnt,
976 					 u32 *bytes_committed,
977 					 u32 *bytes_mapped)
978 {
979 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
980 	struct pf_frame *head = NULL, *frame;
981 	struct mlx5_ib_mkey *mmkey;
982 	struct mlx5_ib_mr *mr;
983 	struct mlx5_klm *pklm;
984 	u32 *out = NULL;
985 	size_t offset;
986 
987 	io_virt += *bytes_committed;
988 	bcnt -= *bytes_committed;
989 next_mr:
990 	mmkey = find_odp_mkey(dev, key);
991 	if (IS_ERR(mmkey)) {
992 		ret = PTR_ERR(mmkey);
993 		if (ret == -ENOENT) {
994 			mlx5_ib_dbg(
995 				dev,
996 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
997 				key);
998 			if (bytes_mapped)
999 				*bytes_mapped += bcnt;
1000 			/*
1001 			 * The user could specify a SGL with multiple lkeys and
1002 			 * only some of them are ODP. Treat the non-ODP ones as
1003 			 * fully faulted.
1004 			 */
1005 			ret = 0;
1006 		}
1007 		goto end;
1008 	}
1009 
1010 	switch (mmkey->type) {
1011 	case MLX5_MKEY_MR:
1012 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1013 
1014 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1015 				  (io_virt & PAGE_MASK)) >>
1016 				 PAGE_SHIFT;
1017 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1018 		if (ret < 0)
1019 			goto end;
1020 
1021 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1022 
1023 		if (ret < pages_in_range) {
1024 			ret = -EFAULT;
1025 			goto end;
1026 		}
1027 
1028 		ret = 0;
1029 		break;
1030 
1031 	case MLX5_MKEY_MW:
1032 	case MLX5_MKEY_INDIRECT_DEVX:
1033 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1034 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1035 			ret = -EFAULT;
1036 			goto end;
1037 		}
1038 
1039 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1040 			sizeof(*pklm) * (mmkey->ndescs - 2);
1041 
1042 		if (outlen > cur_outlen) {
1043 			kfree(out);
1044 			out = kzalloc(outlen, GFP_KERNEL);
1045 			if (!out) {
1046 				ret = -ENOMEM;
1047 				goto end;
1048 			}
1049 			cur_outlen = outlen;
1050 		}
1051 
1052 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1053 						       bsf0_klm0_pas_mtt0_1);
1054 
1055 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1056 		if (ret)
1057 			goto end;
1058 
1059 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1060 					      memory_key_mkey_entry.start_addr);
1061 
1062 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1063 			if (offset >= be32_to_cpu(pklm->bcount)) {
1064 				offset -= be32_to_cpu(pklm->bcount);
1065 				continue;
1066 			}
1067 
1068 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1069 			if (!frame) {
1070 				ret = -ENOMEM;
1071 				goto end;
1072 			}
1073 
1074 			frame->key = be32_to_cpu(pklm->key);
1075 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1076 			frame->bcnt = min_t(size_t, bcnt,
1077 					    be32_to_cpu(pklm->bcount) - offset);
1078 			frame->depth = depth + 1;
1079 			frame->next = head;
1080 			head = frame;
1081 
1082 			bcnt -= frame->bcnt;
1083 			offset = 0;
1084 		}
1085 		break;
1086 
1087 	default:
1088 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1089 		ret = -EFAULT;
1090 		goto end;
1091 	}
1092 
1093 	if (head) {
1094 		frame = head;
1095 		head = frame->next;
1096 
1097 		key = frame->key;
1098 		io_virt = frame->io_virt;
1099 		bcnt = frame->bcnt;
1100 		depth = frame->depth;
1101 		kfree(frame);
1102 
1103 		mlx5r_deref_odp_mkey(mmkey);
1104 		goto next_mr;
1105 	}
1106 
1107 end:
1108 	if (!IS_ERR(mmkey))
1109 		mlx5r_deref_odp_mkey(mmkey);
1110 	while (head) {
1111 		frame = head;
1112 		head = frame->next;
1113 		kfree(frame);
1114 	}
1115 	kfree(out);
1116 
1117 	*bytes_committed = 0;
1118 	return ret;
1119 }
1120 
1121 /*
1122  * Parse a series of data segments for page fault handling.
