xref: /linux/kernel/sched/fair.c (revision 1bc9743b6452cb5a4d09944bd3d6e33b074bb22d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
81 
82 __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 /*
92  * For asym packing, by default the lower numbered CPU has higher priority.
93  */
arch_asym_cpu_priority(int cpu)94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 	return -cpu;
97 }
98 
99 /*
100  * The margin used when comparing utilization with CPU capacity.
101  *
102  * (default: ~20%)
103  */
104 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
105 
106 /*
107  * The margin used when comparing CPU capacities.
108  * is 'cap1' noticeably greater than 'cap2'
109  *
110  * (default: ~5%)
111  */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117  * each time a cfs_rq requests quota.
118  *
119  * Note: in the case that the slice exceeds the runtime remaining (either due
120  * to consumption or the quota being specified to be smaller than the slice)
121  * we will always only issue the remaining available time.
122  *
123  * (default: 5 msec, units: microseconds)
124  */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 #endif
127 
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132 
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 	{
137 		.procname       = "sched_cfs_bandwidth_slice_us",
138 		.data           = &sysctl_sched_cfs_bandwidth_slice,
139 		.maxlen         = sizeof(unsigned int),
140 		.mode           = 0644,
141 		.proc_handler   = proc_dointvec_minmax,
142 		.extra1         = SYSCTL_ONE,
143 	},
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 	{
147 		.procname	= "numa_balancing_promote_rate_limit_MBps",
148 		.data		= &sysctl_numa_balancing_promote_rate_limit,
149 		.maxlen		= sizeof(unsigned int),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 	},
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156 
sched_fair_sysctl_init(void)157 static int __init sched_fair_sysctl_init(void)
158 {
159 	register_sysctl_init("kernel", sched_fair_sysctls);
160 	return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164 
update_load_add(struct load_weight * lw,unsigned long inc)165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 	lw->weight += inc;
168 	lw->inv_weight = 0;
169 }
170 
update_load_sub(struct load_weight * lw,unsigned long dec)171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 	lw->weight -= dec;
174 	lw->inv_weight = 0;
175 }
176 
update_load_set(struct load_weight * lw,unsigned long w)177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 	lw->weight = w;
180 	lw->inv_weight = 0;
181 }
182 
183 /*
184  * Increase the granularity value when there are more CPUs,
185  * because with more CPUs the 'effective latency' as visible
186  * to users decreases. But the relationship is not linear,
187  * so pick a second-best guess by going with the log2 of the
188  * number of CPUs.
189  *
190  * This idea comes from the SD scheduler of Con Kolivas:
191  */
get_update_sysctl_factor(void)192 static unsigned int get_update_sysctl_factor(void)
193 {
194 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 	unsigned int factor;
196 
197 	switch (sysctl_sched_tunable_scaling) {
198 	case SCHED_TUNABLESCALING_NONE:
199 		factor = 1;
200 		break;
201 	case SCHED_TUNABLESCALING_LINEAR:
202 		factor = cpus;
203 		break;
204 	case SCHED_TUNABLESCALING_LOG:
205 	default:
206 		factor = 1 + ilog2(cpus);
207 		break;
208 	}
209 
210 	return factor;
211 }
212 
update_sysctl(void)213 static void update_sysctl(void)
214 {
215 	unsigned int factor = get_update_sysctl_factor();
216 
217 #define SET_SYSCTL(name) \
218 	(sysctl_##name = (factor) * normalized_sysctl_##name)
219 	SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222 
sched_init_granularity(void)223 void __init sched_init_granularity(void)
224 {
225 	update_sysctl();
226 }
227 
228 #define WMULT_CONST	(~0U)
229 #define WMULT_SHIFT	32
230 
__update_inv_weight(struct load_weight * lw)231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 	unsigned long w;
234 
235 	if (likely(lw->inv_weight))
236 		return;
237 
238 	w = scale_load_down(lw->weight);
239 
240 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 		lw->inv_weight = 1;
242 	else if (unlikely(!w))
243 		lw->inv_weight = WMULT_CONST;
244 	else
245 		lw->inv_weight = WMULT_CONST / w;
246 }
247 
248 /*
249  * delta_exec * weight / lw.weight
250  *   OR
251  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252  *
253  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254  * we're guaranteed shift stays positive because inv_weight is guaranteed to
255  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256  *
257  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258  * weight/lw.weight <= 1, and therefore our shift will also be positive.
259  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 	u64 fact = scale_load_down(weight);
263 	u32 fact_hi = (u32)(fact >> 32);
264 	int shift = WMULT_SHIFT;
265 	int fs;
266 
267 	__update_inv_weight(lw);
268 
269 	if (unlikely(fact_hi)) {
270 		fs = fls(fact_hi);
271 		shift -= fs;
272 		fact >>= fs;
273 	}
274 
275 	fact = mul_u32_u32(fact, lw->inv_weight);
276 
277 	fact_hi = (u32)(fact >> 32);
278 	if (fact_hi) {
279 		fs = fls(fact_hi);
280 		shift -= fs;
281 		fact >>= fs;
282 	}
283 
284 	return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286 
287 /*
288  * delta /= w
289  */
calc_delta_fair(u64 delta,struct sched_entity * se)290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 	if (unlikely(se->load.weight != NICE_0_LOAD))
293 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294 
295 	return delta;
296 }
297 
298 const struct sched_class fair_sched_class;
299 
300 /**************************************************************
301  * CFS operations on generic schedulable entities:
302  */
303 
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305 
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 		for (; se; se = se->parent)
309 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 	struct rq *rq = rq_of(cfs_rq);
313 	int cpu = cpu_of(rq);
314 
315 	if (cfs_rq->on_list)
316 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317 
318 	cfs_rq->on_list = 1;
319 
320 	/*
321 	 * Ensure we either appear before our parent (if already
322 	 * enqueued) or force our parent to appear after us when it is
323 	 * enqueued. The fact that we always enqueue bottom-up
324 	 * reduces this to two cases and a special case for the root
325 	 * cfs_rq. Furthermore, it also means that we will always reset
326 	 * tmp_alone_branch either when the branch is connected
327 	 * to a tree or when we reach the top of the tree
328 	 */
329 	if (cfs_rq->tg->parent &&
330 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 		/*
332 		 * If parent is already on the list, we add the child
333 		 * just before. Thanks to circular linked property of
334 		 * the list, this means to put the child at the tail
335 		 * of the list that starts by parent.
336 		 */
337 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 		/*
340 		 * The branch is now connected to its tree so we can
341 		 * reset tmp_alone_branch to the beginning of the
342 		 * list.
343 		 */
344 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 		return true;
346 	}
347 
348 	if (!cfs_rq->tg->parent) {
349 		/*
350 		 * cfs rq without parent should be put
351 		 * at the tail of the list.
352 		 */
353 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 			&rq->leaf_cfs_rq_list);
355 		/*
356 		 * We have reach the top of a tree so we can reset
357 		 * tmp_alone_branch to the beginning of the list.
358 		 */
359 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 		return true;
361 	}
362 
363 	/*
364 	 * The parent has not already been added so we want to
365 	 * make sure that it will be put after us.
366 	 * tmp_alone_branch points to the begin of the branch
367 	 * where we will add parent.
368 	 */
369 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 	/*
371 	 * update tmp_alone_branch to points to the new begin
372 	 * of the branch
373 	 */
374 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 	return false;
376 }
377 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 	if (cfs_rq->on_list) {
381 		struct rq *rq = rq_of(cfs_rq);
382 
383 		/*
384 		 * With cfs_rq being unthrottled/throttled during an enqueue,
385 		 * it can happen the tmp_alone_branch points to the leaf that
386 		 * we finally want to delete. In this case, tmp_alone_branch moves
387 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 		 * at the end of the enqueue.
389 		 */
390 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 
393 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 		cfs_rq->on_list = 0;
395 	}
396 }
397 
assert_list_leaf_cfs_rq(struct rq * rq)398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402 
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
405 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
406 				 leaf_cfs_rq_list)
407 
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	if (se->cfs_rq == pse->cfs_rq)
413 		return se->cfs_rq;
414 
415 	return NULL;
416 }
417 
parent_entity(const struct sched_entity * se)418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 	return se->parent;
421 }
422 
423 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 	int se_depth, pse_depth;
427 
428 	/*
429 	 * preemption test can be made between sibling entities who are in the
430 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 	 * both tasks until we find their ancestors who are siblings of common
432 	 * parent.
433 	 */
434 
435 	/* First walk up until both entities are at same depth */
436 	se_depth = (*se)->depth;
437 	pse_depth = (*pse)->depth;
438 
439 	while (se_depth > pse_depth) {
440 		se_depth--;
441 		*se = parent_entity(*se);
442 	}
443 
444 	while (pse_depth > se_depth) {
445 		pse_depth--;
446 		*pse = parent_entity(*pse);
447 	}
448 
449 	while (!is_same_group(*se, *pse)) {
450 		*se = parent_entity(*se);
451 		*pse = parent_entity(*pse);
452 	}
453 }
454 
tg_is_idle(struct task_group * tg)455 static int tg_is_idle(struct task_group *tg)
456 {
457 	return tg->idle > 0;
458 }
459 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 	return cfs_rq->idle > 0;
463 }
464 
se_is_idle(struct sched_entity * se)465 static int se_is_idle(struct sched_entity *se)
466 {
467 	if (entity_is_task(se))
468 		return task_has_idle_policy(task_of(se));
469 	return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471 
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473 
474 #define for_each_sched_entity(se) \
475 		for (; se; se = NULL)
476 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 	return true;
480 }
481 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485 
assert_list_leaf_cfs_rq(struct rq * rq)486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489 
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
491 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 
parent_entity(struct sched_entity * se)493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 	return NULL;
496 }
497 
498 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502 
tg_is_idle(struct task_group * tg)503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 	return 0;
506 }
507 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 	return 0;
511 }
512 
se_is_idle(struct sched_entity * se)513 static int se_is_idle(struct sched_entity *se)
514 {
515 	return task_has_idle_policy(task_of(se));
516 }
517 
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519 
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 
523 /**************************************************************
524  * Scheduling class tree data structure manipulation methods:
525  */
526 
max_vruntime(u64 max_vruntime,u64 vruntime)527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - max_vruntime);
530 	if (delta > 0)
531 		max_vruntime = vruntime;
532 
533 	return max_vruntime;
534 }
535 
min_vruntime(u64 min_vruntime,u64 vruntime)536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 	s64 delta = (s64)(vruntime - min_vruntime);
539 	if (delta < 0)
540 		min_vruntime = vruntime;
541 
542 	return min_vruntime;
543 }
544 
entity_before(const struct sched_entity * a,const struct sched_entity * b)545 static inline bool entity_before(const struct sched_entity *a,
546 				 const struct sched_entity *b)
547 {
548 	/*
549 	 * Tiebreak on vruntime seems unnecessary since it can
550 	 * hardly happen.
551 	 */
552 	return (s64)(a->deadline - b->deadline) < 0;
553 }
554 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
558 }
559 
560 #define __node_2_se(node) \
561 	rb_entry((node), struct sched_entity, run_node)
562 
563 /*
564  * Compute virtual time from the per-task service numbers:
565  *
566  * Fair schedulers conserve lag:
567  *
568  *   \Sum lag_i = 0
569  *
570  * Where lag_i is given by:
571  *
572  *   lag_i = S - s_i = w_i * (V - v_i)
573  *
574  * Where S is the ideal service time and V is it's virtual time counterpart.
575  * Therefore:
576  *
577  *   \Sum lag_i = 0
578  *   \Sum w_i * (V - v_i) = 0
579  *   \Sum w_i * V - w_i * v_i = 0
580  *
581  * From which we can solve an expression for V in v_i (which we have in
582  * se->vruntime):
583  *
584  *       \Sum v_i * w_i   \Sum v_i * w_i
585  *   V = -------------- = --------------
586  *          \Sum w_i            W
587  *
588  * Specifically, this is the weighted average of all entity virtual runtimes.
589  *
590  * [[ NOTE: this is only equal to the ideal scheduler under the condition
591  *          that join/leave operations happen at lag_i = 0, otherwise the
592  *          virtual time has non-contiguous motion equivalent to:
593  *
594  *	      V +-= lag_i / W
595  *
596  *	    Also see the comment in place_entity() that deals with this. ]]
597  *
598  * However, since v_i is u64, and the multiplication could easily overflow
599  * transform it into a relative form that uses smaller quantities:
600  *
601  * Substitute: v_i == (v_i - v0) + v0
602  *
603  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
604  * V = ---------------------------- = --------------------- + v0
605  *                  W                            W
606  *
607  * Which we track using:
608  *
609  *                    v0 := cfs_rq->min_vruntime
610  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611  *              \Sum w_i := cfs_rq->avg_load
612  *
613  * Since min_vruntime is a monotonic increasing variable that closely tracks
614  * the per-task service, these deltas: (v_i - v), will be in the order of the
615  * maximal (virtual) lag induced in the system due to quantisation.
616  *
617  * Also, we use scale_load_down() to reduce the size.
618  *
619  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620  */
621 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 	unsigned long weight = scale_load_down(se->load.weight);
625 	s64 key = entity_key(cfs_rq, se);
626 
627 	cfs_rq->avg_vruntime += key * weight;
628 	cfs_rq->avg_load += weight;
629 }
630 
631 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	unsigned long weight = scale_load_down(se->load.weight);
635 	s64 key = entity_key(cfs_rq, se);
636 
637 	cfs_rq->avg_vruntime -= key * weight;
638 	cfs_rq->avg_load -= weight;
639 }
640 
641 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 	/*
645 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 	 */
647 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649 
650 /*
651  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652  * For this to be so, the result of this function must have a left bias.
653  */
avg_vruntime(struct cfs_rq * cfs_rq)654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 	struct sched_entity *curr = cfs_rq->curr;
657 	s64 avg = cfs_rq->avg_vruntime;
658 	long load = cfs_rq->avg_load;
659 
660 	if (curr && curr->on_rq) {
661 		unsigned long weight = scale_load_down(curr->load.weight);
662 
663 		avg += entity_key(cfs_rq, curr) * weight;
664 		load += weight;
665 	}
666 
667 	if (load) {
668 		/* sign flips effective floor / ceiling */
669 		if (avg < 0)
670 			avg -= (load - 1);
671 		avg = div_s64(avg, load);
672 	}
673 
674 	return cfs_rq->min_vruntime + avg;
675 }
676 
677 /*
678  * lag_i = S - s_i = w_i * (V - v_i)
679  *
680  * However, since V is approximated by the weighted average of all entities it
681  * is possible -- by addition/removal/reweight to the tree -- to move V around
682  * and end up with a larger lag than we started with.
683  *
684  * Limit this to either double the slice length with a minimum of TICK_NSEC
685  * since that is the timing granularity.
686  *
687  * EEVDF gives the following limit for a steady state system:
688  *
689  *   -r_max < lag < max(r_max, q)
690  *
691  * XXX could add max_slice to the augmented data to track this.
692  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	s64 vlag, limit;
696 
697 	WARN_ON_ONCE(!se->on_rq);
698 
699 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701 
702 	se->vlag = clamp(vlag, -limit, limit);
703 }
704 
705 /*
706  * Entity is eligible once it received less service than it ought to have,
707  * eg. lag >= 0.
708  *
709  * lag_i = S - s_i = w_i*(V - v_i)
710  *
711  * lag_i >= 0 -> V >= v_i
712  *
713  *     \Sum (v_i - v)*w_i
714  * V = ------------------ + v
715  *          \Sum w_i
716  *
717  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718  *
719  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720  *       to the loss in precision caused by the division.
721  */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 	struct sched_entity *curr = cfs_rq->curr;
725 	s64 avg = cfs_rq->avg_vruntime;
726 	long load = cfs_rq->avg_load;
727 
728 	if (curr && curr->on_rq) {
729 		unsigned long weight = scale_load_down(curr->load.weight);
730 
731 		avg += entity_key(cfs_rq, curr) * weight;
732 		load += weight;
733 	}
734 
735 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
736 }
737 
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
744 {
745 	u64 min_vruntime = cfs_rq->min_vruntime;
746 	/*
747 	 * open coded max_vruntime() to allow updating avg_vruntime
748 	 */
749 	s64 delta = (s64)(vruntime - min_vruntime);
750 	if (delta > 0) {
751 		avg_vruntime_update(cfs_rq, delta);
752 		min_vruntime = vruntime;
753 	}
754 	return min_vruntime;
755 }
756 
update_min_vruntime(struct cfs_rq * cfs_rq)757 static void update_min_vruntime(struct cfs_rq *cfs_rq)
758 {
759 	struct sched_entity *se = __pick_root_entity(cfs_rq);
760 	struct sched_entity *curr = cfs_rq->curr;
761 	u64 vruntime = cfs_rq->min_vruntime;
762 
763 	if (curr) {
764 		if (curr->on_rq)
765 			vruntime = curr->vruntime;
766 		else
767 			curr = NULL;
768 	}
769 
770 	if (se) {
771 		if (!curr)
772 			vruntime = se->min_vruntime;
773 		else
774 			vruntime = min_vruntime(vruntime, se->min_vruntime);
775 	}
776 
777 	/* ensure we never gain time by being placed backwards. */
778 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
779 }
780 
cfs_rq_min_slice(struct cfs_rq * cfs_rq)781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
782 {
783 	struct sched_entity *root = __pick_root_entity(cfs_rq);
784 	struct sched_entity *curr = cfs_rq->curr;
785 	u64 min_slice = ~0ULL;
786 
787 	if (curr && curr->on_rq)
788 		min_slice = curr->slice;
789 
790 	if (root)
791 		min_slice = min(min_slice, root->min_slice);
792 
793 	return min_slice;
794 }
795 
__entity_less(struct rb_node * a,const struct rb_node * b)796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
797 {
798 	return entity_before(__node_2_se(a), __node_2_se(b));
799 }
800 
801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
802 
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
804 {
805 	if (node) {
806 		struct sched_entity *rse = __node_2_se(node);
807 		if (vruntime_gt(min_vruntime, se, rse))
808 			se->min_vruntime = rse->min_vruntime;
809 	}
810 }
811 
__min_slice_update(struct sched_entity * se,struct rb_node * node)812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
813 {
814 	if (node) {
815 		struct sched_entity *rse = __node_2_se(node);
816 		if (rse->min_slice < se->min_slice)
817 			se->min_slice = rse->min_slice;
818 	}
819 }
820 
821 /*
822  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
823  */
min_vruntime_update(struct sched_entity * se,bool exit)824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
825 {
826 	u64 old_min_vruntime = se->min_vruntime;
827 	u64 old_min_slice = se->min_slice;
828 	struct rb_node *node = &se->run_node;
829 
830 	se->min_vruntime = se->vruntime;
831 	__min_vruntime_update(se, node->rb_right);
832 	__min_vruntime_update(se, node->rb_left);
833 
834 	se->min_slice = se->slice;
835 	__min_slice_update(se, node->rb_right);
836 	__min_slice_update(se, node->rb_left);
837 
838 	return se->min_vruntime == old_min_vruntime &&
839 	       se->min_slice == old_min_slice;
840 }
841 
842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
843 		     run_node, min_vruntime, min_vruntime_update);
844 
845 /*
846  * Enqueue an entity into the rb-tree:
847  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
849 {
850 	avg_vruntime_add(cfs_rq, se);
851 	se->min_vruntime = se->vruntime;
852 	se->min_slice = se->slice;
853 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
854 				__entity_less, &min_vruntime_cb);
855 }
856 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
860 				  &min_vruntime_cb);
861 	avg_vruntime_sub(cfs_rq, se);
862 }
863 
__pick_root_entity(struct cfs_rq * cfs_rq)864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
865 {
866 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
867 
868 	if (!root)
869 		return NULL;
870 
871 	return __node_2_se(root);
872 }
873 
__pick_first_entity(struct cfs_rq * cfs_rq)874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
875 {
876 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
877 
878 	if (!left)
879 		return NULL;
880 
881 	return __node_2_se(left);
882 }
883 
884 /*
885  * Set the vruntime up to which an entity can run before looking
886  * for another entity to pick.
887  * In case of run to parity, we use the shortest slice of the enqueued
888  * entities to set the protected period.
889  * When run to parity is disabled, we give a minimum quantum to the running
890  * entity to ensure progress.
891  */
set_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)892 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 	u64 slice = normalized_sysctl_sched_base_slice;
895 	u64 vprot = se->deadline;
896 
897 	if (sched_feat(RUN_TO_PARITY))
898 		slice = cfs_rq_min_slice(cfs_rq);
899 
900 	slice = min(slice, se->slice);
901 	if (slice != se->slice)
902 		vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
903 
904 	se->vprot = vprot;
905 }
906 
update_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)907 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 	u64 slice = cfs_rq_min_slice(cfs_rq);
910 
911 	se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
912 }
913 
protect_slice(struct sched_entity * se)914 static inline bool protect_slice(struct sched_entity *se)
915 {
916 	return ((s64)(se->vprot - se->vruntime) > 0);
917 }
918 
cancel_protect_slice(struct sched_entity * se)919 static inline void cancel_protect_slice(struct sched_entity *se)
920 {
921 	if (protect_slice(se))
922 		se->vprot = se->vruntime;
923 }
924 
925 /*
926  * Earliest Eligible Virtual Deadline First
927  *
928  * In order to provide latency guarantees for different request sizes
929  * EEVDF selects the best runnable task from two criteria:
930  *
931  *  1) the task must be eligible (must be owed service)
932  *
933  *  2) from those tasks that meet 1), we select the one
934  *     with the earliest virtual deadline.
935  *
936  * We can do this in O(log n) time due to an augmented RB-tree. The
937  * tree keeps the entries sorted on deadline, but also functions as a
938  * heap based on the vruntime by keeping:
939  *
940  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
941  *
942  * Which allows tree pruning through eligibility.
943  */
__pick_eevdf(struct cfs_rq * cfs_rq,bool protect)944 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
945 {
946 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
947 	struct sched_entity *se = __pick_first_entity(cfs_rq);
948 	struct sched_entity *curr = cfs_rq->curr;
949 	struct sched_entity *best = NULL;
950 
951 	/*
952 	 * We can safely skip eligibility check if there is only one entity
953 	 * in this cfs_rq, saving some cycles.
954 	 */
955 	if (cfs_rq->nr_queued == 1)
956 		return curr && curr->on_rq ? curr : se;
957 
958 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
959 		curr = NULL;
960 
961 	if (curr && protect && protect_slice(curr))
962 		return curr;
963 
964 	/* Pick the leftmost entity if it's eligible */
965 	if (se && entity_eligible(cfs_rq, se)) {
966 		best = se;
967 		goto found;
968 	}
969 
970 	/* Heap search for the EEVD entity */
971 	while (node) {
972 		struct rb_node *left = node->rb_left;
973 
974 		/*
975 		 * Eligible entities in left subtree are always better
976 		 * choices, since they have earlier deadlines.
977 		 */
978 		if (left && vruntime_eligible(cfs_rq,
979 					__node_2_se(left)->min_vruntime)) {
980 			node = left;
981 			continue;
982 		}
983 
984 		se = __node_2_se(node);
985 
986 		/*
987 		 * The left subtree either is empty or has no eligible
988 		 * entity, so check the current node since it is the one
989 		 * with earliest deadline that might be eligible.
990 		 */
991 		if (entity_eligible(cfs_rq, se)) {
992 			best = se;
993 			break;
994 		}
995 
996 		node = node->rb_right;
997 	}
998 found:
999 	if (!best || (curr && entity_before(curr, best)))
1000 		best = curr;
1001 
1002 	return best;
1003 }
1004 
pick_eevdf(struct cfs_rq * cfs_rq)1005 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1006 {
1007 	return __pick_eevdf(cfs_rq, true);
1008 }
1009 
__pick_last_entity(struct cfs_rq * cfs_rq)1010 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1011 {
1012 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1013 
1014 	if (!last)
1015 		return NULL;
1016 
1017 	return __node_2_se(last);
1018 }
1019 
1020 /**************************************************************
1021  * Scheduling class statistics methods:
1022  */
sched_update_scaling(void)1023 int sched_update_scaling(void)
1024 {
1025 	unsigned int factor = get_update_sysctl_factor();
1026 
1027 #define WRT_SYSCTL(name) \
1028 	(normalized_sysctl_##name = sysctl_##name / (factor))
1029 	WRT_SYSCTL(sched_base_slice);
1030 #undef WRT_SYSCTL
1031 
1032 	return 0;
1033 }
1034 
1035 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1036 
1037 /*
1038  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1039  * this is probably good enough.
1040  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1041 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 	if ((s64)(se->vruntime - se->deadline) < 0)
1044 		return false;
1045 
1046 	/*
1047 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1048 	 * nice) while the request time r_i is determined by
1049 	 * sysctl_sched_base_slice.
1050 	 */
1051 	if (!se->custom_slice)
1052 		se->slice = sysctl_sched_base_slice;
1053 
1054 	/*
1055 	 * EEVDF: vd_i = ve_i + r_i / w_i
1056 	 */
1057 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1058 
1059 	/*
1060 	 * The task has consumed its request, reschedule.
1061 	 */
1062 	return true;
1063 }
1064 
1065 #include "pelt.h"
1066 
1067 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1068 static unsigned long task_h_load(struct task_struct *p);
1069 static unsigned long capacity_of(int cpu);
1070 
1071 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1072 void init_entity_runnable_average(struct sched_entity *se)
1073 {
1074 	struct sched_avg *sa = &se->avg;
1075 
1076 	memset(sa, 0, sizeof(*sa));
1077 
1078 	/*
1079 	 * Tasks are initialized with full load to be seen as heavy tasks until
1080 	 * they get a chance to stabilize to their real load level.
1081 	 * Group entities are initialized with zero load to reflect the fact that
1082 	 * nothing has been attached to the task group yet.
1083 	 */
1084 	if (entity_is_task(se))
1085 		sa->load_avg = scale_load_down(se->load.weight);
1086 
1087 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1088 }
1089 
1090 /*
1091  * With new tasks being created, their initial util_avgs are extrapolated
1092  * based on the cfs_rq's current util_avg:
1093  *
1094  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1095  *		* se_weight(se)
1096  *
1097  * However, in many cases, the above util_avg does not give a desired
1098  * value. Moreover, the sum of the util_avgs may be divergent, such
1099  * as when the series is a harmonic series.
1100  *
1101  * To solve this problem, we also cap the util_avg of successive tasks to
1102  * only 1/2 of the left utilization budget:
1103  *
1104  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1105  *
1106  * where n denotes the nth task and cpu_scale the CPU capacity.
1107  *
1108  * For example, for a CPU with 1024 of capacity, a simplest series from
1109  * the beginning would be like:
1110  *
1111  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1112  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1113  *
1114  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1115  * if util_avg > util_avg_cap.
1116  */
post_init_entity_util_avg(struct task_struct * p)1117 void post_init_entity_util_avg(struct task_struct *p)
1118 {
1119 	struct sched_entity *se = &p->se;
1120 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1121 	struct sched_avg *sa = &se->avg;
1122 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1123 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1124 
1125 	if (p->sched_class != &fair_sched_class) {
1126 		/*
1127 		 * For !fair tasks do:
1128 		 *
1129 		update_cfs_rq_load_avg(now, cfs_rq);
1130 		attach_entity_load_avg(cfs_rq, se);
1131 		switched_from_fair(rq, p);
1132 		 *
1133 		 * such that the next switched_to_fair() has the
1134 		 * expected state.
1135 		 */
1136 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1137 		return;
1138 	}
1139 
1140 	if (cap > 0) {
1141 		if (cfs_rq->avg.util_avg != 0) {
1142 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1143 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1144 
1145 			if (sa->util_avg > cap)
1146 				sa->util_avg = cap;
1147 		} else {
1148 			sa->util_avg = cap;
1149 		}
1150 	}
1151 
1152 	sa->runnable_avg = sa->util_avg;
1153 }
1154 
update_se(struct rq * rq,struct sched_entity * se)1155 static s64 update_se(struct rq *rq, struct sched_entity *se)
1156 {
1157 	u64 now = rq_clock_task(rq);
1158 	s64 delta_exec;
1159 
1160 	delta_exec = now - se->exec_start;
1161 	if (unlikely(delta_exec <= 0))
1162 		return delta_exec;
1163 
1164 	se->exec_start = now;
1165 	if (entity_is_task(se)) {
1166 		struct task_struct *donor = task_of(se);
1167 		struct task_struct *running = rq->curr;
1168 		/*
1169 		 * If se is a task, we account the time against the running
1170 		 * task, as w/ proxy-exec they may not be the same.
1171 		 */
1172 		running->se.exec_start = now;
1173 		running->se.sum_exec_runtime += delta_exec;
1174 
1175 		trace_sched_stat_runtime(running, delta_exec);
1176 		account_group_exec_runtime(running, delta_exec);
1177 
1178 		/* cgroup time is always accounted against the donor */
1179 		cgroup_account_cputime(donor, delta_exec);
1180 	} else {
1181 		/* If not task, account the time against donor se  */
1182 		se->sum_exec_runtime += delta_exec;
1183 	}
1184 
1185 	if (schedstat_enabled()) {
1186 		struct sched_statistics *stats;
1187 
1188 		stats = __schedstats_from_se(se);
1189 		__schedstat_set(stats->exec_max,
1190 				max(delta_exec, stats->exec_max));
1191 	}
1192 
1193 	return delta_exec;
1194 }
1195 
1196 /*
1197  * Used by other classes to account runtime.
1198  */
update_curr_common(struct rq * rq)1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 	return update_se(rq, &rq->donor->se);
1202 }
1203 
1204 /*
1205  * Update the current task's runtime statistics.
1206  */
update_curr(struct cfs_rq * cfs_rq)1207 static void update_curr(struct cfs_rq *cfs_rq)
1208 {
1209 	/*
1210 	 * Note: cfs_rq->curr corresponds to the task picked to
1211 	 * run (ie: rq->donor.se) which due to proxy-exec may
1212 	 * not necessarily be the actual task running
1213 	 * (rq->curr.se). This is easy to confuse!
1214 	 */
1215 	struct sched_entity *curr = cfs_rq->curr;
1216 	struct rq *rq = rq_of(cfs_rq);
1217 	s64 delta_exec;
1218 	bool resched;
1219 
1220 	if (unlikely(!curr))
1221 		return;
1222 
1223 	delta_exec = update_se(rq, curr);
1224 	if (unlikely(delta_exec <= 0))
1225 		return;
1226 
1227 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1228 	resched = update_deadline(cfs_rq, curr);
1229 	update_min_vruntime(cfs_rq);
1230 
1231 	if (entity_is_task(curr)) {
1232 		/*
1233 		 * If the fair_server is active, we need to account for the
1234 		 * fair_server time whether or not the task is running on
1235 		 * behalf of fair_server or not:
1236 		 *  - If the task is running on behalf of fair_server, we need
1237 		 *    to limit its time based on the assigned runtime.
1238 		 *  - Fair task that runs outside of fair_server should account
1239 		 *    against fair_server such that it can account for this time
1240 		 *    and possibly avoid running this period.
1241 		 */
1242 		if (dl_server_active(&rq->fair_server))
1243 			dl_server_update(&rq->fair_server, delta_exec);
1244 	}
1245 
1246 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1247 
1248 	if (cfs_rq->nr_queued == 1)
1249 		return;
1250 
1251 	if (resched || !protect_slice(curr)) {
1252 		resched_curr_lazy(rq);
1253 		clear_buddies(cfs_rq, curr);
1254 	}
1255 }
1256 
update_curr_fair(struct rq * rq)1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 	update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261 
1262 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 	struct sched_statistics *stats;
1266 	struct task_struct *p = NULL;
1267 
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	stats = __schedstats_from_se(se);
1272 
1273 	if (entity_is_task(se))
1274 		p = task_of(se);
1275 
1276 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278 
1279 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 	struct sched_statistics *stats;
1283 	struct task_struct *p = NULL;
1284 
1285 	if (!schedstat_enabled())
1286 		return;
1287 
1288 	stats = __schedstats_from_se(se);
1289 
1290 	/*
1291 	 * When the sched_schedstat changes from 0 to 1, some sched se
1292 	 * maybe already in the runqueue, the se->statistics.wait_start
1293 	 * will be 0.So it will let the delta wrong. We need to avoid this
1294 	 * scenario.
1295 	 */
1296 	if (unlikely(!schedstat_val(stats->wait_start)))
1297 		return;
1298 
1299 	if (entity_is_task(se))
1300 		p = task_of(se);
1301 
1302 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304 
1305 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 	struct sched_statistics *stats;
1309 	struct task_struct *tsk = NULL;
1310 
1311 	if (!schedstat_enabled())
1312 		return;
1313 
1314 	stats = __schedstats_from_se(se);
1315 
1316 	if (entity_is_task(se))
1317 		tsk = task_of(se);
1318 
1319 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321 
1322 /*
1323  * Task is being enqueued - update stats:
1324  */
1325 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	/*
1332 	 * Are we enqueueing a waiting task? (for current tasks
1333 	 * a dequeue/enqueue event is a NOP)
1334 	 */
1335 	if (se != cfs_rq->curr)
1336 		update_stats_wait_start_fair(cfs_rq, se);
1337 
1338 	if (flags & ENQUEUE_WAKEUP)
1339 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341 
1342 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 
1346 	if (!schedstat_enabled())
1347 		return;
1348 
1349 	/*
1350 	 * Mark the end of the wait period if dequeueing a
1351 	 * waiting task:
1352 	 */
1353 	if (se != cfs_rq->curr)
1354 		update_stats_wait_end_fair(cfs_rq, se);
1355 
1356 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 		struct task_struct *tsk = task_of(se);
1358 		unsigned int state;
1359 
1360 		/* XXX racy against TTWU */
1361 		state = READ_ONCE(tsk->__state);
1362 		if (state & TASK_INTERRUPTIBLE)
1363 			__schedstat_set(tsk->stats.sleep_start,
1364 				      rq_clock(rq_of(cfs_rq)));
1365 		if (state & TASK_UNINTERRUPTIBLE)
1366 			__schedstat_set(tsk->stats.block_start,
1367 				      rq_clock(rq_of(cfs_rq)));
1368 	}
1369 }
1370 
1371 /*
1372  * We are picking a new current task - update its stats:
1373  */
1374 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 	/*
1378 	 * We are starting a new run period:
1379 	 */
1380 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382 
1383 /**************************************************
1384  * Scheduling class queueing methods:
1385  */
1386 
is_core_idle(int cpu)1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 	int sibling;
1391 
1392 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 		if (cpu == sibling)
1394 			continue;
1395 
1396 		if (!idle_cpu(sibling))
1397 			return false;
1398 	}
1399 #endif
1400 
1401 	return true;
1402 }
1403 
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406 
1407 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 	/*
1411 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 	 * threshold. Above this threshold, individual tasks may be contending
1413 	 * for both memory bandwidth and any shared HT resources.  This is an
1414 	 * approximation as the number of running tasks may not be related to
1415 	 * the number of busy CPUs due to sched_setaffinity.
1416 	 */
1417 	if (dst_running > imb_numa_nr)
1418 		return imbalance;
1419 
1420 	/*
1421 	 * Allow a small imbalance based on a simple pair of communicating
1422 	 * tasks that remain local when the destination is lightly loaded.
1423 	 */
1424 	if (imbalance <= NUMA_IMBALANCE_MIN)
1425 		return 0;
1426 
1427 	return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430 
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433  * Approximate time to scan a full NUMA task in ms. The task scan period is
1434  * calculated based on the tasks virtual memory size and
1435  * numa_balancing_scan_size.
1436  */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439 
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442 
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445 
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448 
1449 struct numa_group {
1450 	refcount_t refcount;
1451 
1452 	spinlock_t lock; /* nr_tasks, tasks */
1453 	int nr_tasks;
1454 	pid_t gid;
1455 	int active_nodes;
1456 
1457 	struct rcu_head rcu;
1458 	unsigned long total_faults;
1459 	unsigned long max_faults_cpu;
1460 	/*
1461 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 	 *
1463 	 * Faults_cpu is used to decide whether memory should move
1464 	 * towards the CPU. As a consequence, these stats are weighted
1465 	 * more by CPU use than by memory faults.
1466 	 */
1467 	unsigned long faults[];
1468 };
1469 
1470 /*
1471  * For functions that can be called in multiple contexts that permit reading
1472  * ->numa_group (see struct task_struct for locking rules).
1473  */
deref_task_numa_group(struct task_struct * p)1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 	return rcu_dereference_check(p->numa_group, p == current ||
1477 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479 
deref_curr_numa_group(struct task_struct * p)1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 	return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484 
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487 
task_nr_scan_windows(struct task_struct * p)1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 	unsigned long rss = 0;
1491 	unsigned long nr_scan_pages;
1492 
1493 	/*
1494 	 * Calculations based on RSS as non-present and empty pages are skipped
1495 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 	 * on resident pages
1497 	 */
1498 	nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size);
1499 	rss = get_mm_rss(p->mm);
1500 	if (!rss)
1501 		rss = nr_scan_pages;
1502 
1503 	rss = round_up(rss, nr_scan_pages);
1504 	return rss / nr_scan_pages;
1505 }
1506 
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509 
task_scan_min(struct task_struct * p)1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 	unsigned int scan, floor;
1514 	unsigned int windows = 1;
1515 
1516 	if (scan_size < MAX_SCAN_WINDOW)
1517 		windows = MAX_SCAN_WINDOW / scan_size;
1518 	floor = 1000 / windows;
1519 
1520 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 	return max_t(unsigned int, floor, scan);
1522 }
1523 
task_scan_start(struct task_struct * p)1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 	unsigned long smin = task_scan_min(p);
1527 	unsigned long period = smin;
1528 	struct numa_group *ng;
1529 
1530 	/* Scale the maximum scan period with the amount of shared memory. */
1531 	rcu_read_lock();
1532 	ng = rcu_dereference(p->numa_group);
1533 	if (ng) {
1534 		unsigned long shared = group_faults_shared(ng);
1535 		unsigned long private = group_faults_priv(ng);
1536 
1537 		period *= refcount_read(&ng->refcount);
1538 		period *= shared + 1;
1539 		period /= private + shared + 1;
1540 	}
1541 	rcu_read_unlock();
1542 
1543 	return max(smin, period);
1544 }
1545 
task_scan_max(struct task_struct * p)1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 	unsigned long smin = task_scan_min(p);
1549 	unsigned long smax;
1550 	struct numa_group *ng;
1551 
1552 	/* Watch for min being lower than max due to floor calculations */
1553 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554 
1555 	/* Scale the maximum scan period with the amount of shared memory. */
1556 	ng = deref_curr_numa_group(p);
1557 	if (ng) {
1558 		unsigned long shared = group_faults_shared(ng);
1559 		unsigned long private = group_faults_priv(ng);
1560 		unsigned long period = smax;
1561 
1562 		period *= refcount_read(&ng->refcount);
1563 		period *= shared + 1;
1564 		period /= private + shared + 1;
1565 
1566 		smax = max(smax, period);
1567 	}
1568 
1569 	return max(smin, smax);
1570 }
1571 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583 
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586 
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589 
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592 
task_numa_group_id(struct task_struct * p)1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 	struct numa_group *ng;
1596 	pid_t gid = 0;
1597 
1598 	rcu_read_lock();
1599 	ng = rcu_dereference(p->numa_group);
1600 	if (ng)
1601 		gid = ng->gid;
1602 	rcu_read_unlock();
1603 
1604 	return gid;
1605 }
1606 
1607 /*
1608  * The averaged statistics, shared & private, memory & CPU,
1609  * occupy the first half of the array. The second half of the
1610  * array is for current counters, which are averaged into the
1611  * first set by task_numa_placement.
1612  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617 
task_faults(struct task_struct * p,int nid)1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 	if (!p->numa_faults)
1621 		return 0;
1622 
1623 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626 
group_faults(struct task_struct * p,int nid)1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 	struct numa_group *ng = deref_task_numa_group(p);
1630 
1631 	if (!ng)
1632 		return 0;
1633 
1634 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637 
group_faults_cpu(struct numa_group * group,int nid)1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643 
group_faults_priv(struct numa_group * ng)1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 	unsigned long faults = 0;
1647 	int node;
1648 
1649 	for_each_online_node(node) {
1650 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 	}
1652 
1653 	return faults;
1654 }
1655 
group_faults_shared(struct numa_group * ng)1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 	unsigned long faults = 0;
1659 	int node;
1660 
1661 	for_each_online_node(node) {
1662 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 	}
1664 
1665 	return faults;
1666 }
1667 
1668 /*
1669  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670  * considered part of a numa group's pseudo-interleaving set. Migrations
1671  * between these nodes are slowed down, to allow things to settle down.
1672  */
1673 #define ACTIVE_NODE_FRACTION 3
1674 
numa_is_active_node(int nid,struct numa_group * ng)1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679 
1680 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 					int lim_dist, bool task)
1683 {
1684 	unsigned long score = 0;
1685 	int node, max_dist;
1686 
1687 	/*
1688 	 * All nodes are directly connected, and the same distance
1689 	 * from each other. No need for fancy placement algorithms.
1690 	 */
1691 	if (sched_numa_topology_type == NUMA_DIRECT)
1692 		return 0;
1693 
1694 	/* sched_max_numa_distance may be changed in parallel. */
1695 	max_dist = READ_ONCE(sched_max_numa_distance);
1696 	/*
1697 	 * This code is called for each node, introducing N^2 complexity,
1698 	 * which should be OK given the number of nodes rarely exceeds 8.
1699 	 */
1700 	for_each_online_node(node) {
1701 		unsigned long faults;
1702 		int dist = node_distance(nid, node);
1703 
1704 		/*
1705 		 * The furthest away nodes in the system are not interesting
1706 		 * for placement; nid was already counted.
1707 		 */
1708 		if (dist >= max_dist || node == nid)
1709 			continue;
1710 
1711 		/*
1712 		 * On systems with a backplane NUMA topology, compare groups
1713 		 * of nodes, and move tasks towards the group with the most
1714 		 * memory accesses. When comparing two nodes at distance
1715 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 		 * of each group. Skip other nodes.
1717 		 */
1718 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 			continue;
1720 
1721 		/* Add up the faults from nearby nodes. */
1722 		if (task)
1723 			faults = task_faults(p, node);
1724 		else
1725 			faults = group_faults(p, node);
1726 
1727 		/*
1728 		 * On systems with a glueless mesh NUMA topology, there are
1729 		 * no fixed "groups of nodes". Instead, nodes that are not
1730 		 * directly connected bounce traffic through intermediate
1731 		 * nodes; a numa_group can occupy any set of nodes.
1732 		 * The further away a node is, the less the faults count.
1733 		 * This seems to result in good task placement.
1734 		 */
1735 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 			faults *= (max_dist - dist);
1737 			faults /= (max_dist - LOCAL_DISTANCE);
1738 		}
1739 
1740 		score += faults;
1741 	}
1742 
1743 	return score;
1744 }
1745 
1746 /*
1747  * These return the fraction of accesses done by a particular task, or
1748  * task group, on a particular numa node.  The group weight is given a
1749  * larger multiplier, in order to group tasks together that are almost
1750  * evenly spread out between numa nodes.
1751  */
task_weight(struct task_struct * p,int nid,int dist)1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 					int dist)
1754 {
1755 	unsigned long faults, total_faults;
1756 
1757 	if (!p->numa_faults)
1758 		return 0;
1759 
1760 	total_faults = p->total_numa_faults;
1761 
1762 	if (!total_faults)
1763 		return 0;
1764 
1765 	faults = task_faults(p, nid);
1766 	faults += score_nearby_nodes(p, nid, dist, true);
1767 
1768 	return 1000 * faults / total_faults;
1769 }
1770 
group_weight(struct task_struct * p,int nid,int dist)1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 					 int dist)
1773 {
1774 	struct numa_group *ng = deref_task_numa_group(p);
1775 	unsigned long faults, total_faults;
1776 
1777 	if (!ng)
1778 		return 0;
1779 
1780 	total_faults = ng->total_faults;
1781 
1782 	if (!total_faults)
1783 		return 0;
1784 
1785 	faults = group_faults(p, nid);
1786 	faults += score_nearby_nodes(p, nid, dist, false);
1787 
1788 	return 1000 * faults / total_faults;
1789 }
1790 
1791 /*
1792  * If memory tiering mode is enabled, cpupid of slow memory page is
1793  * used to record scan time instead of CPU and PID.  When tiering mode
1794  * is disabled at run time, the scan time (in cpupid) will be
1795  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1796  * access out of array bound.
1797  */
cpupid_valid(int cpupid)1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802 
1803 /*
1804  * For memory tiering mode, if there are enough free pages (more than
1805  * enough watermark defined here) in fast memory node, to take full
1806  * advantage of fast memory capacity, all recently accessed slow
1807  * memory pages will be migrated to fast memory node without
1808  * considering hot threshold.
