1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static const struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 216 217 u32 hwpoison_filter_enable = 0; 218 u32 hwpoison_filter_dev_major = ~0U; 219 u32 hwpoison_filter_dev_minor = ~0U; 220 u64 hwpoison_filter_flags_mask; 221 u64 hwpoison_filter_flags_value; 222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 227 228 static int hwpoison_filter_dev(struct page *p) 229 { 230 struct folio *folio = page_folio(p); 231 struct address_space *mapping; 232 dev_t dev; 233 234 if (hwpoison_filter_dev_major == ~0U && 235 hwpoison_filter_dev_minor == ~0U) 236 return 0; 237 238 mapping = folio_mapping(folio); 239 if (mapping == NULL || mapping->host == NULL) 240 return -EINVAL; 241 242 dev = mapping->host->i_sb->s_dev; 243 if (hwpoison_filter_dev_major != ~0U && 244 hwpoison_filter_dev_major != MAJOR(dev)) 245 return -EINVAL; 246 if (hwpoison_filter_dev_minor != ~0U && 247 hwpoison_filter_dev_minor != MINOR(dev)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static int hwpoison_filter_flags(struct page *p) 254 { 255 if (!hwpoison_filter_flags_mask) 256 return 0; 257 258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 259 hwpoison_filter_flags_value) 260 return 0; 261 else 262 return -EINVAL; 263 } 264 265 /* 266 * This allows stress tests to limit test scope to a collection of tasks 267 * by putting them under some memcg. This prevents killing unrelated/important 268 * processes such as /sbin/init. Note that the target task may share clean 269 * pages with init (eg. libc text), which is harmless. If the target task 270 * share _dirty_ pages with another task B, the test scheme must make sure B 271 * is also included in the memcg. At last, due to race conditions this filter 272 * can only guarantee that the page either belongs to the memcg tasks, or is 273 * a freed page. 274 */ 275 #ifdef CONFIG_MEMCG 276 u64 hwpoison_filter_memcg; 277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 278 static int hwpoison_filter_task(struct page *p) 279 { 280 if (!hwpoison_filter_memcg) 281 return 0; 282 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 284 return -EINVAL; 285 286 return 0; 287 } 288 #else 289 static int hwpoison_filter_task(struct page *p) { return 0; } 290 #endif 291 292 int hwpoison_filter(struct page *p) 293 { 294 if (!hwpoison_filter_enable) 295 return 0; 296 297 if (hwpoison_filter_dev(p)) 298 return -EINVAL; 299 300 if (hwpoison_filter_flags(p)) 301 return -EINVAL; 302 303 if (hwpoison_filter_task(p)) 304 return -EINVAL; 305 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(hwpoison_filter); 309 #else 310 int hwpoison_filter(struct page *p) 311 { 312 return 0; 313 } 314 #endif 315 316 /* 317 * Kill all processes that have a poisoned page mapped and then isolate 318 * the page. 319 * 320 * General strategy: 321 * Find all processes having the page mapped and kill them. 322 * But we keep a page reference around so that the page is not 323 * actually freed yet. 324 * Then stash the page away 325 * 326 * There's no convenient way to get back to mapped processes 327 * from the VMAs. So do a brute-force search over all 328 * running processes. 329 * 330 * Remember that machine checks are not common (or rather 331 * if they are common you have other problems), so this shouldn't 332 * be a performance issue. 333 * 334 * Also there are some races possible while we get from the 335 * error detection to actually handle it. 336 */ 337 338 struct to_kill { 339 struct list_head nd; 340 struct task_struct *tsk; 341 unsigned long addr; 342 short size_shift; 343 }; 344 345 /* 346 * Send all the processes who have the page mapped a signal. 347 * ``action optional'' if they are not immediately affected by the error 348 * ``action required'' if error happened in current execution context 349 */ 350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 351 { 352 struct task_struct *t = tk->tsk; 353 short addr_lsb = tk->size_shift; 354 int ret = 0; 355 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 357 pfn, t->comm, task_pid_nr(t)); 358 359 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 360 ret = force_sig_mceerr(BUS_MCEERR_AR, 361 (void __user *)tk->addr, addr_lsb); 362 else 363 /* 364 * Signal other processes sharing the page if they have 365 * PF_MCE_EARLY set. 366 * Don't use force here, it's convenient if the signal 367 * can be temporarily blocked. 368 */ 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 370 addr_lsb, t); 371 if (ret < 0) 372 pr_info("Error sending signal to %s:%d: %d\n", 373 t->comm, task_pid_nr(t), ret); 374 return ret; 375 } 376 377 /* 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by 379 * lru_add_drain_all. 380 */ 381 void shake_folio(struct folio *folio) 382 { 383 if (folio_test_hugetlb(folio)) 384 return; 385 /* 386 * TODO: Could shrink slab caches here if a lightweight range-based 387 * shrinker will be available. 388 */ 389 if (folio_test_slab(folio)) 390 return; 391 392 lru_add_drain_all(); 393 } 394 EXPORT_SYMBOL_GPL(shake_folio); 395 396 static void shake_page(struct page *page) 397 { 398 shake_folio(page_folio(page)); 399 } 400 401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 402 unsigned long address) 403 { 404 unsigned long ret = 0; 405 pgd_t *pgd; 406 p4d_t *p4d; 407 pud_t *pud; 408 pmd_t *pmd; 409 pte_t *pte; 410 pte_t ptent; 411 412 VM_BUG_ON_VMA(address == -EFAULT, vma); 413 pgd = pgd_offset(vma->vm_mm, address); 414 if (!pgd_present(*pgd)) 415 return 0; 416 p4d = p4d_offset(pgd, address); 417 if (!p4d_present(*p4d)) 418 return 0; 419 pud = pud_offset(p4d, address); 420 if (!pud_present(*pud)) 421 return 0; 422 if (pud_trans_huge(*pud)) 423 return PUD_SHIFT; 424 pmd = pmd_offset(pud, address); 425 if (!pmd_present(*pmd)) 426 return 0; 427 if (pmd_trans_huge(*pmd)) 428 return PMD_SHIFT; 429 pte = pte_offset_map(pmd, address); 430 if (!pte) 431 return 0; 432 ptent = ptep_get(pte); 433 if (pte_present(ptent)) 434 ret = PAGE_SHIFT; 435 pte_unmap(pte); 436 return ret; 437 } 438 439 /* 440 * Failure handling: if we can't find or can't kill a process there's 441 * not much we can do. We just print a message and ignore otherwise. 442 */ 443 444 /* 445 * Schedule a process for later kill. 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 447 */ 448 static void __add_to_kill(struct task_struct *tsk, const struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451 { 452 struct to_kill *tk; 453 454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 455 if (!tk) { 456 pr_err("Out of memory while machine check handling\n"); 457 return; 458 } 459 460 tk->addr = addr; 461 if (is_zone_device_page(p)) 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 463 else 464 tk->size_shift = folio_shift(page_folio(p)); 465 466 /* 467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 468 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 469 * so "tk->size_shift == 0" effectively checks no mapping on 470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 471 * to a process' address space, it's possible not all N VMAs 472 * contain mappings for the page, but at least one VMA does. 473 * Only deliver SIGBUS with payload derived from the VMA that 474 * has a mapping for the page. 475 */ 476 if (tk->addr == -EFAULT) { 477 pr_info("Unable to find user space address %lx in %s\n", 478 page_to_pfn(p), tsk->comm); 479 } else if (tk->size_shift == 0) { 480 kfree(tk); 481 return; 482 } 483 484 get_task_struct(tsk); 485 tk->tsk = tsk; 486 list_add_tail(&tk->nd, to_kill); 487 } 488 489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 490 struct vm_area_struct *vma, struct list_head *to_kill, 491 unsigned long addr) 492 { 493 if (addr == -EFAULT) 494 return; 495 __add_to_kill(tsk, p, vma, to_kill, addr); 496 } 497 498 #ifdef CONFIG_KSM 499 static bool task_in_to_kill_list(struct list_head *to_kill, 500 struct task_struct *tsk) 501 { 502 struct to_kill *tk, *next; 503 504 list_for_each_entry_safe(tk, next, to_kill, nd) { 505 if (tk->tsk == tsk) 506 return true; 507 } 508 509 return false; 510 } 511 512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 513 struct vm_area_struct *vma, struct list_head *to_kill, 514 unsigned long addr) 515 { 516 if (!task_in_to_kill_list(to_kill, tsk)) 517 __add_to_kill(tsk, p, vma, to_kill, addr); 518 } 519 #endif 520 /* 521 * Kill the processes that have been collected earlier. 522 * 523 * Only do anything when FORCEKILL is set, otherwise just free the 524 * list (this is used for clean pages which do not need killing) 525 */ 526 static void kill_procs(struct list_head *to_kill, int forcekill, 527 unsigned long pfn, int flags) 528 { 529 struct to_kill *tk, *next; 530 531 list_for_each_entry_safe(tk, next, to_kill, nd) { 532 if (forcekill) { 533 if (tk->addr == -EFAULT) { 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 537 tk->tsk, PIDTYPE_PID); 538 } 539 540 /* 541 * In theory the process could have mapped 542 * something else on the address in-between. We could 543 * check for that, but we need to tell the 544 * process anyways. 545 */ 546 else if (kill_proc(tk, pfn, flags) < 0) 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 549 } 550 list_del(&tk->nd); 551 put_task_struct(tk->tsk); 552 kfree(tk); 553 } 554 } 555 556 /* 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 558 * on behalf of the thread group. Return task_struct of the (first found) 559 * dedicated thread if found, and return NULL otherwise. 560 * 561 * We already hold rcu lock in the caller, so we don't have to call 562 * rcu_read_lock/unlock() in this function. 