xref: /linux/drivers/acpi/cppc_acpi.c (revision 9b1b3dcd28c271fc8c4a87e81860f3a34b6d29b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <linux/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	bool pcc_channel_acquired;
51 	unsigned int deadline_us;
52 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
53 
54 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
55 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
56 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
57 
58 	/*
59 	 * Lock to provide controlled access to the PCC channel.
60 	 *
61 	 * For performance critical usecases(currently cppc_set_perf)
62 	 *	We need to take read_lock and check if channel belongs to OSPM
63 	 * before reading or writing to PCC subspace
64 	 *	We need to take write_lock before transferring the channel
65 	 * ownership to the platform via a Doorbell
66 	 *	This allows us to batch a number of CPPC requests if they happen
67 	 * to originate in about the same time
68 	 *
69 	 * For non-performance critical usecases(init)
70 	 *	Take write_lock for all purposes which gives exclusive access
71 	 */
72 	struct rw_semaphore pcc_lock;
73 
74 	/* Wait queue for CPUs whose requests were batched */
75 	wait_queue_head_t pcc_write_wait_q;
76 	ktime_t last_cmd_cmpl_time;
77 	ktime_t last_mpar_reset;
78 	int mpar_count;
79 	int refcount;
80 };
81 
82 /* Array to represent the PCC channel per subspace ID */
83 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
84 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
85 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 
87 /*
88  * The cpc_desc structure contains the ACPI register details
89  * as described in the per CPU _CPC tables. The details
90  * include the type of register (e.g. PCC, System IO, FFH etc.)
91  * and destination addresses which lets us READ/WRITE CPU performance
92  * information using the appropriate I/O methods.
93  */
94 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
95 
96 /* pcc mapped address + header size + offset within PCC subspace */
97 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_channel->shmem + \
98 						0x8 + (offs))
99 
100 /* Check if a CPC register is in PCC */
101 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
102 				(cpc)->cpc_entry.reg.space_id ==	\
103 				ACPI_ADR_SPACE_PLATFORM_COMM)
104 
105 /* Check if a CPC register is in FFH */
106 #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
107 				(cpc)->cpc_entry.reg.space_id ==	\
108 				ACPI_ADR_SPACE_FIXED_HARDWARE)
109 
110 /* Check if a CPC register is in SystemMemory */
111 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
112 				(cpc)->cpc_entry.reg.space_id ==	\
113 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
114 
115 /* Check if a CPC register is in SystemIo */
116 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
117 				(cpc)->cpc_entry.reg.space_id ==	\
118 				ACPI_ADR_SPACE_SYSTEM_IO)
119 
120 /* Evaluates to True if reg is a NULL register descriptor */
121 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
122 				(reg)->address == 0 &&			\
123 				(reg)->bit_width == 0 &&		\
124 				(reg)->bit_offset == 0 &&		\
125 				(reg)->access_width == 0)
126 
127 /* Evaluates to True if an optional cpc field is supported */
128 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
129 				!!(cpc)->cpc_entry.int_value :		\
130 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
131 
132 /*
133  * Each bit indicates the optionality of the register in per-cpu
134  * cpc_regs[] with the corresponding index. 0 means mandatory and 1
135  * means optional.
136  */
137 #define REG_OPTIONAL (0x1FC7D0)
138 
139 /*
140  * Use the index of the register in per-cpu cpc_regs[] to check if
141  * it's an optional one.
142  */
143 #define IS_OPTIONAL_CPC_REG(reg_idx) (REG_OPTIONAL & (1U << (reg_idx)))
144 
145 /*
146  * Arbitrary Retries in case the remote processor is slow to respond
147  * to PCC commands. Keeping it high enough to cover emulators where
148  * the processors run painfully slow.
149  */
150 #define NUM_RETRIES 500ULL
151 
152 #define OVER_16BTS_MASK ~0xFFFFULL
153 
154 #define define_one_cppc_ro(_name)		\
155 static struct kobj_attribute _name =		\
156 __ATTR(_name, 0444, show_##_name, NULL)
157 
158 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
159 
160 #define show_cppc_data(access_fn, struct_name, member_name)		\
161 	static ssize_t show_##member_name(struct kobject *kobj,		\
162 				struct kobj_attribute *attr, char *buf)	\
163 	{								\
164 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
165 		struct struct_name st_name = {0};			\
166 		int ret;						\
167 									\
168 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
169 		if (ret)						\
170 			return ret;					\
171 									\
172 		return sysfs_emit(buf, "%llu\n",		\
173 				(u64)st_name.member_name);		\
174 	}								\
175 	define_one_cppc_ro(member_name)
176 
177 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
178 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
179 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
180 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
181 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
182 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
183 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
184 
185 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
186 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
187 
188 /* Check for valid access_width, otherwise, fallback to using bit_width */
189 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
190 
191 /* Shift and apply the mask for CPC reads/writes */
192 #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) &				\
193 					GENMASK(((reg)->bit_width) - 1, 0))
194 #define MASK_VAL_WRITE(reg, prev_val, val)						\
195 	((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) |		\
196 	((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset)))	\
197 
198 static ssize_t show_feedback_ctrs(struct kobject *kobj,
199 		struct kobj_attribute *attr, char *buf)
200 {
201 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
202 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
203 	int ret;
204 
205 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
206 	if (ret)
207 		return ret;
208 
209 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
210 			fb_ctrs.reference, fb_ctrs.delivered);
211 }
212 define_one_cppc_ro(feedback_ctrs);
213 
214 static struct attribute *cppc_attrs[] = {
215 	&feedback_ctrs.attr,
216 	&reference_perf.attr,
217 	&wraparound_time.attr,
218 	&highest_perf.attr,
219 	&lowest_perf.attr,
220 	&lowest_nonlinear_perf.attr,
221 	&guaranteed_perf.attr,
222 	&nominal_perf.attr,
223 	&nominal_freq.attr,
224 	&lowest_freq.attr,
225 	NULL
226 };
227 ATTRIBUTE_GROUPS(cppc);
228 
229 static const struct kobj_type cppc_ktype = {
230 	.sysfs_ops = &kobj_sysfs_ops,
231 	.default_groups = cppc_groups,
232 };
233 
234 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
235 {
236 	int ret, status;
237 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
238 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
239 					pcc_ss_data->pcc_channel->shmem;
240 
241 	if (!pcc_ss_data->platform_owns_pcc)
242 		return 0;
243 
244 	/*
245 	 * Poll PCC status register every 3us(delay_us) for maximum of
246 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
247 	 */
248 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
249 					status & PCC_CMD_COMPLETE_MASK, 3,
250 					pcc_ss_data->deadline_us);
251 
252 	if (likely(!ret)) {
253 		pcc_ss_data->platform_owns_pcc = false;
254 		if (chk_err_bit && (status & PCC_ERROR_MASK))
255 			ret = -EIO;
256 	}
257 
258 	if (unlikely(ret))
259 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
260 		       pcc_ss_id, ret);
261 
262 	return ret;
263 }
264 
265 /*
266  * This function transfers the ownership of the PCC to the platform
267  * So it must be called while holding write_lock(pcc_lock)
268  */
269 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
270 {
271 	int ret = -EIO, i;
272 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
273 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
274 					pcc_ss_data->pcc_channel->shmem;
275 	unsigned int time_delta;
276 
277 	/*
278 	 * For CMD_WRITE we know for a fact the caller should have checked
279 	 * the channel before writing to PCC space
280 	 */
281 	if (cmd == CMD_READ) {
282 		/*
283 		 * If there are pending cpc_writes, then we stole the channel
284 		 * before write completion, so first send a WRITE command to
285 		 * platform
286 		 */
287 		if (pcc_ss_data->pending_pcc_write_cmd)
288 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
289 
290 		ret = check_pcc_chan(pcc_ss_id, false);
291 		if (ret)
292 			goto end;
293 	} else /* CMD_WRITE */
294 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
295 
296 	/*
297 	 * Handle the Minimum Request Turnaround Time(MRTT)
298 	 * "The minimum amount of time that OSPM must wait after the completion
299 	 * of a command before issuing the next command, in microseconds"
300 	 */
301 	if (pcc_ss_data->pcc_mrtt) {
302 		time_delta = ktime_us_delta(ktime_get(),
303 					    pcc_ss_data->last_cmd_cmpl_time);
304 		if (pcc_ss_data->pcc_mrtt > time_delta)
305 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
306 	}
307 
308 	/*
309 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
310 	 * "The maximum number of periodic requests that the subspace channel can
311 	 * support, reported in commands per minute. 0 indicates no limitation."