1809  */
pgdat_free_space_enough(struct pglist_data * pgdat)1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 	int z;
1813 	unsigned long enough_wmark;
1814 
1815 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 			   pgdat->node_present_pages >> 4);
1817 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 		struct zone *zone = pgdat->node_zones + z;
1819 
1820 		if (!populated_zone(zone))
1821 			continue;
1822 
1823 		if (zone_watermark_ok(zone, 0,
1824 				      promo_wmark_pages(zone) + enough_wmark,
1825 				      ZONE_MOVABLE, 0))
1826 			return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 /*
1832  * For memory tiering mode, when page tables are scanned, the scan
1833  * time will be recorded in struct page in addition to make page
1834  * PROT_NONE for slow memory page.  So when the page is accessed, in
1835  * hint page fault handler, the hint page fault latency is calculated
1836  * via,
1837  *
1838  *	hint page fault latency = hint page fault time - scan time
1839  *
1840  * The smaller the hint page fault latency, the higher the possibility
1841  * for the page to be hot.
1842  */
numa_hint_fault_latency(struct folio * folio)1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 	int last_time, time;
1846 
1847 	time = jiffies_to_msecs(jiffies);
1848 	last_time = folio_xchg_access_time(folio, time);
1849 
1850 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852 
1853 /*
1854  * For memory tiering mode, too high promotion/demotion throughput may
1855  * hurt application latency.  So we provide a mechanism to rate limit
1856  * the number of pages that are tried to be promoted.
1857  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 				      unsigned long rate_limit, int nr)
1860 {
1861 	unsigned long nr_cand;
1862 	unsigned int now, start;
1863 
1864 	now = jiffies_to_msecs(jiffies);
1865 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 	start = pgdat->nbp_rl_start;
1868 	if (now - start > MSEC_PER_SEC &&
1869 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 		pgdat->nbp_rl_nr_cand = nr_cand;
1871 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 		return true;
1873 	return false;
1874 }
1875 
1876 #define NUMA_MIGRATION_ADJUST_STEPS	16
1877 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 					    unsigned long rate_limit,
1880 					    unsigned int ref_th)
1881 {
1882 	unsigned int now, start, th_period, unit_th, th;
1883 	unsigned long nr_cand, ref_cand, diff_cand;
1884 
1885 	now = jiffies_to_msecs(jiffies);
1886 	th_period = sysctl_numa_balancing_scan_period_max;
1887 	start = pgdat->nbp_th_start;
1888 	if (now - start > th_period &&
1889 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 		ref_cand = rate_limit *
1891 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 		th = pgdat->nbp_threshold ? : ref_th;
1896 		if (diff_cand > ref_cand * 11 / 10)
1897 			th = max(th - unit_th, unit_th);
1898 		else if (diff_cand < ref_cand * 9 / 10)
1899 			th = min(th + unit_th, ref_th * 2);
1900 		pgdat->nbp_th_nr_cand = nr_cand;
1901 		pgdat->nbp_threshold = th;
1902 	}
1903 }
1904 
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 				int src_nid, int dst_cpu)
1907 {
1908 	struct numa_group *ng = deref_curr_numa_group(p);
1909 	int dst_nid = cpu_to_node(dst_cpu);
1910 	int last_cpupid, this_cpupid;
1911 
1912 	/*
1913 	 * Cannot migrate to memoryless nodes.
1914 	 */
1915 	if (!node_state(dst_nid, N_MEMORY))
1916 		return false;
1917 
1918 	/*
1919 	 * The pages in slow memory node should be migrated according
1920 	 * to hot/cold instead of private/shared.
1921 	 */
1922 	if (folio_use_access_time(folio)) {
1923 		struct pglist_data *pgdat;
1924 		unsigned long rate_limit;
1925 		unsigned int latency, th, def_th;
1926 		long nr = folio_nr_pages(folio);
1927 
1928 		pgdat = NODE_DATA(dst_nid);
1929 		if (pgdat_free_space_enough(pgdat)) {
1930 			/* workload changed, reset hot threshold */
1931 			pgdat->nbp_threshold = 0;
1932 			mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr);
1933 			return true;
1934 		}
1935 
1936 		def_th = sysctl_numa_balancing_hot_threshold;
1937 		rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit);
1938 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1939 
1940 		th = pgdat->nbp_threshold ? : def_th;
1941 		latency = numa_hint_fault_latency(folio);
1942 		if (latency >= th)
1943 			return false;
1944 
1945 		return !numa_promotion_rate_limit(pgdat, rate_limit, nr);
1946 	}
1947 
1948 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950 
1951 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 		return false;
1954 
1955 	/*
1956 	 * Allow first faults or private faults to migrate immediately early in
1957 	 * the lifetime of a task. The magic number 4 is based on waiting for
1958 	 * two full passes of the "multi-stage node selection" test that is
1959 	 * executed below.
1960 	 */
1961 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 		return true;
1964 
1965 	/*
1966 	 * Multi-stage node selection is used in conjunction with a periodic
1967 	 * migration fault to build a temporal task<->page relation. By using
1968 	 * a two-stage filter we remove short/unlikely relations.
1969 	 *
1970 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 	 * a task's usage of a particular page (n_p) per total usage of this
1972 	 * page (n_t) (in a given time-span) to a probability.
1973 	 *
1974 	 * Our periodic faults will sample this probability and getting the
1975 	 * same result twice in a row, given these samples are fully
1976 	 * independent, is then given by P(n)^2, provided our sample period
1977 	 * is sufficiently short compared to the usage pattern.
1978 	 *
1979 	 * This quadric squishes small probabilities, making it less likely we
1980 	 * act on an unlikely task<->page relation.
1981 	 */
1982 	if (!cpupid_pid_unset(last_cpupid) &&
1983 				cpupid_to_nid(last_cpupid) != dst_nid)
1984 		return false;
1985 
1986 	/* Always allow migrate on private faults */
1987 	if (cpupid_match_pid(p, last_cpupid))
1988 		return true;
1989 
1990 	/* A shared fault, but p->numa_group has not been set up yet. */
1991 	if (!ng)
1992 		return true;
1993 
1994 	/*
1995 	 * Destination node is much more heavily used than the source
1996 	 * node? Allow migration.
1997 	 */
1998 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 					ACTIVE_NODE_FRACTION)
2000 		return true;
2001 
2002 	/*
2003 	 * Distribute memory according to CPU & memory use on each node,
2004 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 	 *
2006 	 * faults_cpu(dst)   3   faults_cpu(src)
2007 	 * --------------- * - > ---------------
2008 	 * faults_mem(dst)   4   faults_mem(src)
2009 	 */
2010 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013 
2014 /*
2015  * 'numa_type' describes the node at the moment of load balancing.
2016  */
2017 enum numa_type {
2018 	/* The node has spare capacity that can be used to run more tasks.  */
2019 	node_has_spare = 0,
2020 	/*
2021 	 * The node is fully used and the tasks don't compete for more CPU
2022 	 * cycles. Nevertheless, some tasks might wait before running.
2023 	 */
2024 	node_fully_busy,
2025 	/*
2026 	 * The node is overloaded and can't provide expected CPU cycles to all
2027 	 * tasks.
2028 	 */
2029 	node_overloaded
2030 };
2031 
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 	unsigned long load;
2035 	unsigned long runnable;
2036 	unsigned long util;
2037 	/* Total compute capacity of CPUs on a node */
2038 	unsigned long compute_capacity;
2039 	unsigned int nr_running;
2040 	unsigned int weight;
2041 	enum numa_type node_type;
2042 	int idle_cpu;
2043 };
2044 
2045 struct task_numa_env {
2046 	struct task_struct *p;
2047 
2048 	int src_cpu, src_nid;
2049 	int dst_cpu, dst_nid;
2050 	int imb_numa_nr;
2051 
2052 	struct numa_stats src_stats, dst_stats;
2053 
2054 	int imbalance_pct;
2055 	int dist;
2056 
2057 	struct task_struct *best_task;
2058 	long best_imp;
2059 	int best_cpu;
2060 };
2061 
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064 
2065 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 			 struct numa_stats *ns)
2068 {
2069 	if ((ns->nr_running > ns->weight) &&
2070 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 		return node_overloaded;
2073 
2074 	if ((ns->nr_running < ns->weight) ||
2075 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 		return node_has_spare;
2078 
2079 	return node_fully_busy;
2080 }
2081 
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 	if (!static_branch_likely(&sched_smt_present) ||
2088 	    idle_core >= 0 || !test_idle_cores(cpu))
2089 		return idle_core;
2090 
2091 	/*
2092 	 * Prefer cores instead of packing HT siblings
2093 	 * and triggering future load balancing.
2094 	 */
2095 	if (is_core_idle(cpu))
2096 		idle_core = cpu;
2097 
2098 	return idle_core;
2099 }
2100 #else /* !CONFIG_SCHED_SMT: */
numa_idle_core(int idle_core,int cpu)2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 	return idle_core;
2104 }
2105 #endif /* !CONFIG_SCHED_SMT */
2106 
2107 /*
2108  * Gather all necessary information to make NUMA balancing placement
2109  * decisions that are compatible with standard load balancer. This
2110  * borrows code and logic from update_sg_lb_stats but sharing a
2111  * common implementation is impractical.
2112  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2113 static void update_numa_stats(struct task_numa_env *env,
2114 			      struct numa_stats *ns, int nid,
2115 			      bool find_idle)
2116 {
2117 	int cpu, idle_core = -1;
2118 
2119 	memset(ns, 0, sizeof(*ns));
2120 	ns->idle_cpu = -1;
2121 
2122 	rcu_read_lock();
2123 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 		struct rq *rq = cpu_rq(cpu);
2125 
2126 		ns->load += cpu_load(rq);
2127 		ns->runnable += cpu_runnable(rq);
2128 		ns->util += cpu_util_cfs(cpu);
2129 		ns->nr_running += rq->cfs.h_nr_runnable;
2130 		ns->compute_capacity += capacity_of(cpu);
2131 
2132 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 			if (READ_ONCE(rq->numa_migrate_on) ||
2134 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 				continue;
2136 
2137 			if (ns->idle_cpu == -1)
2138 				ns->idle_cpu = cpu;
2139 
2140 			idle_core = numa_idle_core(idle_core, cpu);
2141 		}
2142 	}
2143 	rcu_read_unlock();
2144 
2145 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2146 
2147 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2148 
2149 	if (idle_core >= 0)
2150 		ns->idle_cpu = idle_core;
2151 }
2152 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2153 static void task_numa_assign(struct task_numa_env *env,
2154 			     struct task_struct *p, long imp)
2155 {
2156 	struct rq *rq = cpu_rq(env->dst_cpu);
2157 
2158 	/* Check if run-queue part of active NUMA balance. */
2159 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 		int cpu;
2161 		int start = env->dst_cpu;
2162 
2163 		/* Find alternative idle CPU. */
2164 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 				continue;
2168 			}
2169 
2170 			env->dst_cpu = cpu;
2171 			rq = cpu_rq(env->dst_cpu);
2172 			if (!xchg(&rq->numa_migrate_on, 1))
2173 				goto assign;
2174 		}
2175 
2176 		/* Failed to find an alternative idle CPU */
2177 		return;
2178 	}
2179 
2180 assign:
2181 	/*
2182 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 	 * found a better CPU to move/swap.
2184 	 */
2185 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 		rq = cpu_rq(env->best_cpu);
2187 		WRITE_ONCE(rq->numa_migrate_on, 0);
2188 	}
2189 
2190 	if (env->best_task)
2191 		put_task_struct(env->best_task);
2192 	if (p)
2193 		get_task_struct(p);
2194 
2195 	env->best_task = p;
2196 	env->best_imp = imp;
2197 	env->best_cpu = env->dst_cpu;
2198 }
2199 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 				struct task_numa_env *env)
2202 {
2203 	long imb, old_imb;
2204 	long orig_src_load, orig_dst_load;
2205 	long src_capacity, dst_capacity;
2206 
2207 	/*
2208 	 * The load is corrected for the CPU capacity available on each node.
2209 	 *
2210 	 * src_load        dst_load
2211 	 * ------------ vs ---------
2212 	 * src_capacity    dst_capacity
2213 	 */
2214 	src_capacity = env->src_stats.compute_capacity;
2215 	dst_capacity = env->dst_stats.compute_capacity;
2216 
2217 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218 
2219 	orig_src_load = env->src_stats.load;
2220 	orig_dst_load = env->dst_stats.load;
2221 
2222 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223 
2224 	/* Would this change make things worse? */
2225 	return (imb > old_imb);
2226 }
2227 
2228 /*
2229  * Maximum NUMA importance can be 1998 (2*999);
2230  * SMALLIMP @ 30 would be close to 1998/64.
2231  * Used to deter task migration.
2232  */
2233 #define SMALLIMP	30
2234 
2235 /*
2236  * This checks if the overall compute and NUMA accesses of the system would
2237  * be improved if the source tasks was migrated to the target dst_cpu taking
2238  * into account that it might be best if task running on the dst_cpu should
2239  * be exchanged with the source task
2240  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2241 static bool task_numa_compare(struct task_numa_env *env,
2242 			      long taskimp, long groupimp, bool maymove)
2243 {
2244 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 	long imp = p_ng ? groupimp : taskimp;
2247 	struct task_struct *cur;
2248 	long src_load, dst_load;
2249 	int dist = env->dist;
2250 	long moveimp = imp;
2251 	long load;
2252 	bool stopsearch = false;
2253 
2254 	if (READ_ONCE(dst_rq->numa_migrate_on))
2255 		return false;
2256 
2257 	rcu_read_lock();
2258 	cur = rcu_dereference(dst_rq->curr);
2259 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2260 		    !cur->mm))
2261 		cur = NULL;
2262 
2263 	/*
2264 	 * Because we have preemption enabled we can get migrated around and
2265 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2266 	 */
2267 	if (cur == env->p) {
2268 		stopsearch = true;
2269 		goto unlock;
2270 	}
2271 
2272 	if (!cur) {
2273 		if (maymove && moveimp >= env->best_imp)
2274 			goto assign;
2275 		else
2276 			goto unlock;
2277 	}
2278 
2279 	/* Skip this swap candidate if cannot move to the source cpu. */
2280 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2281 		goto unlock;
2282 
2283 	/*
2284 	 * Skip this swap candidate if it is not moving to its preferred
2285 	 * node and the best task is.
2286 	 */
2287 	if (env->best_task &&
2288 	    env->best_task->numa_preferred_nid == env->src_nid &&
2289 	    cur->numa_preferred_nid != env->src_nid) {
2290 		goto unlock;
2291 	}
2292 
2293 	/*
2294 	 * "imp" is the fault differential for the source task between the
2295 	 * source and destination node. Calculate the total differential for
2296 	 * the source task and potential destination task. The more negative
2297 	 * the value is, the more remote accesses that would be expected to
2298 	 * be incurred if the tasks were swapped.
2299 	 *
2300 	 * If dst and source tasks are in the same NUMA group, or not
2301 	 * in any group then look only at task weights.
2302 	 */
2303 	cur_ng = rcu_dereference(cur->numa_group);
2304 	if (cur_ng == p_ng) {
2305 		/*
2306 		 * Do not swap within a group or between tasks that have
2307 		 * no group if there is spare capacity. Swapping does
2308 		 * not address the load imbalance and helps one task at
2309 		 * the cost of punishing another.
2310 		 */
2311 		if (env->dst_stats.node_type == node_has_spare)
2312 			goto unlock;
2313 
2314 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2315 		      task_weight(cur, env->dst_nid, dist);
2316 		/*
2317 		 * Add some hysteresis to prevent swapping the
2318 		 * tasks within a group over tiny differences.
2319 		 */
2320 		if (cur_ng)
2321 			imp -= imp / 16;
2322 	} else {
2323 		/*
2324 		 * Compare the group weights. If a task is all by itself
2325 		 * (not part of a group), use the task weight instead.
2326 		 */
2327 		if (cur_ng && p_ng)
2328 			imp += group_weight(cur, env->src_nid, dist) -
2329 			       group_weight(cur, env->dst_nid, dist);
2330 		else
2331 			imp += task_weight(cur, env->src_nid, dist) -
2332 			       task_weight(cur, env->dst_nid, dist);
2333 	}
2334 
2335 	/* Discourage picking a task already on its preferred node */
2336 	if (cur->numa_preferred_nid == env->dst_nid)
2337 		imp -= imp / 16;
2338 
2339 	/*
2340 	 * Encourage picking a task that moves to its preferred node.
2341 	 * This potentially makes imp larger than it's maximum of
2342 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2343 	 * case, it does not matter.
2344 	 */
2345 	if (cur->numa_preferred_nid == env->src_nid)
2346 		imp += imp / 8;
2347 
2348 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2349 		imp = moveimp;
2350 		cur = NULL;
2351 		goto assign;
2352 	}
2353 
2354 	/*
2355 	 * Prefer swapping with a task moving to its preferred node over a
2356 	 * task that is not.
2357 	 */
2358 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2359 	    env->best_task->numa_preferred_nid != env->src_nid) {
2360 		goto assign;
2361 	}
2362 
2363 	/*
2364 	 * If the NUMA importance is less than SMALLIMP,
2365 	 * task migration might only result in ping pong
2366 	 * of tasks and also hurt performance due to cache
2367 	 * misses.
2368 	 */
2369 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2370 		goto unlock;
2371 
2372 	/*
2373 	 * In the overloaded case, try and keep the load balanced.
2374 	 */
2375 	load = task_h_load(env->p) - task_h_load(cur);
2376 	if (!load)
2377 		goto assign;
2378 
2379 	dst_load = env->dst_stats.load + load;
2380 	src_load = env->src_stats.load - load;
2381 
2382 	if (load_too_imbalanced(src_load, dst_load, env))
2383 		goto unlock;
2384 
2385 assign:
2386 	/* Evaluate an idle CPU for a task numa move. */
2387 	if (!cur) {
2388 		int cpu = env->dst_stats.idle_cpu;
2389 
2390 		/* Nothing cached so current CPU went idle since the search. */
2391 		if (cpu < 0)
2392 			cpu = env->dst_cpu;
2393 
2394 		/*
2395 		 * If the CPU is no longer truly idle and the previous best CPU
2396 		 * is, keep using it.
2397 		 */
2398 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2399 		    idle_cpu(env->best_cpu)) {
2400 			cpu = env->best_cpu;
2401 		}
2402 
2403 		env->dst_cpu = cpu;
2404 	}
2405 
2406 	task_numa_assign(env, cur, imp);
2407 
2408 	/*
2409 	 * If a move to idle is allowed because there is capacity or load
2410 	 * balance improves then stop the search. While a better swap
2411 	 * candidate may exist, a search is not free.
2412 	 */
2413 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2414 		stopsearch = true;
2415 
2416 	/*
2417 	 * If a swap candidate must be identified and the current best task
2418 	 * moves its preferred node then stop the search.
2419 	 */
2420 	if (!maymove && env->best_task &&
2421 	    env->best_task->numa_preferred_nid == env->src_nid) {
2422 		stopsearch = true;
2423 	}
2424 unlock:
2425 	rcu_read_unlock();
2426 
2427 	return stopsearch;
2428 }
2429 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2430 static void task_numa_find_cpu(struct task_numa_env *env,
2431 				long taskimp, long groupimp)
2432 {
2433 	bool maymove = false;
2434 	int cpu;
2435 
2436 	/*
2437 	 * If dst node has spare capacity, then check if there is an
2438 	 * imbalance that would be overruled by the load balancer.
2439 	 */
2440 	if (env->dst_stats.node_type == node_has_spare) {
2441 		unsigned int imbalance;
2442 		int src_running, dst_running;
2443 
2444 		/*
2445 		 * Would movement cause an imbalance? Note that if src has
2446 		 * more running tasks that the imbalance is ignored as the
2447 		 * move improves the imbalance from the perspective of the
2448 		 * CPU load balancer.
2449 		 * */
2450 		src_running = env->src_stats.nr_running - 1;
2451 		dst_running = env->dst_stats.nr_running + 1;
2452 		imbalance = max(0, dst_running - src_running);
2453 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2454 						  env->imb_numa_nr);
2455 
2456 		/* Use idle CPU if there is no imbalance */
2457 		if (!imbalance) {
2458 			maymove = true;
2459 			if (env->dst_stats.idle_cpu >= 0) {
2460 				env->dst_cpu = env->dst_stats.idle_cpu;
2461 				task_numa_assign(env, NULL, 0);
2462 				return;
2463 			}
2464 		}
2465 	} else {
2466 		long src_load, dst_load, load;
2467 		/*
2468 		 * If the improvement from just moving env->p direction is better
2469 		 * than swapping tasks around, check if a move is possible.
2470 		 */
2471 		load = task_h_load(env->p);
2472 		dst_load = env->dst_stats.load + load;
2473 		src_load = env->src_stats.load - load;
2474 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2475 	}
2476 
2477 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2478 		/* Skip this CPU if the source task cannot migrate */
2479 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2480 			continue;
2481 
2482 		env->dst_cpu = cpu;
2483 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2484 			break;
2485 	}
2486 }
2487 
task_numa_migrate(struct task_struct * p)2488 static int task_numa_migrate(struct task_struct *p)
2489 {
2490 	struct task_numa_env env = {
2491 		.p = p,
2492 
2493 		.src_cpu = task_cpu(p),
2494 		.src_nid = task_node(p),
2495 
2496 		.imbalance_pct = 112,
2497 
2498 		.best_task = NULL,
2499 		.best_imp = 0,
2500 		.best_cpu = -1,
2501 	};
2502 	unsigned long taskweight, groupweight;
2503 	struct sched_domain *sd;
2504 	long taskimp, groupimp;
2505 	struct numa_group *ng;
2506 	struct rq *best_rq;
2507 	int nid, ret, dist;
2508 
2509 	/*
2510 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2511 	 * imbalance and would be the first to start moving tasks about.
2512 	 *
2513 	 * And we want to avoid any moving of tasks about, as that would create
2514 	 * random movement of tasks -- counter the numa conditions we're trying
2515 	 * to satisfy here.
2516 	 */
2517 	rcu_read_lock();
2518 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2519 	if (sd) {
2520 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2521 		env.imb_numa_nr = sd->imb_numa_nr;
2522 	}
2523 	rcu_read_unlock();
2524 
2525 	/*
2526 	 * Cpusets can break the scheduler domain tree into smaller
2527 	 * balance domains, some of which do not cross NUMA boundaries.
2528 	 * Tasks that are "trapped" in such domains cannot be migrated
2529 	 * elsewhere, so there is no point in (re)trying.
2530 	 */
2531 	if (unlikely(!sd)) {
2532 		sched_setnuma(p, task_node(p));
2533 		return -EINVAL;
2534 	}
2535 
2536 	env.dst_nid = p->numa_preferred_nid;
2537 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2538 	taskweight = task_weight(p, env.src_nid, dist);
2539 	groupweight = group_weight(p, env.src_nid, dist);
2540 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2541 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2542 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2543 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2544 
2545 	/* Try to find a spot on the preferred nid. */
2546 	task_numa_find_cpu(&env, taskimp, groupimp);
2547 
2548 	/*
2549 	 * Look at other nodes in these cases:
2550 	 * - there is no space available on the preferred_nid
2551 	 * - the task is part of a numa_group that is interleaved across
2552 	 *   multiple NUMA nodes; in order to better consolidate the group,
2553 	 *   we need to check other locations.
2554 	 */
2555 	ng = deref_curr_numa_group(p);
2556 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2557 		for_each_node_state(nid, N_CPU) {
2558 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2559 				continue;
2560 
2561 			dist = node_distance(env.src_nid, env.dst_nid);
2562 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2563 						dist != env.dist) {
2564 				taskweight = task_weight(p, env.src_nid, dist);
2565 				groupweight = group_weight(p, env.src_nid, dist);
2566 			}
2567 
2568 			/* Only consider nodes where both task and groups benefit */
2569 			taskimp = task_weight(p, nid, dist) - taskweight;
2570 			groupimp = group_weight(p, nid, dist) - groupweight;
2571 			if (taskimp < 0 && groupimp < 0)
2572 				continue;
2573 
2574 			env.dist = dist;
2575 			env.dst_nid = nid;
2576 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2577 			task_numa_find_cpu(&env, taskimp, groupimp);
2578 		}
2579 	}
2580 
2581 	/*
2582 	 * If the task is part of a workload that spans multiple NUMA nodes,
2583 	 * and is migrating into one of the workload's active nodes, remember
2584 	 * this node as the task's preferred numa node, so the workload can
2585 	 * settle down.
2586 	 * A task that migrated to a second choice node will be better off
2587 	 * trying for a better one later. Do not set the preferred node here.
2588 	 */
2589 	if (ng) {
2590 		if (env.best_cpu == -1)
2591 			nid = env.src_nid;
2592 		else
2593 			nid = cpu_to_node(env.best_cpu);
2594 
2595 		if (nid != p->numa_preferred_nid)
2596 			sched_setnuma(p, nid);
2597 	}
2598 
2599 	/* No better CPU than the current one was found. */
2600 	if (env.best_cpu == -1) {
2601 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2602 		return -EAGAIN;
2603 	}
2604 
2605 	best_rq = cpu_rq(env.best_cpu);
2606 	if (env.best_task == NULL) {
2607 		ret = migrate_task_to(p, env.best_cpu);
2608 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2609 		if (ret != 0)
2610 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2611 		return ret;
2612 	}
2613 
2614 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2615 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2616 
2617 	if (ret != 0)
2618 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2619 	put_task_struct(env.best_task);
2620 	return ret;
2621 }
2622 
2623 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2624 static void numa_migrate_preferred(struct task_struct *p)
2625 {
2626 	unsigned long interval = HZ;
2627 
2628 	/* This task has no NUMA fault statistics yet */
2629 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2630 		return;
2631 
2632 	/* Periodically retry migrating the task to the preferred node */
2633 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2634 	p->numa_migrate_retry = jiffies + interval;
2635 
2636 	/* Success if task is already running on preferred CPU */
2637 	if (task_node(p) == p->numa_preferred_nid)
2638 		return;
2639 
2640 	/* Otherwise, try migrate to a CPU on the preferred node */
2641 	task_numa_migrate(p);
2642 }
2643 
2644 /*
2645  * Find out how many nodes the workload is actively running on. Do this by
2646  * tracking the nodes from which NUMA hinting faults are triggered. This can
2647  * be different from the set of nodes where the workload's memory is currently
2648  * located.
2649  */
numa_group_count_active_nodes(struct numa_group * numa_group)2650 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2651 {
2652 	unsigned long faults, max_faults = 0;
2653 	int nid, active_nodes = 0;
2654 
2655 	for_each_node_state(nid, N_CPU) {
2656 		faults = group_faults_cpu(numa_group, nid);
2657 		if (faults > max_faults)
2658 			max_faults = faults;
2659 	}
2660 
2661 	for_each_node_state(nid, N_CPU) {
2662 		faults = group_faults_cpu(numa_group, nid);
2663 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2664 			active_nodes++;
2665 	}
2666 
2667 	numa_group->max_faults_cpu = max_faults;
2668 	numa_group->active_nodes = active_nodes;
2669 }
2670 
2671 /*
2672  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2673  * increments. The more local the fault statistics are, the higher the scan
2674  * period will be for the next scan window. If local/(local+remote) ratio is
2675  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2676  * the scan period will decrease. Aim for 70% local accesses.
2677  */
2678 #define NUMA_PERIOD_SLOTS 10
2679 #define NUMA_PERIOD_THRESHOLD 7
2680 
2681 /*
2682  * Increase the scan period (slow down scanning) if the majority of
2683  * our memory is already on our local node, or if the majority of
2684  * the page accesses are shared with other processes.
2685  * Otherwise, decrease the scan period.
2686  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2687 static void update_task_scan_period(struct task_struct *p,
2688 			unsigned long shared, unsigned long private)
2689 {
2690 	unsigned int period_slot;
2691 	int lr_ratio, ps_ratio;
2692 	int diff;
2693 
2694 	unsigned long remote = p->numa_faults_locality[0];
2695 	unsigned long local = p->numa_faults_locality[1];
2696 
2697 	/*
2698 	 * If there were no record hinting faults then either the task is
2699 	 * completely idle or all activity is in areas that are not of interest
2700 	 * to automatic numa balancing. Related to that, if there were failed
2701 	 * migration then it implies we are migrating too quickly or the local
2702 	 * node is overloaded. In either case, scan slower
2703 	 */
2704 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2705 		p->numa_scan_period = min(p->numa_scan_period_max,
2706 			p->numa_scan_period << 1);
2707 
2708 		p->mm->numa_next_scan = jiffies +
2709 			msecs_to_jiffies(p->numa_scan_period);
2710 
2711 		return;
2712 	}
2713 
2714 	/*
2715 	 * Prepare to scale scan period relative to the current period.
2716 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2717 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2718 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2719 	 */
2720 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2721 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2722 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2723 
2724 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2725 		/*
2726 		 * Most memory accesses are local. There is no need to
2727 		 * do fast NUMA scanning, since memory is already local.
2728 		 */
2729 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2730 		if (!slot)
2731 			slot = 1;
2732 		diff = slot * period_slot;
2733 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2734 		/*
2735 		 * Most memory accesses are shared with other tasks.
2736 		 * There is no point in continuing fast NUMA scanning,
2737 		 * since other tasks may just move the memory elsewhere.
2738 		 */
2739 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2740 		if (!slot)
2741 			slot = 1;
2742 		diff = slot * period_slot;
2743 	} else {
2744 		/*
2745 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2746 		 * yet they are not on the local NUMA node. Speed up
2747 		 * NUMA scanning to get the memory moved over.
2748 		 */
2749 		int ratio = max(lr_ratio, ps_ratio);
2750 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2751 	}
2752 
2753 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2754 			task_scan_min(p), task_scan_max(p));
2755 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2756 }
2757 
2758 /*
2759  * Get the fraction of time the task has been running since the last
2760  * NUMA placement cycle. The scheduler keeps similar statistics, but
2761  * decays those on a 32ms period, which is orders of magnitude off
2762  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2763  * stats only if the task is so new there are no NUMA statistics yet.
2764  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2766 {
2767 	u64 runtime, delta, now;
2768 	/* Use the start of this time slice to avoid calculations. */
2769 	now = p->se.exec_start;
2770 	runtime = p->se.sum_exec_runtime;
2771 
2772 	if (p->last_task_numa_placement) {
2773 		delta = runtime - p->last_sum_exec_runtime;
2774 		*period = now - p->last_task_numa_placement;
2775 
2776 		/* Avoid time going backwards, prevent potential divide error: */
2777 		if (unlikely((s64)*period < 0))
2778 			*period = 0;
2779 	} else {
2780 		delta = p->se.avg.load_sum;
2781 		*period = LOAD_AVG_MAX;
2782 	}
2783 
2784 	p->last_sum_exec_runtime = runtime;
2785 	p->last_task_numa_placement = now;
2786 
2787 	return delta;
2788 }
2789 
2790 /*
2791  * Determine the preferred nid for a task in a numa_group. This needs to
2792  * be done in a way that produces consistent results with group_weight,
2793  * otherwise workloads might not converge.
2794  */
preferred_group_nid(struct task_struct * p,int nid)2795 static int preferred_group_nid(struct task_struct *p, int nid)
2796 {
2797 	nodemask_t nodes;
2798 	int dist;
2799 
2800 	/* Direct connections between all NUMA nodes. */
2801 	if (sched_numa_topology_type == NUMA_DIRECT)
2802 		return nid;
2803 
2804 	/*
2805 	 * On a system with glueless mesh NUMA topology, group_weight
2806 	 * scores nodes according to the number of NUMA hinting faults on
2807 	 * both the node itself, and on nearby nodes.
2808 	 */
2809 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2810 		unsigned long score, max_score = 0;
2811 		int node, max_node = nid;
2812 
2813 		dist = sched_max_numa_distance;
2814 
2815 		for_each_node_state(node, N_CPU) {
2816 			score = group_weight(p, node, dist);
2817 			if (score > max_score) {
2818 				max_score = score;
2819 				max_node = node;
2820 			}
2821 		}
2822 		return max_node;
2823 	}
2824 
2825 	/*
2826 	 * Finding the preferred nid in a system with NUMA backplane
2827 	 * interconnect topology is more involved. The goal is to locate
2828 	 * tasks from numa_groups near each other in the system, and
2829 	 * untangle workloads from different sides of the system. This requires
2830 	 * searching down the hierarchy of node groups, recursively searching
2831 	 * inside the highest scoring group of nodes. The nodemask tricks
2832 	 * keep the complexity of the search down.
2833 	 */
2834 	nodes = node_states[N_CPU];
2835 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2836 		unsigned long max_faults = 0;
2837 		nodemask_t max_group = NODE_MASK_NONE;
2838 		int a, b;
2839 
2840 		/* Are there nodes at this distance from each other? */
2841 		if (!find_numa_distance(dist))
2842 			continue;
2843 
2844 		for_each_node_mask(a, nodes) {
2845 			unsigned long faults = 0;
2846 			nodemask_t this_group;
2847 			nodes_clear(this_group);
2848 
2849 			/* Sum group's NUMA faults; includes a==b case. */
2850 			for_each_node_mask(b, nodes) {
2851 				if (node_distance(a, b) < dist) {
2852 					faults += group_faults(p, b);
2853 					node_set(b, this_group);
2854 					node_clear(b, nodes);
2855 				}
2856 			}
2857 
2858 			/* Remember the top group. */
2859 			if (faults > max_faults) {
2860 				max_faults = faults;
2861 				max_group = this_group;
2862 				/*
2863 				 * subtle: at the smallest distance there is
2864 				 * just one node left in each "group", the
2865 				 * winner is the preferred nid.
2866 				 */
2867 				nid = a;
2868 			}
2869 		}
2870 		/* Next round, evaluate the nodes within max_group. */
2871 		if (!max_faults)
2872 			break;
2873 		nodes = max_group;
2874 	}
2875 	return nid;
2876 }
2877 
task_numa_placement(struct task_struct * p)2878 static void task_numa_placement(struct task_struct *p)
2879 {
2880 	int seq, nid, max_nid = NUMA_NO_NODE;
2881 	unsigned long max_faults = 0;
2882 	unsigned long fault_types[2] = { 0, 0 };
2883 	unsigned long total_faults;
2884 	u64 runtime, period;
2885 	spinlock_t *group_lock = NULL;
2886 	struct numa_group *ng;
2887 
2888 	/*
2889 	 * The p->mm->numa_scan_seq field gets updated without
2890 	 * exclusive access. Use READ_ONCE() here to ensure
2891 	 * that the field is read in a single access:
2892 	 */
2893 	seq = READ_ONCE(p->mm->numa_scan_seq);
2894 	if (p->numa_scan_seq == seq)
2895 		return;
2896 	p->numa_scan_seq = seq;
2897 	p->numa_scan_period_max = task_scan_max(p);
2898 
2899 	total_faults = p->numa_faults_locality[0] +
2900 		       p->numa_faults_locality[1];
2901 	runtime = numa_get_avg_runtime(p, &period);
2902 
2903 	/* If the task is part of a group prevent parallel updates to group stats */
2904 	ng = deref_curr_numa_group(p);
2905 	if (ng) {
2906 		group_lock = &ng->lock;
2907 		spin_lock_irq(group_lock);
2908 	}
2909 
2910 	/* Find the node with the highest number of faults */
2911 	for_each_online_node(nid) {
2912 		/* Keep track of the offsets in numa_faults array */
2913 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2914 		unsigned long faults = 0, group_faults = 0;
2915 		int priv;
2916 
2917 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2918 			long diff, f_diff, f_weight;
2919 
2920 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2921 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2922 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2923 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2924 
2925 			/* Decay existing window, copy faults since last scan */
2926 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2927 			fault_types[priv] += p->numa_faults[membuf_idx];
2928 			p->numa_faults[membuf_idx] = 0;
2929 
2930 			/*
2931 			 * Normalize the faults_from, so all tasks in a group
2932 			 * count according to CPU use, instead of by the raw
2933 			 * number of faults. Tasks with little runtime have
2934 			 * little over-all impact on throughput, and thus their
2935 			 * faults are less important.
2936 			 */
2937 			f_weight = div64_u64(runtime << 16, period + 1);
2938 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2939 				   (total_faults + 1);
2940 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2941 			p->numa_faults[cpubuf_idx] = 0;
2942 
2943 			p->numa_faults[mem_idx] += diff;
2944 			p->numa_faults[cpu_idx] += f_diff;
2945 			faults += p->numa_faults[mem_idx];
2946 			p->total_numa_faults += diff;
2947 			if (ng) {
2948 				/*
2949 				 * safe because we can only change our own group
2950 				 *
2951 				 * mem_idx represents the offset for a given
2952 				 * nid and priv in a specific region because it
2953 				 * is at the beginning of the numa_faults array.
2954 				 */
2955 				ng->faults[mem_idx] += diff;
2956 				ng->faults[cpu_idx] += f_diff;
2957 				ng->total_faults += diff;
2958 				group_faults += ng->faults[mem_idx];
2959 			}
2960 		}
2961 
2962 		if (!ng) {
2963 			if (faults > max_faults) {
2964 				max_faults = faults;
2965 				max_nid = nid;
2966 			}
2967 		} else if (group_faults > max_faults) {
2968 			max_faults = group_faults;
2969 			max_nid = nid;
2970 		}
2971 	}
2972 
2973 	/* Cannot migrate task to CPU-less node */
2974 	max_nid = numa_nearest_node(max_nid, N_CPU);
2975 
2976 	if (ng) {
2977 		numa_group_count_active_nodes(ng);
2978 		spin_unlock_irq(group_lock);
2979 		max_nid = preferred_group_nid(p, max_nid);
2980 	}
2981 
2982 	if (max_faults) {
2983 		/* Set the new preferred node */
2984 		if (max_nid != p->numa_preferred_nid)
2985 			sched_setnuma(p, max_nid);
2986 	}
2987 
2988 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2989 }
2990 
get_numa_group(struct numa_group * grp)2991 static inline int get_numa_group(struct numa_group *grp)
2992 {
2993 	return refcount_inc_not_zero(&grp->refcount);
2994 }
2995 
put_numa_group(struct numa_group * grp)2996 static inline void put_numa_group(struct numa_group *grp)
2997 {
2998 	if (refcount_dec_and_test(&grp->refcount))
2999 		kfree_rcu(grp, rcu);
3000 }
3001 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3003 			int *priv)
3004 {
3005 	struct numa_group *grp, *my_grp;
3006 	struct task_struct *tsk;
3007 	bool join = false;
3008 	int cpu = cpupid_to_cpu(cpupid);
3009 	int i;
3010 
3011 	if (unlikely(!deref_curr_numa_group(p))) {
3012 		unsigned int size = sizeof(struct numa_group) +
3013 				    NR_NUMA_HINT_FAULT_STATS *
3014 				    nr_node_ids * sizeof(unsigned long);
3015 
3016 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3017 		if (!grp)
3018 			return;
3019 
3020 		refcount_set(&grp->refcount, 1);
3021 		grp->active_nodes = 1;
3022 		grp->max_faults_cpu = 0;
3023 		spin_lock_init(&grp->lock);
3024 		grp->gid = p->pid;
3025 
3026 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3027 			grp->faults[i] = p->numa_faults[i];
3028 
3029 		grp->total_faults = p->total_numa_faults;
3030 
3031 		grp->nr_tasks++;
3032 		rcu_assign_pointer(p->numa_group, grp);
3033 	}
3034 
3035 	rcu_read_lock();
3036 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3037 
3038 	if (!cpupid_match_pid(tsk, cpupid))
3039 		goto no_join;
3040 
3041 	grp = rcu_dereference(tsk->numa_group);
3042 	if (!grp)
3043 		goto no_join;
3044 
3045 	my_grp = deref_curr_numa_group(p);
3046 	if (grp == my_grp)
3047 		goto no_join;
3048 
3049 	/*
3050 	 * Only join the other group if its bigger; if we're the bigger group,
3051 	 * the other task will join us.
3052 	 */
3053 	if (my_grp->nr_tasks > grp->nr_tasks)
3054 		goto no_join;
3055 
3056 	/*
3057 	 * Tie-break on the grp address.
3058 	 */
3059 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3060 		goto no_join;
3061 
3062 	/* Always join threads in the same process. */
3063 	if (tsk->mm == current->mm)
3064 		join = true;
3065 
3066 	/* Simple filter to avoid false positives due to PID collisions */
3067 	if (flags & TNF_SHARED)
3068 		join = true;
3069 
3070 	/* Update priv based on whether false sharing was detected */
3071 	*priv = !join;
3072 
3073 	if (join && !get_numa_group(grp))
3074 		goto no_join;
3075 
3076 	rcu_read_unlock();
3077 
3078 	if (!join)
3079 		return;
3080 
3081 	WARN_ON_ONCE(irqs_disabled());
3082 	double_lock_irq(&my_grp->lock, &grp->lock);
3083 
3084 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3085 		my_grp->faults[i] -= p->numa_faults[i];
3086 		grp->faults[i] += p->numa_faults[i];
3087 	}
3088 	my_grp->total_faults -= p->total_numa_faults;
3089 	grp->total_faults += p->total_numa_faults;
3090 
3091 	my_grp->nr_tasks--;
3092 	grp->nr_tasks++;
3093 
3094 	spin_unlock(&my_grp->lock);
3095 	spin_unlock_irq(&grp->lock);
3096 
3097 	rcu_assign_pointer(p->numa_group, grp);
3098 
3099 	put_numa_group(my_grp);
3100 	return;
3101 
3102 no_join:
3103 	rcu_read_unlock();
3104 	return;
3105 }
3106 
3107 /*
3108  * Get rid of NUMA statistics associated with a task (either current or dead).
3109  * If @final is set, the task is dead and has reached refcount zero, so we can
3110  * safely free all relevant data structures. Otherwise, there might be
3111  * concurrent reads from places like load balancing and procfs, and we should
3112  * reset the data back to default state without freeing ->numa_faults.
3113  */
task_numa_free(struct task_struct * p,bool final)3114 void task_numa_free(struct task_struct *p, bool final)
3115 {
3116 	/* safe: p either is current or is being freed by current */
3117 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3118 	unsigned long *numa_faults = p->numa_faults;
3119 	unsigned long flags;
3120 	int i;
3121 
3122 	if (!numa_faults)
3123 		return;
3124 
3125 	if (grp) {
3126 		spin_lock_irqsave(&grp->lock, flags);
3127 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3128 			grp->faults[i] -= p->numa_faults[i];
3129 		grp->total_faults -= p->total_numa_faults;
3130 
3131 		grp->nr_tasks--;
3132 		spin_unlock_irqrestore(&grp->lock, flags);
3133 		RCU_INIT_POINTER(p->numa_group, NULL);
3134 		put_numa_group(grp);
3135 	}
3136 
3137 	if (final) {
3138 		p->numa_faults = NULL;
3139 		kfree(numa_faults);
3140 	} else {
3141 		p->total_numa_faults = 0;
3142 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3143 			numa_faults[i] = 0;
3144 	}
3145 }
3146 
3147 /*
3148  * Got a PROT_NONE fault for a page on @node.
3149  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3151 {
3152 	struct task_struct *p = current;
3153 	bool migrated = flags & TNF_MIGRATED;
3154 	int cpu_node = task_node(current);
3155 	int local = !!(flags & TNF_FAULT_LOCAL);
3156 	struct numa_group *ng;
3157 	int priv;
3158 
3159 	if (!static_branch_likely(&sched_numa_balancing))
3160 		return;
3161 
3162 	/* for example, ksmd faulting in a user's mm */
3163 	if (!p->mm)
3164 		return;
3165 
3166 	/*
3167 	 * NUMA faults statistics are unnecessary for the slow memory
3168 	 * node for memory tiering mode.
3169 	 */
3170 	if (!node_is_toptier(mem_node) &&
3171 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3172 	     !cpupid_valid(last_cpupid)))
3173 		return;
3174 
3175 	/* Allocate buffer to track faults on a per-node basis */
3176 	if (unlikely(!p->numa_faults)) {
3177 		int size = sizeof(*p->numa_faults) *
3178 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3179 
3180 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3181 		if (!p->numa_faults)
3182 			return;
3183 
3184 		p->total_numa_faults = 0;
3185 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3186 	}
3187 
3188 	/*
3189 	 * First accesses are treated as private, otherwise consider accesses
3190 	 * to be private if the accessing pid has not changed
3191 	 */
3192 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3193 		priv = 1;
3194 	} else {
3195 		priv = cpupid_match_pid(p, last_cpupid);
3196 		if (!priv && !(flags & TNF_NO_GROUP))
3197 			task_numa_group(p, last_cpupid, flags, &priv);
3198 	}
3199 
3200 	/*
3201 	 * If a workload spans multiple NUMA nodes, a shared fault that
3202 	 * occurs wholly within the set of nodes that the workload is
3203 	 * actively using should be counted as local. This allows the
3204 	 * scan rate to slow down when a workload has settled down.
3205 	 */
3206 	ng = deref_curr_numa_group(p);
3207 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3208 				numa_is_active_node(cpu_node, ng) &&
3209 				numa_is_active_node(mem_node, ng))
3210 		local = 1;
3211 
3212 	/*
3213 	 * Retry to migrate task to preferred node periodically, in case it
3214 	 * previously failed, or the scheduler moved us.
