1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 31 #include <asm/apic.h> 32 #include <asm/pvclock-abi.h> 33 #include <asm/desc.h> 34 #include <asm/mtrr.h> 35 #include <asm/msr-index.h> 36 #include <asm/asm.h> 37 #include <asm/kvm_page_track.h> 38 #include <asm/kvm_vcpu_regs.h> 39 #include <asm/reboot.h> 40 #include <hyperv/hvhdk.h> 41 42 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 43 44 /* 45 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 46 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 47 */ 48 #ifdef CONFIG_KVM_MAX_NR_VCPUS 49 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 50 #else 51 #define KVM_MAX_VCPUS 1024 52 #endif 53 54 /* 55 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 56 * might be larger than the actual number of VCPUs because the 57 * APIC ID encodes CPU topology information. 58 * 59 * In the worst case, we'll need less than one extra bit for the 60 * Core ID, and less than one extra bit for the Package (Die) ID, 61 * so ratio of 4 should be enough. 62 */ 63 #define KVM_VCPU_ID_RATIO 4 64 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 65 66 /* memory slots that are not exposed to userspace */ 67 #define KVM_INTERNAL_MEM_SLOTS 3 68 69 #define KVM_HALT_POLL_NS_DEFAULT 200000 70 71 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 72 73 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 74 KVM_DIRTY_LOG_INITIALLY_SET) 75 76 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 77 KVM_BUS_LOCK_DETECTION_EXIT) 78 79 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 80 KVM_X86_NOTIFY_VMEXIT_USER) 81 82 /* x86-specific vcpu->requests bit members */ 83 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 84 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 85 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 86 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 87 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 88 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 89 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 90 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 91 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 92 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 93 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 94 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 95 #ifdef CONFIG_KVM_SMM 96 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 97 #endif 98 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 99 #define KVM_REQ_MCLOCK_INPROGRESS \ 100 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_SCAN_IOAPIC \ 102 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 103 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 104 #define KVM_REQ_APIC_PAGE_RELOAD \ 105 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 107 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 108 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 109 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 110 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 111 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 112 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 113 #define KVM_REQ_APICV_UPDATE \ 114 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 115 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 116 #define KVM_REQ_TLB_FLUSH_GUEST \ 117 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 118 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 119 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 120 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 121 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 123 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 #define KVM_REQ_HV_TLB_FLUSH \ 125 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 127 128 #define CR0_RESERVED_BITS \ 129 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 130 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 131 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 132 133 #define CR4_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 135 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 136 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 137 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 138 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 139 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 140 | X86_CR4_LAM_SUP)) 141 142 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 143 144 145 146 #define INVALID_PAGE (~(hpa_t)0) 147 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 148 149 /* KVM Hugepage definitions for x86 */ 150 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 151 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 152 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 153 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 154 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 155 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 156 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 157 158 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 159 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 160 #define KVM_MMU_HASH_SHIFT 12 161 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 162 #define KVM_MIN_FREE_MMU_PAGES 5 163 #define KVM_REFILL_PAGES 25 164 #define KVM_MAX_CPUID_ENTRIES 256 165 #define KVM_NR_VAR_MTRR 8 166 167 #define ASYNC_PF_PER_VCPU 64 168 169 enum kvm_reg { 170 VCPU_REGS_RAX = __VCPU_REGS_RAX, 171 VCPU_REGS_RCX = __VCPU_REGS_RCX, 172 VCPU_REGS_RDX = __VCPU_REGS_RDX, 173 VCPU_REGS_RBX = __VCPU_REGS_RBX, 174 VCPU_REGS_RSP = __VCPU_REGS_RSP, 175 VCPU_REGS_RBP = __VCPU_REGS_RBP, 176 VCPU_REGS_RSI = __VCPU_REGS_RSI, 177 VCPU_REGS_RDI = __VCPU_REGS_RDI, 178 #ifdef CONFIG_X86_64 179 VCPU_REGS_R8 = __VCPU_REGS_R8, 180 VCPU_REGS_R9 = __VCPU_REGS_R9, 181 VCPU_REGS_R10 = __VCPU_REGS_R10, 182 VCPU_REGS_R11 = __VCPU_REGS_R11, 183 VCPU_REGS_R12 = __VCPU_REGS_R12, 184 VCPU_REGS_R13 = __VCPU_REGS_R13, 185 VCPU_REGS_R14 = __VCPU_REGS_R14, 186 VCPU_REGS_R15 = __VCPU_REGS_R15, 187 #endif 188 VCPU_REGS_RIP, 189 NR_VCPU_REGS, 190 191 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 192 VCPU_EXREG_CR0, 193 VCPU_EXREG_CR3, 194 VCPU_EXREG_CR4, 195 VCPU_EXREG_RFLAGS, 196 VCPU_EXREG_SEGMENTS, 197 VCPU_EXREG_EXIT_INFO_1, 198 VCPU_EXREG_EXIT_INFO_2, 199 }; 200 201 enum { 202 VCPU_SREG_ES, 203 VCPU_SREG_CS, 204 VCPU_SREG_SS, 205 VCPU_SREG_DS, 206 VCPU_SREG_FS, 207 VCPU_SREG_GS, 208 VCPU_SREG_TR, 209 VCPU_SREG_LDTR, 210 }; 211 212 enum exit_fastpath_completion { 213 EXIT_FASTPATH_NONE, 214 EXIT_FASTPATH_REENTER_GUEST, 215 EXIT_FASTPATH_EXIT_HANDLED, 216 EXIT_FASTPATH_EXIT_USERSPACE, 217 }; 218 typedef enum exit_fastpath_completion fastpath_t; 219 220 struct x86_emulate_ctxt; 221 struct x86_exception; 222 union kvm_smram; 223 enum x86_intercept; 224 enum x86_intercept_stage; 225 226 #define KVM_NR_DB_REGS 4 227 228 #define DR6_BUS_LOCK (1 << 11) 229 #define DR6_BD (1 << 13) 230 #define DR6_BS (1 << 14) 231 #define DR6_BT (1 << 15) 232 #define DR6_RTM (1 << 16) 233 /* 234 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 235 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 236 * they will never be 0 for now, but when they are defined 237 * in the future it will require no code change. 238 * 239 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 240 */ 241 #define DR6_ACTIVE_LOW 0xffff0ff0 242 #define DR6_VOLATILE 0x0001e80f 243 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 244 245 #define DR7_BP_EN_MASK 0x000000ff 246 #define DR7_GE (1 << 9) 247 #define DR7_GD (1 << 13) 248 #define DR7_FIXED_1 0x00000400 249 #define DR7_VOLATILE 0xffff2bff 250 251 #define KVM_GUESTDBG_VALID_MASK \ 252 (KVM_GUESTDBG_ENABLE | \ 253 KVM_GUESTDBG_SINGLESTEP | \ 254 KVM_GUESTDBG_USE_HW_BP | \ 255 KVM_GUESTDBG_USE_SW_BP | \ 256 KVM_GUESTDBG_INJECT_BP | \ 257 KVM_GUESTDBG_INJECT_DB | \ 258 KVM_GUESTDBG_BLOCKIRQ) 259 260 #define PFERR_PRESENT_MASK BIT(0) 261 #define PFERR_WRITE_MASK BIT(1) 262 #define PFERR_USER_MASK BIT(2) 263 #define PFERR_RSVD_MASK BIT(3) 264 #define PFERR_FETCH_MASK BIT(4) 265 #define PFERR_PK_MASK BIT(5) 266 #define PFERR_SGX_MASK BIT(15) 267 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 268 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 269 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 270 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 271 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 272 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 273 274 /* 275 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 276 * when emulating instructions that triggers implicit access. 277 */ 278 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 279 /* 280 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 281 * when the guest was accessing private memory. 282 */ 283 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 284 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 285 286 /* apic attention bits */ 287 #define KVM_APIC_CHECK_VAPIC 0 288 /* 289 * The following bit is set with PV-EOI, unset on EOI. 290 * We detect PV-EOI changes by guest by comparing 291 * this bit with PV-EOI in guest memory. 292 * See the implementation in apic_update_pv_eoi. 293 */ 294 #define KVM_APIC_PV_EOI_PENDING 1 295 296 struct kvm_kernel_irq_routing_entry; 297 298 /* 299 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 300 * also includes TDP pages) to determine whether or not a page can be used in 301 * the given MMU context. This is a subset of the overall kvm_cpu_role to 302 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 303 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 304 * 305 * Upper-level shadow pages having gptes are tracked for write-protection via 306 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 307 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 308 * otherwise gfn_write_track will overflow and explosions will ensue. 