1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51
52 struct hugetlbfs_fs_context {
53 struct hstate *hstate;
54 unsigned long long max_size_opt;
55 unsigned long long min_size_opt;
56 long max_hpages;
57 long nr_inodes;
58 long min_hpages;
59 enum hugetlbfs_size_type max_val_type;
60 enum hugetlbfs_size_type min_val_type;
61 kuid_t uid;
62 kgid_t gid;
63 umode_t mode;
64 };
65
66 int sysctl_hugetlb_shm_group;
67
68 enum hugetlb_param {
69 Opt_gid,
70 Opt_min_size,
71 Opt_mode,
72 Opt_nr_inodes,
73 Opt_pagesize,
74 Opt_size,
75 Opt_uid,
76 };
77
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 fsparam_gid ("gid", Opt_gid),
80 fsparam_string("min_size", Opt_min_size),
81 fsparam_u32oct("mode", Opt_mode),
82 fsparam_string("nr_inodes", Opt_nr_inodes),
83 fsparam_string("pagesize", Opt_pagesize),
84 fsparam_string("size", Opt_size),
85 fsparam_uid ("uid", Opt_uid),
86 {}
87 };
88
89 /*
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
94 * bit into account.
95 */
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98
hugetlb_file_mmap_prepare_success(const struct vm_area_struct * vma)99 static int hugetlb_file_mmap_prepare_success(const struct vm_area_struct *vma)
100 {
101 /* Unfortunate we have to reassign vma->vm_private_data. */
102 return hugetlb_vma_lock_alloc((struct vm_area_struct *)vma);
103 }
104
hugetlbfs_file_mmap_prepare(struct vm_area_desc * desc)105 static int hugetlbfs_file_mmap_prepare(struct vm_area_desc *desc)
106 {
107 struct file *file = desc->file;
108 struct inode *inode = file_inode(file);
109 loff_t len, vma_len;
110 int ret;
111 struct hstate *h = hstate_file(file);
112 vm_flags_t vm_flags;
113
114 /*
115 * vma address alignment (but not the pgoff alignment) has
116 * already been checked by prepare_hugepage_range. If you add
117 * any error returns here, do so after setting VM_HUGETLB, so
118 * is_vm_hugetlb_page tests below unmap_region go the right
119 * way when do_mmap unwinds (may be important on powerpc
120 * and ia64).
121 */
122 desc->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
123 desc->vm_ops = &hugetlb_vm_ops;
124
125 /*
126 * page based offset in vm_pgoff could be sufficiently large to
127 * overflow a loff_t when converted to byte offset. This can
128 * only happen on architectures where sizeof(loff_t) ==
129 * sizeof(unsigned long). So, only check in those instances.
130 */
131 if (sizeof(unsigned long) == sizeof(loff_t)) {
132 if (desc->pgoff & PGOFF_LOFFT_MAX)
133 return -EINVAL;
134 }
135
136 /* must be huge page aligned */
137 if (desc->pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
138 return -EINVAL;
139
140 vma_len = (loff_t)vma_desc_size(desc);
141 len = vma_len + ((loff_t)desc->pgoff << PAGE_SHIFT);
142 /* check for overflow */
143 if (len < vma_len)
144 return -EINVAL;
145
146 inode_lock(inode);
147 file_accessed(file);
148
149 ret = -ENOMEM;
150
151 vm_flags = desc->vm_flags;
152 /*
153 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
154 * reserving here. Note: only for SHM hugetlbfs file, the inode
155 * flag S_PRIVATE is set.
156 */
157 if (inode->i_flags & S_PRIVATE)
158 vm_flags |= VM_NORESERVE;
159
160 if (hugetlb_reserve_pages(inode,
161 desc->pgoff >> huge_page_order(h),
162 len >> huge_page_shift(h), desc,
163 vm_flags) < 0)
164 goto out;
165
166 ret = 0;
167 if ((desc->vm_flags & VM_WRITE) && inode->i_size < len)
168 i_size_write(inode, len);
169 out:
170 inode_unlock(inode);
171
172 if (!ret) {
173 /* Allocate the VMA lock after we set it up. */
174 desc->action.success_hook = hugetlb_file_mmap_prepare_success;
175 /*
176 * We cannot permit the rmap finding this VMA in the time
177 * between the VMA being inserted into the VMA tree and the
178 * completion/success hook being invoked.
179 *
180 * This is because we establish a per-VMA hugetlb lock which can
181 * be raced by rmap.
182 */
183 desc->action.hide_from_rmap_until_complete = true;
184 }
185 return ret;
186 }
187
188 /*
189 * Called under mmap_write_lock(mm).
190 */
191
192 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)193 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
194 unsigned long len, unsigned long pgoff,
195 unsigned long flags)
196 {
197 unsigned long addr0 = 0;
198 struct hstate *h = hstate_file(file);
199
200 if (len & ~huge_page_mask(h))
201 return -EINVAL;
202 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
203 return -EINVAL;
204 if (addr)
205 addr0 = ALIGN(addr, huge_page_size(h));
206
207 return mm_get_unmapped_area_vmflags(file, addr0, len, pgoff, flags, 0);
208 }
209
210 /*
211 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
212 * Returns the maximum number of bytes one can read without touching the 1st raw
213 * HWPOISON page.
214 */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)215 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
216 size_t bytes)
217 {
218 struct page *page = folio_page(folio, offset / PAGE_SIZE);
219 size_t safe_bytes;
220
221 if (is_raw_hwpoison_page_in_hugepage(page))
222 return 0;
223 /* Safe to read the remaining bytes in this page. */
224 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
225 page++;
226
227 /* Check each remaining page as long as we are not done yet. */
228 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
229 if (is_raw_hwpoison_page_in_hugepage(page))
230 break;
231
232 return min(safe_bytes, bytes);
233 }
234
235 /*
236 * Support for read() - Find the page attached to f_mapping and copy out the
237 * data. This provides functionality similar to filemap_read().