1123  *
1124  * @dev:  Pointer to mlx5 IB device
1125  * @pfault: contains page fault information.
1126  * @wqe: points at the first data segment in the WQE.
1127  * @wqe_end: points after the end of the WQE.
1128  * @bytes_mapped: receives the number of bytes that the function was able to
1129  *                map. This allows the caller to decide intelligently whether
1130  *                enough memory was mapped to resolve the page fault
1131  *                successfully (e.g. enough for the next MTU, or the entire
1132  *                WQE).
1133  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1134  *                   the committed bytes).
1135  * @receive_queue: receive WQE end of sg list
1136  *
1137  * Returns zero for success or a negative error code.
1138  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1139 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1140 				   struct mlx5_pagefault *pfault,
1141 				   void *wqe,
1142 				   void *wqe_end, u32 *bytes_mapped,
1143 				   u32 *total_wqe_bytes, bool receive_queue)
1144 {
1145 	int ret = 0;
1146 	u64 io_virt;
1147 	__be32 key;
1148 	u32 byte_count;
1149 	size_t bcnt;
1150 	int inline_segment;
1151 
1152 	if (bytes_mapped)
1153 		*bytes_mapped = 0;
1154 	if (total_wqe_bytes)
1155 		*total_wqe_bytes = 0;
1156 
1157 	while (wqe < wqe_end) {
1158 		struct mlx5_wqe_data_seg *dseg = wqe;
1159 
1160 		io_virt = be64_to_cpu(dseg->addr);
1161 		key = dseg->lkey;
1162 		byte_count = be32_to_cpu(dseg->byte_count);
1163 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1164 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1165 
1166 		if (inline_segment) {
1167 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1168 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1169 				     16);
1170 		} else {
1171 			wqe += sizeof(*dseg);
1172 		}
1173 
1174 		/* receive WQE end of sg list. */
1175 		if (receive_queue && bcnt == 0 &&
1176 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1177 		    io_virt == 0)
1178 			break;
1179 
1180 		if (!inline_segment && total_wqe_bytes) {
1181 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1182 					pfault->bytes_committed);
1183 		}
1184 
1185 		/* A zero length data segment designates a length of 2GB. */
1186 		if (bcnt == 0)
1187 			bcnt = 1U << 31;
1188 
1189 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1190 			pfault->bytes_committed -=
1191 				min_t(size_t, bcnt,
1192 				      pfault->bytes_committed);
1193 			continue;
1194 		}
1195 
1196 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1197 						    io_virt, bcnt,
1198 						    &pfault->bytes_committed,
1199 						    bytes_mapped);
1200 		if (ret < 0)
1201 			break;
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 /*
1208  * Parse initiator WQE. Advances the wqe pointer to point at the
1209  * scatter-gather list, and set wqe_end to the end of the WQE.
1210  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1211 static int mlx5_ib_mr_initiator_pfault_handler(
1212 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1213 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1214 {
1215 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1216 	u16 wqe_index = pfault->wqe.wqe_index;
1217 	struct mlx5_base_av *av;
1218 	unsigned ds, opcode;
1219 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1220 
1221 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1222 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1223 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1224 			    ds, wqe_length);
1225 		return -EFAULT;
1226 	}
1227 
1228 	if (ds == 0) {
1229 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1230 			    wqe_index, qpn);
1231 		return -EFAULT;
1232 	}
1233 
1234 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1235 	*wqe += sizeof(*ctrl);
1236 
1237 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1238 		 MLX5_WQE_CTRL_OPCODE_MASK;
1239 
1240 	if (qp->type == IB_QPT_XRC_INI)
1241 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1242 
1243 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1244 		av = *wqe;
1245 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1246 			*wqe += sizeof(struct mlx5_av);
1247 		else
1248 			*wqe += sizeof(struct mlx5_base_av);
1249 	}
1250 
1251 	switch (opcode) {
1252 	case MLX5_OPCODE_RDMA_WRITE:
1253 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1254 	case MLX5_OPCODE_RDMA_READ:
1255 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1256 		break;
1257 	case MLX5_OPCODE_ATOMIC_CS:
1258 	case MLX5_OPCODE_ATOMIC_FA:
1259 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1260 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1261 		break;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Parse responder WQE and set wqe_end to the end of the WQE.
