xref: /linux/mm/memory-failure.c (revision 6eba757ce90483b76da4e7eda962d8b8b8930f2c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_trans_huge(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_trans_huge(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	struct hstate *h = hstate_vma(walk->vma);
841 	spinlock_t *ptl;
842 	pte_t pte;
843 	int ret;
844 
845 	ptl = huge_pte_lock(h, walk->mm, ptep);
846 	pte = huge_ptep_get(walk->mm, addr, ptep);
847 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
848 					hwp->pfn, &hwp->tk);
849 	spin_unlock(ptl);
850 	return ret;
851 }
852 #else
853 #define hwpoison_hugetlb_range	NULL
854 #endif
855 
856 static int hwpoison_test_walk(unsigned long start, unsigned long end,
857 			     struct mm_walk *walk)
858 {
859 	/* We also want to consider pages mapped into VM_PFNMAP. */
860 	return 0;
861 }
862 
863 static const struct mm_walk_ops hwpoison_walk_ops = {
864 	.pmd_entry = hwpoison_pte_range,
865 	.hugetlb_entry = hwpoison_hugetlb_range,
866 	.test_walk = hwpoison_test_walk,
867 	.walk_lock = PGWALK_RDLOCK,
868 };
869 
870 /*
871  * Sends SIGBUS to the current process with error info.
872  *
873  * This function is intended to handle "Action Required" MCEs on already
874  * hardware poisoned pages. They could happen, for example, when
875  * memory_failure() failed to unmap the error page at the first call, or
876  * when multiple local machine checks happened on different CPUs.
877  *
878  * MCE handler currently has no easy access to the error virtual address,
879  * so this function walks page table to find it. The returned virtual address
880  * is proper in most cases, but it could be wrong when the application
881  * process has multiple entries mapping the error page.
882  */
883 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
884 				  int flags)
885 {
886 	int ret;
887 	struct hwpoison_walk priv = {
888 		.pfn = pfn,
889 	};
890 	priv.tk.tsk = p;
891 
892 	if (!p->mm)
893 		return -EFAULT;
894 
895 	mmap_read_lock(p->mm);
896 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
897 			      (void *)&priv);
898 	/*
899 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
900 	 * succeeds or fails, then kill the process with SIGBUS.
901 	 * ret = 0 when poison page is a clean page and it's dropped, no
902 	 * SIGBUS is needed.
903 	 */
904 	if (ret == 1 && priv.tk.addr)
905 		kill_proc(&priv.tk, pfn, flags);
906 	mmap_read_unlock(p->mm);
907 
908 	return ret > 0 ? -EHWPOISON : 0;
909 }
910 
911 /*
912  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
913  * But it could not do more to isolate the page from being accessed again,
914  * nor does it kill the process. This is extremely rare and one of the
915  * potential causes is that the page state has been changed due to
916  * underlying race condition. This is the most severe outcomes.
917  *
918  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
919  * It should have killed the process, but it can't isolate the page,
920  * due to conditions such as extra pin, unmap failure, etc. Accessing
921  * the page again may trigger another MCE and the process will be killed
922  * by the m-f() handler immediately.
923  *
924  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
925  * The page is unmapped, and is removed from the LRU or file mapping.
926  * An attempt to access the page again will trigger page fault and the
927  * PF handler will kill the process.
928  *
929  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
930  * The page has been completely isolated, that is, unmapped, taken out of
931  * the buddy system, or hole-punnched out of the file mapping.
932  */
933 static const char *action_name[] = {
934 	[MF_IGNORED] = "Ignored",
935 	[MF_FAILED] = "Failed",
936 	[MF_DELAYED] = "Delayed",
937 	[MF_RECOVERED] = "Recovered",
938 };
939 
940 static const char * const action_page_types[] = {
941 	[MF_MSG_KERNEL]			= "reserved kernel page",
942 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
943 	[MF_MSG_HUGE]			= "huge page",
944 	[MF_MSG_FREE_HUGE]		= "free huge page",
945 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
946 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
947 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
948 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
949 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
950 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
951 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
952 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
953 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
954 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
955 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
956 	[MF_MSG_BUDDY]			= "free buddy page",
957 	[MF_MSG_DAX]			= "dax page",
958 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
959 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
960 	[MF_MSG_UNKNOWN]		= "unknown page",
961 };
962 
963 /*
964  * XXX: It is possible that a page is isolated from LRU cache,
965  * and then kept in swap cache or failed to remove from page cache.
966  * The page count will stop it from being freed by unpoison.
967  * Stress tests should be aware of this memory leak problem.
968  */
969 static int delete_from_lru_cache(struct folio *folio)
970 {
971 	if (folio_isolate_lru(folio)) {
972 		/*
973 		 * Clear sensible page flags, so that the buddy system won't
974 		 * complain when the folio is unpoison-and-freed.
975 		 */
976 		folio_clear_active(folio);
977 		folio_clear_unevictable(folio);
978 
979 		/*
980 		 * Poisoned page might never drop its ref count to 0 so we have
981 		 * to uncharge it manually from its memcg.
982 		 */
983 		mem_cgroup_uncharge(folio);
984 
985 		/*
986 		 * drop the refcount elevated by folio_isolate_lru()
987 		 */
988 		folio_put(folio);
989 		return 0;
990 	}
991 	return -EIO;
992 }
993 
994 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
995 				struct address_space *mapping)
996 {
997 	int ret = MF_FAILED;
998 
999 	if (mapping->a_ops->error_remove_folio) {
1000 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
1001 
1002 		if (err != 0)
1003 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
1004 		else if (!filemap_release_folio(folio, GFP_NOIO))
1005 			pr_info("%#lx: failed to release buffers\n", pfn);
1006 		else
1007 			ret = MF_RECOVERED;
1008 	} else {
1009 		/*
1010 		 * If the file system doesn't support it just invalidate
1011 		 * This fails on dirty or anything with private pages
1012 		 */
1013 		if (mapping_evict_folio(mapping, folio))
1014 			ret = MF_RECOVERED;
1015 		else
1016 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 struct page_state {
1023 	unsigned long mask;
1024 	unsigned long res;
1025 	enum mf_action_page_type type;
1026 
1027 	/* Callback ->action() has to unlock the relevant page inside it. */
1028 	int (*action)(struct page_state *ps, struct page *p);
1029 };
1030 
1031 /*
1032  * Return true if page is still referenced by others, otherwise return
1033  * false.
1034  *
1035  * The extra_pins is true when one extra refcount is expected.
1036  */
1037 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1038 			       bool extra_pins)
1039 {
1040 	int count = page_count(p) - 1;
1041 
1042 	if (extra_pins)
1043 		count -= folio_nr_pages(page_folio(p));
1044 
1045 	if (count > 0) {
1046 		pr_err("%#lx: %s still referenced by %d users\n",
1047 		       page_to_pfn(p), action_page_types[ps->type], count);
1048 		return true;
1049 	}
1050 
1051 	return false;
1052 }
1053 
1054 /*
1055  * Error hit kernel page.
1056  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1057  * could be more sophisticated.
1058  */
1059 static int me_kernel(struct page_state *ps, struct page *p)
1060 {
1061 	unlock_page(p);
1062 	return MF_IGNORED;
1063 }
1064 
1065 /*
1066  * Page in unknown state. Do nothing.
1067  * This is a catch-all in case we fail to make sense of the page state.
1068  */
1069 static int me_unknown(struct page_state *ps, struct page *p)
1070 {
1071 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1072 	unlock_page(p);
1073 	return MF_IGNORED;
1074 }
1075 
1076 /*
1077  * Clean (or cleaned) page cache page.
