xref: /linux/fs/hugetlbfs/inode.c (revision 7cd122b55283d3ceef71a5b723ccaa03a72284b4)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
hugetlb_file_mmap_prepare_success(const struct vm_area_struct * vma)99 static int hugetlb_file_mmap_prepare_success(const struct vm_area_struct *vma)
100 {
101 	/* Unfortunate we have to reassign vma->vm_private_data. */
102 	return hugetlb_vma_lock_alloc((struct vm_area_struct *)vma);
103 }
104 
hugetlbfs_file_mmap_prepare(struct vm_area_desc * desc)105 static int hugetlbfs_file_mmap_prepare(struct vm_area_desc *desc)
106 {
107 	struct file *file = desc->file;
108 	struct inode *inode = file_inode(file);
109 	loff_t len, vma_len;
110 	int ret;
111 	struct hstate *h = hstate_file(file);
112 	vm_flags_t vm_flags;
113 
114 	/*
115 	 * vma address alignment (but not the pgoff alignment) has
116 	 * already been checked by prepare_hugepage_range.  If you add
117 	 * any error returns here, do so after setting VM_HUGETLB, so
118 	 * is_vm_hugetlb_page tests below unmap_region go the right
119 	 * way when do_mmap unwinds (may be important on powerpc
120 	 * and ia64).
121 	 */
122 	desc->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
123 	desc->vm_ops = &hugetlb_vm_ops;
124 
125 	/*
126 	 * page based offset in vm_pgoff could be sufficiently large to
127 	 * overflow a loff_t when converted to byte offset.  This can
128 	 * only happen on architectures where sizeof(loff_t) ==
129 	 * sizeof(unsigned long).  So, only check in those instances.
130 	 */
131 	if (sizeof(unsigned long) == sizeof(loff_t)) {
132 		if (desc->pgoff & PGOFF_LOFFT_MAX)
133 			return -EINVAL;
134 	}
135 
136 	/* must be huge page aligned */
137 	if (desc->pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
138 		return -EINVAL;
139 
140 	vma_len = (loff_t)vma_desc_size(desc);
141 	len = vma_len + ((loff_t)desc->pgoff << PAGE_SHIFT);
142 	/* check for overflow */
143 	if (len < vma_len)
144 		return -EINVAL;
145 
146 	inode_lock(inode);
147 	file_accessed(file);
148 
149 	ret = -ENOMEM;
150 
151 	vm_flags = desc->vm_flags;
152 	/*
153 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
154 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
155 	 * flag S_PRIVATE is set.
156 	 */
157 	if (inode->i_flags & S_PRIVATE)
158 		vm_flags |= VM_NORESERVE;
159 
160 	if (hugetlb_reserve_pages(inode,
161 			desc->pgoff >> huge_page_order(h),
162 			len >> huge_page_shift(h), desc,
163 			vm_flags) < 0)
164 		goto out;
165 
166 	ret = 0;
167 	if ((desc->vm_flags & VM_WRITE) && inode->i_size < len)
168 		i_size_write(inode, len);
169 out:
170 	inode_unlock(inode);
171 
172 	if (!ret) {
173 		/* Allocate the VMA lock after we set it up. */
174 		desc->action.success_hook = hugetlb_file_mmap_prepare_success;
175 		/*
176 		 * We cannot permit the rmap finding this VMA in the time
177 		 * between the VMA being inserted into the VMA tree and the
178 		 * completion/success hook being invoked.
179 		 *
180 		 * This is because we establish a per-VMA hugetlb lock which can
181 		 * be raced by rmap.
182 		 */
183 		desc->action.hide_from_rmap_until_complete = true;
184 	}
185 	return ret;
186 }
187 
188 /*
189  * Called under mmap_write_lock(mm).
190  */
191 
192 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)193 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
194 			    unsigned long len, unsigned long pgoff,
195 			    unsigned long flags)
196 {
197 	unsigned long addr0 = 0;
198 	struct hstate *h = hstate_file(file);
199 
200 	if (len & ~huge_page_mask(h))
201 		return -EINVAL;
202 	if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
203 		return -EINVAL;
204 	if (addr)
205 		addr0 = ALIGN(addr, huge_page_size(h));
206 
207 	return mm_get_unmapped_area_vmflags(file, addr0, len, pgoff, flags, 0);
208 }
209 
210 /*
211  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
212  * Returns the maximum number of bytes one can read without touching the 1st raw
213  * HWPOISON page.
214  */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)215 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
216 		size_t bytes)
217 {
218 	struct page *page = folio_page(folio, offset / PAGE_SIZE);
219 	size_t safe_bytes;
220 
221 	if (is_raw_hwpoison_page_in_hugepage(page))
222 		return 0;
223 	/* Safe to read the remaining bytes in this page. */
224 	safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
225 	page++;
226 
227 	/* Check each remaining page as long as we are not done yet. */
228 	for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
229 		if (is_raw_hwpoison_page_in_hugepage(page))
230 			break;
231 
232 	return min(safe_bytes, bytes);
233 }
234 
235 /*
236  * Support for read() - Find the page attached to f_mapping and copy out the
237  * data. This provides functionality similar to filemap_read().
238  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)239 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
240 {
241 	struct file *file = iocb->ki_filp;
242 	struct hstate *h = hstate_file(file);
243 	struct address_space *mapping = file->f_mapping;
244 	struct inode *inode = mapping->host;
245 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
246 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
247 	unsigned long end_index;
248 	loff_t isize;
249 	ssize_t retval = 0;
250 
251 	while (iov_iter_count(to)) {
252 		struct folio *folio;
253 		size_t nr, copied, want;
254 
255 		/* nr is the maximum number of bytes to copy from this page */
256 		nr = huge_page_size(h);
257 		isize = i_size_read(inode);
258 		if (!isize)
259 			break;
260 		end_index = (isize - 1) >> huge_page_shift(h);
261 		if (index > end_index)
262 			break;
263 		if (index == end_index) {
264 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
265 			if (nr <= offset)
266 				break;
267 		}
268 		nr = nr - offset;
269 
270 		/* Find the folio */
271 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
272 		if (IS_ERR(folio)) {
273 			/*
274 			 * We have a HOLE, zero out the user-buffer for the
275 			 * length of the hole or request.