3215 	 */
3216 	if (time_after(jiffies, p->numa_migrate_retry)) {
3217 		task_numa_placement(p);
3218 		numa_migrate_preferred(p);
3219 	}
3220 
3221 	if (migrated)
3222 		p->numa_pages_migrated += pages;
3223 	if (flags & TNF_MIGRATE_FAIL)
3224 		p->numa_faults_locality[2] += pages;
3225 
3226 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3227 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3228 	p->numa_faults_locality[local] += pages;
3229 }
3230 
reset_ptenuma_scan(struct task_struct * p)3231 static void reset_ptenuma_scan(struct task_struct *p)
3232 {
3233 	/*
3234 	 * We only did a read acquisition of the mmap sem, so
3235 	 * p->mm->numa_scan_seq is written to without exclusive access
3236 	 * and the update is not guaranteed to be atomic. That's not
3237 	 * much of an issue though, since this is just used for
3238 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3239 	 * expensive, to avoid any form of compiler optimizations:
3240 	 */
3241 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3242 	p->mm->numa_scan_offset = 0;
3243 }
3244 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3246 {
3247 	unsigned long pids;
3248 	/*
3249 	 * Allow unconditional access first two times, so that all the (pages)
3250 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3251 	 * This is also done to avoid any side effect of task scanning
3252 	 * amplifying the unfairness of disjoint set of VMAs' access.
3253 	 */
3254 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3255 		return true;
3256 
3257 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3258 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3259 		return true;
3260 
3261 	/*
3262 	 * Complete a scan that has already started regardless of PID access, or
3263 	 * some VMAs may never be scanned in multi-threaded applications:
3264 	 */
3265 	if (mm->numa_scan_offset > vma->vm_start) {
3266 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3267 		return true;
3268 	}
3269 
3270 	/*
3271 	 * This vma has not been accessed for a while, and if the number
3272 	 * the threads in the same process is low, which means no other
3273 	 * threads can help scan this vma, force a vma scan.
3274 	 */
3275 	if (READ_ONCE(mm->numa_scan_seq) >
3276 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3277 		return true;
3278 
3279 	return false;
3280 }
3281 
3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3283 
3284 /*
3285  * The expensive part of numa migration is done from task_work context.
3286  * Triggered from task_tick_numa().
3287  */
task_numa_work(struct callback_head * work)3288 static void task_numa_work(struct callback_head *work)
3289 {
3290 	unsigned long migrate, next_scan, now = jiffies;
3291 	struct task_struct *p = current;
3292 	struct mm_struct *mm = p->mm;
3293 	u64 runtime = p->se.sum_exec_runtime;
3294 	struct vm_area_struct *vma;
3295 	unsigned long start, end;
3296 	unsigned long nr_pte_updates = 0;
3297 	long pages, virtpages;
3298 	struct vma_iterator vmi;
3299 	bool vma_pids_skipped;
3300 	bool vma_pids_forced = false;
3301 
3302 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3303 
3304 	work->next = work;
3305 	/*
3306 	 * Who cares about NUMA placement when they're dying.
3307 	 *
3308 	 * NOTE: make sure not to dereference p->mm before this check,
3309 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3310 	 * without p->mm even though we still had it when we enqueued this
3311 	 * work.
3312 	 */
3313 	if (p->flags & PF_EXITING)
3314 		return;
3315 
3316 	/*
3317 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3318 	 * no page can be migrated.
3319 	 */
3320 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3321 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3322 		return;
3323 	}
3324 
3325 	if (!mm->numa_next_scan) {
3326 		mm->numa_next_scan = now +
3327 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 	}
3329 
3330 	/*
3331 	 * Enforce maximal scan/migration frequency..
3332 	 */
3333 	migrate = mm->numa_next_scan;
3334 	if (time_before(now, migrate))
3335 		return;
3336 
3337 	if (p->numa_scan_period == 0) {
3338 		p->numa_scan_period_max = task_scan_max(p);
3339 		p->numa_scan_period = task_scan_start(p);
3340 	}
3341 
3342 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3343 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3344 		return;
3345 
3346 	/*
3347 	 * Delay this task enough that another task of this mm will likely win
3348 	 * the next time around.
3349 	 */
3350 	p->node_stamp += 2 * TICK_NSEC;
3351 
3352 	pages = sysctl_numa_balancing_scan_size;
3353 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3354 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3355 	if (!pages)
3356 		return;
3357 
3358 
3359 	if (!mmap_read_trylock(mm))
3360 		return;
3361 
3362 	/*
3363 	 * VMAs are skipped if the current PID has not trapped a fault within
3364 	 * the VMA recently. Allow scanning to be forced if there is no
3365 	 * suitable VMA remaining.
3366 	 */
3367 	vma_pids_skipped = false;
3368 
3369 retry_pids:
3370 	start = mm->numa_scan_offset;
3371 	vma_iter_init(&vmi, mm, start);
3372 	vma = vma_next(&vmi);
3373 	if (!vma) {
3374 		reset_ptenuma_scan(p);
3375 		start = 0;
3376 		vma_iter_set(&vmi, start);
3377 		vma = vma_next(&vmi);
3378 	}
3379 
3380 	for (; vma; vma = vma_next(&vmi)) {
3381 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3382 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3383 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3384 			continue;
3385 		}
3386 
3387 		/*
3388 		 * Shared library pages mapped by multiple processes are not
3389 		 * migrated as it is expected they are cache replicated. Avoid
3390 		 * hinting faults in read-only file-backed mappings or the vDSO
3391 		 * as migrating the pages will be of marginal benefit.
3392 		 */
3393 		if (!vma->vm_mm ||
3394 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3395 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3396 			continue;
3397 		}
3398 
3399 		/*
3400 		 * Skip inaccessible VMAs to avoid any confusion between
3401 		 * PROT_NONE and NUMA hinting PTEs
3402 		 */
3403 		if (!vma_is_accessible(vma)) {
3404 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3405 			continue;
3406 		}
3407 
3408 		/* Initialise new per-VMA NUMAB state. */
3409 		if (!vma->numab_state) {
3410 			struct vma_numab_state *ptr;
3411 
3412 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3413 			if (!ptr)
3414 				continue;
3415 
3416 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3417 				kfree(ptr);
3418 				continue;
3419 			}
3420 
3421 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3422 
3423 			vma->numab_state->next_scan = now +
3424 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3425 
3426 			/* Reset happens after 4 times scan delay of scan start */
3427 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3428 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3429 
3430 			/*
3431 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3432 			 * to prevent VMAs being skipped prematurely on the
3433 			 * first scan:
3434 			 */
3435 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3436 		}
3437 
3438 		/*
3439 		 * Scanning the VMAs of short lived tasks add more overhead. So
3440 		 * delay the scan for new VMAs.
3441 		 */
3442 		if (mm->numa_scan_seq && time_before(jiffies,
3443 						vma->numab_state->next_scan)) {
3444 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3445 			continue;
3446 		}
3447 
3448 		/* RESET access PIDs regularly for old VMAs. */
3449 		if (mm->numa_scan_seq &&
3450 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3451 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3452 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3453 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3454 			vma->numab_state->pids_active[1] = 0;
3455 		}
3456 
3457 		/* Do not rescan VMAs twice within the same sequence. */
3458 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3459 			mm->numa_scan_offset = vma->vm_end;
3460 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3461 			continue;
3462 		}
3463 
3464 		/*
3465 		 * Do not scan the VMA if task has not accessed it, unless no other
3466 		 * VMA candidate exists.
3467 		 */
3468 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3469 			vma_pids_skipped = true;
3470 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3471 			continue;
3472 		}
3473 
3474 		do {
3475 			start = max(start, vma->vm_start);
3476 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3477 			end = min(end, vma->vm_end);
3478 			nr_pte_updates = change_prot_numa(vma, start, end);
3479 
3480 			/*
3481 			 * Try to scan sysctl_numa_balancing_size worth of
3482 			 * hpages that have at least one present PTE that
3483 			 * is not already PTE-numa. If the VMA contains
3484 			 * areas that are unused or already full of prot_numa
3485 			 * PTEs, scan up to virtpages, to skip through those
3486 			 * areas faster.
3487 			 */
3488 			if (nr_pte_updates)
3489 				pages -= (end - start) >> PAGE_SHIFT;
3490 			virtpages -= (end - start) >> PAGE_SHIFT;
3491 
3492 			start = end;
3493 			if (pages <= 0 || virtpages <= 0)
3494 				goto out;
3495 
3496 			cond_resched();
3497 		} while (end != vma->vm_end);
3498 
3499 		/* VMA scan is complete, do not scan until next sequence. */
3500 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3501 
3502 		/*
3503 		 * Only force scan within one VMA at a time, to limit the
3504 		 * cost of scanning a potentially uninteresting VMA.
3505 		 */
3506 		if (vma_pids_forced)
3507 			break;
3508 	}
3509 
3510 	/*
3511 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3512 	 * not accessing the VMA previously, then force a scan to ensure
3513 	 * forward progress:
3514 	 */
3515 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3516 		vma_pids_forced = true;
3517 		goto retry_pids;
3518 	}
3519 
3520 out:
3521 	/*
3522 	 * It is possible to reach the end of the VMA list but the last few
3523 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3524 	 * would find the !migratable VMA on the next scan but not reset the
3525 	 * scanner to the start so check it now.
3526 	 */
3527 	if (vma)
3528 		mm->numa_scan_offset = start;
3529 	else
3530 		reset_ptenuma_scan(p);
3531 	mmap_read_unlock(mm);
3532 
3533 	/*
3534 	 * Make sure tasks use at least 32x as much time to run other code
3535 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3536 	 * Usually update_task_scan_period slows down scanning enough; on an
3537 	 * overloaded system we need to limit overhead on a per task basis.
3538 	 */
3539 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3540 		u64 diff = p->se.sum_exec_runtime - runtime;
3541 		p->node_stamp += 32 * diff;
3542 	}
3543 }
3544 
init_numa_balancing(u64 clone_flags,struct task_struct * p)3545 void init_numa_balancing(u64 clone_flags, struct task_struct *p)
3546 {
3547 	int mm_users = 0;
3548 	struct mm_struct *mm = p->mm;
3549 
3550 	if (mm) {
3551 		mm_users = atomic_read(&mm->mm_users);
3552 		if (mm_users == 1) {
3553 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3554 			mm->numa_scan_seq = 0;
3555 		}
3556 	}
3557 	p->node_stamp			= 0;
3558 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3559 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3560 	p->numa_migrate_retry		= 0;
3561 	/* Protect against double add, see task_tick_numa and task_numa_work */
3562 	p->numa_work.next		= &p->numa_work;
3563 	p->numa_faults			= NULL;
3564 	p->numa_pages_migrated		= 0;
3565 	p->total_numa_faults		= 0;
3566 	RCU_INIT_POINTER(p->numa_group, NULL);
3567 	p->last_task_numa_placement	= 0;
3568 	p->last_sum_exec_runtime	= 0;
3569 
3570 	init_task_work(&p->numa_work, task_numa_work);
3571 
3572 	/* New address space, reset the preferred nid */
3573 	if (!(clone_flags & CLONE_VM)) {
3574 		p->numa_preferred_nid = NUMA_NO_NODE;
3575 		return;
3576 	}
3577 
3578 	/*
3579 	 * New thread, keep existing numa_preferred_nid which should be copied
3580 	 * already by arch_dup_task_struct but stagger when scans start.
3581 	 */
3582 	if (mm) {
3583 		unsigned int delay;
3584 
3585 		delay = min_t(unsigned int, task_scan_max(current),
3586 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3587 		delay += 2 * TICK_NSEC;
3588 		p->node_stamp = delay;
3589 	}
3590 }
3591 
3592 /*
3593  * Drive the periodic memory faults..
3594  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3596 {
3597 	struct callback_head *work = &curr->numa_work;
3598 	u64 period, now;
3599 
3600 	/*
3601 	 * We don't care about NUMA placement if we don't have memory.
3602 	 */
3603 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3604 		return;
3605 
3606 	/*
3607 	 * Using runtime rather than walltime has the dual advantage that
3608 	 * we (mostly) drive the selection from busy threads and that the
3609 	 * task needs to have done some actual work before we bother with
3610 	 * NUMA placement.
3611 	 */
3612 	now = curr->se.sum_exec_runtime;
3613 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3614 
3615 	if (now > curr->node_stamp + period) {
3616 		if (!curr->node_stamp)
3617 			curr->numa_scan_period = task_scan_start(curr);
3618 		curr->node_stamp += period;
3619 
3620 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3621 			task_work_add(curr, work, TWA_RESUME);
3622 	}
3623 }
3624 
update_scan_period(struct task_struct * p,int new_cpu)3625 static void update_scan_period(struct task_struct *p, int new_cpu)
3626 {
3627 	int src_nid = cpu_to_node(task_cpu(p));
3628 	int dst_nid = cpu_to_node(new_cpu);
3629 
3630 	if (!static_branch_likely(&sched_numa_balancing))
3631 		return;
3632 
3633 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3634 		return;
3635 
3636 	if (src_nid == dst_nid)
3637 		return;
3638 
3639 	/*
3640 	 * Allow resets if faults have been trapped before one scan
3641 	 * has completed. This is most likely due to a new task that
3642 	 * is pulled cross-node due to wakeups or load balancing.
3643 	 */
3644 	if (p->numa_scan_seq) {
3645 		/*
3646 		 * Avoid scan adjustments if moving to the preferred
3647 		 * node or if the task was not previously running on
3648 		 * the preferred node.
3649 		 */
3650 		if (dst_nid == p->numa_preferred_nid ||
3651 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3652 			src_nid != p->numa_preferred_nid))
3653 			return;
3654 	}
3655 
3656 	p->numa_scan_period = task_scan_start(p);
3657 }
3658 
3659 #else /* !CONFIG_NUMA_BALANCING: */
3660 
task_tick_numa(struct rq * rq,struct task_struct * curr)3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3662 {
3663 }
3664 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3670 {
3671 }
3672 
update_scan_period(struct task_struct * p,int new_cpu)3673 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3674 {
3675 }
3676 
3677 #endif /* !CONFIG_NUMA_BALANCING */
3678 
3679 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3681 {
3682 	update_load_add(&cfs_rq->load, se->load.weight);
3683 	if (entity_is_task(se)) {
3684 		struct rq *rq = rq_of(cfs_rq);
3685 
3686 		account_numa_enqueue(rq, task_of(se));
3687 		list_add(&se->group_node, &rq->cfs_tasks);
3688 	}
3689 	cfs_rq->nr_queued++;
3690 }
3691 
3692 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3694 {
3695 	update_load_sub(&cfs_rq->load, se->load.weight);
3696 	if (entity_is_task(se)) {
3697 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3698 		list_del_init(&se->group_node);
3699 	}
3700 	cfs_rq->nr_queued--;
3701 }
3702 
3703 /*
3704  * Signed add and clamp on underflow.
3705  *
3706  * Explicitly do a load-store to ensure the intermediate value never hits
3707  * memory. This allows lockless observations without ever seeing the negative
3708  * values.
3709  */
3710 #define add_positive(_ptr, _val) do {                           \
3711 	typeof(_ptr) ptr = (_ptr);                              \
3712 	typeof(_val) val = (_val);                              \
3713 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3714 								\
3715 	res = var + val;                                        \
3716 								\
3717 	if (val < 0 && res > var)                               \
3718 		res = 0;                                        \
3719 								\
3720 	WRITE_ONCE(*ptr, res);                                  \
3721 } while (0)
3722 
3723 /*
3724  * Unsigned subtract and clamp on underflow.
3725  *
3726  * Explicitly do a load-store to ensure the intermediate value never hits
3727  * memory. This allows lockless observations without ever seeing the negative
3728  * values.
3729  */
3730 #define sub_positive(_ptr, _val) do {				\
3731 	typeof(_ptr) ptr = (_ptr);				\
3732 	typeof(*ptr) val = (_val);				\
3733 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3734 	res = var - val;					\
3735 	if (res > var)						\
3736 		res = 0;					\
3737 	WRITE_ONCE(*ptr, res);					\
3738 } while (0)
3739 
3740 /*
3741  * Remove and clamp on negative, from a local variable.
3742  *
3743  * A variant of sub_positive(), which does not use explicit load-store
3744  * and is thus optimized for local variable updates.
3745  */
3746 #define lsub_positive(_ptr, _val) do {				\
3747 	typeof(_ptr) ptr = (_ptr);				\
3748 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3749 } while (0)
3750 
3751 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 	cfs_rq->avg.load_avg += se->avg.load_avg;
3755 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757 
3758 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 	/* See update_cfs_rq_load_avg() */
3764 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767 
3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3769 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3771 			    unsigned long weight)
3772 {
3773 	bool curr = cfs_rq->curr == se;
3774 
3775 	if (se->on_rq) {
3776 		/* commit outstanding execution time */
3777 		update_curr(cfs_rq);
3778 		update_entity_lag(cfs_rq, se);
3779 		se->deadline -= se->vruntime;
3780 		se->rel_deadline = 1;
3781 		cfs_rq->nr_queued--;
3782 		if (!curr)
3783 			__dequeue_entity(cfs_rq, se);
3784 		update_load_sub(&cfs_rq->load, se->load.weight);
3785 	}
3786 	dequeue_load_avg(cfs_rq, se);
3787 
3788 	/*
3789 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3790 	 * we need to scale se->vlag when w_i changes.
3791 	 */
3792 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3793 	if (se->rel_deadline)
3794 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3795 
3796 	update_load_set(&se->load, weight);
3797 
3798 	do {
3799 		u32 divider = get_pelt_divider(&se->avg);
3800 
3801 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3802 	} while (0);
3803 
3804 	enqueue_load_avg(cfs_rq, se);
3805 	if (se->on_rq) {
3806 		place_entity(cfs_rq, se, 0);
3807 		update_load_add(&cfs_rq->load, se->load.weight);
3808 		if (!curr)
3809 			__enqueue_entity(cfs_rq, se);
3810 		cfs_rq->nr_queued++;
3811 
3812 		/*
3813 		 * The entity's vruntime has been adjusted, so let's check
3814 		 * whether the rq-wide min_vruntime needs updated too. Since
3815 		 * the calculations above require stable min_vruntime rather
3816 		 * than up-to-date one, we do the update at the end of the
3817 		 * reweight process.
3818 		 */
3819 		update_min_vruntime(cfs_rq);
3820 	}
3821 }
3822 
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3824 			       const struct load_weight *lw)
3825 {
3826 	struct sched_entity *se = &p->se;
3827 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828 	struct load_weight *load = &se->load;
3829 
3830 	reweight_entity(cfs_rq, se, lw->weight);
3831 	load->inv_weight = lw->inv_weight;
3832 }
3833 
3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3835 
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838  * All this does is approximate the hierarchical proportion which includes that
3839  * global sum we all love to hate.
3840  *
3841  * That is, the weight of a group entity, is the proportional share of the
3842  * group weight based on the group runqueue weights. That is:
3843  *
3844  *                     tg->weight * grq->load.weight
3845  *   ge->load.weight = -----------------------------               (1)
3846  *                       \Sum grq->load.weight
3847  *
3848  * Now, because computing that sum is prohibitively expensive to compute (been
3849  * there, done that) we approximate it with this average stuff. The average
3850  * moves slower and therefore the approximation is cheaper and more stable.
3851  *
3852  * So instead of the above, we substitute:
3853  *
3854  *   grq->load.weight -> grq->avg.load_avg                         (2)
3855  *
3856  * which yields the following:
3857  *
3858  *                     tg->weight * grq->avg.load_avg
3859  *   ge->load.weight = ------------------------------              (3)
3860  *                             tg->load_avg
3861  *
3862  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3863  *
3864  * That is shares_avg, and it is right (given the approximation (2)).
3865  *
3866  * The problem with it is that because the average is slow -- it was designed
3867  * to be exactly that of course -- this leads to transients in boundary
3868  * conditions. In specific, the case where the group was idle and we start the
3869  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3870  * yielding bad latency etc..
3871  *
3872  * Now, in that special case (1) reduces to:
3873  *
3874  *                     tg->weight * grq->load.weight
3875  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3876  *                         grp->load.weight
3877  *
3878  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3879  *
3880  * So what we do is modify our approximation (3) to approach (4) in the (near)
3881  * UP case, like:
3882  *
3883  *   ge->load.weight =
3884  *
3885  *              tg->weight * grq->load.weight
3886  *     ---------------------------------------------------         (5)
3887  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3888  *
3889  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3890  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3891  *
3892  *
3893  *                     tg->weight * grq->load.weight
3894  *   ge->load.weight = -----------------------------		   (6)
3895  *                             tg_load_avg'
3896  *
3897  * Where:
3898  *
3899  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3900  *                  max(grq->load.weight, grq->avg.load_avg)
3901  *
3902  * And that is shares_weight and is icky. In the (near) UP case it approaches
3903  * (4) while in the normal case it approaches (3). It consistently
3904  * overestimates the ge->load.weight and therefore:
3905  *
3906  *   \Sum ge->load.weight >= tg->weight
3907  *
3908  * hence icky!
3909  */
calc_group_shares(struct cfs_rq * cfs_rq)3910 static long calc_group_shares(struct cfs_rq *cfs_rq)
3911 {
3912 	long tg_weight, tg_shares, load, shares;
3913 	struct task_group *tg = cfs_rq->tg;
3914 
3915 	tg_shares = READ_ONCE(tg->shares);
3916 
3917 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3918 
3919 	tg_weight = atomic_long_read(&tg->load_avg);
3920 
3921 	/* Ensure tg_weight >= load */
3922 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3923 	tg_weight += load;
3924 
3925 	shares = (tg_shares * load);
3926 	if (tg_weight)
3927 		shares /= tg_weight;
3928 
3929 	/*
3930 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3931 	 * of a group with small tg->shares value. It is a floor value which is
3932 	 * assigned as a minimum load.weight to the sched_entity representing
3933 	 * the group on a CPU.
3934 	 *
3935 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3936 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3937 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3938 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3939 	 * instead of 0.
3940 	 */
3941 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3942 }
3943 
3944 /*
3945  * Recomputes the group entity based on the current state of its group
3946  * runqueue.
3947  */
update_cfs_group(struct sched_entity * se)3948 static void update_cfs_group(struct sched_entity *se)
3949 {
3950 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3951 	long shares;
3952 
3953 	/*
3954 	 * When a group becomes empty, preserve its weight. This matters for
3955 	 * DELAY_DEQUEUE.
3956 	 */
3957 	if (!gcfs_rq || !gcfs_rq->load.weight)
3958 		return;
3959 
3960 	shares = calc_group_shares(gcfs_rq);
3961 	if (unlikely(se->load.weight != shares))
3962 		reweight_entity(cfs_rq_of(se), se, shares);
3963 }
3964 
3965 #else /* !CONFIG_FAIR_GROUP_SCHED: */
update_cfs_group(struct sched_entity * se)3966 static inline void update_cfs_group(struct sched_entity *se)
3967 {
3968 }
3969 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3970 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3971 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3972 {
3973 	struct rq *rq = rq_of(cfs_rq);
3974 
3975 	if (&rq->cfs == cfs_rq) {
3976 		/*
3977 		 * There are a few boundary cases this might miss but it should
3978 		 * get called often enough that that should (hopefully) not be
3979 		 * a real problem.
3980 		 *
3981 		 * It will not get called when we go idle, because the idle
3982 		 * thread is a different class (!fair), nor will the utilization
3983 		 * number include things like RT tasks.
3984 		 *
3985 		 * As is, the util number is not freq-invariant (we'd have to
3986 		 * implement arch_scale_freq_capacity() for that).
3987 		 *
3988 		 * See cpu_util_cfs().
3989 		 */
3990 		cpufreq_update_util(rq, flags);
3991 	}
3992 }
3993 
load_avg_is_decayed(struct sched_avg * sa)3994 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3995 {
3996 	if (sa->load_sum)
3997 		return false;
3998 
3999 	if (sa->util_sum)
4000 		return false;
4001 
4002 	if (sa->runnable_sum)
4003 		return false;
4004 
4005 	/*
4006 	 * _avg must be null when _sum are null because _avg = _sum / divider
4007 	 * Make sure that rounding and/or propagation of PELT values never
4008 	 * break this.
4009 	 */
4010 	WARN_ON_ONCE(sa->load_avg ||
4011 		      sa->util_avg ||
4012 		      sa->runnable_avg);
4013 
4014 	return true;
4015 }
4016 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4017 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4018 {
4019 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4020 				 cfs_rq->last_update_time_copy);
4021 }
4022 #ifdef CONFIG_FAIR_GROUP_SCHED
4023 /*
4024  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4025  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4026  * bottom-up, we only have to test whether the cfs_rq before us on the list
4027  * is our child.
4028  * If cfs_rq is not on the list, test whether a child needs its to be added to
4029  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4030  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4031 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4032 {
4033 	struct cfs_rq *prev_cfs_rq;
4034 	struct list_head *prev;
4035 	struct rq *rq = rq_of(cfs_rq);
4036 
4037 	if (cfs_rq->on_list) {
4038 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4039 	} else {
4040 		prev = rq->tmp_alone_branch;
4041 	}
4042 
4043 	if (prev == &rq->leaf_cfs_rq_list)
4044 		return false;
4045 
4046 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4047 
4048 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4049 }
4050 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4051 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4052 {
4053 	if (cfs_rq->load.weight)
4054 		return false;
4055 
4056 	if (!load_avg_is_decayed(&cfs_rq->avg))
4057 		return false;
4058 
4059 	if (child_cfs_rq_on_list(cfs_rq))
4060 		return false;
4061 
4062 	return true;
4063 }
4064 
4065 /**
4066  * update_tg_load_avg - update the tg's load avg
4067  * @cfs_rq: the cfs_rq whose avg changed
4068  *
4069  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4070  * However, because tg->load_avg is a global value there are performance
4071  * considerations.
4072  *
4073  * In order to avoid having to look at the other cfs_rq's, we use a
4074  * differential update where we store the last value we propagated. This in
4075  * turn allows skipping updates if the differential is 'small'.
4076  *
4077  * Updating tg's load_avg is necessary before update_cfs_share().
4078  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4079 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4080 {
4081 	long delta;
4082 	u64 now;
4083 
4084 	/*
4085 	 * No need to update load_avg for root_task_group as it is not used.
4086 	 */
4087 	if (cfs_rq->tg == &root_task_group)
4088 		return;
4089 
4090 	/* rq has been offline and doesn't contribute to the share anymore: */
4091 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4092 		return;
4093 
4094 	/*
4095 	 * For migration heavy workloads, access to tg->load_avg can be
4096 	 * unbound. Limit the update rate to at most once per ms.
4097 	 */
4098 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4099 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4100 		return;
4101 
4102 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4103 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4104 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4105 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4106 		cfs_rq->last_update_tg_load_avg = now;
4107 	}
4108 }
4109 
clear_tg_load_avg(struct cfs_rq * cfs_rq)4110 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4111 {
4112 	long delta;
4113 	u64 now;
4114 
4115 	/*
4116 	 * No need to update load_avg for root_task_group, as it is not used.
4117 	 */
4118 	if (cfs_rq->tg == &root_task_group)
4119 		return;
4120 
4121 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4122 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4123 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124 	cfs_rq->tg_load_avg_contrib = 0;
4125 	cfs_rq->last_update_tg_load_avg = now;
4126 }
4127 
4128 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4129 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4130 {
4131 	struct task_group *tg;
4132 
4133 	lockdep_assert_rq_held(rq);
4134 
4135 	/*
4136 	 * The rq clock has already been updated in
4137 	 * set_rq_offline(), so we should skip updating
4138 	 * the rq clock again in unthrottle_cfs_rq().
4139 	 */
4140 	rq_clock_start_loop_update(rq);
4141 
4142 	rcu_read_lock();
4143 	list_for_each_entry_rcu(tg, &task_groups, list) {
4144 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4145 
4146 		clear_tg_load_avg(cfs_rq);
4147 	}
4148 	rcu_read_unlock();
4149 
4150 	rq_clock_stop_loop_update(rq);
4151 }
4152 
4153 /*
4154  * Called within set_task_rq() right before setting a task's CPU. The
4155  * caller only guarantees p->pi_lock is held; no other assumptions,
4156  * including the state of rq->lock, should be made.
4157  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4158 void set_task_rq_fair(struct sched_entity *se,
4159 		      struct cfs_rq *prev, struct cfs_rq *next)
4160 {
4161 	u64 p_last_update_time;
4162 	u64 n_last_update_time;
4163 
4164 	if (!sched_feat(ATTACH_AGE_LOAD))
4165 		return;
4166 
4167 	/*
4168 	 * We are supposed to update the task to "current" time, then its up to
4169 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4170 	 * getting what current time is, so simply throw away the out-of-date
4171 	 * time. This will result in the wakee task is less decayed, but giving
4172 	 * the wakee more load sounds not bad.
4173 	 */
4174 	if (!(se->avg.last_update_time && prev))
4175 		return;
4176 
4177 	p_last_update_time = cfs_rq_last_update_time(prev);
4178 	n_last_update_time = cfs_rq_last_update_time(next);
4179 
4180 	__update_load_avg_blocked_se(p_last_update_time, se);
4181 	se->avg.last_update_time = n_last_update_time;
4182 }
4183 
4184 /*
4185  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4186  * propagate its contribution. The key to this propagation is the invariant
4187  * that for each group:
4188  *
4189  *   ge->avg == grq->avg						(1)
4190  *
4191  * _IFF_ we look at the pure running and runnable sums. Because they
4192  * represent the very same entity, just at different points in the hierarchy.
4193  *
4194  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4195  * and simply copies the running/runnable sum over (but still wrong, because
4196  * the group entity and group rq do not have their PELT windows aligned).
4197  *
4198  * However, update_tg_cfs_load() is more complex. So we have:
4199  *
4200  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4201  *
4202  * And since, like util, the runnable part should be directly transferable,
4203  * the following would _appear_ to be the straight forward approach:
4204  *
4205  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4206  *
4207  * And per (1) we have:
4208  *
4209  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4210  *
4211  * Which gives:
4212  *
4213  *                      ge->load.weight * grq->avg.load_avg
4214  *   ge->avg.load_avg = -----------------------------------		(4)
4215  *                               grq->load.weight
4216  *
4217  * Except that is wrong!
4218  *
4219  * Because while for entities historical weight is not important and we
4220  * really only care about our future and therefore can consider a pure
4221  * runnable sum, runqueues can NOT do this.
4222  *
4223  * We specifically want runqueues to have a load_avg that includes
4224  * historical weights. Those represent the blocked load, the load we expect
4225  * to (shortly) return to us. This only works by keeping the weights as
4226  * integral part of the sum. We therefore cannot decompose as per (3).
4227  *
4228  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4229  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4230  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4231  * runnable section of these tasks overlap (or not). If they were to perfectly
4232  * align the rq as a whole would be runnable 2/3 of the time. If however we
4233  * always have at least 1 runnable task, the rq as a whole is always runnable.
4234  *
4235  * So we'll have to approximate.. :/
4236  *
4237  * Given the constraint:
4238  *
4239  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4240  *
4241  * We can construct a rule that adds runnable to a rq by assuming minimal
4242  * overlap.
4243  *
4244  * On removal, we'll assume each task is equally runnable; which yields:
4245  *
4246  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4247  *
4248  * XXX: only do this for the part of runnable > running ?
4249  *
4250  */
4251 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4252 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4253 {
4254 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4255 	u32 new_sum, divider;
4256 
4257 	/* Nothing to update */
4258 	if (!delta_avg)
4259 		return;
4260 
4261 	/*
4262 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4263 	 * See ___update_load_avg() for details.
4264 	 */
4265 	divider = get_pelt_divider(&cfs_rq->avg);
4266 
4267 
4268 	/* Set new sched_entity's utilization */
4269 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4270 	new_sum = se->avg.util_avg * divider;
4271 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4272 	se->avg.util_sum = new_sum;
4273 
4274 	/* Update parent cfs_rq utilization */
4275 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4276 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4277 
4278 	/* See update_cfs_rq_load_avg() */
4279 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4280 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4281 }
4282 
4283 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4284 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4285 {
4286 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4287 	u32 new_sum, divider;
4288 
4289 	/* Nothing to update */
4290 	if (!delta_avg)
4291 		return;
4292 
4293 	/*
4294 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4295 	 * See ___update_load_avg() for details.
4296 	 */
4297 	divider = get_pelt_divider(&cfs_rq->avg);
4298 
4299 	/* Set new sched_entity's runnable */
4300 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4301 	new_sum = se->avg.runnable_avg * divider;
4302 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4303 	se->avg.runnable_sum = new_sum;
4304 
4305 	/* Update parent cfs_rq runnable */
4306 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4307 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4308 	/* See update_cfs_rq_load_avg() */
4309 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4310 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4311 }
4312 
4313 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4314 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4315 {
4316 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4317 	unsigned long load_avg;
4318 	u64 load_sum = 0;
4319 	s64 delta_sum;
4320 	u32 divider;
4321 
4322 	if (!runnable_sum)
4323 		return;
4324 
4325 	gcfs_rq->prop_runnable_sum = 0;
4326 
4327 	/*
4328 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4329 	 * See ___update_load_avg() for details.
4330 	 */
4331 	divider = get_pelt_divider(&cfs_rq->avg);
4332 
4333 	if (runnable_sum >= 0) {
4334 		/*
4335 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4336 		 * the CPU is saturated running == runnable.
4337 		 */
4338 		runnable_sum += se->avg.load_sum;
4339 		runnable_sum = min_t(long, runnable_sum, divider);
4340 	} else {
4341 		/*
4342 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4343 		 * assuming all tasks are equally runnable.
4344 		 */
4345 		if (scale_load_down(gcfs_rq->load.weight)) {
4346 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4347 				scale_load_down(gcfs_rq->load.weight));
4348 		}
4349 
4350 		/* But make sure to not inflate se's runnable */
4351 		runnable_sum = min(se->avg.load_sum, load_sum);
4352 	}
4353 
4354 	/*
4355 	 * runnable_sum can't be lower than running_sum
4356 	 * Rescale running sum to be in the same range as runnable sum
4357 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4358 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4359 	 */
4360 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4361 	runnable_sum = max(runnable_sum, running_sum);
4362 
4363 	load_sum = se_weight(se) * runnable_sum;
4364 	load_avg = div_u64(load_sum, divider);
4365 
4366 	delta_avg = load_avg - se->avg.load_avg;
4367 	if (!delta_avg)
4368 		return;
4369 
4370 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4371 
4372 	se->avg.load_sum = runnable_sum;
4373 	se->avg.load_avg = load_avg;
4374 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4375 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4376 	/* See update_cfs_rq_load_avg() */
4377 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4378 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4379 }
4380 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4381 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4382 {
4383 	cfs_rq->propagate = 1;
4384 	cfs_rq->prop_runnable_sum += runnable_sum;
4385 }
4386 
4387 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4388 static inline int propagate_entity_load_avg(struct sched_entity *se)
4389 {
4390 	struct cfs_rq *cfs_rq, *gcfs_rq;
4391 
4392 	if (entity_is_task(se))
4393 		return 0;
4394 
4395 	gcfs_rq = group_cfs_rq(se);
4396 	if (!gcfs_rq->propagate)
4397 		return 0;
4398 
4399 	gcfs_rq->propagate = 0;
4400 
4401 	cfs_rq = cfs_rq_of(se);
4402 
4403 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4404 
4405 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4406 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4407 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4408 
4409 	trace_pelt_cfs_tp(cfs_rq);
4410 	trace_pelt_se_tp(se);
4411 
4412 	return 1;
4413 }
4414 
4415 /*
4416  * Check if we need to update the load and the utilization of a blocked
4417  * group_entity:
4418  */
skip_blocked_update(struct sched_entity * se)4419 static inline bool skip_blocked_update(struct sched_entity *se)
4420 {
4421 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4422 
4423 	/*
4424 	 * If sched_entity still have not zero load or utilization, we have to
4425 	 * decay it:
4426 	 */
4427 	if (se->avg.load_avg || se->avg.util_avg)
4428 		return false;
4429 
4430 	/*
4431 	 * If there is a pending propagation, we have to update the load and
4432 	 * the utilization of the sched_entity:
4433 	 */
4434 	if (gcfs_rq->propagate)
4435 		return false;
4436 
4437 	/*
4438 	 * Otherwise, the load and the utilization of the sched_entity is
4439 	 * already zero and there is no pending propagation, so it will be a
4440 	 * waste of time to try to decay it:
4441 	 */
4442 	return true;
4443 }
4444 
4445 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4446 
update_tg_load_avg(struct cfs_rq * cfs_rq)4447 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4448 
clear_tg_offline_cfs_rqs(struct rq * rq)4449 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4450 
propagate_entity_load_avg(struct sched_entity * se)4451 static inline int propagate_entity_load_avg(struct sched_entity *se)
4452 {
4453 	return 0;
4454 }
4455 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4456 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4457 
4458 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4459 
4460 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4461 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4462 {
4463 	u64 throttled = 0, now, lut;
4464 	struct cfs_rq *cfs_rq;
4465 	struct rq *rq;
4466 	bool is_idle;
4467 
4468 	if (load_avg_is_decayed(&se->avg))
4469 		return;
4470 
4471 	cfs_rq = cfs_rq_of(se);
4472 	rq = rq_of(cfs_rq);
4473 
4474 	rcu_read_lock();
4475 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4476 	rcu_read_unlock();
4477 
4478 	/*
4479 	 * The lag estimation comes with a cost we don't want to pay all the
4480 	 * time. Hence, limiting to the case where the source CPU is idle and
4481 	 * we know we are at the greatest risk to have an outdated clock.
4482 	 */
4483 	if (!is_idle)
4484 		return;
4485 
4486 	/*
4487 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4488 	 *
4489 	 *   last_update_time (the cfs_rq's last_update_time)
4490 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4491 	 *      = rq_clock_pelt()@cfs_rq_idle
4492 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4493 	 *
4494 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4495 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4496 	 *
4497 	 *   rq_idle_lag (delta between now and rq's update)
4498 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4499 	 *
4500 	 * We can then write:
4501 	 *
4502 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4503 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4504 	 * Where:
4505 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4506 	 *      rq_clock()@rq_idle      is rq->clock_idle
4507 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4508 	 *                              is cfs_rq->throttled_pelt_idle
4509 	 */
4510 
4511 #ifdef CONFIG_CFS_BANDWIDTH
4512 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4513 	/* The clock has been stopped for throttling */
4514 	if (throttled == U64_MAX)
4515 		return;
4516 #endif
4517 	now = u64_u32_load(rq->clock_pelt_idle);
4518 	/*
4519 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4520 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4521 	 * which lead to an underestimation. The opposite would lead to an
4522 	 * overestimation.
4523 	 */
4524 	smp_rmb();
4525 	lut = cfs_rq_last_update_time(cfs_rq);
4526 
4527 	now -= throttled;
4528 	if (now < lut)
4529 		/*
4530 		 * cfs_rq->avg.last_update_time is more recent than our
4531 		 * estimation, let's use it.
4532 		 */
4533 		now = lut;
4534 	else
4535 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4536 
4537 	__update_load_avg_blocked_se(now, se);
4538 }
4539 #else /* !CONFIG_NO_HZ_COMMON: */
migrate_se_pelt_lag(struct sched_entity * se)4540 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4541 #endif /* !CONFIG_NO_HZ_COMMON */
4542 
4543 /**
4544  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4545  * @now: current time, as per cfs_rq_clock_pelt()
4546  * @cfs_rq: cfs_rq to update
4547  *
4548  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4549  * avg. The immediate corollary is that all (fair) tasks must be attached.
4550  *
4551  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4552  *
4553  * Return: true if the load decayed or we removed load.
4554  *
4555  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4556  * call update_tg_load_avg() when this function returns true.
4557  */
4558 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4559 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4560 {
4561 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4562 	struct sched_avg *sa = &cfs_rq->avg;
4563 	int decayed = 0;
4564 
4565 	if (cfs_rq->removed.nr) {
4566 		unsigned long r;
4567 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4568 
4569 		raw_spin_lock(&cfs_rq->removed.lock);
4570 		swap(cfs_rq->removed.util_avg, removed_util);
4571 		swap(cfs_rq->removed.load_avg, removed_load);
4572 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4573 		cfs_rq->removed.nr = 0;
4574 		raw_spin_unlock(&cfs_rq->removed.lock);
4575 
4576 		r = removed_load;
4577 		sub_positive(&sa->load_avg, r);
4578 		sub_positive(&sa->load_sum, r * divider);
4579 		/* See sa->util_sum below */
4580 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4581 
4582 		r = removed_util;
4583 		sub_positive(&sa->util_avg, r);
4584 		sub_positive(&sa->util_sum, r * divider);
4585 		/*
4586 		 * Because of rounding, se->util_sum might ends up being +1 more than
4587 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4588 		 * a lot of tasks with the rounding problem between 2 updates of
4589 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4590 		 * cfs_util_avg is not.
4591 		 * Check that util_sum is still above its lower bound for the new
4592 		 * util_avg. Given that period_contrib might have moved since the last
4593 		 * sync, we are only sure that util_sum must be above or equal to
4594 		 *    util_avg * minimum possible divider
4595 		 */
4596 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4597 
4598 		r = removed_runnable;
4599 		sub_positive(&sa->runnable_avg, r);
4600 		sub_positive(&sa->runnable_sum, r * divider);
4601 		/* See sa->util_sum above */
4602 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4603 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4604 
4605 		/*
4606 		 * removed_runnable is the unweighted version of removed_load so we
4607 		 * can use it to estimate removed_load_sum.
4608 		 */
4609 		add_tg_cfs_propagate(cfs_rq,
4610 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4611 
4612 		decayed = 1;
4613 	}
4614 
4615 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4616 	u64_u32_store_copy(sa->last_update_time,
4617 			   cfs_rq->last_update_time_copy,
4618 			   sa->last_update_time);
4619 	return decayed;
4620 }
4621 
4622 /**
4623  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4624  * @cfs_rq: cfs_rq to attach to
4625  * @se: sched_entity to attach
4626  *
4627  * Must call update_cfs_rq_load_avg() before this, since we rely on
4628  * cfs_rq->avg.last_update_time being current.
4629  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4630 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4631 {
4632 	/*
4633 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4634 	 * See ___update_load_avg() for details.
4635 	 */
4636 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4637 
4638 	/*
4639 	 * When we attach the @se to the @cfs_rq, we must align the decay
4640 	 * window because without that, really weird and wonderful things can
4641 	 * happen.
4642 	 *
4643 	 * XXX illustrate
4644 	 */
4645 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4646 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4647 
4648 	/*
4649 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4650 	 * period_contrib. This isn't strictly correct, but since we're
4651 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4652 	 * _sum a little.
4653 	 */
4654 	se->avg.util_sum = se->avg.util_avg * divider;
4655 
4656 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4657 
4658 	se->avg.load_sum = se->avg.load_avg * divider;
4659 	if (se_weight(se) < se->avg.load_sum)
4660 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4661 	else
4662 		se->avg.load_sum = 1;
4663 
4664 	enqueue_load_avg(cfs_rq, se);
4665 	cfs_rq->avg.util_avg += se->avg.util_avg;
4666 	cfs_rq->avg.util_sum += se->avg.util_sum;
4667 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4668 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4669 
4670 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4671 
4672 	cfs_rq_util_change(cfs_rq, 0);
4673 
4674 	trace_pelt_cfs_tp(cfs_rq);
4675 }
4676 
4677 /**
4678  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4679  * @cfs_rq: cfs_rq to detach from
4680  * @se: sched_entity to detach
4681  *
4682  * Must call update_cfs_rq_load_avg() before this, since we rely on
4683  * cfs_rq->avg.last_update_time being current.
4684  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4685 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4686 {
4687 	dequeue_load_avg(cfs_rq, se);
4688 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4689 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4690 	/* See update_cfs_rq_load_avg() */
4691 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4692 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4693 
4694 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4695 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4696 	/* See update_cfs_rq_load_avg() */
4697 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4698 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4699 
4700 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4701 
4702 	cfs_rq_util_change(cfs_rq, 0);
4703 
4704 	trace_pelt_cfs_tp(cfs_rq);
4705 }
4706 
4707 /*
4708  * Optional action to be done while updating the load average
4709  */
4710 #define UPDATE_TG	0x1
4711 #define SKIP_AGE_LOAD	0x2
4712 #define DO_ATTACH	0x4
4713 #define DO_DETACH	0x8
4714 
4715 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4716 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4717 {
4718 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4719 	int decayed;
4720 
4721 	/*
4722 	 * Track task load average for carrying it to new CPU after migrated, and
4723 	 * track group sched_entity load average for task_h_load calculation in migration
4724 	 */
4725 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4726 		__update_load_avg_se(now, cfs_rq, se);
4727 
4728 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4729 	decayed |= propagate_entity_load_avg(se);
4730 
4731 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4732 
4733 		/*
4734 		 * DO_ATTACH means we're here from enqueue_entity().
4735 		 * !last_update_time means we've passed through
4736 		 * migrate_task_rq_fair() indicating we migrated.
4737 		 *
4738 		 * IOW we're enqueueing a task on a new CPU.
4739 		 */
4740 		attach_entity_load_avg(cfs_rq, se);
4741 		update_tg_load_avg(cfs_rq);
4742 
4743 	} else if (flags & DO_DETACH) {
4744 		/*
4745 		 * DO_DETACH means we're here from dequeue_entity()
4746 		 * and we are migrating task out of the CPU.