1269  */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1270 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1271 						   struct mlx5_ib_srq *srq,
1272 						   void **wqe, void **wqe_end,
1273 						   int wqe_length)
1274 {
1275 	int wqe_size = 1 << srq->msrq.wqe_shift;
1276 
1277 	if (wqe_size > wqe_length) {
1278 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1279 		return -EFAULT;
1280 	}
1281 
1282 	*wqe_end = *wqe + wqe_size;
1283 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1284 
1285 	return 0;
1286 }
1287 
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1288 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1289 						  struct mlx5_ib_qp *qp,
1290 						  void *wqe, void **wqe_end,
1291 						  int wqe_length)
1292 {
1293 	struct mlx5_ib_wq *wq = &qp->rq;
1294 	int wqe_size = 1 << wq->wqe_shift;
1295 
1296 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1297 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1298 		return -EFAULT;
1299 	}
1300 
1301 	if (wqe_size > wqe_length) {
1302 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1303 		return -EFAULT;
1304 	}
1305 
1306 	*wqe_end = wqe + wqe_size;
1307 
1308 	return 0;
1309 }
1310 
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1311 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1312 						       u32 wq_num, int pf_type)
1313 {
1314 	struct mlx5_core_rsc_common *common = NULL;
1315 	struct mlx5_core_srq *srq;
1316 
1317 	switch (pf_type) {
1318 	case MLX5_WQE_PF_TYPE_RMP:
1319 		srq = mlx5_cmd_get_srq(dev, wq_num);
1320 		if (srq)
1321 			common = &srq->common;
1322 		break;
1323 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1324 	case MLX5_WQE_PF_TYPE_RESP:
1325 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1326 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1327 		break;
1328 	default:
1329 		break;
1330 	}
1331 
1332 	return common;
1333 }
1334 
res_to_qp(struct mlx5_core_rsc_common * res)1335 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1336 {
1337 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1338 
1339 	return to_mibqp(mqp);
1340 }
1341 
res_to_srq(struct mlx5_core_rsc_common * res)1342 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1343 {
1344 	struct mlx5_core_srq *msrq =
1345 		container_of(res, struct mlx5_core_srq, common);
1346 
1347 	return to_mibsrq(msrq);
1348 }
1349 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1350 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1351 					  struct mlx5_pagefault *pfault)
1352 {
1353 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1354 	u16 wqe_index = pfault->wqe.wqe_index;
1355 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1356 	u32 bytes_mapped, total_wqe_bytes;
1357 	struct mlx5_core_rsc_common *res;
1358 	int resume_with_error = 1;
1359 	struct mlx5_ib_qp *qp;
1360 	size_t bytes_copied;
1361 	int ret = 0;
1362 
1363 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1364 	if (!res) {
1365 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1366 		return;
1367 	}
1368 
1369 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1370 	    res->res != MLX5_RES_XSRQ) {
1371 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1372 			    pfault->type);
1373 		goto resolve_page_fault;
1374 	}
1375 
1376 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1377 	if (!wqe_start) {
1378 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1379 		goto resolve_page_fault;
1380 	}
1381 
1382 	wqe = wqe_start;
1383 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1384 	if (qp && sq) {
1385 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1386 					  &bytes_copied);
1387 		if (ret)
1388 			goto read_user;
1389 		ret = mlx5_ib_mr_initiator_pfault_handler(
1390 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1391 	} else if (qp && !sq) {
1392 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1393 					  &bytes_copied);
1394 		if (ret)
1395 			goto read_user;
1396 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1397 			dev, qp, wqe, &wqe_end, bytes_copied);