276 			 */
277 			copied = iov_iter_zero(nr, to);
278 		} else {
279 			folio_unlock(folio);
280 
281 			if (!folio_test_hwpoison(folio))
282 				want = nr;
283 			else {
284 				/*
285 				 * Adjust how many bytes safe to read without
286 				 * touching the 1st raw HWPOISON page after
287 				 * offset.
288 				 */
289 				want = adjust_range_hwpoison(folio, offset, nr);
290 				if (want == 0) {
291 					folio_put(folio);
292 					retval = -EIO;
293 					break;
294 				}
295 			}
296 
297 			/*
298 			 * We have the folio, copy it to user space buffer.
299 			 */
300 			copied = copy_folio_to_iter(folio, offset, want, to);
301 			folio_put(folio);
302 		}
303 		offset += copied;
304 		retval += copied;
305 		if (copied != nr && iov_iter_count(to)) {
306 			if (!retval)
307 				retval = -EFAULT;
308 			break;
309 		}
310 		index += offset >> huge_page_shift(h);
311 		offset &= ~huge_page_mask(h);
312 	}
313 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
314 	return retval;
315 }
316 
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)317 static int hugetlbfs_write_begin(const struct kiocb *iocb,
318 			struct address_space *mapping,
319 			loff_t pos, unsigned len,
320 			struct folio **foliop, void **fsdata)
321 {
322 	return -EINVAL;
323 }
324 
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)325 static int hugetlbfs_write_end(const struct kiocb *iocb,
326 			       struct address_space *mapping,
327 			       loff_t pos, unsigned len, unsigned copied,
328 			       struct folio *folio, void *fsdata)
329 {
330 	BUG();
331 	return -EINVAL;
332 }
333 
hugetlb_delete_from_page_cache(struct folio * folio)334 static void hugetlb_delete_from_page_cache(struct folio *folio)
335 {
336 	folio_clear_dirty(folio);
337 	folio_clear_uptodate(folio);
338 	filemap_remove_folio(folio);
339 }
340 
341 /*
342  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
343  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
344  * mutex for the page in the mapping.  So, we can not race with page being
345  * faulted into the vma.
346  */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)347 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
348 				unsigned long addr, unsigned long pfn)
349 {
350 	pte_t *ptep, pte;
351 
352 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
353 	if (!ptep)
354 		return false;
355 
356 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
357 	if (huge_pte_none(pte) || !pte_present(pte))
358 		return false;
359 
360 	if (pte_pfn(pte) == pfn)
361 		return true;
362 
363 	return false;
364 }
365 
366 /*
367  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
368  * No, because the interval tree returns us only those vmas
369  * which overlap the truncated area starting at pgoff,
370  * and no vma on a 32-bit arch can span beyond the 4GB.
371  */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)372 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
373 {
374 	unsigned long offset = 0;
375 
376 	if (vma->vm_pgoff < start)
377 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
378 
379 	return vma->vm_start + offset;
380 }
381 
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)382 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
383 {
384 	unsigned long t_end;
385 
386 	if (!end)
387 		return vma->vm_end;
388 
389 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
390 	if (t_end > vma->vm_end)
391 		t_end = vma->vm_end;
392 	return t_end;
393 }
394 
395 /*
396  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
397  * this folio can be created while executing the routine.
398  */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)399 static void hugetlb_unmap_file_folio(struct hstate *h,
400 					struct address_space *mapping,
401 					struct folio *folio, pgoff_t index)
402 {
403 	struct rb_root_cached *root = &mapping->i_mmap;
404 	struct hugetlb_vma_lock *vma_lock;
405 	unsigned long pfn = folio_pfn(folio);
406 	struct vm_area_struct *vma;
407 	unsigned long v_start;
408 	unsigned long v_end;
409 	pgoff_t start, end;
410 
411 	start = index * pages_per_huge_page(h);
412 	end = (index + 1) * pages_per_huge_page(h);
413 
414 	i_mmap_lock_write(mapping);
415 retry:
416 	vma_lock = NULL;
417 	vma_interval_tree_foreach(vma, root, start, end - 1) {
418 		v_start = vma_offset_start(vma, start);
419 		v_end = vma_offset_end(vma, end);
420 
421 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
422 			continue;
423 
424 		if (!hugetlb_vma_trylock_write(vma)) {
425 			vma_lock = vma->vm_private_data;
426 			/*
427 			 * If we can not get vma lock, we need to drop
428 			 * immap_sema and take locks in order.  First,
429 			 * take a ref on the vma_lock structure so that
430 			 * we can be guaranteed it will not go away when
431 			 * dropping immap_sema.
432 			 */
433 			kref_get(&vma_lock->refs);
434 			break;
435 		}
436 
437 		unmap_hugepage_range(vma, v_start, v_end, NULL,
438 				     ZAP_FLAG_DROP_MARKER);
439 		hugetlb_vma_unlock_write(vma);
440 	}
441 
442 	i_mmap_unlock_write(mapping);
443 
444 	if (vma_lock) {
445 		/*
446 		 * Wait on vma_lock.  We know it is still valid as we have
447 		 * a reference.  We must 'open code' vma locking as we do
448 		 * not know if vma_lock is still attached to vma.
449 		 */
450 		down_write(&vma_lock->rw_sema);
451 		i_mmap_lock_write(mapping);
452 
453 		vma = vma_lock->vma;
454 		if (!vma) {
455 			/*
456 			 * If lock is no longer attached to vma, then just
457 			 * unlock, drop our reference and retry looking for
458 			 * other vmas.
459 			 */
460 			up_write(&vma_lock->rw_sema);
461 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
462 			goto retry;
463 		}
464 
465 		/*
466 		 * vma_lock is still attached to vma.  Check to see if vma
467 		 * still maps page and if so, unmap.
468 		 */
469 		v_start = vma_offset_start(vma, start);
470 		v_end = vma_offset_end(vma, end);
471 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
472 			unmap_hugepage_range(vma, v_start, v_end, NULL,
473 					     ZAP_FLAG_DROP_MARKER);
474 
475 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
476 		hugetlb_vma_unlock_write(vma);
477 
478 		goto retry;
479 	}
480 }
481 
482 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)483 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
484 		      zap_flags_t zap_flags)
485 {
486 	struct vm_area_struct *vma;
487 
488 	/*
489 	 * end == 0 indicates that the entire range after start should be
490 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
491 	 * an inclusive "last".