4747 		 */
4748 		detach_entity_load_avg(cfs_rq, se);
4749 		update_tg_load_avg(cfs_rq);
4750 	} else if (decayed) {
4751 		cfs_rq_util_change(cfs_rq, 0);
4752 
4753 		if (flags & UPDATE_TG)
4754 			update_tg_load_avg(cfs_rq);
4755 	}
4756 }
4757 
4758 /*
4759  * Synchronize entity load avg of dequeued entity without locking
4760  * the previous rq.
4761  */
sync_entity_load_avg(struct sched_entity * se)4762 static void sync_entity_load_avg(struct sched_entity *se)
4763 {
4764 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4765 	u64 last_update_time;
4766 
4767 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4768 	__update_load_avg_blocked_se(last_update_time, se);
4769 }
4770 
4771 /*
4772  * Task first catches up with cfs_rq, and then subtract
4773  * itself from the cfs_rq (task must be off the queue now).
4774  */
remove_entity_load_avg(struct sched_entity * se)4775 static void remove_entity_load_avg(struct sched_entity *se)
4776 {
4777 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 	unsigned long flags;
4779 
4780 	/*
4781 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4782 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4783 	 * so we can remove unconditionally.
4784 	 */
4785 
4786 	sync_entity_load_avg(se);
4787 
4788 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4789 	++cfs_rq->removed.nr;
4790 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4791 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4792 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4793 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4794 }
4795 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4796 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4797 {
4798 	return cfs_rq->avg.runnable_avg;
4799 }
4800 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4801 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4802 {
4803 	return cfs_rq->avg.load_avg;
4804 }
4805 
4806 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4807 
task_util(struct task_struct * p)4808 static inline unsigned long task_util(struct task_struct *p)
4809 {
4810 	return READ_ONCE(p->se.avg.util_avg);
4811 }
4812 
task_runnable(struct task_struct * p)4813 static inline unsigned long task_runnable(struct task_struct *p)
4814 {
4815 	return READ_ONCE(p->se.avg.runnable_avg);
4816 }
4817 
_task_util_est(struct task_struct * p)4818 static inline unsigned long _task_util_est(struct task_struct *p)
4819 {
4820 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4821 }
4822 
task_util_est(struct task_struct * p)4823 static inline unsigned long task_util_est(struct task_struct *p)
4824 {
4825 	return max(task_util(p), _task_util_est(p));
4826 }
4827 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4828 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4829 				    struct task_struct *p)
4830 {
4831 	unsigned int enqueued;
4832 
4833 	if (!sched_feat(UTIL_EST))
4834 		return;
4835 
4836 	/* Update root cfs_rq's estimated utilization */
4837 	enqueued  = cfs_rq->avg.util_est;
4838 	enqueued += _task_util_est(p);
4839 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4840 
4841 	trace_sched_util_est_cfs_tp(cfs_rq);
4842 }
4843 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4844 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4845 				    struct task_struct *p)
4846 {
4847 	unsigned int enqueued;
4848 
4849 	if (!sched_feat(UTIL_EST))
4850 		return;
4851 
4852 	/* Update root cfs_rq's estimated utilization */
4853 	enqueued  = cfs_rq->avg.util_est;
4854 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4855 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4856 
4857 	trace_sched_util_est_cfs_tp(cfs_rq);
4858 }
4859 
4860 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4861 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4862 static inline void util_est_update(struct cfs_rq *cfs_rq,
4863 				   struct task_struct *p,
4864 				   bool task_sleep)
4865 {
4866 	unsigned int ewma, dequeued, last_ewma_diff;
4867 
4868 	if (!sched_feat(UTIL_EST))
4869 		return;
4870 
4871 	/*
4872 	 * Skip update of task's estimated utilization when the task has not
4873 	 * yet completed an activation, e.g. being migrated.
4874 	 */
4875 	if (!task_sleep)
4876 		return;
4877 
4878 	/* Get current estimate of utilization */
4879 	ewma = READ_ONCE(p->se.avg.util_est);
4880 
4881 	/*
4882 	 * If the PELT values haven't changed since enqueue time,
4883 	 * skip the util_est update.
4884 	 */
4885 	if (ewma & UTIL_AVG_UNCHANGED)
4886 		return;
4887 
4888 	/* Get utilization at dequeue */
4889 	dequeued = task_util(p);
4890 
4891 	/*
4892 	 * Reset EWMA on utilization increases, the moving average is used only
4893 	 * to smooth utilization decreases.
4894 	 */
4895 	if (ewma <= dequeued) {
4896 		ewma = dequeued;
4897 		goto done;
4898 	}
4899 
4900 	/*
4901 	 * Skip update of task's estimated utilization when its members are
4902 	 * already ~1% close to its last activation value.
4903 	 */
4904 	last_ewma_diff = ewma - dequeued;
4905 	if (last_ewma_diff < UTIL_EST_MARGIN)
4906 		goto done;
4907 
4908 	/*
4909 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4910 	 * we cannot grant that thread got all CPU time it wanted.
4911 	 */
4912 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4913 		goto done;
4914 
4915 
4916 	/*
4917 	 * Update Task's estimated utilization
4918 	 *
4919 	 * When *p completes an activation we can consolidate another sample
4920 	 * of the task size. This is done by using this value to update the
4921 	 * Exponential Weighted Moving Average (EWMA):
4922 	 *
4923 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4924 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4925 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4926 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4927 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4928 	 *
4929 	 * Where 'w' is the weight of new samples, which is configured to be
4930 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4931 	 */
4932 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4933 	ewma  -= last_ewma_diff;
4934 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4935 done:
4936 	ewma |= UTIL_AVG_UNCHANGED;
4937 	WRITE_ONCE(p->se.avg.util_est, ewma);
4938 
4939 	trace_sched_util_est_se_tp(&p->se);
4940 }
4941 
get_actual_cpu_capacity(int cpu)4942 static inline unsigned long get_actual_cpu_capacity(int cpu)
4943 {
4944 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4945 
4946 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4947 
4948 	return capacity;
4949 }
4950 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4951 static inline int util_fits_cpu(unsigned long util,
4952 				unsigned long uclamp_min,
4953 				unsigned long uclamp_max,
4954 				int cpu)
4955 {
4956 	unsigned long capacity = capacity_of(cpu);
4957 	unsigned long capacity_orig;
4958 	bool fits, uclamp_max_fits;
4959 
4960 	/*
4961 	 * Check if the real util fits without any uclamp boost/cap applied.
4962 	 */
4963 	fits = fits_capacity(util, capacity);
4964 
4965 	if (!uclamp_is_used())
4966 		return fits;
4967 
4968 	/*
4969 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4970 	 * uclamp_max. We only care about capacity pressure (by using
4971 	 * capacity_of()) for comparing against the real util.
4972 	 *
4973 	 * If a task is boosted to 1024 for example, we don't want a tiny
4974 	 * pressure to skew the check whether it fits a CPU or not.
4975 	 *
4976 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4977 	 * should fit a little cpu even if there's some pressure.
4978 	 *
4979 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
4980 	 * on available OPP of the system.
4981 	 *
4982 	 * We honour it for uclamp_min only as a drop in performance level
4983 	 * could result in not getting the requested minimum performance level.
4984 	 *
4985 	 * For uclamp_max, we can tolerate a drop in performance level as the
4986 	 * goal is to cap the task. So it's okay if it's getting less.
4987 	 */
4988 	capacity_orig = arch_scale_cpu_capacity(cpu);
4989 
4990 	/*
4991 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4992 	 * But we do have some corner cases to cater for..
4993 	 *
4994 	 *
4995 	 *                                 C=z
4996 	 *   |                             ___
4997 	 *   |                  C=y       |   |
4998 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4999 	 *   |      C=x        |   |      |   |
5000 	 *   |      ___        |   |      |   |
5001 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5002 	 *   |     |   |       |   |      |   |
5003 	 *   |     |   |       |   |      |   |
5004 	 *   +----------------------------------------
5005 	 *         CPU0        CPU1       CPU2
5006 	 *
5007 	 *   In the above example if a task is capped to a specific performance
5008 	 *   point, y, then when:
5009 	 *
5010 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5011 	 *     to CPU1
5012 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5013 	 *     uclamp_max request.
5014 	 *
5015 	 *   which is what we're enforcing here. A task always fits if
5016 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5017 	 *   the normal upmigration rules should withhold still.
5018 	 *
5019 	 *   Only exception is when we are on max capacity, then we need to be
5020 	 *   careful not to block overutilized state. This is so because:
5021 	 *
5022 	 *     1. There's no concept of capping at max_capacity! We can't go
5023 	 *        beyond this performance level anyway.
5024 	 *     2. The system is being saturated when we're operating near
5025 	 *        max capacity, it doesn't make sense to block overutilized.
5026 	 */
5027 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5028 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5029 	fits = fits || uclamp_max_fits;
5030 
5031 	/*
5032 	 *
5033 	 *                                 C=z
5034 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5035 	 *   |                  C=y       |   |
5036 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5037 	 *   |      C=x        |   |      |   |
5038 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5039 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5040 	 *   |     |   |       |   |      |   |
5041 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5042 	 *   +----------------------------------------
5043 	 *         CPU0        CPU1       CPU2
5044 	 *
5045 	 * a) If util > uclamp_max, then we're capped, we don't care about
5046 	 *    actual fitness value here. We only care if uclamp_max fits
5047 	 *    capacity without taking margin/pressure into account.
5048 	 *    See comment above.
5049 	 *
5050 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5051 	 *    fits_capacity() rules apply. Except we need to ensure that we
5052 	 *    enforce we remain within uclamp_max, see comment above.
5053 	 *
5054 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5055 	 *    need to take into account the boosted value fits the CPU without
5056 	 *    taking margin/pressure into account.
5057 	 *
5058 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5059 	 * just need to consider an extra check for case (c) after ensuring we
5060 	 * handle the case uclamp_min > uclamp_max.
5061 	 */
5062 	uclamp_min = min(uclamp_min, uclamp_max);
5063 	if (fits && (util < uclamp_min) &&
5064 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5065 		return -1;
5066 
5067 	return fits;
5068 }
5069 
task_fits_cpu(struct task_struct * p,int cpu)5070 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5071 {
5072 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5073 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5074 	unsigned long util = task_util_est(p);
5075 	/*
5076 	 * Return true only if the cpu fully fits the task requirements, which
5077 	 * include the utilization but also the performance hints.
5078 	 */
5079 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5080 }
5081 
update_misfit_status(struct task_struct * p,struct rq * rq)5082 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5083 {
5084 	int cpu = cpu_of(rq);
5085 
5086 	if (!sched_asym_cpucap_active())
5087 		return;
5088 
5089 	/*
5090 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5091 	 * available CPU already? Or do we fit into this CPU ?
5092 	 */
5093 	if (!p || (p->nr_cpus_allowed == 1) ||
5094 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5095 	    task_fits_cpu(p, cpu)) {
5096 
5097 		rq->misfit_task_load = 0;
5098 		return;
5099 	}
5100 
5101 	/*
5102 	 * Make sure that misfit_task_load will not be null even if
5103 	 * task_h_load() returns 0.
5104 	 */
5105 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5106 }
5107 
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5108 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5109 {
5110 	struct sched_entity *se = &p->se;
5111 
5112 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5113 	if (attr->sched_runtime) {
5114 		se->custom_slice = 1;
5115 		se->slice = clamp_t(u64, attr->sched_runtime,
5116 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5117 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5118 	} else {
5119 		se->custom_slice = 0;
5120 		se->slice = sysctl_sched_base_slice;
5121 	}
5122 }
5123 
5124 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5125 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5126 {
5127 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5128 	s64 lag = 0;
5129 
5130 	if (!se->custom_slice)
5131 		se->slice = sysctl_sched_base_slice;
5132 	vslice = calc_delta_fair(se->slice, se);
5133 
5134 	/*
5135 	 * Due to how V is constructed as the weighted average of entities,
5136 	 * adding tasks with positive lag, or removing tasks with negative lag
5137 	 * will move 'time' backwards, this can screw around with the lag of
5138 	 * other tasks.
5139 	 *
5140 	 * EEVDF: placement strategy #1 / #2
5141 	 */
5142 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5143 		struct sched_entity *curr = cfs_rq->curr;
5144 		unsigned long load;
5145 
5146 		lag = se->vlag;
5147 
5148 		/*
5149 		 * If we want to place a task and preserve lag, we have to
5150 		 * consider the effect of the new entity on the weighted
5151 		 * average and compensate for this, otherwise lag can quickly
5152 		 * evaporate.
5153 		 *
5154 		 * Lag is defined as:
5155 		 *
5156 		 *   lag_i = S - s_i = w_i * (V - v_i)
5157 		 *
5158 		 * To avoid the 'w_i' term all over the place, we only track
5159 		 * the virtual lag:
5160 		 *
5161 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5162 		 *
5163 		 * And we take V to be the weighted average of all v:
5164 		 *
5165 		 *   V = (\Sum w_j*v_j) / W
5166 		 *
5167 		 * Where W is: \Sum w_j
5168 		 *
5169 		 * Then, the weighted average after adding an entity with lag
5170 		 * vl_i is given by:
5171 		 *
5172 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5173 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5174 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5175 		 *      = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5176 		 *      = V - w_i*vl_i / (W + w_i)
5177 		 *
5178 		 * And the actual lag after adding an entity with vl_i is:
5179 		 *
5180 		 *   vl'_i = V' - v_i
5181 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5182 		 *         = vl_i - w_i*vl_i / (W + w_i)
5183 		 *
5184 		 * Which is strictly less than vl_i. So in order to preserve lag
5185 		 * we should inflate the lag before placement such that the
5186 		 * effective lag after placement comes out right.
5187 		 *
5188 		 * As such, invert the above relation for vl'_i to get the vl_i
5189 		 * we need to use such that the lag after placement is the lag
5190 		 * we computed before dequeue.
5191 		 *
5192 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5193 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5194 		 *
5195 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5196 		 *                   = W*vl_i
5197 		 *
5198 		 *   vl_i = (W + w_i)*vl'_i / W
5199 		 */
5200 		load = cfs_rq->avg_load;
5201 		if (curr && curr->on_rq)
5202 			load += scale_load_down(curr->load.weight);
5203 
5204 		lag *= load + scale_load_down(se->load.weight);
5205 		if (WARN_ON_ONCE(!load))
5206 			load = 1;
5207 		lag = div_s64(lag, load);
5208 	}
5209 
5210 	se->vruntime = vruntime - lag;
5211 
5212 	if (se->rel_deadline) {
5213 		se->deadline += se->vruntime;
5214 		se->rel_deadline = 0;
5215 		return;
5216 	}
5217 
5218 	/*
5219 	 * When joining the competition; the existing tasks will be,
5220 	 * on average, halfway through their slice, as such start tasks
5221 	 * off with half a slice to ease into the competition.
5222 	 */
5223 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5224 		vslice /= 2;
5225 
5226 	/*
5227 	 * EEVDF: vd_i = ve_i + r_i/w_i
5228 	 */
5229 	se->deadline = se->vruntime + vslice;
5230 }
5231 
5232 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5233 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5234 
5235 static void
5236 requeue_delayed_entity(struct sched_entity *se);
5237 
5238 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5239 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5240 {
5241 	bool curr = cfs_rq->curr == se;
5242 
5243 	/*
5244 	 * If we're the current task, we must renormalise before calling
5245 	 * update_curr().
5246 	 */
5247 	if (curr)
5248 		place_entity(cfs_rq, se, flags);
5249 
5250 	update_curr(cfs_rq);
5251 
5252 	/*
5253 	 * When enqueuing a sched_entity, we must:
5254 	 *   - Update loads to have both entity and cfs_rq synced with now.
5255 	 *   - For group_entity, update its runnable_weight to reflect the new
5256 	 *     h_nr_runnable of its group cfs_rq.
5257 	 *   - For group_entity, update its weight to reflect the new share of
5258 	 *     its group cfs_rq
5259 	 *   - Add its new weight to cfs_rq->load.weight
5260 	 */
5261 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5262 	se_update_runnable(se);
5263 	/*
5264 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5265 	 * but update_cfs_group() here will re-adjust the weight and have to
5266 	 * undo/redo all that. Seems wasteful.
5267 	 */
5268 	update_cfs_group(se);
5269 
5270 	/*
5271 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5272 	 * we can place the entity.
5273 	 */
5274 	if (!curr)
5275 		place_entity(cfs_rq, se, flags);
5276 
5277 	account_entity_enqueue(cfs_rq, se);
5278 
5279 	/* Entity has migrated, no longer consider this task hot */
5280 	if (flags & ENQUEUE_MIGRATED)
5281 		se->exec_start = 0;
5282 
5283 	check_schedstat_required();
5284 	update_stats_enqueue_fair(cfs_rq, se, flags);
5285 	if (!curr)
5286 		__enqueue_entity(cfs_rq, se);
5287 	se->on_rq = 1;
5288 
5289 	if (cfs_rq->nr_queued == 1) {
5290 		check_enqueue_throttle(cfs_rq);
5291 		list_add_leaf_cfs_rq(cfs_rq);
5292 #ifdef CONFIG_CFS_BANDWIDTH
5293 		if (cfs_rq->pelt_clock_throttled) {
5294 			struct rq *rq = rq_of(cfs_rq);
5295 
5296 			cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5297 				cfs_rq->throttled_clock_pelt;
5298 			cfs_rq->pelt_clock_throttled = 0;
5299 		}
5300 #endif
5301 	}
5302 }
5303 
__clear_buddies_next(struct sched_entity * se)5304 static void __clear_buddies_next(struct sched_entity *se)
5305 {
5306 	for_each_sched_entity(se) {
5307 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5308 		if (cfs_rq->next != se)
5309 			break;
5310 
5311 		cfs_rq->next = NULL;
5312 	}
5313 }
5314 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5315 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5316 {
5317 	if (cfs_rq->next == se)
5318 		__clear_buddies_next(se);
5319 }
5320 
5321 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5322 
set_delayed(struct sched_entity * se)5323 static void set_delayed(struct sched_entity *se)
5324 {
5325 	se->sched_delayed = 1;
5326 
5327 	/*
5328 	 * Delayed se of cfs_rq have no tasks queued on them.
5329 	 * Do not adjust h_nr_runnable since dequeue_entities()
5330 	 * will account it for blocked tasks.
5331 	 */
5332 	if (!entity_is_task(se))
5333 		return;
5334 
5335 	for_each_sched_entity(se) {
5336 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5337 
5338 		cfs_rq->h_nr_runnable--;
5339 	}
5340 }
5341 
clear_delayed(struct sched_entity * se)5342 static void clear_delayed(struct sched_entity *se)
5343 {
5344 	se->sched_delayed = 0;
5345 
5346 	/*
5347 	 * Delayed se of cfs_rq have no tasks queued on them.
5348 	 * Do not adjust h_nr_runnable since a dequeue has
5349 	 * already accounted for it or an enqueue of a task
5350 	 * below it will account for it in enqueue_task_fair().
5351 	 */
5352 	if (!entity_is_task(se))
5353 		return;
5354 
5355 	for_each_sched_entity(se) {
5356 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5357 
5358 		cfs_rq->h_nr_runnable++;
5359 	}
5360 }
5361 
finish_delayed_dequeue_entity(struct sched_entity * se)5362 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5363 {
5364 	clear_delayed(se);
5365 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5366 		se->vlag = 0;
5367 }
5368 
5369 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5370 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5371 {
5372 	bool sleep = flags & DEQUEUE_SLEEP;
5373 	int action = UPDATE_TG;
5374 
5375 	update_curr(cfs_rq);
5376 	clear_buddies(cfs_rq, se);
5377 
5378 	if (flags & DEQUEUE_DELAYED) {
5379 		WARN_ON_ONCE(!se->sched_delayed);
5380 	} else {
5381 		bool delay = sleep;
5382 		/*
5383 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5384 		 * states must not suffer spurious wakeups, excempt them.
5385 		 */
5386 		if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE))
5387 			delay = false;
5388 
5389 		WARN_ON_ONCE(delay && se->sched_delayed);
5390 
5391 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5392 		    !entity_eligible(cfs_rq, se)) {
5393 			update_load_avg(cfs_rq, se, 0);
5394 			set_delayed(se);
5395 			return false;
5396 		}
5397 	}
5398 
5399 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5400 		action |= DO_DETACH;
5401 
5402 	/*
5403 	 * When dequeuing a sched_entity, we must:
5404 	 *   - Update loads to have both entity and cfs_rq synced with now.
5405 	 *   - For group_entity, update its runnable_weight to reflect the new
5406 	 *     h_nr_runnable of its group cfs_rq.
5407 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5408 	 *   - For group entity, update its weight to reflect the new share
5409 	 *     of its group cfs_rq.
5410 	 */
5411 	update_load_avg(cfs_rq, se, action);
5412 	se_update_runnable(se);
5413 
5414 	update_stats_dequeue_fair(cfs_rq, se, flags);
5415 
5416 	update_entity_lag(cfs_rq, se);
5417 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5418 		se->deadline -= se->vruntime;
5419 		se->rel_deadline = 1;
5420 	}
5421 
5422 	if (se != cfs_rq->curr)
5423 		__dequeue_entity(cfs_rq, se);
5424 	se->on_rq = 0;
5425 	account_entity_dequeue(cfs_rq, se);
5426 
5427 	/* return excess runtime on last dequeue */
5428 	return_cfs_rq_runtime(cfs_rq);
5429 
5430 	update_cfs_group(se);
5431 
5432 	/*
5433 	 * Now advance min_vruntime if @se was the entity holding it back,
5434 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5435 	 * put back on, and if we advance min_vruntime, we'll be placed back
5436 	 * further than we started -- i.e. we'll be penalized.
5437 	 */
5438 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5439 		update_min_vruntime(cfs_rq);
5440 
5441 	if (flags & DEQUEUE_DELAYED)
5442 		finish_delayed_dequeue_entity(se);
5443 
5444 	if (cfs_rq->nr_queued == 0) {
5445 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 		if (throttled_hierarchy(cfs_rq)) {
5448 			struct rq *rq = rq_of(cfs_rq);
5449 
5450 			list_del_leaf_cfs_rq(cfs_rq);
5451 			cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5452 			cfs_rq->pelt_clock_throttled = 1;
5453 		}
5454 #endif
5455 	}
5456 
5457 	return true;
5458 }
5459 
5460 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5461 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5462 {
5463 	clear_buddies(cfs_rq, se);
5464 
5465 	/* 'current' is not kept within the tree. */
5466 	if (se->on_rq) {
5467 		/*
5468 		 * Any task has to be enqueued before it get to execute on
5469 		 * a CPU. So account for the time it spent waiting on the
5470 		 * runqueue.
5471 		 */
5472 		update_stats_wait_end_fair(cfs_rq, se);
5473 		__dequeue_entity(cfs_rq, se);
5474 		update_load_avg(cfs_rq, se, UPDATE_TG);
5475 
5476 		set_protect_slice(cfs_rq, se);
5477 	}
5478 
5479 	update_stats_curr_start(cfs_rq, se);
5480 	WARN_ON_ONCE(cfs_rq->curr);
5481 	cfs_rq->curr = se;
5482 
5483 	/*
5484 	 * Track our maximum slice length, if the CPU's load is at
5485 	 * least twice that of our own weight (i.e. don't track it
5486 	 * when there are only lesser-weight tasks around):
5487 	 */
5488 	if (schedstat_enabled() &&
5489 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5490 		struct sched_statistics *stats;
5491 
5492 		stats = __schedstats_from_se(se);
5493 		__schedstat_set(stats->slice_max,
5494 				max((u64)stats->slice_max,
5495 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5496 	}
5497 
5498 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5499 }
5500 
5501 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5502 
5503 /*
5504  * Pick the next process, keeping these things in mind, in this order:
5505  * 1) keep things fair between processes/task groups
5506  * 2) pick the "next" process, since someone really wants that to run
5507  * 3) pick the "last" process, for cache locality
5508  * 4) do not run the "skip" process, if something else is available
5509  */
5510 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5511 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5512 {
5513 	struct sched_entity *se;
5514 
5515 	/*
5516 	 * Picking the ->next buddy will affect latency but not fairness.
5517 	 */
5518 	if (sched_feat(PICK_BUDDY) &&
5519 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5520 		/* ->next will never be delayed */
5521 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5522 		return cfs_rq->next;
5523 	}
5524 
5525 	se = pick_eevdf(cfs_rq);
5526 	if (se->sched_delayed) {
5527 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5528 		/*
5529 		 * Must not reference @se again, see __block_task().
5530 		 */
5531 		return NULL;
5532 	}
5533 	return se;
5534 }
5535 
5536 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5537 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5538 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5539 {
5540 	/*
5541 	 * If still on the runqueue then deactivate_task()
5542 	 * was not called and update_curr() has to be done:
5543 	 */
5544 	if (prev->on_rq)
5545 		update_curr(cfs_rq);
5546 
5547 	/* throttle cfs_rqs exceeding runtime */
5548 	check_cfs_rq_runtime(cfs_rq);
5549 
5550 	if (prev->on_rq) {
5551 		update_stats_wait_start_fair(cfs_rq, prev);
5552 		/* Put 'current' back into the tree. */
5553 		__enqueue_entity(cfs_rq, prev);
5554 		/* in !on_rq case, update occurred at dequeue */
5555 		update_load_avg(cfs_rq, prev, 0);
5556 	}
5557 	WARN_ON_ONCE(cfs_rq->curr != prev);
5558 	cfs_rq->curr = NULL;
5559 }
5560 
5561 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5562 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5563 {
5564 	/*
5565 	 * Update run-time statistics of the 'current'.
5566 	 */
5567 	update_curr(cfs_rq);
5568 
5569 	/*
5570 	 * Ensure that runnable average is periodically updated.
5571 	 */
5572 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5573 	update_cfs_group(curr);
5574 
5575 #ifdef CONFIG_SCHED_HRTICK
5576 	/*
5577 	 * queued ticks are scheduled to match the slice, so don't bother
5578 	 * validating it and just reschedule.
5579 	 */
5580 	if (queued) {
5581 		resched_curr_lazy(rq_of(cfs_rq));
5582 		return;
5583 	}
5584 #endif
5585 }
5586 
5587 
5588 /**************************************************
5589  * CFS bandwidth control machinery
5590  */
5591 
5592 #ifdef CONFIG_CFS_BANDWIDTH
5593 
5594 #ifdef CONFIG_JUMP_LABEL
5595 static struct static_key __cfs_bandwidth_used;
5596 
cfs_bandwidth_used(void)5597 static inline bool cfs_bandwidth_used(void)
5598 {
5599 	return static_key_false(&__cfs_bandwidth_used);
5600 }
5601 
cfs_bandwidth_usage_inc(void)5602 void cfs_bandwidth_usage_inc(void)
5603 {
5604 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5605 }
5606 
cfs_bandwidth_usage_dec(void)5607 void cfs_bandwidth_usage_dec(void)
5608 {
5609 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5610 }
5611 #else /* !CONFIG_JUMP_LABEL: */
cfs_bandwidth_used(void)5612 static bool cfs_bandwidth_used(void)
5613 {
5614 	return true;
5615 }
5616 
cfs_bandwidth_usage_inc(void)5617 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5618 void cfs_bandwidth_usage_dec(void) {}
5619 #endif /* !CONFIG_JUMP_LABEL */
5620 
sched_cfs_bandwidth_slice(void)5621 static inline u64 sched_cfs_bandwidth_slice(void)
5622 {
5623 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5624 }
5625 
5626 /*
5627  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5628  * directly instead of rq->clock to avoid adding additional synchronization
5629  * around rq->lock.
5630  *
5631  * requires cfs_b->lock
5632  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5633 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5634 {
5635 	s64 runtime;
5636 
5637 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5638 		return;
5639 
5640 	cfs_b->runtime += cfs_b->quota;
5641 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5642 	if (runtime > 0) {
5643 		cfs_b->burst_time += runtime;
5644 		cfs_b->nr_burst++;
5645 	}
5646 
5647 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5648 	cfs_b->runtime_snap = cfs_b->runtime;
5649 }
5650 
tg_cfs_bandwidth(struct task_group * tg)5651 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5652 {
5653 	return &tg->cfs_bandwidth;
5654 }
5655 
5656 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5657 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5658 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5659 {
5660 	u64 min_amount, amount = 0;
5661 
5662 	lockdep_assert_held(&cfs_b->lock);
5663 
5664 	/* note: this is a positive sum as runtime_remaining <= 0 */
5665 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5666 
5667 	if (cfs_b->quota == RUNTIME_INF)
5668 		amount = min_amount;
5669 	else {
5670 		start_cfs_bandwidth(cfs_b);
5671 
5672 		if (cfs_b->runtime > 0) {
5673 			amount = min(cfs_b->runtime, min_amount);
5674 			cfs_b->runtime -= amount;
5675 			cfs_b->idle = 0;
5676 		}
5677 	}
5678 
5679 	cfs_rq->runtime_remaining += amount;
5680 
5681 	return cfs_rq->runtime_remaining > 0;
5682 }
5683 
5684 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5685 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5686 {
5687 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5688 	int ret;
5689 
5690 	raw_spin_lock(&cfs_b->lock);
5691 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5692 	raw_spin_unlock(&cfs_b->lock);
5693 
5694 	return ret;
5695 }
5696 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5697 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5698 {
5699 	/* dock delta_exec before expiring quota (as it could span periods) */
5700 	cfs_rq->runtime_remaining -= delta_exec;
5701 
5702 	if (likely(cfs_rq->runtime_remaining > 0))
5703 		return;
5704 
5705 	if (cfs_rq->throttled)
5706 		return;
5707 	/*
5708 	 * if we're unable to extend our runtime we resched so that the active
5709 	 * hierarchy can be throttled
5710 	 */
5711 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5712 		resched_curr(rq_of(cfs_rq));
5713 }
5714 
5715 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5716 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5717 {
5718 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5719 		return;
5720 
5721 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5722 }
5723 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5724 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5725 {
5726 	return cfs_bandwidth_used() && cfs_rq->throttled;
5727 }
5728 
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)5729 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
5730 {
5731 	return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled;
5732 }
5733 
5734 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5735 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5736 {
5737 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5738 }
5739 
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)5740 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
5741 {
5742 	return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
5743 }
5744 
task_is_throttled(struct task_struct * p)5745 static inline bool task_is_throttled(struct task_struct *p)
5746 {
5747 	return cfs_bandwidth_used() && p->throttled;
5748 }
5749 
5750 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
throttle_cfs_rq_work(struct callback_head * work)5751 static void throttle_cfs_rq_work(struct callback_head *work)
5752 {
5753 	struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
5754 	struct sched_entity *se;
5755 	struct cfs_rq *cfs_rq;
5756 	struct rq *rq;
5757 
5758 	WARN_ON_ONCE(p != current);
5759 	p->sched_throttle_work.next = &p->sched_throttle_work;
5760 
5761 	/*
5762 	 * If task is exiting, then there won't be a return to userspace, so we
5763 	 * don't have to bother with any of this.
5764 	 */
5765 	if ((p->flags & PF_EXITING))
5766 		return;
5767 
5768 	scoped_guard(task_rq_lock, p) {
5769 		se = &p->se;
5770 		cfs_rq = cfs_rq_of(se);
5771 
5772 		/* Raced, forget */
5773 		if (p->sched_class != &fair_sched_class)
5774 			return;
5775 
5776 		/*
5777 		 * If not in limbo, then either replenish has happened or this
5778 		 * task got migrated out of the throttled cfs_rq, move along.
5779 		 */
5780 		if (!cfs_rq->throttle_count)
5781 			return;
5782 		rq = scope.rq;
5783 		update_rq_clock(rq);
5784 		WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node));
5785 		dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE);
5786 		list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5787 		/*
5788 		 * Must not set throttled before dequeue or dequeue will
5789 		 * mistakenly regard this task as an already throttled one.
5790 		 */
5791 		p->throttled = true;
5792 		resched_curr(rq);
5793 	}
5794 }
5795 
init_cfs_throttle_work(struct task_struct * p)5796 void init_cfs_throttle_work(struct task_struct *p)
5797 {
5798 	init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
5799 	/* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
5800 	p->sched_throttle_work.next = &p->sched_throttle_work;
5801 	INIT_LIST_HEAD(&p->throttle_node);
5802 }
5803 
5804 /*
5805  * Task is throttled and someone wants to dequeue it again:
5806  * it could be sched/core when core needs to do things like
5807  * task affinity change, task group change, task sched class
5808  * change etc. and in these cases, DEQUEUE_SLEEP is not set;
5809  * or the task is blocked after throttled due to freezer etc.
5810  * and in these cases, DEQUEUE_SLEEP is set.
5811  */
5812 static void detach_task_cfs_rq(struct task_struct *p);
dequeue_throttled_task(struct task_struct * p,int flags)5813 static void dequeue_throttled_task(struct task_struct *p, int flags)
5814 {
5815 	WARN_ON_ONCE(p->se.on_rq);
5816 	list_del_init(&p->throttle_node);
5817 
5818 	/* task blocked after throttled */
5819 	if (flags & DEQUEUE_SLEEP) {
5820 		p->throttled = false;
5821 		return;
5822 	}
5823 
5824 	/*
5825 	 * task is migrating off its old cfs_rq, detach
5826 	 * the task's load from its old cfs_rq.
5827 	 */
5828 	if (task_on_rq_migrating(p))
5829 		detach_task_cfs_rq(p);
5830 }
5831 
enqueue_throttled_task(struct task_struct * p)5832 static bool enqueue_throttled_task(struct task_struct *p)
5833 {
5834 	struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5835 
5836 	/* @p should have gone through dequeue_throttled_task() first */
5837 	WARN_ON_ONCE(!list_empty(&p->throttle_node));
5838 
5839 	/*
5840 	 * If the throttled task @p is enqueued to a throttled cfs_rq,
5841 	 * take the fast path by directly putting the task on the
5842 	 * target cfs_rq's limbo list.
5843 	 *
5844 	 * Do not do that when @p is current because the following race can
5845 	 * cause @p's group_node to be incorectly re-insterted in its rq's
5846 	 * cfs_tasks list, despite being throttled:
5847 	 *
5848 	 *     cpuX                       cpuY
5849 	 *   p ret2user
5850 	 *  throttle_cfs_rq_work()  sched_move_task(p)
5851 	 *  LOCK task_rq_lock
5852 	 *  dequeue_task_fair(p)
5853 	 *  UNLOCK task_rq_lock
5854 	 *                          LOCK task_rq_lock
5855 	 *                          task_current_donor(p) == true
5856 	 *                          task_on_rq_queued(p) == true
5857 	 *                          dequeue_task(p)
5858 	 *                          put_prev_task(p)
5859 	 *                          sched_change_group()
5860 	 *                          enqueue_task(p) -> p's new cfs_rq
5861 	 *                                             is throttled, go
5862 	 *                                             fast path and skip
5863 	 *                                             actual enqueue
5864 	 *                          set_next_task(p)
5865 	 *                    list_move(&se->group_node, &rq->cfs_tasks); // bug
5866 	 *  schedule()
5867 	 *
5868 	 * In the above race case, @p current cfs_rq is in the same rq as
5869 	 * its previous cfs_rq because sched_move_task() only moves a task
5870 	 * to a different group from the same rq, so we can use its current
5871 	 * cfs_rq to derive rq and test if the task is current.
5872 	 */
5873 	if (throttled_hierarchy(cfs_rq) &&
5874 	    !task_current_donor(rq_of(cfs_rq), p)) {
5875 		list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5876 		return true;
5877 	}
5878 
5879 	/* we can't take the fast path, do an actual enqueue*/
5880 	p->throttled = false;
5881 	return false;
5882 }
5883 
5884 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
tg_unthrottle_up(struct task_group * tg,void * data)5885 static int tg_unthrottle_up(struct task_group *tg, void *data)
5886 {
5887 	struct rq *rq = data;
5888 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5889 	struct task_struct *p, *tmp;
5890 
5891 	if (--cfs_rq->throttle_count)
5892 		return 0;
5893 
5894 	if (cfs_rq->pelt_clock_throttled) {
5895 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5896 					     cfs_rq->throttled_clock_pelt;
5897 		cfs_rq->pelt_clock_throttled = 0;
5898 	}
5899 
5900 	if (cfs_rq->throttled_clock_self) {
5901 		u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5902 
5903 		cfs_rq->throttled_clock_self = 0;
5904 
5905 		if (WARN_ON_ONCE((s64)delta < 0))
5906 			delta = 0;
5907 
5908 		cfs_rq->throttled_clock_self_time += delta;
5909 	}
5910 
5911 	/* Re-enqueue the tasks that have been throttled at this level. */
5912 	list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
5913 		list_del_init(&p->throttle_node);
5914 		p->throttled = false;
5915 		enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP);
5916 	}
5917 
5918 	/* Add cfs_rq with load or one or more already running entities to the list */
5919 	if (!cfs_rq_is_decayed(cfs_rq))
5920 		list_add_leaf_cfs_rq(cfs_rq);
5921 
5922 	return 0;
5923 }
5924 
task_has_throttle_work(struct task_struct * p)5925 static inline bool task_has_throttle_work(struct task_struct *p)
5926 {
5927 	return p->sched_throttle_work.next != &p->sched_throttle_work;
5928 }
5929 
task_throttle_setup_work(struct task_struct * p)5930 static inline void task_throttle_setup_work(struct task_struct *p)
5931 {
5932 	if (task_has_throttle_work(p))
5933 		return;
5934 
5935 	/*
5936 	 * Kthreads and exiting tasks don't return to userspace, so adding the
5937 	 * work is pointless
5938 	 */
5939 	if ((p->flags & (PF_EXITING | PF_KTHREAD)))
5940 		return;
5941 
5942 	task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
5943 }
5944 
record_throttle_clock(struct cfs_rq * cfs_rq)5945 static void record_throttle_clock(struct cfs_rq *cfs_rq)
5946 {
5947 	struct rq *rq = rq_of(cfs_rq);
5948 
5949 	if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5950 		cfs_rq->throttled_clock = rq_clock(rq);
5951 
5952 	if (!cfs_rq->throttled_clock_self)
5953 		cfs_rq->throttled_clock_self = rq_clock(rq);
5954 }
5955 
tg_throttle_down(struct task_group * tg,void * data)5956 static int tg_throttle_down(struct task_group *tg, void *data)
5957 {
5958 	struct rq *rq = data;
5959 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5960 
5961 	if (cfs_rq->throttle_count++)
5962 		return 0;
5963 
5964 	/*
5965 	 * For cfs_rqs that still have entities enqueued, PELT clock
5966 	 * stop happens at dequeue time when all entities are dequeued.
5967 	 */
5968 	if (!cfs_rq->nr_queued) {
5969 		list_del_leaf_cfs_rq(cfs_rq);
5970 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5971 		cfs_rq->pelt_clock_throttled = 1;
5972 	}
5973 
5974 	WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5975 	WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
5976 	return 0;
5977 }
5978 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5979 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5980 {
5981 	struct rq *rq = rq_of(cfs_rq);
5982 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5983 	int dequeue = 1;
5984 
5985 	raw_spin_lock(&cfs_b->lock);
5986 	/* This will start the period timer if necessary */
5987 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5988 		/*
5989 		 * We have raced with bandwidth becoming available, and if we
5990 		 * actually throttled the timer might not unthrottle us for an
5991 		 * entire period. We additionally needed to make sure that any
5992 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5993 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5994 		 * for 1ns of runtime rather than just check cfs_b.
5995 		 */
5996 		dequeue = 0;
5997 	} else {
5998 		list_add_tail_rcu(&cfs_rq->throttled_list,
5999 				  &cfs_b->throttled_cfs_rq);
6000 	}
6001 	raw_spin_unlock(&cfs_b->lock);
6002 
6003 	if (!dequeue)
6004 		return false;  /* Throttle no longer required. */
6005 
6006 	/* freeze hierarchy runnable averages while throttled */
6007 	rcu_read_lock();
6008 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
6009 	rcu_read_unlock();
6010 
6011 	/*
6012 	 * Note: distribution will already see us throttled via the
6013 	 * throttled-list.  rq->lock protects completion.
6014 	 */
6015 	cfs_rq->throttled = 1;
6016 	WARN_ON_ONCE(cfs_rq->throttled_clock);
6017 	return true;
6018 }
6019 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6020 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6021 {
6022 	struct rq *rq = rq_of(cfs_rq);
6023 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6024 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6025 
6026 	/*
6027 	 * It's possible we are called with !runtime_remaining due to things
6028 	 * like user changed quota setting(see tg_set_cfs_bandwidth()) or async
6029 	 * unthrottled us with a positive runtime_remaining but other still
6030 	 * running entities consumed those runtime before we reached here.
6031 	 *
6032 	 * Anyway, we can't unthrottle this cfs_rq without any runtime remaining
6033 	 * because any enqueue in tg_unthrottle_up() will immediately trigger a
6034 	 * throttle, which is not supposed to happen on unthrottle path.
6035 	 */
6036 	if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0)
6037 		return;
6038 
6039 	se = cfs_rq->tg->se[cpu_of(rq)];
6040 
6041 	cfs_rq->throttled = 0;
6042 
6043 	update_rq_clock(rq);
6044 
6045 	raw_spin_lock(&cfs_b->lock);
6046 	if (cfs_rq->throttled_clock) {
6047 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6048 		cfs_rq->throttled_clock = 0;
6049 	}
6050 	list_del_rcu(&cfs_rq->throttled_list);
6051 	raw_spin_unlock(&cfs_b->lock);
6052 
6053 	/* update hierarchical throttle state */
6054 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6055 
6056 	if (!cfs_rq->load.weight) {
6057 		if (!cfs_rq->on_list)
6058 			return;
6059 		/*
6060 		 * Nothing to run but something to decay (on_list)?
6061 		 * Complete the branch.
6062 		 */
6063 		for_each_sched_entity(se) {
6064 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6065 				break;
6066 		}
6067 	}
6068 
6069 	assert_list_leaf_cfs_rq(rq);
6070 
6071 	/* Determine whether we need to wake up potentially idle CPU: */
6072 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6073 		resched_curr(rq);
6074 }
6075 
__cfsb_csd_unthrottle(void * arg)6076 static void __cfsb_csd_unthrottle(void *arg)
6077 {
6078 	struct cfs_rq *cursor, *tmp;
6079 	struct rq *rq = arg;
6080 	struct rq_flags rf;
6081 
6082 	rq_lock(rq, &rf);
6083 
6084 	/*
6085 	 * Iterating over the list can trigger several call to
6086 	 * update_rq_clock() in unthrottle_cfs_rq().
6087 	 * Do it once and skip the potential next ones.
6088 	 */
6089 	update_rq_clock(rq);
6090 	rq_clock_start_loop_update(rq);
6091 
6092 	/*
6093 	 * Since we hold rq lock we're safe from concurrent manipulation of
6094 	 * the CSD list. However, this RCU critical section annotates the
6095 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6096 	 * race with group being freed in the window between removing it
6097 	 * from the list and advancing to the next entry in the list.
6098 	 */
6099 	rcu_read_lock();
6100 
6101 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6102 				 throttled_csd_list) {
6103 		list_del_init(&cursor->throttled_csd_list);
6104 
6105 		if (cfs_rq_throttled(cursor))
6106 			unthrottle_cfs_rq(cursor);
6107 	}
6108 
6109 	rcu_read_unlock();
6110 
6111 	rq_clock_stop_loop_update(rq);
6112 	rq_unlock(rq, &rf);
6113 }
6114 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6115 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6116 {
6117 	struct rq *rq = rq_of(cfs_rq);
6118 	bool first;
6119 
6120 	if (rq == this_rq()) {
6121 		unthrottle_cfs_rq(cfs_rq);
6122 		return;
6123 	}
6124 
6125 	/* Already enqueued */
6126 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6127 		return;
6128 
6129 	first = list_empty(&rq->cfsb_csd_list);
6130 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6131 	if (first)
6132 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6133 }
6134 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6135 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6136 {
6137 	lockdep_assert_rq_held(rq_of(cfs_rq));
6138 
6139 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6140 	    cfs_rq->runtime_remaining <= 0))
6141 		return;
6142 
6143 	__unthrottle_cfs_rq_async(cfs_rq);
6144 }
6145 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6146 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6147 {
6148 	int this_cpu = smp_processor_id();
6149 	u64 runtime, remaining = 1;
6150 	bool throttled = false;
6151 	struct cfs_rq *cfs_rq, *tmp;
6152 	struct rq_flags rf;
6153 	struct rq *rq;
6154 	LIST_HEAD(local_unthrottle);
6155 
6156 	rcu_read_lock();
6157 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6158 				throttled_list) {
6159 		rq = rq_of(cfs_rq);
6160 
6161 		if (!remaining) {
6162 			throttled = true;
6163 			break;
6164 		}
6165 
6166 		rq_lock_irqsave(rq, &rf);
6167 		if (!cfs_rq_throttled(cfs_rq))
6168 			goto next;
6169 
6170 		/* Already queued for async unthrottle */
6171 		if (!list_empty(&cfs_rq->throttled_csd_list))
6172 			goto next;
6173 
6174 		/* By the above checks, this should never be true */
6175 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6176 
6177 		raw_spin_lock(&cfs_b->lock);
6178 		runtime = -cfs_rq->runtime_remaining + 1;
6179 		if (runtime > cfs_b->runtime)
6180 			runtime = cfs_b->runtime;
6181 		cfs_b->runtime -= runtime;
6182 		remaining = cfs_b->runtime;
6183 		raw_spin_unlock(&cfs_b->lock);
6184 
6185 		cfs_rq->runtime_remaining += runtime;
6186 
6187 		/* we check whether we're throttled above */
6188 		if (cfs_rq->runtime_remaining > 0) {
6189 			if (cpu_of(rq) != this_cpu) {
6190 				unthrottle_cfs_rq_async(cfs_rq);
6191 			} else {
6192 				/*
6193 				 * We currently only expect to be unthrottling
6194 				 * a single cfs_rq locally.