312 	 *
313 	 * This parameter should be ideally zero or large enough so that it can
314 	 * handle maximum number of requests that all the cores in the system can
315 	 * collectively generate. If it is not, we will follow the spec and just
316 	 * not send the request to the platform after hitting the MPAR limit in
317 	 * any 60s window
318 	 */
319 	if (pcc_ss_data->pcc_mpar) {
320 		if (pcc_ss_data->mpar_count == 0) {
321 			time_delta = ktime_ms_delta(ktime_get(),
322 						    pcc_ss_data->last_mpar_reset);
323 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
324 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
325 					 pcc_ss_id);
326 				ret = -EIO;
327 				goto end;
328 			}
329 			pcc_ss_data->last_mpar_reset = ktime_get();
330 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
331 		}
332 		pcc_ss_data->mpar_count--;
333 	}
334 
335 	/* Write to the shared comm region. */
336 	writew_relaxed(cmd, &generic_comm_base->command);
337 
338 	/* Flip CMD COMPLETE bit */
339 	writew_relaxed(0, &generic_comm_base->status);
340 
341 	pcc_ss_data->platform_owns_pcc = true;
342 
343 	/* Ring doorbell */
344 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
345 	if (ret < 0) {
346 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
347 		       pcc_ss_id, cmd, ret);
348 		goto end;
349 	}
350 
351 	/* wait for completion and check for PCC error bit */
352 	ret = check_pcc_chan(pcc_ss_id, true);
353 
354 	if (pcc_ss_data->pcc_mrtt)
355 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
356 
357 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
358 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
359 	else
360 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
361 
362 end:
363 	if (cmd == CMD_WRITE) {
364 		if (unlikely(ret)) {
365 			for_each_possible_cpu(i) {
366 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
367 
368 				if (!desc)
369 					continue;
370 
371 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
372 					desc->write_cmd_status = ret;
373 			}
374 		}
375 		pcc_ss_data->pcc_write_cnt++;
376 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
377 	}
378 
379 	return ret;
380 }
381 
382 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
383 {
384 	if (ret < 0)
385 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
386 				*(u16 *)msg, ret);
387 	else
388 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
389 				*(u16 *)msg, ret);
390 }
391 
392 static struct mbox_client cppc_mbox_cl = {
393 	.tx_done = cppc_chan_tx_done,
394 	.knows_txdone = true,
395 };
396 
397 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
398 {
399 	int result = -EFAULT;
400 	acpi_status status = AE_OK;
401 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
402 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
403 	struct acpi_buffer state = {0, NULL};
404 	union acpi_object  *psd = NULL;
405 	struct acpi_psd_package *pdomain;
406 
407 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
408 					    &buffer, ACPI_TYPE_PACKAGE);
409 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
410 		return 0;
411 	if (ACPI_FAILURE(status))
412 		return -ENODEV;
413 
414 	psd = buffer.pointer;
415 	if (!psd || psd->package.count != 1) {
416 		pr_debug("Invalid _PSD data\n");
417 		goto end;
418 	}
419 
420 	pdomain = &(cpc_ptr->domain_info);
421 
422 	state.length = sizeof(struct acpi_psd_package);
423 	state.pointer = pdomain;
424 
425 	status = acpi_extract_package(&(psd->package.elements[0]),
426 		&format, &state);
427 	if (ACPI_FAILURE(status)) {
428 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
429 		goto end;
430 	}
431 
432 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
433 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
434 		goto end;
435 	}
436 
437 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
438 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
439 		goto end;
440 	}
441 
442 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
443 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
444 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
445 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
446 		goto end;
447 	}
448 
449 	result = 0;
450 end:
451 	kfree(buffer.pointer);
452 	return result;
453 }
454 
455 bool acpi_cpc_valid(void)
456 {
457 	struct cpc_desc *cpc_ptr;
458 	int cpu;
459 
460 	if (acpi_disabled)
461 		return false;
462 
463 	for_each_online_cpu(cpu) {
464 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
465 		if (!cpc_ptr)
466 			return false;
467 	}
468 
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
472 
473 bool cppc_allow_fast_switch(void)
474 {
475 	struct cpc_register_resource *desired_reg;
476 	struct cpc_desc *cpc_ptr;
477 	int cpu;
478 
479 	for_each_online_cpu(cpu) {
480 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
481 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
482 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
483 				!CPC_IN_SYSTEM_IO(desired_reg))
484 			return false;
485 	}
486 
487 	return true;
488 }
489 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
490 
491 /**
492  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
493  * @cpu: Find all CPUs that share a domain with cpu.
494  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
495  *
496  *	Return: 0 for success or negative value for err.
497  */
498 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
499 {
500 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
501 	struct acpi_psd_package *match_pdomain;
502 	struct acpi_psd_package *pdomain;
503 	int count_target, i;
504 
505 	/*
506 	 * Now that we have _PSD data from all CPUs, let's setup P-state
507 	 * domain info.
508 	 */
509 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
510 	if (!cpc_ptr)
511 		return -EFAULT;
512 
513 	pdomain = &(cpc_ptr->domain_info);
514 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
515 	if (pdomain->num_processors <= 1)
516 		return 0;
517 
518 	/* Validate the Domain info */
519 	count_target = pdomain->num_processors;
520 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
521 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
522 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
523 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
524 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
525 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
526 
527 	for_each_possible_cpu(i) {
528 		if (i == cpu)
529 			continue;
530 
531 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
532 		if (!match_cpc_ptr)
533 			goto err_fault;
534 
535 		match_pdomain = &(match_cpc_ptr->domain_info);
536 		if (match_pdomain->domain != pdomain->domain)
537 			continue;
538 
539 		/* Here i and cpu are in the same domain */
540 		if (match_pdomain->num_processors != count_target)
541 			goto err_fault;
542 
543 		if (pdomain->coord_type != match_pdomain->coord_type)
544 			goto err_fault;
545 
546 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
547 	}
548 
549 	return 0;
550 
551 err_fault:
552 	/* Assume no coordination on any error parsing domain info */
553 	cpumask_clear(cpu_data->shared_cpu_map);
554 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
555 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
556 
557 	return -EFAULT;
558 }
559 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
560 
561 static int register_pcc_channel(int pcc_ss_idx)
562 {
563 	struct pcc_mbox_chan *pcc_chan;
564 	u64 usecs_lat;
565 
566 	if (pcc_ss_idx >= 0) {
567 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
568 
569 		if (IS_ERR(pcc_chan)) {
570 			pr_err("Failed to find PCC channel for subspace %d\n",
571 			       pcc_ss_idx);
572 			return -ENODEV;
573 		}
574 
575 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
576 		/*
577 		 * cppc_ss->latency is just a Nominal value. In reality
578 		 * the remote processor could be much slower to reply.