1078  */
1079 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1080 {
1081 	struct folio *folio = page_folio(p);
1082 	int ret;
1083 	struct address_space *mapping;
1084 	bool extra_pins;
1085 
1086 	delete_from_lru_cache(folio);
1087 
1088 	/*
1089 	 * For anonymous folios the only reference left
1090 	 * should be the one m_f() holds.
1091 	 */
1092 	if (folio_test_anon(folio)) {
1093 		ret = MF_RECOVERED;
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * Now truncate the page in the page cache. This is really
1099 	 * more like a "temporary hole punch"
1100 	 * Don't do this for block devices when someone else
1101 	 * has a reference, because it could be file system metadata
1102 	 * and that's not safe to truncate.
1103 	 */
1104 	mapping = folio_mapping(folio);
1105 	if (!mapping) {
1106 		/* Folio has been torn down in the meantime */
1107 		ret = MF_FAILED;
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * The shmem page is kept in page cache instead of truncating
1113 	 * so is expected to have an extra refcount after error-handling.
1114 	 */
1115 	extra_pins = shmem_mapping(mapping);
1116 
1117 	/*
1118 	 * Truncation is a bit tricky. Enable it per file system for now.
1119 	 *
1120 	 * Open: to take i_rwsem or not for this? Right now we don't.
1121 	 */
1122 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1123 	if (has_extra_refcount(ps, p, extra_pins))
1124 		ret = MF_FAILED;
1125 
1126 out:
1127 	folio_unlock(folio);
1128 
1129 	return ret;
1130 }
1131 
1132 /*
1133  * Dirty pagecache page
1134  * Issues: when the error hit a hole page the error is not properly
1135  * propagated.
1136  */
1137 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1138 {
1139 	struct folio *folio = page_folio(p);
1140 	struct address_space *mapping = folio_mapping(folio);
1141 
1142 	/* TBD: print more information about the file. */
1143 	if (mapping) {
1144 		/*
1145 		 * IO error will be reported by write(), fsync(), etc.
1146 		 * who check the mapping.
1147 		 * This way the application knows that something went
1148 		 * wrong with its dirty file data.
1149 		 */
1150 		mapping_set_error(mapping, -EIO);
1151 	}
1152 
1153 	return me_pagecache_clean(ps, p);
1154 }
1155 
1156 /*
1157  * Clean and dirty swap cache.
1158  *
1159  * Dirty swap cache page is tricky to handle. The page could live both in page
1160  * table and swap cache(ie. page is freshly swapped in). So it could be
1161  * referenced concurrently by 2 types of PTEs:
1162  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1163  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1164  * and then
1165  *      - clear dirty bit to prevent IO
1166  *      - remove from LRU
1167  *      - but keep in the swap cache, so that when we return to it on
1168  *        a later page fault, we know the application is accessing
1169  *        corrupted data and shall be killed (we installed simple
1170  *        interception code in do_swap_page to catch it).
1171  *
1172  * Clean swap cache pages can be directly isolated. A later page fault will
1173  * bring in the known good data from disk.
1174  */
1175 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1176 {
1177 	struct folio *folio = page_folio(p);
1178 	int ret;
1179 	bool extra_pins = false;
1180 
1181 	folio_clear_dirty(folio);
1182 	/* Trigger EIO in shmem: */
1183 	folio_clear_uptodate(folio);
1184 
1185 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1186 	folio_unlock(folio);
1187 
1188 	if (ret == MF_DELAYED)
1189 		extra_pins = true;
1190 
1191 	if (has_extra_refcount(ps, p, extra_pins))
1192 		ret = MF_FAILED;
1193 
1194 	return ret;
1195 }
1196 
1197 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1198 {
1199 	struct folio *folio = page_folio(p);
1200 	int ret;
1201 
1202 	delete_from_swap_cache(folio);
1203 
1204 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1205 	folio_unlock(folio);
1206 
1207 	if (has_extra_refcount(ps, p, false))
1208 		ret = MF_FAILED;
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Huge pages. Needs work.
1215  * Issues:
1216  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1217  *   To narrow down kill region to one page, we need to break up pmd.
1218  */
1219 static int me_huge_page(struct page_state *ps, struct page *p)
1220 {
1221 	struct folio *folio = page_folio(p);
1222 	int res;
1223 	struct address_space *mapping;
1224 	bool extra_pins = false;
1225 
1226 	mapping = folio_mapping(folio);
1227 	if (mapping) {
1228 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1229 		/* The page is kept in page cache. */
1230 		extra_pins = true;
1231 		folio_unlock(folio);
1232 	} else {
1233 		folio_unlock(folio);
1234 		/*
1235 		 * migration entry prevents later access on error hugepage,
1236 		 * so we can free and dissolve it into buddy to save healthy
1237 		 * subpages.
1238 		 */
1239 		folio_put(folio);
1240 		if (__page_handle_poison(p) > 0) {
1241 			page_ref_inc(p);
1242 			res = MF_RECOVERED;
1243 		} else {
1244 			res = MF_FAILED;
1245 		}
1246 	}
1247 
1248 	if (has_extra_refcount(ps, p, extra_pins))
1249 		res = MF_FAILED;
1250 
1251 	return res;
1252 }
1253 
1254 /*
1255  * Various page states we can handle.
1256  *
1257  * A page state is defined by its current page->flags bits.
1258  * The table matches them in order and calls the right handler.
1259  *
1260  * This is quite tricky because we can access page at any time
1261  * in its live cycle, so all accesses have to be extremely careful.
1262  *
1263  * This is not complete. More states could be added.
1264  * For any missing state don't attempt recovery.
1265  */
1266 
1267 #define dirty		(1UL << PG_dirty)
1268 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1269 #define unevict		(1UL << PG_unevictable)
1270 #define mlock		(1UL << PG_mlocked)
1271 #define lru		(1UL << PG_lru)
1272 #define head		(1UL << PG_head)
1273 #define reserved	(1UL << PG_reserved)
1274 
1275 static struct page_state error_states[] = {
1276 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1277 	/*
1278 	 * free pages are specially detected outside this table:
1279 	 * PG_buddy pages only make a small fraction of all free pages.
1280 	 */
1281 
1282 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1283 
1284 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1285 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1286 
1287 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1288 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1289 
1290 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1291 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1292 
1293 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1294 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1295 
1296 	/*
1297 	 * Catchall entry: must be at end.
1298 	 */
1299 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1300 };
1301 
1302 #undef dirty
1303 #undef sc
1304 #undef unevict
1305 #undef mlock
1306 #undef lru
1307 #undef head
1308 #undef reserved
1309 
1310 static void update_per_node_mf_stats(unsigned long pfn,
1311 				     enum mf_result result)
1312 {
1313 	int nid = MAX_NUMNODES;
1314 	struct memory_failure_stats *mf_stats = NULL;
1315 
1316 	nid = pfn_to_nid(pfn);
1317 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1318 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1319 		return;
1320 	}
1321 
1322 	mf_stats = &NODE_DATA(nid)->mf_stats;
1323 	switch (result) {
1324 	case MF_IGNORED:
1325 		++mf_stats->ignored;
1326 		break;
1327 	case MF_FAILED:
1328 		++mf_stats->failed;
1329 		break;
1330 	case MF_DELAYED:
1331 		++mf_stats->delayed;
1332 		break;
1333 	case MF_RECOVERED:
1334 		++mf_stats->recovered;
1335 		break;
1336 	default:
1337 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1338 		break;
1339 	}
1340 	++mf_stats->total;
1341 }
1342 
1343 /*
1344  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1345  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1346  */
1347 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1348 			 enum mf_result result)
1349 {
1350 	trace_memory_failure_event(pfn, type, result);
1351 
1352 	num_poisoned_pages_inc(pfn);
1353 
1354 	update_per_node_mf_stats(pfn, result);
1355 
1356 	pr_err("%#lx: recovery action for %s: %s\n",
1357 		pfn, action_page_types[type], action_name[result]);
1358 
1359 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1360 }
1361 
1362 static int page_action(struct page_state *ps, struct page *p,
1363 			unsigned long pfn)
1364 {
1365 	int result;
1366 
1367 	/* page p should be unlocked after returning from ps->action().  */
1368 	result = ps->action(ps, p);
1369 
1370 	/* Could do more checks here if page looks ok */
1371 	/*
1372 	 * Could adjust zone counters here to correct for the missing page.