492 	 */
493 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
494 		unsigned long v_start;
495 		unsigned long v_end;
496 
497 		if (!hugetlb_vma_trylock_write(vma))
498 			continue;
499 
500 		v_start = vma_offset_start(vma, start);
501 		v_end = vma_offset_end(vma, end);
502 
503 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
504 
505 		/*
506 		 * Note that vma lock only exists for shared/non-private
507 		 * vmas.  Therefore, lock is not held when calling
508 		 * unmap_hugepage_range for private vmas.
509 		 */
510 		hugetlb_vma_unlock_write(vma);
511 	}
512 }
513 
514 /*
515  * Called with hugetlb fault mutex held.
516  * Returns true if page was actually removed, false otherwise.
517  */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)518 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
519 					struct address_space *mapping,
520 					struct folio *folio, pgoff_t index,
521 					bool truncate_op)
522 {
523 	bool ret = false;
524 
525 	/*
526 	 * If folio is mapped, it was faulted in after being
527 	 * unmapped in caller or hugetlb_vmdelete_list() skips
528 	 * unmapping it due to fail to grab lock.  Unmap (again)
529 	 * while holding the fault mutex.  The mutex will prevent
530 	 * faults until we finish removing the folio.  Hold folio
531 	 * lock to guarantee no concurrent migration.
532 	 */
533 	folio_lock(folio);
534 	if (unlikely(folio_mapped(folio)))
535 		hugetlb_unmap_file_folio(h, mapping, folio, index);
536 
537 	/*
538 	 * We must remove the folio from page cache before removing
539 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
540 	 * rare out of memory conditions, removal of the region/reserve
541 	 * map could fail.  Correspondingly, the subpool and global
542 	 * reserve usage count can need to be adjusted.
543 	 */
544 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
545 	hugetlb_delete_from_page_cache(folio);
546 	ret = true;
547 	if (!truncate_op) {
548 		if (unlikely(hugetlb_unreserve_pages(inode, index,
549 							index + 1, 1)))
550 			hugetlb_fix_reserve_counts(inode);
551 	}
552 
553 	folio_unlock(folio);
554 	return ret;
555 }
556 
557 /*
558  * remove_inode_hugepages handles two distinct cases: truncation and hole
559  * punch.  There are subtle differences in operation for each case.
560  *
561  * truncation is indicated by end of range being LLONG_MAX
562  *	In this case, we first scan the range and release found pages.
563  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
564  *	maps and global counts.  Page faults can race with truncation.
565  *	During faults, hugetlb_no_page() checks i_size before page allocation,
566  *	and again after obtaining page table lock.  It will 'back out'
567  *	allocations in the truncated range.
568  * hole punch is indicated if end is not LLONG_MAX
569  *	In the hole punch case we scan the range and release found pages.
570  *	Only when releasing a page is the associated region/reserve map
571  *	deleted.  The region/reserve map for ranges without associated
572  *	pages are not modified.  Page faults can race with hole punch.
573  *	This is indicated if we find a mapped page.
574  * Note: If the passed end of range value is beyond the end of file, but
575  * not LLONG_MAX this routine still performs a hole punch operation.
576  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)577 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
578 				   loff_t lend)
579 {
580 	struct hstate *h = hstate_inode(inode);
581 	struct address_space *mapping = &inode->i_data;
582 	const pgoff_t end = lend >> PAGE_SHIFT;
583 	struct folio_batch fbatch;
584 	pgoff_t next, index;
585 	int i, freed = 0;
586 	bool truncate_op = (lend == LLONG_MAX);
587 
588 	folio_batch_init(&fbatch);
589 	next = lstart >> PAGE_SHIFT;
590 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
591 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
592 			struct folio *folio = fbatch.folios[i];
593 			u32 hash = 0;
594 
595 			index = folio->index >> huge_page_order(h);
596 			hash = hugetlb_fault_mutex_hash(mapping, index);
597 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
598 
599 			/*
600 			 * Remove folio that was part of folio_batch.
601 			 */
602 			if (remove_inode_single_folio(h, inode, mapping, folio,
603 							index, truncate_op))
604 				freed++;
605 
606 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
607 		}
608 		folio_batch_release(&fbatch);
609 		cond_resched();
610 	}
611 
612 	if (truncate_op)
613 		(void)hugetlb_unreserve_pages(inode,
614 				lstart >> huge_page_shift(h),
615 				LONG_MAX, freed);
616 }
617 
hugetlbfs_evict_inode(struct inode * inode)618 static void hugetlbfs_evict_inode(struct inode *inode)
619 {
620 	struct resv_map *resv_map;
621 
622 	trace_hugetlbfs_evict_inode(inode);
623 	remove_inode_hugepages(inode, 0, LLONG_MAX);
624 
625 	/*
626 	 * Get the resv_map from the address space embedded in the inode.
627 	 * This is the address space which points to any resv_map allocated
628 	 * at inode creation time.  If this is a device special inode,
629 	 * i_mapping may not point to the original address space.
630 	 */
631 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
632 	/* Only regular and link inodes have associated reserve maps */
633 	if (resv_map)
634 		resv_map_release(&resv_map->refs);
635 	clear_inode(inode);
636 }
637 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)638 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
639 {
640 	pgoff_t pgoff;
641 	struct address_space *mapping = inode->i_mapping;
642 	struct hstate *h = hstate_inode(inode);
643 
644 	BUG_ON(offset & ~huge_page_mask(h));
645 	pgoff = offset >> PAGE_SHIFT;
646 
647 	i_size_write(inode, offset);
648 	i_mmap_lock_write(mapping);
649 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
650 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
651 				      ZAP_FLAG_DROP_MARKER);
652 	i_mmap_unlock_write(mapping);
653 	remove_inode_hugepages(inode, offset, LLONG_MAX);
654 }
655 
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)656 static void hugetlbfs_zero_partial_page(struct hstate *h,
657 					struct address_space *mapping,
658 					loff_t start,
659 					loff_t end)
660 {
661 	pgoff_t idx = start >> huge_page_shift(h);
662 	struct folio *folio;
663 
664 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
665 	if (IS_ERR(folio))
666 		return;
667 
668 	start = start & ~huge_page_mask(h);
669 	end = end & ~huge_page_mask(h);
670 	if (!end)
671 		end = huge_page_size(h);
672 
673 	folio_zero_segment(folio, (size_t)start, (size_t)end);
674 
675 	folio_unlock(folio);
676 	folio_put(folio);
677 }
678 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)679 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
680 {
681 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
682 	struct address_space *mapping = inode->i_mapping;
683 	struct hstate *h = hstate_inode(inode);
684 	loff_t hpage_size = huge_page_size(h);
685 	loff_t hole_start, hole_end;
686 
687 	/*
688 	 * hole_start and hole_end indicate the full pages within the hole.