579 		 * So add an arbitrary amount of wait on top of Nominal.
580 		 */
581 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
582 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
583 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
584 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
585 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
586 
587 		/* Set flag so that we don't come here for each CPU. */
588 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
589 	}
590 
591 	return 0;
592 }
593 
594 /**
595  * cpc_ffh_supported() - check if FFH reading supported
596  *
597  * Check if the architecture has support for functional fixed hardware
598  * read/write capability.
599  *
600  * Return: true for supported, false for not supported
601  */
602 bool __weak cpc_ffh_supported(void)
603 {
604 	return false;
605 }
606 
607 /**
608  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
609  *
610  * Check if the architectural support for CPPC is present even
611  * if the _OSC hasn't prescribed it
612  *
613  * Return: true for supported, false for not supported
614  */
615 bool __weak cpc_supported_by_cpu(void)
616 {
617 	return false;
618 }
619 
620 /**
621  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
622  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
623  *
624  * Check and allocate the cppc_pcc_data memory.
625  * In some processor configurations it is possible that same subspace
626  * is shared between multiple CPUs. This is seen especially in CPUs
627  * with hardware multi-threading support.
628  *
629  * Return: 0 for success, errno for failure
630  */
631 static int pcc_data_alloc(int pcc_ss_id)
632 {
633 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
634 		return -EINVAL;
635 
636 	if (pcc_data[pcc_ss_id]) {
637 		pcc_data[pcc_ss_id]->refcount++;
638 	} else {
639 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
640 					      GFP_KERNEL);
641 		if (!pcc_data[pcc_ss_id])
642 			return -ENOMEM;
643 		pcc_data[pcc_ss_id]->refcount++;
644 	}
645 
646 	return 0;
647 }
648 
649 /*
650  * An example CPC table looks like the following.
651  *
652  *  Name (_CPC, Package() {
653  *      17,							// NumEntries
654  *      1,							// Revision
655  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
656  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
657  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
658  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
659  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
660  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
661  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
662  *      ...
663  *      ...
664  *      ...
665  *  }
666  * Each Register() encodes how to access that specific register.
667  * e.g. a sample PCC entry has the following encoding:
668  *
669  *  Register (
670  *      PCC,	// AddressSpaceKeyword
671  *      8,	// RegisterBitWidth
672  *      8,	// RegisterBitOffset
673  *      0x30,	// RegisterAddress
674  *      9,	// AccessSize (subspace ID)
675  *  )
676  */
677 
678 /**
679  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
680  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
681  *
682  *	Return: 0 for success or negative value for err.
683  */
684 int acpi_cppc_processor_probe(struct acpi_processor *pr)
685 {
686 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
687 	union acpi_object *out_obj, *cpc_obj;
688 	struct cpc_desc *cpc_ptr;
689 	struct cpc_reg *gas_t;
690 	struct device *cpu_dev;
691 	acpi_handle handle = pr->handle;
692 	unsigned int num_ent, i, cpc_rev;
693 	int pcc_subspace_id = -1;
694 	acpi_status status;
695 	int ret = -ENODATA;
696 
697 	if (!osc_sb_cppc2_support_acked) {
698 		pr_debug("CPPC v2 _OSC not acked\n");
699 		if (!cpc_supported_by_cpu()) {
700 			pr_debug("CPPC is not supported by the CPU\n");
701 			return -ENODEV;
702 		}
703 	}
704 
705 	/* Parse the ACPI _CPC table for this CPU. */
706 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
707 			ACPI_TYPE_PACKAGE);
708 	if (ACPI_FAILURE(status)) {
709 		ret = -ENODEV;
710 		goto out_buf_free;
711 	}
712 
713 	out_obj = (union acpi_object *) output.pointer;
714 
715 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
716 	if (!cpc_ptr) {
717 		ret = -ENOMEM;
718 		goto out_buf_free;
719 	}
720 
721 	/* First entry is NumEntries. */
722 	cpc_obj = &out_obj->package.elements[0];
723 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
724 		num_ent = cpc_obj->integer.value;
725 		if (num_ent <= 1) {
726 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
727 				 num_ent, pr->id);
728 			goto out_free;
729 		}
730 	} else {
731 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
732 			 cpc_obj->type, pr->id);
733 		goto out_free;
734 	}
735 
736 	/* Second entry should be revision. */
737 	cpc_obj = &out_obj->package.elements[1];
738 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
739 		cpc_rev = cpc_obj->integer.value;
740 	} else {
741 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
742 			 cpc_obj->type, pr->id);
743 		goto out_free;
744 	}
745 
746 	if (cpc_rev < CPPC_V2_REV) {
747 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
748 			 pr->id);
749 		goto out_free;
750 	}
751 
752 	/*
753 	 * Disregard _CPC if the number of entries in the return package is not
754 	 * as expected, but support future revisions being proper supersets of
755 	 * the v3 and only causing more entries to be returned by _CPC.
756 	 */
757 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
758 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
759 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
760 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
761 			 num_ent, pr->id);
762 		goto out_free;
763 	}
764 	if (cpc_rev > CPPC_V3_REV) {
765 		num_ent = CPPC_V3_NUM_ENT;
766 		cpc_rev = CPPC_V3_REV;
767 	}
768 
769 	cpc_ptr->num_entries = num_ent;
770 	cpc_ptr->version = cpc_rev;
771 
772 	/* Iterate through remaining entries in _CPC */
773 	for (i = 2; i < num_ent; i++) {
774 		cpc_obj = &out_obj->package.elements[i];
775 
776 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
777 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
778 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
779 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
780 			gas_t = (struct cpc_reg *)
781 				cpc_obj->buffer.pointer;
782 
783 			/*
784 			 * The PCC Subspace index is encoded inside
785 			 * the CPC table entries. The same PCC index
786 			 * will be used for all the PCC entries,
787 			 * so extract it only once.
788 			 */
789 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
790 				if (pcc_subspace_id < 0) {
791 					pcc_subspace_id = gas_t->access_width;
792 					if (pcc_data_alloc(pcc_subspace_id))
793 						goto out_free;
794 				} else if (pcc_subspace_id != gas_t->access_width) {
795 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
796 						 pr->id);
797 					goto out_free;
798 				}
799 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
800 				if (gas_t->address) {
801 					void __iomem *addr;
802 					size_t access_width;
803 
804 					if (!osc_cpc_flexible_adr_space_confirmed) {
805 						pr_debug("Flexible address space capability not supported\n");
806 						if (!cpc_supported_by_cpu())
807 							goto out_free;
808 					}
809 
810 					access_width = GET_BIT_WIDTH(gas_t) / 8;
811 					addr = ioremap(gas_t->address, access_width);
812 					if (!addr)
813 						goto out_free;
814 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
815 				}
816 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
817 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
818 					/*
819 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
820 					 * SystemIO doesn't implement 64-bit
821 					 * registers.