563 */ 564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 565 { 566 struct task_struct *t; 567 568 for_each_thread(tsk, t) { 569 if (t->flags & PF_MCE_PROCESS) { 570 if (t->flags & PF_MCE_EARLY) 571 return t; 572 } else { 573 if (sysctl_memory_failure_early_kill) 574 return t; 575 } 576 } 577 return NULL; 578 } 579 580 /* 581 * Determine whether a given process is "early kill" process which expects 582 * to be signaled when some page under the process is hwpoisoned. 583 * Return task_struct of the dedicated thread (main thread unless explicitly 584 * specified) if the process is "early kill" and otherwise returns NULL. 585 * 586 * Note that the above is true for Action Optional case. For Action Required 587 * case, it's only meaningful to the current thread which need to be signaled 588 * with SIGBUS, this error is Action Optional for other non current 589 * processes sharing the same error page,if the process is "early kill", the 590 * task_struct of the dedicated thread will also be returned. 591 */ 592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 593 { 594 if (!tsk->mm) 595 return NULL; 596 /* 597 * Comparing ->mm here because current task might represent 598 * a subthread, while tsk always points to the main thread. 599 */ 600 if (force_early && tsk->mm == current->mm) 601 return current; 602 603 return find_early_kill_thread(tsk); 604 } 605 606 /* 607 * Collect processes when the error hit an anonymous page. 608 */ 609 static void collect_procs_anon(const struct folio *folio, 610 const struct page *page, struct list_head *to_kill, 611 int force_early) 612 { 613 struct task_struct *tsk; 614 struct anon_vma *av; 615 pgoff_t pgoff; 616 617 av = folio_lock_anon_vma_read(folio, NULL); 618 if (av == NULL) /* Not actually mapped anymore */ 619 return; 620 621 pgoff = page_pgoff(folio, page); 622 rcu_read_lock(); 623 for_each_process(tsk) { 624 struct vm_area_struct *vma; 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 unsigned long addr; 628 629 if (!t) 630 continue; 631 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 632 pgoff, pgoff) { 633 vma = vmac->vma; 634 if (vma->vm_mm != t->mm) 635 continue; 636 addr = page_mapped_in_vma(page, vma); 637 add_to_kill_anon_file(t, page, vma, to_kill, addr); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(const struct folio *folio, 648 const struct page *page, struct list_head *to_kill, 649 int force_early) 650 { 651 struct vm_area_struct *vma; 652 struct task_struct *tsk; 653 struct address_space *mapping = folio->mapping; 654 pgoff_t pgoff; 655 656 i_mmap_lock_read(mapping); 657 rcu_read_lock(); 658 pgoff = page_pgoff(folio, page); 659 for_each_process(tsk) { 660 struct task_struct *t = task_early_kill(tsk, force_early); 661 unsigned long addr; 662 663 if (!t) 664 continue; 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 666 pgoff) { 667 /* 668 * Send early kill signal to tasks where a vma covers 669 * the page but the corrupted page is not necessarily 670 * mapped in its pte. 671 * Assume applications who requested early kill want 672 * to be informed of all such data corruptions. 673 */ 674 if (vma->vm_mm != t->mm) 675 continue; 676 addr = page_address_in_vma(folio, page, vma); 677 add_to_kill_anon_file(t, page, vma, to_kill, addr); 678 } 679 } 680 rcu_read_unlock(); 681 i_mmap_unlock_read(mapping); 682 } 683 684 #ifdef CONFIG_FS_DAX 685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 686 struct vm_area_struct *vma, 687 struct list_head *to_kill, pgoff_t pgoff) 688 { 689 unsigned long addr = vma_address(vma, pgoff, 1); 690 __add_to_kill(tsk, p, vma, to_kill, addr); 691 } 692 693 /* 694 * Collect processes when the error hit a fsdax page. 695 */ 696 static void collect_procs_fsdax(const struct page *page, 697 struct address_space *mapping, pgoff_t pgoff, 698 struct list_head *to_kill, bool pre_remove) 699 { 700 struct vm_area_struct *vma; 701 struct task_struct *tsk; 702 703 i_mmap_lock_read(mapping); 704 rcu_read_lock(); 705 for_each_process(tsk) { 706 struct task_struct *t = tsk; 707 708 /* 709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 710 * the current may not be the one accessing the fsdax page. 711 * Otherwise, search for the current task. 712 */ 713 if (!pre_remove) 714 t = task_early_kill(tsk, true); 715 if (!t) 716 continue; 717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 718 if (vma->vm_mm == t->mm) 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 720 } 721 } 722 rcu_read_unlock(); 723 i_mmap_unlock_read(mapping); 724 } 725 #endif /* CONFIG_FS_DAX */ 726 727 /* 728 * Collect the processes who have the corrupted page mapped to kill. 729 */ 730 static void collect_procs(const struct folio *folio, const struct page *page, 731 struct list_head *tokill, int force_early) 732 { 733 if (!folio->mapping) 734 return; 735 if (unlikely(folio_test_ksm(folio))) 736 collect_procs_ksm(folio, page, tokill, force_early); 737 else if (folio_test_anon(folio)) 738 collect_procs_anon(folio, page, tokill, force_early); 739 else 740 collect_procs_file(folio, page, tokill, force_early); 741 } 742 743 struct hwpoison_walk { 744 struct to_kill tk; 745 unsigned long pfn; 746 int flags; 747 }; 748 749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 750 { 751 tk->addr = addr; 752 tk->size_shift = shift; 753 } 754 755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 756 unsigned long poisoned_pfn, struct to_kill *tk) 757 { 758 unsigned long pfn = 0; 759 760 if (pte_present(pte)) { 761 pfn = pte_pfn(pte); 762 } else { 763 swp_entry_t swp = pte_to_swp_entry(pte); 764 765 if (is_hwpoison_entry(swp)) 766 pfn = swp_offset_pfn(swp); 767 } 768 769 if (!pfn || pfn != poisoned_pfn) 770 return 0; 771 772 set_to_kill(tk, addr, shift); 773 return 1; 774 } 775 776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 778 struct hwpoison_walk *hwp) 779 { 780 pmd_t pmd = *pmdp; 781 unsigned long pfn; 782 unsigned long hwpoison_vaddr; 783 784 if (!pmd_present(pmd)) 785 return 0; 786 pfn = pmd_pfn(pmd); 787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 790 return 1; 791 } 792 return 0; 793 } 794 #else 795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 796 struct hwpoison_walk *hwp) 797 { 798 return 0; 799 } 800 #endif 801 802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 803 unsigned long end, struct mm_walk *walk) 804 { 805 struct hwpoison_walk *hwp = walk->private; 806 int ret = 0; 807 pte_t *ptep, *mapped_pte; 808 spinlock_t *ptl; 809 810 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 811 if (ptl) { 812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 813 spin_unlock(ptl); 814 goto out; 815 } 816 817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 818 addr, &ptl); 819 if (!ptep) 820 goto out; 821 822 for (; addr != end; ptep++, addr += PAGE_SIZE) { 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 824 hwp->pfn, &hwp->tk); 825 if (ret == 1) 826 break; 827 } 828 pte_unmap_unlock(mapped_pte, ptl); 829 out: 830 cond_resched(); 831 return ret; 832 } 833 834 #ifdef CONFIG_HUGETLB_PAGE 835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 836 unsigned long addr, unsigned long end, 837 struct mm_walk *walk) 838 { 839 struct hwpoison_walk *hwp = walk->private; 840 struct hstate *h = hstate_vma(walk->vma); 841 spinlock_t *ptl; 842 pte_t pte; 843 int ret; 844 845 ptl = huge_pte_lock(h, walk->mm, ptep); 846 pte = huge_ptep_get(walk->mm, addr, ptep); 847 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 848 hwp->pfn, &hwp->tk); 849 spin_unlock(ptl); 850 return ret; 851 } 852 #else 853 #define hwpoison_hugetlb_range NULL 854 #endif 855 856 static int hwpoison_test_walk(unsigned long start, unsigned long end, 857 struct mm_walk *walk) 858 { 859 /* We also want to consider pages mapped into VM_PFNMAP. */ 860 return 0; 861 } 862 863 static const struct mm_walk_ops hwpoison_walk_ops = { 864 .pmd_entry = hwpoison_pte_range, 865 .hugetlb_entry = hwpoison_hugetlb_range, 866 .test_walk = hwpoison_test_walk, 867 .walk_lock = PGWALK_RDLOCK, 868 }; 869 870 /* 871 * Sends SIGBUS to the current process with error info. 872 * 873 * This function is intended to handle "Action Required" MCEs on already 874 * hardware poisoned pages. They could happen, for example, when 875 * memory_failure() failed to unmap the error page at the first call, or 876 * when multiple local machine checks happened on different CPUs. 877 * 878 * MCE handler currently has no easy access to the error virtual address, 879 * so this function walks page table to find it. The returned virtual address 880 * is proper in most cases, but it could be wrong when the application 881 * process has multiple entries mapping the error page. 882 */ 883 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 884 int flags) 885 { 886 int ret; 887 struct hwpoison_walk priv = { 888 .pfn = pfn, 889 }; 890 priv.tk.tsk = p; 891 892 if (!p->mm) 893 return -EFAULT; 894 895 mmap_read_lock(p->mm); 896 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 897 (void *)&priv); 898 /* 899 * ret = 1 when CMCI wins, regardless of whether try_to_unmap() 900 * succeeds or fails, then kill the process with SIGBUS. 901 * ret = 0 when poison page is a clean page and it's dropped, no 902 * SIGBUS is needed. 903 */ 904 if (ret == 1 && priv.tk.addr) 905 kill_proc(&priv.tk, pfn, flags); 906 mmap_read_unlock(p->mm); 907 908 return ret > 0 ? -EHWPOISON : 0; 909 } 910 911 /* 912 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 913 * But it could not do more to isolate the page from being accessed again, 914 * nor does it kill the process. This is extremely rare and one of the 915 * potential causes is that the page state has been changed due to 916 * underlying race condition. This is the most severe outcomes. 