309 * 310 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 311 * cannot be reused. The ability to reuse a SP is tracked by its role, which 312 * incorporates various mode bits and properties of the SP. Roughly speaking, 313 * the number of unique SPs that can theoretically be created is 2^n, where n 314 * is the number of bits that are used to compute the role. 315 * 316 * But, even though there are 20 bits in the mask below, not all combinations 317 * of modes and flags are possible: 318 * 319 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 320 * so the bits are effectively 18. 321 * 322 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 323 * execonly and ad_disabled are only used for nested EPT which has 324 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 325 * 326 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 327 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 328 * paging has exactly one upper level, making level completely redundant 329 * when has_4_byte_gpte=1. 330 * 331 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 332 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 333 * 334 * Therefore, the maximum number of possible upper-level shadow pages for a 335 * single gfn is a bit less than 2^13. 336 */ 337 union kvm_mmu_page_role { 338 u32 word; 339 struct { 340 unsigned level:4; 341 unsigned has_4_byte_gpte:1; 342 unsigned quadrant:2; 343 unsigned direct:1; 344 unsigned access:3; 345 unsigned invalid:1; 346 unsigned efer_nx:1; 347 unsigned cr0_wp:1; 348 unsigned smep_andnot_wp:1; 349 unsigned smap_andnot_wp:1; 350 unsigned ad_disabled:1; 351 unsigned guest_mode:1; 352 unsigned passthrough:1; 353 unsigned is_mirror:1; 354 unsigned :4; 355 356 /* 357 * This is left at the top of the word so that 358 * kvm_memslots_for_spte_role can extract it with a 359 * simple shift. While there is room, give it a whole 360 * byte so it is also faster to load it from memory. 361 */ 362 unsigned smm:8; 363 }; 364 }; 365 366 /* 367 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 368 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 369 * including on nested transitions, if nothing in the full role changes then 370 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 371 * don't treat all-zero structure as valid data. 372 * 373 * The properties that are tracked in the extended role but not the page role 374 * are for things that either (a) do not affect the validity of the shadow page 375 * or (b) are indirectly reflected in the shadow page's role. For example, 376 * CR4.PKE only affects permission checks for software walks of the guest page 377 * tables (because KVM doesn't support Protection Keys with shadow paging), and 378 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 379 * 380 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 381 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 382 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 383 * SMAP aware regardless of CR0.WP. 384 */ 385 union kvm_mmu_extended_role { 386 u32 word; 387 struct { 388 unsigned int valid:1; 389 unsigned int execonly:1; 390 unsigned int cr4_pse:1; 391 unsigned int cr4_pke:1; 392 unsigned int cr4_smap:1; 393 unsigned int cr4_smep:1; 394 unsigned int cr4_la57:1; 395 unsigned int efer_lma:1; 396 }; 397 }; 398 399 union kvm_cpu_role { 400 u64 as_u64; 401 struct { 402 union kvm_mmu_page_role base; 403 union kvm_mmu_extended_role ext; 404 }; 405 }; 406 407 struct kvm_rmap_head { 408 unsigned long val; 409 }; 410 411 struct kvm_pio_request { 412 unsigned long linear_rip; 413 unsigned long count; 414 int in; 415 int port; 416 int size; 417 }; 418 419 #define PT64_ROOT_MAX_LEVEL 5 420 421 struct rsvd_bits_validate { 422 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 423 u64 bad_mt_xwr; 424 }; 425 426 struct kvm_mmu_root_info { 427 gpa_t pgd; 428 hpa_t hpa; 429 }; 430 431 #define KVM_MMU_ROOT_INFO_INVALID \ 432 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 433 434 #define KVM_MMU_NUM_PREV_ROOTS 3 435 436 #define KVM_MMU_ROOT_CURRENT BIT(0) 437 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 438 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 439 440 #define KVM_HAVE_MMU_RWLOCK 441 442 struct kvm_mmu_page; 443 struct kvm_page_fault; 444 445 /* 446 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 447 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 448 * current mmu mode. 449 */ 450 struct kvm_mmu { 451 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 452 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 453 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 454 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 455 struct x86_exception *fault); 456 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 457 gpa_t gva_or_gpa, u64 access, 458 struct x86_exception *exception); 459 int (*sync_spte)(struct kvm_vcpu *vcpu, 460 struct kvm_mmu_page *sp, int i); 461 struct kvm_mmu_root_info root; 462 hpa_t mirror_root_hpa; 463 union kvm_cpu_role cpu_role; 464 union kvm_mmu_page_role root_role; 465 466 /* 467 * The pkru_mask indicates if protection key checks are needed. It 468 * consists of 16 domains indexed by page fault error code bits [4:1], 469 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 470 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 471 */ 472 u32 pkru_mask; 473 474 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 475 476 /* 477 * Bitmap; bit set = permission fault 478 * Byte index: page fault error code [4:1] 479 * Bit index: pte permissions in ACC_* format 480 */ 481 u8 permissions[16]; 482 483 u64 *pae_root; 484 u64 *pml4_root; 485 u64 *pml5_root; 486 487 /* 488 * check zero bits on shadow page table entries, these 489 * bits include not only hardware reserved bits but also 490 * the bits spte never used. 491 */ 492 struct rsvd_bits_validate shadow_zero_check; 493 494 struct rsvd_bits_validate guest_rsvd_check; 495 496 u64 pdptrs[4]; /* pae */ 497 }; 498 499 enum pmc_type { 500 KVM_PMC_GP = 0, 501 KVM_PMC_FIXED, 502 }; 503 504 struct kvm_pmc { 505 enum pmc_type type; 506 u8 idx; 507 bool is_paused; 508 bool intr; 509 /* 510 * Base value of the PMC counter, relative to the *consumed* count in 511 * the associated perf_event. This value includes counter updates from 512 * the perf_event and emulated_count since the last time the counter 513 * was reprogrammed, but it is *not* the current value as seen by the 514 * guest or userspace. 515 * 516 * The count is relative to the associated perf_event so that KVM 517 * doesn't need to reprogram the perf_event every time the guest writes 518 * to the counter. 519 */ 520 u64 counter; 521 /* 522 * PMC events triggered by KVM emulation that haven't been fully 523 * processed, i.e. haven't undergone overflow detection. 524 */ 525 u64 emulated_counter; 526 u64 eventsel; 527 struct perf_event *perf_event; 528 struct kvm_vcpu *vcpu; 529 /* 530 * only for creating or reusing perf_event, 531 * eventsel value for general purpose counters, 532 * ctrl value for fixed counters. 533 */ 534 u64 current_config; 535 }; 536 537 /* More counters may conflict with other existing Architectural MSRs */ 538 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 539 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 540 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 541 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 542 KVM_MAX_NR_AMD_GP_COUNTERS) 543 544 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 545 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 546 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 547 KVM_MAX_NR_AMD_FIXED_COUTNERS) 548 549 struct kvm_pmu { 550 u8 version; 551 unsigned nr_arch_gp_counters; 552 unsigned nr_arch_fixed_counters; 553 unsigned available_event_types; 554 u64 fixed_ctr_ctrl; 555 u64 fixed_ctr_ctrl_rsvd; 556 u64 global_ctrl; 557 u64 global_status; 558 u64 counter_bitmask[2]; 559 u64 global_ctrl_rsvd; 560 u64 global_status_rsvd; 561 u64 reserved_bits; 562 u64 raw_event_mask; 563 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 564 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 565 566 /* 567 * Overlay the bitmap with a 64-bit atomic so that all bits can be 568 * set in a single access, e.g. to reprogram all counters when the PMU 569 * filter changes. 570 */ 571 union { 572 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 573 atomic64_t __reprogram_pmi; 574 }; 575 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 576 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 577 578 u64 ds_area; 579 u64 pebs_enable; 580 u64 pebs_enable_rsvd; 581 u64 pebs_data_cfg; 582 u64 pebs_data_cfg_rsvd; 583 584 /* 585 * If a guest counter is cross-mapped to host counter with different 586 * index, its PEBS capability will be temporarily disabled. 587 * 588 * The user should make sure that this mask is updated 589 * after disabling interrupts and before perf_guest_get_msrs(); 590 */ 591 u64 host_cross_mapped_mask; 592 593 /* 594 * The gate to release perf_events not marked in 595 * pmc_in_use only once in a vcpu time slice. 