689 	 */
690 	hole_start = round_up(offset, hpage_size);
691 	hole_end = round_down(offset + len, hpage_size);
692 
693 	inode_lock(inode);
694 
695 	/* protected by i_rwsem */
696 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
697 		inode_unlock(inode);
698 		return -EPERM;
699 	}
700 
701 	i_mmap_lock_write(mapping);
702 
703 	/* If range starts before first full page, zero partial page. */
704 	if (offset < hole_start)
705 		hugetlbfs_zero_partial_page(h, mapping,
706 				offset, min(offset + len, hole_start));
707 
708 	/* Unmap users of full pages in the hole. */
709 	if (hole_end > hole_start) {
710 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
711 			hugetlb_vmdelete_list(&mapping->i_mmap,
712 					      hole_start >> PAGE_SHIFT,
713 					      hole_end >> PAGE_SHIFT, 0);
714 	}
715 
716 	/* If range extends beyond last full page, zero partial page. */
717 	if ((offset + len) > hole_end && (offset + len) > hole_start)
718 		hugetlbfs_zero_partial_page(h, mapping,
719 				hole_end, offset + len);
720 
721 	i_mmap_unlock_write(mapping);
722 
723 	/* Remove full pages from the file. */
724 	if (hole_end > hole_start)
725 		remove_inode_hugepages(inode, hole_start, hole_end);
726 
727 	inode_unlock(inode);
728 
729 	return 0;
730 }
731 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)732 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
733 				loff_t len)
734 {
735 	struct inode *inode = file_inode(file);
736 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
737 	struct address_space *mapping = inode->i_mapping;
738 	struct hstate *h = hstate_inode(inode);
739 	struct vm_area_struct pseudo_vma;
740 	struct mm_struct *mm = current->mm;
741 	loff_t hpage_size = huge_page_size(h);
742 	unsigned long hpage_shift = huge_page_shift(h);
743 	pgoff_t start, index, end;
744 	int error;
745 	u32 hash;
746 
747 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
748 		return -EOPNOTSUPP;
749 
750 	if (mode & FALLOC_FL_PUNCH_HOLE) {
751 		error = hugetlbfs_punch_hole(inode, offset, len);
752 		goto out_nolock;
753 	}
754 
755 	/*
756 	 * Default preallocate case.
757 	 * For this range, start is rounded down and end is rounded up
758 	 * as well as being converted to page offsets.
759 	 */
760 	start = offset >> hpage_shift;
761 	end = (offset + len + hpage_size - 1) >> hpage_shift;
762 
763 	inode_lock(inode);
764 
765 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
766 	error = inode_newsize_ok(inode, offset + len);
767 	if (error)
768 		goto out;
769 
770 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
771 		error = -EPERM;
772 		goto out;
773 	}
774 
775 	/*
776 	 * Initialize a pseudo vma as this is required by the huge page
777 	 * allocation routines.
778 	 */
779 	vma_init(&pseudo_vma, mm);
780 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
781 	pseudo_vma.vm_file = file;
782 
783 	for (index = start; index < end; index++) {
784 		/*
785 		 * This is supposed to be the vaddr where the page is being
786 		 * faulted in, but we have no vaddr here.
787 		 */
788 		struct folio *folio;
789 		unsigned long addr;
790 
791 		cond_resched();
792 
793 		/*
794 		 * fallocate(2) manpage permits EINTR; we may have been
795 		 * interrupted because we are using up too much memory.
796 		 */
797 		if (signal_pending(current)) {
798 			error = -EINTR;
799 			break;
800 		}
801 
802 		/* addr is the offset within the file (zero based) */
803 		addr = index * hpage_size;
804 
805 		/* mutex taken here, fault path and hole punch */
806 		hash = hugetlb_fault_mutex_hash(mapping, index);
807 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
808 
809 		/* See if already present in mapping to avoid alloc/free */
810 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
811 		if (!IS_ERR(folio)) {
812 			folio_put(folio);
813 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
814 			continue;
815 		}
816 
817 		/*
818 		 * Allocate folio without setting the avoid_reserve argument.
819 		 * There certainly are no reserves associated with the
820 		 * pseudo_vma.  However, there could be shared mappings with
821 		 * reserves for the file at the inode level.  If we fallocate
822 		 * folios in these areas, we need to consume the reserves
823 		 * to keep reservation accounting consistent.
824 		 */
825 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
826 		if (IS_ERR(folio)) {
827 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
828 			error = PTR_ERR(folio);
829 			goto out;
830 		}
831 		folio_zero_user(folio, addr);
832 		__folio_mark_uptodate(folio);
833 		error = hugetlb_add_to_page_cache(folio, mapping, index);
834 		if (unlikely(error)) {
835 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
836 			folio_put(folio);
837 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
838 			goto out;
839 		}
840 
841 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
842 
843 		folio_set_hugetlb_migratable(folio);
844 		/*
845 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
846 		 * folio_put() due to reference from alloc_hugetlb_folio()
847 		 */
848 		folio_unlock(folio);
849 		folio_put(folio);
850 	}
851 
852 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
853 		i_size_write(inode, offset + len);
854 	inode_set_ctime_current(inode);
855 out:
856 	inode_unlock(inode);
857 
858 out_nolock:
859 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
860 	return error;
861 }
862 
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)863 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
864 			     struct dentry *dentry, struct iattr *attr)
865 {
866 	struct inode *inode = d_inode(dentry);
867 	struct hstate *h = hstate_inode(inode);
868 	int error;
869 	unsigned int ia_valid = attr->ia_valid;
870 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
871 
872 	error = setattr_prepare(idmap, dentry, attr);
873 	if (error)
874 		return error;
875 
876 	trace_hugetlbfs_setattr(inode, dentry, attr);
877 
878 	if (ia_valid & ATTR_SIZE) {
879 		loff_t oldsize = inode->i_size;
880 		loff_t newsize = attr->ia_size;
881 
882 		if (newsize & ~huge_page_mask(h))
883 			return -EINVAL;
884 		/* protected by i_rwsem */
885 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
886 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
887 			return -EPERM;
888 		hugetlb_vmtruncate(inode, newsize);
889 	}
890 
891 	setattr_copy(idmap, inode, attr);
892 	mark_inode_dirty(inode);
893 	return 0;
894 }
895 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)896 static struct inode *hugetlbfs_get_root(struct super_block *sb,
897 					struct hugetlbfs_fs_context *ctx)
898 {
899 	struct inode *inode;
900 
901 	inode = new_inode(sb);
902 	if (inode) {
903 		inode->i_ino = get_next_ino();
904 		inode->i_mode = S_IFDIR | ctx->mode;
905 		inode->i_uid = ctx->uid;
906 		inode->i_gid = ctx->gid;
907 		simple_inode_init_ts(inode);
908 		inode->i_op = &hugetlbfs_dir_inode_operations;
909 		inode->i_fop = &simple_dir_operations;
910 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
911 		inc_nlink(inode);
912 		lockdep_annotate_inode_mutex_key(inode);
913 	}
914 	return inode;
915 }
916 
917 /*
918  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
919  * be taken from reclaim -- unlike regular filesystems. This needs an
920  * annotation because huge_pmd_share() does an allocation under hugetlb's
921  * i_mmap_rwsem.