1373 	 */
1374 
1375 	return action_result(pfn, ps->type, result);
1376 }
1377 
1378 static inline bool PageHWPoisonTakenOff(struct page *page)
1379 {
1380 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1381 }
1382 
1383 void SetPageHWPoisonTakenOff(struct page *page)
1384 {
1385 	set_page_private(page, MAGIC_HWPOISON);
1386 }
1387 
1388 void ClearPageHWPoisonTakenOff(struct page *page)
1389 {
1390 	if (PageHWPoison(page))
1391 		set_page_private(page, 0);
1392 }
1393 
1394 /*
1395  * Return true if a page type of a given page is supported by hwpoison
1396  * mechanism (while handling could fail), otherwise false.  This function
1397  * does not return true for hugetlb or device memory pages, so it's assumed
1398  * to be called only in the context where we never have such pages.
1399  */
1400 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1401 {
1402 	if (PageSlab(page))
1403 		return false;
1404 
1405 	/* Soft offline could migrate movable_ops pages */
1406 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1407 		return true;
1408 
1409 	return PageLRU(page) || is_free_buddy_page(page);
1410 }
1411 
1412 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1413 {
1414 	struct folio *folio = page_folio(page);
1415 	int ret = 0;
1416 	bool hugetlb = false;
1417 
1418 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1419 	if (hugetlb) {
1420 		/* Make sure hugetlb demotion did not happen from under us. */
1421 		if (folio == page_folio(page))
1422 			return ret;
1423 		if (ret > 0) {
1424 			folio_put(folio);
1425 			folio = page_folio(page);
1426 		}
1427 	}
1428 
1429 	/*
1430 	 * This check prevents from calling folio_try_get() for any
1431 	 * unsupported type of folio in order to reduce the risk of unexpected
1432 	 * races caused by taking a folio refcount.
1433 	 */
1434 	if (!HWPoisonHandlable(&folio->page, flags))
1435 		return -EBUSY;
1436 
1437 	if (folio_try_get(folio)) {
1438 		if (folio == page_folio(page))
1439 			return 1;
1440 
1441 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1442 		folio_put(folio);
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 #define GET_PAGE_MAX_RETRY_NUM 3
1449 
1450 static int get_any_page(struct page *p, unsigned long flags)
1451 {
1452 	int ret = 0, pass = 0;
1453 	bool count_increased = false;
1454 
1455 	if (flags & MF_COUNT_INCREASED)
1456 		count_increased = true;
1457 
1458 try_again:
1459 	if (!count_increased) {
1460 		ret = __get_hwpoison_page(p, flags);
1461 		if (!ret) {
1462 			if (page_count(p)) {
1463 				/* We raced with an allocation, retry. */
1464 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1465 					goto try_again;
1466 				ret = -EBUSY;
1467 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1468 				/* We raced with put_page, retry. */
1469 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1470 					goto try_again;
1471 				ret = -EIO;
1472 			}
1473 			goto out;
1474 		} else if (ret == -EBUSY) {
1475 			/*
1476 			 * We raced with (possibly temporary) unhandlable
1477 			 * page, retry.
1478 			 */
1479 			if (pass++ < 3) {
1480 				shake_page(p);
1481 				goto try_again;
1482 			}
1483 			ret = -EIO;
1484 			goto out;
1485 		}
1486 	}
1487 
1488 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1489 		ret = 1;
1490 	} else {
1491 		/*
1492 		 * A page we cannot handle. Check whether we can turn
1493 		 * it into something we can handle.
1494 		 */
1495 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1496 			put_page(p);
1497 			shake_page(p);
1498 			count_increased = false;
1499 			goto try_again;
1500 		}
1501 		put_page(p);
1502 		ret = -EIO;
1503 	}
1504 out:
1505 	if (ret == -EIO)
1506 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1507 
1508 	return ret;
1509 }
1510 
1511 static int __get_unpoison_page(struct page *page)
1512 {
1513 	struct folio *folio = page_folio(page);
1514 	int ret = 0;
1515 	bool hugetlb = false;
1516 
1517 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1518 	if (hugetlb) {
1519 		/* Make sure hugetlb demotion did not happen from under us. */
1520 		if (folio == page_folio(page))
1521 			return ret;
1522 		if (ret > 0)
1523 			folio_put(folio);
1524 	}
1525 
1526 	/*
1527 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1528 	 * but also isolated from buddy freelist, so need to identify the
1529 	 * state and have to cancel both operations to unpoison.
1530 	 */
1531 	if (PageHWPoisonTakenOff(page))
1532 		return -EHWPOISON;
1533 
1534 	return get_page_unless_zero(page) ? 1 : 0;
1535 }
1536 
1537 /**
1538  * get_hwpoison_page() - Get refcount for memory error handling
1539  * @p:		Raw error page (hit by memory error)
1540  * @flags:	Flags controlling behavior of error handling
1541  *
1542  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1543  * error on it, after checking that the error page is in a well-defined state
1544  * (defined as a page-type we can successfully handle the memory error on it,
1545  * such as LRU page and hugetlb page).
1546  *
1547  * Memory error handling could be triggered at any time on any type of page,
1548  * so it's prone to race with typical memory management lifecycle (like
1549  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1550  * extra care for the error page's state (as done in __get_hwpoison_page()),
1551  * and has some retry logic in get_any_page().
1552  *
1553  * When called from unpoison_memory(), the caller should already ensure that
1554  * the given page has PG_hwpoison. So it's never reused for other page
1555  * allocations, and __get_unpoison_page() never races with them.
1556  *
1557  * Return: 0 on failure or free buddy (hugetlb) page,
1558  *         1 on success for in-use pages in a well-defined state,
1559  *         -EIO for pages on which we can not handle memory errors,
1560  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1561  *         operations like allocation and free,
1562  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1563  */
1564 static int get_hwpoison_page(struct page *p, unsigned long flags)
1565 {
1566 	int ret;
1567 
1568 	zone_pcp_disable(page_zone(p));
1569 	if (flags & MF_UNPOISON)
1570 		ret = __get_unpoison_page(p);
1571 	else
1572 		ret = get_any_page(p, flags);
1573 	zone_pcp_enable(page_zone(p));
1574 
1575 	return ret;
1576 }
1577 
1578 /*
1579  * The caller must guarantee the folio isn't large folio, except hugetlb.
1580  * try_to_unmap() can't handle it.
1581  */
1582 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1583 {
1584 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1585 	struct address_space *mapping;
1586 
1587 	if (folio_test_swapcache(folio)) {
1588 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1589 		ttu &= ~TTU_HWPOISON;
1590 	}
1591 
1592 	/*
1593 	 * Propagate the dirty bit from PTEs to struct page first, because we
1594 	 * need this to decide if we should kill or just drop the page.
1595 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1596 	 * be called inside page lock (it's recommended but not enforced).
1597 	 */
1598 	mapping = folio_mapping(folio);
1599 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1600 	    mapping_can_writeback(mapping)) {
1601 		if (folio_mkclean(folio)) {
1602 			folio_set_dirty(folio);
1603 		} else {
1604 			ttu &= ~TTU_HWPOISON;
1605 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1606 				pfn);
1607 		}
1608 	}
1609 
1610 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1611 		/*
1612 		 * For hugetlb folios in shared mappings, try_to_unmap
1613 		 * could potentially call huge_pmd_unshare.  Because of
1614 		 * this, take semaphore in write mode here and set
1615 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1616 		 * at this higher level.