1398 	} else if (!qp) {
1399 		struct mlx5_ib_srq *srq = res_to_srq(res);
1400 
1401 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1402 					   &bytes_copied);
1403 		if (ret)
1404 			goto read_user;
1405 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1406 			dev, srq, &wqe, &wqe_end, bytes_copied);
1407 	}
1408 
1409 	if (ret < 0 || wqe >= wqe_end)
1410 		goto resolve_page_fault;
1411 
1412 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1413 				      &total_wqe_bytes, !sq);
1414 	if (ret == -EAGAIN)
1415 		goto out;
1416 
1417 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1418 		goto resolve_page_fault;
1419 
1420 out:
1421 	ret = 0;
1422 	resume_with_error = 0;
1423 
1424 read_user:
1425 	if (ret)
1426 		mlx5_ib_err(
1427 			dev,
1428 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1429 			ret, wqe_index, pfault->token);
1430 
1431 resolve_page_fault:
1432 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1433 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1434 		    pfault->wqe.wq_num, resume_with_error,
1435 		    pfault->type);
1436 	mlx5_core_res_put(res);
1437 	free_page((unsigned long)wqe_start);
1438 }
1439 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1440 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1441 					   struct mlx5_pagefault *pfault)
1442 {
1443 	u64 address;
1444 	u32 length;
1445 	u32 prefetch_len = pfault->bytes_committed;
1446 	int prefetch_activated = 0;
1447 	u32 rkey = pfault->rdma.r_key;
1448 	int ret;
1449 
1450 	/* The RDMA responder handler handles the page fault in two parts.
1451 	 * First it brings the necessary pages for the current packet
1452 	 * (and uses the pfault context), and then (after resuming the QP)
1453 	 * prefetches more pages. The second operation cannot use the pfault
1454 	 * context and therefore uses the dummy_pfault context allocated on
1455 	 * the stack */
1456 	pfault->rdma.rdma_va += pfault->bytes_committed;
1457 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1458 					 pfault->rdma.rdma_op_len);
1459 	pfault->bytes_committed = 0;
1460 
1461 	address = pfault->rdma.rdma_va;
1462 	length  = pfault->rdma.rdma_op_len;
1463 
1464 	/* For some operations, the hardware cannot tell the exact message
1465 	 * length, and in those cases it reports zero. Use prefetch
1466 	 * logic. */
1467 	if (length == 0) {
1468 		prefetch_activated = 1;
1469 		length = pfault->rdma.packet_size;
1470 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1471 	}
1472 
1473 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1474 					    &pfault->bytes_committed, NULL);
1475 	if (ret == -EAGAIN) {
1476 		/* We're racing with an invalidation, don't prefetch */
1477 		prefetch_activated = 0;
1478 	} else if (ret < 0) {
1479 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1480 		if (ret != -ENOENT)
1481 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1482 				    ret, pfault->token, pfault->type);
1483 		return;
1484 	}
1485 
1486 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1487 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1488 		    pfault->token, pfault->type,
1489 		    prefetch_activated);
1490 
1491 	/* At this point, there might be a new pagefault already arriving in
1492 	 * the eq, switch to the dummy pagefault for the rest of the
1493 	 * processing. We're still OK with the objects being alive as the
1494 	 * work-queue is being fenced. */
1495 
1496 	if (prefetch_activated) {
1497 		u32 bytes_committed = 0;
1498 
1499 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1500 						    prefetch_len,
1501 						    &bytes_committed, NULL);
1502 		if (ret < 0 && ret != -EAGAIN) {
1503 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1504 				    ret, pfault->token, address, prefetch_len);
1505 		}
1506 	}
1507 }
1508 
1509 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1510 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1511 					     struct mlx5_pagefault *pfault)
1512 {
1513 	u64 prefetch_va =
1514 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1515 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1516 			       pfault->memory.fault_byte_count +