922  */
923 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
924 
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)925 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
926 					struct mnt_idmap *idmap,
927 					struct inode *dir,
928 					umode_t mode, dev_t dev)
929 {
930 	struct inode *inode;
931 	struct resv_map *resv_map = NULL;
932 
933 	/*
934 	 * Reserve maps are only needed for inodes that can have associated
935 	 * page allocations.
936 	 */
937 	if (S_ISREG(mode) || S_ISLNK(mode)) {
938 		resv_map = resv_map_alloc();
939 		if (!resv_map)
940 			return NULL;
941 	}
942 
943 	inode = new_inode(sb);
944 	if (inode) {
945 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
946 
947 		inode->i_ino = get_next_ino();
948 		inode_init_owner(idmap, inode, dir, mode);
949 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
950 				&hugetlbfs_i_mmap_rwsem_key);
951 		inode->i_mapping->a_ops = &hugetlbfs_aops;
952 		simple_inode_init_ts(inode);
953 		inode->i_mapping->i_private_data = resv_map;
954 		info->seals = F_SEAL_SEAL;
955 		switch (mode & S_IFMT) {
956 		default:
957 			init_special_inode(inode, mode, dev);
958 			break;
959 		case S_IFREG:
960 			inode->i_op = &hugetlbfs_inode_operations;
961 			inode->i_fop = &hugetlbfs_file_operations;
962 			break;
963 		case S_IFDIR:
964 			inode->i_op = &hugetlbfs_dir_inode_operations;
965 			inode->i_fop = &simple_dir_operations;
966 
967 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
968 			inc_nlink(inode);
969 			break;
970 		case S_IFLNK:
971 			inode->i_op = &page_symlink_inode_operations;
972 			inode_nohighmem(inode);
973 			break;
974 		}
975 		lockdep_annotate_inode_mutex_key(inode);
976 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
977 	} else {
978 		if (resv_map)
979 			kref_put(&resv_map->refs, resv_map_release);
980 	}
981 
982 	return inode;
983 }
984 
985 /*
986  * File creation. Allocate an inode, and we're done..
987  */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)988 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
989 			   struct dentry *dentry, umode_t mode, dev_t dev)
990 {
991 	struct inode *inode;
992 
993 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
994 	if (!inode)
995 		return -ENOSPC;
996 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
997 	d_make_persistent(dentry, inode);
998 	return 0;
999 }
1000 
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1001 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1002 				      struct dentry *dentry, umode_t mode)
1003 {
1004 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1005 				     mode | S_IFDIR, 0);
1006 	if (!retval)
1007 		inc_nlink(dir);
1008 	return ERR_PTR(retval);
1009 }
1010 
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1011 static int hugetlbfs_create(struct mnt_idmap *idmap,
1012 			    struct inode *dir, struct dentry *dentry,
1013 			    umode_t mode, bool excl)
1014 {
1015 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1016 }
1017 
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1018 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1019 			     struct inode *dir, struct file *file,
1020 			     umode_t mode)
1021 {
1022 	struct inode *inode;
1023 
1024 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1025 	if (!inode)
1026 		return -ENOSPC;
1027 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1028 	d_tmpfile(file, inode);
1029 	return finish_open_simple(file, 0);
1030 }
1031 
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1032 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1033 			     struct inode *dir, struct dentry *dentry,
1034 			     const char *symname)
1035 {
1036 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1037 	struct inode *inode;
1038 	int error = -ENOSPC;
1039 
1040 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1041 	if (inode) {
1042 		int l = strlen(symname)+1;
1043 		error = page_symlink(inode, symname, l);
1044 		if (!error)
1045 			d_make_persistent(dentry, inode);
1046 		else
1047 			iput(inode);
1048 	}
1049 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1050 
1051 	return error;
1052 }
1053 
1054 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1055 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1056 				struct folio *dst, struct folio *src,
1057 				enum migrate_mode mode)
1058 {
1059 	int rc;
1060 
1061 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1062 	if (rc)
1063 		return rc;
1064 
1065 	if (hugetlb_folio_subpool(src)) {
1066 		hugetlb_set_folio_subpool(dst,
1067 					hugetlb_folio_subpool(src));
1068 		hugetlb_set_folio_subpool(src, NULL);
1069 	}
1070 
1071 	folio_migrate_flags(dst, src);
1072 
1073 	return 0;
1074 }
1075 #else
1076 #define hugetlbfs_migrate_folio NULL
1077 #endif
1078 
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1079 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1080 				struct folio *folio)
1081 {
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Display the mount options in /proc/mounts.