917 * 918 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 919 * It should have killed the process, but it can't isolate the page, 920 * due to conditions such as extra pin, unmap failure, etc. Accessing 921 * the page again may trigger another MCE and the process will be killed 922 * by the m-f() handler immediately. 923 * 924 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 925 * The page is unmapped, and is removed from the LRU or file mapping. 926 * An attempt to access the page again will trigger page fault and the 927 * PF handler will kill the process. 928 * 929 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 930 * The page has been completely isolated, that is, unmapped, taken out of 931 * the buddy system, or hole-punnched out of the file mapping. 932 */ 933 static const char *action_name[] = { 934 [MF_IGNORED] = "Ignored", 935 [MF_FAILED] = "Failed", 936 [MF_DELAYED] = "Delayed", 937 [MF_RECOVERED] = "Recovered", 938 }; 939 940 static const char * const action_page_types[] = { 941 [MF_MSG_KERNEL] = "reserved kernel page", 942 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 943 [MF_MSG_HUGE] = "huge page", 944 [MF_MSG_FREE_HUGE] = "free huge page", 945 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 946 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 947 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 948 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 949 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 950 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 951 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 952 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 953 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 954 [MF_MSG_CLEAN_LRU] = "clean LRU page", 955 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 956 [MF_MSG_BUDDY] = "free buddy page", 957 [MF_MSG_DAX] = "dax page", 958 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 959 [MF_MSG_ALREADY_POISONED] = "already poisoned", 960 [MF_MSG_UNKNOWN] = "unknown page", 961 }; 962 963 /* 964 * XXX: It is possible that a page is isolated from LRU cache, 965 * and then kept in swap cache or failed to remove from page cache. 966 * The page count will stop it from being freed by unpoison. 967 * Stress tests should be aware of this memory leak problem. 968 */ 969 static int delete_from_lru_cache(struct folio *folio) 970 { 971 if (folio_isolate_lru(folio)) { 972 /* 973 * Clear sensible page flags, so that the buddy system won't 974 * complain when the folio is unpoison-and-freed. 975 */ 976 folio_clear_active(folio); 977 folio_clear_unevictable(folio); 978 979 /* 980 * Poisoned page might never drop its ref count to 0 so we have 981 * to uncharge it manually from its memcg. 982 */ 983 mem_cgroup_uncharge(folio); 984 985 /* 986 * drop the refcount elevated by folio_isolate_lru() 987 */ 988 folio_put(folio); 989 return 0; 990 } 991 return -EIO; 992 } 993 994 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 995 struct address_space *mapping) 996 { 997 int ret = MF_FAILED; 998 999 if (mapping->a_ops->error_remove_folio) { 1000 int err = mapping->a_ops->error_remove_folio(mapping, folio); 1001 1002 if (err != 0) 1003 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 1004 else if (!filemap_release_folio(folio, GFP_NOIO)) 1005 pr_info("%#lx: failed to release buffers\n", pfn); 1006 else 1007 ret = MF_RECOVERED; 1008 } else { 1009 /* 1010 * If the file system doesn't support it just invalidate 1011 * This fails on dirty or anything with private pages 1012 */ 1013 if (mapping_evict_folio(mapping, folio)) 1014 ret = MF_RECOVERED; 1015 else 1016 pr_info("%#lx: Failed to invalidate\n", pfn); 1017 } 1018 1019 return ret; 1020 } 1021 1022 struct page_state { 1023 unsigned long mask; 1024 unsigned long res; 1025 enum mf_action_page_type type; 1026 1027 /* Callback ->action() has to unlock the relevant page inside it. */ 1028 int (*action)(struct page_state *ps, struct page *p); 1029 }; 1030 1031 /* 1032 * Return true if page is still referenced by others, otherwise return 1033 * false. 1034 * 1035 * The extra_pins is true when one extra refcount is expected. 1036 */ 1037 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1038 bool extra_pins) 1039 { 1040 int count = page_count(p) - 1; 1041 1042 if (extra_pins) 1043 count -= folio_nr_pages(page_folio(p)); 1044 1045 if (count > 0) { 1046 pr_err("%#lx: %s still referenced by %d users\n", 1047 page_to_pfn(p), action_page_types[ps->type], count); 1048 return true; 1049 } 1050 1051 return false; 1052 } 1053 1054 /* 1055 * Error hit kernel page. 1056 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1057 * could be more sophisticated. 1058 */ 1059 static int me_kernel(struct page_state *ps, struct page *p) 1060 { 1061 unlock_page(p); 1062 return MF_IGNORED; 1063 } 1064 1065 /* 1066 * Page in unknown state. Do nothing. 1067 * This is a catch-all in case we fail to make sense of the page state. 1068 */ 1069 static int me_unknown(struct page_state *ps, struct page *p) 1070 { 1071 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1072 unlock_page(p); 1073 return MF_IGNORED; 1074 } 1075 1076 /* 1077 * Clean (or cleaned) page cache page. 1078 */ 1079 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1080 { 1081 struct folio *folio = page_folio(p); 1082 int ret; 1083 struct address_space *mapping; 1084 bool extra_pins; 1085 1086 delete_from_lru_cache(folio); 1087 1088 /* 1089 * For anonymous folios the only reference left 1090 * should be the one m_f() holds. 1091 */ 1092 if (folio_test_anon(folio)) { 1093 ret = MF_RECOVERED; 1094 goto out; 1095 } 1096 1097 /* 1098 * Now truncate the page in the page cache. This is really 1099 * more like a "temporary hole punch" 1100 * Don't do this for block devices when someone else 1101 * has a reference, because it could be file system metadata 1102 * and that's not safe to truncate. 1103 */ 1104 mapping = folio_mapping(folio); 1105 if (!mapping) { 1106 /* Folio has been torn down in the meantime */ 1107 ret = MF_FAILED; 1108 goto out; 1109 } 1110 1111 /* 1112 * The shmem page is kept in page cache instead of truncating 1113 * so is expected to have an extra refcount after error-handling. 1114 */ 1115 extra_pins = shmem_mapping(mapping); 1116 1117 /* 1118 * Truncation is a bit tricky. Enable it per file system for now. 1119 * 1120 * Open: to take i_rwsem or not for this? Right now we don't. 1121 */ 1122 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1123 if (has_extra_refcount(ps, p, extra_pins)) 1124 ret = MF_FAILED; 1125 1126 out: 1127 folio_unlock(folio); 1128 1129 return ret; 1130 } 1131 1132 /* 1133 * Dirty pagecache page 1134 * Issues: when the error hit a hole page the error is not properly 1135 * propagated. 1136 */ 1137 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1138 { 1139 struct folio *folio = page_folio(p); 1140 struct address_space *mapping = folio_mapping(folio); 1141 1142 /* TBD: print more information about the file. */ 1143 if (mapping) { 1144 /* 1145 * IO error will be reported by write(), fsync(), etc. 1146 * who check the mapping. 1147 * This way the application knows that something went 1148 * wrong with its dirty file data. 1149 */ 1150 mapping_set_error(mapping, -EIO); 1151 } 1152 1153 return me_pagecache_clean(ps, p); 1154 } 1155 1156 /* 1157 * Clean and dirty swap cache. 1158 * 1159 * Dirty swap cache page is tricky to handle. The page could live both in page 1160 * table and swap cache(ie. page is freshly swapped in). So it could be 1161 * referenced concurrently by 2 types of PTEs: 1162 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1163 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1164 * and then 1165 * - clear dirty bit to prevent IO 1166 * - remove from LRU 1167 * - but keep in the swap cache, so that when we return to it on 1168 * a later page fault, we know the application is accessing 1169 * corrupted data and shall be killed (we installed simple 1170 * interception code in do_swap_page to catch it). 1171 * 1172 * Clean swap cache pages can be directly isolated. A later page fault will 1173 * bring in the known good data from disk. 1174 */ 1175 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1176 { 1177 struct folio *folio = page_folio(p); 1178 int ret; 1179 bool extra_pins = false; 1180 1181 folio_clear_dirty(folio); 1182 /* Trigger EIO in shmem: */ 1183 folio_clear_uptodate(folio); 1184 1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1186 folio_unlock(folio); 1187 1188 if (ret == MF_DELAYED) 1189 extra_pins = true; 1190 1191 if (has_extra_refcount(ps, p, extra_pins)) 1192 ret = MF_FAILED; 1193 1194 return ret; 1195 } 1196 1197 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1198 { 1199 struct folio *folio = page_folio(p); 1200 int ret; 1201 1202 delete_from_swap_cache(folio); 1203 1204 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1205 folio_unlock(folio); 1206 1207 if (has_extra_refcount(ps, p, false)) 1208 ret = MF_FAILED; 1209 1210 return ret; 1211 } 1212 1213 /* 1214 * Huge pages. Needs work. 1215 * Issues: 1216 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1217 * To narrow down kill region to one page, we need to break up pmd. 1218 */ 1219 static int me_huge_page(struct page_state *ps, struct page *p) 1220 { 1221 struct folio *folio = page_folio(p); 1222 int res; 1223 struct address_space *mapping; 1224 bool extra_pins = false; 1225 1226 mapping = folio_mapping(folio); 1227 if (mapping) { 1228 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1229 /* The page is kept in page cache. */ 1230 extra_pins = true; 1231 folio_unlock(folio); 1232 } else { 1233 folio_unlock(folio); 1234 /* 1235 * migration entry prevents later access on error hugepage, 1236 * so we can free and dissolve it into buddy to save healthy 1237 * subpages. 