596 */ 597 bool need_cleanup; 598 599 /* 600 * The total number of programmed perf_events and it helps to avoid 601 * redundant check before cleanup if guest don't use vPMU at all. 602 */ 603 u8 event_count; 604 }; 605 606 struct kvm_pmu_ops; 607 608 enum { 609 KVM_DEBUGREG_BP_ENABLED = 1, 610 KVM_DEBUGREG_WONT_EXIT = 2, 611 }; 612 613 struct kvm_mtrr { 614 u64 var[KVM_NR_VAR_MTRR * 2]; 615 u64 fixed_64k; 616 u64 fixed_16k[2]; 617 u64 fixed_4k[8]; 618 u64 deftype; 619 }; 620 621 /* Hyper-V SynIC timer */ 622 struct kvm_vcpu_hv_stimer { 623 struct hrtimer timer; 624 int index; 625 union hv_stimer_config config; 626 u64 count; 627 u64 exp_time; 628 struct hv_message msg; 629 bool msg_pending; 630 }; 631 632 /* Hyper-V synthetic interrupt controller (SynIC)*/ 633 struct kvm_vcpu_hv_synic { 634 u64 version; 635 u64 control; 636 u64 msg_page; 637 u64 evt_page; 638 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 639 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 640 DECLARE_BITMAP(auto_eoi_bitmap, 256); 641 DECLARE_BITMAP(vec_bitmap, 256); 642 bool active; 643 bool dont_zero_synic_pages; 644 }; 645 646 /* The maximum number of entries on the TLB flush fifo. */ 647 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 648 /* 649 * Note: the following 'magic' entry is made up by KVM to avoid putting 650 * anything besides GVA on the TLB flush fifo. It is theoretically possible 651 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 652 * which will look identical. KVM's action to 'flush everything' instead of 653 * flushing these particular addresses is, however, fully legitimate as 654 * flushing more than requested is always OK. 655 */ 656 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 657 658 enum hv_tlb_flush_fifos { 659 HV_L1_TLB_FLUSH_FIFO, 660 HV_L2_TLB_FLUSH_FIFO, 661 HV_NR_TLB_FLUSH_FIFOS, 662 }; 663 664 struct kvm_vcpu_hv_tlb_flush_fifo { 665 spinlock_t write_lock; 666 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 667 }; 668 669 /* Hyper-V per vcpu emulation context */ 670 struct kvm_vcpu_hv { 671 struct kvm_vcpu *vcpu; 672 u32 vp_index; 673 u64 hv_vapic; 674 s64 runtime_offset; 675 struct kvm_vcpu_hv_synic synic; 676 struct kvm_hyperv_exit exit; 677 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 678 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 679 bool enforce_cpuid; 680 struct { 681 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 682 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 683 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 684 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 685 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 686 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 687 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 688 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 689 } cpuid_cache; 690 691 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 692 693 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 694 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 695 696 struct hv_vp_assist_page vp_assist_page; 697 698 struct { 699 u64 pa_page_gpa; 700 u64 vm_id; 701 u32 vp_id; 702 } nested; 703 }; 704 705 struct kvm_hypervisor_cpuid { 706 u32 base; 707 u32 limit; 708 }; 709 710 #ifdef CONFIG_KVM_XEN 711 /* Xen HVM per vcpu emulation context */ 712 struct kvm_vcpu_xen { 713 u64 hypercall_rip; 714 u32 current_runstate; 715 u8 upcall_vector; 716 struct gfn_to_pfn_cache vcpu_info_cache; 717 struct gfn_to_pfn_cache vcpu_time_info_cache; 718 struct gfn_to_pfn_cache runstate_cache; 719 struct gfn_to_pfn_cache runstate2_cache; 720 u64 last_steal; 721 u64 runstate_entry_time; 722 u64 runstate_times[4]; 723 unsigned long evtchn_pending_sel; 724 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 725 u32 timer_virq; 726 u64 timer_expires; /* In guest epoch */ 727 atomic_t timer_pending; 728 struct hrtimer timer; 729 int poll_evtchn; 730 struct timer_list poll_timer; 731 struct kvm_hypervisor_cpuid cpuid; 732 }; 733 #endif 734 735 struct kvm_queued_exception { 736 bool pending; 737 bool injected; 738 bool has_error_code; 739 u8 vector; 740 u32 error_code; 741 unsigned long payload; 742 bool has_payload; 743 }; 744 745 /* 746 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 747 * unknown to the kernel, but need to be directly used by KVM. Note, these 748 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 749 */ 750 enum kvm_only_cpuid_leafs { 751 CPUID_12_EAX = NCAPINTS, 752 CPUID_7_1_EDX, 753 CPUID_8000_0007_EDX, 754 CPUID_8000_0022_EAX, 755 CPUID_7_2_EDX, 756 CPUID_24_0_EBX, 757 NR_KVM_CPU_CAPS, 758 759 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 760 }; 761 762 struct kvm_vcpu_arch { 763 /* 764 * rip and regs accesses must go through 765 * kvm_{register,rip}_{read,write} functions. 766 */ 767 unsigned long regs[NR_VCPU_REGS]; 768 u32 regs_avail; 769 u32 regs_dirty; 770 771 unsigned long cr0; 772 unsigned long cr0_guest_owned_bits; 773 unsigned long cr2; 774 unsigned long cr3; 775 unsigned long cr4; 776 unsigned long cr4_guest_owned_bits; 777 unsigned long cr4_guest_rsvd_bits; 778 unsigned long cr8; 779 u32 host_pkru; 780 u32 pkru; 781 u32 hflags; 782 u64 efer; 783 u64 host_debugctl; 784 u64 apic_base; 785 struct kvm_lapic *apic; /* kernel irqchip context */ 786 bool load_eoi_exitmap_pending; 787 DECLARE_BITMAP(ioapic_handled_vectors, 256); 788 unsigned long apic_attention; 789 int32_t apic_arb_prio; 790 int mp_state; 791 u64 ia32_misc_enable_msr; 792 u64 smbase; 793 u64 smi_count; 794 bool at_instruction_boundary; 795 bool tpr_access_reporting; 796 bool xfd_no_write_intercept; 797 u64 ia32_xss; 798 u64 microcode_version; 799 u64 arch_capabilities; 800 u64 perf_capabilities; 801 802 /* 803 * Paging state of the vcpu 804 * 805 * If the vcpu runs in guest mode with two level paging this still saves 806 * the paging mode of the l1 guest. This context is always used to 807 * handle faults. 808 */ 809 struct kvm_mmu *mmu; 810 811 /* Non-nested MMU for L1 */ 812 struct kvm_mmu root_mmu; 813 814 /* L1 MMU when running nested */ 815 struct kvm_mmu guest_mmu; 816 817 /* 818 * Paging state of an L2 guest (used for nested npt) 819 * 820 * This context will save all necessary information to walk page tables 821 * of an L2 guest. This context is only initialized for page table 822 * walking and not for faulting since we never handle l2 page faults on 823 * the host. 824 */ 825 struct kvm_mmu nested_mmu; 826 827 /* 828 * Pointer to the mmu context currently used for 829 * gva_to_gpa translations. 830 */ 831 struct kvm_mmu *walk_mmu; 832 833 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 834 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 835 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 836 struct kvm_mmu_memory_cache mmu_page_header_cache; 837 /* 838 * This cache is to allocate external page table. E.g. private EPT used 839 * by the TDX module. 840 */ 841 struct kvm_mmu_memory_cache mmu_external_spt_cache; 842 843 /* 844 * QEMU userspace and the guest each have their own FPU state. 845 * In vcpu_run, we switch between the user and guest FPU contexts. 846 * While running a VCPU, the VCPU thread will have the guest FPU 847 * context. 848 * 849 * Note that while the PKRU state lives inside the fpu registers, 850 * it is switched out separately at VMENTER and VMEXIT time. The 851 * "guest_fpstate" state here contains the guest FPU context, with the 852 * host PRKU bits. 853 */ 854 struct fpu_guest guest_fpu; 855 856 u64 xcr0; 857 u64 guest_supported_xcr0; 858 859 struct kvm_pio_request pio; 860 void *pio_data; 861 void *sev_pio_data; 862 unsigned sev_pio_count; 863 864 u8 event_exit_inst_len; 865 866 bool exception_from_userspace; 867 868 /* Exceptions to be injected to the guest. */ 869 struct kvm_queued_exception exception; 870 /* Exception VM-Exits to be synthesized to L1. */ 871 struct kvm_queued_exception exception_vmexit; 872 873 struct kvm_queued_interrupt { 874 bool injected; 875 bool soft; 876 u8 nr; 877 } interrupt; 878 879 int halt_request; /* real mode on Intel only */ 880 881 int cpuid_nent; 882 struct kvm_cpuid_entry2 *cpuid_entries; 883 bool is_amd_compatible; 884 885 /* 886 * cpu_caps holds the effective guest capabilities, i.e. the features 887 * the vCPU is allowed to use. Typically, but not always, features can 888 * be used by the guest if and only if both KVM and userspace want to 889 * expose the feature to the guest. 890 * 891 * A common exception is for virtualization holes, i.e. when KVM can't 892 * prevent the guest from using a feature, in which case the vCPU "has" 893 * the feature regardless of what KVM or userspace desires. 894 * 895 * Note, features that don't require KVM involvement in any way are 896 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 897 * guest CPUID provided by userspace. 898 */ 899 u32 cpu_caps[NR_KVM_CPU_CAPS]; 900 901 u64 reserved_gpa_bits; 902 int maxphyaddr; 903 904 /* emulate context */ 905 906 struct x86_emulate_ctxt *emulate_ctxt; 907 bool emulate_regs_need_sync_to_vcpu; 908 bool emulate_regs_need_sync_from_vcpu; 909 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 910 911 gpa_t time; 912 struct pvclock_vcpu_time_info hv_clock; 913 unsigned int hw_tsc_khz; 914 struct gfn_to_pfn_cache pv_time; 915 /* set guest stopped flag in pvclock flags field */ 916 bool pvclock_set_guest_stopped_request; 917 918 struct { 919 u8 preempted; 920 u64 msr_val; 921 u64 last_steal; 922 struct gfn_to_hva_cache cache; 923 } st; 924 925 u64 l1_tsc_offset; 926 u64 tsc_offset; /* current tsc offset */ 927 u64 last_guest_tsc; 928 u64 last_host_tsc; 929 u64 tsc_offset_adjustment; 930 u64 this_tsc_nsec; 931 u64 this_tsc_write; 932 u64 this_tsc_generation; 933 bool tsc_catchup; 934 bool tsc_always_catchup; 935 s8 virtual_tsc_shift; 936 u32 virtual_tsc_mult; 937 u32 virtual_tsc_khz; 938 s64 ia32_tsc_adjust_msr; 939 u64 msr_ia32_power_ctl; 940 u64 l1_tsc_scaling_ratio; 941 u64 tsc_scaling_ratio; /* current scaling ratio */ 942 943 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 944 /* Number of NMIs pending injection, not including hardware vNMIs. */ 945 unsigned int nmi_pending; 946 bool nmi_injected; /* Trying to inject an NMI this entry */ 947 bool smi_pending; /* SMI queued after currently running handler */ 948 u8 handling_intr_from_guest; 949 950 struct kvm_mtrr mtrr_state; 951 u64 pat; 952 953 unsigned switch_db_regs; 954 unsigned long db[KVM_NR_DB_REGS]; 955 unsigned long dr6; 956 unsigned long dr7; 957 unsigned long eff_db[KVM_NR_DB_REGS]; 958 unsigned long guest_debug_dr7; 959 u64 msr_platform_info; 960 u64 msr_misc_features_enables; 961 962 u64 mcg_cap; 963 u64 mcg_status; 964 u64 mcg_ctl; 965 u64 mcg_ext_ctl; 966 u64 *mce_banks; 967 u64 *mci_ctl2_banks; 968 969 /* Cache MMIO info */ 970 u64 mmio_gva; 971 unsigned mmio_access; 972 gfn_t mmio_gfn; 973 u64 mmio_gen; 974 975 struct kvm_pmu pmu; 976 977 /* used for guest single stepping over the given code position */ 978 unsigned long singlestep_rip; 979 980 #ifdef CONFIG_KVM_HYPERV 981 bool hyperv_enabled; 982 struct kvm_vcpu_hv *hyperv; 983 #endif 984 #ifdef CONFIG_KVM_XEN 985 struct