1087  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1088 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1089 {
1090 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1091 	struct hugepage_subpool *spool = sbinfo->spool;
1092 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1093 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1094 	char mod;
1095 
1096 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1097 		seq_printf(m, ",uid=%u",
1098 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1099 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1100 		seq_printf(m, ",gid=%u",
1101 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1102 	if (sbinfo->mode != 0755)
1103 		seq_printf(m, ",mode=%o", sbinfo->mode);
1104 	if (sbinfo->max_inodes != -1)
1105 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1106 
1107 	hpage_size /= 1024;
1108 	mod = 'K';
1109 	if (hpage_size >= 1024) {
1110 		hpage_size /= 1024;
1111 		mod = 'M';
1112 	}
1113 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1114 	if (spool) {
1115 		if (spool->max_hpages != -1)
1116 			seq_printf(m, ",size=%llu",
1117 				   (unsigned long long)spool->max_hpages << hpage_shift);
1118 		if (spool->min_hpages != -1)
1119 			seq_printf(m, ",min_size=%llu",
1120 				   (unsigned long long)spool->min_hpages << hpage_shift);
1121 	}
1122 	return 0;
1123 }
1124 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1125 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1126 {
1127 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1128 	struct hstate *h = hstate_inode(d_inode(dentry));
1129 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1130 
1131 	buf->f_fsid = u64_to_fsid(id);
1132 	buf->f_type = HUGETLBFS_MAGIC;
1133 	buf->f_bsize = huge_page_size(h);
1134 	if (sbinfo) {
1135 		spin_lock(&sbinfo->stat_lock);
1136 		/* If no limits set, just report 0 or -1 for max/free/used
1137 		 * blocks, like simple_statfs() */
1138 		if (sbinfo->spool) {
1139 			long free_pages;
1140 
1141 			spin_lock_irq(&sbinfo->spool->lock);
1142 			buf->f_blocks = sbinfo->spool->max_hpages;
1143 			free_pages = sbinfo->spool->max_hpages
1144 				- sbinfo->spool->used_hpages;
1145 			buf->f_bavail = buf->f_bfree = free_pages;
1146 			spin_unlock_irq(&sbinfo->spool->lock);
1147 			buf->f_files = sbinfo->max_inodes;
1148 			buf->f_ffree = sbinfo->free_inodes;
1149 		}
1150 		spin_unlock(&sbinfo->stat_lock);
1151 	}
1152 	buf->f_namelen = NAME_MAX;
1153 	return 0;
1154 }
1155 
hugetlbfs_put_super(struct super_block * sb)1156 static void hugetlbfs_put_super(struct super_block *sb)
1157 {
1158 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1159 
1160 	if (sbi) {
1161 		sb->s_fs_info = NULL;
1162 
1163 		if (sbi->spool)
1164 			hugepage_put_subpool(sbi->spool);
1165 
1166 		kfree(sbi);
1167 	}
1168 }
1169 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1170 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1171 {
1172 	if (sbinfo->free_inodes >= 0) {
1173 		spin_lock(&sbinfo->stat_lock);
1174 		if (unlikely(!sbinfo->free_inodes)) {
1175 			spin_unlock(&sbinfo->stat_lock);
1176 			return 0;
1177 		}
1178 		sbinfo->free_inodes--;
1179 		spin_unlock(&sbinfo->stat_lock);
1180 	}
1181 
1182 	return 1;
1183 }
1184 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1185 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1186 {
1187 	if (sbinfo->free_inodes >= 0) {
1188 		spin_lock(&sbinfo->stat_lock);
1189 		sbinfo->free_inodes++;
1190 		spin_unlock(&sbinfo->stat_lock);
1191 	}
1192 }
1193 
1194 
1195 static struct kmem_cache *hugetlbfs_inode_cachep;
1196 
hugetlbfs_alloc_inode(struct super_block * sb)1197 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1198 {
1199 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1200 	struct hugetlbfs_inode_info *p;
1201 
1202 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1203 		return NULL;
1204 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1205 	if (unlikely(!p)) {
1206 		hugetlbfs_inc_free_inodes(sbinfo);
1207 		return NULL;
1208 	}
1209 	return &p->vfs_inode;
1210 }
1211 
hugetlbfs_free_inode(struct inode * inode)1212 static void hugetlbfs_free_inode(struct inode *inode)
1213 {
1214 	trace_hugetlbfs_free_inode(inode);
1215 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1216 }
1217 
hugetlbfs_destroy_inode(struct inode * inode)1218 static void hugetlbfs_destroy_inode(struct inode *inode)
1219 {
1220 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1221 }
1222 
1223 static const struct address_space_operations hugetlbfs_aops = {
1224 	.write_begin	= hugetlbfs_write_begin,
1225 	.write_end	= hugetlbfs_write_end,
1226 	.dirty_folio	= noop_dirty_folio,
1227 	.migrate_folio  = hugetlbfs_migrate_folio,
1228 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1229 };
1230 
1231 
init_once(void * foo)1232 static void init_once(void *foo)
1233 {
1234 	struct hugetlbfs_inode_info *ei = foo;
1235 
1236 	inode_init_once(&ei->vfs_inode);
1237 }
1238 
1239 static const struct file_operations hugetlbfs_file_operations = {
1240 	.read_iter		= hugetlbfs_read_iter,
1241 	.mmap_prepare		= hugetlbfs_file_mmap_prepare,
1242 	.fsync			= noop_fsync,
1243 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1244 	.llseek			= default_llseek,
1245 	.fallocate		= hugetlbfs_fallocate,
1246 	.fop_flags		= FOP_HUGE_PAGES,
1247 };
1248 
1249 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1250 	.create		= hugetlbfs_create,
1251 	.lookup		= simple_lookup,
1252 	.link		= simple_link,
1253 	.unlink		= simple_unlink,
1254 	.symlink	= hugetlbfs_symlink,
1255 	.mkdir		= hugetlbfs_mkdir,
1256 	.rmdir		= simple_rmdir,
1257 	.mknod		= hugetlbfs_mknod,
1258 	.rename		= simple_rename,
1259 	.setattr	= hugetlbfs_setattr,
1260 	.tmpfile	= hugetlbfs_tmpfile,
1261 };
1262 
1263 static const struct inode_operations hugetlbfs_inode_operations = {
1264 	.setattr	= hugetlbfs_setattr,
1265 };
1266 
1267 static const struct super_operations hugetlbfs_ops = {
1268 	.alloc_inode    = hugetlbfs_alloc_inode,
1269 	.free_inode     = hugetlbfs_free_inode,
1270 	.destroy_inode  = hugetlbfs_destroy_inode,
1271 	.evict_inode	= hugetlbfs_evict_inode,
1272 	.statfs		= hugetlbfs_statfs,
1273 	.put_super	= hugetlbfs_put_super,
1274 	.show_options	= hugetlbfs_show_options,
1275 };
1276 
1277 /*
1278  * Convert size option passed from command line to number of huge pages
1279  * in the pool specified by hstate.  Size option could be in bytes
1280  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1281  */
1282 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1283 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1284 			 enum hugetlbfs_size_type val_type)
1285 {
1286 	if (val_type == NO_SIZE)
1287 		return -1;
1288 
1289 	if (val_type == SIZE_PERCENT) {
1290 		size_opt <<= huge_page_shift(h);
1291 		size_opt *= h->max_huge_pages;
1292 		do_div(size_opt, 100);
1293 	}
1294 
1295 	size_opt >>= huge_page_shift(h);
1296 	return size_opt;
1297 }
1298 
1299 /*
1300  * Parse one mount parameter.