238 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)239 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
240 {
241 struct file *file = iocb->ki_filp;
242 struct hstate *h = hstate_file(file);
243 struct address_space *mapping = file->f_mapping;
244 struct inode *inode = mapping->host;
245 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
246 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
247 unsigned long end_index;
248 loff_t isize;
249 ssize_t retval = 0;
250
251 while (iov_iter_count(to)) {
252 struct folio *folio;
253 size_t nr, copied, want;
254
255 /* nr is the maximum number of bytes to copy from this page */
256 nr = huge_page_size(h);
257 isize = i_size_read(inode);
258 if (!isize)
259 break;
260 end_index = (isize - 1) >> huge_page_shift(h);
261 if (index > end_index)
262 break;
263 if (index == end_index) {
264 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
265 if (nr <= offset)
266 break;
267 }
268 nr = nr - offset;
269
270 /* Find the folio */
271 folio = filemap_lock_hugetlb_folio(h, mapping, index);
272 if (IS_ERR(folio)) {
273 /*
274 * We have a HOLE, zero out the user-buffer for the
275 * length of the hole or request.
276 */
277 copied = iov_iter_zero(nr, to);
278 } else {
279 folio_unlock(folio);
280
281 if (!folio_test_hwpoison(folio))
282 want = nr;
283 else {
284 /*
285 * Adjust how many bytes safe to read without
286 * touching the 1st raw HWPOISON page after
287 * offset.
288 */
289 want = adjust_range_hwpoison(folio, offset, nr);
290 if (want == 0) {
291 folio_put(folio);
292 retval = -EIO;
293 break;
294 }
295 }
296
297 /*
298 * We have the folio, copy it to user space buffer.
299 */
300 copied = copy_folio_to_iter(folio, offset, want, to);
301 folio_put(folio);
302 }
303 offset += copied;
304 retval += copied;
305 if (copied != nr && iov_iter_count(to)) {
306 if (!retval)
307 retval = -EFAULT;
308 break;
309 }
310 index += offset >> huge_page_shift(h);
311 offset &= ~huge_page_mask(h);
312 }
313 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
314 return retval;
315 }
316
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)317 static int hugetlbfs_write_begin(const struct kiocb *iocb,
318 struct address_space *mapping,
319 loff_t pos, unsigned len,
320 struct folio **foliop, void **fsdata)
321 {
322 return -EINVAL;
323 }
324
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)325 static int hugetlbfs_write_end(const struct kiocb *iocb,
326 struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct folio *folio, void *fsdata)
329 {
330 BUG();
331 return -EINVAL;
332 }
333
hugetlb_delete_from_page_cache(struct folio * folio)334 static void hugetlb_delete_from_page_cache(struct folio *folio)
335 {
336 folio_clear_dirty(folio);
337 folio_clear_uptodate(folio);
338 filemap_remove_folio(folio);
339 }
340
341 /*
342 * Called with i_mmap_rwsem held for inode based vma maps. This makes
343 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
344 * mutex for the page in the mapping. So, we can not race with page being
345 * faulted into the vma.
346 */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)347 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
348 unsigned long addr, unsigned long pfn)
349 {
350 pte_t *ptep, pte;
351
352 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
353 if (!ptep)
354 return false;
355
356 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
357 if (huge_pte_none(pte) || !pte_present(pte))
358 return false;
359
360 if (pte_pfn(pte) == pfn)
361 return true;
362
363 return false;
364 }
365
366 /*
367 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
368 * No, because the interval tree returns us only those vmas
369 * which overlap the truncated area starting at pgoff,
370 * and no vma on a 32-bit arch can span beyond the 4GB.
371 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)372 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
373 {
374 unsigned long offset = 0;
375
376 if (vma->vm_pgoff < start)
377 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
378
379 return vma->vm_start + offset;
380 }
381
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)382 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
383 {
384 unsigned long t_end;
385
386 if (!end)
387 return vma->vm_end;
388
389 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
390 if (t_end > vma->vm_end)
391 t_end = vma->vm_end;
392 return t_end;
393 }
394
395 /*
396 * Called with hugetlb fault mutex held. Therefore, no more mappings to
397 * this folio can be created while executing the routine.
398 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)399 static void hugetlb_unmap_file_folio(struct hstate *h,
400 struct address_space *mapping,
401 struct folio *folio, pgoff_t index)
402 {
403 struct rb_root_cached *root = &mapping->i_mmap;
404 struct hugetlb_vma_lock *vma_lock;
405 unsigned long pfn = folio_pfn(folio);
406 struct vm_area_struct *vma;
407 unsigned long v_start;
408 unsigned long v_end;
409 pgoff_t start, end;
410
411 start = index * pages_per_huge_page(h);
412 end = (index + 1) * pages_per_huge_page(h);
413
414 i_mmap_lock_write(mapping);
415 retry:
416 vma_lock = NULL;
417 vma_interval_tree_foreach(vma, root, start, end - 1) {
418 v_start = vma_offset_start(vma, start);
419 v_end = vma_offset_end(vma, end);
420
421 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
422 continue;
423
424 if (!hugetlb_vma_trylock_write(vma)) {
425 vma_lock = vma->vm_private_data;
426 /*
427 * If we can not get vma lock, we need to drop
428 * immap_sema and take locks in order. First,
429 * take a ref on the vma_lock structure so that
430 * we can be guaranteed it will not go away when
431 * dropping immap_sema.
432 */
433 kref_get(&vma_lock->refs);
434 break;
435 }
436
437 unmap_hugepage_range(vma, v_start, v_end, NULL,
438 ZAP_FLAG_DROP_MARKER);
439 hugetlb_vma_unlock_write(vma);
440 }
441
442 i_mmap_unlock_write(mapping);
443
444 if (vma_lock) {
445 /*
446 * Wait on vma_lock. We know it is still valid as we have
447 * a reference. We must 'open code' vma locking as we do
448 * not know if vma_lock is still attached to vma.
449 */
450 down_write(&vma_lock->rw_sema);
451 i_mmap_lock_write(mapping);
452
453 vma = vma_lock->vma;
454 if (!vma) {
455 /*
456 * If lock is no longer attached to vma, then just
457 * unlock, drop our reference and retry looking for
458 * other vmas.
459 */
460 up_write(&vma_lock->rw_sema);
461 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
462 goto retry;
463 }
464
465 /*
466 * vma_lock is still attached to vma. Check to see if vma
467 * still maps page and if so, unmap.