6195 				 */
6196 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
6197 				list_add_tail(&cfs_rq->throttled_csd_list,
6198 					      &local_unthrottle);
6199 			}
6200 		} else {
6201 			throttled = true;
6202 		}
6203 
6204 next:
6205 		rq_unlock_irqrestore(rq, &rf);
6206 	}
6207 
6208 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6209 				 throttled_csd_list) {
6210 		struct rq *rq = rq_of(cfs_rq);
6211 
6212 		rq_lock_irqsave(rq, &rf);
6213 
6214 		list_del_init(&cfs_rq->throttled_csd_list);
6215 
6216 		if (cfs_rq_throttled(cfs_rq))
6217 			unthrottle_cfs_rq(cfs_rq);
6218 
6219 		rq_unlock_irqrestore(rq, &rf);
6220 	}
6221 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
6222 
6223 	rcu_read_unlock();
6224 
6225 	return throttled;
6226 }
6227 
6228 /*
6229  * Responsible for refilling a task_group's bandwidth and unthrottling its
6230  * cfs_rqs as appropriate. If there has been no activity within the last
6231  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6232  * used to track this state.
6233  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6234 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6235 {
6236 	int throttled;
6237 
6238 	/* no need to continue the timer with no bandwidth constraint */
6239 	if (cfs_b->quota == RUNTIME_INF)
6240 		goto out_deactivate;
6241 
6242 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6243 	cfs_b->nr_periods += overrun;
6244 
6245 	/* Refill extra burst quota even if cfs_b->idle */
6246 	__refill_cfs_bandwidth_runtime(cfs_b);
6247 
6248 	/*
6249 	 * idle depends on !throttled (for the case of a large deficit), and if
6250 	 * we're going inactive then everything else can be deferred
6251 	 */
6252 	if (cfs_b->idle && !throttled)
6253 		goto out_deactivate;
6254 
6255 	if (!throttled) {
6256 		/* mark as potentially idle for the upcoming period */
6257 		cfs_b->idle = 1;
6258 		return 0;
6259 	}
6260 
6261 	/* account preceding periods in which throttling occurred */
6262 	cfs_b->nr_throttled += overrun;
6263 
6264 	/*
6265 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6266 	 */
6267 	while (throttled && cfs_b->runtime > 0) {
6268 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6269 		/* we can't nest cfs_b->lock while distributing bandwidth */
6270 		throttled = distribute_cfs_runtime(cfs_b);
6271 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6272 	}
6273 
6274 	/*
6275 	 * While we are ensured activity in the period following an
6276 	 * unthrottle, this also covers the case in which the new bandwidth is
6277 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6278 	 * timer to remain active while there are any throttled entities.)
6279 	 */
6280 	cfs_b->idle = 0;
6281 
6282 	return 0;
6283 
6284 out_deactivate:
6285 	return 1;
6286 }
6287 
6288 /* a cfs_rq won't donate quota below this amount */
6289 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6290 /* minimum remaining period time to redistribute slack quota */
6291 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6292 /* how long we wait to gather additional slack before distributing */
6293 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6294 
6295 /*
6296  * Are we near the end of the current quota period?
6297  *
6298  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6299  * hrtimer base being cleared by hrtimer_start. In the case of
6300  * migrate_hrtimers, base is never cleared, so we are fine.
6301  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6302 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6303 {
6304 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6305 	s64 remaining;
6306 
6307 	/* if the call-back is running a quota refresh is already occurring */
6308 	if (hrtimer_callback_running(refresh_timer))
6309 		return 1;
6310 
6311 	/* is a quota refresh about to occur? */
6312 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6313 	if (remaining < (s64)min_expire)
6314 		return 1;
6315 
6316 	return 0;
6317 }
6318 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6319 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6320 {
6321 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6322 
6323 	/* if there's a quota refresh soon don't bother with slack */
6324 	if (runtime_refresh_within(cfs_b, min_left))
6325 		return;
6326 
6327 	/* don't push forwards an existing deferred unthrottle */
6328 	if (cfs_b->slack_started)
6329 		return;
6330 	cfs_b->slack_started = true;
6331 
6332 	hrtimer_start(&cfs_b->slack_timer,
6333 			ns_to_ktime(cfs_bandwidth_slack_period),
6334 			HRTIMER_MODE_REL);
6335 }
6336 
6337 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6338 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6339 {
6340 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6341 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6342 
6343 	if (slack_runtime <= 0)
6344 		return;
6345 
6346 	raw_spin_lock(&cfs_b->lock);
6347 	if (cfs_b->quota != RUNTIME_INF) {
6348 		cfs_b->runtime += slack_runtime;
6349 
6350 		/* we are under rq->lock, defer unthrottling using a timer */
6351 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6352 		    !list_empty(&cfs_b->throttled_cfs_rq))
6353 			start_cfs_slack_bandwidth(cfs_b);
6354 	}
6355 	raw_spin_unlock(&cfs_b->lock);
6356 
6357 	/* even if it's not valid for return we don't want to try again */
6358 	cfs_rq->runtime_remaining -= slack_runtime;
6359 }
6360 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6361 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6362 {
6363 	if (!cfs_bandwidth_used())
6364 		return;
6365 
6366 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6367 		return;
6368 
6369 	__return_cfs_rq_runtime(cfs_rq);
6370 }
6371 
6372 /*
6373  * This is done with a timer (instead of inline with bandwidth return) since
6374  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6375  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6376 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6377 {
6378 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6379 	unsigned long flags;
6380 
6381 	/* confirm we're still not at a refresh boundary */
6382 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6383 	cfs_b->slack_started = false;
6384 
6385 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6386 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6387 		return;
6388 	}
6389 
6390 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6391 		runtime = cfs_b->runtime;
6392 
6393 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6394 
6395 	if (!runtime)
6396 		return;
6397 
6398 	distribute_cfs_runtime(cfs_b);
6399 }
6400 
6401 /*
6402  * When a group wakes up we want to make sure that its quota is not already
6403  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6404  * runtime as update_curr() throttling can not trigger until it's on-rq.
6405  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6406 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6407 {
6408 	if (!cfs_bandwidth_used())
6409 		return;
6410 
6411 	/* an active group must be handled by the update_curr()->put() path */
6412 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6413 		return;
6414 
6415 	/* ensure the group is not already throttled */
6416 	if (cfs_rq_throttled(cfs_rq))
6417 		return;
6418 
6419 	/* update runtime allocation */
6420 	account_cfs_rq_runtime(cfs_rq, 0);
6421 	if (cfs_rq->runtime_remaining <= 0)
6422 		throttle_cfs_rq(cfs_rq);
6423 }
6424 
sync_throttle(struct task_group * tg,int cpu)6425 static void sync_throttle(struct task_group *tg, int cpu)
6426 {
6427 	struct cfs_rq *pcfs_rq, *cfs_rq;
6428 
6429 	if (!cfs_bandwidth_used())
6430 		return;
6431 
6432 	if (!tg->parent)
6433 		return;
6434 
6435 	cfs_rq = tg->cfs_rq[cpu];
6436 	pcfs_rq = tg->parent->cfs_rq[cpu];
6437 
6438 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6439 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6440 
6441 	/*
6442 	 * It is not enough to sync the "pelt_clock_throttled" indicator
6443 	 * with the parent cfs_rq when the hierarchy is not queued.
6444 	 * Always join a throttled hierarchy with PELT clock throttled
6445 	 * and leaf it to the first enqueue, or distribution to
6446 	 * unthrottle the PELT clock.
6447 	 */
6448 	if (cfs_rq->throttle_count)
6449 		cfs_rq->pelt_clock_throttled = 1;
6450 }
6451 
6452 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6453 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6454 {
6455 	if (!cfs_bandwidth_used())
6456 		return false;
6457 
6458 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6459 		return false;
6460 
6461 	/*
6462 	 * it's possible for a throttled entity to be forced into a running
6463 	 * state (e.g. set_curr_task), in this case we're finished.
6464 	 */
6465 	if (cfs_rq_throttled(cfs_rq))
6466 		return true;
6467 
6468 	return throttle_cfs_rq(cfs_rq);
6469 }
6470 
sched_cfs_slack_timer(struct hrtimer * timer)6471 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6472 {
6473 	struct cfs_bandwidth *cfs_b =
6474 		container_of(timer, struct cfs_bandwidth, slack_timer);
6475 
6476 	do_sched_cfs_slack_timer(cfs_b);
6477 
6478 	return HRTIMER_NORESTART;
6479 }
6480 
sched_cfs_period_timer(struct hrtimer * timer)6481 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6482 {
6483 	struct cfs_bandwidth *cfs_b =
6484 		container_of(timer, struct cfs_bandwidth, period_timer);
6485 	unsigned long flags;
6486 	int overrun;
6487 	int idle = 0;
6488 	int count = 0;
6489 
6490 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6491 	for (;;) {
6492 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6493 		if (!overrun)
6494 			break;
6495 
6496 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6497 
6498 		if (++count > 3) {
6499 			u64 new, old = ktime_to_ns(cfs_b->period);
6500 
6501 			/*
6502 			 * Grow period by a factor of 2 to avoid losing precision.
6503 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6504 			 * to fail.
6505 			 */
6506 			new = old * 2;
6507 			if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6508 				cfs_b->period = ns_to_ktime(new);
6509 				cfs_b->quota *= 2;
6510 				cfs_b->burst *= 2;
6511 
6512 				pr_warn_ratelimited(
6513 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6514 					smp_processor_id(),
6515 					div_u64(new, NSEC_PER_USEC),
6516 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6517 			} else {
6518 				pr_warn_ratelimited(
6519 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6520 					smp_processor_id(),
6521 					div_u64(old, NSEC_PER_USEC),
6522 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6523 			}
6524 
6525 			/* reset count so we don't come right back in here */
6526 			count = 0;
6527 		}
6528 	}
6529 	if (idle)
6530 		cfs_b->period_active = 0;
6531 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6532 
6533 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6534 }
6535 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6536 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6537 {
6538 	raw_spin_lock_init(&cfs_b->lock);
6539 	cfs_b->runtime = 0;
6540 	cfs_b->quota = RUNTIME_INF;
6541 	cfs_b->period = us_to_ktime(default_bw_period_us());
6542 	cfs_b->burst = 0;
6543 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6544 
6545 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6546 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6547 		      HRTIMER_MODE_ABS_PINNED);
6548 
6549 	/* Add a random offset so that timers interleave */
6550 	hrtimer_set_expires(&cfs_b->period_timer,
6551 			    get_random_u32_below(cfs_b->period));
6552 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6553 		      HRTIMER_MODE_REL);
6554 	cfs_b->slack_started = false;
6555 }
6556 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6557 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6558 {
6559 	cfs_rq->runtime_enabled = 0;
6560 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6561 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6562 	INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
6563 }
6564 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6565 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6566 {
6567 	lockdep_assert_held(&cfs_b->lock);
6568 
6569 	if (cfs_b->period_active)
6570 		return;
6571 
6572 	cfs_b->period_active = 1;
6573 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6574 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6575 }
6576 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6577 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6578 {
6579 	int __maybe_unused i;
6580 
6581 	/* init_cfs_bandwidth() was not called */
6582 	if (!cfs_b->throttled_cfs_rq.next)
6583 		return;
6584 
6585 	hrtimer_cancel(&cfs_b->period_timer);
6586 	hrtimer_cancel(&cfs_b->slack_timer);
6587 
6588 	/*
6589 	 * It is possible that we still have some cfs_rq's pending on a CSD
6590 	 * list, though this race is very rare. In order for this to occur, we
6591 	 * must have raced with the last task leaving the group while there
6592 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6593 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6594 	 * we can simply flush all pending CSD work inline here. We're
6595 	 * guaranteed at this point that no additional cfs_rq of this group can
6596 	 * join a CSD list.
6597 	 */
6598 	for_each_possible_cpu(i) {
6599 		struct rq *rq = cpu_rq(i);
6600 		unsigned long flags;
6601 
6602 		if (list_empty(&rq->cfsb_csd_list))
6603 			continue;
6604 
6605 		local_irq_save(flags);
6606 		__cfsb_csd_unthrottle(rq);
6607 		local_irq_restore(flags);
6608 	}
6609 }
6610 
6611 /*
6612  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6613  *
6614  * The race is harmless, since modifying bandwidth settings of unhooked group
6615  * bits doesn't do much.
6616  */
6617 
6618 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6619 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6620 {
6621 	struct task_group *tg;
6622 
6623 	lockdep_assert_rq_held(rq);
6624 
6625 	rcu_read_lock();
6626 	list_for_each_entry_rcu(tg, &task_groups, list) {
6627 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6628 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6629 
6630 		raw_spin_lock(&cfs_b->lock);
6631 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6632 		raw_spin_unlock(&cfs_b->lock);
6633 	}
6634 	rcu_read_unlock();
6635 }
6636 
6637 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6638 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6639 {
6640 	struct task_group *tg;
6641 
6642 	lockdep_assert_rq_held(rq);
6643 
6644 	// Do not unthrottle for an active CPU
6645 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6646 		return;
6647 
6648 	/*
6649 	 * The rq clock has already been updated in the
6650 	 * set_rq_offline(), so we should skip updating
6651 	 * the rq clock again in unthrottle_cfs_rq().
6652 	 */
6653 	rq_clock_start_loop_update(rq);
6654 
6655 	rcu_read_lock();
6656 	list_for_each_entry_rcu(tg, &task_groups, list) {
6657 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6658 
6659 		if (!cfs_rq->runtime_enabled)
6660 			continue;
6661 
6662 		/*
6663 		 * Offline rq is schedulable till CPU is completely disabled
6664 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6665 		 */
6666 		cfs_rq->runtime_enabled = 0;
6667 
6668 		if (!cfs_rq_throttled(cfs_rq))
6669 			continue;
6670 
6671 		/*
6672 		 * clock_task is not advancing so we just need to make sure
6673 		 * there's some valid quota amount
6674 		 */
6675 		cfs_rq->runtime_remaining = 1;
6676 		unthrottle_cfs_rq(cfs_rq);
6677 	}
6678 	rcu_read_unlock();
6679 
6680 	rq_clock_stop_loop_update(rq);
6681 }
6682 
cfs_task_bw_constrained(struct task_struct * p)6683 bool cfs_task_bw_constrained(struct task_struct *p)
6684 {
6685 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6686 
6687 	if (!cfs_bandwidth_used())
6688 		return false;
6689 
6690 	if (cfs_rq->runtime_enabled ||
6691 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6692 		return true;
6693 
6694 	return false;
6695 }
6696 
6697 #ifdef CONFIG_NO_HZ_FULL
6698 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6699 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6700 {
6701 	int cpu = cpu_of(rq);
6702 
6703 	if (!cfs_bandwidth_used())
6704 		return;
6705 
6706 	if (!tick_nohz_full_cpu(cpu))
6707 		return;
6708 
6709 	if (rq->nr_running != 1)
6710 		return;
6711 
6712 	/*
6713 	 *  We know there is only one task runnable and we've just picked it. The
6714 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6715 	 *  be otherwise able to stop the tick. Just need to check if we are using
6716 	 *  bandwidth control.
6717 	 */
6718 	if (cfs_task_bw_constrained(p))
6719 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6720 }
6721 #endif /* CONFIG_NO_HZ_FULL */
6722 
6723 #else /* !CONFIG_CFS_BANDWIDTH: */
6724 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6725 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6726 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6727 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6728 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
task_throttle_setup_work(struct task_struct * p)6730 static void task_throttle_setup_work(struct task_struct *p) {}
task_is_throttled(struct task_struct * p)6731 static bool task_is_throttled(struct task_struct *p) { return false; }
dequeue_throttled_task(struct task_struct * p,int flags)6732 static void dequeue_throttled_task(struct task_struct *p, int flags) {}
enqueue_throttled_task(struct task_struct * p)6733 static bool enqueue_throttled_task(struct task_struct *p) { return false; }
record_throttle_clock(struct cfs_rq * cfs_rq)6734 static void record_throttle_clock(struct cfs_rq *cfs_rq) {}
6735 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6736 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6737 {
6738 	return 0;
6739 }
6740 
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)6741 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
6742 {
6743 	return false;
6744 }
6745 
throttled_hierarchy(struct cfs_rq * cfs_rq)6746 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6747 {
6748 	return 0;
6749 }
6750 
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)6751 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
6752 {
6753 	return 0;
6754 }
6755 
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6757 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6758 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6759 #endif
6760 
tg_cfs_bandwidth(struct task_group * tg)6761 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6762 {
6763 	return NULL;
6764 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6765 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6766 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6767 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6768 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6769 bool cfs_task_bw_constrained(struct task_struct *p)
6770 {
6771 	return false;
6772 }
6773 #endif
6774 #endif /* !CONFIG_CFS_BANDWIDTH */
6775 
6776 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6777 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6778 #endif
6779 
6780 /**************************************************
6781  * CFS operations on tasks:
6782  */
6783 
6784 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6785 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6786 {
6787 	struct sched_entity *se = &p->se;
6788 
6789 	WARN_ON_ONCE(task_rq(p) != rq);
6790 
6791 	if (rq->cfs.h_nr_queued > 1) {
6792 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6793 		u64 slice = se->slice;
6794 		s64 delta = slice - ran;
6795 
6796 		if (delta < 0) {
6797 			if (task_current_donor(rq, p))
6798 				resched_curr(rq);
6799 			return;
6800 		}
6801 		hrtick_start(rq, delta);
6802 	}
6803 }
6804 
6805 /*
6806  * called from enqueue/dequeue and updates the hrtick when the
6807  * current task is from our class and nr_running is low enough
6808  * to matter.
6809  */
hrtick_update(struct rq * rq)6810 static void hrtick_update(struct rq *rq)
6811 {
6812 	struct task_struct *donor = rq->donor;
6813 
6814 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6815 		return;
6816 
6817 	hrtick_start_fair(rq, donor);
6818 }
6819 #else /* !CONFIG_SCHED_HRTICK: */
6820 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6821 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6822 {
6823 }
6824 
hrtick_update(struct rq * rq)6825 static inline void hrtick_update(struct rq *rq)
6826 {
6827 }
6828 #endif /* !CONFIG_SCHED_HRTICK */
6829 
cpu_overutilized(int cpu)6830 static inline bool cpu_overutilized(int cpu)
6831 {
6832 	unsigned long  rq_util_min, rq_util_max;
6833 
6834 	if (!sched_energy_enabled())
6835 		return false;
6836 
6837 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6838 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6839 
6840 	/* Return true only if the utilization doesn't fit CPU's capacity */
6841 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6842 }
6843 
6844 /*
6845  * overutilized value make sense only if EAS is enabled
6846  */
is_rd_overutilized(struct root_domain * rd)6847 static inline bool is_rd_overutilized(struct root_domain *rd)
6848 {
6849 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6850 }
6851 
set_rd_overutilized(struct root_domain * rd,bool flag)6852 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6853 {
6854 	if (!sched_energy_enabled())
6855 		return;
6856 
6857 	WRITE_ONCE(rd->overutilized, flag);
6858 	trace_sched_overutilized_tp(rd, flag);
6859 }
6860 
check_update_overutilized_status(struct rq * rq)6861 static inline void check_update_overutilized_status(struct rq *rq)
6862 {
6863 	/*
6864 	 * overutilized field is used for load balancing decisions only
6865 	 * if energy aware scheduler is being used
6866 	 */
6867 
6868 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6869 		set_rd_overutilized(rq->rd, 1);
6870 }
6871 
6872 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6873 static int sched_idle_rq(struct rq *rq)
6874 {
6875 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6876 			rq->nr_running);
6877 }
6878 
sched_idle_cpu(int cpu)6879 static int sched_idle_cpu(int cpu)
6880 {
6881 	return sched_idle_rq(cpu_rq(cpu));
6882 }
6883 
6884 static void
requeue_delayed_entity(struct sched_entity * se)6885 requeue_delayed_entity(struct sched_entity *se)
6886 {
6887 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6888 
6889 	/*
6890 	 * se->sched_delayed should imply: se->on_rq == 1.
6891 	 * Because a delayed entity is one that is still on
6892 	 * the runqueue competing until elegibility.
6893 	 */
6894 	WARN_ON_ONCE(!se->sched_delayed);
6895 	WARN_ON_ONCE(!se->on_rq);
6896 
6897 	if (sched_feat(DELAY_ZERO)) {
6898 		update_entity_lag(cfs_rq, se);
6899 		if (se->vlag > 0) {
6900 			cfs_rq->nr_queued--;
6901 			if (se != cfs_rq->curr)
6902 				__dequeue_entity(cfs_rq, se);
6903 			se->vlag = 0;
6904 			place_entity(cfs_rq, se, 0);
6905 			if (se != cfs_rq->curr)
6906 				__enqueue_entity(cfs_rq, se);
6907 			cfs_rq->nr_queued++;
6908 		}
6909 	}
6910 
6911 	update_load_avg(cfs_rq, se, 0);
6912 	clear_delayed(se);
6913 }
6914 
6915 /*
6916  * The enqueue_task method is called before nr_running is
6917  * increased. Here we update the fair scheduling stats and
6918  * then put the task into the rbtree:
6919  */
6920 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6921 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6922 {
6923 	struct cfs_rq *cfs_rq;
6924 	struct sched_entity *se = &p->se;
6925 	int h_nr_idle = task_has_idle_policy(p);
6926 	int h_nr_runnable = 1;
6927 	int task_new = !(flags & ENQUEUE_WAKEUP);
6928 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6929 	u64 slice = 0;
6930 
6931 	if (task_is_throttled(p) && enqueue_throttled_task(p))
6932 		return;
6933 
6934 	/*
6935 	 * The code below (indirectly) updates schedutil which looks at
6936 	 * the cfs_rq utilization to select a frequency.
6937 	 * Let's add the task's estimated utilization to the cfs_rq's
6938 	 * estimated utilization, before we update schedutil.
6939 	 */
6940 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6941 		util_est_enqueue(&rq->cfs, p);
6942 
6943 	if (flags & ENQUEUE_DELAYED) {
6944 		requeue_delayed_entity(se);
6945 		return;
6946 	}
6947 
6948 	/*
6949 	 * If in_iowait is set, the code below may not trigger any cpufreq
6950 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6951 	 * passed.
6952 	 */
6953 	if (p->in_iowait)
6954 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6955 
6956 	if (task_new && se->sched_delayed)
6957 		h_nr_runnable = 0;
6958 
6959 	for_each_sched_entity(se) {
6960 		if (se->on_rq) {
6961 			if (se->sched_delayed)
6962 				requeue_delayed_entity(se);
6963 			break;
6964 		}
6965 		cfs_rq = cfs_rq_of(se);
6966 
6967 		/*
6968 		 * Basically set the slice of group entries to the min_slice of
6969 		 * their respective cfs_rq. This ensures the group can service
6970 		 * its entities in the desired time-frame.
6971 		 */
6972 		if (slice) {
6973 			se->slice = slice;
6974 			se->custom_slice = 1;
6975 		}
6976 		enqueue_entity(cfs_rq, se, flags);
6977 		slice = cfs_rq_min_slice(cfs_rq);
6978 
6979 		cfs_rq->h_nr_runnable += h_nr_runnable;
6980 		cfs_rq->h_nr_queued++;
6981 		cfs_rq->h_nr_idle += h_nr_idle;
6982 
6983 		if (cfs_rq_is_idle(cfs_rq))
6984 			h_nr_idle = 1;
6985 
6986 		flags = ENQUEUE_WAKEUP;
6987 	}
6988 
6989 	for_each_sched_entity(se) {
6990 		cfs_rq = cfs_rq_of(se);
6991 
6992 		update_load_avg(cfs_rq, se, UPDATE_TG);
6993 		se_update_runnable(se);
6994 		update_cfs_group(se);
6995 
6996 		se->slice = slice;
6997 		if (se != cfs_rq->curr)
6998 			min_vruntime_cb_propagate(&se->run_node, NULL);
6999 		slice = cfs_rq_min_slice(cfs_rq);
7000 
7001 		cfs_rq->h_nr_runnable += h_nr_runnable;
7002 		cfs_rq->h_nr_queued++;
7003 		cfs_rq->h_nr_idle += h_nr_idle;
7004 
7005 		if (cfs_rq_is_idle(cfs_rq))
7006 			h_nr_idle = 1;
7007 	}
7008 
7009 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7010 		/* Account for idle runtime */
7011 		if (!rq->nr_running)
7012 			dl_server_update_idle_time(rq, rq->curr);
7013 		dl_server_start(&rq->fair_server);
7014 	}
7015 
7016 	/* At this point se is NULL and we are at root level*/
7017 	add_nr_running(rq, 1);
7018 
7019 	/*
7020 	 * Since new tasks are assigned an initial util_avg equal to
7021 	 * half of the spare capacity of their CPU, tiny tasks have the
7022 	 * ability to cross the overutilized threshold, which will
7023 	 * result in the load balancer ruining all the task placement
7024 	 * done by EAS. As a way to mitigate that effect, do not account
7025 	 * for the first enqueue operation of new tasks during the
7026 	 * overutilized flag detection.
7027 	 *
7028 	 * A better way of solving this problem would be to wait for
7029 	 * the PELT signals of tasks to converge before taking them
7030 	 * into account, but that is not straightforward to implement,
7031 	 * and the following generally works well enough in practice.
7032 	 */
7033 	if (!task_new)
7034 		check_update_overutilized_status(rq);
7035 
7036 	assert_list_leaf_cfs_rq(rq);
7037 
7038 	hrtick_update(rq);
7039 }
7040 
7041 static void set_next_buddy(struct sched_entity *se);
7042 
7043 /*
7044  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7045  * failing half-way through and resume the dequeue later.
7046  *
7047  * Returns:
7048  * -1 - dequeue delayed
7049  *  0 - dequeue throttled
7050  *  1 - dequeue complete
7051  */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7052 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7053 {
7054 	bool was_sched_idle = sched_idle_rq(rq);
7055 	bool task_sleep = flags & DEQUEUE_SLEEP;
7056 	bool task_delayed = flags & DEQUEUE_DELAYED;
7057 	bool task_throttled = flags & DEQUEUE_THROTTLE;
7058 	struct task_struct *p = NULL;
7059 	int h_nr_idle = 0;
7060 	int h_nr_queued = 0;
7061 	int h_nr_runnable = 0;
7062 	struct cfs_rq *cfs_rq;
7063 	u64 slice = 0;
7064 
7065 	if (entity_is_task(se)) {
7066 		p = task_of(se);
7067 		h_nr_queued = 1;
7068 		h_nr_idle = task_has_idle_policy(p);
7069 		if (task_sleep || task_delayed || !se->sched_delayed)
7070 			h_nr_runnable = 1;
7071 	}
7072 
7073 	for_each_sched_entity(se) {
7074 		cfs_rq = cfs_rq_of(se);
7075 
7076 		if (!dequeue_entity(cfs_rq, se, flags)) {
7077 			if (p && &p->se == se)
7078 				return -1;
7079 
7080 			slice = cfs_rq_min_slice(cfs_rq);
7081 			break;
7082 		}
7083 
7084 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7085 		cfs_rq->h_nr_queued -= h_nr_queued;
7086 		cfs_rq->h_nr_idle -= h_nr_idle;
7087 
7088 		if (cfs_rq_is_idle(cfs_rq))
7089 			h_nr_idle = h_nr_queued;
7090 
7091 		if (throttled_hierarchy(cfs_rq) && task_throttled)
7092 			record_throttle_clock(cfs_rq);
7093 
7094 		/* Don't dequeue parent if it has other entities besides us */
7095 		if (cfs_rq->load.weight) {
7096 			slice = cfs_rq_min_slice(cfs_rq);
7097 
7098 			/* Avoid re-evaluating load for this entity: */
7099 			se = parent_entity(se);
7100 			/*
7101 			 * Bias pick_next to pick a task from this cfs_rq, as
7102 			 * p is sleeping when it is within its sched_slice.
7103 			 */
7104 			if (task_sleep && se)
7105 				set_next_buddy(se);
7106 			break;
7107 		}
7108 		flags |= DEQUEUE_SLEEP;
7109 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7110 	}
7111 
7112 	for_each_sched_entity(se) {
7113 		cfs_rq = cfs_rq_of(se);
7114 
7115 		update_load_avg(cfs_rq, se, UPDATE_TG);
7116 		se_update_runnable(se);
7117 		update_cfs_group(se);
7118 
7119 		se->slice = slice;
7120 		if (se != cfs_rq->curr)
7121 			min_vruntime_cb_propagate(&se->run_node, NULL);
7122 		slice = cfs_rq_min_slice(cfs_rq);
7123 
7124 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7125 		cfs_rq->h_nr_queued -= h_nr_queued;
7126 		cfs_rq->h_nr_idle -= h_nr_idle;
7127 
7128 		if (cfs_rq_is_idle(cfs_rq))
7129 			h_nr_idle = h_nr_queued;
7130 
7131 		if (throttled_hierarchy(cfs_rq) && task_throttled)
7132 			record_throttle_clock(cfs_rq);
7133 	}
7134 
7135 	sub_nr_running(rq, h_nr_queued);
7136 
7137 	/* balance early to pull high priority tasks */
7138 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7139 		rq->next_balance = jiffies;
7140 
7141 	if (p && task_delayed) {
7142 		WARN_ON_ONCE(!task_sleep);
7143 		WARN_ON_ONCE(p->on_rq != 1);
7144 
7145 		/* Fix-up what dequeue_task_fair() skipped */
7146 		hrtick_update(rq);
7147 
7148 		/*
7149 		 * Fix-up what block_task() skipped.
7150 		 *
7151 		 * Must be last, @p might not be valid after this.
7152 		 */
7153 		__block_task(rq, p);
7154 	}
7155 
7156 	return 1;
7157 }
7158 
7159 /*
7160  * The dequeue_task method is called before nr_running is
7161  * decreased. We remove the task from the rbtree and
7162  * update the fair scheduling stats:
7163  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7164 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7165 {
7166 	if (task_is_throttled(p)) {
7167 		dequeue_throttled_task(p, flags);
7168 		return true;
7169 	}
7170 
7171 	if (!p->se.sched_delayed)
7172 		util_est_dequeue(&rq->cfs, p);
7173 
7174 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7175 	if (dequeue_entities(rq, &p->se, flags) < 0)
7176 		return false;
7177 
7178 	/*
7179 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7180 	 */
7181 
7182 	hrtick_update(rq);
7183 	return true;
7184 }
7185 
cfs_h_nr_delayed(struct rq * rq)7186 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7187 {
7188 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7189 }
7190 
7191 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7192 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7193 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7194 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7195 
7196 #ifdef CONFIG_NO_HZ_COMMON
7197 
7198 static struct {
7199 	cpumask_var_t idle_cpus_mask;
7200 	atomic_t nr_cpus;
7201 	int has_blocked;		/* Idle CPUS has blocked load */
7202 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7203 	unsigned long next_balance;     /* in jiffy units */
7204 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7205 } nohz ____cacheline_aligned;
7206 
7207 #endif /* CONFIG_NO_HZ_COMMON */
7208 
cpu_load(struct rq * rq)7209 static unsigned long cpu_load(struct rq *rq)
7210 {
7211 	return cfs_rq_load_avg(&rq->cfs);
7212 }
7213 
7214 /*
7215  * cpu_load_without - compute CPU load without any contributions from *p
7216  * @cpu: the CPU which load is requested
7217  * @p: the task which load should be discounted
7218  *
7219  * The load of a CPU is defined by the load of tasks currently enqueued on that
7220  * CPU as well as tasks which are currently sleeping after an execution on that
7221  * CPU.
7222  *
7223  * This method returns the load of the specified CPU by discounting the load of
7224  * the specified task, whenever the task is currently contributing to the CPU
7225  * load.
7226  */
cpu_load_without(struct rq * rq,struct task_struct * p)7227 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7228 {
7229 	struct cfs_rq *cfs_rq;
7230 	unsigned int load;
7231 
7232 	/* Task has no contribution or is new */
7233 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7234 		return cpu_load(rq);
7235 
7236 	cfs_rq = &rq->cfs;
7237 	load = READ_ONCE(cfs_rq->avg.load_avg);
7238 
7239 	/* Discount task's util from CPU's util */
7240 	lsub_positive(&load, task_h_load(p));
7241 
7242 	return load;
7243 }
7244 
cpu_runnable(struct rq * rq)7245 static unsigned long cpu_runnable(struct rq *rq)
7246 {
7247 	return cfs_rq_runnable_avg(&rq->cfs);
7248 }
7249 
cpu_runnable_without(struct rq * rq,struct task_struct * p)7250 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7251 {
7252 	struct cfs_rq *cfs_rq;
7253 	unsigned int runnable;
7254 
7255 	/* Task has no contribution or is new */
7256 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7257 		return cpu_runnable(rq);
7258 
7259 	cfs_rq = &rq->cfs;
7260 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7261 
7262 	/* Discount task's runnable from CPU's runnable */
7263 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7264 
7265 	return runnable;
7266 }
7267 
capacity_of(int cpu)7268 static unsigned long capacity_of(int cpu)
7269 {
7270 	return cpu_rq(cpu)->cpu_capacity;
7271 }
7272 
record_wakee(struct task_struct * p)7273 static void record_wakee(struct task_struct *p)
7274 {
7275 	/*
7276 	 * Only decay a single time; tasks that have less then 1 wakeup per
7277 	 * jiffy will not have built up many flips.
7278 	 */
7279 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7280 		current->wakee_flips >>= 1;
7281 		current->wakee_flip_decay_ts = jiffies;
7282 	}
7283 
7284 	if (current->last_wakee != p) {
7285 		current->last_wakee = p;
7286 		current->wakee_flips++;
7287 	}
7288 }
7289 
7290 /*
7291  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7292  *
7293  * A waker of many should wake a different task than the one last awakened
7294  * at a frequency roughly N times higher than one of its wakees.
7295  *
7296  * In order to determine whether we should let the load spread vs consolidating
7297  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7298  * partner, and a factor of lls_size higher frequency in the other.
7299  *
7300  * With both conditions met, we can be relatively sure that the relationship is
7301  * non-monogamous, with partner count exceeding socket size.
7302  *
7303  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7304  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7305  * socket size.
7306  */
wake_wide(struct task_struct * p)7307 static int wake_wide(struct task_struct *p)
7308 {
7309 	unsigned int master = current->wakee_flips;
7310 	unsigned int slave = p->wakee_flips;
7311 	int factor = __this_cpu_read(sd_llc_size);
7312 
7313 	if (master < slave)
7314 		swap(master, slave);
7315 	if (slave < factor || master < slave * factor)
7316 		return 0;
7317 	return 1;
7318 }
7319 
7320 /*
7321  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7322  * soonest. For the purpose of speed we only consider the waking and previous
7323  * CPU.
7324  *
7325  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7326  *			cache-affine and is (or	will be) idle.
7327  *
7328  * wake_affine_weight() - considers the weight to reflect the average
7329  *			  scheduling latency of the CPUs. This seems to work
7330  *			  for the overloaded case.
7331  */
7332 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7333 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7334 {
7335 	/*
7336 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7337 	 * context. Only allow the move if cache is shared. Otherwise an
7338 	 * interrupt intensive workload could force all tasks onto one
7339 	 * node depending on the IO topology or IRQ affinity settings.
7340 	 *
7341 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7342 	 * There is no guarantee that the cache hot data from an interrupt
7343 	 * is more important than cache hot data on the prev_cpu and from
7344 	 * a cpufreq perspective, it's better to have higher utilisation
7345 	 * on one CPU.
7346 	 */
7347 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7348 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7349 
7350 	if (sync) {
7351 		struct rq *rq = cpu_rq(this_cpu);
7352 
7353 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7354 			return this_cpu;
7355 	}
7356 
7357 	if (available_idle_cpu(prev_cpu))
7358 		return prev_cpu;
7359 
7360 	return nr_cpumask_bits;
7361 }
7362 
7363 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7364 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7365 		   int this_cpu, int prev_cpu, int sync)
7366 {
7367 	s64 this_eff_load, prev_eff_load;
7368 	unsigned long task_load;
7369 
7370 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7371 
7372 	if (sync) {
7373 		unsigned long current_load = task_h_load(current);
7374 
7375 		if (current_load > this_eff_load)
7376 			return this_cpu;
7377 
7378 		this_eff_load -= current_load;
7379 	}
7380 
7381 	task_load = task_h_load(p);
7382 
7383 	this_eff_load += task_load;
7384 	if (sched_feat(WA_BIAS))
7385 		this_eff_load *= 100;
7386 	this_eff_load *= capacity_of(prev_cpu);
7387 
7388 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7389 	prev_eff_load -= task_load;
7390 	if (sched_feat(WA_BIAS))
7391 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7392 	prev_eff_load *= capacity_of(this_cpu);
7393 
7394 	/*
7395 	 * If sync, adjust the weight of prev_eff_load such that if
7396 	 * prev_eff == this_eff that select_idle_sibling() will consider
7397 	 * stacking the wakee on top of the waker if no other CPU is
7398 	 * idle.
7399 	 */
7400 	if (sync)
7401 		prev_eff_load += 1;
7402 
7403 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7404 }
7405 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7406 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7407 		       int this_cpu, int prev_cpu, int sync)
7408 {
7409 	int target = nr_cpumask_bits;
7410 
7411 	if (sched_feat(WA_IDLE))
7412 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7413 
7414 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7415 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7416 
7417 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7418 	if (target != this_cpu)
7419 		return prev_cpu;
7420 
7421 	schedstat_inc(sd->ttwu_move_affine);
7422 	schedstat_inc(p->stats.nr_wakeups_affine);
7423 	return target;
7424 }
7425 
7426 static struct sched_group *
7427 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7428 
7429 /*
7430  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7431  */
7432 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7433 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7434 {
7435 	unsigned long load, min_load = ULONG_MAX;
7436 	unsigned int min_exit_latency = UINT_MAX;
7437 	u64 latest_idle_timestamp = 0;
7438 	int least_loaded_cpu = this_cpu;
7439 	int shallowest_idle_cpu = -1;
7440 	int i;
7441 
7442 	/* Check if we have any choice: */
7443 	if (group->group_weight == 1)
7444 		return cpumask_first(sched_group_span(group));
7445 
7446 	/* Traverse only the allowed CPUs */
7447 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7448 		struct rq *rq = cpu_rq(i);
7449 
7450 		if (!sched_core_cookie_match(rq, p))
7451 			continue;
7452 
7453 		if (sched_idle_cpu(i))
7454 			return i;
7455 
7456 		if (available_idle_cpu(i)) {
7457 			struct cpuidle_state *idle = idle_get_state(rq);
7458 			if (idle && idle->exit_latency < min_exit_latency) {
7459 				/*
7460 				 * We give priority to a CPU whose idle state
7461 				 * has the smallest exit latency irrespective
7462 				 * of any idle timestamp.
7463 				 */
7464 				min_exit_latency = idle->exit_latency;
7465 				latest_idle_timestamp = rq->idle_stamp;
7466 				shallowest_idle_cpu = i;
7467 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7468 				   rq->idle_stamp > latest_idle_timestamp) {
7469 				/*
7470 				 * If equal or no active idle state, then
7471 				 * the most recently idled CPU might have
7472 				 * a warmer cache.
7473 				 */
7474 				latest_idle_timestamp = rq->idle_stamp;
7475 				shallowest_idle_cpu = i;
7476 			}
7477 		} else if (shallowest_idle_cpu == -1) {
7478 			load = cpu_load(cpu_rq(i));
7479 			if (load < min_load) {
7480 				min_load = load;
7481 				least_loaded_cpu = i;
7482 			}
7483 		}
7484 	}
7485 
7486 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7487 }
7488 
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7489 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7490 				  int cpu, int prev_cpu, int sd_flag)
7491 {
7492 	int new_cpu = cpu;
7493 
7494 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7495 		return prev_cpu;
7496 
7497 	/*
7498 	 * We need task's util for cpu_util_without, sync it up to
7499 	 * prev_cpu's last_update_time.
7500 	 */
7501 	if (!(sd_flag & SD_BALANCE_FORK))
7502 		sync_entity_load_avg(&p->se);
7503 
7504 	while (sd) {
7505 		struct sched_group *group;
7506 		struct sched_domain *tmp;
7507 		int weight;
7508 
7509 		if (!(sd->flags & sd_flag)) {
7510 			sd = sd->child;
7511 			continue;
7512 		}
7513 
7514 		group = sched_balance_find_dst_group(sd, p, cpu);
7515 		if (!group) {
7516 			sd = sd->child;
7517 			continue;
7518 		}
7519 
7520 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7521 		if (new_cpu == cpu) {
7522 			/* Now try balancing at a lower domain level of 'cpu': */
7523 			sd = sd->child;
7524 			continue;
7525 		}
7526 
7527 		/* Now try balancing at a lower domain level of 'new_cpu': */
7528 		cpu = new_cpu;
7529 		weight = sd->span_weight;
7530 		sd = NULL;
7531 		for_each_domain(cpu, tmp) {
7532 			if (weight <= tmp->span_weight)
7533 				break;
7534 			if (tmp->flags & sd_flag)
7535 				sd = tmp;
7536 		}
7537 	}
7538 
7539 	return new_cpu;
7540 }
7541 
__select_idle_cpu(int cpu,struct task_struct * p)7542 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7543 {
7544 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7545 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7546 		return cpu;
7547 
7548 	return -1;
7549 }
7550 
7551 #ifdef CONFIG_SCHED_SMT
7552 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7553 EXPORT_SYMBOL_GPL(sched_smt_present);
7554 
set_idle_cores(int cpu,int val)7555 static inline void set_idle_cores(int cpu, int val)
7556 {
7557 	struct sched_domain_shared *sds;
7558 
7559 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7560 	if (sds)
7561 		WRITE_ONCE(sds->has_idle_cores, val);
7562 }
7563 
test_idle_cores(int cpu)7564 static inline bool test_idle_cores(int cpu)
7565 {
7566 	struct sched_domain_shared *sds;
7567 
7568 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7569 	if (sds)
7570 		return READ_ONCE(sds->has_idle_cores);
7571 
7572 	return false;
7573 }
7574 
7575 /*
7576  * Scans the local SMT mask to see if the entire core is idle, and records this
7577  * information in sd_llc_shared->has_idle_cores.
7578  *
7579  * Since SMT siblings share all cache levels, inspecting this limited remote
7580  * state should be fairly cheap.
7581  */
__update_idle_core(struct rq * rq)7582 void __update_idle_core(struct rq *rq)
7583 {
7584 	int core = cpu_of(rq);
7585 	int cpu;
7586 
7587 	rcu_read_lock();
7588 	if (test_idle_cores(core))
7589 		goto unlock;
7590 
7591 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7592 		if (cpu == core)
7593 			continue;
7594 
7595 		if (!available_idle_cpu(cpu))
7596 			goto unlock;
7597 	}
7598 
7599 	set_idle_cores(core, 1);
7600 unlock:
7601 	rcu_read_unlock();
7602 }
7603 
7604 /*
7605  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7606  * there are no idle cores left in the system; tracked through
7607  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7608  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7609 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7610 {
7611 	bool idle = true;
7612 	int cpu;
7613 
7614 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7615 		if (!available_idle_cpu(cpu)) {
7616 			idle = false;
7617 			if (*idle_cpu == -1) {
7618 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7619 					*idle_cpu = cpu;
7620 					break;
7621 				}
7622 				continue;
7623 			}
7624 			break;
7625 		}
7626 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7627 			*idle_cpu = cpu;
7628 	}
7629 
7630 	if (idle)
7631 		return core;
7632 
7633 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7634 	return -1;
7635 }
7636 
7637 /*
7638  * Scan the local SMT mask for idle CPUs.
7639  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7640 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7641 {
7642 	int cpu;
7643 
7644 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7645 		if (cpu == target)
7646 			continue;
7647 		/*
7648 		 * Check if the CPU is in the LLC scheduling domain of @target.
7649 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7650 		 */
7651 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7652 			continue;
7653 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7654 			return cpu;
7655 	}
7656 
7657 	return -1;
7658 }
7659 
7660 #else /* !CONFIG_SCHED_SMT: */
7661 
set_idle_cores(int cpu,int val)7662 static inline void set_idle_cores(int cpu, int val)
7663 {
7664 }
7665 
test_idle_cores(int cpu)7666 static inline bool test_idle_cores(int cpu)
7667 {
7668 	return false;
7669 }
7670 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7671 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7672 {
7673 	return __select_idle_cpu(core, p);
7674 }
7675 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7676 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7677 {
7678 	return -1;
7679 }
7680 
7681 #endif /* !CONFIG_SCHED_SMT */
7682 
7683 /*
7684  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7685  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7686  * average idle time for this rq (as found in rq->avg_idle).