kvm_vcpu_xen xen; 986 #endif 987 cpumask_var_t wbinvd_dirty_mask; 988 989 unsigned long last_retry_eip; 990 unsigned long last_retry_addr; 991 992 struct { 993 bool halted; 994 gfn_t gfns[ASYNC_PF_PER_VCPU]; 995 struct gfn_to_hva_cache data; 996 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 997 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 998 u16 vec; 999 u32 id; 1000 bool send_user_only; 1001 u32 host_apf_flags; 1002 bool delivery_as_pf_vmexit; 1003 bool pageready_pending; 1004 } apf; 1005 1006 /* OSVW MSRs (AMD only) */ 1007 struct { 1008 u64 length; 1009 u64 status; 1010 } osvw; 1011 1012 struct { 1013 u64 msr_val; 1014 struct gfn_to_hva_cache data; 1015 } pv_eoi; 1016 1017 u64 msr_kvm_poll_control; 1018 1019 /* pv related host specific info */ 1020 struct { 1021 bool pv_unhalted; 1022 } pv; 1023 1024 int pending_ioapic_eoi; 1025 int pending_external_vector; 1026 1027 /* be preempted when it's in kernel-mode(cpl=0) */ 1028 bool preempted_in_kernel; 1029 1030 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1031 bool l1tf_flush_l1d; 1032 1033 /* Host CPU on which VM-entry was most recently attempted */ 1034 int last_vmentry_cpu; 1035 1036 /* AMD MSRC001_0015 Hardware Configuration */ 1037 u64 msr_hwcr; 1038 1039 /* pv related cpuid info */ 1040 struct { 1041 /* 1042 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1043 * leaf. 1044 */ 1045 u32 features; 1046 1047 /* 1048 * indicates whether pv emulation should be disabled if features 1049 * are not present in the guest's cpuid 1050 */ 1051 bool enforce; 1052 } pv_cpuid; 1053 1054 /* Protected Guests */ 1055 bool guest_state_protected; 1056 1057 /* 1058 * Set when PDPTS were loaded directly by the userspace without 1059 * reading the guest memory 1060 */ 1061 bool pdptrs_from_userspace; 1062 1063 #if IS_ENABLED(CONFIG_HYPERV) 1064 hpa_t hv_root_tdp; 1065 #endif 1066 }; 1067 1068 struct kvm_lpage_info { 1069 int disallow_lpage; 1070 }; 1071 1072 struct kvm_arch_memory_slot { 1073 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1074 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1075 unsigned short *gfn_write_track; 1076 }; 1077 1078 /* 1079 * Track the mode of the optimized logical map, as the rules for decoding the 1080 * destination vary per mode. Enabling the optimized logical map requires all 1081 * software-enabled local APIs to be in the same mode, each addressable APIC to 1082 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1083 */ 1084 enum kvm_apic_logical_mode { 1085 /* All local APICs are software disabled. */ 1086 KVM_APIC_MODE_SW_DISABLED, 1087 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1088 KVM_APIC_MODE_XAPIC_CLUSTER, 1089 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1090 KVM_APIC_MODE_XAPIC_FLAT, 1091 /* All software enabled local APICs in x2APIC mode. */ 1092 KVM_APIC_MODE_X2APIC, 1093 /* 1094 * Optimized map disabled, e.g. not all local APICs in the same logical 1095 * mode, same logical ID assigned to multiple APICs, etc. 1096 */ 1097 KVM_APIC_MODE_MAP_DISABLED, 1098 }; 1099 1100 struct kvm_apic_map { 1101 struct rcu_head rcu; 1102 enum kvm_apic_logical_mode logical_mode; 1103 u32 max_apic_id; 1104 union { 1105 struct kvm_lapic *xapic_flat_map[8]; 1106 struct kvm_lapic *xapic_cluster_map[16][4]; 1107 }; 1108 struct kvm_lapic *phys_map[]; 1109 }; 1110 1111 /* Hyper-V synthetic debugger (SynDbg)*/ 1112 struct kvm_hv_syndbg { 1113 struct { 1114 u64 control; 1115 u64 status; 1116 u64 send_page; 1117 u64 recv_page; 1118 u64 pending_page; 1119 } control; 1120 u64 options; 1121 }; 1122 1123 /* Current state of Hyper-V TSC page clocksource */ 1124 enum hv_tsc_page_status { 1125 /* TSC page was not set up or disabled */ 1126 HV_TSC_PAGE_UNSET = 0, 1127 /* TSC page MSR was written by the guest, update pending */ 1128 HV_TSC_PAGE_GUEST_CHANGED, 1129 /* TSC page update was triggered from the host side */ 1130 HV_TSC_PAGE_HOST_CHANGED, 1131 /* TSC page was properly set up and is currently active */ 1132 HV_TSC_PAGE_SET, 1133 /* TSC page was set up with an inaccessible GPA */ 1134 HV_TSC_PAGE_BROKEN, 1135 }; 1136 1137 #ifdef CONFIG_KVM_HYPERV 1138 /* Hyper-V emulation context */ 1139 struct kvm_hv { 1140 struct mutex hv_lock; 1141 u64 hv_guest_os_id; 1142 u64 hv_hypercall; 1143 u64 hv_tsc_page; 1144 enum hv_tsc_page_status hv_tsc_page_status; 1145 1146 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1147 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1148 u64 hv_crash_ctl; 1149 1150 struct ms_hyperv_tsc_page tsc_ref; 1151 1152 struct idr conn_to_evt; 1153 1154 u64 hv_reenlightenment_control; 1155 u64 hv_tsc_emulation_control; 1156 u64 hv_tsc_emulation_status; 1157 u64 hv_invtsc_control; 1158 1159 /* How many vCPUs have VP index != vCPU index */ 1160 atomic_t num_mismatched_vp_indexes; 1161 1162 /* 1163 * How many SynICs use 'AutoEOI' feature 1164 * (protected by arch.apicv_update_lock) 1165 */ 1166 unsigned int synic_auto_eoi_used; 1167 1168 struct kvm_hv_syndbg hv_syndbg; 1169 1170 bool xsaves_xsavec_checked; 1171 }; 1172 #endif 1173 1174 struct msr_bitmap_range { 1175 u32 flags; 1176 u32 nmsrs; 1177 u32 base; 1178 unsigned long *bitmap; 1179 }; 1180 1181 #ifdef CONFIG_KVM_XEN 1182 /* Xen emulation context */ 1183 struct kvm_xen { 1184 struct mutex xen_lock; 1185 u32 xen_version; 1186 bool long_mode; 1187 bool runstate_update_flag; 1188 u8 upcall_vector; 1189 struct gfn_to_pfn_cache shinfo_cache; 1190 struct idr evtchn_ports; 1191 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1192 }; 1193 #endif 1194 1195 enum kvm_irqchip_mode { 1196 KVM_IRQCHIP_NONE, 1197 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1198 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1199 }; 1200 1201 struct kvm_x86_msr_filter { 1202 u8 count; 1203 bool default_allow:1; 1204 struct msr_bitmap_range ranges[16]; 1205 }; 1206 1207 struct kvm_x86_pmu_event_filter { 1208 __u32 action; 1209 __u32 nevents; 1210 __u32 fixed_counter_bitmap; 1211 __u32 flags; 1212 __u32 nr_includes; 1213 __u32 nr_excludes; 1214 __u64 *includes; 1215 __u64 *excludes; 1216 __u64 events[]; 1217 }; 1218 1219 enum kvm_apicv_inhibit { 1220 1221 /********************************************************************/ 1222 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1223 /********************************************************************/ 1224 1225 /* 1226 * APIC acceleration is disabled by a module parameter 1227 * and/or not supported in hardware. 1228 */ 1229 APICV_INHIBIT_REASON_DISABLED, 1230 1231 /* 1232 * APIC acceleration is inhibited because AutoEOI feature is 1233 * being used by a HyperV guest. 1234 */ 1235 APICV_INHIBIT_REASON_HYPERV, 1236 1237 /* 1238 * APIC acceleration is inhibited because the userspace didn't yet 1239 * enable the kernel/split irqchip. 1240 */ 1241 APICV_INHIBIT_REASON_ABSENT, 1242 1243 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1244 * (out of band, debug measure of blocking all interrupts on this vCPU) 1245 * was enabled, to avoid AVIC/APICv bypassing it. 1246 */ 1247 APICV_INHIBIT_REASON_BLOCKIRQ, 1248 1249 /* 1250 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1251 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1252 */ 1253 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1254 1255 /* 1256 * For simplicity, the APIC acceleration is inhibited 1257 * first time either APIC ID or APIC base are changed by the guest 1258 * from their reset values. 1259 */ 1260 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1261 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1262 1263 /******************************************************/ 1264 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1265 /******************************************************/ 1266 1267 /* 1268 * AVIC is inhibited on a vCPU because it runs a nested guest. 1269 * 1270 * This is needed because unlike APICv, the peers of this vCPU 1271 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1272 * a vCPU runs nested. 1273 */ 1274 APICV_INHIBIT_REASON_NESTED, 1275 1276 /* 1277 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1278 * which cannot be injected when the AVIC is enabled, thus AVIC 1279 * is inhibited while KVM waits for IRQ window. 1280 */ 1281 APICV_INHIBIT_REASON_IRQWIN, 1282 1283 /* 1284 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1285 * which AVIC doesn't support for edge triggered interrupts. 1286 */ 1287 APICV_INHIBIT_REASON_PIT_REINJ, 1288 1289 /* 1290 * AVIC is disabled because SEV doesn't support it. 1291 */ 1292 APICV_INHIBIT_REASON_SEV, 1293 1294 /* 1295 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1296 * mapping between logical ID and vCPU. 1297 */ 1298 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1299 1300 NR_APICV_INHIBIT_REASONS, 1301 }; 1302 1303 #define __APICV_INHIBIT_REASON(reason) \ 1304 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1305 1306 #define APICV_INHIBIT_REASONS \ 1307 __APICV_INHIBIT_REASON(DISABLED), \ 1308 __APICV_INHIBIT_REASON(HYPERV), \ 1309 __APICV_INHIBIT_REASON(ABSENT), \ 1310 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1311 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1312 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1313 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1314 __APICV_INHIBIT_REASON(NESTED), \ 1315 __APICV_INHIBIT_REASON(IRQWIN), \ 1316 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1317 __APICV_INHIBIT_REASON(SEV), \ 1318 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1319 1320 struct kvm_arch { 1321 unsigned long n_used_mmu_pages; 1322 unsigned long n_requested_mmu_pages; 1323 unsigned long n_max_mmu_pages; 1324 unsigned int indirect_shadow_pages; 1325 u8 mmu_valid_gen; 1326 u8 vm_type; 1327 bool has_private_mem; 1328 bool has_protected_state; 1329 bool pre_fault_allowed; 1330 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1331 struct list_head active_mmu_pages; 1332 /* 1333 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1334 * replaced by an NX huge page. A shadow page is on this list if its 1335 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1336 * and there are no other conditions that prevent a huge page, e.g. 1337 * the backing host page is huge, dirtly logging is not enabled for its 1338 * memslot, etc... Note, zapping shadow pages on this list doesn't 1339 * guarantee an NX huge page will be created in its stead, e.g. if the 1340 * guest attempts to execute from the region then KVM obviously can't 1341 * create an NX huge page (without hanging the guest). 