468 */
469 v_start = vma_offset_start(vma, start);
470 v_end = vma_offset_end(vma, end);
471 if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
472 unmap_hugepage_range(vma, v_start, v_end, NULL,
473 ZAP_FLAG_DROP_MARKER);
474
475 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
476 hugetlb_vma_unlock_write(vma);
477
478 goto retry;
479 }
480 }
481
482 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)483 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
484 zap_flags_t zap_flags)
485 {
486 struct vm_area_struct *vma;
487
488 /*
489 * end == 0 indicates that the entire range after start should be
490 * unmapped. Note, end is exclusive, whereas the interval tree takes
491 * an inclusive "last".
492 */
493 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
494 unsigned long v_start;
495 unsigned long v_end;
496
497 if (!hugetlb_vma_trylock_write(vma))
498 continue;
499
500 v_start = vma_offset_start(vma, start);
501 v_end = vma_offset_end(vma, end);
502
503 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
504
505 /*
506 * Note that vma lock only exists for shared/non-private
507 * vmas. Therefore, lock is not held when calling
508 * unmap_hugepage_range for private vmas.
509 */
510 hugetlb_vma_unlock_write(vma);
511 }
512 }
513
514 /*
515 * Called with hugetlb fault mutex held.
516 * Returns true if page was actually removed, false otherwise.
517 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)518 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
519 struct address_space *mapping,
520 struct folio *folio, pgoff_t index,
521 bool truncate_op)
522 {
523 bool ret = false;
524
525 /*
526 * If folio is mapped, it was faulted in after being
527 * unmapped in caller or hugetlb_vmdelete_list() skips
528 * unmapping it due to fail to grab lock. Unmap (again)
529 * while holding the fault mutex. The mutex will prevent
530 * faults until we finish removing the folio. Hold folio
531 * lock to guarantee no concurrent migration.
532 */
533 folio_lock(folio);
534 if (unlikely(folio_mapped(folio)))
535 hugetlb_unmap_file_folio(h, mapping, folio, index);
536
537 /*
538 * We must remove the folio from page cache before removing
539 * the region/ reserve map (hugetlb_unreserve_pages). In
540 * rare out of memory conditions, removal of the region/reserve
541 * map could fail. Correspondingly, the subpool and global
542 * reserve usage count can need to be adjusted.
543 */
544 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
545 hugetlb_delete_from_page_cache(folio);
546 ret = true;
547 if (!truncate_op) {
548 if (unlikely(hugetlb_unreserve_pages(inode, index,
549 index + 1, 1)))
550 hugetlb_fix_reserve_counts(inode);
551 }
552
553 folio_unlock(folio);
554 return ret;
555 }
556
557 /*
558 * remove_inode_hugepages handles two distinct cases: truncation and hole
559 * punch. There are subtle differences in operation for each case.
560 *
561 * truncation is indicated by end of range being LLONG_MAX
562 * In this case, we first scan the range and release found pages.
563 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
564 * maps and global counts. Page faults can race with truncation.
565 * During faults, hugetlb_no_page() checks i_size before page allocation,
566 * and again after obtaining page table lock. It will 'back out'
567 * allocations in the truncated range.
568 * hole punch is indicated if end is not LLONG_MAX
569 * In the hole punch case we scan the range and release found pages.
570 * Only when releasing a page is the associated region/reserve map
571 * deleted. The region/reserve map for ranges without associated
572 * pages are not modified. Page faults can race with hole punch.
573 * This is indicated if we find a mapped page.
574 * Note: If the passed end of range value is beyond the end of file, but
575 * not LLONG_MAX this routine still performs a hole punch operation.
576 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)577 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
578 loff_t lend)
579 {
580 struct hstate *h = hstate_inode(inode);
581 struct address_space *mapping = &inode->i_data;
582 const pgoff_t end = lend >> PAGE_SHIFT;
583 struct folio_batch fbatch;
584 pgoff_t next, index;
585 int i, freed = 0;
586 bool truncate_op = (lend == LLONG_MAX);
587
588 folio_batch_init(&fbatch);
589 next = lstart >> PAGE_SHIFT;
590 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
591 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
592 struct folio *folio = fbatch.folios[i];
593 u32 hash = 0;
594
595 index = folio->index >> huge_page_order(h);
596 hash = hugetlb_fault_mutex_hash(mapping, index);
597 mutex_lock(&hugetlb_fault_mutex_table[hash]);
598
599 /*
600 * Remove folio that was part of folio_batch.
601 */
602 if (remove_inode_single_folio(h, inode, mapping, folio,
603 index, truncate_op))
604 freed++;
605
606 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
607 }
608 folio_batch_release(&fbatch);
609 cond_resched();
610 }
611
612 if (truncate_op)
613 (void)hugetlb_unreserve_pages(inode,
614 lstart >> huge_page_shift(h),
615 LONG_MAX, freed);
616 }
617
hugetlbfs_evict_inode(struct inode * inode)618 static void hugetlbfs_evict_inode(struct inode *inode)
619 {
620 struct resv_map *resv_map;
621
622 trace_hugetlbfs_evict_inode(inode);
623 remove_inode_hugepages(inode, 0, LLONG_MAX);
624
625 /*
626 * Get the resv_map from the address space embedded in the inode.
627 * This is the address space which points to any resv_map allocated
628 * at inode creation time. If this is a device special inode,
629 * i_mapping may not point to the original address space.
630 */
631 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
632 /* Only regular and link inodes have associated reserve maps */
633 if (resv_map)
634 resv_map_release(&resv_map->refs);
635 clear_inode(inode);
636 }
637
hugetlb_vmtruncate(struct inode * inode,loff_t offset)638 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
639 {
640 pgoff_t pgoff;
641 struct address_space *mapping = inode->i_mapping;
642 struct hstate *h = hstate_inode(inode);
643
644 BUG_ON(offset & ~huge_page_mask(h));
645 pgoff = offset >> PAGE_SHIFT;
646
647 i_size_write(inode, offset);
648 i_mmap_lock_write(mapping);
649 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
650 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
651 ZAP_FLAG_DROP_MARKER);
652 i_mmap_unlock_write(mapping);
653 remove_inode_hugepages(inode, offset, LLONG_MAX);
654 }
655
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)656 static void hugetlbfs_zero_partial_page(struct hstate *h,
657 struct address_space *mapping,
658 loff_t start,
659 loff_t end)
660 {
661 pgoff_t idx = start >> huge_page_shift(h);
662 struct folio *folio;
663
664 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
665 if (IS_ERR(folio))
666 return;
667
668 start = start & ~huge_page_mask(h);
669 end = end & ~huge_page_mask(h);
670 if (!end)
671 end = huge_page_size(h);
672
673 folio_zero_segment(folio, (size_t)start, (size_t)end);
674
675 folio_unlock(folio);
676 folio_put(folio);
677 }
678
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)679 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
680 {
681 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
682 struct address_space *mapping = inode->i_mapping;
683 struct hstate *h = hstate_inode(inode);
684 loff_t hpage_size = huge_page_size(h);
685 loff_t hole_start, hole_end;
686
687 /*
688 * hole_start and hole_end indicate the full pages within the hole.