1517 			       pfault->memory.prefetch_after_byte_count;
1518 	struct mlx5_ib_mkey *mmkey;
1519 	struct mlx5_ib_mr *mr, *child_mr;
1520 	int ret = 0;
1521 
1522 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1523 	if (IS_ERR(mmkey))
1524 		goto err;
1525 
1526 	switch (mmkey->type) {
1527 	case MLX5_MKEY_IMPLICIT_CHILD:
1528 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1529 		mr = child_mr->parent;
1530 		break;
1531 	case MLX5_MKEY_NULL:
1532 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1533 		break;
1534 	default:
1535 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1536 		break;
1537 	}
1538 
1539 	/* If prefetch fails, handle only demanded page fault */
1540 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1541 	if (ret < 0) {
1542 		ret = pagefault_mr(mr, pfault->memory.va,
1543 				   pfault->memory.fault_byte_count, NULL, 0,
1544 				   true);
1545 		if (ret < 0)
1546 			goto err;
1547 	}
1548 
1549 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1550 	mlx5r_deref_odp_mkey(mmkey);
1551 
1552 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1553 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1554 
1555 	mlx5_ib_dbg(
1556 		dev,
1557 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1558 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1559 			"" :
1560 			"without resume cmd",
1561 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1562 		pfault->memory.fault_byte_count);
1563 
1564 	return;
1565 
1566 err:
1567 	if (!IS_ERR(mmkey))
1568 		mlx5r_deref_odp_mkey(mmkey);
1569 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1570 	mlx5_ib_dbg(
1571 		dev,
1572 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1573 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1574 		pfault->memory.fault_byte_count, ret);
1575 }
1576 
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1577 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1578 {
1579 	u8 event_subtype = pfault->event_subtype;
1580 
1581 	switch (event_subtype) {
1582 	case MLX5_PFAULT_SUBTYPE_WQE:
1583 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1584 		break;
1585 	case MLX5_PFAULT_SUBTYPE_RDMA:
1586 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1587 		break;
1588 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1589 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1590 		break;
1591 	default:
1592 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1593 			    event_subtype);
1594 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1595 	}
1596 }
1597 
mlx5_ib_eqe_pf_action(struct work_struct * work)1598 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1599 {
1600 	struct mlx5_pagefault *pfault = container_of(work,
1601 						     struct mlx5_pagefault,
1602 						     work);
1603 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1604 
1605 	mlx5_ib_pfault(eq->dev, pfault);
1606 	mempool_free(pfault, eq->pool);
1607 }
1608 
1609 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1610 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1611 {
1612 	struct mlx5_eqe_page_fault *pf_eqe;
1613 	struct mlx5_pagefault *pfault;
1614 	struct mlx5_eqe *eqe;
1615 	int cc = 0;
1616 
1617 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1618 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1619 		if (!pfault) {
1620 			schedule_work(&eq->work);
1621 			break;
1622 		}
1623 
1624 		pf_eqe = &eqe->data.page_fault;
1625 		pfault->event_subtype = eqe->sub_type;
1626 
1627 		switch (eqe->sub_type) {
1628 		case MLX5_PFAULT_SUBTYPE_RDMA:
1629 			/* RDMA based event */
1630 			pfault->bytes_committed =
1631 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1632 			pfault->type =
1633 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1634 			pfault->token =
1635 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1636 				MLX5_24BIT_MASK;
1637 			pfault->rdma.r_key =
1638 				be32_to_cpu(pf_eqe->rdma.r_key);
1639 			pfault->rdma.packet_size =
1640 				be16_to_cpu(pf_eqe->rdma.packet_length);
