1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 /**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131
132 #include "internal.h"
133
134 /*
135 * Initialise a struct file's readahead state. Assumes that the caller has
136 * memset *ra to zero.
137 */
138 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145
read_pages(struct readahead_control * rac)146 static void read_pages(struct readahead_control *rac)
147 {
148 const struct address_space_operations *aops = rac->mapping->a_ops;
149 struct folio *folio;
150 struct blk_plug plug;
151
152 if (!readahead_count(rac))
153 return;
154
155 if (unlikely(rac->_workingset))
156 psi_memstall_enter(&rac->_pflags);
157 blk_start_plug(&plug);
158
159 if (aops->readahead) {
160 aops->readahead(rac);
161 /* Clean up the remaining folios. */
162 while ((folio = readahead_folio(rac)) != NULL) {
163 folio_get(folio);
164 filemap_remove_folio(folio);
165 folio_unlock(folio);
166 folio_put(folio);
167 }
168 } else {
169 while ((folio = readahead_folio(rac)) != NULL)
170 aops->read_folio(rac->file, folio);
171 }
172
173 blk_finish_plug(&plug);
174 if (unlikely(rac->_workingset))
175 psi_memstall_leave(&rac->_pflags);
176 rac->_workingset = false;
177
178 BUG_ON(readahead_count(rac));
179 }
180
ractl_alloc_folio(struct readahead_control * ractl,gfp_t gfp_mask,unsigned int order)181 static struct folio *ractl_alloc_folio(struct readahead_control *ractl,
182 gfp_t gfp_mask, unsigned int order)
183 {
184 struct folio *folio;
185
186 folio = filemap_alloc_folio(gfp_mask, order);
187 if (folio && ractl->dropbehind)
188 __folio_set_dropbehind(folio);
189
190 return folio;
191 }
192
193 /**
194 * page_cache_ra_unbounded - Start unchecked readahead.
195 * @ractl: Readahead control.
196 * @nr_to_read: The number of pages to read.
197 * @lookahead_size: Where to start the next readahead.
198 *
199 * This function is for filesystems to call when they want to start
200 * readahead beyond a file's stated i_size. This is almost certainly
201 * not the function you want to call. Use page_cache_async_readahead()
202 * or page_cache_sync_readahead() instead.
203 *
204 * Context: File is referenced by caller. Mutexes may be held by caller.
205 * May sleep, but will not reenter filesystem to reclaim memory.
206 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)207 void page_cache_ra_unbounded(struct readahead_control *ractl,
208 unsigned long nr_to_read, unsigned long lookahead_size)
209 {
210 struct address_space *mapping = ractl->mapping;
211 unsigned long index = readahead_index(ractl);
212 gfp_t gfp_mask = readahead_gfp_mask(mapping);
213 unsigned long mark = ULONG_MAX, i = 0;
214 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
215
216 /*
217 * Partway through the readahead operation, we will have added
218 * locked pages to the page cache, but will not yet have submitted
219 * them for I/O. Adding another page may need to allocate memory,
220 * which can trigger memory reclaim. Telling the VM we're in
221 * the middle of a filesystem operation will cause it to not
222 * touch file-backed pages, preventing a deadlock. Most (all?)
223 * filesystems already specify __GFP_NOFS in their mapping's
224 * gfp_mask, but let's be explicit here.
225 */
226 unsigned int nofs = memalloc_nofs_save();
227
228 filemap_invalidate_lock_shared(mapping);
229 index = mapping_align_index(mapping, index);
230
231 /*
232 * As iterator `i` is aligned to min_nrpages, round_up the
233 * difference between nr_to_read and lookahead_size to mark the
234 * index that only has lookahead or "async_region" to set the
235 * readahead flag.
236 */
237 if (lookahead_size <= nr_to_read) {
238 unsigned long ra_folio_index;
239
240 ra_folio_index = round_up(readahead_index(ractl) +
241 nr_to_read - lookahead_size,
242 min_nrpages);
243 mark = ra_folio_index - index;
244 }
245 nr_to_read += readahead_index(ractl) - index;
246 ractl->_index = index;
247
248 /*
249 * Preallocate as many pages as we will need.
250 */
251 while (i < nr_to_read) {
252 struct folio *folio = xa_load(&mapping->i_pages, index + i);
253 int ret;
254
255 if (folio && !xa_is_value(folio)) {
256 /*
257 * Page already present? Kick off the current batch
258 * of contiguous pages before continuing with the
259 * next batch. This page may be the one we would
260 * have intended to mark as Readahead, but we don't
261 * have a stable reference to this page, and it's
262 * not worth getting one just for that.