689 */
690 hole_start = round_up(offset, hpage_size);
691 hole_end = round_down(offset + len, hpage_size);
692
693 inode_lock(inode);
694
695 /* protected by i_rwsem */
696 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
697 inode_unlock(inode);
698 return -EPERM;
699 }
700
701 i_mmap_lock_write(mapping);
702
703 /* If range starts before first full page, zero partial page. */
704 if (offset < hole_start)
705 hugetlbfs_zero_partial_page(h, mapping,
706 offset, min(offset + len, hole_start));
707
708 /* Unmap users of full pages in the hole. */
709 if (hole_end > hole_start) {
710 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
711 hugetlb_vmdelete_list(&mapping->i_mmap,
712 hole_start >> PAGE_SHIFT,
713 hole_end >> PAGE_SHIFT, 0);
714 }
715
716 /* If range extends beyond last full page, zero partial page. */
717 if ((offset + len) > hole_end && (offset + len) > hole_start)
718 hugetlbfs_zero_partial_page(h, mapping,
719 hole_end, offset + len);
720
721 i_mmap_unlock_write(mapping);
722
723 /* Remove full pages from the file. */
724 if (hole_end > hole_start)
725 remove_inode_hugepages(inode, hole_start, hole_end);
726
727 inode_unlock(inode);
728
729 return 0;
730 }
731
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)732 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
733 loff_t len)
734 {
735 struct inode *inode = file_inode(file);
736 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
737 struct address_space *mapping = inode->i_mapping;
738 struct hstate *h = hstate_inode(inode);
739 struct vm_area_struct pseudo_vma;
740 struct mm_struct *mm = current->mm;
741 loff_t hpage_size = huge_page_size(h);
742 unsigned long hpage_shift = huge_page_shift(h);
743 pgoff_t start, index, end;
744 int error;
745 u32 hash;
746
747 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
748 return -EOPNOTSUPP;
749
750 if (mode & FALLOC_FL_PUNCH_HOLE) {
751 error = hugetlbfs_punch_hole(inode, offset, len);
752 goto out_nolock;
753 }
754
755 /*
756 * Default preallocate case.
757 * For this range, start is rounded down and end is rounded up
758 * as well as being converted to page offsets.
759 */
760 start = offset >> hpage_shift;
761 end = (offset + len + hpage_size - 1) >> hpage_shift;
762
763 inode_lock(inode);
764
765 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
766 error = inode_newsize_ok(inode, offset + len);
767 if (error)
768 goto out;
769
770 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
771 error = -EPERM;
772 goto out;
773 }
774
775 /*
776 * Initialize a pseudo vma as this is required by the huge page
777 * allocation routines.
778 */
779 vma_init(&pseudo_vma, mm);
780 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
781 pseudo_vma.vm_file = file;
782
783 for (index = start; index < end; index++) {
784 /*
785 * This is supposed to be the vaddr where the page is being
786 * faulted in, but we have no vaddr here.
787 */
788 struct folio *folio;
789 unsigned long addr;
790
791 cond_resched();
792
793 /*
794 * fallocate(2) manpage permits EINTR; we may have been
795 * interrupted because we are using up too much memory.
796 */
797 if (signal_pending(current)) {
798 error = -EINTR;
799 break;
800 }
801
802 /* addr is the offset within the file (zero based) */
803 addr = index * hpage_size;
804
805 /* mutex taken here, fault path and hole punch */
806 hash = hugetlb_fault_mutex_hash(mapping, index);
807 mutex_lock(&hugetlb_fault_mutex_table[hash]);
808
809 /* See if already present in mapping to avoid alloc/free */
810 folio = filemap_get_folio(mapping, index << huge_page_order(h));
811 if (!IS_ERR(folio)) {
812 folio_put(folio);
813 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
814 continue;
815 }
816
817 /*
818 * Allocate folio without setting the avoid_reserve argument.
819 * There certainly are no reserves associated with the
820 * pseudo_vma. However, there could be shared mappings with
821 * reserves for the file at the inode level. If we fallocate
822 * folios in these areas, we need to consume the reserves
823 * to keep reservation accounting consistent.