1641 			pfault->rdma.rdma_op_len =
1642 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1643 			pfault->rdma.rdma_va =
1644 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1645 			mlx5_ib_dbg(
1646 				eq->dev,
1647 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1648 				eqe->sub_type, pfault->bytes_committed,
1649 				pfault->type, pfault->token,
1650 				pfault->rdma.r_key);
1651 			mlx5_ib_dbg(eq->dev,
1652 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1653 				    pfault->rdma.rdma_op_len,
1654 				    pfault->rdma.rdma_va);
1655 			break;
1656 
1657 		case MLX5_PFAULT_SUBTYPE_WQE:
1658 			/* WQE based event */
1659 			pfault->bytes_committed =
1660 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1661 			pfault->type =
1662 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1663 			pfault->token =
1664 				be32_to_cpu(pf_eqe->wqe.token);
1665 			pfault->wqe.wq_num =
1666 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1667 				MLX5_24BIT_MASK;
1668 			pfault->wqe.wqe_index =
1669 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1670 			pfault->wqe.packet_size =
1671 				be16_to_cpu(pf_eqe->wqe.packet_length);
1672 			mlx5_ib_dbg(
1673 				eq->dev,
1674 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1675 				eqe->sub_type, pfault->bytes_committed,
1676 				pfault->type, pfault->token, pfault->wqe.wq_num,
1677 				pfault->wqe.wqe_index);
1678 			break;
1679 
1680 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1681 			/* Memory based event */
1682 			pfault->bytes_committed = 0;
1683 			pfault->token =
1684 				be32_to_cpu(pf_eqe->memory.token31_0) |
1685 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1686 				 << 32);
1687 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1688 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1689 			pfault->memory.fault_byte_count = (be32_to_cpu(
1690 				pf_eqe->memory.demand_fault_pages) >> 12) *
1691 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1692 			pfault->memory.prefetch_before_byte_count =
1693 				be16_to_cpu(
1694 					pf_eqe->memory.pre_demand_fault_pages) *
1695 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1696 			pfault->memory.prefetch_after_byte_count =
1697 				be16_to_cpu(
1698 					pf_eqe->memory.post_demand_fault_pages) *
1699 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1700 			pfault->memory.flags = pf_eqe->memory.flags;
1701 			mlx5_ib_dbg(
1702 				eq->dev,
1703 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1704 				eqe->sub_type, pfault->token,
1705 				pfault->memory.mkey,
1706 				pfault->memory.fault_byte_count,
1707 				pfault->memory.va, pfault->memory.flags);
1708 			mlx5_ib_dbg(
1709 				eq->dev,
1710 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1711 				pfault->memory.prefetch_before_byte_count,
1712 				pfault->memory.prefetch_after_byte_count);
1713 			break;
1714 
1715 		default:
1716 			mlx5_ib_warn(eq->dev,
1717 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1718 				     eqe->sub_type);
1719 			/* Unsupported page faults should still be
1720 			 * resolved by the page fault handler
1721 			 */
1722 		}
1723 
1724 		pfault->eq = eq;
1725 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1726 		queue_work(eq->wq, &pfault->work);
1727 
1728 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1729 	}
1730 
1731 	mlx5_eq_update_ci(eq->core, cc, 1);
1732 }
1733 
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1734 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1735 			     void *data)
1736 {
1737 	struct mlx5_ib_pf_eq *eq =
1738 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1739 	unsigned long flags;
1740 
1741 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1742 		mlx5_ib_eq_pf_process(eq);
1743 		spin_unlock_irqrestore(&eq->lock, flags);
1744 	} else {
1745 		schedule_work(&eq->work);
1746 	}
1747 
1748 	return IRQ_HANDLED;
1749 }
1750 
1751 /* mempool_refill() was proposed but unfortunately wasn't accepted
1752  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1753  * Cheap workaround.