263 */
264 read_pages(ractl);
265 ractl->_index += min_nrpages;
266 i = ractl->_index + ractl->_nr_pages - index;
267 continue;
268 }
269
270 folio = ractl_alloc_folio(ractl, gfp_mask,
271 mapping_min_folio_order(mapping));
272 if (!folio)
273 break;
274
275 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
276 if (ret < 0) {
277 folio_put(folio);
278 if (ret == -ENOMEM)
279 break;
280 read_pages(ractl);
281 ractl->_index += min_nrpages;
282 i = ractl->_index + ractl->_nr_pages - index;
283 continue;
284 }
285 if (i == mark)
286 folio_set_readahead(folio);
287 ractl->_workingset |= folio_test_workingset(folio);
288 ractl->_nr_pages += min_nrpages;
289 i += min_nrpages;
290 }
291
292 /*
293 * Now start the IO. We ignore I/O errors - if the folio is not
294 * uptodate then the caller will launch read_folio again, and
295 * will then handle the error.
296 */
297 read_pages(ractl);
298 filemap_invalidate_unlock_shared(mapping);
299 memalloc_nofs_restore(nofs);
300 }
301 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
302
303 /*
304 * do_page_cache_ra() actually reads a chunk of disk. It allocates
305 * the pages first, then submits them for I/O. This avoids the very bad
306 * behaviour which would occur if page allocations are causing VM writeback.
307 * We really don't want to intermingle reads and writes like that.
308 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)309 static void do_page_cache_ra(struct readahead_control *ractl,
310 unsigned long nr_to_read, unsigned long lookahead_size)
311 {
312 struct inode *inode = ractl->mapping->host;
313 unsigned long index = readahead_index(ractl);
314 loff_t isize = i_size_read(inode);
315 pgoff_t end_index; /* The last page we want to read */
316
317 if (isize == 0)
318 return;
319
320 end_index = (isize - 1) >> PAGE_SHIFT;
321 if (index > end_index)
322 return;
323 /* Don't read past the page containing the last byte of the file */
324 if (nr_to_read > end_index - index)
325 nr_to_read = end_index - index + 1;
326
327 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
328 }
329
330 /*
331 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
332 * memory at once.
333 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)334 void force_page_cache_ra(struct readahead_control *ractl,
335 unsigned long nr_to_read)
336 {
337 struct address_space *mapping = ractl->mapping;
338 struct file_ra_state *ra = ractl->ra;
339 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
340 unsigned long max_pages;
341
342 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
343 return;
344
345 /*
346 * If the request exceeds the readahead window, allow the read to
347 * be up to the optimal hardware IO size
348 */
349 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
350 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
351 while (nr_to_read) {
352 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
353
354 if (this_chunk > nr_to_read)
355 this_chunk = nr_to_read;
356 do_page_cache_ra(ractl, this_chunk, 0);
357
358 nr_to_read -= this_chunk;
359 }
360 }
361
362 /*
363 * Set the initial window size, round to next power of 2 and square
364 * for small size, x 4 for medium, and x 2 for large
365 * for 128k (32 page) max ra
366 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
367 */
get_init_ra_size(unsigned long size,unsigned long max)368 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
369 {
370 unsigned long newsize = roundup_pow_of_two(size);
371
372 if (newsize <= max / 32)
373 newsize = newsize * 4;
374 else if (newsize <= max / 4)
375 newsize = newsize * 2;
376 else
377 newsize = max;
378
379 return newsize;
380 }
381
382 /*
383 * Get the previous window size, ramp it up, and
384 * return it as the new window size.
385 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)386 static unsigned long get_next_ra_size(struct file_ra_state *ra,
387 unsigned long max)
388 {
389 unsigned long cur = ra->size;
390
391 if (cur < max / 16)
392 return 4 * cur;
393 if (cur <= max / 2)
394 return 2 * cur;
395 return max;
396 }
397
398 /*
399 * On-demand readahead design.
400 *
401 * The fields in struct file_ra_state represent the most-recently-executed
402 * readahead attempt:
403 *
404 * |<----- async_size ---------|
405 * |------------------- size -------------------->|
406 * |==================#===========================|
407 * ^start ^page marked with PG_readahead
408 *
409 * To overlap application thinking time and disk I/O time, we do
410 * `readahead pipelining': Do not wait until the application consumed all
411 * readahead pages and stalled on the missing page at readahead_index;
412 * Instead, submit an asynchronous readahead I/O as soon as there are
413 * only async_size pages left in the readahead window. Normally async_size
414 * will be equal to size, for maximum pipelining.