1342 */ 1343 struct list_head possible_nx_huge_pages; 1344 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1345 struct kvm_page_track_notifier_head track_notifier_head; 1346 #endif 1347 /* 1348 * Protects marking pages unsync during page faults, as TDP MMU page 1349 * faults only take mmu_lock for read. For simplicity, the unsync 1350 * pages lock is always taken when marking pages unsync regardless of 1351 * whether mmu_lock is held for read or write. 1352 */ 1353 spinlock_t mmu_unsync_pages_lock; 1354 1355 u64 shadow_mmio_value; 1356 1357 struct iommu_domain *iommu_domain; 1358 bool iommu_noncoherent; 1359 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1360 atomic_t noncoherent_dma_count; 1361 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1362 atomic_t assigned_device_count; 1363 struct kvm_pic *vpic; 1364 struct kvm_ioapic *vioapic; 1365 struct kvm_pit *vpit; 1366 atomic_t vapics_in_nmi_mode; 1367 struct mutex apic_map_lock; 1368 struct kvm_apic_map __rcu *apic_map; 1369 atomic_t apic_map_dirty; 1370 1371 bool apic_access_memslot_enabled; 1372 bool apic_access_memslot_inhibited; 1373 1374 /* Protects apicv_inhibit_reasons */ 1375 struct rw_semaphore apicv_update_lock; 1376 unsigned long apicv_inhibit_reasons; 1377 1378 gpa_t wall_clock; 1379 1380 bool mwait_in_guest; 1381 bool hlt_in_guest; 1382 bool pause_in_guest; 1383 bool cstate_in_guest; 1384 1385 unsigned long irq_sources_bitmap; 1386 s64 kvmclock_offset; 1387 1388 /* 1389 * This also protects nr_vcpus_matched_tsc which is read from a 1390 * preemption-disabled region, so it must be a raw spinlock. 1391 */ 1392 raw_spinlock_t tsc_write_lock; 1393 u64 last_tsc_nsec; 1394 u64 last_tsc_write; 1395 u32 last_tsc_khz; 1396 u64 last_tsc_offset; 1397 u64 cur_tsc_nsec; 1398 u64 cur_tsc_write; 1399 u64 cur_tsc_offset; 1400 u64 cur_tsc_generation; 1401 int nr_vcpus_matched_tsc; 1402 1403 u32 default_tsc_khz; 1404 bool user_set_tsc; 1405 u64 apic_bus_cycle_ns; 1406 1407 seqcount_raw_spinlock_t pvclock_sc; 1408 bool use_master_clock; 1409 u64 master_kernel_ns; 1410 u64 master_cycle_now; 1411 struct delayed_work kvmclock_update_work; 1412 struct delayed_work kvmclock_sync_work; 1413 1414 struct kvm_xen_hvm_config xen_hvm_config; 1415 1416 /* reads protected by irq_srcu, writes by irq_lock */ 1417 struct hlist_head mask_notifier_list; 1418 1419 #ifdef CONFIG_KVM_HYPERV 1420 struct kvm_hv hyperv; 1421 #endif 1422 1423 #ifdef CONFIG_KVM_XEN 1424 struct kvm_xen xen; 1425 #endif 1426 1427 bool backwards_tsc_observed; 1428 bool boot_vcpu_runs_old_kvmclock; 1429 u32 bsp_vcpu_id; 1430 1431 u64 disabled_quirks; 1432 1433 enum kvm_irqchip_mode irqchip_mode; 1434 u8 nr_reserved_ioapic_pins; 1435 1436 bool disabled_lapic_found; 1437 1438 bool x2apic_format; 1439 bool x2apic_broadcast_quirk_disabled; 1440 1441 bool guest_can_read_msr_platform_info; 1442 bool exception_payload_enabled; 1443 1444 bool triple_fault_event; 1445 1446 bool bus_lock_detection_enabled; 1447 bool enable_pmu; 1448 1449 u32 notify_window; 1450 u32 notify_vmexit_flags; 1451 /* 1452 * If exit_on_emulation_error is set, and the in-kernel instruction 1453 * emulator fails to emulate an instruction, allow userspace 1454 * the opportunity to look at it. 1455 */ 1456 bool exit_on_emulation_error; 1457 1458 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1459 u32 user_space_msr_mask; 1460 struct kvm_x86_msr_filter __rcu *msr_filter; 1461 1462 u32 hypercall_exit_enabled; 1463 1464 /* Guest can access the SGX PROVISIONKEY. */ 1465 bool sgx_provisioning_allowed; 1466 1467 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1468 struct vhost_task *nx_huge_page_recovery_thread; 1469 u64 nx_huge_page_last; 1470 struct once nx_once; 1471 1472 #ifdef CONFIG_X86_64 1473 /* The number of TDP MMU pages across all roots. */ 1474 atomic64_t tdp_mmu_pages; 1475 1476 /* 1477 * List of struct kvm_mmu_pages being used as roots. 1478 * All struct kvm_mmu_pages in the list should have 1479 * tdp_mmu_page set. 1480 * 1481 * For reads, this list is protected by: 1482 * the MMU lock in read mode + RCU or 1483 * the MMU lock in write mode 1484 * 1485 * For writes, this list is protected by tdp_mmu_pages_lock; see 1486 * below for the details. 1487 * 1488 * Roots will remain in the list until their tdp_mmu_root_count 1489 * drops to zero, at which point the thread that decremented the 1490 * count to zero should removed the root from the list and clean 1491 * it up, freeing the root after an RCU grace period. 1492 */ 1493 struct list_head tdp_mmu_roots; 1494 1495 /* 1496 * Protects accesses to the following fields when the MMU lock 1497 * is held in read mode: 1498 * - tdp_mmu_roots (above) 1499 * - the link field of kvm_mmu_page structs used by the TDP MMU 1500 * - possible_nx_huge_pages; 1501 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1502 * by the TDP MMU 1503 * Because the lock is only taken within the MMU lock, strictly 1504 * speaking it is redundant to acquire this lock when the thread 1505 * holds the MMU lock in write mode. However it often simplifies 1506 * the code to do so. 1507 */ 1508 spinlock_t tdp_mmu_pages_lock; 1509 #endif /* CONFIG_X86_64 */ 1510 1511 /* 1512 * If set, at least one shadow root has been allocated. This flag 1513 * is used as one input when determining whether certain memslot 1514 * related allocations are necessary. 1515 */ 1516 bool shadow_root_allocated; 1517 1518 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1519 /* 1520 * If set, the VM has (or had) an external write tracking user, and 1521 * thus all write tracking metadata has been allocated, even if KVM 1522 * itself isn't using write tracking. 1523 */ 1524 bool external_write_tracking_enabled; 1525 #endif 1526 1527 #if IS_ENABLED(CONFIG_HYPERV) 1528 hpa_t hv_root_tdp; 1529 spinlock_t hv_root_tdp_lock; 1530 struct hv_partition_assist_pg *hv_pa_pg; 1531 #endif 1532 /* 1533 * VM-scope maximum vCPU ID. Used to determine the size of structures 1534 * that increase along with the maximum vCPU ID, in which case, using 1535 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1536 */ 1537 u32 max_vcpu_ids; 1538 1539 bool disable_nx_huge_pages; 1540 1541 /* 1542 * Memory caches used to allocate shadow pages when performing eager 1543 * page splitting. No need for a shadowed_info_cache since eager page 1544 * splitting only allocates direct shadow pages. 1545 * 1546 * Protected by kvm->slots_lock. 1547 */ 1548 struct kvm_mmu_memory_cache split_shadow_page_cache; 1549 struct kvm_mmu_memory_cache split_page_header_cache; 1550 1551 /* 1552 * Memory cache used to allocate pte_list_desc structs while splitting 1553 * huge pages. In the worst case, to split one huge page, 512 1554 * pte_list_desc structs are needed to add each lower level leaf sptep 1555 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1556 * page table. 1557 * 1558 * Protected by kvm->slots_lock. 1559 */ 1560 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1561 struct kvm_mmu_memory_cache split_desc_cache; 1562 1563 gfn_t gfn_direct_bits; 1564 }; 1565 1566 struct kvm_vm_stat { 1567 struct kvm_vm_stat_generic generic; 1568 u64 mmu_shadow_zapped; 1569 u64 mmu_pte_write; 1570 u64 mmu_pde_zapped; 1571 u64 mmu_flooded; 1572 u64 mmu_recycled; 1573 u64 mmu_cache_miss; 1574 u64 mmu_unsync; 1575 union { 1576 struct { 1577 atomic64_t pages_4k; 1578 atomic64_t pages_2m; 1579 atomic64_t pages_1g; 1580 }; 1581 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1582 }; 1583 u64 nx_lpage_splits; 1584 u64 max_mmu_page_hash_collisions; 1585 u64 max_mmu_rmap_size; 1586 }; 1587 1588 struct kvm_vcpu_stat { 1589 struct kvm_vcpu_stat_generic generic; 1590 u64 pf_taken; 1591 u64 pf_fixed; 1592 u64 pf_emulate; 1593 u64 pf_spurious; 1594 u64 pf_fast; 1595 u64 pf_mmio_spte_created; 1596 u64 pf_guest; 1597 u64 tlb_flush; 1598 u64 invlpg; 1599 1600 u64 exits; 1601 u64 io_exits; 1602 u64 mmio_exits; 1603 u64 signal_exits; 1604 u64 irq_window_exits; 1605 u64 nmi_window_exits; 1606 u64 l1d_flush; 1607 u64 halt_exits; 1608 u64 request_irq_exits; 1609 u64 irq_exits; 1610 u64 host_state_reload; 1611 u64 fpu_reload; 1612 u64 insn_emulation; 1613 u64 insn_emulation_fail; 1614 u64 hypercalls; 1615 u64 irq_injections; 1616 u64 nmi_injections; 1617 u64 req_event; 1618 u64 nested_run; 1619 u64 directed_yield_attempted; 1620 u64 directed_yield_successful; 1621 u64 preemption_reported; 1622 u64 preemption_other; 1623 u64 guest_mode; 1624 u64 notify_window_exits; 1625 }; 1626 1627 struct x86_instruction_info; 1628 1629 struct msr_data { 1630 bool host_initiated; 1631 u32 index; 1632 u64 data; 1633 }; 1634 1635 struct kvm_lapic_irq { 1636 u32 vector; 1637 u16 delivery_mode; 1638 u16 dest_mode; 1639 bool level; 1640 u16 trig_mode; 1641 u32 shorthand; 1642 u32 dest_id; 1643 bool msi_redir_hint; 1644 }; 1645 kvm_lapic_irq_dest_mode(bool dest_mode_logical)1646 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1647 { 1648 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1649 } 1650 1651 struct kvm_x86_ops { 1652 const char *name; 1653 1654 int (*check_processor_compatibility)(void); 1655 1656 int (*enable_virtualization_cpu)(void); 1657 void (*disable_virtualization_cpu)(void); 1658 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1659 1660 void (*hardware_unsetup)(void); 1661 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1662 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1663 1664 unsigned int vm_size; 1665 int (*vm_init)(struct kvm *kvm); 1666 void (*vm_destroy)(struct kvm *kvm); 1667 1668 /* Create, but do not attach this