824 */
825 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
826 if (IS_ERR(folio)) {
827 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
828 error = PTR_ERR(folio);
829 goto out;
830 }
831 folio_zero_user(folio, addr);
832 __folio_mark_uptodate(folio);
833 error = hugetlb_add_to_page_cache(folio, mapping, index);
834 if (unlikely(error)) {
835 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
836 folio_put(folio);
837 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
838 goto out;
839 }
840
841 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
842
843 folio_set_hugetlb_migratable(folio);
844 /*
845 * folio_unlock because locked by hugetlb_add_to_page_cache()
846 * folio_put() due to reference from alloc_hugetlb_folio()
847 */
848 folio_unlock(folio);
849 folio_put(folio);
850 }
851
852 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
853 i_size_write(inode, offset + len);
854 inode_set_ctime_current(inode);
855 out:
856 inode_unlock(inode);
857
858 out_nolock:
859 trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
860 return error;
861 }
862
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)863 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
864 struct dentry *dentry, struct iattr *attr)
865 {
866 struct inode *inode = d_inode(dentry);
867 struct hstate *h = hstate_inode(inode);
868 int error;
869 unsigned int ia_valid = attr->ia_valid;
870 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
871
872 error = setattr_prepare(idmap, dentry, attr);
873 if (error)
874 return error;
875
876 trace_hugetlbfs_setattr(inode, dentry, attr);
877
878 if (ia_valid & ATTR_SIZE) {
879 loff_t oldsize = inode->i_size;
880 loff_t newsize = attr->ia_size;
881
882 if (newsize & ~huge_page_mask(h))
883 return -EINVAL;
884 /* protected by i_rwsem */
885 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
886 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
887 return -EPERM;
888 hugetlb_vmtruncate(inode, newsize);
889 }
890
891 setattr_copy(idmap, inode, attr);
892 mark_inode_dirty(inode);
893 return 0;
894 }
895
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)896 static struct inode *hugetlbfs_get_root(struct super_block *sb,
897 struct hugetlbfs_fs_context *ctx)
898 {
899 struct inode *inode;
900
901 inode = new_inode(sb);
902 if (inode) {
903 inode->i_ino = get_next_ino();
904 inode->i_mode = S_IFDIR | ctx->mode;
905 inode->i_uid = ctx->uid;
906 inode->i_gid = ctx->gid;
907 simple_inode_init_ts(inode);
908 inode->i_op = &hugetlbfs_dir_inode_operations;
909 inode->i_fop = &simple_dir_operations;
910 /* directory inodes start off with i_nlink == 2 (for "." entry) */
911 inc_nlink(inode);
912 lockdep_annotate_inode_mutex_key(inode);
913 }
914 return inode;
915 }
916
917 /*
918 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
919 * be taken from reclaim -- unlike regular filesystems. This needs an
920 * annotation because huge_pmd_share() does an allocation under hugetlb's
921 * i_mmap_rwsem.
922 */
923 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
924
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)925 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
926 struct mnt_idmap *idmap,
927 struct inode *dir,
928 umode_t mode, dev_t dev)
929 {
930 struct inode *inode;
931 struct resv_map *resv_map = NULL;
932
933 /*
934 * Reserve maps are only needed for inodes that can have associated
935 * page allocations.
936 */
937 if (S_ISREG(mode) || S_ISLNK(mode)) {
938 resv_map = resv_map_alloc();
939 if (!resv_map)
940 return NULL;
941 }
942
943 inode = new_inode(sb);
944 if (inode) {
945 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
946
947 inode->i_ino = get_next_ino();
948 inode_init_owner(idmap, inode, dir, mode);
949 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
950 &hugetlbfs_i_mmap_rwsem_key);
951 inode->i_mapping->a_ops = &hugetlbfs_aops;
952 simple_inode_init_ts(inode);
953 inode->i_mapping->i_private_data = resv_map;
954 info->seals = F_SEAL_SEAL;
955 switch (mode & S_IFMT) {
956 default:
957 init_special_inode(inode, mode, dev);
958 break;
959 case S_IFREG:
960 inode->i_op = &hugetlbfs_inode_operations;
961 inode->i_fop = &hugetlbfs_file_operations;
962 break;
963 case S_IFDIR:
964 inode->i_op = &hugetlbfs_dir_inode_operations;
965 inode->i_fop = &simple_dir_operations;
966
967 /* directory inodes start off with i_nlink == 2 (for "." entry) */
968 inc_nlink(inode);
969 break;
970 case S_IFLNK:
971 inode->i_op = &page_symlink_inode_operations;
972 inode_nohighmem(inode);
973 break;
974 }
975 lockdep_annotate_inode_mutex_key(inode);
976 trace_hugetlbfs_alloc_inode(inode, dir, mode);
977 } else {
978 if (resv_map)
979 kref_put(&resv_map->refs, resv_map_release);
980 }
981
982 return inode;
983 }
984
985 /*
986 * File creation. Allocate an inode, and we're done..
987 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)988 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
989 struct dentry *dentry, umode_t mode, dev_t dev)
990 {
991 struct inode *inode;
992
993 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
994 if (!inode)
995 return -ENOSPC;
996 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
997 d_make_persistent(dentry, inode);
998 return 0;
999 }
1000
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1001 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1002 struct dentry *dentry, umode_t mode)
1003 {
1004 int retval = hugetlbfs_mknod(idmap, dir, dentry,
1005 mode | S_IFDIR, 0);
1006 if (!retval)
1007 inc_nlink(dir);
1008 return ERR_PTR(retval);
1009 }
1010
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1011 static int hugetlbfs_create(struct mnt_idmap *idmap,
1012 struct inode *dir, struct dentry *dentry,
1013 umode_t mode, bool excl)
1014 {
1015 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1016 }
1017
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1018 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1019 struct inode *dir, struct file *file,
1020 umode_t mode)
1021 {
1022 struct inode *inode;
1023
1024 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1025 if (!inode)
1026 return -ENOSPC;
1027 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1028 d_tmpfile(file, inode);
1029 return finish_open_simple(file, 0);
1030 }
1031
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1032 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1033 struct inode *dir, struct dentry *dentry,
1034 const char *symname)
1035 {
1036 const umode_t mode = S_IFLNK|S_IRWXUGO;
1037 struct inode *inode;
1038 int error = -ENOSPC;
1039
1040 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1041 if (inode) {
1042 int l = strlen(symname)+1;
1043 error = page_symlink(inode, symname, l);
1044 if (!error)
1045 d_make_persistent(dentry, inode);
1046 else
1047 iput(inode);
1048 }
1049 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1050
1051 return error;
1052 }
1053
1054 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1055 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1056 struct folio *dst, struct folio *src,
1057 enum migrate_mode mode)
1058 {
1059 int rc;
1060
1061 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1062 if (rc)
1063 return rc;
1064
1065 if (hugetlb_folio_subpool(src)) {
1066 hugetlb_set_folio_subpool(dst,
1067 hugetlb_folio_subpool(src));
1068 hugetlb_set_folio_subpool(src, NULL);
1069 }
1070
1071 folio_migrate_flags(dst, src);
1072
1073 return 0;
1074 }
1075 #else
1076 #define hugetlbfs_migrate_folio NULL
1077 #endif
1078
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1079 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1080 struct folio *folio)
1081 {
1082 return 0;
1083 }
1084
1085 /*
1086 * Display the mount options in /proc/mounts.