415 *
416 * In interleaved sequential reads, concurrent streams on the same fd can
417 * be invalidating each other's readahead state. So we flag the new readahead
418 * page at (start+size-async_size) with PG_readahead, and use it as readahead
419 * indicator. The flag won't be set on already cached pages, to avoid the
420 * readahead-for-nothing fuss, saving pointless page cache lookups.
421 *
422 * prev_pos tracks the last visited byte in the _previous_ read request.
423 * It should be maintained by the caller, and will be used for detecting
424 * small random reads. Note that the readahead algorithm checks loosely
425 * for sequential patterns. Hence interleaved reads might be served as
426 * sequential ones.
427 *
428 * There is a special-case: if the first page which the application tries to
429 * read happens to be the first page of the file, it is assumed that a linear
430 * read is about to happen and the window is immediately set to the initial size
431 * based on I/O request size and the max_readahead.
432 *
433 * The code ramps up the readahead size aggressively at first, but slow down as
434 * it approaches max_readhead.
435 */
436
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)437 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
438 pgoff_t mark, unsigned int order, gfp_t gfp)
439 {
440 int err;
441 struct folio *folio = ractl_alloc_folio(ractl, gfp, order);
442
443 if (!folio)
444 return -ENOMEM;
445 mark = round_down(mark, 1UL << order);
446 if (index == mark)
447 folio_set_readahead(folio);
448 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
449 if (err) {
450 folio_put(folio);
451 return err;
452 }
453
454 ractl->_nr_pages += 1UL << order;
455 ractl->_workingset |= folio_test_workingset(folio);
456 return 0;
457 }
458
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra,unsigned int new_order)459 void page_cache_ra_order(struct readahead_control *ractl,
460 struct file_ra_state *ra, unsigned int new_order)
461 {
462 struct address_space *mapping = ractl->mapping;
463 pgoff_t start = readahead_index(ractl);
464 pgoff_t index = start;
465 unsigned int min_order = mapping_min_folio_order(mapping);
466 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
467 pgoff_t mark = index + ra->size - ra->async_size;
468 unsigned int nofs;
469 int err = 0;
470 gfp_t gfp = readahead_gfp_mask(mapping);
471 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
472
473 /*
474 * Fallback when size < min_nrpages as each folio should be
475 * at least min_nrpages anyway.
476 */
477 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
478 goto fallback;
479
480 limit = min(limit, index + ra->size - 1);
481
482 if (new_order < mapping_max_folio_order(mapping))
483 new_order += 2;
484
485 new_order = min(mapping_max_folio_order(mapping), new_order);
486 new_order = min_t(unsigned int, new_order, ilog2(ra->size));
487 new_order = max(new_order, min_order);
488
489 /* See comment in page_cache_ra_unbounded() */
490 nofs = memalloc_nofs_save();
491 filemap_invalidate_lock_shared(mapping);
492 /*
493 * If the new_order is greater than min_order and index is
494 * already aligned to new_order, then this will be noop as index
495 * aligned to new_order should also be aligned to min_order.
496 */
497 ractl->_index = mapping_align_index(mapping, index);
498 index = readahead_index(ractl);
499
500 while (index <= limit) {
501 unsigned int order = new_order;
502
503 /* Align with smaller pages if needed */
504 if (index & ((1UL << order) - 1))
505 order = __ffs(index);
506 /* Don't allocate pages past EOF */
507 while (order > min_order && index + (1UL << order) - 1 > limit)
508 order--;
509 err = ra_alloc_folio(ractl, index, mark, order, gfp);
510 if (err)
511 break;
512 index += 1UL << order;
513 }
514
515 read_pages(ractl);
516 filemap_invalidate_unlock_shared(mapping);
517 memalloc_nofs_restore(nofs);
518
519 /*
520 * If there were already pages in the page cache, then we may have
521 * left some gaps. Let the regular readahead code take care of this
522 * situation below.
523 */
524 if (!err)
525 return;
526 fallback:
527 /*
528 * ->readahead() may have updated readahead window size so we have to
529 * check there's still something to read.