1617 		 */
1618 		mapping = hugetlb_folio_mapping_lock_write(folio);
1619 		if (!mapping) {
1620 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1621 				folio_pfn(folio));
1622 			return -EBUSY;
1623 		}
1624 
1625 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1626 		i_mmap_unlock_write(mapping);
1627 	} else {
1628 		try_to_unmap(folio, ttu);
1629 	}
1630 
1631 	return folio_mapped(folio) ? -EBUSY : 0;
1632 }
1633 
1634 /*
1635  * Do all that is necessary to remove user space mappings. Unmap
1636  * the pages and send SIGBUS to the processes if the data was dirty.
1637  */
1638 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1639 		unsigned long pfn, int flags)
1640 {
1641 	LIST_HEAD(tokill);
1642 	bool unmap_success;
1643 	int forcekill;
1644 	bool mlocked = folio_test_mlocked(folio);
1645 
1646 	/*
1647 	 * Here we are interested only in user-mapped pages, so skip any
1648 	 * other types of pages.
1649 	 */
1650 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1651 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1652 		return true;
1653 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1654 		return true;
1655 
1656 	/*
1657 	 * This check implies we don't kill processes if their pages
1658 	 * are in the swap cache early. Those are always late kills.
1659 	 */
1660 	if (!folio_mapped(folio))
1661 		return true;
1662 
1663 	/*
1664 	 * First collect all the processes that have the page
1665 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1666 	 * because ttu takes the rmap data structures down.
1667 	 */
1668 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1669 
1670 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1671 	if (!unmap_success)
1672 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1673 		       pfn, folio_mapcount(folio));
1674 
1675 	/*
1676 	 * try_to_unmap() might put mlocked page in lru cache, so call
1677 	 * shake_page() again to ensure that it's flushed.
1678 	 */
1679 	if (mlocked)
1680 		shake_folio(folio);
1681 
1682 	/*
1683 	 * Now that the dirty bit has been propagated to the
1684 	 * struct page and all unmaps done we can decide if
1685 	 * killing is needed or not.  Only kill when the page
1686 	 * was dirty or the process is not restartable,
1687 	 * otherwise the tokill list is merely
1688 	 * freed.  When there was a problem unmapping earlier
1689 	 * use a more force-full uncatchable kill to prevent
1690 	 * any accesses to the poisoned memory.
1691 	 */
1692 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1693 		    !unmap_success;
1694 	kill_procs(&tokill, forcekill, pfn, flags);
1695 
1696 	return unmap_success;
1697 }
1698 
1699 static int identify_page_state(unsigned long pfn, struct page *p,
1700 				unsigned long page_flags)
1701 {
1702 	struct page_state *ps;
1703 
1704 	/*
1705 	 * The first check uses the current page flags which may not have any
1706 	 * relevant information. The second check with the saved page flags is
1707 	 * carried out only if the first check can't determine the page status.
1708 	 */
1709 	for (ps = error_states;; ps++)
1710 		if ((p->flags & ps->mask) == ps->res)
1711 			break;
1712 
1713 	page_flags |= (p->flags & (1UL << PG_dirty));
1714 
1715 	if (!ps->mask)
1716 		for (ps = error_states;; ps++)
1717 			if ((page_flags & ps->mask) == ps->res)
1718 				break;
1719 	return page_action(ps, p, pfn);
1720 }
1721 
1722 /*
1723  * When 'release' is 'false', it means that if thp split has failed,
1724  * there is still more to do, hence the page refcount we took earlier
1725  * is still needed.
1726  */
1727 static int try_to_split_thp_page(struct page *page, bool release)
1728 {
1729 	int ret;
1730 
1731 	lock_page(page);
1732 	ret = split_huge_page(page);
1733 	unlock_page(page);
1734 
1735 	if (ret && release)
1736 		put_page(page);
1737 
1738 	return ret;
1739 }
1740 
1741 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1742 		struct address_space *mapping, pgoff_t index, int flags)
1743 {
1744 	struct to_kill *tk;
1745 	unsigned long size = 0;
1746 
1747 	list_for_each_entry(tk, to_kill, nd)
1748 		if (tk->size_shift)
1749 			size = max(size, 1UL << tk->size_shift);
1750 
1751 	if (size) {
1752 		/*
1753 		 * Unmap the largest mapping to avoid breaking up device-dax
1754 		 * mappings which are constant size. The actual size of the
1755 		 * mapping being torn down is communicated in siginfo, see
1756 		 * kill_proc()
1757 		 */
1758 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1759 
1760 		unmap_mapping_range(mapping, start, size, 0);
1761 	}
1762 
1763 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1764 }
1765 
1766 /*
1767  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1768  * either do not claim or fails to claim a hwpoison event, or devdax.
1769  * The fsdax pages are initialized per base page, and the devdax pages
1770  * could be initialized either as base pages, or as compound pages with
1771  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1772  * hwpoison, such that, if a subpage of a compound page is poisoned,
1773  * simply mark the compound head page is by far sufficient.
1774  */
1775 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1776 		struct dev_pagemap *pgmap)
1777 {
1778 	struct folio *folio = pfn_folio(pfn);
1779 	LIST_HEAD(to_kill);
1780 	dax_entry_t cookie;
1781 	int rc = 0;
1782 
1783 	/*
1784 	 * Prevent the inode from being freed while we are interrogating
1785 	 * the address_space, typically this would be handled by
1786 	 * lock_page(), but dax pages do not use the page lock. This
1787 	 * also prevents changes to the mapping of this pfn until
1788 	 * poison signaling is complete.
1789 	 */
1790 	cookie = dax_lock_folio(folio);
1791 	if (!cookie)
1792 		return -EBUSY;
1793 
1794 	if (hwpoison_filter(&folio->page)) {
1795 		rc = -EOPNOTSUPP;
1796 		goto unlock;
1797 	}
1798 
1799 	switch (pgmap->type) {
1800 	case MEMORY_DEVICE_PRIVATE:
1801 	case MEMORY_DEVICE_COHERENT:
1802 		/*
1803 		 * TODO: Handle device pages which may need coordination
1804 		 * with device-side memory.
1805 		 */
1806 		rc = -ENXIO;
1807 		goto unlock;
1808 	default:
1809 		break;
1810 	}
1811 
1812 	/*
1813 	 * Use this flag as an indication that the dax page has been
1814 	 * remapped UC to prevent speculative consumption of poison.
1815 	 */
1816 	SetPageHWPoison(&folio->page);
1817 
1818 	/*
1819 	 * Unlike System-RAM there is no possibility to swap in a
1820 	 * different physical page at a given virtual address, so all
1821 	 * userspace consumption of ZONE_DEVICE memory necessitates
1822 	 * SIGBUS (i.e. MF_MUST_KILL)
1823 	 */
1824 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1825 	collect_procs(folio, &folio->page, &to_kill, true);
1826 
1827 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1828 unlock:
1829 	dax_unlock_folio(folio, cookie);
1830 	return rc;
1831 }
1832 
1833 #ifdef CONFIG_FS_DAX
1834 /**
1835  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1836  * @mapping:	address_space of the file in use
1837  * @index:	start pgoff of the range within the file
1838  * @count:	length of the range, in unit of PAGE_SIZE
1839  * @mf_flags:	memory failure flags
1840  */
1841 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1842 		unsigned long count, int mf_flags)
1843 {
1844 	LIST_HEAD(to_kill);
1845 	dax_entry_t cookie;
1846 	struct page *page;
1847 	size_t end = index + count;
1848 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1849 
1850 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1851 
1852 	for (; index < end; index++) {
1853 		page = NULL;
1854 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1855 		if (!cookie)
1856 			return -EBUSY;
1857 		if (!page)
1858 			goto unlock;
1859 
1860 		if (!pre_remove)
1861 			SetPageHWPoison(page);
1862 
1863 		/*
1864 		 * The pre_remove case is revoking access, the memory is still
1865 		 * good and could theoretically be put back into service.