1087 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1088 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1089 {
1090 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1091 struct hugepage_subpool *spool = sbinfo->spool;
1092 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1093 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1094 char mod;
1095
1096 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1097 seq_printf(m, ",uid=%u",
1098 from_kuid_munged(&init_user_ns, sbinfo->uid));
1099 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1100 seq_printf(m, ",gid=%u",
1101 from_kgid_munged(&init_user_ns, sbinfo->gid));
1102 if (sbinfo->mode != 0755)
1103 seq_printf(m, ",mode=%o", sbinfo->mode);
1104 if (sbinfo->max_inodes != -1)
1105 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1106
1107 hpage_size /= 1024;
1108 mod = 'K';
1109 if (hpage_size >= 1024) {
1110 hpage_size /= 1024;
1111 mod = 'M';
1112 }
1113 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1114 if (spool) {
1115 if (spool->max_hpages != -1)
1116 seq_printf(m, ",size=%llu",
1117 (unsigned long long)spool->max_hpages << hpage_shift);
1118 if (spool->min_hpages != -1)
1119 seq_printf(m, ",min_size=%llu",
1120 (unsigned long long)spool->min_hpages << hpage_shift);
1121 }
1122 return 0;
1123 }
1124
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1125 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1126 {
1127 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1128 struct hstate *h = hstate_inode(d_inode(dentry));
1129 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1130
1131 buf->f_fsid = u64_to_fsid(id);
1132 buf->f_type = HUGETLBFS_MAGIC;
1133 buf->f_bsize = huge_page_size(h);
1134 if (sbinfo) {
1135 spin_lock(&sbinfo->stat_lock);
1136 /* If no limits set, just report 0 or -1 for max/free/used
1137 * blocks, like simple_statfs() */
1138 if (sbinfo->spool) {
1139 long free_pages;
1140
1141 spin_lock_irq(&sbinfo->spool->lock);
1142 buf->f_blocks = sbinfo->spool->max_hpages;
1143 free_pages = sbinfo->spool->max_hpages
1144 - sbinfo->spool->used_hpages;
1145 buf->f_bavail = buf->f_bfree = free_pages;
1146 spin_unlock_irq(&sbinfo->spool->lock);
1147 buf->f_files = sbinfo->max_inodes;
1148 buf->f_ffree = sbinfo->free_inodes;
1149 }
1150 spin_unlock(&sbinfo->stat_lock);
1151 }
1152 buf->f_namelen = NAME_MAX;
1153 return 0;
1154 }
1155
hugetlbfs_put_super(struct super_block * sb)1156 static void hugetlbfs_put_super(struct super_block *sb)
1157 {
1158 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1159
1160 if (sbi) {
1161 sb->s_fs_info = NULL;
1162
1163 if (sbi->spool)
1164 hugepage_put_subpool(sbi->spool);
1165
1166 kfree(sbi);
1167 }
1168 }
1169
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1170 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1171 {
1172 if (sbinfo->free_inodes >= 0) {
1173 spin_lock(&sbinfo->stat_lock);
1174 if (unlikely(!sbinfo->free_inodes)) {
1175 spin_unlock(&sbinfo->stat_lock);
1176 return 0;
1177 }
1178 sbinfo->free_inodes--;
1179 spin_unlock(&sbinfo->stat_lock);
1180 }
1181
1182 return 1;
1183 }
1184
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1185 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1186 {
1187 if (sbinfo->free_inodes >= 0) {
1188 spin_lock(&sbinfo->stat_lock);
1189 sbinfo->free_inodes++;
1190 spin_unlock(&sbinfo->stat_lock);
1191 }
1192 }
1193
1194
1195 static struct kmem_cache *hugetlbfs_inode_cachep;
1196
hugetlbfs_alloc_inode(struct super_block * sb)1197 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1198 {
1199 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1200 struct hugetlbfs_inode_info *p;
1201
1202 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1203 return NULL;
1204 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1205 if (unlikely(!p)) {
1206 hugetlbfs_inc_free_inodes(sbinfo);
1207 return NULL;
1208 }
1209 return &p->vfs_inode;
1210 }
1211
hugetlbfs_free_inode(struct inode * inode)1212 static void hugetlbfs_free_inode(struct inode *inode)
1213 {
1214 trace_hugetlbfs_free_inode(inode);
1215 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1216 }
1217
hugetlbfs_destroy_inode(struct inode * inode)1218 static void hugetlbfs_destroy_inode(struct inode *inode)
1219 {
1220 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1221 }
1222
1223 static const struct address_space_operations hugetlbfs_aops = {
1224 .write_begin = hugetlbfs_write_begin,
1225 .write_end = hugetlbfs_write_end,
1226 .dirty_folio = noop_dirty_folio,
1227 .migrate_folio = hugetlbfs_migrate_folio,
1228 .error_remove_folio = hugetlbfs_error_remove_folio,
1229 };
1230
1231
init_once(void * foo)1232 static void init_once(void *foo)
1233 {
1234 struct hugetlbfs_inode_info *ei = foo;
1235
1236 inode_init_once(&ei->vfs_inode);
1237 }
1238
1239 static const struct file_operations hugetlbfs_file_operations = {
1240 .read_iter = hugetlbfs_read_iter,
1241 .mmap_prepare = hugetlbfs_file_mmap_prepare,
1242 .fsync = noop_fsync,
1243 .get_unmapped_area = hugetlb_get_unmapped_area,
1244 .llseek = default_llseek,
1245 .fallocate = hugetlbfs_fallocate,
1246 .fop_flags = FOP_HUGE_PAGES,
1247 };
1248
1249 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1250 .create = hugetlbfs_create,
1251 .lookup = simple_lookup,
1252 .link = simple_link,
1253 .unlink = simple_unlink,
1254 .symlink = hugetlbfs_symlink,
1255 .mkdir = hugetlbfs_mkdir,
1256 .rmdir = simple_rmdir,
1257 .mknod = hugetlbfs_mknod,
1258 .rename = simple_rename,
1259 .setattr = hugetlbfs_setattr,
1260 .tmpfile = hugetlbfs_tmpfile,
1261 };
1262
1263 static const struct inode_operations hugetlbfs_inode_operations = {
1264 .setattr = hugetlbfs_setattr,
1265 };
1266
1267 static const struct super_operations hugetlbfs_ops = {
1268 .alloc_inode = hugetlbfs_alloc_inode,
1269 .free_inode = hugetlbfs_free_inode,
1270 .destroy_inode = hugetlbfs_destroy_inode,
1271 .evict_inode = hugetlbfs_evict_inode,
1272 .statfs = hugetlbfs_statfs,
1273 .put_super = hugetlbfs_put_super,
1274 .show_options = hugetlbfs_show_options,
1275 };
1276
1277 /*
1278 * Convert size option passed from command line to number of huge pages
1279 * in the pool specified by hstate. Size option could be in bytes
1280 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1281 */
1282 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1283 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1284 enum hugetlbfs_size_type val_type)
1285 {
1286 if (val_type == NO_SIZE)
1287 return -1;
1288
1289 if (val_type == SIZE_PERCENT) {
1290 size_opt <<= huge_page_shift(h);
1291 size_opt *= h->max_huge_pages;
1292 do_div(size_opt, 100);
1293 }
1294
1295 size_opt >>= huge_page_shift(h);
1296 return size_opt;
1297 }
1298
1299 /*
1300 * Parse one mount parameter.