530 */
531 if (ra->size > index - start)
532 do_page_cache_ra(ractl, ra->size - (index - start),
533 ra->async_size);
534 }
535
ractl_max_pages(struct readahead_control * ractl,unsigned long req_size)536 static unsigned long ractl_max_pages(struct readahead_control *ractl,
537 unsigned long req_size)
538 {
539 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
540 unsigned long max_pages = ractl->ra->ra_pages;
541
542 /*
543 * If the request exceeds the readahead window, allow the read to
544 * be up to the optimal hardware IO size
545 */
546 if (req_size > max_pages && bdi->io_pages > max_pages)
547 max_pages = min(req_size, bdi->io_pages);
548 return max_pages;
549 }
550
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)551 void page_cache_sync_ra(struct readahead_control *ractl,
552 unsigned long req_count)
553 {
554 pgoff_t index = readahead_index(ractl);
555 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
556 struct file_ra_state *ra = ractl->ra;
557 unsigned long max_pages, contig_count;
558 pgoff_t prev_index, miss;
559
560 /*
561 * Even if readahead is disabled, issue this request as readahead
562 * as we'll need it to satisfy the requested range. The forced
563 * readahead will do the right thing and limit the read to just the
564 * requested range, which we'll set to 1 page for this case.
565 */
566 if (!ra->ra_pages || blk_cgroup_congested()) {
567 if (!ractl->file)
568 return;
569 req_count = 1;
570 do_forced_ra = true;
571 }
572
573 /* be dumb */
574 if (do_forced_ra) {
575 force_page_cache_ra(ractl, req_count);
576 return;
577 }
578
579 max_pages = ractl_max_pages(ractl, req_count);
580 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
581 /*
582 * A start of file, oversized read, or sequential cache miss:
583 * trivial case: (index - prev_index) == 1
584 * unaligned reads: (index - prev_index) == 0
585 */
586 if (!index || req_count > max_pages || index - prev_index <= 1UL) {
587 ra->start = index;
588 ra->size = get_init_ra_size(req_count, max_pages);
589 ra->async_size = ra->size > req_count ? ra->size - req_count :
590 ra->size >> 1;
591 goto readit;
592 }
593
594 /*
595 * Query the page cache and look for the traces(cached history pages)
596 * that a sequential stream would leave behind.
597 */
598 rcu_read_lock();
599 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
600 rcu_read_unlock();
601 contig_count = index - miss - 1;
602 /*
603 * Standalone, small random read. Read as is, and do not pollute the
604 * readahead state.
605 */
606 if (contig_count <= req_count) {
607 do_page_cache_ra(ractl, req_count, 0);
608 return;
609 }
610 /*
611 * File cached from the beginning:
612 * it is a strong indication of long-run stream (or whole-file-read)
613 */
614 if (miss == ULONG_MAX)
615 contig_count *= 2;
616 ra->start = index;
617 ra->size = min(contig_count + req_count, max_pages);
618 ra->async_size = 1;
619 readit:
620 ractl->_index = ra->start;
621 page_cache_ra_order(ractl, ra, 0);
622 }
623 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
624
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)625 void page_cache_async_ra(struct readahead_control *ractl,
626 struct folio *folio, unsigned long req_count)
627 {
628 unsigned long max_pages;
629 struct file_ra_state *ra = ractl->ra;
630 pgoff_t index = readahead_index(ractl);
631 pgoff_t expected, start;
632 unsigned int order = folio_order(folio);
633
634 /* no readahead */
635 if (!ra->ra_pages)
636 return;
637
638 /*
639 * Same bit is used for PG_readahead and PG_reclaim.
640 */
641 if (folio_test_writeback(folio))
642 return;
643
644 folio_clear_readahead(folio);
645
646 if (blk_cgroup_congested())
647 return;
648
649 max_pages = ractl_max_pages(ractl, req_count);
650 /*
651 * It's the expected callback index, assume sequential access.
652 * Ramp up sizes, and push forward the readahead window.
653 */
654 expected = round_down(ra->start + ra->size - ra->async_size,
655 1UL << order);
656 if (index == expected) {
657 ra->start += ra->size;
658 /*
659 * In the case of MADV_HUGEPAGE, the actual size might exceed
660 * the readahead window.
661 */
662 ra->size = max(ra->size, get_next_ra_size(ra, max_pages));
663 ra->async_size = ra->size;
664 goto readit;
665 }
666
667 /*
668 * Hit a marked folio without valid readahead state.
669 * E.g. interleaved reads.