1754  */
mempool_refill(mempool_t * pool)1755 static void mempool_refill(mempool_t *pool)
1756 {
1757 	while (pool->curr_nr < pool->min_nr)
1758 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1759 }
1760 
mlx5_ib_eq_pf_action(struct work_struct * work)1761 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1762 {
1763 	struct mlx5_ib_pf_eq *eq =
1764 		container_of(work, struct mlx5_ib_pf_eq, work);
1765 
1766 	mempool_refill(eq->pool);
1767 
1768 	spin_lock_irq(&eq->lock);
1769 	mlx5_ib_eq_pf_process(eq);
1770 	spin_unlock_irq(&eq->lock);
1771 }
1772 
1773 enum {
1774 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1775 	MLX5_IB_NUM_PF_DRAIN	= 64,
1776 };
1777 
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1778 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1779 {
1780 	struct mlx5_eq_param param = {};
1781 	int err = 0;
1782 
1783 	mutex_lock(&dev->odp_eq_mutex);
1784 	if (eq->core)
1785 		goto unlock;
1786 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1787 	spin_lock_init(&eq->lock);
1788 	eq->dev = dev;
1789 
1790 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1791 					       sizeof(struct mlx5_pagefault));
1792 	if (!eq->pool) {
1793 		err = -ENOMEM;
1794 		goto unlock;
1795 	}
1796 
1797 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1798 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1799 				 MLX5_NUM_CMD_EQE);
1800 	if (!eq->wq) {
1801 		err = -ENOMEM;
1802 		goto err_mempool;
1803 	}
1804 
1805 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1806 	param = (struct mlx5_eq_param) {
1807 		.nent = MLX5_IB_NUM_PF_EQE,
1808 	};
1809 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1810 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1811 	if (IS_ERR(eq->core)) {
1812 		err = PTR_ERR(eq->core);
1813 		goto err_wq;
1814 	}
1815 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1816 	if (err) {
1817 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1818 		goto err_eq;
1819 	}
1820 
1821 	mutex_unlock(&dev->odp_eq_mutex);
1822 	return 0;
1823 err_eq:
1824 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1825 err_wq:
1826 	eq->core = NULL;
1827 	destroy_workqueue(eq->wq);
1828 err_mempool:
1829 	mempool_destroy(eq->pool);
1830 unlock:
1831 	mutex_unlock(&dev->odp_eq_mutex);
1832 	return err;
1833 }
1834 
1835 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1836 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1837 {
1838 	int err;
1839 
1840 	if (!eq->core)
1841 		return 0;
1842 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1843 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1844 	cancel_work_sync(&eq->work);
1845 	destroy_workqueue(eq->wq);
1846 	mempool_destroy(eq->pool);
1847 
1848 	return err;
1849 }
1850 
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1851 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1852 {
1853 	struct mlx5r_cache_rb_key rb_key = {
1854 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1855 		.ndescs = mlx5_imr_ksm_entries,
1856 	};
1857 	struct mlx5_cache_ent *ent;
1858 
1859 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1860 		return 0;
1861 
1862 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1863 	if (IS_ERR(ent))
1864 		return PTR_ERR(ent);
1865 
1866 	return 0;
1867 }
1868 
1869 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1870 	.advise_mr = mlx5_ib_advise_mr,
1871 };
1872 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1873 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1874 {
1875 	internal_fill_odp_caps(dev);
1876 
1877 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1878 		return 0;
1879 
1880 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1881 
1882 	mutex_init(&dev->odp_eq_mutex);
1883 	return 0;
1884 }
1885 
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1886 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1887 {
1888 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1889 		return;
1890 
1891 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1892 }
1893 
mlx5_ib_odp_init(void)1894 int mlx5_ib_odp_init(void)
1895 {
1896 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1897 				       MLX5_IMR_MTT_BITS);
1898 
1899 	return 0;
1900 }
1901 
1902 struct prefetch_mr_work {
1903 	struct work_struct work;
1904 	u32 pf_flags;
1905 	u32 num_sge;
1906 	struct {
1907 		u64 io_virt;
1908 		struct mlx5_ib_mr *mr;
1909 		size_t length;
1910 	} frags[];
1911 };
1912 
destroy_prefetch_work(struct prefetch_mr_work * work)1913 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1914 {