1238 */ 1239 folio_put(folio); 1240 if (__page_handle_poison(p) > 0) { 1241 page_ref_inc(p); 1242 res = MF_RECOVERED; 1243 } else { 1244 res = MF_FAILED; 1245 } 1246 } 1247 1248 if (has_extra_refcount(ps, p, extra_pins)) 1249 res = MF_FAILED; 1250 1251 return res; 1252 } 1253 1254 /* 1255 * Various page states we can handle. 1256 * 1257 * A page state is defined by its current page->flags bits. 1258 * The table matches them in order and calls the right handler. 1259 * 1260 * This is quite tricky because we can access page at any time 1261 * in its live cycle, so all accesses have to be extremely careful. 1262 * 1263 * This is not complete. More states could be added. 1264 * For any missing state don't attempt recovery. 1265 */ 1266 1267 #define dirty (1UL << PG_dirty) 1268 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1269 #define unevict (1UL << PG_unevictable) 1270 #define mlock (1UL << PG_mlocked) 1271 #define lru (1UL << PG_lru) 1272 #define head (1UL << PG_head) 1273 #define reserved (1UL << PG_reserved) 1274 1275 static struct page_state error_states[] = { 1276 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1277 /* 1278 * free pages are specially detected outside this table: 1279 * PG_buddy pages only make a small fraction of all free pages. 1280 */ 1281 1282 { head, head, MF_MSG_HUGE, me_huge_page }, 1283 1284 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1285 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1286 1287 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1288 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1289 1290 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1291 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1292 1293 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1294 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1295 1296 /* 1297 * Catchall entry: must be at end. 1298 */ 1299 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1300 }; 1301 1302 #undef dirty 1303 #undef sc 1304 #undef unevict 1305 #undef mlock 1306 #undef lru 1307 #undef head 1308 #undef reserved 1309 1310 static void update_per_node_mf_stats(unsigned long pfn, 1311 enum mf_result result) 1312 { 1313 int nid = MAX_NUMNODES; 1314 struct memory_failure_stats *mf_stats = NULL; 1315 1316 nid = pfn_to_nid(pfn); 1317 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1318 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1319 return; 1320 } 1321 1322 mf_stats = &NODE_DATA(nid)->mf_stats; 1323 switch (result) { 1324 case MF_IGNORED: 1325 ++mf_stats->ignored; 1326 break; 1327 case MF_FAILED: 1328 ++mf_stats->failed; 1329 break; 1330 case MF_DELAYED: 1331 ++mf_stats->delayed; 1332 break; 1333 case MF_RECOVERED: 1334 ++mf_stats->recovered; 1335 break; 1336 default: 1337 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1338 break; 1339 } 1340 ++mf_stats->total; 1341 } 1342 1343 /* 1344 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1345 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1346 */ 1347 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1348 enum mf_result result) 1349 { 1350 trace_memory_failure_event(pfn, type, result); 1351 1352 num_poisoned_pages_inc(pfn); 1353 1354 update_per_node_mf_stats(pfn, result); 1355 1356 pr_err("%#lx: recovery action for %s: %s\n", 1357 pfn, action_page_types[type], action_name[result]); 1358 1359 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1360 } 1361 1362 static int page_action(struct page_state *ps, struct page *p, 1363 unsigned long pfn) 1364 { 1365 int result; 1366 1367 /* page p should be unlocked after returning from ps->action(). */ 1368 result = ps->action(ps, p); 1369 1370 /* Could do more checks here if page looks ok */ 1371 /* 1372 * Could adjust zone counters here to correct for the missing page. 1373 */ 1374 1375 return action_result(pfn, ps->type, result); 1376 } 1377 1378 static inline bool PageHWPoisonTakenOff(struct page *page) 1379 { 1380 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1381 } 1382 1383 void SetPageHWPoisonTakenOff(struct page *page) 1384 { 1385 set_page_private(page, MAGIC_HWPOISON); 1386 } 1387 1388 void ClearPageHWPoisonTakenOff(struct page *page) 1389 { 1390 if (PageHWPoison(page)) 1391 set_page_private(page, 0); 1392 } 1393 1394 /* 1395 * Return true if a page type of a given page is supported by hwpoison 1396 * mechanism (while handling could fail), otherwise false. This function 1397 * does not return true for hugetlb or device memory pages, so it's assumed 1398 * to be called only in the context where we never have such pages. 1399 */ 1400 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1401 { 1402 if (PageSlab(page)) 1403 return false; 1404 1405 /* Soft offline could migrate movable_ops pages */ 1406 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page)) 1407 return true; 1408 1409 return PageLRU(page) || is_free_buddy_page(page); 1410 } 1411 1412 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1413 { 1414 struct folio *folio = page_folio(page); 1415 int ret = 0; 1416 bool hugetlb = false; 1417 1418 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1419 if (hugetlb) { 1420 /* Make sure hugetlb demotion did not happen from under us. */ 1421 if (folio == page_folio(page)) 1422 return ret; 1423 if (ret > 0) { 1424 folio_put(folio); 1425 folio = page_folio(page); 1426 } 1427 } 1428 1429 /* 1430 * This check prevents from calling folio_try_get() for any 1431 * unsupported type of folio in order to reduce the risk of unexpected 1432 * races caused by taking a folio refcount. 1433 */ 1434 if (!HWPoisonHandlable(&folio->page, flags)) 1435 return -EBUSY; 1436 1437 if (folio_try_get(folio)) { 1438 if (folio == page_folio(page)) 1439 return 1; 1440 1441 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1442 folio_put(folio); 1443 } 1444 1445 return 0; 1446 } 1447 1448 #define GET_PAGE_MAX_RETRY_NUM 3 1449 1450 static int get_any_page(struct page *p, unsigned long flags) 1451 { 1452 int ret = 0, pass = 0; 1453 bool count_increased = false; 1454 1455 if (flags & MF_COUNT_INCREASED) 1456 count_increased = true; 1457 1458 try_again: 1459 if (!count_increased) { 1460 ret = __get_hwpoison_page(p, flags); 1461 if (!ret) { 1462 if (page_count(p)) { 1463 /* We raced with an allocation, retry. */ 1464 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1465 goto try_again; 1466 ret = -EBUSY; 1467 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1468 /* We raced with put_page, retry. */ 1469 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1470 goto try_again; 1471 ret = -EIO; 1472 } 1473 goto out; 1474 } else if (ret == -EBUSY) { 1475 /* 1476 * We raced with (possibly temporary) unhandlable 1477 * page, retry. 1478 */ 1479 if (pass++ < 3) { 1480 shake_page(p); 1481 goto try_again; 1482 } 1483 ret = -EIO; 1484 goto out; 1485 } 1486 } 1487 1488 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1489 ret = 1; 1490 } else { 1491 /* 1492 * A page we cannot handle. Check whether we can turn 1493 * it into something we can handle. 1494 */ 1495 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1496 put_page(p); 1497 shake_page(p); 1498 count_increased = false; 1499 goto try_again; 1500 } 1501 put_page(p); 1502 ret = -EIO; 1503 } 1504 out: 1505 if (ret == -EIO) 1506 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1507 1508 return ret; 1509 } 1510 1511 static int __get_unpoison_page(struct page *page) 1512 { 1513 struct folio *folio = page_folio(page); 1514 int ret = 0; 1515 bool hugetlb = false; 1516 1517 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1518 if (hugetlb) { 1519 /* Make sure hugetlb demotion did not happen from under us. */ 1520 if (folio == page_folio(page)) 1521 return ret; 1522 if (ret > 0) 1523 folio_put(folio); 1524 } 1525 1526 /* 1527 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1528 * but also isolated from buddy freelist, so need to identify the 1529 * state and have to cancel both operations to unpoison. 1530 */ 1531 if (PageHWPoisonTakenOff(page)) 1532 return -EHWPOISON; 1533 1534 return get_page_unless_zero(page) ? 1 : 0; 1535 } 1536 1537 /** 1538 * get_hwpoison_page() - Get refcount for memory error handling 1539 * @p: Raw error page (hit by memory error) 1540 * @flags: Flags controlling behavior of error handling 1541 * 1542 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1543 * error on it, after checking that the error page is in a well-defined state 1544 * (defined as a page-type we can successfully handle the memory error on it, 1545 * such as LRU page and hugetlb page). 1546 * 1547 * Memory error handling could be triggered at any time on any type of page, 1548 * so it's prone to race with typical memory management lifecycle (like 1549 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1550 * extra care for the error page's state (as done in __get_hwpoison_page()), 1551 * and has some retry logic in get_any_page(). 