822 					 */
823 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
824 						 gas_t->access_width);
825 					goto out_free;
826 				}
827 				if (gas_t->address & OVER_16BTS_MASK) {
828 					/* SystemIO registers use 16-bit integer addresses */
829 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
830 						 gas_t->address);
831 					goto out_free;
832 				}
833 				if (!osc_cpc_flexible_adr_space_confirmed) {
834 					pr_debug("Flexible address space capability not supported\n");
835 					if (!cpc_supported_by_cpu())
836 						goto out_free;
837 				}
838 			} else {
839 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
840 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
841 					pr_debug("Unsupported register type (%d) in _CPC\n",
842 						 gas_t->space_id);
843 					goto out_free;
844 				}
845 			}
846 
847 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
848 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
849 		} else {
850 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
851 				 i, pr->id);
852 			goto out_free;
853 		}
854 	}
855 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
856 
857 	/*
858 	 * Initialize the remaining cpc_regs as unsupported.
859 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
860 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
861 	 */
862 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
863 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
864 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
865 	}
866 
867 
868 	/* Store CPU Logical ID */
869 	cpc_ptr->cpu_id = pr->id;
870 	raw_spin_lock_init(&cpc_ptr->rmw_lock);
871 
872 	/* Parse PSD data for this CPU */
873 	ret = acpi_get_psd(cpc_ptr, handle);
874 	if (ret)
875 		goto out_free;
876 
877 	/* Register PCC channel once for all PCC subspace ID. */
878 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
879 		ret = register_pcc_channel(pcc_subspace_id);
880 		if (ret)
881 			goto out_free;
882 
883 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
884 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
885 	}
886 
887 	/* Everything looks okay */
888 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
889 
890 	/* Add per logical CPU nodes for reading its feedback counters. */
891 	cpu_dev = get_cpu_device(pr->id);
892 	if (!cpu_dev) {
893 		ret = -EINVAL;
894 		goto out_free;
895 	}
896 
897 	/* Plug PSD data into this CPU's CPC descriptor. */
898 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
899 
900 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
901 			"acpi_cppc");
902 	if (ret) {
903 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
904 		kobject_put(&cpc_ptr->kobj);
905 		goto out_free;
906 	}
907 
908 	kfree(output.pointer);
909 	return 0;
910 
911 out_free:
912 	/* Free all the mapped sys mem areas for this CPU */
913 	for (i = 2; i < cpc_ptr->num_entries; i++) {
914 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
915 
916 		if (addr)
917 			iounmap(addr);
918 	}
919 	kfree(cpc_ptr);
920 
921 out_buf_free:
922 	kfree(output.pointer);
923 	return ret;
924 }
925 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
926 
927 /**
928  * acpi_cppc_processor_exit - Cleanup CPC structs.
929  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
930  *
931  * Return: Void
932  */
933 void acpi_cppc_processor_exit(struct acpi_processor *pr)
934 {
935 	struct cpc_desc *cpc_ptr;
936 	unsigned int i;
937 	void __iomem *addr;
938 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
939 
940 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
941 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
942 			pcc_data[pcc_ss_id]->refcount--;
943 			if (!pcc_data[pcc_ss_id]->refcount) {
944 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
945 				kfree(pcc_data[pcc_ss_id]);
946 				pcc_data[pcc_ss_id] = NULL;
947 			}
948 		}
949 	}
950 
951 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
952 	if (!cpc_ptr)
953 		return;
954 
955 	/* Free all the mapped sys mem areas for this CPU */
956 	for (i = 2; i < cpc_ptr->num_entries; i++) {
957 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
958 		if (addr)
959 			iounmap(addr);
960 	}
961 
962 	kobject_put(&cpc_ptr->kobj);
963 	kfree(cpc_ptr);
964 }
965 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
966 
967 /**
968  * cpc_read_ffh() - Read FFH register
969  * @cpunum:	CPU number to read
970  * @reg:	cppc register information
971  * @val:	place holder for return value
972  *
973  * Read bit_width bits from a specified address and bit_offset
974  *
975  * Return: 0 for success and error code
976  */
977 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
978 {
979 	return -ENOTSUPP;
980 }
981 
982 /**
983  * cpc_write_ffh() - Write FFH register
984  * @cpunum:	CPU number to write
985  * @reg:	cppc register information
986  * @val:	value to write
987  *
988  * Write value of bit_width bits to a specified address and bit_offset
989  *
990  * Return: 0 for success and error code
991  */
992 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
993 {
994 	return -ENOTSUPP;
995 }
996 
997 /*
998  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
999  * as fast as possible. We have already mapped the PCC subspace during init, so
1000  * we can directly write to it.
1001  */
1002 
1003 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1004 {
1005 	void __iomem *vaddr = NULL;
1006 	int size;
1007 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1008 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1009 
1010 	if (reg_res->type == ACPI_TYPE_INTEGER) {
1011 		*val = reg_res->cpc_entry.int_value;
1012 		return 0;
1013 	}
1014 
1015 	*val = 0;
1016 	size = GET_BIT_WIDTH(reg);
1017 
1018 	if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1019 	    reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1020 		u32 val_u32;
1021 		acpi_status status;
1022 
1023 		status = acpi_os_read_port((acpi_io_address)reg->address,
1024 					   &val_u32, size);
1025 		if (ACPI_FAILURE(status)) {
1026 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1027 				 reg->address);
1028 			return -EFAULT;
1029 		}
1030 
1031 		*val = val_u32;
1032 		return 0;
1033 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1034 		/*
1035 		 * For registers in PCC space, the register size is determined
1036 		 * by the bit width field; the access size is used to indicate
1037 		 * the PCC subspace id.
1038 		 */
1039 		size = reg->bit_width;
1040 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1041 	}
1042 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1043 		vaddr = reg_res->sys_mem_vaddr;
1044 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1045 		return cpc_read_ffh(cpu, reg, val);
1046 	else
1047 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1048 				val, size);
1049 
1050 	switch (size) {
1051 	case 8:
1052 		*val = readb_relaxed(vaddr);
1053 		break;
1054 	case 16:
1055 		*val = readw_relaxed(vaddr);
1056 		break;
1057 	case 32:
1058 		*val = readl_relaxed(vaddr);
1059 		break;
1060 	case 64:
1061 		*val = readq_relaxed(vaddr);
1062 		break;
1063 	default:
1064 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1065 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1066 				size, reg->address);
1067 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1068 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1069 				size, pcc_ss_id);
1070 		}
1071 		return -EFAULT;
1072 	}
1073 
1074 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1075 		*val = MASK_VAL_READ(reg, *val);
1076 
1077 	return 0;
1078 }
1079 
1080 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1081 {
1082 	int ret_val = 0;
1083 	int size;
1084 	u64 prev_val;
1085 	void __iomem *vaddr = NULL;
1086 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1087 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1088 	struct cpc_desc *cpc_desc;
1089 	unsigned long flags;
1090 
1091 	size = GET_BIT_WIDTH(reg);
1092 
1093 	if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1094 	    reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1095 		acpi_status status;
1096 
1097 		status = acpi_os_write_port((acpi_io_address)reg->address,
1098 					    (u32)val, size);
1099 		if (ACPI_FAILURE(status)) {
1100 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1101 				 reg->address);
1102 			return -EFAULT;
1103 		}
1104 
1105 		return 0;
1106 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1107 		/*
1108 		 * For registers in PCC space, the register size is determined
1109 		 * by the bit width field; the access size is used to indicate
1110 		 * the PCC subspace id.