1866 		 */
1867 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1868 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1869 				index, mf_flags);
1870 unlock:
1871 		dax_unlock_mapping_entry(mapping, index, cookie);
1872 	}
1873 	return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1876 #endif /* CONFIG_FS_DAX */
1877 
1878 #ifdef CONFIG_HUGETLB_PAGE
1879 
1880 /*
1881  * Struct raw_hwp_page represents information about "raw error page",
1882  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1883  */
1884 struct raw_hwp_page {
1885 	struct llist_node node;
1886 	struct page *page;
1887 };
1888 
1889 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1890 {
1891 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1892 }
1893 
1894 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1895 {
1896 	struct llist_head *raw_hwp_head;
1897 	struct raw_hwp_page *p;
1898 	struct folio *folio = page_folio(page);
1899 	bool ret = false;
1900 
1901 	if (!folio_test_hwpoison(folio))
1902 		return false;
1903 
1904 	if (!folio_test_hugetlb(folio))
1905 		return PageHWPoison(page);
1906 
1907 	/*
1908 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1909 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1910 	 */
1911 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1912 		return true;
1913 
1914 	mutex_lock(&mf_mutex);
1915 
1916 	raw_hwp_head = raw_hwp_list_head(folio);
1917 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1918 		if (page == p->page) {
1919 			ret = true;
1920 			break;
1921 		}
1922 	}
1923 
1924 	mutex_unlock(&mf_mutex);
1925 
1926 	return ret;
1927 }
1928 
1929 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1930 {
1931 	struct llist_node *head;
1932 	struct raw_hwp_page *p, *next;
1933 	unsigned long count = 0;
1934 
1935 	head = llist_del_all(raw_hwp_list_head(folio));
1936 	llist_for_each_entry_safe(p, next, head, node) {
1937 		if (move_flag)
1938 			SetPageHWPoison(p->page);
1939 		else
1940 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1941 		kfree(p);
1942 		count++;
1943 	}
1944 	return count;
1945 }
1946 
1947 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1948 {
1949 	struct llist_head *head;
1950 	struct raw_hwp_page *raw_hwp;
1951 	struct raw_hwp_page *p;
1952 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1953 
1954 	/*
1955 	 * Once the hwpoison hugepage has lost reliable raw error info,
1956 	 * there is little meaning to keep additional error info precisely,
1957 	 * so skip to add additional raw error info.
1958 	 */
1959 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1960 		return -EHWPOISON;
1961 	head = raw_hwp_list_head(folio);
1962 	llist_for_each_entry(p, head->first, node) {
1963 		if (p->page == page)
1964 			return -EHWPOISON;
1965 	}
1966 
1967 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1968 	if (raw_hwp) {
1969 		raw_hwp->page = page;
1970 		llist_add(&raw_hwp->node, head);
1971 		/* the first error event will be counted in action_result(). */
1972 		if (ret)
1973 			num_poisoned_pages_inc(page_to_pfn(page));
1974 	} else {
1975 		/*
1976 		 * Failed to save raw error info.  We no longer trace all
1977 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1978 		 * this hwpoisoned hugepage.
1979 		 */
1980 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1981 		/*
1982 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1983 		 * used any more, so free it.
1984 		 */
1985 		__folio_free_raw_hwp(folio, false);
1986 	}
1987 	return ret;
1988 }
1989 
1990 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1991 {
1992 	/*
1993 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1994 	 * pages for tail pages are required but they don't exist.
1995 	 */
1996 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1997 		return 0;
1998 
1999 	/*
2000 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
2001 	 * definition.
2002 	 */
2003 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2004 		return 0;
2005 
2006 	return __folio_free_raw_hwp(folio, move_flag);
2007 }
2008 
2009 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2010 {
2011 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2012 		return;
2013 	if (folio_test_hugetlb_vmemmap_optimized(folio))
2014 		return;
2015 	folio_clear_hwpoison(folio);
2016 	folio_free_raw_hwp(folio, true);
2017 }
2018 
2019 /*
2020  * Called from hugetlb code with hugetlb_lock held.
2021  *
2022  * Return values:
2023  *   0             - free hugepage
2024  *   1             - in-use hugepage
2025  *   2             - not a hugepage
2026  *   -EBUSY        - the hugepage is busy (try to retry)
2027  *   -EHWPOISON    - the hugepage is already hwpoisoned
2028  */
2029 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2030 				 bool *migratable_cleared)
2031 {
2032 	struct page *page = pfn_to_page(pfn);
2033 	struct folio *folio = page_folio(page);
2034 	int ret = 2;	/* fallback to normal page handling */
2035 	bool count_increased = false;
2036 
2037 	if (!folio_test_hugetlb(folio))
2038 		goto out;
2039 
2040 	if (flags & MF_COUNT_INCREASED) {
2041 		ret = 1;
2042 		count_increased = true;
2043 	} else if (folio_test_hugetlb_freed(folio)) {
2044 		ret = 0;
2045 	} else if (folio_test_hugetlb_migratable(folio)) {
2046 		ret = folio_try_get(folio);
2047 		if (ret)
2048 			count_increased = true;
2049 	} else {
2050 		ret = -EBUSY;
2051 		if (!(flags & MF_NO_RETRY))
2052 			goto out;
2053 	}
2054 
2055 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2056 		ret = -EHWPOISON;
2057 		goto out;
2058 	}
2059 
2060 	/*
2061 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2062 	 * from being migrated by memory hotremove.
2063 	 */
2064 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2065 		folio_clear_hugetlb_migratable(folio);
2066 		*migratable_cleared = true;
2067 	}
2068 
2069 	return ret;
2070 out:
2071 	if (count_increased)
2072 		folio_put(folio);
2073 	return ret;
2074 }
2075 
2076 /*
2077  * Taking refcount of hugetlb pages needs extra care about race conditions
2078  * with basic operations like hugepage allocation/free/demotion.
2079  * So some of prechecks for hwpoison (pinning, and testing/setting
2080  * PageHWPoison) should be done in single hugetlb_lock range.
2081  */
2082 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2083 {
2084 	int res;
2085 	struct page *p = pfn_to_page(pfn);
2086 	struct folio *folio;
2087 	unsigned long page_flags;
2088 	bool migratable_cleared = false;
2089 
2090 	*hugetlb = 1;
2091 retry:
2092 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2093 	if (res == 2) { /* fallback to normal page handling */
2094 		*hugetlb = 0;
2095 		return 0;
2096 	} else if (res == -EHWPOISON) {
2097 		pr_err("%#lx: already hardware poisoned\n", pfn);
2098 		if (flags & MF_ACTION_REQUIRED) {
2099 			folio = page_folio(p);
2100 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2101 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2102 		}
2103 		return res;
2104 	} else if (res == -EBUSY) {
2105 		if (!(flags & MF_NO_RETRY)) {
2106 			flags |= MF_NO_RETRY;
2107 			goto retry;
2108 		}
2109 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2110 	}
2111 
2112 	folio = page_folio(p);
2113 	folio_lock(folio);
2114 
2115 	if (hwpoison_filter(p)) {
2116 		folio_clear_hugetlb_hwpoison(folio);
2117 		if (migratable_cleared)
2118 			folio_set_hugetlb_migratable(folio);
2119 		folio_unlock(folio);
2120 		if (res == 1)
2121 			folio_put(folio);
2122 		return -EOPNOTSUPP;
2123 	}
2124 
2125 	/*
2126 	 * Handling free hugepage.  The possible race with hugepage allocation
2127 	 * or demotion can be prevented by PageHWPoison flag.