1552 * 1553 * When called from unpoison_memory(), the caller should already ensure that 1554 * the given page has PG_hwpoison. So it's never reused for other page 1555 * allocations, and __get_unpoison_page() never races with them. 1556 * 1557 * Return: 0 on failure or free buddy (hugetlb) page, 1558 * 1 on success for in-use pages in a well-defined state, 1559 * -EIO for pages on which we can not handle memory errors, 1560 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1561 * operations like allocation and free, 1562 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1563 */ 1564 static int get_hwpoison_page(struct page *p, unsigned long flags) 1565 { 1566 int ret; 1567 1568 zone_pcp_disable(page_zone(p)); 1569 if (flags & MF_UNPOISON) 1570 ret = __get_unpoison_page(p); 1571 else 1572 ret = get_any_page(p, flags); 1573 zone_pcp_enable(page_zone(p)); 1574 1575 return ret; 1576 } 1577 1578 /* 1579 * The caller must guarantee the folio isn't large folio, except hugetlb. 1580 * try_to_unmap() can't handle it. 1581 */ 1582 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1583 { 1584 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1585 struct address_space *mapping; 1586 1587 if (folio_test_swapcache(folio)) { 1588 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1589 ttu &= ~TTU_HWPOISON; 1590 } 1591 1592 /* 1593 * Propagate the dirty bit from PTEs to struct page first, because we 1594 * need this to decide if we should kill or just drop the page. 1595 * XXX: the dirty test could be racy: set_page_dirty() may not always 1596 * be called inside page lock (it's recommended but not enforced). 1597 */ 1598 mapping = folio_mapping(folio); 1599 if (!must_kill && !folio_test_dirty(folio) && mapping && 1600 mapping_can_writeback(mapping)) { 1601 if (folio_mkclean(folio)) { 1602 folio_set_dirty(folio); 1603 } else { 1604 ttu &= ~TTU_HWPOISON; 1605 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1606 pfn); 1607 } 1608 } 1609 1610 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1611 /* 1612 * For hugetlb folios in shared mappings, try_to_unmap 1613 * could potentially call huge_pmd_unshare. Because of 1614 * this, take semaphore in write mode here and set 1615 * TTU_RMAP_LOCKED to indicate we have taken the lock 1616 * at this higher level. 1617 */ 1618 mapping = hugetlb_folio_mapping_lock_write(folio); 1619 if (!mapping) { 1620 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1621 folio_pfn(folio)); 1622 return -EBUSY; 1623 } 1624 1625 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1626 i_mmap_unlock_write(mapping); 1627 } else { 1628 try_to_unmap(folio, ttu); 1629 } 1630 1631 return folio_mapped(folio) ? -EBUSY : 0; 1632 } 1633 1634 /* 1635 * Do all that is necessary to remove user space mappings. Unmap 1636 * the pages and send SIGBUS to the processes if the data was dirty. 1637 */ 1638 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1639 unsigned long pfn, int flags) 1640 { 1641 LIST_HEAD(tokill); 1642 bool unmap_success; 1643 int forcekill; 1644 bool mlocked = folio_test_mlocked(folio); 1645 1646 /* 1647 * Here we are interested only in user-mapped pages, so skip any 1648 * other types of pages. 1649 */ 1650 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1651 folio_test_pgtable(folio) || folio_test_offline(folio)) 1652 return true; 1653 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1654 return true; 1655 1656 /* 1657 * This check implies we don't kill processes if their pages 1658 * are in the swap cache early. Those are always late kills. 1659 */ 1660 if (!folio_mapped(folio)) 1661 return true; 1662 1663 /* 1664 * First collect all the processes that have the page 1665 * mapped in dirty form. This has to be done before try_to_unmap, 1666 * because ttu takes the rmap data structures down. 1667 */ 1668 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1669 1670 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); 1671 if (!unmap_success) 1672 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1673 pfn, folio_mapcount(folio)); 1674 1675 /* 1676 * try_to_unmap() might put mlocked page in lru cache, so call 1677 * shake_page() again to ensure that it's flushed. 1678 */ 1679 if (mlocked) 1680 shake_folio(folio); 1681 1682 /* 1683 * Now that the dirty bit has been propagated to the 1684 * struct page and all unmaps done we can decide if 1685 * killing is needed or not. Only kill when the page 1686 * was dirty or the process is not restartable, 1687 * otherwise the tokill list is merely 1688 * freed. When there was a problem unmapping earlier 1689 * use a more force-full uncatchable kill to prevent 1690 * any accesses to the poisoned memory. 1691 */ 1692 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1693 !unmap_success; 1694 kill_procs(&tokill, forcekill, pfn, flags); 1695 1696 return unmap_success; 1697 } 1698 1699 static int identify_page_state(unsigned long pfn, struct page *p, 1700 unsigned long page_flags) 1701 { 1702 struct page_state *ps; 1703 1704 /* 1705 * The first check uses the current page flags which may not have any 1706 * relevant information. The second check with the saved page flags is 1707 * carried out only if the first check can't determine the page status. 1708 */ 1709 for (ps = error_states;; ps++) 1710 if ((p->flags & ps->mask) == ps->res) 1711 break; 1712 1713 page_flags |= (p->flags & (1UL << PG_dirty)); 1714 1715 if (!ps->mask) 1716 for (ps = error_states;; ps++) 1717 if ((page_flags & ps->mask) == ps->res) 1718 break; 1719 return page_action(ps, p, pfn); 1720 } 1721 1722 /* 1723 * When 'release' is 'false', it means that if thp split has failed, 1724 * there is still more to do, hence the page refcount we took earlier 1725 * is still needed. 1726 */ 1727 static int try_to_split_thp_page(struct page *page, bool release) 1728 { 1729 int ret; 1730 1731 lock_page(page); 1732 ret = split_huge_page(page); 1733 unlock_page(page); 1734 1735 if (ret && release) 1736 put_page(page); 1737 1738 return ret; 1739 } 1740 1741 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1742 struct address_space *mapping, pgoff_t index, int flags) 1743 { 1744 struct to_kill *tk; 1745 unsigned long size = 0; 1746 1747 list_for_each_entry(tk, to_kill, nd) 1748 if (tk->size_shift) 1749 size = max(size, 1UL << tk->size_shift); 1750 1751 if (size) { 1752 /* 1753 * Unmap the largest mapping to avoid breaking up device-dax 1754 * mappings which are constant size. The actual size of the 1755 * mapping being torn down is communicated in siginfo, see 1756 * kill_proc() 1757 */ 1758 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1759 1760 unmap_mapping_range(mapping, start, size, 0); 1761 } 1762 1763 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1764 } 1765 1766 /* 1767 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1768 * either do not claim or fails to claim a hwpoison event, or devdax. 1769 * The fsdax pages are initialized per base page, and the devdax pages 1770 * could be initialized either as base pages, or as compound pages with 1771 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1772 * hwpoison, such that, if a subpage of a compound page is poisoned, 1773 * simply mark the compound head page is by far sufficient. 1774 */ 1775 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1776 struct dev_pagemap *pgmap) 1777 { 1778 struct folio *folio = pfn_folio(pfn); 1779 LIST_HEAD(to_kill); 1780 dax_entry_t cookie; 1781 int rc = 0; 1782 1783 /* 1784 * Prevent the inode from being freed while we are interrogating 1785 * the address_space, typically this would be handled by 1786 * lock_page(), but dax pages do not use the page lock. This 1787 * also prevents changes to the mapping of this pfn until 1788 * poison signaling is complete. 1789 */ 1790 cookie = dax_lock_folio(folio); 1791 if (!cookie) 1792 return -EBUSY; 1793 1794 if (hwpoison_filter(&folio->page)) { 1795 rc = -EOPNOTSUPP; 1796 goto unlock; 1797 } 1798 1799 switch (pgmap->type) { 1800 case MEMORY_DEVICE_PRIVATE: 1801 case MEMORY_DEVICE_COHERENT: 1802 /* 1803 * TODO: Handle device pages which may need coordination 1804 * with device-side memory. 1805 */ 1806 rc = -ENXIO; 1807 goto unlock; 1808 default: 1809 break; 1810 } 1811 1812 /* 1813 * Use this flag as an indication that the dax page has been 1814 * remapped UC to prevent speculative consumption of poison. 1815 */ 1816 SetPageHWPoison(&folio->page); 1817 1818 /* 1819 * Unlike System-RAM there is no possibility to swap in a 1820 * different physical page at a given virtual address, so all 1821 * userspace consumption of ZONE_DEVICE memory necessitates 1822 * SIGBUS (i.e. MF_MUST_KILL) 1823 */ 1824 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1825 collect_procs(folio, &folio->page, &to_kill, true); 1826 1827 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1828 unlock: 1829 dax_unlock_folio(folio, cookie); 1830 return rc; 1831 } 1832 1833 #ifdef CONFIG_FS_DAX 1834 /** 1835 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1836 * @mapping: address_space of the file in use 1837 * @index: start pgoff of the range within the file 1838 * @count: length of the range, in unit of PAGE_SIZE 1839 * @mf_flags: memory failure flags 1840 */ 1841 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1842 unsigned long count, int mf_flags) 1843 { 1844 LIST_HEAD(to_kill); 1845 dax_entry_t cookie; 1846 struct page *page; 1847 size_t end = index + count; 1848 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1849 1850 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1851 1852 for (; index < end; index++) { 1853 page = NULL; 1854 cookie = dax_lock_mapping_entry(mapping, index, &page); 1855 if (!cookie) 1856 return -EBUSY; 1857 if (!page) 1858 goto unlock; 1859 1860 if (!pre_remove) 1861 SetPageHWPoison(page); 1862 1863 /* 1864 * The pre_remove case is revoking access, the memory is still 1865 * good and could theoretically be put back into service. 