1111 		 */
1112 		size = reg->bit_width;
1113 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1114 	}
1115 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1116 		vaddr = reg_res->sys_mem_vaddr;
1117 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1118 		return cpc_write_ffh(cpu, reg, val);
1119 	else
1120 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1121 				val, size);
1122 
1123 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1124 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1125 		if (!cpc_desc) {
1126 			pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1127 			return -ENODEV;
1128 		}
1129 
1130 		raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1131 		switch (size) {
1132 		case 8:
1133 			prev_val = readb_relaxed(vaddr);
1134 			break;
1135 		case 16:
1136 			prev_val = readw_relaxed(vaddr);
1137 			break;
1138 		case 32:
1139 			prev_val = readl_relaxed(vaddr);
1140 			break;
1141 		case 64:
1142 			prev_val = readq_relaxed(vaddr);
1143 			break;
1144 		default:
1145 			raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1146 			return -EFAULT;
1147 		}
1148 		val = MASK_VAL_WRITE(reg, prev_val, val);
1149 	}
1150 
1151 	switch (size) {
1152 	case 8:
1153 		writeb_relaxed(val, vaddr);
1154 		break;
1155 	case 16:
1156 		writew_relaxed(val, vaddr);
1157 		break;
1158 	case 32:
1159 		writel_relaxed(val, vaddr);
1160 		break;
1161 	case 64:
1162 		writeq_relaxed(val, vaddr);
1163 		break;
1164 	default:
1165 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1166 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1167 				size, reg->address);
1168 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1169 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1170 				size, pcc_ss_id);
1171 		}
1172 		ret_val = -EFAULT;
1173 		break;
1174 	}
1175 
1176 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1177 		raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1178 
1179 	return ret_val;
1180 }
1181 
1182 static int cppc_get_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 *val)
1183 {
1184 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1185 	struct cppc_pcc_data *pcc_ss_data = NULL;
1186 	int ret;
1187 
1188 	if (pcc_ss_id < 0) {
1189 		pr_debug("Invalid pcc_ss_id\n");
1190 		return -ENODEV;
1191 	}
1192 
1193 	pcc_ss_data = pcc_data[pcc_ss_id];
1194 
1195 	down_write(&pcc_ss_data->pcc_lock);
1196 
1197 	if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1198 		ret = cpc_read(cpu, reg, val);
1199 	else
1200 		ret = -EIO;
1201 
1202 	up_write(&pcc_ss_data->pcc_lock);
1203 
1204 	return ret;
1205 }
1206 
1207 static int cppc_get_reg_val(int cpu, enum cppc_regs reg_idx, u64 *val)
1208 {
1209 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1210 	struct cpc_register_resource *reg;
1211 
1212 	if (val == NULL)
1213 		return -EINVAL;
1214 
1215 	if (!cpc_desc) {
1216 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1217 		return -ENODEV;
1218 	}
1219 
1220 	reg = &cpc_desc->cpc_regs[reg_idx];
1221 
1222 	if ((reg->type == ACPI_TYPE_INTEGER && IS_OPTIONAL_CPC_REG(reg_idx) &&
1223 	     !reg->cpc_entry.int_value) || (reg->type != ACPI_TYPE_INTEGER &&
1224 	     IS_NULL_REG(&reg->cpc_entry.reg))) {
1225 		pr_debug("CPC register is not supported\n");
1226 		return -EOPNOTSUPP;
1227 	}
1228 
1229 	if (CPC_IN_PCC(reg))
1230 		return cppc_get_reg_val_in_pcc(cpu, reg, val);
1231 
1232 	return cpc_read(cpu, reg, val);
1233 }
1234 
1235 static int cppc_set_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 val)
1236 {
1237 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1238 	struct cppc_pcc_data *pcc_ss_data = NULL;
1239 	int ret;
1240 
1241 	if (pcc_ss_id < 0) {
1242 		pr_debug("Invalid pcc_ss_id\n");
1243 		return -ENODEV;
1244 	}
1245 
1246 	ret = cpc_write(cpu, reg, val);
1247 	if (ret)
1248 		return ret;
1249 
1250 	pcc_ss_data = pcc_data[pcc_ss_id];
1251 
1252 	down_write(&pcc_ss_data->pcc_lock);
1253 	/* after writing CPC, transfer the ownership of PCC to platform */
1254 	ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1255 	up_write(&pcc_ss_data->pcc_lock);
1256 
1257 	return ret;
1258 }
1259 
1260 static int cppc_set_reg_val(int cpu, enum cppc_regs reg_idx, u64 val)
1261 {
1262 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1263 	struct cpc_register_resource *reg;
1264 
1265 	if (!cpc_desc) {
1266 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1267 		return -ENODEV;
1268 	}
1269 
1270 	reg = &cpc_desc->cpc_regs[reg_idx];
1271 
1272 	/* if a register is writeable, it must be a buffer and not null */
1273 	if ((reg->type != ACPI_TYPE_BUFFER) || IS_NULL_REG(&reg->cpc_entry.reg)) {
1274 		pr_debug("CPC register is not supported\n");
1275 		return -EOPNOTSUPP;
1276 	}
1277 
1278 	if (CPC_IN_PCC(reg))
1279 		return cppc_set_reg_val_in_pcc(cpu, reg, val);
1280 
1281 	return cpc_write(cpu, reg, val);
1282 }
1283 
1284 /**
1285  * cppc_get_desired_perf - Get the desired performance register value.
1286  * @cpunum: CPU from which to get desired performance.
1287  * @desired_perf: Return address.
1288  *
1289  * Return: 0 for success, -EIO otherwise.
1290  */
1291 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1292 {
1293 	return cppc_get_reg_val(cpunum, DESIRED_PERF, desired_perf);
1294 }
1295 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1296 
1297 /**
1298  * cppc_get_nominal_perf - Get the nominal performance register value.
1299  * @cpunum: CPU from which to get nominal performance.
1300  * @nominal_perf: Return address.
1301  *
1302  * Return: 0 for success, -EIO otherwise.
1303  */
1304 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1305 {
1306 	return cppc_get_reg_val(cpunum, NOMINAL_PERF, nominal_perf);
1307 }
1308 
1309 /**
1310  * cppc_get_highest_perf - Get the highest performance register value.
1311  * @cpunum: CPU from which to get highest performance.
1312  * @highest_perf: Return address.
1313  *
1314  * Return: 0 for success, -EIO otherwise.
1315  */
1316 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1317 {
1318 	return cppc_get_reg_val(cpunum, HIGHEST_PERF, highest_perf);
1319 }
1320 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1321 
1322 /**
1323  * cppc_get_epp_perf - Get the epp register value.
1324  * @cpunum: CPU from which to get epp preference value.
1325  * @epp_perf: Return address.
1326  *
1327  * Return: 0 for success, -EIO otherwise.
1328  */
1329 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1330 {
1331 	return cppc_get_reg_val(cpunum, ENERGY_PERF, epp_perf);
1332 }
1333 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1334 
1335 /**
1336  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1337  * @cpunum: CPU from which to get capabilities info.
1338  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1339  *
1340  * Return: 0 for success with perf_caps populated else -ERRNO.