7687  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7688 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7689 {
7690 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7691 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7692 	struct sched_domain_shared *sd_share;
7693 
7694 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7695 
7696 	if (sched_feat(SIS_UTIL)) {
7697 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7698 		if (sd_share) {
7699 			/* because !--nr is the condition to stop scan */
7700 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7701 			/* overloaded LLC is unlikely to have idle cpu/core */
7702 			if (nr == 1)
7703 				return -1;
7704 		}
7705 	}
7706 
7707 	if (static_branch_unlikely(&sched_cluster_active)) {
7708 		struct sched_group *sg = sd->groups;
7709 
7710 		if (sg->flags & SD_CLUSTER) {
7711 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7712 				if (!cpumask_test_cpu(cpu, cpus))
7713 					continue;
7714 
7715 				if (has_idle_core) {
7716 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7717 					if ((unsigned int)i < nr_cpumask_bits)
7718 						return i;
7719 				} else {
7720 					if (--nr <= 0)
7721 						return -1;
7722 					idle_cpu = __select_idle_cpu(cpu, p);
7723 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7724 						return idle_cpu;
7725 				}
7726 			}
7727 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7728 		}
7729 	}
7730 
7731 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7732 		if (has_idle_core) {
7733 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7734 			if ((unsigned int)i < nr_cpumask_bits)
7735 				return i;
7736 
7737 		} else {
7738 			if (--nr <= 0)
7739 				return -1;
7740 			idle_cpu = __select_idle_cpu(cpu, p);
7741 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7742 				break;
7743 		}
7744 	}
7745 
7746 	if (has_idle_core)
7747 		set_idle_cores(target, false);
7748 
7749 	return idle_cpu;
7750 }
7751 
7752 /*
7753  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7754  * the task fits. If no CPU is big enough, but there are idle ones, try to
7755  * maximize capacity.
7756  */
7757 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7758 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7759 {
7760 	unsigned long task_util, util_min, util_max, best_cap = 0;
7761 	int fits, best_fits = 0;
7762 	int cpu, best_cpu = -1;
7763 	struct cpumask *cpus;
7764 
7765 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7766 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7767 
7768 	task_util = task_util_est(p);
7769 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7770 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7771 
7772 	for_each_cpu_wrap(cpu, cpus, target) {
7773 		unsigned long cpu_cap = capacity_of(cpu);
7774 
7775 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7776 			continue;
7777 
7778 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7779 
7780 		/* This CPU fits with all requirements */
7781 		if (fits > 0)
7782 			return cpu;
7783 		/*
7784 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7785 		 * Look for the CPU with best capacity.
7786 		 */
7787 		else if (fits < 0)
7788 			cpu_cap = get_actual_cpu_capacity(cpu);
7789 
7790 		/*
7791 		 * First, select CPU which fits better (-1 being better than 0).
7792 		 * Then, select the one with best capacity at same level.
7793 		 */
7794 		if ((fits < best_fits) ||
7795 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7796 			best_cap = cpu_cap;
7797 			best_cpu = cpu;
7798 			best_fits = fits;
7799 		}
7800 	}
7801 
7802 	return best_cpu;
7803 }
7804 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7805 static inline bool asym_fits_cpu(unsigned long util,
7806 				 unsigned long util_min,
7807 				 unsigned long util_max,
7808 				 int cpu)
7809 {
7810 	if (sched_asym_cpucap_active())
7811 		/*
7812 		 * Return true only if the cpu fully fits the task requirements
7813 		 * which include the utilization and the performance hints.
7814 		 */
7815 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7816 
7817 	return true;
7818 }
7819 
7820 /*
7821  * Try and locate an idle core/thread in the LLC cache domain.
7822  */
select_idle_sibling(struct task_struct * p,int prev,int target)7823 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7824 {
7825 	bool has_idle_core = false;
7826 	struct sched_domain *sd;
7827 	unsigned long task_util, util_min, util_max;
7828 	int i, recent_used_cpu, prev_aff = -1;
7829 
7830 	/*
7831 	 * On asymmetric system, update task utilization because we will check
7832 	 * that the task fits with CPU's capacity.
7833 	 */
7834 	if (sched_asym_cpucap_active()) {
7835 		sync_entity_load_avg(&p->se);
7836 		task_util = task_util_est(p);
7837 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7838 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7839 	}
7840 
7841 	/*
7842 	 * per-cpu select_rq_mask usage
7843 	 */
7844 	lockdep_assert_irqs_disabled();
7845 
7846 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7847 	    asym_fits_cpu(task_util, util_min, util_max, target))
7848 		return target;
7849 
7850 	/*
7851 	 * If the previous CPU is cache affine and idle, don't be stupid:
7852 	 */
7853 	if (prev != target && cpus_share_cache(prev, target) &&
7854 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7855 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7856 
7857 		if (!static_branch_unlikely(&sched_cluster_active) ||
7858 		    cpus_share_resources(prev, target))
7859 			return prev;
7860 
7861 		prev_aff = prev;
7862 	}
7863 
7864 	/*
7865 	 * Allow a per-cpu kthread to stack with the wakee if the
7866 	 * kworker thread and the tasks previous CPUs are the same.
7867 	 * The assumption is that the wakee queued work for the
7868 	 * per-cpu kthread that is now complete and the wakeup is
7869 	 * essentially a sync wakeup. An obvious example of this
7870 	 * pattern is IO completions.
7871 	 */
7872 	if (is_per_cpu_kthread(current) &&
7873 	    in_task() &&
7874 	    prev == smp_processor_id() &&
7875 	    this_rq()->nr_running <= 1 &&
7876 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7877 		return prev;
7878 	}
7879 
7880 	/* Check a recently used CPU as a potential idle candidate: */
7881 	recent_used_cpu = p->recent_used_cpu;
7882 	p->recent_used_cpu = prev;
7883 	if (recent_used_cpu != prev &&
7884 	    recent_used_cpu != target &&
7885 	    cpus_share_cache(recent_used_cpu, target) &&
7886 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7887 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7888 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7889 
7890 		if (!static_branch_unlikely(&sched_cluster_active) ||
7891 		    cpus_share_resources(recent_used_cpu, target))
7892 			return recent_used_cpu;
7893 
7894 	} else {
7895 		recent_used_cpu = -1;
7896 	}
7897 
7898 	/*
7899 	 * For asymmetric CPU capacity systems, our domain of interest is
7900 	 * sd_asym_cpucapacity rather than sd_llc.
7901 	 */
7902 	if (sched_asym_cpucap_active()) {
7903 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7904 		/*
7905 		 * On an asymmetric CPU capacity system where an exclusive
7906 		 * cpuset defines a symmetric island (i.e. one unique
7907 		 * capacity_orig value through the cpuset), the key will be set
7908 		 * but the CPUs within that cpuset will not have a domain with
7909 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7910 		 * capacity path.
7911 		 */
7912 		if (sd) {
7913 			i = select_idle_capacity(p, sd, target);
7914 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7915 		}
7916 	}
7917 
7918 	sd = rcu_dereference(per_cpu(sd_llc, target));
7919 	if (!sd)
7920 		return target;
7921 
7922 	if (sched_smt_active()) {
7923 		has_idle_core = test_idle_cores(target);
7924 
7925 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7926 			i = select_idle_smt(p, sd, prev);
7927 			if ((unsigned int)i < nr_cpumask_bits)
7928 				return i;
7929 		}
7930 	}
7931 
7932 	i = select_idle_cpu(p, sd, has_idle_core, target);
7933 	if ((unsigned)i < nr_cpumask_bits)
7934 		return i;
7935 
7936 	/*
7937 	 * For cluster machines which have lower sharing cache like L2 or
7938 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7939 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7940 	 * use them if possible when no idle CPU found in select_idle_cpu().
7941 	 */
7942 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7943 		return prev_aff;
7944 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7945 		return recent_used_cpu;
7946 
7947 	return target;
7948 }
7949 
7950 /**
7951  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7952  * @cpu: the CPU to get the utilization for
7953  * @p: task for which the CPU utilization should be predicted or NULL
7954  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7955  * @boost: 1 to enable boosting, otherwise 0
7956  *
7957  * The unit of the return value must be the same as the one of CPU capacity
7958  * so that CPU utilization can be compared with CPU capacity.
7959  *
7960  * CPU utilization is the sum of running time of runnable tasks plus the
7961  * recent utilization of currently non-runnable tasks on that CPU.
7962  * It represents the amount of CPU capacity currently used by CFS tasks in
7963  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7964  * capacity at f_max.
7965  *
7966  * The estimated CPU utilization is defined as the maximum between CPU
7967  * utilization and sum of the estimated utilization of the currently
7968  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7969  * previously-executed tasks, which helps better deduce how busy a CPU will
7970  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7971  * of such a task would be significantly decayed at this point of time.
7972  *
7973  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7974  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7975  * utilization. Boosting is implemented in cpu_util() so that internal
7976  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7977  * latter via cpu_util_cfs_boost().
7978  *
7979  * CPU utilization can be higher than the current CPU capacity
7980  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7981  * of rounding errors as well as task migrations or wakeups of new tasks.
7982  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7983  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7984  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7985  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7986  * though since this is useful for predicting the CPU capacity required
7987  * after task migrations (scheduler-driven DVFS).
7988  *
7989  * Return: (Boosted) (estimated) utilization for the specified CPU.
7990  */
7991 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7992 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7993 {
7994 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7995 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7996 	unsigned long runnable;
7997 
7998 	if (boost) {
7999 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8000 		util = max(util, runnable);
8001 	}
8002 
8003 	/*
8004 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8005 	 * contribution. If @p migrates from another CPU to @cpu add its
8006 	 * contribution. In all the other cases @cpu is not impacted by the
8007 	 * migration so its util_avg is already correct.
8008 	 */
8009 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8010 		lsub_positive(&util, task_util(p));
8011 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8012 		util += task_util(p);
8013 
8014 	if (sched_feat(UTIL_EST)) {
8015 		unsigned long util_est;
8016 
8017 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8018 
8019 		/*
8020 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8021 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8022 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8023 		 * has been enqueued.
8024 		 *
8025 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8026 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8027 		 * Remove it to "simulate" cpu_util without @p's contribution.
8028 		 *
8029 		 * Despite the task_on_rq_queued(@p) check there is still a
8030 		 * small window for a possible race when an exec
8031 		 * select_task_rq_fair() races with LB's detach_task().
8032 		 *
8033 		 *   detach_task()
8034 		 *     deactivate_task()
8035 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8036 		 *       -------------------------------- A
8037 		 *       dequeue_task()                    \
8038 		 *         dequeue_task_fair()              + Race Time
8039 		 *           util_est_dequeue()            /
8040 		 *       -------------------------------- B
8041 		 *
8042 		 * The additional check "current == p" is required to further
8043 		 * reduce the race window.
8044 		 */
8045 		if (dst_cpu == cpu)
8046 			util_est += _task_util_est(p);
8047 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8048 			lsub_positive(&util_est, _task_util_est(p));
8049 
8050 		util = max(util, util_est);
8051 	}
8052 
8053 	return min(util, arch_scale_cpu_capacity(cpu));
8054 }
8055 
cpu_util_cfs(int cpu)8056 unsigned long cpu_util_cfs(int cpu)
8057 {
8058 	return cpu_util(cpu, NULL, -1, 0);
8059 }
8060 
cpu_util_cfs_boost(int cpu)8061 unsigned long cpu_util_cfs_boost(int cpu)
8062 {
8063 	return cpu_util(cpu, NULL, -1, 1);
8064 }
8065 
8066 /*
8067  * cpu_util_without: compute cpu utilization without any contributions from *p
8068  * @cpu: the CPU which utilization is requested
8069  * @p: the task which utilization should be discounted
8070  *
8071  * The utilization of a CPU is defined by the utilization of tasks currently
8072  * enqueued on that CPU as well as tasks which are currently sleeping after an
8073  * execution on that CPU.
8074  *
8075  * This method returns the utilization of the specified CPU by discounting the
8076  * utilization of the specified task, whenever the task is currently
8077  * contributing to the CPU utilization.
8078  */
cpu_util_without(int cpu,struct task_struct * p)8079 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8080 {
8081 	/* Task has no contribution or is new */
8082 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8083 		p = NULL;
8084 
8085 	return cpu_util(cpu, p, -1, 0);
8086 }
8087 
8088 /*
8089  * This function computes an effective utilization for the given CPU, to be
8090  * used for frequency selection given the linear relation: f = u * f_max.
8091  *
8092  * The scheduler tracks the following metrics:
8093  *
8094  *   cpu_util_{cfs,rt,dl,irq}()
8095  *   cpu_bw_dl()
8096  *
8097  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8098  * synchronized windows and are thus directly comparable.
8099  *
8100  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8101  * which excludes things like IRQ and steal-time. These latter are then accrued
8102  * in the IRQ utilization.
8103  *
8104  * The DL bandwidth number OTOH is not a measured metric but a value computed
8105  * based on the task model parameters and gives the minimal utilization
8106  * required to meet deadlines.
8107  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8108 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8109 				 unsigned long *min,
8110 				 unsigned long *max)
8111 {
8112 	unsigned long util, irq, scale;
8113 	struct rq *rq = cpu_rq(cpu);
8114 
8115 	scale = arch_scale_cpu_capacity(cpu);
8116 
8117 	/*
8118 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8119 	 * because of inaccuracies in how we track these -- see
8120 	 * update_irq_load_avg().
8121 	 */
8122 	irq = cpu_util_irq(rq);
8123 	if (unlikely(irq >= scale)) {
8124 		if (min)
8125 			*min = scale;
8126 		if (max)
8127 			*max = scale;
8128 		return scale;
8129 	}
8130 
8131 	if (min) {
8132 		/*
8133 		 * The minimum utilization returns the highest level between:
8134 		 * - the computed DL bandwidth needed with the IRQ pressure which
8135 		 *   steals time to the deadline task.
8136 		 * - The minimum performance requirement for CFS and/or RT.
8137 		 */
8138 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8139 
8140 		/*
8141 		 * When an RT task is runnable and uclamp is not used, we must
8142 		 * ensure that the task will run at maximum compute capacity.
8143 		 */
8144 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8145 			*min = max(*min, scale);
8146 	}
8147 
8148 	/*
8149 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8150 	 * CFS tasks and we use the same metric to track the effective
8151 	 * utilization (PELT windows are synchronized) we can directly add them
8152 	 * to obtain the CPU's actual utilization.
8153 	 */
8154 	util = util_cfs + cpu_util_rt(rq);
8155 	util += cpu_util_dl(rq);
8156 
8157 	/*
8158 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8159 	 * than the actual utilization because of uclamp_max requirements.
8160 	 */
8161 	if (max)
8162 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8163 
8164 	if (util >= scale)
8165 		return scale;
8166 
8167 	/*
8168 	 * There is still idle time; further improve the number by using the
8169 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8170 	 * need to scale the task numbers:
8171 	 *
8172 	 *              max - irq
8173 	 *   U' = irq + --------- * U
8174 	 *                 max
8175 	 */
8176 	util = scale_irq_capacity(util, irq, scale);
8177 	util += irq;
8178 
8179 	return min(scale, util);
8180 }
8181 
sched_cpu_util(int cpu)8182 unsigned long sched_cpu_util(int cpu)
8183 {
8184 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8185 }
8186 
8187 /*
8188  * energy_env - Utilization landscape for energy estimation.
8189  * @task_busy_time: Utilization contribution by the task for which we test the
8190  *                  placement. Given by eenv_task_busy_time().
8191  * @pd_busy_time:   Utilization of the whole perf domain without the task
8192  *                  contribution. Given by eenv_pd_busy_time().
8193  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8194  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8195  */
8196 struct energy_env {
8197 	unsigned long task_busy_time;
8198 	unsigned long pd_busy_time;
8199 	unsigned long cpu_cap;
8200 	unsigned long pd_cap;
8201 };
8202 
8203 /*
8204  * Compute the task busy time for compute_energy(). This time cannot be
8205  * injected directly into effective_cpu_util() because of the IRQ scaling.
8206  * The latter only makes sense with the most recent CPUs where the task has
8207  * run.
8208  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8209 static inline void eenv_task_busy_time(struct energy_env *eenv,
8210 				       struct task_struct *p, int prev_cpu)
8211 {
8212 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8213 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8214 
8215 	if (unlikely(irq >= max_cap))
8216 		busy_time = max_cap;
8217 	else
8218 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8219 
8220 	eenv->task_busy_time = busy_time;
8221 }
8222 
8223 /*
8224  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8225  * utilization for each @pd_cpus, it however doesn't take into account
8226  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8227  * scale the EM reported power consumption at the (eventually clamped)
8228  * cpu_capacity.
8229  *
8230  * The contribution of the task @p for which we want to estimate the
8231  * energy cost is removed (by cpu_util()) and must be calculated
8232  * separately (see eenv_task_busy_time). This ensures:
8233  *
8234  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8235  *     the task on.
8236  *
8237  *   - A fair comparison between CPUs as the task contribution (task_util())
8238  *     will always be the same no matter which CPU utilization we rely on
8239  *     (util_avg or util_est).
8240  *
8241  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8242  * exceed @eenv->pd_cap.
8243  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8244 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8245 				     struct cpumask *pd_cpus,
8246 				     struct task_struct *p)
8247 {
8248 	unsigned long busy_time = 0;
8249 	int cpu;
8250 
8251 	for_each_cpu(cpu, pd_cpus) {
8252 		unsigned long util = cpu_util(cpu, p, -1, 0);
8253 
8254 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8255 	}
8256 
8257 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8258 }
8259 
8260 /*
8261  * Compute the maximum utilization for compute_energy() when the task @p
8262  * is placed on the cpu @dst_cpu.
8263  *
8264  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8265  * exceed @eenv->cpu_cap.
8266  */
8267 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8268 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8269 		 struct task_struct *p, int dst_cpu)
8270 {
8271 	unsigned long max_util = 0;
8272 	int cpu;
8273 
8274 	for_each_cpu(cpu, pd_cpus) {
8275 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8276 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8277 		unsigned long eff_util, min, max;
8278 
8279 		/*
8280 		 * Performance domain frequency: utilization clamping
8281 		 * must be considered since it affects the selection
8282 		 * of the performance domain frequency.
8283 		 * NOTE: in case RT tasks are running, by default the min
8284 		 * utilization can be max OPP.
8285 		 */
8286 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8287 
8288 		/* Task's uclamp can modify min and max value */
8289 		if (tsk && uclamp_is_used()) {
8290 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8291 
8292 			/*
8293 			 * If there is no active max uclamp constraint,
8294 			 * directly use task's one, otherwise keep max.
8295 			 */
8296 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8297 				max = uclamp_eff_value(p, UCLAMP_MAX);
8298 			else
8299 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8300 		}
8301 
8302 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8303 		max_util = max(max_util, eff_util);
8304 	}
8305 
8306 	return min(max_util, eenv->cpu_cap);
8307 }
8308 
8309 /*
8310  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8311  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8312  * contribution is ignored.
8313  */
8314 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8315 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8316 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8317 {
8318 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8319 	unsigned long busy_time = eenv->pd_busy_time;
8320 	unsigned long energy;
8321 
8322 	if (dst_cpu >= 0)
8323 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8324 
8325 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8326 
8327 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8328 
8329 	return energy;
8330 }
8331 
8332 /*
8333  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8334  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8335  * spare capacity in each performance domain and uses it as a potential
8336  * candidate to execute the task. Then, it uses the Energy Model to figure
8337  * out which of the CPU candidates is the most energy-efficient.
8338  *
8339  * The rationale for this heuristic is as follows. In a performance domain,
8340  * all the most energy efficient CPU candidates (according to the Energy
8341  * Model) are those for which we'll request a low frequency. When there are
8342  * several CPUs for which the frequency request will be the same, we don't
8343  * have enough data to break the tie between them, because the Energy Model
8344  * only includes active power costs. With this model, if we assume that
8345  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8346  * the maximum spare capacity in a performance domain is guaranteed to be among
8347  * the best candidates of the performance domain.
8348  *
8349  * In practice, it could be preferable from an energy standpoint to pack
8350  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8351  * but that could also hurt our chances to go cluster idle, and we have no
8352  * ways to tell with the current Energy Model if this is actually a good
8353  * idea or not. So, find_energy_efficient_cpu() basically favors
8354  * cluster-packing, and spreading inside a cluster. That should at least be
8355  * a good thing for latency, and this is consistent with the idea that most
8356  * of the energy savings of EAS come from the asymmetry of the system, and
8357  * not so much from breaking the tie between identical CPUs. That's also the
8358  * reason why EAS is enabled in the topology code only for systems where
8359  * SD_ASYM_CPUCAPACITY is set.
8360  *
8361  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8362  * they don't have any useful utilization data yet and it's not possible to
8363  * forecast their impact on energy consumption. Consequently, they will be
8364  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8365  * to be energy-inefficient in some use-cases. The alternative would be to
8366  * bias new tasks towards specific types of CPUs first, or to try to infer
8367  * their util_avg from the parent task, but those heuristics could hurt
8368  * other use-cases too. So, until someone finds a better way to solve this,
8369  * let's keep things simple by re-using the existing slow path.
8370  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8371 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8372 {
8373 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8374 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8375 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8376 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8377 	struct root_domain *rd = this_rq()->rd;
8378 	int cpu, best_energy_cpu, target = -1;
8379 	int prev_fits = -1, best_fits = -1;
8380 	unsigned long best_actual_cap = 0;
8381 	unsigned long prev_actual_cap = 0;
8382 	struct sched_domain *sd;
8383 	struct perf_domain *pd;
8384 	struct energy_env eenv;
8385 
8386 	rcu_read_lock();
8387 	pd = rcu_dereference(rd->pd);
8388 	if (!pd)
8389 		goto unlock;
8390 
8391 	/*
8392 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8393 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8394 	 */
8395 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8396 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8397 		sd = sd->parent;
8398 	if (!sd)
8399 		goto unlock;
8400 
8401 	target = prev_cpu;
8402 
8403 	sync_entity_load_avg(&p->se);
8404 	if (!task_util_est(p) && p_util_min == 0)
8405 		goto unlock;
8406 
8407 	eenv_task_busy_time(&eenv, p, prev_cpu);
8408 
8409 	for (; pd; pd = pd->next) {
8410 		unsigned long util_min = p_util_min, util_max = p_util_max;
8411 		unsigned long cpu_cap, cpu_actual_cap, util;
8412 		long prev_spare_cap = -1, max_spare_cap = -1;
8413 		unsigned long rq_util_min, rq_util_max;
8414 		unsigned long cur_delta, base_energy;
8415 		int max_spare_cap_cpu = -1;
8416 		int fits, max_fits = -1;
8417 
8418 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8419 
8420 		if (cpumask_empty(cpus))
8421 			continue;
8422 
8423 		/* Account external pressure for the energy estimation */
8424 		cpu = cpumask_first(cpus);
8425 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8426 
8427 		eenv.cpu_cap = cpu_actual_cap;
8428 		eenv.pd_cap = 0;
8429 
8430 		for_each_cpu(cpu, cpus) {
8431 			struct rq *rq = cpu_rq(cpu);
8432 
8433 			eenv.pd_cap += cpu_actual_cap;
8434 
8435 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8436 				continue;
8437 
8438 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8439 				continue;
8440 
8441 			util = cpu_util(cpu, p, cpu, 0);
8442 			cpu_cap = capacity_of(cpu);
8443 
8444 			/*
8445 			 * Skip CPUs that cannot satisfy the capacity request.
8446 			 * IOW, placing the task there would make the CPU
8447 			 * overutilized. Take uclamp into account to see how
8448 			 * much capacity we can get out of the CPU; this is
8449 			 * aligned with sched_cpu_util().
8450 			 */
8451 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8452 				/*
8453 				 * Open code uclamp_rq_util_with() except for
8454 				 * the clamp() part. I.e.: apply max aggregation
8455 				 * only. util_fits_cpu() logic requires to
8456 				 * operate on non clamped util but must use the
8457 				 * max-aggregated uclamp_{min, max}.
8458 				 */
8459 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8460 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8461 
8462 				util_min = max(rq_util_min, p_util_min);
8463 				util_max = max(rq_util_max, p_util_max);
8464 			}
8465 
8466 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8467 			if (!fits)
8468 				continue;
8469 
8470 			lsub_positive(&cpu_cap, util);
8471 
8472 			if (cpu == prev_cpu) {
8473 				/* Always use prev_cpu as a candidate. */
8474 				prev_spare_cap = cpu_cap;
8475 				prev_fits = fits;
8476 			} else if ((fits > max_fits) ||
8477 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8478 				/*
8479 				 * Find the CPU with the maximum spare capacity
8480 				 * among the remaining CPUs in the performance
8481 				 * domain.
8482 				 */
8483 				max_spare_cap = cpu_cap;
8484 				max_spare_cap_cpu = cpu;
8485 				max_fits = fits;
8486 			}
8487 		}
8488 
8489 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8490 			continue;
8491 
8492 		eenv_pd_busy_time(&eenv, cpus, p);
8493 		/* Compute the 'base' energy of the pd, without @p */
8494 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8495 
8496 		/* Evaluate the energy impact of using prev_cpu. */
8497 		if (prev_spare_cap > -1) {
8498 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8499 						    prev_cpu);
8500 			/* CPU utilization has changed */
8501 			if (prev_delta < base_energy)
8502 				goto unlock;
8503 			prev_delta -= base_energy;
8504 			prev_actual_cap = cpu_actual_cap;
8505 			best_delta = min(best_delta, prev_delta);
8506 		}
8507 
8508 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8509 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8510 			/* Current best energy cpu fits better */
8511 			if (max_fits < best_fits)
8512 				continue;
8513 
8514 			/*
8515 			 * Both don't fit performance hint (i.e. uclamp_min)
8516 			 * but best energy cpu has better capacity.
8517 			 */
8518 			if ((max_fits < 0) &&
8519 			    (cpu_actual_cap <= best_actual_cap))
8520 				continue;
8521 
8522 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8523 						   max_spare_cap_cpu);
8524 			/* CPU utilization has changed */
8525 			if (cur_delta < base_energy)
8526 				goto unlock;
8527 			cur_delta -= base_energy;
8528 
8529 			/*
8530 			 * Both fit for the task but best energy cpu has lower
8531 			 * energy impact.
8532 			 */
8533 			if ((max_fits > 0) && (best_fits > 0) &&
8534 			    (cur_delta >= best_delta))
8535 				continue;
8536 
8537 			best_delta = cur_delta;
8538 			best_energy_cpu = max_spare_cap_cpu;
8539 			best_fits = max_fits;
8540 			best_actual_cap = cpu_actual_cap;
8541 		}
8542 	}
8543 	rcu_read_unlock();
8544 
8545 	if ((best_fits > prev_fits) ||
8546 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8547 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8548 		target = best_energy_cpu;
8549 
8550 	return target;
8551 
8552 unlock:
8553 	rcu_read_unlock();
8554 
8555 	return target;
8556 }
8557 
8558 /*
8559  * select_task_rq_fair: Select target runqueue for the waking task in domains
8560  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8561  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8562  *
8563  * Balances load by selecting the idlest CPU in the idlest group, or under
8564  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8565  *
8566  * Returns the target CPU number.
8567  */
8568 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8569 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8570 {
8571 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8572 	struct sched_domain *tmp, *sd = NULL;
8573 	int cpu = smp_processor_id();
8574 	int new_cpu = prev_cpu;
8575 	int want_affine = 0;
8576 	/* SD_flags and WF_flags share the first nibble */
8577 	int sd_flag = wake_flags & 0xF;
8578 
8579 	/*
8580 	 * required for stable ->cpus_allowed
8581 	 */
8582 	lockdep_assert_held(&p->pi_lock);
8583 	if (wake_flags & WF_TTWU) {
8584 		record_wakee(p);
8585 
8586 		if ((wake_flags & WF_CURRENT_CPU) &&
8587 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8588 			return cpu;
8589 
8590 		if (!is_rd_overutilized(this_rq()->rd)) {
8591 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8592 			if (new_cpu >= 0)
8593 				return new_cpu;
8594 			new_cpu = prev_cpu;
8595 		}
8596 
8597 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8598 	}
8599 
8600 	rcu_read_lock();
8601 	for_each_domain(cpu, tmp) {
8602 		/*
8603 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8604 		 * cpu is a valid SD_WAKE_AFFINE target.
8605 		 */
8606 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8607 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8608 			if (cpu != prev_cpu)
8609 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8610 
8611 			sd = NULL; /* Prefer wake_affine over balance flags */
8612 			break;
8613 		}
8614 
8615 		/*
8616 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8617 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8618 		 * will usually go to the fast path.
8619 		 */
8620 		if (tmp->flags & sd_flag)
8621 			sd = tmp;
8622 		else if (!want_affine)
8623 			break;
8624 	}
8625 
8626 	if (unlikely(sd)) {
8627 		/* Slow path */
8628 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8629 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8630 		/* Fast path */
8631 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8632 	}
8633 	rcu_read_unlock();
8634 
8635 	return new_cpu;
8636 }
8637 
8638 /*
8639  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8640  * cfs_rq_of(p) references at time of call are still valid and identify the
8641  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8642  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8643 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8644 {
8645 	struct sched_entity *se = &p->se;
8646 
8647 	if (!task_on_rq_migrating(p)) {
8648 		remove_entity_load_avg(se);
8649 
8650 		/*
8651 		 * Here, the task's PELT values have been updated according to
8652 		 * the current rq's clock. But if that clock hasn't been
8653 		 * updated in a while, a substantial idle time will be missed,
8654 		 * leading to an inflation after wake-up on the new rq.
8655 		 *
8656 		 * Estimate the missing time from the cfs_rq last_update_time
8657 		 * and update sched_avg to improve the PELT continuity after
8658 		 * migration.
8659 		 */
8660 		migrate_se_pelt_lag(se);
8661 	}
8662 
8663 	/* Tell new CPU we are migrated */
8664 	se->avg.last_update_time = 0;
8665 
8666 	update_scan_period(p, new_cpu);
8667 }
8668 
task_dead_fair(struct task_struct * p)8669 static void task_dead_fair(struct task_struct *p)
8670 {
8671 	struct sched_entity *se = &p->se;
8672 
8673 	if (se->sched_delayed) {
8674 		struct rq_flags rf;
8675 		struct rq *rq;
8676 
8677 		rq = task_rq_lock(p, &rf);
8678 		if (se->sched_delayed) {
8679 			update_rq_clock(rq);
8680 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8681 		}
8682 		task_rq_unlock(rq, p, &rf);
8683 	}
8684 
8685 	remove_entity_load_avg(se);
8686 }
8687 
8688 /*
8689  * Set the max capacity the task is allowed to run at for misfit detection.
8690  */
set_task_max_allowed_capacity(struct task_struct * p)8691 static void set_task_max_allowed_capacity(struct task_struct *p)
8692 {
8693 	struct asym_cap_data *entry;
8694 
8695 	if (!sched_asym_cpucap_active())
8696 		return;
8697 
8698 	rcu_read_lock();
8699 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8700 		cpumask_t *cpumask;
8701 
8702 		cpumask = cpu_capacity_span(entry);
8703 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8704 			continue;
8705 
8706 		p->max_allowed_capacity = entry->capacity;
8707 		break;
8708 	}
8709 	rcu_read_unlock();
8710 }
8711 
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8712 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8713 {
8714 	set_cpus_allowed_common(p, ctx);
8715 	set_task_max_allowed_capacity(p);
8716 }
8717 
8718 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8719 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8720 {
8721 	if (sched_fair_runnable(rq))
8722 		return 1;
8723 
8724 	return sched_balance_newidle(rq, rf) != 0;
8725 }
8726 
set_next_buddy(struct sched_entity * se)8727 static void set_next_buddy(struct sched_entity *se)
8728 {
8729 	for_each_sched_entity(se) {
8730 		if (WARN_ON_ONCE(!se->on_rq))
8731 			return;
8732 		if (se_is_idle(se))
8733 			return;
8734 		cfs_rq_of(se)->next = se;
8735 	}
8736 }
8737 
8738 /*
8739  * Preempt the current task with a newly woken task if needed:
8740  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8741 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8742 {
8743 	struct task_struct *donor = rq->donor;
8744 	struct sched_entity *se = &donor->se, *pse = &p->se;
8745 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8746 	int cse_is_idle, pse_is_idle;
8747 	bool do_preempt_short = false;
8748 
8749 	if (unlikely(se == pse))
8750 		return;
8751 
8752 	/*
8753 	 * This is possible from callers such as attach_tasks(), in which we
8754 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8755 	 * lead to a throttle).  This both saves work and prevents false
8756 	 * next-buddy nomination below.
8757 	 */
8758 	if (task_is_throttled(p))
8759 		return;
8760 
8761 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8762 		set_next_buddy(pse);
8763 	}
8764 
8765 	/*
8766 	 * We can come here with TIF_NEED_RESCHED already set from new task
8767 	 * wake up path.
8768 	 *
8769 	 * Note: this also catches the edge-case of curr being in a throttled
8770 	 * group (e.g. via set_curr_task), since update_curr() (in the
8771 	 * enqueue of curr) will have resulted in resched being set.  This
8772 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8773 	 * below.
8774 	 */
8775 	if (test_tsk_need_resched(rq->curr))
8776 		return;
8777 
8778 	if (!sched_feat(WAKEUP_PREEMPTION))
8779 		return;
8780 
8781 	find_matching_se(&se, &pse);
8782 	WARN_ON_ONCE(!pse);
8783 
8784 	cse_is_idle = se_is_idle(se);
8785 	pse_is_idle = se_is_idle(pse);
8786 
8787 	/*
8788 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8789 	 * in the inverse case).
8790 	 */
8791 	if (cse_is_idle && !pse_is_idle) {
8792 		/*
8793 		 * When non-idle entity preempt an idle entity,
8794 		 * don't give idle entity slice protection.
8795 		 */
8796 		do_preempt_short = true;
8797 		goto preempt;
8798 	}
8799 
8800 	if (cse_is_idle != pse_is_idle)
8801 		return;
8802 
8803 	/*
8804 	 * BATCH and IDLE tasks do not preempt others.
8805 	 */
8806 	if (unlikely(!normal_policy(p->policy)))
8807 		return;
8808 
8809 	cfs_rq = cfs_rq_of(se);
8810 	update_curr(cfs_rq);
8811 	/*
8812 	 * If @p has a shorter slice than current and @p is eligible, override
8813 	 * current's slice protection in order to allow preemption.
8814 	 */
8815 	do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice);
8816 
8817 	/*
8818 	 * If @p has become the most eligible task, force preemption.
8819 	 */
8820 	if (__pick_eevdf(cfs_rq, !do_preempt_short) == pse)
8821 		goto preempt;
8822 
8823 	if (sched_feat(RUN_TO_PARITY) && do_preempt_short)
8824 		update_protect_slice(cfs_rq, se);
8825 
8826 	return;
8827 
8828 preempt:
8829 	if (do_preempt_short)
8830 		cancel_protect_slice(se);
8831 
8832 	resched_curr_lazy(rq);
8833 }
8834 
pick_task_fair(struct rq * rq)8835 static struct task_struct *pick_task_fair(struct rq *rq)
8836 {
8837 	struct sched_entity *se;
8838 	struct cfs_rq *cfs_rq;
8839 	struct task_struct *p;
8840 	bool throttled;
8841 
8842 again:
8843 	cfs_rq = &rq->cfs;
8844 	if (!cfs_rq->nr_queued)
8845 		return NULL;
8846 
8847 	throttled = false;
8848 
8849 	do {
8850 		/* Might not have done put_prev_entity() */
8851 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8852 			update_curr(cfs_rq);
8853 
8854 		throttled |= check_cfs_rq_runtime(cfs_rq);
8855 
8856 		se = pick_next_entity(rq, cfs_rq);
8857 		if (!se)
8858 			goto again;
8859 		cfs_rq = group_cfs_rq(se);
8860 	} while (cfs_rq);
8861 
8862 	p = task_of(se);
8863 	if (unlikely(throttled))
8864 		task_throttle_setup_work(p);
8865 	return p;
8866 }
8867 
8868 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8869 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8870 
8871 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8872 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8873 {
8874 	struct sched_entity *se;
8875 	struct task_struct *p;
8876 	int new_tasks;
8877 
8878 again:
8879 	p = pick_task_fair(rq);
8880 	if (!p)
8881 		goto idle;
8882 	se = &p->se;
8883 
8884 #ifdef CONFIG_FAIR_GROUP_SCHED
8885 	if (prev->sched_class != &fair_sched_class)
8886 		goto simple;
8887 
8888 	__put_prev_set_next_dl_server(rq, prev, p);
8889 
8890 	/*
8891 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8892 	 * likely that a next task is from the same cgroup as the current.
8893 	 *
8894 	 * Therefore attempt to avoid putting and setting the entire cgroup
8895 	 * hierarchy, only change the part that actually changes.
8896 	 *
8897 	 * Since we haven't yet done put_prev_entity and if the selected task
8898 	 * is a different task than we started out with, try and touch the
8899 	 * least amount of cfs_rqs.
8900 	 */
8901 	if (prev != p) {
8902 		struct sched_entity *pse = &prev->se;
8903 		struct cfs_rq *cfs_rq;
8904 
8905 		while (!(cfs_rq = is_same_group(se, pse))) {
8906 			int se_depth = se->depth;
8907 			int pse_depth = pse->depth;
8908 
8909 			if (se_depth <= pse_depth) {
8910 				put_prev_entity(cfs_rq_of(pse), pse);
8911 				pse = parent_entity(pse);
8912 			}
8913 			if (se_depth >= pse_depth) {
8914 				set_next_entity(cfs_rq_of(se), se);
8915 				se = parent_entity(se);
8916 			}
8917 		}
8918 
8919 		put_prev_entity(cfs_rq, pse);
8920 		set_next_entity(cfs_rq, se);
8921 
8922 		__set_next_task_fair(rq, p, true);
8923 	}
8924 
8925 	return p;
8926 
8927 simple:
8928 #endif /* CONFIG_FAIR_GROUP_SCHED */
8929 	put_prev_set_next_task(rq, prev, p);
8930 	return p;
8931 
8932 idle:
8933 	if (rf) {
8934 		new_tasks = sched_balance_newidle(rq, rf);
8935 
8936 		/*
8937 		 * Because sched_balance_newidle() releases (and re-acquires)
8938 		 * rq->lock, it is possible for any higher priority task to
8939 		 * appear. In that case we must re-start the pick_next_entity()
8940 		 * loop.
8941 		 */
8942 		if (new_tasks < 0)
8943 			return RETRY_TASK;
8944 
8945 		if (new_tasks > 0)
8946 			goto again;
8947 	}
8948 
8949 	/*
8950 	 * rq is about to be idle, check if we need to update the
8951 	 * lost_idle_time of clock_pelt
8952 	 */
8953 	update_idle_rq_clock_pelt(rq);
8954 
8955 	return NULL;
8956 }
8957 
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8958 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8959 {
8960 	return pick_next_task_fair(rq, prev, NULL);
8961 }
8962 
fair_server_pick_task(struct sched_dl_entity * dl_se)8963 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8964 {
8965 	return pick_task_fair(dl_se->rq);
8966 }
8967 
fair_server_init(struct rq * rq)8968 void fair_server_init(struct rq *rq)
8969 {
8970 	struct sched_dl_entity *dl_se = &rq->fair_server;
8971 
8972 	init_dl_entity(dl_se);
8973 
8974 	dl_server_init(dl_se, rq, fair_server_pick_task);
8975 }
8976 
8977 /*
8978  * Account for a descheduled task:
8979  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8980 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8981 {
8982 	struct sched_entity *se = &prev->se;
8983 	struct cfs_rq *cfs_rq;
8984 
8985 	for_each_sched_entity(se) {
8986 		cfs_rq = cfs_rq_of(se);
8987 		put_prev_entity(cfs_rq, se);
8988 	}
8989 }
8990 
8991 /*
8992  * sched_yield() is very simple
8993  */
yield_task_fair(struct rq * rq)8994 static void yield_task_fair(struct rq *rq)
8995 {
8996 	struct task_struct *curr = rq->curr;
8997 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8998 	struct sched_entity *se = &curr->se;
8999 
9000 	/*
9001 	 * Are we the only task in the tree?
9002 	 */
9003 	if (unlikely(rq->nr_running == 1))
9004 		return;
9005 
9006 	clear_buddies(cfs_rq, se);
9007 
9008 	update_rq_clock(rq);
9009 	/*
9010 	 * Update run-time statistics of the 'current'.
9011 	 */
9012 	update_curr(cfs_rq);
9013 	/*
9014 	 * Tell update_rq_clock() that we've just updated,
9015 	 * so we don't do microscopic update in schedule()
9016 	 * and double the fastpath cost.
9017 	 */
9018 	rq_clock_skip_update(rq);
9019 
9020 	se->deadline += calc_delta_fair(se->slice, se);
9021 }
9022 
yield_to_task_fair(struct rq * rq,struct task_struct * p)9023 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9024 {
9025 	struct sched_entity *se = &p->se;
9026 
9027 	/* !se->on_rq also covers throttled task */
9028 	if (!se->on_rq)
9029 		return false;
9030 
9031 	/* Tell the scheduler that we'd really like se to run next. */
9032 	set_next_buddy(se);
9033 
9034 	yield_task_fair(rq);
9035 
9036 	return true;
9037 }
9038 
9039 /**************************************************
9040  * Fair scheduling class load-balancing methods.
9041  *
9042  * BASICS
9043  *
9044  * The purpose of load-balancing is to achieve the same basic fairness the
9045  * per-CPU scheduler provides, namely provide a proportional amount of compute
9046  * time to each task. This is expressed in the following equation:
9047  *
9048  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9049  *
9050  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9051  * W_i,0 is defined as:
9052  *
9053  *   W_i,0 = \Sum_j w_i,j                                             (2)
9054  *
9055  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9056  * is derived from the nice value as per sched_prio_to_weight[].
9057  *
9058  * The weight average is an exponential decay average of the instantaneous
9059  * weight:
9060  *
9061  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9062  *
9063  * C_i is the compute capacity of CPU i, typically it is the
9064  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9065  * can also include other factors [XXX].
9066  *
9067  * To achieve this balance we define a measure of imbalance which follows
9068  * directly from (1):
9069  *
9070  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9071  *
9072  * We them move tasks around to minimize the imbalance. In the continuous
9073  * function space it is obvious this converges, in the discrete case we get
9074  * a few fun cases generally called infeasible weight scenarios.
9075  *
9076  * [XXX expand on:
9077  *     - infeasible weights;
9078  *     - local vs global optima in the discrete case. ]
9079  *
9080  *
9081  * SCHED DOMAINS
9082  *
9083  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9084  * for all i,j solution, we create a tree of CPUs that follows the hardware
9085  * topology where each level pairs two lower groups (or better). This results
9086  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9087  * tree to only the first of the previous level and we decrease the frequency
9088  * of load-balance at each level inversely proportional to the number of CPUs in
9089  * the groups.
9090  *
9091  * This yields:
9092  *
9093  *     log_2 n     1     n
9094  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9095  *     i = 0      2^i   2^i
9096  *                               `- size of each group
9097  *         |         |     `- number of CPUs doing load-balance
9098  *         |         `- freq
9099  *         `- sum over all levels
9100  *
9101  * Coupled with a limit on how many tasks we can migrate every balance pass,
9102  * this makes (5) the runtime complexity of the balancer.
9103  *
9104  * An important property here is that each CPU is still (indirectly) connected
9105  * to every other CPU in at most O(log n) steps:
9106  *
9107  * The adjacency matrix of the resulting graph is given by:
9108  *
9109  *             log_2 n
9110  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9111  *             k = 0
9112  *
9113  * And you'll find that:
9114  *
9115  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9116  *
9117  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9118  * The task movement gives a factor of O(m), giving a convergence complexity
9119  * of:
9120  *
9121  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9122  *
9123  *
9124  * WORK CONSERVING
9125  *
9126  * In order to avoid CPUs going idle while there's still work to do, new idle
9127  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9128  * tree itself instead of relying on other CPUs to bring it work.
9129  *
9130  * This adds some complexity to both (5) and (8) but it reduces the total idle
9131  * time.
9132  *
9133  * [XXX more?]
9134  *
9135  *
9136  * CGROUPS
9137  *
9138  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9139  *
9140  *                                s_k,i
9141  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9142  *                                 S_k
9143  *
9144  * Where
9145  *
9146  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9147  *
9148  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9149  *
9150  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9151  * property.
9152  *
9153  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9154  *      rewrite all of this once again.]
9155  */
9156 
9157 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9158 
9159 enum fbq_type { regular, remote, all };
9160 
9161 /*
9162  * 'group_type' describes the group of CPUs at the moment of load balancing.
9163  *
9164  * The enum is ordered by pulling priority, with the group with lowest priority
9165  * first so the group_type can simply be compared when selecting the busiest
9166  * group. See update_sd_pick_busiest().