670 * Query the pagecache for async_size, which normally equals to
671 * readahead size. Ramp it up and use it as the new readahead size.
672 */
673 rcu_read_lock();
674 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
675 rcu_read_unlock();
676
677 if (!start || start - index > max_pages)
678 return;
679
680 ra->start = start;
681 ra->size = start - index; /* old async_size */
682 ra->size += req_count;
683 ra->size = get_next_ra_size(ra, max_pages);
684 ra->async_size = ra->size;
685 readit:
686 ractl->_index = ra->start;
687 page_cache_ra_order(ractl, ra, order);
688 }
689 EXPORT_SYMBOL_GPL(page_cache_async_ra);
690
ksys_readahead(int fd,loff_t offset,size_t count)691 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
692 {
693 CLASS(fd, f)(fd);
694
695 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ))
696 return -EBADF;
697
698 /*
699 * The readahead() syscall is intended to run only on files
700 * that can execute readahead. If readahead is not possible
701 * on this file, then we must return -EINVAL.
702 */
703 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
704 (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
705 !S_ISBLK(file_inode(fd_file(f))->i_mode)))
706 return -EINVAL;
707
708 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
709 }
710
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)711 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
712 {
713 return ksys_readahead(fd, offset, count);
714 }
715
716 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)717 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
718 {
719 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
720 }
721 #endif
722
723 /**
724 * readahead_expand - Expand a readahead request
725 * @ractl: The request to be expanded
726 * @new_start: The revised start
727 * @new_len: The revised size of the request
728 *
729 * Attempt to expand a readahead request outwards from the current size to the
730 * specified size by inserting locked pages before and after the current window
731 * to increase the size to the new window. This may involve the insertion of
732 * THPs, in which case the window may get expanded even beyond what was
733 * requested.
734 *
735 * The algorithm will stop if it encounters a conflicting page already in the
736 * pagecache and leave a smaller expansion than requested.
737 *
738 * The caller must check for this by examining the revised @ractl object for a
739 * different expansion than was requested.
740 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)741 void readahead_expand(struct readahead_control *ractl,
742 loff_t new_start, size_t new_len)
743 {
744 struct address_space *mapping = ractl->mapping;
745 struct file_ra_state *ra = ractl->ra;
746 pgoff_t new_index, new_nr_pages;
747 gfp_t gfp_mask = readahead_gfp_mask(mapping);
748 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
749 unsigned int min_order = mapping_min_folio_order(mapping);
750
751 new_index = new_start / PAGE_SIZE;
752 /*
753 * Readahead code should have aligned the ractl->_index to
754 * min_nrpages before calling readahead aops.
755 */
756 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
757
758 /* Expand the leading edge downwards */
759 while (ractl->_index > new_index) {
760 unsigned long index = ractl->_index - 1;
761 struct folio *folio = xa_load(&mapping->i_pages, index);
762
763 if (folio && !xa_is_value(folio))
764 return; /* Folio apparently present */
765
766 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
767 if (!folio)
768 return;
769
770 index = mapping_align_index(mapping, index);
771 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
772 folio_put(folio);
773 return;
774 }
775 if (unlikely(folio_test_workingset(folio)) &&
776 !ractl->_workingset) {
777 ractl->_workingset = true;
778 psi_memstall_enter(&ractl->_pflags);
779 }
780 ractl->_nr_pages += min_nrpages;
781 ractl->_index = folio->index;
782 }
783
784 new_len += new_start - readahead_pos(ractl);
785 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
786
787 /* Expand the trailing edge upwards */
788 while (ractl->_nr_pages < new_nr_pages) {
789 unsigned long index = ractl->_index + ractl->_nr_pages;
790 struct folio *folio = xa_load(&mapping->i_pages, index);
791
792 if (folio && !xa_is_value(folio))
793 return; /* Folio apparently present */
794
795 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
796 if (!folio)
797 return;
798
799 index = mapping_align_index(mapping, index);
800 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
801 folio_put(folio);
802 return;
803 }
804 if (unlikely(folio_test_workingset(folio)) &&
805 !ractl->_workingset) {
806 ractl->_workingset = true;
807 psi_memstall_enter(&ractl->_pflags);
808 }
809 ractl->_nr_pages += min_nrpages;
810 if (ra) {
811 ra->size += min_nrpages;
812 ra->async_size += min_nrpages;
813 }
814 }
815 }
816 EXPORT_SYMBOL(readahead_expand);
817