1341  */
1342 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1343 {
1344 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1345 	struct cpc_register_resource *highest_reg, *lowest_reg,
1346 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1347 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1348 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1349 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1350 	struct cppc_pcc_data *pcc_ss_data = NULL;
1351 	int ret = 0, regs_in_pcc = 0;
1352 
1353 	if (!cpc_desc) {
1354 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1355 		return -ENODEV;
1356 	}
1357 
1358 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1359 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1360 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1361 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1362 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1363 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1364 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1365 
1366 	/* Are any of the regs PCC ?*/
1367 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1368 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1369 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg) ||
1370 		CPC_IN_PCC(guaranteed_reg)) {
1371 		if (pcc_ss_id < 0) {
1372 			pr_debug("Invalid pcc_ss_id\n");
1373 			return -ENODEV;
1374 		}
1375 		pcc_ss_data = pcc_data[pcc_ss_id];
1376 		regs_in_pcc = 1;
1377 		down_write(&pcc_ss_data->pcc_lock);
1378 		/* Ring doorbell once to update PCC subspace */
1379 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1380 			ret = -EIO;
1381 			goto out_err;
1382 		}
1383 	}
1384 
1385 	cpc_read(cpunum, highest_reg, &high);
1386 	perf_caps->highest_perf = high;
1387 
1388 	cpc_read(cpunum, lowest_reg, &low);
1389 	perf_caps->lowest_perf = low;
1390 
1391 	cpc_read(cpunum, nominal_reg, &nom);
1392 	perf_caps->nominal_perf = nom;
1393 
1394 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1395 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1396 		perf_caps->guaranteed_perf = 0;
1397 	} else {
1398 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1399 		perf_caps->guaranteed_perf = guaranteed;
1400 	}
1401 
1402 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1403 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1404 
1405 	if (!high || !low || !nom || !min_nonlinear)
1406 		ret = -EFAULT;
1407 
1408 	/* Read optional lowest and nominal frequencies if present */
1409 	if (CPC_SUPPORTED(low_freq_reg))
1410 		cpc_read(cpunum, low_freq_reg, &low_f);
1411 
1412 	if (CPC_SUPPORTED(nom_freq_reg))
1413 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1414 
1415 	perf_caps->lowest_freq = low_f;
1416 	perf_caps->nominal_freq = nom_f;
1417 
1418 
1419 out_err:
1420 	if (regs_in_pcc)
1421 		up_write(&pcc_ss_data->pcc_lock);
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1425 
1426 /**
1427  * cppc_perf_ctrs_in_pcc_cpu - Check if any perf counters of a CPU are in PCC.
1428  * @cpu: CPU on which to check perf counters.
1429  *
1430  * Return: true if any of the counters are in PCC regions, false otherwise
1431  */
1432 bool cppc_perf_ctrs_in_pcc_cpu(unsigned int cpu)
1433 {
1434 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1435 	struct cpc_register_resource *ref_perf_reg;
1436 
1437 	/*
1438 	 * If reference perf register is not supported then we should use the
1439 	 * nominal perf value
1440 	 */
1441 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1442 	if (!CPC_SUPPORTED(ref_perf_reg))
1443 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1444 
1445 	return CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1446 		CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1447 		CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]) ||
1448 		CPC_IN_PCC(ref_perf_reg);
1449 }
1450 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc_cpu);
1451 
1452 /**
1453  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1454  *
1455  * CPPC has flexibility about how CPU performance counters are accessed.
1456  * One of the choices is PCC regions, which can have a high access latency. This
1457  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1458  *
1459  * Return: true if any of the counters are in PCC regions, false otherwise
1460  */
1461 bool cppc_perf_ctrs_in_pcc(void)
1462 {
1463 	int cpu;
1464 
1465 	for_each_online_cpu(cpu) {
1466 		if (cppc_perf_ctrs_in_pcc_cpu(cpu))
1467 			return true;
1468 	}
1469 
1470 	return false;
1471 }
1472 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1473 
1474 /**
1475  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1476  * @cpunum: CPU from which to read counters.
1477  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1478  *
1479  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1480  */
1481 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1482 {
1483 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1484 	struct cpc_register_resource *delivered_reg, *reference_reg,
1485 		*ref_perf_reg, *ctr_wrap_reg;
1486 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1487 	struct cppc_pcc_data *pcc_ss_data = NULL;
1488 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1489 	int ret = 0, regs_in_pcc = 0;
1490 
1491 	if (!cpc_desc) {
1492 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1493 		return -ENODEV;
1494 	}
1495 
1496 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1497 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1498 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1499 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1500 
1501 	/*
1502 	 * If reference perf register is not supported then we should
1503 	 * use the nominal perf value
1504 	 */
1505 	if (!CPC_SUPPORTED(ref_perf_reg))
1506 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1507 
1508 	/* Are any of the regs PCC ?*/
1509 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1510 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1511 		if (pcc_ss_id < 0) {
1512 			pr_debug("Invalid pcc_ss_id\n");
1513 			return -ENODEV;
1514 		}
1515 		pcc_ss_data = pcc_data[pcc_ss_id];
1516 		down_write(&pcc_ss_data->pcc_lock);
1517 		regs_in_pcc = 1;
1518 		/* Ring doorbell once to update PCC subspace */
1519 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1520 			ret = -EIO;
1521 			goto out_err;
1522 		}
1523 	}
1524 
1525 	cpc_read(cpunum, delivered_reg, &delivered);
1526 	cpc_read(cpunum, reference_reg, &reference);
1527 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1528 
1529 	/*
1530 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1531 	 * performance counters are assumed to never wrap during the lifetime of
1532 	 * platform
1533 	 */
1534 	ctr_wrap_time = (u64)(~((u64)0));
1535 	if (CPC_SUPPORTED(ctr_wrap_reg))
1536 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1537 
1538 	if (!delivered || !reference ||	!ref_perf) {
1539 		ret = -EFAULT;
1540 		goto out_err;
1541 	}
1542 
1543 	perf_fb_ctrs->delivered = delivered;
1544 	perf_fb_ctrs->reference = reference;
1545 	perf_fb_ctrs->reference_perf = ref_perf;
1546 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1547 out_err:
1548 	if (regs_in_pcc)
1549 		up_write(&pcc_ss_data->pcc_lock);
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1553 
1554 /*
1555  * Set Energy Performance Preference Register value through
1556  * Performance Controls Interface
1557  */
1558 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1559 {
1560 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1561 	struct cpc_register_resource *epp_set_reg;
1562 	struct cpc_register_resource *auto_sel_reg;
1563 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1564 	struct cppc_pcc_data *pcc_ss_data = NULL;
1565 	int ret;
1566 
1567 	if (!cpc_desc) {
1568 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1569 		return -ENODEV;
1570 	}
1571 
1572 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1573 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1574 
1575 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1576 		if (pcc_ss_id < 0) {
1577 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1578 			return -ENODEV;
1579 		}
1580 
1581 		if (CPC_SUPPORTED(auto_sel_reg)) {
1582 			ret = cpc_write(cpu, auto_sel_reg, enable);
1583 			if (ret)
1584 				return ret;
1585 		}
1586 
1587 		if (CPC_SUPPORTED(epp_set_reg)) {
1588 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1589 			if (ret)
1590 				return ret;
1591 		}
1592 
1593 		pcc_ss_data = pcc_data[pcc_ss_id];
1594 
1595 		down_write(&pcc_ss_data->pcc_lock);
1596 		/* after writing CPC, transfer the ownership of PCC to platform */
1597 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1598 		up_write(&pcc_ss_data->pcc_lock);
1599 	} else if (osc_cpc_flexible_adr_space_confirmed &&
1600 		   CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1601 		ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1602 	} else {
1603 		ret = -ENOTSUPP;
1604 		pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1605 	}
1606 
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1610 
1611 /**
1612  * cppc_set_epp() - Write the EPP register.
1613  * @cpu: CPU on which to write register.
1614  * @epp_val: Value to write to the EPP register.