1301  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1302 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1303 {
1304 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1305 	struct fs_parse_result result;
1306 	struct hstate *h;
1307 	char *rest;
1308 	unsigned long ps;
1309 	int opt;
1310 
1311 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1312 	if (opt < 0)
1313 		return opt;
1314 
1315 	switch (opt) {
1316 	case Opt_uid:
1317 		ctx->uid = result.uid;
1318 		return 0;
1319 
1320 	case Opt_gid:
1321 		ctx->gid = result.gid;
1322 		return 0;
1323 
1324 	case Opt_mode:
1325 		ctx->mode = result.uint_32 & 01777U;
1326 		return 0;
1327 
1328 	case Opt_size:
1329 		/* memparse() will accept a K/M/G without a digit */
1330 		if (!param->string || !isdigit(param->string[0]))
1331 			goto bad_val;
1332 		ctx->max_size_opt = memparse(param->string, &rest);
1333 		ctx->max_val_type = SIZE_STD;
1334 		if (*rest == '%')
1335 			ctx->max_val_type = SIZE_PERCENT;
1336 		return 0;
1337 
1338 	case Opt_nr_inodes:
1339 		/* memparse() will accept a K/M/G without a digit */
1340 		if (!param->string || !isdigit(param->string[0]))
1341 			goto bad_val;
1342 		ctx->nr_inodes = memparse(param->string, &rest);
1343 		return 0;
1344 
1345 	case Opt_pagesize:
1346 		ps = memparse(param->string, &rest);
1347 		h = size_to_hstate(ps);
1348 		if (!h) {
1349 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1350 			return -EINVAL;
1351 		}
1352 		ctx->hstate = h;
1353 		return 0;
1354 
1355 	case Opt_min_size:
1356 		/* memparse() will accept a K/M/G without a digit */
1357 		if (!param->string || !isdigit(param->string[0]))
1358 			goto bad_val;
1359 		ctx->min_size_opt = memparse(param->string, &rest);
1360 		ctx->min_val_type = SIZE_STD;
1361 		if (*rest == '%')
1362 			ctx->min_val_type = SIZE_PERCENT;
1363 		return 0;
1364 
1365 	default:
1366 		return -EINVAL;
1367 	}
1368 
1369 bad_val:
1370 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1371 		      param->string, param->key);
1372 }
1373 
1374 /*
1375  * Validate the parsed options.
1376  */
hugetlbfs_validate(struct fs_context * fc)1377 static int hugetlbfs_validate(struct fs_context *fc)
1378 {
1379 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1380 
1381 	/*
1382 	 * Use huge page pool size (in hstate) to convert the size
1383 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1384 	 */
1385 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1386 						   ctx->max_size_opt,
1387 						   ctx->max_val_type);
1388 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1389 						   ctx->min_size_opt,
1390 						   ctx->min_val_type);
1391 
1392 	/*
1393 	 * If max_size was specified, then min_size must be smaller
1394 	 */
1395 	if (ctx->max_val_type > NO_SIZE &&
1396 	    ctx->min_hpages > ctx->max_hpages) {
1397 		pr_err("Minimum size can not be greater than maximum size\n");
1398 		return -EINVAL;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1405 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1406 {
1407 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1408 	struct hugetlbfs_sb_info *sbinfo;
1409 
1410 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1411 	if (!sbinfo)
1412 		return -ENOMEM;
1413 	sb->s_fs_info = sbinfo;
1414 	spin_lock_init(&sbinfo->stat_lock);
1415 	sbinfo->hstate		= ctx->hstate;
1416 	sbinfo->max_inodes	= ctx->nr_inodes;
1417 	sbinfo->free_inodes	= ctx->nr_inodes;
1418 	sbinfo->spool		= NULL;
1419 	sbinfo->uid		= ctx->uid;
1420 	sbinfo->gid		= ctx->gid;
1421 	sbinfo->mode		= ctx->mode;
1422 
1423 	/*
1424 	 * Allocate and initialize subpool if maximum or minimum size is
1425 	 * specified.  Any needed reservations (for minimum size) are taken
1426 	 * when the subpool is created.
1427 	 */
1428 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1429 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1430 						     ctx->max_hpages,
1431 						     ctx->min_hpages);
1432 		if (!sbinfo->spool)
1433 			goto out_free;
1434 	}
1435 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1436 	sb->s_blocksize = huge_page_size(ctx->hstate);
1437 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1438 	sb->s_magic = HUGETLBFS_MAGIC;
1439 	sb->s_op = &hugetlbfs_ops;
1440 	sb->s_d_flags = DCACHE_DONTCACHE;
1441 	sb->s_time_gran = 1;
1442 
1443 	/*
1444 	 * Due to the special and limited functionality of hugetlbfs, it does
1445 	 * not work well as a stacking filesystem.