2128 	 */
2129 	if (res == 0) {
2130 		folio_unlock(folio);
2131 		if (__page_handle_poison(p) > 0) {
2132 			page_ref_inc(p);
2133 			res = MF_RECOVERED;
2134 		} else {
2135 			res = MF_FAILED;
2136 		}
2137 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2138 	}
2139 
2140 	page_flags = folio->flags;
2141 
2142 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2143 		folio_unlock(folio);
2144 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2145 	}
2146 
2147 	return identify_page_state(pfn, p, page_flags);
2148 }
2149 
2150 #else
2151 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2152 {
2153 	return 0;
2154 }
2155 
2156 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2157 {
2158 	return 0;
2159 }
2160 #endif	/* CONFIG_HUGETLB_PAGE */
2161 
2162 /* Drop the extra refcount in case we come from madvise() */
2163 static void put_ref_page(unsigned long pfn, int flags)
2164 {
2165 	if (!(flags & MF_COUNT_INCREASED))
2166 		return;
2167 
2168 	put_page(pfn_to_page(pfn));
2169 }
2170 
2171 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2172 		struct dev_pagemap *pgmap)
2173 {
2174 	int rc = -ENXIO;
2175 
2176 	/* device metadata space is not recoverable */
2177 	if (!pgmap_pfn_valid(pgmap, pfn))
2178 		goto out;
2179 
2180 	/*
2181 	 * Call driver's implementation to handle the memory failure, otherwise
2182 	 * fall back to generic handler.
2183 	 */
2184 	if (pgmap_has_memory_failure(pgmap)) {
2185 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2186 		/*
2187 		 * Fall back to generic handler too if operation is not
2188 		 * supported inside the driver/device/filesystem.
2189 		 */
2190 		if (rc != -EOPNOTSUPP)
2191 			goto out;
2192 	}
2193 
2194 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2195 out:
2196 	/* drop pgmap ref acquired in caller */
2197 	put_dev_pagemap(pgmap);
2198 	if (rc != -EOPNOTSUPP)
2199 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2200 	return rc;
2201 }
2202 
2203 /*
2204  * The calling condition is as such: thp split failed, page might have
2205  * been RDMA pinned, not much can be done for recovery.
2206  * But a SIGBUS should be delivered with vaddr provided so that the user
2207  * application has a chance to recover. Also, application processes'
2208  * election for MCE early killed will be honored.
2209  */
2210 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2211 				struct folio *folio)
2212 {
2213 	LIST_HEAD(tokill);
2214 
2215 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2216 	kill_procs(&tokill, true, pfn, flags);
2217 }
2218 
2219 /**
2220  * memory_failure - Handle memory failure of a page.
2221  * @pfn: Page Number of the corrupted page
2222  * @flags: fine tune action taken
2223  *
2224  * This function is called by the low level machine check code
2225  * of an architecture when it detects hardware memory corruption
2226  * of a page. It tries its best to recover, which includes
2227  * dropping pages, killing processes etc.
2228  *
2229  * The function is primarily of use for corruptions that
2230  * happen outside the current execution context (e.g. when
2231  * detected by a background scrubber)
2232  *
2233  * Must run in process context (e.g. a work queue) with interrupts
2234  * enabled and no spinlocks held.
2235  *
2236  * Return:
2237  *   0             - success,
2238  *   -ENXIO        - memory not managed by the kernel
2239  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2240  *   -EHWPOISON    - the page was already poisoned, potentially
2241  *                   kill process,
2242  *   other negative values - failure.
2243  */
2244 int memory_failure(unsigned long pfn, int flags)
2245 {
2246 	struct page *p;
2247 	struct folio *folio;
2248 	struct dev_pagemap *pgmap;
2249 	int res = 0;
2250 	unsigned long page_flags;
2251 	bool retry = true;
2252 	int hugetlb = 0;
2253 
2254 	if (!sysctl_memory_failure_recovery)
2255 		panic("Memory failure on page %lx", pfn);
2256 
2257 	mutex_lock(&mf_mutex);
2258 
2259 	if (!(flags & MF_SW_SIMULATED))
2260 		hw_memory_failure = true;
2261 
2262 	p = pfn_to_online_page(pfn);
2263 	if (!p) {
2264 		res = arch_memory_failure(pfn, flags);
2265 		if (res == 0)
2266 			goto unlock_mutex;
2267 
2268 		if (pfn_valid(pfn)) {
2269 			pgmap = get_dev_pagemap(pfn, NULL);
2270 			put_ref_page(pfn, flags);
2271 			if (pgmap) {
2272 				res = memory_failure_dev_pagemap(pfn, flags,
2273 								 pgmap);
2274 				goto unlock_mutex;
2275 			}
2276 		}
2277 		pr_err("%#lx: memory outside kernel control\n", pfn);
2278 		res = -ENXIO;
2279 		goto unlock_mutex;
2280 	}
2281 
2282 try_again:
2283 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2284 	if (hugetlb)
2285 		goto unlock_mutex;
2286 
2287 	if (TestSetPageHWPoison(p)) {
2288 		pr_err("%#lx: already hardware poisoned\n", pfn);
2289 		res = -EHWPOISON;
2290 		if (flags & MF_ACTION_REQUIRED)
2291 			res = kill_accessing_process(current, pfn, flags);
2292 		if (flags & MF_COUNT_INCREASED)
2293 			put_page(p);
2294 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2295 		goto unlock_mutex;
2296 	}
2297 
2298 	/*
2299 	 * We need/can do nothing about count=0 pages.
2300 	 * 1) it's a free page, and therefore in safe hand:
2301 	 *    check_new_page() will be the gate keeper.
2302 	 * 2) it's part of a non-compound high order page.
2303 	 *    Implies some kernel user: cannot stop them from
2304 	 *    R/W the page; let's pray that the page has been
2305 	 *    used and will be freed some time later.
2306 	 * In fact it's dangerous to directly bump up page count from 0,
2307 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2308 	 */
2309 	if (!(flags & MF_COUNT_INCREASED)) {
2310 		res = get_hwpoison_page(p, flags);
2311 		if (!res) {
2312 			if (is_free_buddy_page(p)) {
2313 				if (take_page_off_buddy(p)) {
2314 					page_ref_inc(p);
2315 					res = MF_RECOVERED;
2316 				} else {
2317 					/* We lost the race, try again */
2318 					if (retry) {
2319 						ClearPageHWPoison(p);
2320 						retry = false;
2321 						goto try_again;
2322 					}
2323 					res = MF_FAILED;
2324 				}
2325 				res = action_result(pfn, MF_MSG_BUDDY, res);
2326 			} else {
2327 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2328 			}
2329 			goto unlock_mutex;
2330 		} else if (res < 0) {
2331 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2332 			goto unlock_mutex;
2333 		}
2334 	}
2335 
2336 	folio = page_folio(p);
2337 
2338 	/* filter pages that are protected from hwpoison test by users */
2339 	folio_lock(folio);
2340 	if (hwpoison_filter(p)) {
2341 		ClearPageHWPoison(p);
2342 		folio_unlock(folio);
2343 		folio_put(folio);
2344 		res = -EOPNOTSUPP;
2345 		goto unlock_mutex;
2346 	}
2347 	folio_unlock(folio);
2348 
2349 	if (folio_test_large(folio)) {
2350 		/*
2351 		 * The flag must be set after the refcount is bumped
2352 		 * otherwise it may race with THP split.
2353 		 * And the flag can't be set in get_hwpoison_page() since
2354 		 * it is called by soft offline too and it is just called
2355 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2356 		 * place.