1866 */ 1867 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1868 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1869 index, mf_flags); 1870 unlock: 1871 dax_unlock_mapping_entry(mapping, index, cookie); 1872 } 1873 return 0; 1874 } 1875 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1876 #endif /* CONFIG_FS_DAX */ 1877 1878 #ifdef CONFIG_HUGETLB_PAGE 1879 1880 /* 1881 * Struct raw_hwp_page represents information about "raw error page", 1882 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1883 */ 1884 struct raw_hwp_page { 1885 struct llist_node node; 1886 struct page *page; 1887 }; 1888 1889 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1890 { 1891 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1892 } 1893 1894 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1895 { 1896 struct llist_head *raw_hwp_head; 1897 struct raw_hwp_page *p; 1898 struct folio *folio = page_folio(page); 1899 bool ret = false; 1900 1901 if (!folio_test_hwpoison(folio)) 1902 return false; 1903 1904 if (!folio_test_hugetlb(folio)) 1905 return PageHWPoison(page); 1906 1907 /* 1908 * When RawHwpUnreliable is set, kernel lost track of which subpages 1909 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1910 */ 1911 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1912 return true; 1913 1914 mutex_lock(&mf_mutex); 1915 1916 raw_hwp_head = raw_hwp_list_head(folio); 1917 llist_for_each_entry(p, raw_hwp_head->first, node) { 1918 if (page == p->page) { 1919 ret = true; 1920 break; 1921 } 1922 } 1923 1924 mutex_unlock(&mf_mutex); 1925 1926 return ret; 1927 } 1928 1929 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1930 { 1931 struct llist_node *head; 1932 struct raw_hwp_page *p, *next; 1933 unsigned long count = 0; 1934 1935 head = llist_del_all(raw_hwp_list_head(folio)); 1936 llist_for_each_entry_safe(p, next, head, node) { 1937 if (move_flag) 1938 SetPageHWPoison(p->page); 1939 else 1940 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1941 kfree(p); 1942 count++; 1943 } 1944 return count; 1945 } 1946 1947 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1948 { 1949 struct llist_head *head; 1950 struct raw_hwp_page *raw_hwp; 1951 struct raw_hwp_page *p; 1952 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1953 1954 /* 1955 * Once the hwpoison hugepage has lost reliable raw error info, 1956 * there is little meaning to keep additional error info precisely, 1957 * so skip to add additional raw error info. 1958 */ 1959 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1960 return -EHWPOISON; 1961 head = raw_hwp_list_head(folio); 1962 llist_for_each_entry(p, head->first, node) { 1963 if (p->page == page) 1964 return -EHWPOISON; 1965 } 1966 1967 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1968 if (raw_hwp) { 1969 raw_hwp->page = page; 1970 llist_add(&raw_hwp->node, head); 1971 /* the first error event will be counted in action_result(). */ 1972 if (ret) 1973 num_poisoned_pages_inc(page_to_pfn(page)); 1974 } else { 1975 /* 1976 * Failed to save raw error info. We no longer trace all 1977 * hwpoisoned subpages, and we need refuse to free/dissolve 1978 * this hwpoisoned hugepage. 1979 */ 1980 folio_set_hugetlb_raw_hwp_unreliable(folio); 1981 /* 1982 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1983 * used any more, so free it. 1984 */ 1985 __folio_free_raw_hwp(folio, false); 1986 } 1987 return ret; 1988 } 1989 1990 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1991 { 1992 /* 1993 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1994 * pages for tail pages are required but they don't exist. 1995 */ 1996 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1997 return 0; 1998 1999 /* 2000 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 2001 * definition. 2002 */ 2003 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 2004 return 0; 2005 2006 return __folio_free_raw_hwp(folio, move_flag); 2007 } 2008 2009 void folio_clear_hugetlb_hwpoison(struct folio *folio) 2010 { 2011 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 2012 return; 2013 if (folio_test_hugetlb_vmemmap_optimized(folio)) 2014 return; 2015 folio_clear_hwpoison(folio); 2016 folio_free_raw_hwp(folio, true); 2017 } 2018 2019 /* 2020 * Called from hugetlb code with hugetlb_lock held. 2021 * 2022 * Return values: 2023 * 0 - free hugepage 2024 * 1 - in-use hugepage 2025 * 2 - not a hugepage 2026 * -EBUSY - the hugepage is busy (try to retry) 2027 * -EHWPOISON - the hugepage is already hwpoisoned 2028 */ 2029 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 2030 bool *migratable_cleared) 2031 { 2032 struct page *page = pfn_to_page(pfn); 2033 struct folio *folio = page_folio(page); 2034 int ret = 2; /* fallback to normal page handling */ 2035 bool count_increased = false; 2036 2037 if (!folio_test_hugetlb(folio)) 2038 goto out; 2039 2040 if (flags & MF_COUNT_INCREASED) { 2041 ret = 1; 2042 count_increased = true; 2043 } else if (folio_test_hugetlb_freed(folio)) { 2044 ret = 0; 2045 } else if (folio_test_hugetlb_migratable(folio)) { 2046 ret = folio_try_get(folio); 2047 if (ret) 2048 count_increased = true; 2049 } else { 2050 ret = -EBUSY; 2051 if (!(flags & MF_NO_RETRY)) 2052 goto out; 2053 } 2054 2055 if (folio_set_hugetlb_hwpoison(folio, page)) { 2056 ret = -EHWPOISON; 2057 goto out; 2058 } 2059 2060 /* 2061 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2062 * from being migrated by memory hotremove. 2063 */ 2064 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2065 folio_clear_hugetlb_migratable(folio); 2066 *migratable_cleared = true; 2067 } 2068 2069 return ret; 2070 out: 2071 if (count_increased) 2072 folio_put(folio); 2073 return ret; 2074 } 2075 2076 /* 2077 * Taking refcount of hugetlb pages needs extra care about race conditions 2078 * with basic operations like hugepage allocation/free/demotion. 2079 * So some of prechecks for hwpoison (pinning, and testing/setting 2080 * PageHWPoison) should be done in single hugetlb_lock range. 2081 */ 2082 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2083 { 2084 int res; 2085 struct page *p = pfn_to_page(pfn); 2086 struct folio *folio; 2087 unsigned long page_flags; 2088 bool migratable_cleared = false; 2089 2090 *hugetlb = 1; 2091 retry: 2092 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2093 if (res == 2) { /* fallback to normal page handling */ 2094 *hugetlb = 0; 2095 return 0; 2096 } else if (res == -EHWPOISON) { 2097 pr_err("%#lx: already hardware poisoned\n", pfn); 2098 if (flags & MF_ACTION_REQUIRED) { 2099 folio = page_folio(p); 2100 res = kill_accessing_process(current, folio_pfn(folio), flags); 2101 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2102 } 2103 return res; 2104 } else if (res == -EBUSY) { 2105 if (!(flags & MF_NO_RETRY)) { 2106 flags |= MF_NO_RETRY; 2107 goto retry; 2108 } 2109 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2110 } 2111 2112 folio = page_folio(p); 2113 folio_lock(folio); 2114 2115 if (hwpoison_filter(p)) { 2116 folio_clear_hugetlb_hwpoison(folio); 2117 if (migratable_cleared) 2118 folio_set_hugetlb_migratable(folio); 2119 folio_unlock(folio); 2120 if (res == 1) 2121 folio_put(folio); 2122 return -EOPNOTSUPP; 2123 } 2124 2125 /* 2126 * Handling free hugepage. The possible race with hugepage allocation 2127 * or demotion can be prevented by PageHWPoison flag. 2128 */ 2129 if (res == 0) { 2130 folio_unlock(folio); 2131 if (__page_handle_poison(p) > 0) { 2132 page_ref_inc(p); 2133 res = MF_RECOVERED; 2134 } else { 2135 res = MF_FAILED; 2136 } 2137 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2138 } 2139 2140 page_flags = folio->flags; 2141 2142 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2143 folio_unlock(folio); 2144 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2145 } 2146 2147 return identify_page_state(pfn, p, page_flags); 2148 } 2149 2150 #else 2151 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2152 { 2153 return 0; 2154 } 2155 2156 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2157 { 2158 return 0; 2159 } 2160 #endif /* CONFIG_HUGETLB_PAGE */ 2161 2162 /* Drop the extra refcount in case we come from madvise() */ 2163 static void put_ref_page(unsigned long pfn, int flags) 2164 { 2165 if (!(flags & MF_COUNT_INCREASED)) 2166 return; 2167 2168 put_page(pfn_to_page(pfn)); 2169 } 2170 2171 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2172 struct dev_pagemap *pgmap) 2173 { 2174 int rc = -ENXIO; 2175 2176 /* device metadata space is not recoverable */ 2177 if (!pgmap_pfn_valid(pgmap, pfn)) 2178 goto out; 2179 2180 /* 2181 * Call driver's implementation to handle the memory failure, otherwise 2182 * fall back to generic handler. 2183 */ 2184 if (pgmap_has_memory_failure(pgmap)) { 2185 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2186 /* 2187 * Fall back to generic handler too if operation is not 2188 * supported inside the driver/device/filesystem. 2189 */ 2190 if (rc != -EOPNOTSUPP) 2191 goto out; 2192 } 2193 2194 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2195 out: 2196 /* drop pgmap ref acquired in caller */ 2197 put_dev_pagemap(pgmap); 2198 if (rc != -EOPNOTSUPP) 2199 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2200 return rc; 2201 } 2202 2203 /* 2204 * The calling condition is as such: thp split failed, page might have 2205 * been RDMA pinned, not much can be done for recovery. 