1615  */
1616 int cppc_set_epp(int cpu, u64 epp_val)
1617 {
1618 	if (epp_val > CPPC_EPP_ENERGY_EFFICIENCY_PREF)
1619 		return -EINVAL;
1620 
1621 	return cppc_set_reg_val(cpu, ENERGY_PERF, epp_val);
1622 }
1623 EXPORT_SYMBOL_GPL(cppc_set_epp);
1624 
1625 /**
1626  * cppc_get_auto_act_window() - Read autonomous activity window register.
1627  * @cpu: CPU from which to read register.
1628  * @auto_act_window: Return address.
1629  *
1630  * According to ACPI 6.5, s8.4.6.1.6, the value read from the autonomous
1631  * activity window register consists of two parts: a 7 bits value indicate
1632  * significand and a 3 bits value indicate exponent.
1633  */
1634 int cppc_get_auto_act_window(int cpu, u64 *auto_act_window)
1635 {
1636 	unsigned int exp;
1637 	u64 val, sig;
1638 	int ret;
1639 
1640 	if (auto_act_window == NULL)
1641 		return -EINVAL;
1642 
1643 	ret = cppc_get_reg_val(cpu, AUTO_ACT_WINDOW, &val);
1644 	if (ret)
1645 		return ret;
1646 
1647 	sig = val & CPPC_AUTO_ACT_WINDOW_MAX_SIG;
1648 	exp = (val >> CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) & CPPC_AUTO_ACT_WINDOW_MAX_EXP;
1649 	*auto_act_window = sig * int_pow(10, exp);
1650 
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(cppc_get_auto_act_window);
1654 
1655 /**
1656  * cppc_set_auto_act_window() - Write autonomous activity window register.
1657  * @cpu: CPU on which to write register.
1658  * @auto_act_window: usec value to write to the autonomous activity window register.
1659  *
1660  * According to ACPI 6.5, s8.4.6.1.6, the value to write to the autonomous
1661  * activity window register consists of two parts: a 7 bits value indicate
1662  * significand and a 3 bits value indicate exponent.
1663  */
1664 int cppc_set_auto_act_window(int cpu, u64 auto_act_window)
1665 {
1666 	/* The max value to store is 1270000000 */
1667 	u64 max_val = CPPC_AUTO_ACT_WINDOW_MAX_SIG * int_pow(10, CPPC_AUTO_ACT_WINDOW_MAX_EXP);
1668 	int exp = 0;
1669 	u64 val;
1670 
1671 	if (auto_act_window > max_val)
1672 		return -EINVAL;
1673 
1674 	/*
1675 	 * The max significand is 127, when auto_act_window is larger than
1676 	 * 129, discard the precision of the last digit and increase the
1677 	 * exponent by 1.
1678 	 */
1679 	while (auto_act_window > CPPC_AUTO_ACT_WINDOW_SIG_CARRY_THRESH) {
1680 		auto_act_window /= 10;
1681 		exp += 1;
1682 	}
1683 
1684 	/* For 128 and 129, cut it to 127. */
1685 	if (auto_act_window > CPPC_AUTO_ACT_WINDOW_MAX_SIG)
1686 		auto_act_window = CPPC_AUTO_ACT_WINDOW_MAX_SIG;
1687 
1688 	val = (exp << CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) + auto_act_window;
1689 
1690 	return cppc_set_reg_val(cpu, AUTO_ACT_WINDOW, val);
1691 }
1692 EXPORT_SYMBOL_GPL(cppc_set_auto_act_window);
1693 
1694 /**
1695  * cppc_get_auto_sel() - Read autonomous selection register.
1696  * @cpu: CPU from which to read register.
1697  * @enable: Return address.
1698  */
1699 int cppc_get_auto_sel(int cpu, bool *enable)
1700 {
1701 	u64 auto_sel;
1702 	int ret;
1703 
1704 	if (enable == NULL)
1705 		return -EINVAL;
1706 
1707 	ret = cppc_get_reg_val(cpu, AUTO_SEL_ENABLE, &auto_sel);
1708 	if (ret)
1709 		return ret;
1710 
1711 	*enable = (bool)auto_sel;
1712 
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(cppc_get_auto_sel);
1716 
1717 /**
1718  * cppc_set_auto_sel - Write autonomous selection register.
1719  * @cpu    : CPU to which to write register.
1720  * @enable : the desired value of autonomous selection resiter to be updated.
1721  */
1722 int cppc_set_auto_sel(int cpu, bool enable)
1723 {
1724 	return cppc_set_reg_val(cpu, AUTO_SEL_ENABLE, enable);
1725 }
1726 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1727 
1728 /**
1729  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1730  * Continuous Performance Control package EnableRegister field.
1731  * @cpu: CPU for which to enable CPPC register.
1732  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1733  *
1734  * Return: 0 for success, -ERRNO or -EIO otherwise.
1735  */
1736 int cppc_set_enable(int cpu, bool enable)
1737 {
1738 	return cppc_set_reg_val(cpu, ENABLE, enable);
1739 }
1740 EXPORT_SYMBOL_GPL(cppc_set_enable);
1741 
1742 /**
1743  * cppc_set_perf - Set a CPU's performance controls.
1744  * @cpu: CPU for which to set performance controls.
1745  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1746  *
1747  * Return: 0 for success, -ERRNO otherwise.
1748  */
1749 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1750 {
1751 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1752 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1753 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1754 	struct cppc_pcc_data *pcc_ss_data = NULL;
1755 	int ret = 0;
1756 
1757 	if (!cpc_desc) {
1758 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1759 		return -ENODEV;
1760 	}
1761 
1762 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1763 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1764 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1765 
1766 	/*
1767 	 * This is Phase-I where we want to write to CPC registers
1768 	 * -> We want all CPUs to be able to execute this phase in parallel
1769 	 *
1770 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1771 	 * achieve that goal here
1772 	 */
1773 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1774 		if (pcc_ss_id < 0) {
1775 			pr_debug("Invalid pcc_ss_id\n");
1776 			return -ENODEV;
1777 		}
1778 		pcc_ss_data = pcc_data[pcc_ss_id];
1779 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1780 		if (pcc_ss_data->platform_owns_pcc) {
1781 			ret = check_pcc_chan(pcc_ss_id, false);
1782 			if (ret) {
1783 				up_read(&pcc_ss_data->pcc_lock);
1784 				return ret;
1785 			}
1786 		}
1787 		/*
1788 		 * Update the pending_write to make sure a PCC CMD_READ will not
1789 		 * arrive and steal the channel during the switch to write lock
1790 		 */
1791 		pcc_ss_data->pending_pcc_write_cmd = true;
1792 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1793 		cpc_desc->write_cmd_status = 0;
1794 	}
1795 
1796 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1797 
1798 	/*
1799 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1800 	 * value to min and max perf, but they don't mean to set the zero value,
1801 	 * they just don't want to write to those registers.
1802 	 */
1803 	if (perf_ctrls->min_perf)
1804 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1805 	if (perf_ctrls->max_perf)
1806 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1807 
1808 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1809 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1810 	/*
1811 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1812 	 *
1813 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1814 	 * requests that happened in short overlapping interval. The last CPU to
1815 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1816 	 *
1817 	 * We have the following requirements for Phase-II:
1818 	 *     1. We want to execute Phase-II only when there are no CPUs
1819 	 * currently executing in Phase-I
1820 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1821 	 * entering Phase-I.