VCPU */ 1669 int (*vcpu_precreate)(struct kvm *kvm); 1670 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1671 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1672 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1673 1674 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1675 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1676 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1677 1678 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1679 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1680 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1681 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1682 void (*get_segment)(struct kvm_vcpu *vcpu, 1683 struct kvm_segment *var, int seg); 1684 int (*get_cpl)(struct kvm_vcpu *vcpu); 1685 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1686 void (*set_segment)(struct kvm_vcpu *vcpu, 1687 struct kvm_segment *var, int seg); 1688 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1689 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1690 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1691 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1692 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1693 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1694 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1695 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1696 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1697 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1698 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1699 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1700 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1701 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1702 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1703 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1704 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1705 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1706 1707 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1708 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1709 #if IS_ENABLED(CONFIG_HYPERV) 1710 int (*flush_remote_tlbs)(struct kvm *kvm); 1711 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1712 gfn_t nr_pages); 1713 #endif 1714 1715 /* 1716 * Flush any TLB entries associated with the given GVA. 1717 * Does not need to flush GPA->HPA mappings. 1718 * Can potentially get non-canonical addresses through INVLPGs, which 1719 * the implementation may choose to ignore if appropriate. 1720 */ 1721 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1722 1723 /* 1724 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1725 * does not need to flush GPA->HPA mappings. 1726 */ 1727 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1728 1729 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1730 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1731 bool force_immediate_exit); 1732 int (*handle_exit)(struct kvm_vcpu *vcpu, 1733 enum exit_fastpath_completion exit_fastpath); 1734 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1735 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1736 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1737 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1738 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1739 unsigned char *hypercall_addr); 1740 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1741 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1742 void (*inject_exception)(struct kvm_vcpu *vcpu); 1743 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1744 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1745 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1746 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1747 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1748 /* Whether or not a virtual NMI is pending in hardware. */ 1749 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1750 /* 1751 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1752 * to allow using static_call_ret0 as the fallback. 1753 */ 1754 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1755 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1756 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1757 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1758 1759 const bool x2apic_icr_is_split; 1760 const unsigned long required_apicv_inhibits; 1761 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1762 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1763 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1764 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1765 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1766 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1767 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1768 int trig_mode, int vector); 1769 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1770 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1771 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1772 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1773 1774 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1775 int root_level); 1776 1777 /* Update external mapping with page table link. */ 1778 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1779 void *external_spt); 1780 /* Update the external page table from spte getting set. */ 1781 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1782 kvm_pfn_t pfn_for_gfn); 1783 1784 /* Update external page tables for page table about to be freed. */ 1785 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1786 void *external_spt); 1787 1788 /* Update external page table from spte getting removed, and flush TLB. */ 1789 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1790 kvm_pfn_t pfn_for_gfn); 1791 1792 bool (*has_wbinvd_exit)(void); 1793 1794 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1795 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1796 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1797 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1798 1799 /* 1800 * Retrieve somewhat arbitrary exit/entry information. Intended to 1801 * be used only from within tracepoints or error paths. 1802 */ 1803 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1804 u64 *info1, u64 *info2, 1805 u32 *intr_info, u32 *error_code); 1806 1807 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1808 u32 *intr_info, u32 *error_code); 1809 1810 int (*check_intercept)(struct kvm_vcpu *vcpu, 1811 struct x86_instruction_info *info, 1812 enum x86_intercept_stage stage, 1813 struct x86_exception *exception); 1814 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1815 1816 /* 1817 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1818 * value indicates CPU dirty logging is unsupported or disabled. 1819 */ 1820 int cpu_dirty_log_size; 1821 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1822 1823 const struct kvm_x86_nested_ops *nested_ops; 1824 1825 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1826 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1827 1828 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1829 uint32_t guest_irq, bool set); 1830 void (*pi_start_assignment)(struct kvm *kvm); 1831 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1832 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1833 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1834 1835 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1836 bool *expired); 1837 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1838 1839 void (*setup_mce)(struct kvm_vcpu *vcpu); 1840 1841 #ifdef CONFIG_KVM_SMM 1842 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1843 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1844 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1845 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1846 #endif 1847 1848 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1849 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1850 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1851 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1852 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1853 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1854 void (*guest_memory_reclaimed)(struct kvm *kvm); 1855 1856 int (*get_feature_msr)(u32 msr, u64 *data); 1857 1858 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1859 void *insn, int insn_len); 1860 1861 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1862 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1863 1864 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1865 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1866 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1867 1868 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1869 1870 /* 1871 * Returns vCPU specific APICv inhibit reasons 1872 */ 1873 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1874 1875 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1876 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1877 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1878 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1879 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1880 }; 1881 1882 struct kvm_x86_nested_ops { 1883 void (*leave_nested)(struct kvm_vcpu *vcpu); 1884 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1885 u32 error_code); 1886 int (*check_events)(struct kvm_vcpu *vcpu); 1887 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1888 void (*triple_fault)(struct kvm_vcpu *vcpu); 1889 int (*get_state)(struct kvm_vcpu *vcpu, 1890 struct kvm_nested_state __user *user_kvm_nested_state, 1891 unsigned user_data_size); 1892 int (*set_state)(struct kvm_vcpu *vcpu, 1893 struct kvm_nested_state __user *user_kvm_nested_state, 1894 struct kvm_nested_state *kvm_state); 1895 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1896 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1897 1898 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1899 uint16_t *vmcs_version); 