2206 * But a SIGBUS should be delivered with vaddr provided so that the user 2207 * application has a chance to recover. Also, application processes' 2208 * election for MCE early killed will be honored. 2209 */ 2210 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2211 struct folio *folio) 2212 { 2213 LIST_HEAD(tokill); 2214 2215 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2216 kill_procs(&tokill, true, pfn, flags); 2217 } 2218 2219 /** 2220 * memory_failure - Handle memory failure of a page. 2221 * @pfn: Page Number of the corrupted page 2222 * @flags: fine tune action taken 2223 * 2224 * This function is called by the low level machine check code 2225 * of an architecture when it detects hardware memory corruption 2226 * of a page. It tries its best to recover, which includes 2227 * dropping pages, killing processes etc. 2228 * 2229 * The function is primarily of use for corruptions that 2230 * happen outside the current execution context (e.g. when 2231 * detected by a background scrubber) 2232 * 2233 * Must run in process context (e.g. a work queue) with interrupts 2234 * enabled and no spinlocks held. 2235 * 2236 * Return: 2237 * 0 - success, 2238 * -ENXIO - memory not managed by the kernel 2239 * -EOPNOTSUPP - hwpoison_filter() filtered the error event, 2240 * -EHWPOISON - the page was already poisoned, potentially 2241 * kill process, 2242 * other negative values - failure. 2243 */ 2244 int memory_failure(unsigned long pfn, int flags) 2245 { 2246 struct page *p; 2247 struct folio *folio; 2248 struct dev_pagemap *pgmap; 2249 int res = 0; 2250 unsigned long page_flags; 2251 bool retry = true; 2252 int hugetlb = 0; 2253 2254 if (!sysctl_memory_failure_recovery) 2255 panic("Memory failure on page %lx", pfn); 2256 2257 mutex_lock(&mf_mutex); 2258 2259 if (!(flags & MF_SW_SIMULATED)) 2260 hw_memory_failure = true; 2261 2262 p = pfn_to_online_page(pfn); 2263 if (!p) { 2264 res = arch_memory_failure(pfn, flags); 2265 if (res == 0) 2266 goto unlock_mutex; 2267 2268 if (pfn_valid(pfn)) { 2269 pgmap = get_dev_pagemap(pfn, NULL); 2270 put_ref_page(pfn, flags); 2271 if (pgmap) { 2272 res = memory_failure_dev_pagemap(pfn, flags, 2273 pgmap); 2274 goto unlock_mutex; 2275 } 2276 } 2277 pr_err("%#lx: memory outside kernel control\n", pfn); 2278 res = -ENXIO; 2279 goto unlock_mutex; 2280 } 2281 2282 try_again: 2283 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2284 if (hugetlb) 2285 goto unlock_mutex; 2286 2287 if (TestSetPageHWPoison(p)) { 2288 pr_err("%#lx: already hardware poisoned\n", pfn); 2289 res = -EHWPOISON; 2290 if (flags & MF_ACTION_REQUIRED) 2291 res = kill_accessing_process(current, pfn, flags); 2292 if (flags & MF_COUNT_INCREASED) 2293 put_page(p); 2294 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2295 goto unlock_mutex; 2296 } 2297 2298 /* 2299 * We need/can do nothing about count=0 pages. 2300 * 1) it's a free page, and therefore in safe hand: 2301 * check_new_page() will be the gate keeper. 2302 * 2) it's part of a non-compound high order page. 2303 * Implies some kernel user: cannot stop them from 2304 * R/W the page; let's pray that the page has been 2305 * used and will be freed some time later. 2306 * In fact it's dangerous to directly bump up page count from 0, 2307 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2308 */ 2309 if (!(flags & MF_COUNT_INCREASED)) { 2310 res = get_hwpoison_page(p, flags); 2311 if (!res) { 2312 if (is_free_buddy_page(p)) { 2313 if (take_page_off_buddy(p)) { 2314 page_ref_inc(p); 2315 res = MF_RECOVERED; 2316 } else { 2317 /* We lost the race, try again */ 2318 if (retry) { 2319 ClearPageHWPoison(p); 2320 retry = false; 2321 goto try_again; 2322 } 2323 res = MF_FAILED; 2324 } 2325 res = action_result(pfn, MF_MSG_BUDDY, res); 2326 } else { 2327 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2328 } 2329 goto unlock_mutex; 2330 } else if (res < 0) { 2331 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2332 goto unlock_mutex; 2333 } 2334 } 2335 2336 folio = page_folio(p); 2337 2338 /* filter pages that are protected from hwpoison test by users */ 2339 folio_lock(folio); 2340 if (hwpoison_filter(p)) { 2341 ClearPageHWPoison(p); 2342 folio_unlock(folio); 2343 folio_put(folio); 2344 res = -EOPNOTSUPP; 2345 goto unlock_mutex; 2346 } 2347 folio_unlock(folio); 2348 2349 if (folio_test_large(folio)) { 2350 /* 2351 * The flag must be set after the refcount is bumped 2352 * otherwise it may race with THP split. 2353 * And the flag can't be set in get_hwpoison_page() since 2354 * it is called by soft offline too and it is just called 2355 * for !MF_COUNT_INCREASED. So here seems to be the best 2356 * place. 2357 * 2358 * Don't need care about the above error handling paths for 2359 * get_hwpoison_page() since they handle either free page 2360 * or unhandlable page. The refcount is bumped iff the 2361 * page is a valid handlable page. 2362 */ 2363 folio_set_has_hwpoisoned(folio); 2364 if (try_to_split_thp_page(p, false) < 0) { 2365 res = -EHWPOISON; 2366 kill_procs_now(p, pfn, flags, folio); 2367 put_page(p); 2368 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2369 goto unlock_mutex; 2370 } 2371 VM_BUG_ON_PAGE(!page_count(p), p); 2372 folio = page_folio(p); 2373 } 2374 2375 /* 2376 * We ignore non-LRU pages for good reasons. 2377 * - PG_locked is only well defined for LRU pages and a few others 2378 * - to avoid races with __SetPageLocked() 2379 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2380 * The check (unnecessarily) ignores LRU pages being isolated and 2381 * walked by the page reclaim code, however that's not a big loss. 2382 */ 2383 shake_folio(folio); 2384 2385 folio_lock(folio); 2386 2387 /* 2388 * We're only intended to deal with the non-Compound page here. 2389 * The page cannot become compound pages again as folio has been 2390 * splited and extra refcnt is held. 2391 */ 2392 WARN_ON(folio_test_large(folio)); 2393 2394 /* 2395 * We use page flags to determine what action should be taken, but 2396 * the flags can be modified by the error containment action. One 2397 * example is an mlocked page, where PG_mlocked is cleared by 2398 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2399 * status correctly, we save a copy of the page flags at this time. 2400 */ 2401 page_flags = folio->flags; 2402 2403 /* 2404 * __munlock_folio() may clear a writeback folio's LRU flag without 2405 * the folio lock. We need to wait for writeback completion for this 2406 * folio or it may trigger a vfs BUG while evicting inode. 2407 */ 2408 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2409 goto identify_page_state; 2410 2411 /* 2412 * It's very difficult to mess with pages currently under IO 2413 * and in many cases impossible, so we just avoid it here. 2414 */ 2415 folio_wait_writeback(folio); 2416 2417 /* 2418 * Now take care of user space mappings. 2419 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2420 */ 2421 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2422 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2423 goto unlock_page; 2424 } 2425 2426 /* 2427 * Torn down by someone else? 2428 */ 2429 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2430 folio->mapping == NULL) { 2431 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2432 goto unlock_page; 2433 } 2434 2435 identify_page_state: 2436 res = identify_page_state(pfn, p, page_flags); 2437 mutex_unlock(&mf_mutex); 2438 return res; 2439 unlock_page: 2440 folio_unlock(folio); 2441 unlock_mutex: 2442 mutex_unlock(&mf_mutex); 2443 return res; 2444 } 2445 EXPORT_SYMBOL_GPL(memory_failure); 2446 2447 #define MEMORY_FAILURE_FIFO_ORDER 4 2448 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2449 2450 struct memory_failure_entry { 2451 unsigned long pfn; 2452 int flags; 2453 }; 2454 2455 struct memory_failure_cpu { 2456 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2457 MEMORY_FAILURE_FIFO_SIZE); 2458 raw_spinlock_t lock; 2459 struct work_struct work; 2460 }; 2461 2462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2463 2464 /** 2465 * memory_failure_queue - Schedule handling memory failure of a page. 2466 * @pfn: Page Number of the corrupted page 2467 * @flags: Flags for memory failure handling 2468 * 2469 * This function is called by the low level hardware error handler 2470 * when it detects hardware memory corruption of a page. It schedules 2471 * the recovering of error page, including dropping pages, killing 2472 * processes etc. 2473 * 2474 * The function is primarily of use for corruptions that 2475 * happen outside the current execution context (e.g. when 2476 * detected by a background scrubber) 2477 * 2478 * Can run in IRQ context. 