9167  */
9168 enum group_type {
9169 	/* The group has spare capacity that can be used to run more tasks.  */
9170 	group_has_spare = 0,
9171 	/*
9172 	 * The group is fully used and the tasks don't compete for more CPU
9173 	 * cycles. Nevertheless, some tasks might wait before running.
9174 	 */
9175 	group_fully_busy,
9176 	/*
9177 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9178 	 * more powerful CPU.
9179 	 */
9180 	group_misfit_task,
9181 	/*
9182 	 * Balance SMT group that's fully busy. Can benefit from migration
9183 	 * a task on SMT with busy sibling to another CPU on idle core.
9184 	 */
9185 	group_smt_balance,
9186 	/*
9187 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9188 	 * and the task should be migrated to it instead of running on the
9189 	 * current CPU.
9190 	 */
9191 	group_asym_packing,
9192 	/*
9193 	 * The tasks' affinity constraints previously prevented the scheduler
9194 	 * from balancing the load across the system.
9195 	 */
9196 	group_imbalanced,
9197 	/*
9198 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9199 	 * tasks.
9200 	 */
9201 	group_overloaded
9202 };
9203 
9204 enum migration_type {
9205 	migrate_load = 0,
9206 	migrate_util,
9207 	migrate_task,
9208 	migrate_misfit
9209 };
9210 
9211 #define LBF_ALL_PINNED	0x01
9212 #define LBF_NEED_BREAK	0x02
9213 #define LBF_DST_PINNED  0x04
9214 #define LBF_SOME_PINNED	0x08
9215 #define LBF_ACTIVE_LB	0x10
9216 
9217 struct lb_env {
9218 	struct sched_domain	*sd;
9219 
9220 	struct rq		*src_rq;
9221 	int			src_cpu;
9222 
9223 	int			dst_cpu;
9224 	struct rq		*dst_rq;
9225 
9226 	struct cpumask		*dst_grpmask;
9227 	int			new_dst_cpu;
9228 	enum cpu_idle_type	idle;
9229 	long			imbalance;
9230 	/* The set of CPUs under consideration for load-balancing */
9231 	struct cpumask		*cpus;
9232 
9233 	unsigned int		flags;
9234 
9235 	unsigned int		loop;
9236 	unsigned int		loop_break;
9237 	unsigned int		loop_max;
9238 
9239 	enum fbq_type		fbq_type;
9240 	enum migration_type	migration_type;
9241 	struct list_head	tasks;
9242 };
9243 
9244 /*
9245  * Is this task likely cache-hot:
9246  */
task_hot(struct task_struct * p,struct lb_env * env)9247 static int task_hot(struct task_struct *p, struct lb_env *env)
9248 {
9249 	s64 delta;
9250 
9251 	lockdep_assert_rq_held(env->src_rq);
9252 
9253 	if (p->sched_class != &fair_sched_class)
9254 		return 0;
9255 
9256 	if (unlikely(task_has_idle_policy(p)))
9257 		return 0;
9258 
9259 	/* SMT siblings share cache */
9260 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9261 		return 0;
9262 
9263 	/*
9264 	 * Buddy candidates are cache hot:
9265 	 */
9266 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9267 	    (&p->se == cfs_rq_of(&p->se)->next))
9268 		return 1;
9269 
9270 	if (sysctl_sched_migration_cost == -1)
9271 		return 1;
9272 
9273 	/*
9274 	 * Don't migrate task if the task's cookie does not match
9275 	 * with the destination CPU's core cookie.
9276 	 */
9277 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9278 		return 1;
9279 
9280 	if (sysctl_sched_migration_cost == 0)
9281 		return 0;
9282 
9283 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9284 
9285 	return delta < (s64)sysctl_sched_migration_cost;
9286 }
9287 
9288 #ifdef CONFIG_NUMA_BALANCING
9289 /*
9290  * Returns a positive value, if task migration degrades locality.
9291  * Returns 0, if task migration is not affected by locality.
9292  * Returns a negative value, if task migration improves locality i.e migration preferred.
9293  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9294 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9295 {
9296 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9297 	unsigned long src_weight, dst_weight;
9298 	int src_nid, dst_nid, dist;
9299 
9300 	if (!static_branch_likely(&sched_numa_balancing))
9301 		return 0;
9302 
9303 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9304 		return 0;
9305 
9306 	src_nid = cpu_to_node(env->src_cpu);
9307 	dst_nid = cpu_to_node(env->dst_cpu);
9308 
9309 	if (src_nid == dst_nid)
9310 		return 0;
9311 
9312 	/* Migrating away from the preferred node is always bad. */
9313 	if (src_nid == p->numa_preferred_nid) {
9314 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9315 			return 1;
9316 		else
9317 			return 0;
9318 	}
9319 
9320 	/* Encourage migration to the preferred node. */
9321 	if (dst_nid == p->numa_preferred_nid)
9322 		return -1;
9323 
9324 	/* Leaving a core idle is often worse than degrading locality. */
9325 	if (env->idle == CPU_IDLE)
9326 		return 0;
9327 
9328 	dist = node_distance(src_nid, dst_nid);
9329 	if (numa_group) {
9330 		src_weight = group_weight(p, src_nid, dist);
9331 		dst_weight = group_weight(p, dst_nid, dist);
9332 	} else {
9333 		src_weight = task_weight(p, src_nid, dist);
9334 		dst_weight = task_weight(p, dst_nid, dist);
9335 	}
9336 
9337 	return src_weight - dst_weight;
9338 }
9339 
9340 #else /* !CONFIG_NUMA_BALANCING: */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9341 static inline long migrate_degrades_locality(struct task_struct *p,
9342 					     struct lb_env *env)
9343 {
9344 	return 0;
9345 }
9346 #endif /* !CONFIG_NUMA_BALANCING */
9347 
9348 /*
9349  * Check whether the task is ineligible on the destination cpu
9350  *
9351  * When the PLACE_LAG scheduling feature is enabled and
9352  * dst_cfs_rq->nr_queued is greater than 1, if the task
9353  * is ineligible, it will also be ineligible when
9354  * it is migrated to the destination cpu.
9355  */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9356 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9357 {
9358 	struct cfs_rq *dst_cfs_rq;
9359 
9360 #ifdef CONFIG_FAIR_GROUP_SCHED
9361 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9362 #else
9363 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9364 #endif
9365 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9366 	    !entity_eligible(task_cfs_rq(p), &p->se))
9367 		return 1;
9368 
9369 	return 0;
9370 }
9371 
9372 /*
9373  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9374  */
9375 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9376 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9377 {
9378 	long degrades, hot;
9379 
9380 	lockdep_assert_rq_held(env->src_rq);
9381 	if (p->sched_task_hot)
9382 		p->sched_task_hot = 0;
9383 
9384 	/*
9385 	 * We do not migrate tasks that are:
9386 	 * 1) delayed dequeued unless we migrate load, or
9387 	 * 2) target cfs_rq is in throttled hierarchy, or
9388 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9389 	 * 4) running (obviously), or
9390 	 * 5) are cache-hot on their current CPU, or
9391 	 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9392 	 */
9393 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9394 		return 0;
9395 
9396 	if (lb_throttled_hierarchy(p, env->dst_cpu))
9397 		return 0;
9398 
9399 	/*
9400 	 * We want to prioritize the migration of eligible tasks.
9401 	 * For ineligible tasks we soft-limit them and only allow
9402 	 * them to migrate when nr_balance_failed is non-zero to
9403 	 * avoid load-balancing trying very hard to balance the load.
9404 	 */
9405 	if (!env->sd->nr_balance_failed &&
9406 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9407 		return 0;
9408 
9409 	/* Disregard percpu kthreads; they are where they need to be. */
9410 	if (kthread_is_per_cpu(p))
9411 		return 0;
9412 
9413 	if (task_is_blocked(p))
9414 		return 0;
9415 
9416 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9417 		int cpu;
9418 
9419 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9420 
9421 		env->flags |= LBF_SOME_PINNED;
9422 
9423 		/*
9424 		 * Remember if this task can be migrated to any other CPU in
9425 		 * our sched_group. We may want to revisit it if we couldn't
9426 		 * meet load balance goals by pulling other tasks on src_cpu.
9427 		 *
9428 		 * Avoid computing new_dst_cpu
9429 		 * - for NEWLY_IDLE
9430 		 * - if we have already computed one in current iteration
9431 		 * - if it's an active balance
9432 		 */
9433 		if (env->idle == CPU_NEWLY_IDLE ||
9434 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9435 			return 0;
9436 
9437 		/* Prevent to re-select dst_cpu via env's CPUs: */
9438 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9439 
9440 		if (cpu < nr_cpu_ids) {
9441 			env->flags |= LBF_DST_PINNED;
9442 			env->new_dst_cpu = cpu;
9443 		}
9444 
9445 		return 0;
9446 	}
9447 
9448 	/* Record that we found at least one task that could run on dst_cpu */
9449 	env->flags &= ~LBF_ALL_PINNED;
9450 
9451 	if (task_on_cpu(env->src_rq, p) ||
9452 	    task_current_donor(env->src_rq, p)) {
9453 		schedstat_inc(p->stats.nr_failed_migrations_running);
9454 		return 0;
9455 	}
9456 
9457 	/*
9458 	 * Aggressive migration if:
9459 	 * 1) active balance
9460 	 * 2) destination numa is preferred
9461 	 * 3) task is cache cold, or
9462 	 * 4) too many balance attempts have failed.
9463 	 */
9464 	if (env->flags & LBF_ACTIVE_LB)
9465 		return 1;
9466 
9467 	degrades = migrate_degrades_locality(p, env);
9468 	if (!degrades)
9469 		hot = task_hot(p, env);
9470 	else
9471 		hot = degrades > 0;
9472 
9473 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9474 		if (hot)
9475 			p->sched_task_hot = 1;
9476 		return 1;
9477 	}
9478 
9479 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9480 	return 0;
9481 }
9482 
9483 /*
9484  * detach_task() -- detach the task for the migration specified in env
9485  */
detach_task(struct task_struct * p,struct lb_env * env)9486 static void detach_task(struct task_struct *p, struct lb_env *env)
9487 {
9488 	lockdep_assert_rq_held(env->src_rq);
9489 
9490 	if (p->sched_task_hot) {
9491 		p->sched_task_hot = 0;
9492 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9493 		schedstat_inc(p->stats.nr_forced_migrations);
9494 	}
9495 
9496 	WARN_ON(task_current(env->src_rq, p));
9497 	WARN_ON(task_current_donor(env->src_rq, p));
9498 
9499 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9500 	set_task_cpu(p, env->dst_cpu);
9501 }
9502 
9503 /*
9504  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9505  * part of active balancing operations within "domain".
9506  *
9507  * Returns a task if successful and NULL otherwise.
9508  */
detach_one_task(struct lb_env * env)9509 static struct task_struct *detach_one_task(struct lb_env *env)
9510 {
9511 	struct task_struct *p;
9512 
9513 	lockdep_assert_rq_held(env->src_rq);
9514 
9515 	list_for_each_entry_reverse(p,
9516 			&env->src_rq->cfs_tasks, se.group_node) {
9517 		if (!can_migrate_task(p, env))
9518 			continue;
9519 
9520 		detach_task(p, env);
9521 
9522 		/*
9523 		 * Right now, this is only the second place where
9524 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9525 		 * so we can safely collect stats here rather than
9526 		 * inside detach_tasks().
9527 		 */
9528 		schedstat_inc(env->sd->lb_gained[env->idle]);
9529 		return p;
9530 	}
9531 	return NULL;
9532 }
9533 
9534 /*
9535  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9536  * busiest_rq, as part of a balancing operation within domain "sd".
9537  *
9538  * Returns number of detached tasks if successful and 0 otherwise.
9539  */
detach_tasks(struct lb_env * env)9540 static int detach_tasks(struct lb_env *env)
9541 {
9542 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9543 	unsigned long util, load;
9544 	struct task_struct *p;
9545 	int detached = 0;
9546 
9547 	lockdep_assert_rq_held(env->src_rq);
9548 
9549 	/*
9550 	 * Source run queue has been emptied by another CPU, clear
9551 	 * LBF_ALL_PINNED flag as we will not test any task.
9552 	 */
9553 	if (env->src_rq->nr_running <= 1) {
9554 		env->flags &= ~LBF_ALL_PINNED;
9555 		return 0;
9556 	}
9557 
9558 	if (env->imbalance <= 0)
9559 		return 0;
9560 
9561 	while (!list_empty(tasks)) {
9562 		/*
9563 		 * We don't want to steal all, otherwise we may be treated likewise,
9564 		 * which could at worst lead to a livelock crash.
9565 		 */
9566 		if (env->idle && env->src_rq->nr_running <= 1)
9567 			break;
9568 
9569 		env->loop++;
9570 		/* We've more or less seen every task there is, call it quits */
9571 		if (env->loop > env->loop_max)
9572 			break;
9573 
9574 		/* take a breather every nr_migrate tasks */
9575 		if (env->loop > env->loop_break) {
9576 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9577 			env->flags |= LBF_NEED_BREAK;
9578 			break;
9579 		}
9580 
9581 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9582 
9583 		if (!can_migrate_task(p, env))
9584 			goto next;
9585 
9586 		switch (env->migration_type) {
9587 		case migrate_load:
9588 			/*
9589 			 * Depending of the number of CPUs and tasks and the
9590 			 * cgroup hierarchy, task_h_load() can return a null
9591 			 * value. Make sure that env->imbalance decreases
9592 			 * otherwise detach_tasks() will stop only after
9593 			 * detaching up to loop_max tasks.
9594 			 */
9595 			load = max_t(unsigned long, task_h_load(p), 1);
9596 
9597 			if (sched_feat(LB_MIN) &&
9598 			    load < 16 && !env->sd->nr_balance_failed)
9599 				goto next;
9600 
9601 			/*
9602 			 * Make sure that we don't migrate too much load.
9603 			 * Nevertheless, let relax the constraint if
9604 			 * scheduler fails to find a good waiting task to
9605 			 * migrate.
9606 			 */
9607 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9608 				goto next;
9609 
9610 			env->imbalance -= load;
9611 			break;
9612 
9613 		case migrate_util:
9614 			util = task_util_est(p);
9615 
9616 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9617 				goto next;
9618 
9619 			env->imbalance -= util;
9620 			break;
9621 
9622 		case migrate_task:
9623 			env->imbalance--;
9624 			break;
9625 
9626 		case migrate_misfit:
9627 			/* This is not a misfit task */
9628 			if (task_fits_cpu(p, env->src_cpu))
9629 				goto next;
9630 
9631 			env->imbalance = 0;
9632 			break;
9633 		}
9634 
9635 		detach_task(p, env);
9636 		list_add(&p->se.group_node, &env->tasks);
9637 
9638 		detached++;
9639 
9640 #ifdef CONFIG_PREEMPTION
9641 		/*
9642 		 * NEWIDLE balancing is a source of latency, so preemptible
9643 		 * kernels will stop after the first task is detached to minimize
9644 		 * the critical section.
9645 		 */
9646 		if (env->idle == CPU_NEWLY_IDLE)
9647 			break;
9648 #endif
9649 
9650 		/*
9651 		 * We only want to steal up to the prescribed amount of
9652 		 * load/util/tasks.
9653 		 */
9654 		if (env->imbalance <= 0)
9655 			break;
9656 
9657 		continue;
9658 next:
9659 		if (p->sched_task_hot)
9660 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9661 
9662 		list_move(&p->se.group_node, tasks);
9663 	}
9664 
9665 	/*
9666 	 * Right now, this is one of only two places we collect this stat
9667 	 * so we can safely collect detach_one_task() stats here rather
9668 	 * than inside detach_one_task().
9669 	 */
9670 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9671 
9672 	return detached;
9673 }
9674 
9675 /*
9676  * attach_task() -- attach the task detached by detach_task() to its new rq.
9677  */
attach_task(struct rq * rq,struct task_struct * p)9678 static void attach_task(struct rq *rq, struct task_struct *p)
9679 {
9680 	lockdep_assert_rq_held(rq);
9681 
9682 	WARN_ON_ONCE(task_rq(p) != rq);
9683 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9684 	wakeup_preempt(rq, p, 0);
9685 }
9686 
9687 /*
9688  * attach_one_task() -- attaches the task returned from detach_one_task() to
9689  * its new rq.
9690  */
attach_one_task(struct rq * rq,struct task_struct * p)9691 static void attach_one_task(struct rq *rq, struct task_struct *p)
9692 {
9693 	struct rq_flags rf;
9694 
9695 	rq_lock(rq, &rf);
9696 	update_rq_clock(rq);
9697 	attach_task(rq, p);
9698 	rq_unlock(rq, &rf);
9699 }
9700 
9701 /*
9702  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9703  * new rq.
9704  */
attach_tasks(struct lb_env * env)9705 static void attach_tasks(struct lb_env *env)
9706 {
9707 	struct list_head *tasks = &env->tasks;
9708 	struct task_struct *p;
9709 	struct rq_flags rf;
9710 
9711 	rq_lock(env->dst_rq, &rf);
9712 	update_rq_clock(env->dst_rq);
9713 
9714 	while (!list_empty(tasks)) {
9715 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9716 		list_del_init(&p->se.group_node);
9717 
9718 		attach_task(env->dst_rq, p);
9719 	}
9720 
9721 	rq_unlock(env->dst_rq, &rf);
9722 }
9723 
9724 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9725 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9726 {
9727 	if (cfs_rq->avg.load_avg)
9728 		return true;
9729 
9730 	if (cfs_rq->avg.util_avg)
9731 		return true;
9732 
9733 	return false;
9734 }
9735 
others_have_blocked(struct rq * rq)9736 static inline bool others_have_blocked(struct rq *rq)
9737 {
9738 	if (cpu_util_rt(rq))
9739 		return true;
9740 
9741 	if (cpu_util_dl(rq))
9742 		return true;
9743 
9744 	if (hw_load_avg(rq))
9745 		return true;
9746 
9747 	if (cpu_util_irq(rq))
9748 		return true;
9749 
9750 	return false;
9751 }
9752 
update_blocked_load_tick(struct rq * rq)9753 static inline void update_blocked_load_tick(struct rq *rq)
9754 {
9755 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9756 }
9757 
update_blocked_load_status(struct rq * rq,bool has_blocked)9758 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9759 {
9760 	if (!has_blocked)
9761 		rq->has_blocked_load = 0;
9762 }
9763 #else /* !CONFIG_NO_HZ_COMMON: */
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9764 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9765 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9766 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9767 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9768 #endif /* !CONFIG_NO_HZ_COMMON */
9769 
__update_blocked_others(struct rq * rq,bool * done)9770 static bool __update_blocked_others(struct rq *rq, bool *done)
9771 {
9772 	bool updated;
9773 
9774 	/*
9775 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9776 	 * DL and IRQ signals have been updated before updating CFS.
9777 	 */
9778 	updated = update_other_load_avgs(rq);
9779 
9780 	if (others_have_blocked(rq))
9781 		*done = false;
9782 
9783 	return updated;
9784 }
9785 
9786 #ifdef CONFIG_FAIR_GROUP_SCHED
9787 
__update_blocked_fair(struct rq * rq,bool * done)9788 static bool __update_blocked_fair(struct rq *rq, bool *done)
9789 {
9790 	struct cfs_rq *cfs_rq, *pos;
9791 	bool decayed = false;
9792 	int cpu = cpu_of(rq);
9793 
9794 	/*
9795 	 * Iterates the task_group tree in a bottom up fashion, see
9796 	 * list_add_leaf_cfs_rq() for details.
9797 	 */
9798 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9799 		struct sched_entity *se;
9800 
9801 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9802 			update_tg_load_avg(cfs_rq);
9803 
9804 			if (cfs_rq->nr_queued == 0)
9805 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9806 
9807 			if (cfs_rq == &rq->cfs)
9808 				decayed = true;
9809 		}
9810 
9811 		/* Propagate pending load changes to the parent, if any: */
9812 		se = cfs_rq->tg->se[cpu];
9813 		if (se && !skip_blocked_update(se))
9814 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9815 
9816 		/*
9817 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9818 		 * decayed cfs_rqs linger on the list.
9819 		 */
9820 		if (cfs_rq_is_decayed(cfs_rq))
9821 			list_del_leaf_cfs_rq(cfs_rq);
9822 
9823 		/* Don't need periodic decay once load/util_avg are null */
9824 		if (cfs_rq_has_blocked(cfs_rq))
9825 			*done = false;
9826 	}
9827 
9828 	return decayed;
9829 }
9830 
9831 /*
9832  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9833  * This needs to be done in a top-down fashion because the load of a child
9834  * group is a fraction of its parents load.
9835  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9836 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9837 {
9838 	struct rq *rq = rq_of(cfs_rq);
9839 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9840 	unsigned long now = jiffies;
9841 	unsigned long load;
9842 
9843 	if (cfs_rq->last_h_load_update == now)
9844 		return;
9845 
9846 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9847 	for_each_sched_entity(se) {
9848 		cfs_rq = cfs_rq_of(se);
9849 		WRITE_ONCE(cfs_rq->h_load_next, se);
9850 		if (cfs_rq->last_h_load_update == now)
9851 			break;
9852 	}
9853 
9854 	if (!se) {
9855 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9856 		cfs_rq->last_h_load_update = now;
9857 	}
9858 
9859 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9860 		load = cfs_rq->h_load;
9861 		load = div64_ul(load * se->avg.load_avg,
9862 			cfs_rq_load_avg(cfs_rq) + 1);
9863 		cfs_rq = group_cfs_rq(se);
9864 		cfs_rq->h_load = load;
9865 		cfs_rq->last_h_load_update = now;
9866 	}
9867 }
9868 
task_h_load(struct task_struct * p)9869 static unsigned long task_h_load(struct task_struct *p)
9870 {
9871 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9872 
9873 	update_cfs_rq_h_load(cfs_rq);
9874 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9875 			cfs_rq_load_avg(cfs_rq) + 1);
9876 }
9877 #else /* !CONFIG_FAIR_GROUP_SCHED: */
__update_blocked_fair(struct rq * rq,bool * done)9878 static bool __update_blocked_fair(struct rq *rq, bool *done)
9879 {
9880 	struct cfs_rq *cfs_rq = &rq->cfs;
9881 	bool decayed;
9882 
9883 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9884 	if (cfs_rq_has_blocked(cfs_rq))
9885 		*done = false;
9886 
9887 	return decayed;
9888 }
9889 
task_h_load(struct task_struct * p)9890 static unsigned long task_h_load(struct task_struct *p)
9891 {
9892 	return p->se.avg.load_avg;
9893 }
9894 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9895 
sched_balance_update_blocked_averages(int cpu)9896 static void sched_balance_update_blocked_averages(int cpu)
9897 {
9898 	bool decayed = false, done = true;
9899 	struct rq *rq = cpu_rq(cpu);
9900 	struct rq_flags rf;
9901 
9902 	rq_lock_irqsave(rq, &rf);
9903 	update_blocked_load_tick(rq);
9904 	update_rq_clock(rq);
9905 
9906 	decayed |= __update_blocked_others(rq, &done);
9907 	decayed |= __update_blocked_fair(rq, &done);
9908 
9909 	update_blocked_load_status(rq, !done);
9910 	if (decayed)
9911 		cpufreq_update_util(rq, 0);
9912 	rq_unlock_irqrestore(rq, &rf);
9913 }
9914 
9915 /********** Helpers for sched_balance_find_src_group ************************/
9916 
9917 /*
9918  * sg_lb_stats - stats of a sched_group required for load-balancing:
9919  */
9920 struct sg_lb_stats {
9921 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9922 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9923 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9924 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9925 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9926 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9927 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9928 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9929 	unsigned int group_weight;
9930 	enum group_type group_type;
9931 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9932 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9933 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9934 #ifdef CONFIG_NUMA_BALANCING
9935 	unsigned int nr_numa_running;
9936 	unsigned int nr_preferred_running;
9937 #endif
9938 };
9939 
9940 /*
9941  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9942  */
9943 struct sd_lb_stats {
9944 	struct sched_group *busiest;		/* Busiest group in this sd */
9945 	struct sched_group *local;		/* Local group in this sd */
9946 	unsigned long total_load;		/* Total load of all groups in sd */
9947 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9948 	unsigned long avg_load;			/* Average load across all groups in sd */
9949 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9950 
9951 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9952 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9953 };
9954 
init_sd_lb_stats(struct sd_lb_stats * sds)9955 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9956 {
9957 	/*
9958 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9959 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9960 	 * We must however set busiest_stat::group_type and
9961 	 * busiest_stat::idle_cpus to the worst busiest group because
9962 	 * update_sd_pick_busiest() reads these before assignment.
9963 	 */
9964 	*sds = (struct sd_lb_stats){
9965 		.busiest = NULL,
9966 		.local = NULL,
9967 		.total_load = 0UL,
9968 		.total_capacity = 0UL,
9969 		.busiest_stat = {
9970 			.idle_cpus = UINT_MAX,
9971 			.group_type = group_has_spare,
9972 		},
9973 	};
9974 }
9975 
scale_rt_capacity(int cpu)9976 static unsigned long scale_rt_capacity(int cpu)
9977 {
9978 	unsigned long max = get_actual_cpu_capacity(cpu);
9979 	struct rq *rq = cpu_rq(cpu);
9980 	unsigned long used, free;
9981 	unsigned long irq;
9982 
9983 	irq = cpu_util_irq(rq);
9984 
9985 	if (unlikely(irq >= max))
9986 		return 1;
9987 
9988 	/*
9989 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9990 	 * (running and not running) with weights 0 and 1024 respectively.
9991 	 */
9992 	used = cpu_util_rt(rq);
9993 	used += cpu_util_dl(rq);
9994 
9995 	if (unlikely(used >= max))
9996 		return 1;
9997 
9998 	free = max - used;
9999 
10000 	return scale_irq_capacity(free, irq, max);
10001 }
10002 
update_cpu_capacity(struct sched_domain * sd,int cpu)10003 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10004 {
10005 	unsigned long capacity = scale_rt_capacity(cpu);
10006 	struct sched_group *sdg = sd->groups;
10007 
10008 	if (!capacity)
10009 		capacity = 1;
10010 
10011 	cpu_rq(cpu)->cpu_capacity = capacity;
10012 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10013 
10014 	sdg->sgc->capacity = capacity;
10015 	sdg->sgc->min_capacity = capacity;
10016 	sdg->sgc->max_capacity = capacity;
10017 }
10018 
update_group_capacity(struct sched_domain * sd,int cpu)10019 void update_group_capacity(struct sched_domain *sd, int cpu)
10020 {
10021 	struct sched_domain *child = sd->child;
10022 	struct sched_group *group, *sdg = sd->groups;
10023 	unsigned long capacity, min_capacity, max_capacity;
10024 	unsigned long interval;
10025 
10026 	interval = msecs_to_jiffies(sd->balance_interval);
10027 	interval = clamp(interval, 1UL, max_load_balance_interval);
10028 	sdg->sgc->next_update = jiffies + interval;
10029 
10030 	if (!child) {
10031 		update_cpu_capacity(sd, cpu);
10032 		return;
10033 	}
10034 
10035 	capacity = 0;
10036 	min_capacity = ULONG_MAX;
10037 	max_capacity = 0;
10038 
10039 	if (child->flags & SD_NUMA) {
10040 		/*
10041 		 * SD_NUMA domains cannot assume that child groups
10042 		 * span the current group.
10043 		 */
10044 
10045 		for_each_cpu(cpu, sched_group_span(sdg)) {
10046 			unsigned long cpu_cap = capacity_of(cpu);
10047 
10048 			capacity += cpu_cap;
10049 			min_capacity = min(cpu_cap, min_capacity);
10050 			max_capacity = max(cpu_cap, max_capacity);
10051 		}
10052 	} else  {
10053 		/*
10054 		 * !SD_NUMA domains can assume that child groups
10055 		 * span the current group.
10056 		 */
10057 
10058 		group = child->groups;
10059 		do {
10060 			struct sched_group_capacity *sgc = group->sgc;
10061 
10062 			capacity += sgc->capacity;
10063 			min_capacity = min(sgc->min_capacity, min_capacity);
10064 			max_capacity = max(sgc->max_capacity, max_capacity);
10065 			group = group->next;
10066 		} while (group != child->groups);
10067 	}
10068 
10069 	sdg->sgc->capacity = capacity;
10070 	sdg->sgc->min_capacity = min_capacity;
10071 	sdg->sgc->max_capacity = max_capacity;
10072 }
10073 
10074 /*
10075  * Check whether the capacity of the rq has been noticeably reduced by side
10076  * activity. The imbalance_pct is used for the threshold.
10077  * Return true is the capacity is reduced
10078  */
10079 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10080 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10081 {
10082 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10083 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10084 }
10085 
10086 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10087 static inline bool check_misfit_status(struct rq *rq)
10088 {
10089 	return rq->misfit_task_load;
10090 }
10091 
10092 /*
10093  * Group imbalance indicates (and tries to solve) the problem where balancing
10094  * groups is inadequate due to ->cpus_ptr constraints.
10095  *
10096  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10097  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10098  * Something like:
10099  *
10100  *	{ 0 1 2 3 } { 4 5 6 7 }
10101  *	        *     * * *
10102  *
10103  * If we were to balance group-wise we'd place two tasks in the first group and
10104  * two tasks in the second group. Clearly this is undesired as it will overload
10105  * cpu 3 and leave one of the CPUs in the second group unused.
10106  *
10107  * The current solution to this issue is detecting the skew in the first group
10108  * by noticing the lower domain failed to reach balance and had difficulty
10109  * moving tasks due to affinity constraints.
10110  *
10111  * When this is so detected; this group becomes a candidate for busiest; see
10112  * update_sd_pick_busiest(). And calculate_imbalance() and
10113  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10114  * to create an effective group imbalance.
10115  *
10116  * This is a somewhat tricky proposition since the next run might not find the
10117  * group imbalance and decide the groups need to be balanced again. A most
10118  * subtle and fragile situation.
10119  */
10120 
sg_imbalanced(struct sched_group * group)10121 static inline int sg_imbalanced(struct sched_group *group)
10122 {
10123 	return group->sgc->imbalance;
10124 }
10125 
10126 /*
10127  * group_has_capacity returns true if the group has spare capacity that could
10128  * be used by some tasks.
10129  * We consider that a group has spare capacity if the number of task is
10130  * smaller than the number of CPUs or if the utilization is lower than the
10131  * available capacity for CFS tasks.
10132  * For the latter, we use a threshold to stabilize the state, to take into
10133  * account the variance of the tasks' load and to return true if the available
10134  * capacity in meaningful for the load balancer.
10135  * As an example, an available capacity of 1% can appear but it doesn't make
10136  * any benefit for the load balance.
10137  */
10138 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10139 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10140 {
10141 	if (sgs->sum_nr_running < sgs->group_weight)
10142 		return true;
10143 
10144 	if ((sgs->group_capacity * imbalance_pct) <
10145 			(sgs->group_runnable * 100))
10146 		return false;
10147 
10148 	if ((sgs->group_capacity * 100) >
10149 			(sgs->group_util * imbalance_pct))
10150 		return true;
10151 
10152 	return false;
10153 }
10154 
10155 /*
10156  *  group_is_overloaded returns true if the group has more tasks than it can
10157  *  handle.
10158  *  group_is_overloaded is not equals to !group_has_capacity because a group
10159  *  with the exact right number of tasks, has no more spare capacity but is not
10160  *  overloaded so both group_has_capacity and group_is_overloaded return
10161  *  false.
10162  */
10163 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10164 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10165 {
10166 	if (sgs->sum_nr_running <= sgs->group_weight)
10167 		return false;
10168 
10169 	if ((sgs->group_capacity * 100) <
10170 			(sgs->group_util * imbalance_pct))
10171 		return true;
10172 
10173 	if ((sgs->group_capacity * imbalance_pct) <
10174 			(sgs->group_runnable * 100))
10175 		return true;
10176 
10177 	return false;
10178 }
10179 
10180 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10181 group_type group_classify(unsigned int imbalance_pct,
10182 			  struct sched_group *group,
10183 			  struct sg_lb_stats *sgs)
10184 {
10185 	if (group_is_overloaded(imbalance_pct, sgs))
10186 		return group_overloaded;
10187 
10188 	if (sg_imbalanced(group))
10189 		return group_imbalanced;
10190 
10191 	if (sgs->group_asym_packing)
10192 		return group_asym_packing;
10193 
10194 	if (sgs->group_smt_balance)
10195 		return group_smt_balance;
10196 
10197 	if (sgs->group_misfit_task_load)
10198 		return group_misfit_task;
10199 
10200 	if (!group_has_capacity(imbalance_pct, sgs))
10201 		return group_fully_busy;
10202 
10203 	return group_has_spare;
10204 }
10205 
10206 /**
10207  * sched_use_asym_prio - Check whether asym_packing priority must be used
10208  * @sd:		The scheduling domain of the load balancing
10209  * @cpu:	A CPU
10210  *
10211  * Always use CPU priority when balancing load between SMT siblings. When
10212  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10213  * use CPU priority if the whole core is idle.
10214  *
10215  * Returns: True if the priority of @cpu must be followed. False otherwise.
10216  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10217 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10218 {
10219 	if (!(sd->flags & SD_ASYM_PACKING))
10220 		return false;
10221 
10222 	if (!sched_smt_active())
10223 		return true;
10224 
10225 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10226 }
10227 
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10228 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10229 {
10230 	/*
10231 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10232 	 * if it has higher priority than @src_cpu.
10233 	 */
10234 	return sched_use_asym_prio(sd, dst_cpu) &&
10235 		sched_asym_prefer(dst_cpu, src_cpu);
10236 }
10237 
10238 /**
10239  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10240  * @env:	The load balancing environment
10241  * @sgs:	Load-balancing statistics of the candidate busiest group
10242  * @group:	The candidate busiest group
10243  *
10244  * @env::dst_cpu can do asym_packing if it has higher priority than the
10245  * preferred CPU of @group.
10246  *
10247  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10248  * otherwise.
10249  */
10250 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10251 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10252 {
10253 	/*
10254 	 * CPU priorities do not make sense for SMT cores with more than one
10255 	 * busy sibling.
10256 	 */
10257 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10258 	    (sgs->group_weight - sgs->idle_cpus != 1))
10259 		return false;
10260 
10261 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10262 }
10263 
10264 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10265 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10266 				    struct sched_group *sg2)
10267 {
10268 	if (!sg1 || !sg2)
10269 		return false;
10270 
10271 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10272 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10273 }
10274 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10275 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10276 			       struct sched_group *group)
10277 {
10278 	if (!env->idle)
10279 		return false;
10280 
10281 	/*
10282 	 * For SMT source group, it is better to move a task
10283 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10284 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10285 	 * will not be on.
10286 	 */
10287 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10288 	    sgs->sum_h_nr_running > 1)
10289 		return true;
10290 
10291 	return false;
10292 }
10293 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10294 static inline long sibling_imbalance(struct lb_env *env,
10295 				    struct sd_lb_stats *sds,
10296 				    struct sg_lb_stats *busiest,
10297 				    struct sg_lb_stats *local)
10298 {
10299 	int ncores_busiest, ncores_local;
10300 	long imbalance;
10301 
10302 	if (!env->idle || !busiest->sum_nr_running)
10303 		return 0;
10304 
10305 	ncores_busiest = sds->busiest->cores;
10306 	ncores_local = sds->local->cores;
10307 
10308 	if (ncores_busiest == ncores_local) {
10309 		imbalance = busiest->sum_nr_running;
10310 		lsub_positive(&imbalance, local->sum_nr_running);
10311 		return imbalance;
10312 	}
10313 
10314 	/* Balance such that nr_running/ncores ratio are same on both groups */
10315 	imbalance = ncores_local * busiest->sum_nr_running;
10316 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10317 	/* Normalize imbalance and do rounding on normalization */
10318 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10319 	imbalance /= ncores_local + ncores_busiest;
10320 
10321 	/* Take advantage of resource in an empty sched group */
10322 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10323 	    busiest->sum_nr_running > 1)
10324 		imbalance = 2;
10325 
10326 	return imbalance;
10327 }
10328 
10329 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10330 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10331 {
10332 	/*
10333 	 * When there is more than 1 task, the group_overloaded case already
10334 	 * takes care of cpu with reduced capacity
10335 	 */
10336 	if (rq->cfs.h_nr_runnable != 1)
10337 		return false;
10338 
10339 	return check_cpu_capacity(rq, sd);
10340 }
10341 
10342 /**
10343  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10344  * @env: The load balancing environment.
10345  * @sds: Load-balancing data with statistics of the local group.
10346  * @group: sched_group whose statistics are to be updated.
10347  * @sgs: variable to hold the statistics for this group.
10348  * @sg_overloaded: sched_group is overloaded
10349  * @sg_overutilized: sched_group is overutilized
10350  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10351 static inline void update_sg_lb_stats(struct lb_env *env,
10352 				      struct sd_lb_stats *sds,
10353 				      struct sched_group *group,
10354 				      struct sg_lb_stats *sgs,
10355 				      bool *sg_overloaded,
10356 				      bool *sg_overutilized)
10357 {
10358 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10359 	bool balancing_at_rd = !env->sd->parent;
10360 
10361 	memset(sgs, 0, sizeof(*sgs));
10362 
10363 	local_group = group == sds->local;
10364 
10365 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10366 		struct rq *rq = cpu_rq(i);
10367 		unsigned long load = cpu_load(rq);
10368 
10369 		sgs->group_load += load;
10370 		sgs->group_util += cpu_util_cfs(i);
10371 		sgs->group_runnable += cpu_runnable(rq);
10372 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10373 
10374 		nr_running = rq->nr_running;
10375 		sgs->sum_nr_running += nr_running;
10376 
10377 		if (cpu_overutilized(i))
10378 			*sg_overutilized = 1;
10379 
10380 		/*
10381 		 * No need to call idle_cpu() if nr_running is not 0
10382 		 */
10383 		if (!nr_running && idle_cpu(i)) {
10384 			sgs->idle_cpus++;
10385 			/* Idle cpu can't have misfit task */
10386 			continue;
10387 		}
10388 
10389 		/* Overload indicator is only updated at root domain */
10390 		if (balancing_at_rd && nr_running > 1)
10391 			*sg_overloaded = 1;
10392 
10393 #ifdef CONFIG_NUMA_BALANCING
10394 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10395 		if (sd_flags & SD_NUMA) {
10396 			sgs->nr_numa_running += rq->nr_numa_running;
10397 			sgs->nr_preferred_running += rq->nr_preferred_running;
10398 		}
10399 #endif
10400 		if (local_group)
10401 			continue;
10402 
10403 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10404 			/* Check for a misfit task on the cpu */
10405 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10406 				sgs->group_misfit_task_load = rq->misfit_task_load;
10407 				*sg_overloaded = 1;
10408 			}
10409 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10410 			/* Check for a task running on a CPU with reduced capacity */
10411 			if (sgs->group_misfit_task_load < load)
10412 				sgs->group_misfit_task_load = load;
10413 		}
10414 	}
10415 
10416 	sgs->group_capacity = group->sgc->capacity;
10417 
10418 	sgs->group_weight = group->group_weight;
10419 
10420 	/* Check if dst CPU is idle and preferred to this group */
10421 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10422 	    sched_group_asym(env, sgs, group))
10423 		sgs->group_asym_packing = 1;
10424 
10425 	/* Check for loaded SMT group to be balanced to dst CPU */
10426 	if (!local_group && smt_balance(env, sgs, group))
10427 		sgs->group_smt_balance = 1;
10428 
10429 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10430 
10431 	/* Computing avg_load makes sense only when group is overloaded */
10432 	if (sgs->group_type == group_overloaded)
10433 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10434 				sgs->group_capacity;
10435 }
10436 
10437 /**
10438  * update_sd_pick_busiest - return 1 on busiest group
10439  * @env: The load balancing environment.
10440  * @sds: sched_domain statistics
10441  * @sg: sched_group candidate to be checked for being the busiest
10442  * @sgs: sched_group statistics
10443  *
10444  * Determine if @sg is a busier group than the previously selected
10445  * busiest group.
10446  *
10447  * Return: %true if @sg is a busier group than the previously selected
10448  * busiest group. %false otherwise.
10449  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10450 static bool update_sd_pick_busiest(struct lb_env *env,
10451 				   struct sd_lb_stats *sds,
10452 				   struct sched_group *sg,
10453 				   struct sg_lb_stats *sgs)
10454 {
10455 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10456 
10457 	/* Make sure that there is at least one task to pull */
10458 	if (!sgs->sum_h_nr_running)
10459 		return false;
10460 
10461 	/*
10462 	 * Don't try to pull misfit tasks we can't help.
10463 	 * We can use max_capacity here as reduction in capacity on some
10464 	 * CPUs in the group should either be possible to resolve
10465 	 * internally or be covered by avg_load imbalance (eventually).
10466 	 */
10467 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10468 	    (sgs->group_type == group_misfit_task) &&
10469 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10470 	     sds->local_stat.group_type != group_has_spare))
10471 		return false;
10472 
10473 	if (sgs->group_type > busiest->group_type)
10474 		return true;
10475 
10476 	if (sgs->group_type < busiest->group_type)
10477 		return false;
10478 
10479 	/*
10480 	 * The candidate and the current busiest group are the same type of
10481 	 * group. Let check which one is the busiest according to the type.
10482 	 */
10483 
10484 	switch (sgs->group_type) {
10485 	case group_overloaded:
10486 		/* Select the overloaded group with highest avg_load. */
10487 		return sgs->avg_load > busiest->avg_load;
10488 
10489 	case group_imbalanced:
10490 		/*
10491 		 * Select the 1st imbalanced group as we don't have any way to
10492 		 * choose one more than another.
10493 		 */
10494 		return false;
10495 
10496 	case group_asym_packing:
10497 		/* Prefer to move from lowest priority CPU's work */
10498 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10499 					 READ_ONCE(sg->asym_prefer_cpu));
10500 
10501 	case group_misfit_task:
10502 		/*
10503 		 * If we have more than one misfit sg go with the biggest
10504 		 * misfit.
10505 		 */
10506 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10507 
10508 	case group_smt_balance:
10509 		/*
10510 		 * Check if we have spare CPUs on either SMT group to
10511 		 * choose has spare or fully busy handling.
10512 		 */
10513 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10514 			goto has_spare;
10515 
10516 		fallthrough;
10517 
10518 	case group_fully_busy:
10519 		/*
10520 		 * Select the fully busy group with highest avg_load. In
10521 		 * theory, there is no need to pull task from such kind of
10522 		 * group because tasks have all compute capacity that they need
10523 		 * but we can still improve the overall throughput by reducing
10524 		 * contention when accessing shared HW resources.
10525 		 *
10526 		 * XXX for now avg_load is not computed and always 0 so we
10527 		 * select the 1st one, except if @sg is composed of SMT
10528 		 * siblings.
10529 		 */
10530 
10531 		if (sgs->avg_load < busiest->avg_load)
10532 			return false;
10533 
10534 		if (sgs->avg_load == busiest->avg_load) {
10535 			/*
10536 			 * SMT sched groups need more help than non-SMT groups.
10537 			 * If @sg happens to also be SMT, either choice is good.
10538 			 */
10539 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10540 				return false;
10541 		}
10542 
10543 		break;
10544 
10545 	case group_has_spare:
10546 		/*
10547 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10548 		 * as we do not want to pull task off SMT core with one task
10549 		 * and make the core idle.
10550 		 */
10551 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10552 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10553 				return false;
10554 			else
10555 				return true;
10556 		}
10557 has_spare:
10558 
10559 		/*
10560 		 * Select not overloaded group with lowest number of idle CPUs
10561 		 * and highest number of running tasks. We could also compare
10562 		 * the spare capacity which is more stable but it can end up
10563 		 * that the group has less spare capacity but finally more idle
10564 		 * CPUs which means less opportunity to pull tasks.
10565 		 */
10566 		if (sgs->idle_cpus > busiest->idle_cpus)
10567 			return false;
10568 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10569 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10570 			return false;
10571 
10572 		break;
10573 	}
10574 
10575 	/*
10576 	 * Candidate sg has no more than one task per CPU and has higher
10577 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10578 	 * throughput. Maximize throughput, power/energy consequences are not
10579 	 * considered.
10580 	 */
10581 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10582 	    (sgs->group_type <= group_fully_busy) &&
10583 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10584 		return false;
10585 
10586 	return true;
10587 }
10588 
10589 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10590 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10591 {
10592 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10593 		return regular;
10594 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10595 		return remote;
10596 	return all;
10597 }
10598 
fbq_classify_rq(struct rq * rq)10599 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10600 {
10601 	if (rq->nr_running > rq->nr_numa_running)
10602 		return regular;
10603 	if (rq->nr_running > rq->nr_preferred_running)
10604 		return remote;
10605 	return all;
10606 }
10607 #else /* !CONFIG_NUMA_BALANCING: */
fbq_classify_group(struct sg_lb_stats * sgs)10608 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10609 {
10610 	return all;
10611 }
10612 
fbq_classify_rq(struct rq * rq)10613 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10614 {
10615 	return regular;
10616 }
10617 #endif /* !CONFIG_NUMA_BALANCING */
10618 
10619 
10620 struct sg_lb_stats;
10621 
10622 /*
10623  * task_running_on_cpu - return 1 if @p is running on @cpu.