2357 		 *
2358 		 * Don't need care about the above error handling paths for
2359 		 * get_hwpoison_page() since they handle either free page
2360 		 * or unhandlable page.  The refcount is bumped iff the
2361 		 * page is a valid handlable page.
2362 		 */
2363 		folio_set_has_hwpoisoned(folio);
2364 		if (try_to_split_thp_page(p, false) < 0) {
2365 			res = -EHWPOISON;
2366 			kill_procs_now(p, pfn, flags, folio);
2367 			put_page(p);
2368 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2369 			goto unlock_mutex;
2370 		}
2371 		VM_BUG_ON_PAGE(!page_count(p), p);
2372 		folio = page_folio(p);
2373 	}
2374 
2375 	/*
2376 	 * We ignore non-LRU pages for good reasons.
2377 	 * - PG_locked is only well defined for LRU pages and a few others
2378 	 * - to avoid races with __SetPageLocked()
2379 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2380 	 * The check (unnecessarily) ignores LRU pages being isolated and
2381 	 * walked by the page reclaim code, however that's not a big loss.
2382 	 */
2383 	shake_folio(folio);
2384 
2385 	folio_lock(folio);
2386 
2387 	/*
2388 	 * We're only intended to deal with the non-Compound page here.
2389 	 * The page cannot become compound pages again as folio has been
2390 	 * splited and extra refcnt is held.
2391 	 */
2392 	WARN_ON(folio_test_large(folio));
2393 
2394 	/*
2395 	 * We use page flags to determine what action should be taken, but
2396 	 * the flags can be modified by the error containment action.  One
2397 	 * example is an mlocked page, where PG_mlocked is cleared by
2398 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2399 	 * status correctly, we save a copy of the page flags at this time.
2400 	 */
2401 	page_flags = folio->flags;
2402 
2403 	/*
2404 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2405 	 * the folio lock. We need to wait for writeback completion for this
2406 	 * folio or it may trigger a vfs BUG while evicting inode.
2407 	 */
2408 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2409 		goto identify_page_state;
2410 
2411 	/*
2412 	 * It's very difficult to mess with pages currently under IO
2413 	 * and in many cases impossible, so we just avoid it here.
2414 	 */
2415 	folio_wait_writeback(folio);
2416 
2417 	/*
2418 	 * Now take care of user space mappings.
2419 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2420 	 */
2421 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2422 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2423 		goto unlock_page;
2424 	}
2425 
2426 	/*
2427 	 * Torn down by someone else?
2428 	 */
2429 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2430 	    folio->mapping == NULL) {
2431 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2432 		goto unlock_page;
2433 	}
2434 
2435 identify_page_state:
2436 	res = identify_page_state(pfn, p, page_flags);
2437 	mutex_unlock(&mf_mutex);
2438 	return res;
2439 unlock_page:
2440 	folio_unlock(folio);
2441 unlock_mutex:
2442 	mutex_unlock(&mf_mutex);
2443 	return res;
2444 }
2445 EXPORT_SYMBOL_GPL(memory_failure);
2446 
2447 #define MEMORY_FAILURE_FIFO_ORDER	4
2448 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2449 
2450 struct memory_failure_entry {
2451 	unsigned long pfn;
2452 	int flags;
2453 };
2454 
2455 struct memory_failure_cpu {
2456 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2457 		      MEMORY_FAILURE_FIFO_SIZE);
2458 	raw_spinlock_t lock;
2459 	struct work_struct work;
2460 };
2461 
2462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2463 
2464 /**
2465  * memory_failure_queue - Schedule handling memory failure of a page.
2466  * @pfn: Page Number of the corrupted page
2467  * @flags: Flags for memory failure handling
2468  *
2469  * This function is called by the low level hardware error handler
2470  * when it detects hardware memory corruption of a page. It schedules
2471  * the recovering of error page, including dropping pages, killing
2472  * processes etc.
2473  *
2474  * The function is primarily of use for corruptions that
2475  * happen outside the current execution context (e.g. when
2476  * detected by a background scrubber)
2477  *
2478  * Can run in IRQ context.
2479  */
2480 void memory_failure_queue(unsigned long pfn, int flags)
2481 {
2482 	struct memory_failure_cpu *mf_cpu;
2483 	unsigned long proc_flags;
2484 	bool buffer_overflow;
2485 	struct memory_failure_entry entry = {
2486 		.pfn =		pfn,
2487 		.flags =	flags,
2488 	};
2489 
2490 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2491 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2492 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2493 	if (!buffer_overflow)
2494 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2495 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2496 	put_cpu_var(memory_failure_cpu);
2497 	if (buffer_overflow)
2498 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2499 		       pfn);
2500 }
2501 EXPORT_SYMBOL_GPL(memory_failure_queue);
2502 
2503 static void memory_failure_work_func(struct work_struct *work)
2504 {
2505 	struct memory_failure_cpu *mf_cpu;
2506 	struct memory_failure_entry entry = { 0, };
2507 	unsigned long proc_flags;
2508 	int gotten;
2509 
2510 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2511 	for (;;) {
2512 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2513 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2514 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2515 		if (!gotten)
2516 			break;
2517 		if (entry.flags & MF_SOFT_OFFLINE)
2518 			soft_offline_page(entry.pfn, entry.flags);
2519 		else
2520 			memory_failure(entry.pfn, entry.flags);
2521 	}
2522 }
2523 
2524 static int __init memory_failure_init(void)
2525 {
2526 	struct memory_failure_cpu *mf_cpu;
2527 	int cpu;
2528 
2529 	for_each_possible_cpu(cpu) {
2530 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2531 		raw_spin_lock_init(&mf_cpu->lock);
2532 		INIT_KFIFO(mf_cpu->fifo);
2533 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2534 	}
2535 
2536 	register_sysctl_init("vm", memory_failure_table);
2537 
2538 	return 0;
2539 }
2540 core_initcall(memory_failure_init);
2541 
2542 #undef pr_fmt
2543 #define pr_fmt(fmt)	"Unpoison: " fmt
2544 #define unpoison_pr_info(fmt, pfn, rs)			\
2545 ({							\
2546 	if (__ratelimit(rs))				\
2547 		pr_info(fmt, pfn);			\
2548 })
2549 
2550 /**
2551  * unpoison_memory - Unpoison a previously poisoned page
2552  * @pfn: Page number of the to be unpoisoned page
2553  *
2554  * Software-unpoison a page that has been poisoned by
2555  * memory_failure() earlier.
2556  *
2557  * This is only done on the software-level, so it only works
2558  * for linux injected failures, not real hardware failures
2559  *
2560  * Returns 0 for success, otherwise -errno.