1301 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1302 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1303 {
1304 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1305 struct fs_parse_result result;
1306 struct hstate *h;
1307 char *rest;
1308 unsigned long ps;
1309 int opt;
1310
1311 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1312 if (opt < 0)
1313 return opt;
1314
1315 switch (opt) {
1316 case Opt_uid:
1317 ctx->uid = result.uid;
1318 return 0;
1319
1320 case Opt_gid:
1321 ctx->gid = result.gid;
1322 return 0;
1323
1324 case Opt_mode:
1325 ctx->mode = result.uint_32 & 01777U;
1326 return 0;
1327
1328 case Opt_size:
1329 /* memparse() will accept a K/M/G without a digit */
1330 if (!param->string || !isdigit(param->string[0]))
1331 goto bad_val;
1332 ctx->max_size_opt = memparse(param->string, &rest);
1333 ctx->max_val_type = SIZE_STD;
1334 if (*rest == '%')
1335 ctx->max_val_type = SIZE_PERCENT;
1336 return 0;
1337
1338 case Opt_nr_inodes:
1339 /* memparse() will accept a K/M/G without a digit */
1340 if (!param->string || !isdigit(param->string[0]))
1341 goto bad_val;
1342 ctx->nr_inodes = memparse(param->string, &rest);
1343 return 0;
1344
1345 case Opt_pagesize:
1346 ps = memparse(param->string, &rest);
1347 h = size_to_hstate(ps);
1348 if (!h) {
1349 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1350 return -EINVAL;
1351 }
1352 ctx->hstate = h;
1353 return 0;
1354
1355 case Opt_min_size:
1356 /* memparse() will accept a K/M/G without a digit */
1357 if (!param->string || !isdigit(param->string[0]))
1358 goto bad_val;
1359 ctx->min_size_opt = memparse(param->string, &rest);
1360 ctx->min_val_type = SIZE_STD;
1361 if (*rest == '%')
1362 ctx->min_val_type = SIZE_PERCENT;
1363 return 0;
1364
1365 default:
1366 return -EINVAL;
1367 }
1368
1369 bad_val:
1370 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1371 param->string, param->key);
1372 }
1373
1374 /*
1375 * Validate the parsed options.
1376 */
hugetlbfs_validate(struct fs_context * fc)1377 static int hugetlbfs_validate(struct fs_context *fc)
1378 {
1379 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1380
1381 /*
1382 * Use huge page pool size (in hstate) to convert the size
1383 * options to number of huge pages. If NO_SIZE, -1 is returned.
1384 */
1385 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1386 ctx->max_size_opt,
1387 ctx->max_val_type);
1388 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1389 ctx->min_size_opt,
1390 ctx->min_val_type);
1391
1392 /*
1393 * If max_size was specified, then min_size must be smaller
1394 */
1395 if (ctx->max_val_type > NO_SIZE &&
1396 ctx->min_hpages > ctx->max_hpages) {
1397 pr_err("Minimum size can not be greater than maximum size\n");
1398 return -EINVAL;
1399 }
1400
1401 return 0;
1402 }
1403
1404 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1405 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1406 {
1407 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1408 struct hugetlbfs_sb_info *sbinfo;
1409
1410 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1411 if (!sbinfo)
1412 return -ENOMEM;
1413 sb->s_fs_info = sbinfo;
1414 spin_lock_init(&sbinfo->stat_lock);
1415 sbinfo->hstate = ctx->hstate;
1416 sbinfo->max_inodes = ctx->nr_inodes;
1417 sbinfo->free_inodes = ctx->nr_inodes;
1418 sbinfo->spool = NULL;
1419 sbinfo->uid = ctx->uid;
1420 sbinfo->gid = ctx->gid;
1421 sbinfo->mode = ctx->mode;
1422
1423 /*
1424 * Allocate and initialize subpool if maximum or minimum size is
1425 * specified. Any needed reservations (for minimum size) are taken
1426 * when the subpool is created.
1427 */
1428 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1429 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1430 ctx->max_hpages,
1431 ctx->min_hpages);
1432 if (!sbinfo->spool)
1433 goto out_free;
1434 }
1435 sb->s_maxbytes = MAX_LFS_FILESIZE;
1436 sb->s_blocksize = huge_page_size(ctx->hstate);
1437 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1438 sb->s_magic = HUGETLBFS_MAGIC;
1439 sb->s_op = &hugetlbfs_ops;
1440 sb->s_d_flags = DCACHE_DONTCACHE;
1441 sb->s_time_gran = 1;
1442
1443 /*
1444 * Due to the special and limited functionality of hugetlbfs, it does
1445 * not work well as a stacking filesystem.