1900 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1901 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1902 }; 1903 1904 struct kvm_x86_init_ops { 1905 int (*hardware_setup)(void); 1906 unsigned int (*handle_intel_pt_intr)(void); 1907 1908 struct kvm_x86_ops *runtime_ops; 1909 struct kvm_pmu_ops *pmu_ops; 1910 }; 1911 1912 struct kvm_arch_async_pf { 1913 u32 token; 1914 gfn_t gfn; 1915 unsigned long cr3; 1916 bool direct_map; 1917 u64 error_code; 1918 }; 1919 1920 extern u32 __read_mostly kvm_nr_uret_msrs; 1921 extern bool __read_mostly allow_smaller_maxphyaddr; 1922 extern bool __read_mostly enable_apicv; 1923 extern struct kvm_x86_ops kvm_x86_ops; 1924 1925 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1926 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1927 1928 #define KVM_X86_OP(func) \ 1929 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1930 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1931 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1932 #include <asm/kvm-x86-ops.h> 1933 1934 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1935 void kvm_x86_vendor_exit(void); 1936 1937 #define __KVM_HAVE_ARCH_VM_ALLOC kvm_arch_alloc_vm(void)1938 static inline struct kvm *kvm_arch_alloc_vm(void) 1939 { 1940 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1941 } 1942 1943 #define __KVM_HAVE_ARCH_VM_FREE 1944 void kvm_arch_free_vm(struct kvm *kvm); 1945 1946 #if IS_ENABLED(CONFIG_HYPERV) 1947 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS kvm_arch_flush_remote_tlbs(struct kvm * kvm)1948 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1949 { 1950 if (kvm_x86_ops.flush_remote_tlbs && 1951 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1952 return 0; 1953 else 1954 return -ENOTSUPP; 1955 } 1956 1957 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1958 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1959 u64 nr_pages) 1960 { 1961 if (!kvm_x86_ops.flush_remote_tlbs_range) 1962 return -EOPNOTSUPP; 1963 1964 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1965 } 1966 #endif /* CONFIG_HYPERV */ 1967 1968 enum kvm_intr_type { 1969 /* Values are arbitrary, but must be non-zero. */ 1970 KVM_HANDLING_IRQ = 1, 1971 KVM_HANDLING_NMI, 1972 }; 1973 1974 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1975 #define kvm_arch_pmi_in_guest(vcpu) \ 1976 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1977 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1978 1979 void __init kvm_mmu_x86_module_init(void); 1980 int kvm_mmu_vendor_module_init(void); 1981 void kvm_mmu_vendor_module_exit(void); 1982 1983 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1984 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1985 void kvm_mmu_init_vm(struct kvm *kvm); 1986 void kvm_mmu_uninit_vm(struct kvm *kvm); 1987 1988 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1989 struct kvm_memory_slot *slot); 1990 1991 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1992 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1993 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1994 const struct kvm_memory_slot *memslot, 1995 int start_level); 1996 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1997 const struct kvm_memory_slot *memslot, 1998 int target_level); 1999 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2000 const struct kvm_memory_slot *memslot, 2001 u64 start, u64 end, 2002 int target_level); 2003 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2004 const struct kvm_memory_slot *memslot); 2005 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2006 const struct kvm_memory_slot *memslot); 2007 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2008 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2009 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2010 2011 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2012 2013 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2014 const void *val, int bytes); 2015 2016 struct kvm_irq_mask_notifier { 2017 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2018 int irq; 2019 struct hlist_node link; 2020 }; 2021 2022 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2023 struct kvm_irq_mask_notifier *kimn); 2024 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2025 struct kvm_irq_mask_notifier *kimn); 2026 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2027 bool mask); 2028 2029 extern bool tdp_enabled; 2030 2031 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2032 2033 /* 2034 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2035 * userspace I/O) to indicate that the emulation context 2036 * should be reused as is, i.e. skip initialization of 2037 * emulation context, instruction fetch and decode. 2038 * 2039 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2040 * Indicates that only select instructions (tagged with 2041 * EmulateOnUD) should be emulated (to minimize the emulator 2042 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2043 * 2044 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2045 * decode the instruction length. For use *only* by 2046 * kvm_x86_ops.skip_emulated_instruction() implementations if 2047 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2048 * 2049 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2050 * retry native execution under certain conditions, 2051 * Can only be set in conjunction with EMULTYPE_PF. 2052 * 2053 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2054 * triggered by KVM's magic "force emulation" prefix, 2055 * which is opt in via module param (off by default). 2056 * Bypasses EmulateOnUD restriction despite emulating 2057 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2058 * Used to test the full emulator from userspace. 2059 * 2060 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2061 * backdoor emulation, which is opt in via module param. 2062 * VMware backdoor emulation handles select instructions 2063 * and reinjects the #GP for all other cases. 2064 * 2065 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2066 * the CR2/GPA value pass on the stack is valid. 2067 * 2068 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2069 * state and inject single-step #DBs after skipping 2070 * an instruction (after completing userspace I/O). 2071 * 2072 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2073 * is attempting to write a gfn that contains one or 2074 * more of the PTEs used to translate the write itself, 2075 * and the owning page table is being shadowed by KVM. 2076 * If emulation of the faulting instruction fails and 2077 * this flag is set, KVM will exit to userspace instead 2078 * of retrying emulation as KVM cannot make forward 2079 * progress. 2080 * 2081 * If emulation fails for a write to guest page tables, 2082 * KVM unprotects (zaps) the shadow page for the target 2083 * gfn and resumes the guest to retry the non-emulatable 2084 * instruction (on hardware). Unprotecting the gfn 2085 * doesn't allow forward progress for a self-changing 2086 * access because doing so also zaps the translation for 2087 * the gfn, i.e. retrying the instruction will hit a 2088 * !PRESENT fault, which results in a new shadow page 2089 * and sends KVM back to square one. 2090 */ 2091 #define EMULTYPE_NO_DECODE (1 << 0) 2092 #define EMULTYPE_TRAP_UD (1 << 1) 2093 #define EMULTYPE_SKIP (1 << 2) 2094 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2095 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2096 #define EMULTYPE_VMWARE_GP (1 << 5) 2097 #define EMULTYPE_PF (1 << 6) 2098 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2099 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2100 kvm_can_emulate_event_vectoring(int emul_type)2101 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2102 { 2103 return !(emul_type & EMULTYPE_PF); 2104 } 2105 2106 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2107 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2108 void *insn, int insn_len); 2109 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2110 u64 *data, u8 ndata); 2111 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2112 2113 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2114 2115 void kvm_enable_efer_bits(u64); 2116 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2117 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2118 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2119 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2120 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2121 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2122 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2123 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2124 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2125 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2126 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2127 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2128 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2129 2130 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2131 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2132 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2133 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2134 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2135 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2136 2137 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2138 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2139 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2140 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2141 2142 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2143 int reason, bool has_error_code, u32 error_code); 2144 2145 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2146 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2147 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2148 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2149 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2150 