1915 	u32 i;
1916 
1917 	for (i = 0; i < work->num_sge; ++i)
1918 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1919 
1920 	kvfree(work);
1921 }
1922 
1923 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1924 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1925 		    u32 lkey)
1926 {
1927 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1928 	struct mlx5_ib_mr *mr = NULL;
1929 	struct mlx5_ib_mkey *mmkey;
1930 
1931 	xa_lock(&dev->odp_mkeys);
1932 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1933 	if (!mmkey || mmkey->key != lkey) {
1934 		mr = ERR_PTR(-ENOENT);
1935 		goto end;
1936 	}
1937 	if (mmkey->type != MLX5_MKEY_MR) {
1938 		mr = ERR_PTR(-EINVAL);
1939 		goto end;
1940 	}
1941 
1942 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1943 
1944 	if (mr->ibmr.pd != pd) {
1945 		mr = ERR_PTR(-EPERM);
1946 		goto end;
1947 	}
1948 
1949 	/* prefetch with write-access must be supported by the MR */
1950 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1951 	    !mr->umem->writable) {
1952 		mr = ERR_PTR(-EPERM);
1953 		goto end;
1954 	}
1955 
1956 	refcount_inc(&mmkey->usecount);
1957 end:
1958 	xa_unlock(&dev->odp_mkeys);
1959 	return mr;
1960 }
1961 
mlx5_ib_prefetch_mr_work(struct work_struct * w)1962 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1963 {
1964 	struct prefetch_mr_work *work =
1965 		container_of(w, struct prefetch_mr_work, work);
1966 	u32 bytes_mapped = 0;
1967 	int ret;
1968 	u32 i;
1969 
1970 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1971 	WARN_ON(!work->num_sge);
1972 	for (i = 0; i < work->num_sge; ++i) {
1973 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1974 				   work->frags[i].length, &bytes_mapped,
1975 				   work->pf_flags, false);
1976 		if (ret <= 0)
1977 			continue;
1978 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1979 	}
1980 
1981 	destroy_prefetch_work(work);
1982 }
1983 
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)1984 static int init_prefetch_work(struct ib_pd *pd,
1985 			       enum ib_uverbs_advise_mr_advice advice,
1986 			       u32 pf_flags, struct prefetch_mr_work *work,
1987 			       struct ib_sge *sg_list, u32 num_sge)
1988 {
1989 	u32 i;
1990 
1991 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1992 	work->pf_flags = pf_flags;
1993 
1994 	for (i = 0; i < num_sge; ++i) {
1995 		struct mlx5_ib_mr *mr;
1996 
1997 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1998 		if (IS_ERR(mr)) {
1999 			work->num_sge = i;
2000 			return PTR_ERR(mr);
2001 		}
2002 		work->frags[i].io_virt = sg_list[i].addr;
2003 		work->frags[i].length = sg_list[i].length;
2004 		work->frags[i].mr = mr;
2005 	}
2006 	work->num_sge = num_sge;
2007 	return 0;
2008 }
2009 
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2010 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2011 				    enum ib_uverbs_advise_mr_advice advice,
2012 				    u32 pf_flags, struct ib_sge *sg_list,
2013 				    u32 num_sge)
2014 {
2015 	u32 bytes_mapped = 0;
2016 	int ret = 0;
2017 	u32 i;
2018 
2019 	for (i = 0; i < num_sge; ++i) {
2020 		struct mlx5_ib_mr *mr;
2021 
2022 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2023 		if (IS_ERR(mr))
2024 			return PTR_ERR(mr);
2025 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2026 				   &bytes_mapped, pf_flags, false);
2027 		if (ret < 0) {
2028 			mlx5r_deref_odp_mkey(&mr->mmkey);
2029 			return ret;
2030 		}
2031 		mlx5_update_odp_stats(mr, prefetch, ret);
2032 		mlx5r_deref_odp_mkey(&mr->mmkey);
2033 	}
2034 
2035 	return 0;
2036 }
2037 
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2038 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2039 			       enum ib_uverbs_advise_mr_advice advice,
2040 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2041 {
2042 	u32 pf_flags = 0;
2043 	struct prefetch_mr_work *work;
2044 	int rc;
2045 
2046 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2047 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2048 
2049 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2050 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2051 
2052 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2053 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2054 						num_sge);
2055 
2056 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2057 	if (!work)
2058 		return -ENOMEM;
2059 
2060 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2061 	if (rc) {
2062 		destroy_prefetch_work(work);
2063 		return rc;
2064 	}
2065 	queue_work(system_unbound_wq, &work->work);
2066 	return 0;
2067 }
2068