2561  */
2562 int unpoison_memory(unsigned long pfn)
2563 {
2564 	struct folio *folio;
2565 	struct page *p;
2566 	int ret = -EBUSY, ghp;
2567 	unsigned long count;
2568 	bool huge = false;
2569 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2570 					DEFAULT_RATELIMIT_BURST);
2571 
2572 	if (!pfn_valid(pfn))
2573 		return -ENXIO;
2574 
2575 	p = pfn_to_page(pfn);
2576 	folio = page_folio(p);
2577 
2578 	mutex_lock(&mf_mutex);
2579 
2580 	if (hw_memory_failure) {
2581 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2582 				 pfn, &unpoison_rs);
2583 		ret = -EOPNOTSUPP;
2584 		goto unlock_mutex;
2585 	}
2586 
2587 	if (is_huge_zero_folio(folio)) {
2588 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2589 				 pfn, &unpoison_rs);
2590 		ret = -EOPNOTSUPP;
2591 		goto unlock_mutex;
2592 	}
2593 
2594 	if (!PageHWPoison(p)) {
2595 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2596 				 pfn, &unpoison_rs);
2597 		goto unlock_mutex;
2598 	}
2599 
2600 	if (folio_ref_count(folio) > 1) {
2601 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2602 				 pfn, &unpoison_rs);
2603 		goto unlock_mutex;
2604 	}
2605 
2606 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2607 	    folio_test_reserved(folio) || folio_test_offline(folio))
2608 		goto unlock_mutex;
2609 
2610 	if (folio_mapped(folio)) {
2611 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2612 				 pfn, &unpoison_rs);
2613 		goto unlock_mutex;
2614 	}
2615 
2616 	if (folio_mapping(folio)) {
2617 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2618 				 pfn, &unpoison_rs);
2619 		goto unlock_mutex;
2620 	}
2621 
2622 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2623 	if (!ghp) {
2624 		if (folio_test_hugetlb(folio)) {
2625 			huge = true;
2626 			count = folio_free_raw_hwp(folio, false);
2627 			if (count == 0)
2628 				goto unlock_mutex;
2629 		}
2630 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2631 	} else if (ghp < 0) {
2632 		if (ghp == -EHWPOISON) {
2633 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2634 		} else {
2635 			ret = ghp;
2636 			unpoison_pr_info("%#lx: failed to grab page\n",
2637 					 pfn, &unpoison_rs);
2638 		}
2639 	} else {
2640 		if (folio_test_hugetlb(folio)) {
2641 			huge = true;
2642 			count = folio_free_raw_hwp(folio, false);
2643 			if (count == 0) {
2644 				folio_put(folio);
2645 				goto unlock_mutex;
2646 			}
2647 		}
2648 
2649 		folio_put(folio);
2650 		if (TestClearPageHWPoison(p)) {
2651 			folio_put(folio);
2652 			ret = 0;
2653 		}
2654 	}
2655 
2656 unlock_mutex:
2657 	mutex_unlock(&mf_mutex);
2658 	if (!ret) {
2659 		if (!huge)
2660 			num_poisoned_pages_sub(pfn, 1);
2661 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2662 				 page_to_pfn(p), &unpoison_rs);
2663 	}
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL(unpoison_memory);
2667 
2668 #undef pr_fmt
2669 #define pr_fmt(fmt) "Soft offline: " fmt
2670 
2671 /*
2672  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2673  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2674  * If the page is mapped, it migrates the contents over.
2675  */
2676 static int soft_offline_in_use_page(struct page *page)
2677 {
2678 	long ret = 0;
2679 	unsigned long pfn = page_to_pfn(page);
2680 	struct folio *folio = page_folio(page);
2681 	char const *msg_page[] = {"page", "hugepage"};
2682 	bool huge = folio_test_hugetlb(folio);
2683 	bool isolated;
2684 	LIST_HEAD(pagelist);
2685 	struct migration_target_control mtc = {
2686 		.nid = NUMA_NO_NODE,
2687 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2688 		.reason = MR_MEMORY_FAILURE,
2689 	};
2690 
2691 	if (!huge && folio_test_large(folio)) {
2692 		if (try_to_split_thp_page(page, true)) {
2693 			pr_info("%#lx: thp split failed\n", pfn);
2694 			return -EBUSY;
2695 		}
2696 		folio = page_folio(page);
2697 	}
2698 
2699 	folio_lock(folio);
2700 	if (!huge)
2701 		folio_wait_writeback(folio);
2702 	if (PageHWPoison(page)) {
2703 		folio_unlock(folio);
2704 		folio_put(folio);
2705 		pr_info("%#lx: page already poisoned\n", pfn);
2706 		return 0;
2707 	}
2708 
2709 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2710 		/*
2711 		 * Try to invalidate first. This should work for
2712 		 * non dirty unmapped page cache pages.
2713 		 */
2714 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2715 	folio_unlock(folio);
2716 
2717 	if (ret) {
2718 		pr_info("%#lx: invalidated\n", pfn);
2719 		page_handle_poison(page, false, true);
2720 		return 0;
2721 	}
2722 
2723 	isolated = isolate_folio_to_list(folio, &pagelist);
2724 
2725 	/*
2726 	 * If we succeed to isolate the folio, we grabbed another refcount on
2727 	 * the folio, so we can safely drop the one we got from get_any_page().
2728 	 * If we failed to isolate the folio, it means that we cannot go further
2729 	 * and we will return an error, so drop the reference we got from
2730 	 * get_any_page() as well.
2731 	 */
2732 	folio_put(folio);
2733 
2734 	if (isolated) {
2735 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2736 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2737 		if (!ret) {
2738 			bool release = !huge;
2739 
2740 			if (!page_handle_poison(page, huge, release))
2741 				ret = -EBUSY;
2742 		} else {
2743 			if (!list_empty(&pagelist))
2744 				putback_movable_pages(&pagelist);
2745 
2746 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2747 				pfn, msg_page[huge], ret, &page->flags);
2748 			if (ret > 0)
2749 				ret = -EBUSY;
2750 		}
2751 	} else {
2752 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2753 			pfn, msg_page[huge], page_count(page), &page->flags);
2754 		ret = -EBUSY;
2755 	}
2756 	return ret;
2757 }
2758 
2759 /**
2760  * soft_offline_page - Soft offline a page.
2761  * @pfn: pfn to soft-offline
2762  * @flags: flags. Same as memory_failure().
2763  *
2764  * Returns 0 on success,
2765  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2766  *         disabled by /proc/sys/vm/enable_soft_offline,
2767  *         < 0 otherwise negated errno.
2768  *
2769  * Soft offline a page, by migration or invalidation,
2770  * without killing anything. This is for the case when
2771  * a page is not corrupted yet (so it's still valid to access),
2772  * but has had a number of corrected errors and is better taken
2773  * out.
2774  *
2775  * The actual policy on when to do that is maintained by
2776  * user space.
2777  *
2778  * This should never impact any application or cause data loss,
2779  * however it might take some time.
2780  *
2781  * This is not a 100% solution for all memory, but tries to be
2782  * ``good enough'' for the majority of memory.
2783  */
2784 int soft_offline_page(unsigned long pfn, int flags)
2785 {
2786 	int ret;
2787 	bool try_again = true;
2788 	struct page *page;
2789 
2790 	if (!pfn_valid(pfn)) {
2791 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2792 		return -ENXIO;
2793 	}
2794 
2795 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2796 	page = pfn_to_online_page(pfn);
2797 	if (!page) {
2798 		put_ref_page(pfn, flags);
2799 		return -EIO;
2800 	}
2801 
2802 	if (!sysctl_enable_soft_offline) {
2803 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2804 		put_ref_page(pfn, flags);
2805 		return -EOPNOTSUPP;
2806 	}
2807 
2808 	mutex_lock(&mf_mutex);
2809 
2810 	if (PageHWPoison(page)) {
2811 		pr_info("%#lx: page already poisoned\n", pfn);
2812 		put_ref_page(pfn, flags);
2813 		mutex_unlock(&mf_mutex);
2814 		return 0;
2815 	}
2816 
2817 retry:
2818 	get_online_mems();
2819 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2820 	put_online_mems();
2821 
2822 	if (hwpoison_filter(page)) {
2823 		if (ret > 0)
2824 			put_page(page);
2825 
2826 		mutex_unlock(&mf_mutex);
2827 		return -EOPNOTSUPP;
2828 	}
2829 
2830 	if (ret > 0) {
2831 		ret = soft_offline_in_use_page(page);
2832 	} else if (ret == 0) {
2833 		if (!page_handle_poison(page, true, false)) {
2834 			if (try_again) {
2835 				try_again = false;
2836 				flags &= ~MF_COUNT_INCREASED;
2837 				goto retry;
2838 			}
2839 			ret = -EBUSY;
2840 		}
2841 	}
2842 
2843 	mutex_unlock(&mf_mutex);
2844 
2845 	return ret;
2846 }
2847