1446 	 */
1447 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1448 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1449 	if (!sb->s_root)
1450 		goto out_free;
1451 	return 0;
1452 out_free:
1453 	kfree(sbinfo->spool);
1454 	kfree(sbinfo);
1455 	return -ENOMEM;
1456 }
1457 
hugetlbfs_get_tree(struct fs_context * fc)1458 static int hugetlbfs_get_tree(struct fs_context *fc)
1459 {
1460 	int err = hugetlbfs_validate(fc);
1461 	if (err)
1462 		return err;
1463 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1464 }
1465 
hugetlbfs_fs_context_free(struct fs_context * fc)1466 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1467 {
1468 	kfree(fc->fs_private);
1469 }
1470 
1471 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1472 	.free		= hugetlbfs_fs_context_free,
1473 	.parse_param	= hugetlbfs_parse_param,
1474 	.get_tree	= hugetlbfs_get_tree,
1475 };
1476 
hugetlbfs_init_fs_context(struct fs_context * fc)1477 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1478 {
1479 	struct hugetlbfs_fs_context *ctx;
1480 
1481 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1482 	if (!ctx)
1483 		return -ENOMEM;
1484 
1485 	ctx->max_hpages	= -1; /* No limit on size by default */
1486 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1487 	ctx->uid	= current_fsuid();
1488 	ctx->gid	= current_fsgid();
1489 	ctx->mode	= 0755;
1490 	ctx->hstate	= &default_hstate;
1491 	ctx->min_hpages	= -1; /* No default minimum size */
1492 	ctx->max_val_type = NO_SIZE;
1493 	ctx->min_val_type = NO_SIZE;
1494 	fc->fs_private = ctx;
1495 	fc->ops	= &hugetlbfs_fs_context_ops;
1496 	return 0;
1497 }
1498 
1499 static struct file_system_type hugetlbfs_fs_type = {
1500 	.name			= "hugetlbfs",
1501 	.init_fs_context	= hugetlbfs_init_fs_context,
1502 	.parameters		= hugetlb_fs_parameters,
1503 	.kill_sb		= kill_anon_super,
1504 	.fs_flags               = FS_ALLOW_IDMAP,
1505 };
1506 
1507 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1508 
can_do_hugetlb_shm(void)1509 static int can_do_hugetlb_shm(void)
1510 {
1511 	kgid_t shm_group;
1512 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1513 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1514 }
1515 
get_hstate_idx(int page_size_log)1516 static int get_hstate_idx(int page_size_log)
1517 {
1518 	struct hstate *h = hstate_sizelog(page_size_log);
1519 
1520 	if (!h)
1521 		return -1;
1522 	return hstate_index(h);
1523 }
1524 
1525 /*
1526  * Note that size should be aligned to proper hugepage size in caller side,
1527  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1528  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1529 struct file *hugetlb_file_setup(const char *name, size_t size,
1530 				vm_flags_t acctflag, int creat_flags,
1531 				int page_size_log)
1532 {
1533 	struct inode *inode;
1534 	struct vfsmount *mnt;
1535 	int hstate_idx;
1536 	struct file *file;
1537 
1538 	hstate_idx = get_hstate_idx(page_size_log);
1539 	if (hstate_idx < 0)
1540 		return ERR_PTR(-ENODEV);
1541 
1542 	mnt = hugetlbfs_vfsmount[hstate_idx];
1543 	if (!mnt)
1544 		return ERR_PTR(-ENOENT);
1545 
1546 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1547 		struct ucounts *ucounts = current_ucounts();
1548 
1549 		if (user_shm_lock(size, ucounts)) {
1550 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1551 				current->comm, current->pid);
1552 			user_shm_unlock(size, ucounts);
1553 		}
1554 		return ERR_PTR(-EPERM);
1555 	}
1556 
1557 	file = ERR_PTR(-ENOSPC);
1558 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1559 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1560 				    S_IFREG | S_IRWXUGO, 0);
1561 	if (!inode)
1562 		goto out;
1563 	if (creat_flags == HUGETLB_SHMFS_INODE)
1564 		inode->i_flags |= S_PRIVATE;
1565 
1566 	inode->i_size = size;
1567 	clear_nlink(inode);
1568 
1569 	if (hugetlb_reserve_pages(inode, 0,
1570 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1571 			acctflag) < 0)
1572 		file = ERR_PTR(-ENOMEM);
1573 	else
1574 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1575 					&hugetlbfs_file_operations);
1576 	if (!IS_ERR(file))
1577 		return file;
1578 
1579 	iput(inode);
1580 out:
1581 	return file;
1582 }
1583 
mount_one_hugetlbfs(struct hstate * h)1584 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1585 {
1586 	struct fs_context *fc;
1587 	struct vfsmount *mnt;
1588 
1589 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1590 	if (IS_ERR(fc)) {
1591 		mnt = ERR_CAST(fc);
1592 	} else {
1593 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1594 		ctx->hstate = h;
1595 		mnt = fc_mount_longterm(fc);
1596 		put_fs_context(fc);
1597 	}
1598 	if (IS_ERR(mnt))
1599 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1600 		       huge_page_size(h) / SZ_1K);
1601 	return mnt;
1602 }
1603 
init_hugetlbfs_fs(void)1604 static int __init init_hugetlbfs_fs(void)
1605 {
1606 	struct vfsmount *mnt;
1607 	struct hstate *h;
1608 	int error;
1609 	int i;
1610 
1611 	if (!hugepages_supported()) {
1612 		pr_info("disabling because there are no supported hugepage sizes\n");
1613 		return -ENOTSUPP;
1614 	}
1615 
1616 	error = -ENOMEM;
1617 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1618 					sizeof(struct hugetlbfs_inode_info),
1619 					0, SLAB_ACCOUNT, init_once);
1620 	if (hugetlbfs_inode_cachep == NULL)
1621 		goto out;
1622 
1623 	error = register_filesystem(&hugetlbfs_fs_type);
1624 	if (error)
1625 		goto out_free;
1626 
1627 	/* default hstate mount is required */
1628 	mnt = mount_one_hugetlbfs(&default_hstate);
1629 	if (IS_ERR(mnt)) {
1630 		error = PTR_ERR(mnt);
1631 		goto out_unreg;
1632 	}
1633 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1634 
1635 	/* other hstates are optional */
1636 	i = 0;
1637 	for_each_hstate(h) {
1638 		if (i == default_hstate_idx) {
1639 			i++;
1640 			continue;
1641 		}
1642 
1643 		mnt = mount_one_hugetlbfs(h);
1644 		if (IS_ERR(mnt))
1645 			hugetlbfs_vfsmount[i] = NULL;
1646 		else
1647 			hugetlbfs_vfsmount[i] = mnt;
1648 		i++;
1649 	}
1650 
1651 	return 0;
1652 
1653  out_unreg:
1654 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1655  out_free:
1656 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1657  out:
1658 	return error;
1659 }
1660 fs_initcall(init_hugetlbfs_fs)
1661