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2151 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2152 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2153 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2154 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2155 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2156 2157 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2158 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2159 2160 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2161 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2162 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2163 2164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2165 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2166 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2167 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2168 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2169 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2170 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2171 struct x86_exception *fault); 2172 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2173 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2174 __kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2175 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2176 int irq_source_id, int level) 2177 { 2178 /* Logical OR for level trig interrupt */ 2179 if (level) 2180 __set_bit(irq_source_id, irq_state); 2181 else 2182 __clear_bit(irq_source_id, irq_state); 2183 2184 return !!(*irq_state); 2185 } 2186 2187 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2188 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2189 2190 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2191 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2192 2193 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2194 2195 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2196 bool always_retry); 2197 kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2198 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2199 gpa_t cr2_or_gpa) 2200 { 2201 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2202 } 2203 2204 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2205 ulong roots_to_free); 2206 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2207 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2208 struct x86_exception *exception); 2209 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2210 struct x86_exception *exception); 2211 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2212 struct x86_exception *exception); 2213 2214 bool kvm_apicv_activated(struct kvm *kvm); 2215 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2216 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2217 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2218 enum kvm_apicv_inhibit reason, bool set); 2219 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2220 enum kvm_apicv_inhibit reason, bool set); 2221 kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2222 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2223 enum kvm_apicv_inhibit reason) 2224 { 2225 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2226 } 2227 kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2228 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2229 enum kvm_apicv_inhibit reason) 2230 { 2231 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2232 } 2233 2234 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2235 void *insn, int insn_len); 2236 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2237 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2238 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2239 u64 addr, unsigned long roots); 2240 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2241 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2242 2243 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2244 int tdp_max_root_level, int tdp_huge_page_level); 2245 2246 2247 #ifdef CONFIG_KVM_PRIVATE_MEM 2248 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2249 #else 2250 #define kvm_arch_has_private_mem(kvm) false 2251 #endif 2252 2253 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2254 kvm_read_ldt(void)2255 static inline u16 kvm_read_ldt(void) 2256 { 2257 u16 ldt; 2258 asm("sldt %0" : "=g"(ldt)); 2259 return ldt; 2260 } 2261 kvm_load_ldt(u16 sel)2262 static inline void kvm_load_ldt(u16 sel) 2263 { 2264 asm("lldt %0" : : "rm"(sel)); 2265 } 2266 2267 #ifdef CONFIG_X86_64 read_msr(unsigned long msr)2268 static inline unsigned long read_msr(unsigned long msr) 2269 { 2270 u64 value; 2271 2272 rdmsrl(msr, value); 2273 return value; 2274 } 2275 #endif 2276 kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2277 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2278 { 2279 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2280 } 2281 2282 #define TSS_IOPB_BASE_OFFSET 0x66 2283 #define TSS_BASE_SIZE 0x68 2284 #define TSS_IOPB_SIZE (65536 / 8) 2285 #define TSS_REDIRECTION_SIZE (256 / 8) 2286 #define RMODE_TSS_SIZE \ 2287 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2288 2289 enum { 2290 TASK_SWITCH_CALL = 0, 2291 TASK_SWITCH_IRET = 1, 2292 TASK_SWITCH_JMP = 2, 2293 TASK_SWITCH_GATE = 3, 2294 }; 2295 2296 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2297 2298 #ifdef CONFIG_KVM_SMM 2299 #define HF_SMM_MASK (1 << 1) 2300 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2301 2302 # define KVM_MAX_NR_ADDRESS_SPACES 2 2303 /* SMM is currently unsupported for guests with private memory. */ 2304 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2305 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2306 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2307 #else 2308 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2309 #endif 2310 2311 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2312 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2313 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2314 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2315 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2316 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2317 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2318 2319 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2320 unsigned long ipi_bitmap_high, u32 min, 2321 unsigned long icr, int op_64_bit); 2322 2323 int kvm_add_user_return_msr(u32 msr); 2324 int kvm_find_user_return_msr(u32 msr); 2325 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2326 kvm_is_supported_user_return_msr(u32 msr)2327 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2328 { 2329 return kvm_find_user_return_msr(msr) >= 0; 2330 } 2331 2332 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2333 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2334 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2335 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2336 2337 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2338 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2339 2340 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2341 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2342 unsigned long *vcpu_bitmap); 2343 2344 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2345 struct kvm_async_pf *work); 2346 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2347 struct kvm_async_pf *work); 2348 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2349 struct kvm_async_pf *work); 2350 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2351 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2352 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2353 2354 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2355 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2356 2357 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2358 u32 size); 2359 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2360 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2361 2362 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2363 struct kvm_vcpu **dest_vcpu); 2364 2365 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2366 struct kvm_lapic_irq *irq); 2367 kvm_irq_is_postable(struct kvm_lapic_irq * irq)2368 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2369 { 2370 /* We can only post Fixed and LowPrio IRQs */ 2371 return (irq->delivery_mode == APIC_DM_FIXED || 2372 irq->delivery_mode == APIC_DM_LOWEST); 2373 } 2374 kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2375 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2376 { 2377 kvm_x86_call(vcpu_blocking)(vcpu); 2378 } 2379 kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2380 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2381 { 2382 kvm_x86_call(vcpu_unblocking)(vcpu); 2383 } 2384 kvm_cpu_get_apicid(int mps_cpu)2385 static inline int kvm_cpu_get_apicid(int mps_cpu) 2386 { 2387 #ifdef CONFIG_X86_LOCAL_APIC 2388 return default_cpu_present_to_apicid(mps_cpu); 2389 #else 2390 WARN_ON_ONCE(1); 2391 return BAD_APICID; 2392 #endif 2393 } 2394 2395 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2396 2397 #define KVM_CLOCK_VALID_FLAGS \ 2398 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2399 2400 #define KVM_X86_VALID_QUIRKS \ 2401 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2402 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2403 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2404 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2405 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2406 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2407 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2408 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2409 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2410 2411 /* 2412 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2413 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2414 * remaining 31 lower bits must be 0 to preserve ABI. 2415 */ 2416 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2417 2418 #endif /* _ASM_X86_KVM_HOST_H */ 2419