1822 	 *     3. We want only one CPU among all those who went through Phase-I
1823 	 * to run phase-II
1824 	 *
1825 	 * If write_trylock fails to get the lock and doesn't transfer the
1826 	 * PCC ownership to the platform, then one of the following will be TRUE
1827 	 *     1. There is at-least one CPU in Phase-I which will later execute
1828 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1829 	 * executing the Phase-II.
1830 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1831 	 * write_trylock and has already acquired the write_lock. We know for a
1832 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1833 	 * before this CPU's Phase-I as we held the read_lock.
1834 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1835 	 * down_write, in which case, send_pcc_cmd will check for pending
1836 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1837 	 * So this CPU can be certain that its request will be delivered
1838 	 *    So in all cases, this CPU knows that its request will be delivered
1839 	 * by another CPU and can return
1840 	 *
1841 	 * After getting the down_write we still need to check for
1842 	 * pending_pcc_write_cmd to take care of the following scenario
1843 	 *    The thread running this code could be scheduled out between
1844 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1845 	 * could have delivered the request to Platform by triggering the
1846 	 * doorbell and transferred the ownership of PCC to platform. So this
1847 	 * avoids triggering an unnecessary doorbell and more importantly before
1848 	 * triggering the doorbell it makes sure that the PCC channel ownership
1849 	 * is still with OSPM.
1850 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1851 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1852 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1853 	 * case during a CMD_READ and if there are pending writes it delivers
1854 	 * the write command before servicing the read command
1855 	 */
1856 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1857 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1858 			/* Update only if there are pending write commands */
1859 			if (pcc_ss_data->pending_pcc_write_cmd)
1860 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1861 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1862 		} else
1863 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1864 			wait_event(pcc_ss_data->pcc_write_wait_q,
1865 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1866 
1867 		/* send_pcc_cmd updates the status in case of failure */
1868 		ret = cpc_desc->write_cmd_status;
1869 	}
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(cppc_set_perf);
1873 
1874 /**
1875  * cppc_get_transition_latency - returns frequency transition latency in ns
1876  * @cpu_num: CPU number for per_cpu().
1877  *
1878  * ACPI CPPC does not explicitly specify how a platform can specify the
1879  * transition latency for performance change requests. The closest we have
1880  * is the timing information from the PCCT tables which provides the info
1881  * on the number and frequency of PCC commands the platform can handle.
1882  *
1883  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1884  * then assume there is no latency.
1885  */
1886 int cppc_get_transition_latency(int cpu_num)
1887 {
1888 	/*
1889 	 * Expected transition latency is based on the PCCT timing values
1890 	 * Below are definition from ACPI spec:
1891 	 * pcc_nominal- Expected latency to process a command, in microseconds
1892 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1893 	 *              channel can support, reported in commands per minute. 0
1894 	 *              indicates no limitation.
1895 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1896 	 *              completion of a command before issuing the next command,
1897 	 *              in microseconds.
1898 	 */
1899 	struct cpc_desc *cpc_desc;
1900 	struct cpc_register_resource *desired_reg;
1901 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1902 	struct cppc_pcc_data *pcc_ss_data;
1903 	int latency_ns = 0;
1904 
1905 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1906 	if (!cpc_desc)
1907 		return -ENODATA;
1908 
1909 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1910 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1911 		return 0;
1912 
1913 	if (!CPC_IN_PCC(desired_reg) || pcc_ss_id < 0)
1914 		return -ENODATA;
1915 
1916 	pcc_ss_data = pcc_data[pcc_ss_id];
1917 	if (pcc_ss_data->pcc_mpar)
1918 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1919 
1920 	latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_nominal * 1000);
1921 	latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1922 
1923 	return latency_ns;
1924 }
1925 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1926 
1927 /* Minimum struct length needed for the DMI processor entry we want */
1928 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1929 
1930 /* Offset in the DMI processor structure for the max frequency */
1931 #define DMI_PROCESSOR_MAX_SPEED		0x14
1932 
1933 /* Callback function used to retrieve the max frequency from DMI */
1934 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1935 {
1936 	const u8 *dmi_data = (const u8 *)dm;
1937 	u16 *mhz = (u16 *)private;
1938 
1939 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1940 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1941 		u16 val = (u16)get_unaligned((const u16 *)
1942 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1943 		*mhz = umax(val, *mhz);
1944 	}
1945 }
1946 
1947 /* Look up the max frequency in DMI */
1948 static u64 cppc_get_dmi_max_khz(void)
1949 {
1950 	u16 mhz = 0;
1951 
1952 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1953 
1954 	/*
1955 	 * Real stupid fallback value, just in case there is no
1956 	 * actual value set.
1957 	 */
1958 	mhz = mhz ? mhz : 1;
1959 
1960 	return KHZ_PER_MHZ * mhz;
1961 }
1962 
1963 /*
1964  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1965  * use them to convert perf to freq and vice versa. The conversion is
1966  * extrapolated as an affine function passing by the 2 points:
1967  *  - (Low perf, Low freq)
1968  *  - (Nominal perf, Nominal freq)
1969  */
1970 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1971 {
1972 	s64 retval, offset = 0;
1973 	static u64 max_khz;
1974 	u64 mul, div;
1975 
1976 	if (caps->lowest_freq && caps->nominal_freq) {
1977 		/* Avoid special case when nominal_freq is equal to lowest_freq */
1978 		if (caps->lowest_freq == caps->nominal_freq) {
1979 			mul = caps->nominal_freq;
1980 			div = caps->nominal_perf;
1981 		} else {
1982 			mul = caps->nominal_freq - caps->lowest_freq;
1983 			div = caps->nominal_perf - caps->lowest_perf;
1984 		}
1985 		mul *= KHZ_PER_MHZ;
1986 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1987 			 div64_u64(caps->nominal_perf * mul, div);
1988 	} else {
1989 		if (!max_khz)
1990 			max_khz = cppc_get_dmi_max_khz();
1991 		mul = max_khz;
1992 		div = caps->highest_perf;
1993 	}
1994 
1995 	retval = offset + div64_u64(perf * mul, div);
1996 	if (retval >= 0)
1997 		return retval;
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
2001 
2002 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
2003 {
2004 	s64 retval, offset = 0;
2005 	static u64 max_khz;
2006 	u64 mul, div;
2007 
2008 	if (caps->lowest_freq && caps->nominal_freq) {
2009 		/* Avoid special case when nominal_freq is equal to lowest_freq */
2010 		if (caps->lowest_freq == caps->nominal_freq) {
2011 			mul = caps->nominal_perf;
2012 			div = caps->nominal_freq;
2013 		} else {
2014 			mul = caps->nominal_perf - caps->lowest_perf;
2015 			div = caps->nominal_freq - caps->lowest_freq;
2016 		}
2017 		/*
2018 		 * We don't need to convert to kHz for computing offset and can
2019 		 * directly use nominal_freq and lowest_freq as the div64_u64
2020 		 * will remove the frequency unit.
2021 		 */
2022 		offset = caps->nominal_perf -
2023 			 div64_u64(caps->nominal_freq * mul, div);
2024 		/* But we need it for computing the perf level. */
2025 		div *= KHZ_PER_MHZ;
2026 	} else {
2027 		if (!max_khz)
2028 			max_khz = cppc_get_dmi_max_khz();
2029 		mul = caps->highest_perf;
2030 		div = max_khz;
2031 	}
2032 
2033 	retval = offset + div64_u64(freq * mul, div);
2034 	if (retval >= 0)
2035 		return retval;
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
2039