2479 */ 2480 void memory_failure_queue(unsigned long pfn, int flags) 2481 { 2482 struct memory_failure_cpu *mf_cpu; 2483 unsigned long proc_flags; 2484 bool buffer_overflow; 2485 struct memory_failure_entry entry = { 2486 .pfn = pfn, 2487 .flags = flags, 2488 }; 2489 2490 mf_cpu = &get_cpu_var(memory_failure_cpu); 2491 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2492 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2493 if (!buffer_overflow) 2494 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2495 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2496 put_cpu_var(memory_failure_cpu); 2497 if (buffer_overflow) 2498 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2499 pfn); 2500 } 2501 EXPORT_SYMBOL_GPL(memory_failure_queue); 2502 2503 static void memory_failure_work_func(struct work_struct *work) 2504 { 2505 struct memory_failure_cpu *mf_cpu; 2506 struct memory_failure_entry entry = { 0, }; 2507 unsigned long proc_flags; 2508 int gotten; 2509 2510 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2511 for (;;) { 2512 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2513 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2514 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2515 if (!gotten) 2516 break; 2517 if (entry.flags & MF_SOFT_OFFLINE) 2518 soft_offline_page(entry.pfn, entry.flags); 2519 else 2520 memory_failure(entry.pfn, entry.flags); 2521 } 2522 } 2523 2524 static int __init memory_failure_init(void) 2525 { 2526 struct memory_failure_cpu *mf_cpu; 2527 int cpu; 2528 2529 for_each_possible_cpu(cpu) { 2530 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2531 raw_spin_lock_init(&mf_cpu->lock); 2532 INIT_KFIFO(mf_cpu->fifo); 2533 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2534 } 2535 2536 register_sysctl_init("vm", memory_failure_table); 2537 2538 return 0; 2539 } 2540 core_initcall(memory_failure_init); 2541 2542 #undef pr_fmt 2543 #define pr_fmt(fmt) "Unpoison: " fmt 2544 #define unpoison_pr_info(fmt, pfn, rs) \ 2545 ({ \ 2546 if (__ratelimit(rs)) \ 2547 pr_info(fmt, pfn); \ 2548 }) 2549 2550 /** 2551 * unpoison_memory - Unpoison a previously poisoned page 2552 * @pfn: Page number of the to be unpoisoned page 2553 * 2554 * Software-unpoison a page that has been poisoned by 2555 * memory_failure() earlier. 2556 * 2557 * This is only done on the software-level, so it only works 2558 * for linux injected failures, not real hardware failures 2559 * 2560 * Returns 0 for success, otherwise -errno. 2561 */ 2562 int unpoison_memory(unsigned long pfn) 2563 { 2564 struct folio *folio; 2565 struct page *p; 2566 int ret = -EBUSY, ghp; 2567 unsigned long count; 2568 bool huge = false; 2569 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2570 DEFAULT_RATELIMIT_BURST); 2571 2572 if (!pfn_valid(pfn)) 2573 return -ENXIO; 2574 2575 p = pfn_to_page(pfn); 2576 folio = page_folio(p); 2577 2578 mutex_lock(&mf_mutex); 2579 2580 if (hw_memory_failure) { 2581 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2582 pfn, &unpoison_rs); 2583 ret = -EOPNOTSUPP; 2584 goto unlock_mutex; 2585 } 2586 2587 if (is_huge_zero_folio(folio)) { 2588 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2589 pfn, &unpoison_rs); 2590 ret = -EOPNOTSUPP; 2591 goto unlock_mutex; 2592 } 2593 2594 if (!PageHWPoison(p)) { 2595 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2596 pfn, &unpoison_rs); 2597 goto unlock_mutex; 2598 } 2599 2600 if (folio_ref_count(folio) > 1) { 2601 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2602 pfn, &unpoison_rs); 2603 goto unlock_mutex; 2604 } 2605 2606 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2607 folio_test_reserved(folio) || folio_test_offline(folio)) 2608 goto unlock_mutex; 2609 2610 if (folio_mapped(folio)) { 2611 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2612 pfn, &unpoison_rs); 2613 goto unlock_mutex; 2614 } 2615 2616 if (folio_mapping(folio)) { 2617 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2618 pfn, &unpoison_rs); 2619 goto unlock_mutex; 2620 } 2621 2622 ghp = get_hwpoison_page(p, MF_UNPOISON); 2623 if (!ghp) { 2624 if (folio_test_hugetlb(folio)) { 2625 huge = true; 2626 count = folio_free_raw_hwp(folio, false); 2627 if (count == 0) 2628 goto unlock_mutex; 2629 } 2630 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2631 } else if (ghp < 0) { 2632 if (ghp == -EHWPOISON) { 2633 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2634 } else { 2635 ret = ghp; 2636 unpoison_pr_info("%#lx: failed to grab page\n", 2637 pfn, &unpoison_rs); 2638 } 2639 } else { 2640 if (folio_test_hugetlb(folio)) { 2641 huge = true; 2642 count = folio_free_raw_hwp(folio, false); 2643 if (count == 0) { 2644 folio_put(folio); 2645 goto unlock_mutex; 2646 } 2647 } 2648 2649 folio_put(folio); 2650 if (TestClearPageHWPoison(p)) { 2651 folio_put(folio); 2652 ret = 0; 2653 } 2654 } 2655 2656 unlock_mutex: 2657 mutex_unlock(&mf_mutex); 2658 if (!ret) { 2659 if (!huge) 2660 num_poisoned_pages_sub(pfn, 1); 2661 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2662 page_to_pfn(p), &unpoison_rs); 2663 } 2664 return ret; 2665 } 2666 EXPORT_SYMBOL(unpoison_memory); 2667 2668 #undef pr_fmt 2669 #define pr_fmt(fmt) "Soft offline: " fmt 2670 2671 /* 2672 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2673 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2674 * If the page is mapped, it migrates the contents over. 2675 */ 2676 static int soft_offline_in_use_page(struct page *page) 2677 { 2678 long ret = 0; 2679 unsigned long pfn = page_to_pfn(page); 2680 struct folio *folio = page_folio(page); 2681 char const *msg_page[] = {"page", "hugepage"}; 2682 bool huge = folio_test_hugetlb(folio); 2683 bool isolated; 2684 LIST_HEAD(pagelist); 2685 struct migration_target_control mtc = { 2686 .nid = NUMA_NO_NODE, 2687 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2688 .reason = MR_MEMORY_FAILURE, 2689 }; 2690 2691 if (!huge && folio_test_large(folio)) { 2692 if (try_to_split_thp_page(page, true)) { 2693 pr_info("%#lx: thp split failed\n", pfn); 2694 return -EBUSY; 2695 } 2696 folio = page_folio(page); 2697 } 2698 2699 folio_lock(folio); 2700 if (!huge) 2701 folio_wait_writeback(folio); 2702 if (PageHWPoison(page)) { 2703 folio_unlock(folio); 2704 folio_put(folio); 2705 pr_info("%#lx: page already poisoned\n", pfn); 2706 return 0; 2707 } 2708 2709 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2710 /* 2711 * Try to invalidate first. This should work for 2712 * non dirty unmapped page cache pages. 2713 */ 2714 ret = mapping_evict_folio(folio_mapping(folio), folio); 2715 folio_unlock(folio); 2716 2717 if (ret) { 2718 pr_info("%#lx: invalidated\n", pfn); 2719 page_handle_poison(page, false, true); 2720 return 0; 2721 } 2722 2723 isolated = isolate_folio_to_list(folio, &pagelist); 2724 2725 /* 2726 * If we succeed to isolate the folio, we grabbed another refcount on 2727 * the folio, so we can safely drop the one we got from get_any_page(). 2728 * If we failed to isolate the folio, it means that we cannot go further 2729 * and we will return an error, so drop the reference we got from 2730 * get_any_page() as well. 2731 */ 2732 folio_put(folio); 2733 2734 if (isolated) { 2735 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2736 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2737 if (!ret) { 2738 bool release = !huge; 2739 2740 if (!page_handle_poison(page, huge, release)) 2741 ret = -EBUSY; 2742 } else { 2743 if (!list_empty(&pagelist)) 2744 putback_movable_pages(&pagelist); 2745 2746 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2747 pfn, msg_page[huge], ret, &page->flags); 2748 if (ret > 0) 2749 ret = -EBUSY; 2750 } 2751 } else { 2752 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2753 pfn, msg_page[huge], page_count(page), &page->flags); 2754 ret = -EBUSY; 2755 } 2756 return ret; 2757 } 2758 2759 /** 2760 * soft_offline_page - Soft offline a page. 2761 * @pfn: pfn to soft-offline 2762 * @flags: flags. Same as memory_failure(). 2763 * 2764 * Returns 0 on success, 2765 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2766 * disabled by /proc/sys/vm/enable_soft_offline, 2767 * < 0 otherwise negated errno. 2768 * 2769 * Soft offline a page, by migration or invalidation, 2770 * without killing anything. This is for the case when 2771 * a page is not corrupted yet (so it's still valid to access), 2772 * but has had a number of corrected errors and is better taken 2773 * out. 2774 * 2775 * The actual policy on when to do that is maintained by 2776 * user space. 2777 * 2778 * This should never impact any application or cause data loss, 2779 * however it might take some time. 2780 * 2781 * This is not a 100% solution for all memory, but tries to be 2782 * ``good enough'' for the majority of memory. 2783 */ 2784 int soft_offline_page(unsigned long pfn, int flags) 2785 { 2786 int ret; 2787 bool try_again = true; 2788 struct page *page; 2789 2790 if (!pfn_valid(pfn)) { 2791 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2792 return -ENXIO; 2793 } 2794 2795 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2796 page = pfn_to_online_page(pfn); 2797 if (!page) { 2798 put_ref_page(pfn, flags); 2799 return -EIO; 2800 } 2801 2802 if (!sysctl_enable_soft_offline) { 2803 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2804 put_ref_page(pfn, flags); 2805 return -EOPNOTSUPP; 2806 } 2807 2808 mutex_lock(&mf_mutex); 2809 2810 if (PageHWPoison(page)) { 2811 pr_info("%#lx: page already poisoned\n", pfn); 2812 put_ref_page(pfn, flags); 2813 mutex_unlock(&mf_mutex); 2814 return 0; 2815 } 2816 2817 retry: 2818 get_online_mems(); 2819 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2820 put_online_mems(); 2821 2822 if (hwpoison_filter(page)) { 2823 if (ret > 0) 2824 put_page(page); 2825 2826 mutex_unlock(&mf_mutex); 2827 return -EOPNOTSUPP; 2828 } 2829 2830 if (ret > 0) { 2831 ret = soft_offline_in_use_page(page); 2832 } else if (ret == 0) { 2833 if (!page_handle_poison(page, true, false)) { 2834 if (try_again) { 2835 try_again = false; 2836 flags &= ~MF_COUNT_INCREASED; 2837 goto retry; 2838 } 2839 ret = -EBUSY; 2840 } 2841 } 2842 2843 mutex_unlock(&mf_mutex); 2844 2845 return ret; 2846 } 2847