1446 */
1447 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1448 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1449 if (!sb->s_root)
1450 goto out_free;
1451 return 0;
1452 out_free:
1453 kfree(sbinfo->spool);
1454 kfree(sbinfo);
1455 return -ENOMEM;
1456 }
1457
hugetlbfs_get_tree(struct fs_context * fc)1458 static int hugetlbfs_get_tree(struct fs_context *fc)
1459 {
1460 int err = hugetlbfs_validate(fc);
1461 if (err)
1462 return err;
1463 return get_tree_nodev(fc, hugetlbfs_fill_super);
1464 }
1465
hugetlbfs_fs_context_free(struct fs_context * fc)1466 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1467 {
1468 kfree(fc->fs_private);
1469 }
1470
1471 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1472 .free = hugetlbfs_fs_context_free,
1473 .parse_param = hugetlbfs_parse_param,
1474 .get_tree = hugetlbfs_get_tree,
1475 };
1476
hugetlbfs_init_fs_context(struct fs_context * fc)1477 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1478 {
1479 struct hugetlbfs_fs_context *ctx;
1480
1481 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1482 if (!ctx)
1483 return -ENOMEM;
1484
1485 ctx->max_hpages = -1; /* No limit on size by default */
1486 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1487 ctx->uid = current_fsuid();
1488 ctx->gid = current_fsgid();
1489 ctx->mode = 0755;
1490 ctx->hstate = &default_hstate;
1491 ctx->min_hpages = -1; /* No default minimum size */
1492 ctx->max_val_type = NO_SIZE;
1493 ctx->min_val_type = NO_SIZE;
1494 fc->fs_private = ctx;
1495 fc->ops = &hugetlbfs_fs_context_ops;
1496 return 0;
1497 }
1498
1499 static struct file_system_type hugetlbfs_fs_type = {
1500 .name = "hugetlbfs",
1501 .init_fs_context = hugetlbfs_init_fs_context,
1502 .parameters = hugetlb_fs_parameters,
1503 .kill_sb = kill_anon_super,
1504 .fs_flags = FS_ALLOW_IDMAP,
1505 };
1506
1507 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1508
can_do_hugetlb_shm(void)1509 static int can_do_hugetlb_shm(void)
1510 {
1511 kgid_t shm_group;
1512 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1513 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1514 }
1515
get_hstate_idx(int page_size_log)1516 static int get_hstate_idx(int page_size_log)
1517 {
1518 struct hstate *h = hstate_sizelog(page_size_log);
1519
1520 if (!h)
1521 return -1;
1522 return hstate_index(h);
1523 }
1524
1525 /*
1526 * Note that size should be aligned to proper hugepage size in caller side,
1527 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1528 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1529 struct file *hugetlb_file_setup(const char *name, size_t size,
1530 vm_flags_t acctflag, int creat_flags,
1531 int page_size_log)
1532 {
1533 struct inode *inode;
1534 struct vfsmount *mnt;
1535 int hstate_idx;
1536 struct file *file;
1537
1538 hstate_idx = get_hstate_idx(page_size_log);
1539 if (hstate_idx < 0)
1540 return ERR_PTR(-ENODEV);
1541
1542 mnt = hugetlbfs_vfsmount[hstate_idx];
1543 if (!mnt)
1544 return ERR_PTR(-ENOENT);
1545
1546 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1547 struct ucounts *ucounts = current_ucounts();
1548
1549 if (user_shm_lock(size, ucounts)) {
1550 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1551 current->comm, current->pid);
1552 user_shm_unlock(size, ucounts);
1553 }
1554 return ERR_PTR(-EPERM);
1555 }
1556
1557 file = ERR_PTR(-ENOSPC);
1558 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1559 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1560 S_IFREG | S_IRWXUGO, 0);
1561 if (!inode)
1562 goto out;
1563 if (creat_flags == HUGETLB_SHMFS_INODE)
1564 inode->i_flags |= S_PRIVATE;
1565
1566 inode->i_size = size;
1567 clear_nlink(inode);
1568
1569 if (hugetlb_reserve_pages(inode, 0,
1570 size >> huge_page_shift(hstate_inode(inode)), NULL,
1571 acctflag) < 0)
1572 file = ERR_PTR(-ENOMEM);
1573 else
1574 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1575 &hugetlbfs_file_operations);
1576 if (!IS_ERR(file))
1577 return file;
1578
1579 iput(inode);
1580 out:
1581 return file;
1582 }
1583
mount_one_hugetlbfs(struct hstate * h)1584 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1585 {
1586 struct fs_context *fc;
1587 struct vfsmount *mnt;
1588
1589 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1590 if (IS_ERR(fc)) {
1591 mnt = ERR_CAST(fc);
1592 } else {
1593 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1594 ctx->hstate = h;
1595 mnt = fc_mount_longterm(fc);
1596 put_fs_context(fc);
1597 }
1598 if (IS_ERR(mnt))
1599 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1600 huge_page_size(h) / SZ_1K);
1601 return mnt;
1602 }
1603
init_hugetlbfs_fs(void)1604 static int __init init_hugetlbfs_fs(void)
1605 {
1606 struct vfsmount *mnt;
1607 struct hstate *h;
1608 int error;
1609 int i;
1610
1611 if (!hugepages_supported()) {
1612 pr_info("disabling because there are no supported hugepage sizes\n");
1613 return -ENOTSUPP;
1614 }
1615
1616 error = -ENOMEM;
1617 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1618 sizeof(struct hugetlbfs_inode_info),
1619 0, SLAB_ACCOUNT, init_once);
1620 if (hugetlbfs_inode_cachep == NULL)
1621 goto out;
1622
1623 error = register_filesystem(&hugetlbfs_fs_type);
1624 if (error)
1625 goto out_free;
1626
1627 /* default hstate mount is required */
1628 mnt = mount_one_hugetlbfs(&default_hstate);
1629 if (IS_ERR(mnt)) {
1630 error = PTR_ERR(mnt);
1631 goto out_unreg;
1632 }
1633 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1634
1635 /* other hstates are optional */
1636 i = 0;
1637 for_each_hstate(h) {
1638 if (i == default_hstate_idx) {
1639 i++;
1640 continue;
1641 }
1642
1643 mnt = mount_one_hugetlbfs(h);
1644 if (IS_ERR(mnt))
1645 hugetlbfs_vfsmount[i] = NULL;
1646 else
1647 hugetlbfs_vfsmount[i] = mnt;
1648 i++;
1649 }
1650
1651 return 0;
1652
1653 out_unreg:
1654 (void)unregister_filesystem(&hugetlbfs_fs_type);
1655 out_free:
1656 kmem_cache_destroy(hugetlbfs_inode_cachep);
1657 out:
1658 return error;
1659 }
1660 fs_initcall(init_hugetlbfs_fs)
1661