10624  */
10625 
task_running_on_cpu(int cpu,struct task_struct * p)10626 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10627 {
10628 	/* Task has no contribution or is new */
10629 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10630 		return 0;
10631 
10632 	if (task_on_rq_queued(p))
10633 		return 1;
10634 
10635 	return 0;
10636 }
10637 
10638 /**
10639  * idle_cpu_without - would a given CPU be idle without p ?
10640  * @cpu: the processor on which idleness is tested.
10641  * @p: task which should be ignored.
10642  *
10643  * Return: 1 if the CPU would be idle. 0 otherwise.
10644  */
idle_cpu_without(int cpu,struct task_struct * p)10645 static int idle_cpu_without(int cpu, struct task_struct *p)
10646 {
10647 	struct rq *rq = cpu_rq(cpu);
10648 
10649 	if (rq->curr != rq->idle && rq->curr != p)
10650 		return 0;
10651 
10652 	/*
10653 	 * rq->nr_running can't be used but an updated version without the
10654 	 * impact of p on cpu must be used instead. The updated nr_running
10655 	 * be computed and tested before calling idle_cpu_without().
10656 	 */
10657 
10658 	if (rq->ttwu_pending)
10659 		return 0;
10660 
10661 	return 1;
10662 }
10663 
10664 /*
10665  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10666  * @sd: The sched_domain level to look for idlest group.
10667  * @group: sched_group whose statistics are to be updated.
10668  * @sgs: variable to hold the statistics for this group.
10669  * @p: The task for which we look for the idlest group/CPU.
10670  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10671 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10672 					  struct sched_group *group,
10673 					  struct sg_lb_stats *sgs,
10674 					  struct task_struct *p)
10675 {
10676 	int i, nr_running;
10677 
10678 	memset(sgs, 0, sizeof(*sgs));
10679 
10680 	/* Assume that task can't fit any CPU of the group */
10681 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10682 		sgs->group_misfit_task_load = 1;
10683 
10684 	for_each_cpu(i, sched_group_span(group)) {
10685 		struct rq *rq = cpu_rq(i);
10686 		unsigned int local;
10687 
10688 		sgs->group_load += cpu_load_without(rq, p);
10689 		sgs->group_util += cpu_util_without(i, p);
10690 		sgs->group_runnable += cpu_runnable_without(rq, p);
10691 		local = task_running_on_cpu(i, p);
10692 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10693 
10694 		nr_running = rq->nr_running - local;
10695 		sgs->sum_nr_running += nr_running;
10696 
10697 		/*
10698 		 * No need to call idle_cpu_without() if nr_running is not 0
10699 		 */
10700 		if (!nr_running && idle_cpu_without(i, p))
10701 			sgs->idle_cpus++;
10702 
10703 		/* Check if task fits in the CPU */
10704 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10705 		    sgs->group_misfit_task_load &&
10706 		    task_fits_cpu(p, i))
10707 			sgs->group_misfit_task_load = 0;
10708 
10709 	}
10710 
10711 	sgs->group_capacity = group->sgc->capacity;
10712 
10713 	sgs->group_weight = group->group_weight;
10714 
10715 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10716 
10717 	/*
10718 	 * Computing avg_load makes sense only when group is fully busy or
10719 	 * overloaded
10720 	 */
10721 	if (sgs->group_type == group_fully_busy ||
10722 		sgs->group_type == group_overloaded)
10723 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10724 				sgs->group_capacity;
10725 }
10726 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10727 static bool update_pick_idlest(struct sched_group *idlest,
10728 			       struct sg_lb_stats *idlest_sgs,
10729 			       struct sched_group *group,
10730 			       struct sg_lb_stats *sgs)
10731 {
10732 	if (sgs->group_type < idlest_sgs->group_type)
10733 		return true;
10734 
10735 	if (sgs->group_type > idlest_sgs->group_type)
10736 		return false;
10737 
10738 	/*
10739 	 * The candidate and the current idlest group are the same type of
10740 	 * group. Let check which one is the idlest according to the type.
10741 	 */
10742 
10743 	switch (sgs->group_type) {
10744 	case group_overloaded:
10745 	case group_fully_busy:
10746 		/* Select the group with lowest avg_load. */
10747 		if (idlest_sgs->avg_load <= sgs->avg_load)
10748 			return false;
10749 		break;
10750 
10751 	case group_imbalanced:
10752 	case group_asym_packing:
10753 	case group_smt_balance:
10754 		/* Those types are not used in the slow wakeup path */
10755 		return false;
10756 
10757 	case group_misfit_task:
10758 		/* Select group with the highest max capacity */
10759 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10760 			return false;
10761 		break;
10762 
10763 	case group_has_spare:
10764 		/* Select group with most idle CPUs */
10765 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10766 			return false;
10767 
10768 		/* Select group with lowest group_util */
10769 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10770 			idlest_sgs->group_util <= sgs->group_util)
10771 			return false;
10772 
10773 		break;
10774 	}
10775 
10776 	return true;
10777 }
10778 
10779 /*
10780  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10781  * domain.
10782  *
10783  * Assumes p is allowed on at least one CPU in sd.
10784  */
10785 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10786 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10787 {
10788 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10789 	struct sg_lb_stats local_sgs, tmp_sgs;
10790 	struct sg_lb_stats *sgs;
10791 	unsigned long imbalance;
10792 	struct sg_lb_stats idlest_sgs = {
10793 			.avg_load = UINT_MAX,
10794 			.group_type = group_overloaded,
10795 	};
10796 
10797 	do {
10798 		int local_group;
10799 
10800 		/* Skip over this group if it has no CPUs allowed */
10801 		if (!cpumask_intersects(sched_group_span(group),
10802 					p->cpus_ptr))
10803 			continue;
10804 
10805 		/* Skip over this group if no cookie matched */
10806 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10807 			continue;
10808 
10809 		local_group = cpumask_test_cpu(this_cpu,
10810 					       sched_group_span(group));
10811 
10812 		if (local_group) {
10813 			sgs = &local_sgs;
10814 			local = group;
10815 		} else {
10816 			sgs = &tmp_sgs;
10817 		}
10818 
10819 		update_sg_wakeup_stats(sd, group, sgs, p);
10820 
10821 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10822 			idlest = group;
10823 			idlest_sgs = *sgs;
10824 		}
10825 
10826 	} while (group = group->next, group != sd->groups);
10827 
10828 
10829 	/* There is no idlest group to push tasks to */
10830 	if (!idlest)
10831 		return NULL;
10832 
10833 	/* The local group has been skipped because of CPU affinity */
10834 	if (!local)
10835 		return idlest;
10836 
10837 	/*
10838 	 * If the local group is idler than the selected idlest group
10839 	 * don't try and push the task.
10840 	 */
10841 	if (local_sgs.group_type < idlest_sgs.group_type)
10842 		return NULL;
10843 
10844 	/*
10845 	 * If the local group is busier than the selected idlest group
10846 	 * try and push the task.
10847 	 */
10848 	if (local_sgs.group_type > idlest_sgs.group_type)
10849 		return idlest;
10850 
10851 	switch (local_sgs.group_type) {
10852 	case group_overloaded:
10853 	case group_fully_busy:
10854 
10855 		/* Calculate allowed imbalance based on load */
10856 		imbalance = scale_load_down(NICE_0_LOAD) *
10857 				(sd->imbalance_pct-100) / 100;
10858 
10859 		/*
10860 		 * When comparing groups across NUMA domains, it's possible for
10861 		 * the local domain to be very lightly loaded relative to the
10862 		 * remote domains but "imbalance" skews the comparison making
10863 		 * remote CPUs look much more favourable. When considering
10864 		 * cross-domain, add imbalance to the load on the remote node
10865 		 * and consider staying local.
10866 		 */
10867 
10868 		if ((sd->flags & SD_NUMA) &&
10869 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10870 			return NULL;
10871 
10872 		/*
10873 		 * If the local group is less loaded than the selected
10874 		 * idlest group don't try and push any tasks.
10875 		 */
10876 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10877 			return NULL;
10878 
10879 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10880 			return NULL;
10881 		break;
10882 
10883 	case group_imbalanced:
10884 	case group_asym_packing:
10885 	case group_smt_balance:
10886 		/* Those type are not used in the slow wakeup path */
10887 		return NULL;
10888 
10889 	case group_misfit_task:
10890 		/* Select group with the highest max capacity */
10891 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10892 			return NULL;
10893 		break;
10894 
10895 	case group_has_spare:
10896 #ifdef CONFIG_NUMA
10897 		if (sd->flags & SD_NUMA) {
10898 			int imb_numa_nr = sd->imb_numa_nr;
10899 #ifdef CONFIG_NUMA_BALANCING
10900 			int idlest_cpu;
10901 			/*
10902 			 * If there is spare capacity at NUMA, try to select
10903 			 * the preferred node
10904 			 */
10905 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10906 				return NULL;
10907 
10908 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10909 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10910 				return idlest;
10911 #endif /* CONFIG_NUMA_BALANCING */
10912 			/*
10913 			 * Otherwise, keep the task close to the wakeup source
10914 			 * and improve locality if the number of running tasks
10915 			 * would remain below threshold where an imbalance is
10916 			 * allowed while accounting for the possibility the
10917 			 * task is pinned to a subset of CPUs. If there is a
10918 			 * real need of migration, periodic load balance will
10919 			 * take care of it.
10920 			 */
10921 			if (p->nr_cpus_allowed != NR_CPUS) {
10922 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10923 
10924 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10925 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10926 			}
10927 
10928 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10929 			if (!adjust_numa_imbalance(imbalance,
10930 						   local_sgs.sum_nr_running + 1,
10931 						   imb_numa_nr)) {
10932 				return NULL;
10933 			}
10934 		}
10935 #endif /* CONFIG_NUMA */
10936 
10937 		/*
10938 		 * Select group with highest number of idle CPUs. We could also
10939 		 * compare the utilization which is more stable but it can end
10940 		 * up that the group has less spare capacity but finally more
10941 		 * idle CPUs which means more opportunity to run task.
10942 		 */
10943 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10944 			return NULL;
10945 		break;
10946 	}
10947 
10948 	return idlest;
10949 }
10950 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10951 static void update_idle_cpu_scan(struct lb_env *env,
10952 				 unsigned long sum_util)
10953 {
10954 	struct sched_domain_shared *sd_share;
10955 	int llc_weight, pct;
10956 	u64 x, y, tmp;
10957 	/*
10958 	 * Update the number of CPUs to scan in LLC domain, which could
10959 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10960 	 * could be expensive because it is within a shared cache line.
10961 	 * So the write of this hint only occurs during periodic load
10962 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10963 	 * can fire way more frequently than the former.
10964 	 */
10965 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10966 		return;
10967 
10968 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10969 	if (env->sd->span_weight != llc_weight)
10970 		return;
10971 
10972 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10973 	if (!sd_share)
10974 		return;
10975 
10976 	/*
10977 	 * The number of CPUs to search drops as sum_util increases, when
10978 	 * sum_util hits 85% or above, the scan stops.
10979 	 * The reason to choose 85% as the threshold is because this is the
10980 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10981 	 *
10982 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10983 	 * and y'= y / SCHED_CAPACITY_SCALE
10984 	 *
10985 	 * x is the ratio of sum_util compared to the CPU capacity:
10986 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10987 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10988 	 * and the number of CPUs to scan is calculated by:
10989 	 *
10990 	 * nr_scan = llc_weight * y'                                    [2]
10991 	 *
10992 	 * When x hits the threshold of overloaded, AKA, when
10993 	 * x = 100 / pct, y drops to 0. According to [1],
10994 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10995 	 *
10996 	 * Scale x by SCHED_CAPACITY_SCALE:
10997 	 * x' = sum_util / llc_weight;                                  [3]
10998 	 *
10999 	 * and finally [1] becomes:
11000 	 * y = SCHED_CAPACITY_SCALE -
11001 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
11002 	 *
11003 	 */
11004 	/* equation [3] */
11005 	x = sum_util;
11006 	do_div(x, llc_weight);
11007 
11008 	/* equation [4] */
11009 	pct = env->sd->imbalance_pct;
11010 	tmp = x * x * pct * pct;
11011 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11012 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11013 	y = SCHED_CAPACITY_SCALE - tmp;
11014 
11015 	/* equation [2] */
11016 	y *= llc_weight;
11017 	do_div(y, SCHED_CAPACITY_SCALE);
11018 	if ((int)y != sd_share->nr_idle_scan)
11019 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11020 }
11021 
11022 /**
11023  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11024  * @env: The load balancing environment.
11025  * @sds: variable to hold the statistics for this sched_domain.
11026  */
11027 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11028 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11029 {
11030 	struct sched_group *sg = env->sd->groups;
11031 	struct sg_lb_stats *local = &sds->local_stat;
11032 	struct sg_lb_stats tmp_sgs;
11033 	unsigned long sum_util = 0;
11034 	bool sg_overloaded = 0, sg_overutilized = 0;
11035 
11036 	do {
11037 		struct sg_lb_stats *sgs = &tmp_sgs;
11038 		int local_group;
11039 
11040 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11041 		if (local_group) {
11042 			sds->local = sg;
11043 			sgs = local;
11044 
11045 			if (env->idle != CPU_NEWLY_IDLE ||
11046 			    time_after_eq(jiffies, sg->sgc->next_update))
11047 				update_group_capacity(env->sd, env->dst_cpu);
11048 		}
11049 
11050 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11051 
11052 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11053 			sds->busiest = sg;
11054 			sds->busiest_stat = *sgs;
11055 		}
11056 
11057 		/* Now, start updating sd_lb_stats */
11058 		sds->total_load += sgs->group_load;
11059 		sds->total_capacity += sgs->group_capacity;
11060 
11061 		sum_util += sgs->group_util;
11062 		sg = sg->next;
11063 	} while (sg != env->sd->groups);
11064 
11065 	/*
11066 	 * Indicate that the child domain of the busiest group prefers tasks
11067 	 * go to a child's sibling domains first. NB the flags of a sched group
11068 	 * are those of the child domain.
11069 	 */
11070 	if (sds->busiest)
11071 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11072 
11073 
11074 	if (env->sd->flags & SD_NUMA)
11075 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11076 
11077 	if (!env->sd->parent) {
11078 		/* update overload indicator if we are at root domain */
11079 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11080 
11081 		/* Update over-utilization (tipping point, U >= 0) indicator */
11082 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11083 	} else if (sg_overutilized) {
11084 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11085 	}
11086 
11087 	update_idle_cpu_scan(env, sum_util);
11088 }
11089 
11090 /**
11091  * calculate_imbalance - Calculate the amount of imbalance present within the
11092  *			 groups of a given sched_domain during load balance.
11093  * @env: load balance environment
11094  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11095  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11096 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11097 {
11098 	struct sg_lb_stats *local, *busiest;
11099 
11100 	local = &sds->local_stat;
11101 	busiest = &sds->busiest_stat;
11102 
11103 	if (busiest->group_type == group_misfit_task) {
11104 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11105 			/* Set imbalance to allow misfit tasks to be balanced. */
11106 			env->migration_type = migrate_misfit;
11107 			env->imbalance = 1;
11108 		} else {
11109 			/*
11110 			 * Set load imbalance to allow moving task from cpu
11111 			 * with reduced capacity.
11112 			 */
11113 			env->migration_type = migrate_load;
11114 			env->imbalance = busiest->group_misfit_task_load;
11115 		}
11116 		return;
11117 	}
11118 
11119 	if (busiest->group_type == group_asym_packing) {
11120 		/*
11121 		 * In case of asym capacity, we will try to migrate all load to
11122 		 * the preferred CPU.
11123 		 */
11124 		env->migration_type = migrate_task;
11125 		env->imbalance = busiest->sum_h_nr_running;
11126 		return;
11127 	}
11128 
11129 	if (busiest->group_type == group_smt_balance) {
11130 		/* Reduce number of tasks sharing CPU capacity */
11131 		env->migration_type = migrate_task;
11132 		env->imbalance = 1;
11133 		return;
11134 	}
11135 
11136 	if (busiest->group_type == group_imbalanced) {
11137 		/*
11138 		 * In the group_imb case we cannot rely on group-wide averages
11139 		 * to ensure CPU-load equilibrium, try to move any task to fix
11140 		 * the imbalance. The next load balance will take care of
11141 		 * balancing back the system.
11142 		 */
11143 		env->migration_type = migrate_task;
11144 		env->imbalance = 1;
11145 		return;
11146 	}
11147 
11148 	/*
11149 	 * Try to use spare capacity of local group without overloading it or
11150 	 * emptying busiest.
11151 	 */
11152 	if (local->group_type == group_has_spare) {
11153 		if ((busiest->group_type > group_fully_busy) &&
11154 		    !(env->sd->flags & SD_SHARE_LLC)) {
11155 			/*
11156 			 * If busiest is overloaded, try to fill spare
11157 			 * capacity. This might end up creating spare capacity
11158 			 * in busiest or busiest still being overloaded but
11159 			 * there is no simple way to directly compute the
11160 			 * amount of load to migrate in order to balance the
11161 			 * system.
11162 			 */
11163 			env->migration_type = migrate_util;
11164 			env->imbalance = max(local->group_capacity, local->group_util) -
11165 					 local->group_util;
11166 
11167 			/*
11168 			 * In some cases, the group's utilization is max or even
11169 			 * higher than capacity because of migrations but the
11170 			 * local CPU is (newly) idle. There is at least one
11171 			 * waiting task in this overloaded busiest group. Let's
11172 			 * try to pull it.
11173 			 */
11174 			if (env->idle && env->imbalance == 0) {
11175 				env->migration_type = migrate_task;
11176 				env->imbalance = 1;
11177 			}
11178 
11179 			return;
11180 		}
11181 
11182 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11183 			/*
11184 			 * When prefer sibling, evenly spread running tasks on
11185 			 * groups.
11186 			 */
11187 			env->migration_type = migrate_task;
11188 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11189 		} else {
11190 
11191 			/*
11192 			 * If there is no overload, we just want to even the number of
11193 			 * idle CPUs.
11194 			 */
11195 			env->migration_type = migrate_task;
11196 			env->imbalance = max_t(long, 0,
11197 					       (local->idle_cpus - busiest->idle_cpus));
11198 		}
11199 
11200 #ifdef CONFIG_NUMA
11201 		/* Consider allowing a small imbalance between NUMA groups */
11202 		if (env->sd->flags & SD_NUMA) {
11203 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11204 							       local->sum_nr_running + 1,
11205 							       env->sd->imb_numa_nr);
11206 		}
11207 #endif
11208 
11209 		/* Number of tasks to move to restore balance */
11210 		env->imbalance >>= 1;
11211 
11212 		return;
11213 	}
11214 
11215 	/*
11216 	 * Local is fully busy but has to take more load to relieve the
11217 	 * busiest group
11218 	 */
11219 	if (local->group_type < group_overloaded) {
11220 		/*
11221 		 * Local will become overloaded so the avg_load metrics are
11222 		 * finally needed.
11223 		 */
11224 
11225 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11226 				  local->group_capacity;
11227 
11228 		/*
11229 		 * If the local group is more loaded than the selected
11230 		 * busiest group don't try to pull any tasks.
11231 		 */
11232 		if (local->avg_load >= busiest->avg_load) {
11233 			env->imbalance = 0;
11234 			return;
11235 		}
11236 
11237 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11238 				sds->total_capacity;
11239 
11240 		/*
11241 		 * If the local group is more loaded than the average system
11242 		 * load, don't try to pull any tasks.
11243 		 */
11244 		if (local->avg_load >= sds->avg_load) {
11245 			env->imbalance = 0;
11246 			return;
11247 		}
11248 
11249 	}
11250 
11251 	/*
11252 	 * Both group are or will become overloaded and we're trying to get all
11253 	 * the CPUs to the average_load, so we don't want to push ourselves
11254 	 * above the average load, nor do we wish to reduce the max loaded CPU
11255 	 * below the average load. At the same time, we also don't want to
11256 	 * reduce the group load below the group capacity. Thus we look for
11257 	 * the minimum possible imbalance.
11258 	 */
11259 	env->migration_type = migrate_load;
11260 	env->imbalance = min(
11261 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11262 		(sds->avg_load - local->avg_load) * local->group_capacity
11263 	) / SCHED_CAPACITY_SCALE;
11264 }
11265 
11266 /******* sched_balance_find_src_group() helpers end here *********************/
11267 
11268 /*
11269  * Decision matrix according to the local and busiest group type:
11270  *
11271  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11272  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11273  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11274  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11275  * asym_packing     force     force      N/A    N/A  force      force
11276  * imbalanced       force     force      N/A    N/A  force      force
11277  * overloaded       force     force      N/A    N/A  force      avg_load
11278  *
11279  * N/A :      Not Applicable because already filtered while updating
11280  *            statistics.
11281  * balanced : The system is balanced for these 2 groups.
11282  * force :    Calculate the imbalance as load migration is probably needed.
11283  * avg_load : Only if imbalance is significant enough.
11284  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11285  *            different in groups.
11286  */
11287 
11288 /**
11289  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11290  * if there is an imbalance.
11291  * @env: The load balancing environment.
11292  *
11293  * Also calculates the amount of runnable load which should be moved
11294  * to restore balance.
11295  *
11296  * Return:	- The busiest group if imbalance exists.
11297  */
sched_balance_find_src_group(struct lb_env * env)11298 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11299 {
11300 	struct sg_lb_stats *local, *busiest;
11301 	struct sd_lb_stats sds;
11302 
11303 	init_sd_lb_stats(&sds);
11304 
11305 	/*
11306 	 * Compute the various statistics relevant for load balancing at
11307 	 * this level.
11308 	 */
11309 	update_sd_lb_stats(env, &sds);
11310 
11311 	/* There is no busy sibling group to pull tasks from */
11312 	if (!sds.busiest)
11313 		goto out_balanced;
11314 
11315 	busiest = &sds.busiest_stat;
11316 
11317 	/* Misfit tasks should be dealt with regardless of the avg load */
11318 	if (busiest->group_type == group_misfit_task)
11319 		goto force_balance;
11320 
11321 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11322 	    rcu_dereference(env->dst_rq->rd->pd))
11323 		goto out_balanced;
11324 
11325 	/* ASYM feature bypasses nice load balance check */
11326 	if (busiest->group_type == group_asym_packing)
11327 		goto force_balance;
11328 
11329 	/*
11330 	 * If the busiest group is imbalanced the below checks don't
11331 	 * work because they assume all things are equal, which typically
11332 	 * isn't true due to cpus_ptr constraints and the like.
11333 	 */
11334 	if (busiest->group_type == group_imbalanced)
11335 		goto force_balance;
11336 
11337 	local = &sds.local_stat;
11338 	/*
11339 	 * If the local group is busier than the selected busiest group
11340 	 * don't try and pull any tasks.
11341 	 */
11342 	if (local->group_type > busiest->group_type)
11343 		goto out_balanced;
11344 
11345 	/*
11346 	 * When groups are overloaded, use the avg_load to ensure fairness
11347 	 * between tasks.
11348 	 */
11349 	if (local->group_type == group_overloaded) {
11350 		/*
11351 		 * If the local group is more loaded than the selected
11352 		 * busiest group don't try to pull any tasks.
11353 		 */
11354 		if (local->avg_load >= busiest->avg_load)
11355 			goto out_balanced;
11356 
11357 		/* XXX broken for overlapping NUMA groups */
11358 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11359 				sds.total_capacity;
11360 
11361 		/*
11362 		 * Don't pull any tasks if this group is already above the
11363 		 * domain average load.
11364 		 */
11365 		if (local->avg_load >= sds.avg_load)
11366 			goto out_balanced;
11367 
11368 		/*
11369 		 * If the busiest group is more loaded, use imbalance_pct to be
11370 		 * conservative.
11371 		 */
11372 		if (100 * busiest->avg_load <=
11373 				env->sd->imbalance_pct * local->avg_load)
11374 			goto out_balanced;
11375 	}
11376 
11377 	/*
11378 	 * Try to move all excess tasks to a sibling domain of the busiest
11379 	 * group's child domain.
11380 	 */
11381 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11382 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11383 		goto force_balance;
11384 
11385 	if (busiest->group_type != group_overloaded) {
11386 		if (!env->idle) {
11387 			/*
11388 			 * If the busiest group is not overloaded (and as a
11389 			 * result the local one too) but this CPU is already
11390 			 * busy, let another idle CPU try to pull task.
11391 			 */
11392 			goto out_balanced;
11393 		}
11394 
11395 		if (busiest->group_type == group_smt_balance &&
11396 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11397 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11398 			goto force_balance;
11399 		}
11400 
11401 		if (busiest->group_weight > 1 &&
11402 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11403 			/*
11404 			 * If the busiest group is not overloaded
11405 			 * and there is no imbalance between this and busiest
11406 			 * group wrt idle CPUs, it is balanced. The imbalance
11407 			 * becomes significant if the diff is greater than 1
11408 			 * otherwise we might end up to just move the imbalance
11409 			 * on another group. Of course this applies only if
11410 			 * there is more than 1 CPU per group.
11411 			 */
11412 			goto out_balanced;
11413 		}
11414 
11415 		if (busiest->sum_h_nr_running == 1) {
11416 			/*
11417 			 * busiest doesn't have any tasks waiting to run
11418 			 */
11419 			goto out_balanced;
11420 		}
11421 	}
11422 
11423 force_balance:
11424 	/* Looks like there is an imbalance. Compute it */
11425 	calculate_imbalance(env, &sds);
11426 	return env->imbalance ? sds.busiest : NULL;
11427 
11428 out_balanced:
11429 	env->imbalance = 0;
11430 	return NULL;
11431 }
11432 
11433 /*
11434  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11435  */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11436 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11437 				     struct sched_group *group)
11438 {
11439 	struct rq *busiest = NULL, *rq;
11440 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11441 	unsigned int busiest_nr = 0;
11442 	int i;
11443 
11444 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11445 		unsigned long capacity, load, util;
11446 		unsigned int nr_running;
11447 		enum fbq_type rt;
11448 
11449 		rq = cpu_rq(i);
11450 		rt = fbq_classify_rq(rq);
11451 
11452 		/*
11453 		 * We classify groups/runqueues into three groups:
11454 		 *  - regular: there are !numa tasks
11455 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11456 		 *  - all:     there is no distinction
11457 		 *
11458 		 * In order to avoid migrating ideally placed numa tasks,
11459 		 * ignore those when there's better options.
11460 		 *
11461 		 * If we ignore the actual busiest queue to migrate another
11462 		 * task, the next balance pass can still reduce the busiest
11463 		 * queue by moving tasks around inside the node.
11464 		 *
11465 		 * If we cannot move enough load due to this classification
11466 		 * the next pass will adjust the group classification and
11467 		 * allow migration of more tasks.
11468 		 *
11469 		 * Both cases only affect the total convergence complexity.
11470 		 */
11471 		if (rt > env->fbq_type)
11472 			continue;
11473 
11474 		nr_running = rq->cfs.h_nr_runnable;
11475 		if (!nr_running)
11476 			continue;
11477 
11478 		capacity = capacity_of(i);
11479 
11480 		/*
11481 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11482 		 * eventually lead to active_balancing high->low capacity.
11483 		 * Higher per-CPU capacity is considered better than balancing
11484 		 * average load.
11485 		 */
11486 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11487 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11488 		    nr_running == 1)
11489 			continue;
11490 
11491 		/*
11492 		 * Make sure we only pull tasks from a CPU of lower priority
11493 		 * when balancing between SMT siblings.
11494 		 *
11495 		 * If balancing between cores, let lower priority CPUs help
11496 		 * SMT cores with more than one busy sibling.
11497 		 */
11498 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11499 			continue;
11500 
11501 		switch (env->migration_type) {
11502 		case migrate_load:
11503 			/*
11504 			 * When comparing with load imbalance, use cpu_load()
11505 			 * which is not scaled with the CPU capacity.
11506 			 */
11507 			load = cpu_load(rq);
11508 
11509 			if (nr_running == 1 && load > env->imbalance &&
11510 			    !check_cpu_capacity(rq, env->sd))
11511 				break;
11512 
11513 			/*
11514 			 * For the load comparisons with the other CPUs,
11515 			 * consider the cpu_load() scaled with the CPU
11516 			 * capacity, so that the load can be moved away
11517 			 * from the CPU that is potentially running at a
11518 			 * lower capacity.
11519 			 *
11520 			 * Thus we're looking for max(load_i / capacity_i),
11521 			 * crosswise multiplication to rid ourselves of the
11522 			 * division works out to:
11523 			 * load_i * capacity_j > load_j * capacity_i;
11524 			 * where j is our previous maximum.
11525 			 */
11526 			if (load * busiest_capacity > busiest_load * capacity) {
11527 				busiest_load = load;
11528 				busiest_capacity = capacity;
11529 				busiest = rq;
11530 			}
11531 			break;
11532 
11533 		case migrate_util:
11534 			util = cpu_util_cfs_boost(i);
11535 
11536 			/*
11537 			 * Don't try to pull utilization from a CPU with one
11538 			 * running task. Whatever its utilization, we will fail
11539 			 * detach the task.
11540 			 */
11541 			if (nr_running <= 1)
11542 				continue;
11543 
11544 			if (busiest_util < util) {
11545 				busiest_util = util;
11546 				busiest = rq;
11547 			}
11548 			break;
11549 
11550 		case migrate_task:
11551 			if (busiest_nr < nr_running) {
11552 				busiest_nr = nr_running;
11553 				busiest = rq;
11554 			}
11555 			break;
11556 
11557 		case migrate_misfit:
11558 			/*
11559 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11560 			 * simply seek the "biggest" misfit task.
11561 			 */
11562 			if (rq->misfit_task_load > busiest_load) {
11563 				busiest_load = rq->misfit_task_load;
11564 				busiest = rq;
11565 			}
11566 
11567 			break;
11568 
11569 		}
11570 	}
11571 
11572 	return busiest;
11573 }
11574 
11575 /*
11576  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11577  * so long as it is large enough.
11578  */
11579 #define MAX_PINNED_INTERVAL	512
11580 
11581 static inline bool
asym_active_balance(struct lb_env * env)11582 asym_active_balance(struct lb_env *env)
11583 {
11584 	/*
11585 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11586 	 * priority CPUs in order to pack all tasks in the highest priority
11587 	 * CPUs. When done between cores, do it only if the whole core if the
11588 	 * whole core is idle.
11589 	 *
11590 	 * If @env::src_cpu is an SMT core with busy siblings, let
11591 	 * the lower priority @env::dst_cpu help it. Do not follow
11592 	 * CPU priority.
11593 	 */
11594 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11595 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11596 		!sched_use_asym_prio(env->sd, env->src_cpu));
11597 }
11598 
11599 static inline bool
imbalanced_active_balance(struct lb_env * env)11600 imbalanced_active_balance(struct lb_env *env)
11601 {
11602 	struct sched_domain *sd = env->sd;
11603 
11604 	/*
11605 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11606 	 * distribution of the load on the system but also the even distribution of the
11607 	 * threads on a system with spare capacity
11608 	 */
11609 	if ((env->migration_type == migrate_task) &&
11610 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11611 		return 1;
11612 
11613 	return 0;
11614 }
11615 
need_active_balance(struct lb_env * env)11616 static int need_active_balance(struct lb_env *env)
11617 {
11618 	struct sched_domain *sd = env->sd;
11619 
11620 	if (asym_active_balance(env))
11621 		return 1;
11622 
11623 	if (imbalanced_active_balance(env))
11624 		return 1;
11625 
11626 	/*
11627 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11628 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11629 	 * because of other sched_class or IRQs if more capacity stays
11630 	 * available on dst_cpu.
11631 	 */
11632 	if (env->idle &&
11633 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11634 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11635 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11636 			return 1;
11637 	}
11638 
11639 	if (env->migration_type == migrate_misfit)
11640 		return 1;
11641 
11642 	return 0;
11643 }
11644 
11645 static int active_load_balance_cpu_stop(void *data);
11646 
should_we_balance(struct lb_env * env)11647 static int should_we_balance(struct lb_env *env)
11648 {
11649 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11650 	struct sched_group *sg = env->sd->groups;
11651 	int cpu, idle_smt = -1;
11652 
11653 	/*
11654 	 * Ensure the balancing environment is consistent; can happen
11655 	 * when the softirq triggers 'during' hotplug.
11656 	 */
11657 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11658 		return 0;
11659 
11660 	/*
11661 	 * In the newly idle case, we will allow all the CPUs
11662 	 * to do the newly idle load balance.
11663 	 *
11664 	 * However, we bail out if we already have tasks or a wakeup pending,
11665 	 * to optimize wakeup latency.
11666 	 */
11667 	if (env->idle == CPU_NEWLY_IDLE) {
11668 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11669 			return 0;
11670 		return 1;
11671 	}
11672 
11673 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11674 	/* Try to find first idle CPU */
11675 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11676 		if (!idle_cpu(cpu))
11677 			continue;
11678 
11679 		/*
11680 		 * Don't balance to idle SMT in busy core right away when
11681 		 * balancing cores, but remember the first idle SMT CPU for
11682 		 * later consideration.  Find CPU on an idle core first.
11683 		 */
11684 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11685 			if (idle_smt == -1)
11686 				idle_smt = cpu;
11687 			/*
11688 			 * If the core is not idle, and first SMT sibling which is
11689 			 * idle has been found, then its not needed to check other
11690 			 * SMT siblings for idleness:
11691 			 */
11692 #ifdef CONFIG_SCHED_SMT
11693 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11694 #endif
11695 			continue;
11696 		}
11697 
11698 		/*
11699 		 * Are we the first idle core in a non-SMT domain or higher,
11700 		 * or the first idle CPU in a SMT domain?
11701 		 */
11702 		return cpu == env->dst_cpu;
11703 	}
11704 
11705 	/* Are we the first idle CPU with busy siblings? */
11706 	if (idle_smt != -1)
11707 		return idle_smt == env->dst_cpu;
11708 
11709 	/* Are we the first CPU of this group ? */
11710 	return group_balance_cpu(sg) == env->dst_cpu;
11711 }
11712 
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11713 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11714 				     enum cpu_idle_type idle)
11715 {
11716 	if (!schedstat_enabled())
11717 		return;
11718 
11719 	switch (env->migration_type) {
11720 	case migrate_load:
11721 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11722 		break;
11723 	case migrate_util:
11724 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11725 		break;
11726 	case migrate_task:
11727 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11728 		break;
11729 	case migrate_misfit:
11730 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11731 		break;
11732 	}
11733 }
11734 
11735 /*
11736  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11737  * tasks if there is an imbalance.
11738  */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11739 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11740 			struct sched_domain *sd, enum cpu_idle_type idle,
11741 			int *continue_balancing)
11742 {
11743 	int ld_moved, cur_ld_moved, active_balance = 0;
11744 	struct sched_domain *sd_parent = sd->parent;
11745 	struct sched_group *group;
11746 	struct rq *busiest;
11747 	struct rq_flags rf;
11748 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11749 	struct lb_env env = {
11750 		.sd		= sd,
11751 		.dst_cpu	= this_cpu,
11752 		.dst_rq		= this_rq,
11753 		.dst_grpmask    = group_balance_mask(sd->groups),
11754 		.idle		= idle,
11755 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11756 		.cpus		= cpus,
11757 		.fbq_type	= all,
11758 		.tasks		= LIST_HEAD_INIT(env.tasks),
11759 	};
11760 
11761 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11762 
11763 	schedstat_inc(sd->lb_count[idle]);
11764 
11765 redo:
11766 	if (!should_we_balance(&env)) {
11767 		*continue_balancing = 0;
11768 		goto out_balanced;
11769 	}
11770 
11771 	group = sched_balance_find_src_group(&env);
11772 	if (!group) {
11773 		schedstat_inc(sd->lb_nobusyg[idle]);
11774 		goto out_balanced;
11775 	}
11776 
11777 	busiest = sched_balance_find_src_rq(&env, group);
11778 	if (!busiest) {
11779 		schedstat_inc(sd->lb_nobusyq[idle]);
11780 		goto out_balanced;
11781 	}
11782 
11783 	WARN_ON_ONCE(busiest == env.dst_rq);
11784 
11785 	update_lb_imbalance_stat(&env, sd, idle);
11786 
11787 	env.src_cpu = busiest->cpu;
11788 	env.src_rq = busiest;
11789 
11790 	ld_moved = 0;
11791 	/* Clear this flag as soon as we find a pullable task */
11792 	env.flags |= LBF_ALL_PINNED;
11793 	if (busiest->nr_running > 1) {
11794 		/*
11795 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11796 		 * an imbalance but busiest->nr_running <= 1, the group is
11797 		 * still unbalanced. ld_moved simply stays zero, so it is
11798 		 * correctly treated as an imbalance.
11799 		 */
11800 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11801 
11802 more_balance:
11803 		rq_lock_irqsave(busiest, &rf);
11804 		update_rq_clock(busiest);
11805 
11806 		/*
11807 		 * cur_ld_moved - load moved in current iteration
11808 		 * ld_moved     - cumulative load moved across iterations
11809 		 */
11810 		cur_ld_moved = detach_tasks(&env);
11811 
11812 		/*
11813 		 * We've detached some tasks from busiest_rq. Every
11814 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11815 		 * unlock busiest->lock, and we are able to be sure
11816 		 * that nobody can manipulate the tasks in parallel.
11817 		 * See task_rq_lock() family for the details.
11818 		 */
11819 
11820 		rq_unlock(busiest, &rf);
11821 
11822 		if (cur_ld_moved) {
11823 			attach_tasks(&env);
11824 			ld_moved += cur_ld_moved;
11825 		}
11826 
11827 		local_irq_restore(rf.flags);
11828 
11829 		if (env.flags & LBF_NEED_BREAK) {
11830 			env.flags &= ~LBF_NEED_BREAK;
11831 			goto more_balance;
11832 		}
11833 
11834 		/*
11835 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11836 		 * us and move them to an alternate dst_cpu in our sched_group
11837 		 * where they can run. The upper limit on how many times we
11838 		 * iterate on same src_cpu is dependent on number of CPUs in our
11839 		 * sched_group.
11840 		 *
11841 		 * This changes load balance semantics a bit on who can move
11842 		 * load to a given_cpu. In addition to the given_cpu itself
11843 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11844 		 * nohz-idle), we now have balance_cpu in a position to move
11845 		 * load to given_cpu. In rare situations, this may cause
11846 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11847 		 * _independently_ and at _same_ time to move some load to
11848 		 * given_cpu) causing excess load to be moved to given_cpu.
11849 		 * This however should not happen so much in practice and
11850 		 * moreover subsequent load balance cycles should correct the
11851 		 * excess load moved.
11852 		 */
11853 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11854 
11855 			/* Prevent to re-select dst_cpu via env's CPUs */
11856 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11857 
11858 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11859 			env.dst_cpu	 = env.new_dst_cpu;
11860 			env.flags	&= ~LBF_DST_PINNED;
11861 			env.loop	 = 0;
11862 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11863 
11864 			/*
11865 			 * Go back to "more_balance" rather than "redo" since we
11866 			 * need to continue with same src_cpu.
11867 			 */
11868 			goto more_balance;
11869 		}
11870 
11871 		/*
11872 		 * We failed to reach balance because of affinity.
11873 		 */
11874 		if (sd_parent) {
11875 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11876 
11877 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11878 				*group_imbalance = 1;
11879 		}
11880 
11881 		/* All tasks on this runqueue were pinned by CPU affinity */
11882 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11883 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11884 			/*
11885 			 * Attempting to continue load balancing at the current
11886 			 * sched_domain level only makes sense if there are
11887 			 * active CPUs remaining as possible busiest CPUs to
11888 			 * pull load from which are not contained within the
11889 			 * destination group that is receiving any migrated
11890 			 * load.
11891 			 */
11892 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11893 				env.loop = 0;
11894 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11895 				goto redo;
11896 			}
11897 			goto out_all_pinned;
11898 		}
11899 	}
11900 
11901 	if (!ld_moved) {
11902 		schedstat_inc(sd->lb_failed[idle]);
11903 		/*
11904 		 * Increment the failure counter only on periodic balance.
11905 		 * We do not want newidle balance, which can be very
11906 		 * frequent, pollute the failure counter causing
11907 		 * excessive cache_hot migrations and active balances.
11908 		 *
11909 		 * Similarly for migration_misfit which is not related to
11910 		 * load/util migration, don't pollute nr_balance_failed.
11911 		 */
11912 		if (idle != CPU_NEWLY_IDLE &&
11913 		    env.migration_type != migrate_misfit)
11914 			sd->nr_balance_failed++;
11915 
11916 		if (need_active_balance(&env)) {
11917 			unsigned long flags;
11918 
11919 			raw_spin_rq_lock_irqsave(busiest, flags);
11920 
11921 			/*
11922 			 * Don't kick the active_load_balance_cpu_stop,
11923 			 * if the curr task on busiest CPU can't be
11924 			 * moved to this_cpu:
11925 			 */
11926 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11927 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11928 				goto out_one_pinned;
11929 			}
11930 
11931 			/* Record that we found at least one task that could run on this_cpu */
11932 			env.flags &= ~LBF_ALL_PINNED;
11933 
11934 			/*
11935 			 * ->active_balance synchronizes accesses to
11936 			 * ->active_balance_work.  Once set, it's cleared
11937 			 * only after active load balance is finished.
11938 			 */
11939 			if (!busiest->active_balance) {
11940 				busiest->active_balance = 1;
11941 				busiest->push_cpu = this_cpu;
11942 				active_balance = 1;
11943 			}
11944 
11945 			preempt_disable();
11946 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11947 			if (active_balance) {
11948 				stop_one_cpu_nowait(cpu_of(busiest),
11949 					active_load_balance_cpu_stop, busiest,
11950 					&busiest->active_balance_work);
11951 			}
11952 			preempt_enable();
11953 		}
11954 	} else {
11955 		sd->nr_balance_failed = 0;
11956 	}
11957 
11958 	if (likely(!active_balance) || need_active_balance(&env)) {
11959 		/* We were unbalanced, so reset the balancing interval */
11960 		sd->balance_interval = sd->min_interval;
11961 	}
11962 
11963 	goto out;
11964 
11965 out_balanced:
11966 	/*
11967 	 * We reach balance although we may have faced some affinity
11968 	 * constraints. Clear the imbalance flag only if other tasks got
11969 	 * a chance to move and fix the imbalance.
11970 	 */
11971 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11972 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11973 
11974 		if (*group_imbalance)
11975 			*group_imbalance = 0;
11976 	}
11977 
11978 out_all_pinned:
11979 	/*
11980 	 * We reach balance because all tasks are pinned at this level so
11981 	 * we can't migrate them. Let the imbalance flag set so parent level
11982 	 * can try to migrate them.
11983 	 */
11984 	schedstat_inc(sd->lb_balanced[idle]);
11985 
11986 	sd->nr_balance_failed = 0;
11987 
11988 out_one_pinned:
11989 	ld_moved = 0;
11990 
11991 	/*
11992 	 * sched_balance_newidle() disregards balance intervals, so we could
11993 	 * repeatedly reach this code, which would lead to balance_interval
11994 	 * skyrocketing in a short amount of time. Skip the balance_interval
11995 	 * increase logic to avoid that.
11996 	 *
11997 	 * Similarly misfit migration which is not necessarily an indication of
11998 	 * the system being busy and requires lb to backoff to let it settle
11999 	 * down.
12000 	 */
12001 	if (env.idle == CPU_NEWLY_IDLE ||
12002 	    env.migration_type == migrate_misfit)
12003 		goto out;
12004 
12005 	/* tune up the balancing interval */
12006 	if ((env.flags & LBF_ALL_PINNED &&
12007 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
12008 	    sd->balance_interval < sd->max_interval)
12009 		sd->balance_interval *= 2;
12010 out:
12011 	return ld_moved;
12012 }
12013 
12014 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12015 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12016 {
12017 	unsigned long interval = sd->balance_interval;
12018 
12019 	if (cpu_busy)
12020 		interval *= sd->busy_factor;
12021 
12022 	/* scale ms to jiffies */
12023 	interval = msecs_to_jiffies(interval);
12024 
12025 	/*
12026 	 * Reduce likelihood of busy balancing at higher domains racing with
12027 	 * balancing at lower domains by preventing their balancing periods
12028 	 * from being multiples of each other.
12029 	 */
12030 	if (cpu_busy)
12031 		interval -= 1;
12032 
12033 	interval = clamp(interval, 1UL, max_load_balance_interval);
12034 
12035 	return interval;
12036 }
12037 
12038 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12039 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12040 {
12041 	unsigned long interval, next;
12042 
12043 	/* used by idle balance, so cpu_busy = 0 */
12044 	interval = get_sd_balance_interval(sd, 0);
12045 	next = sd->last_balance + interval;
12046 
12047 	if (time_after(*next_balance, next))
12048 		*next_balance = next;
12049 }
12050 
12051 /*
12052  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12053  * running tasks off the busiest CPU onto idle CPUs. It requires at
12054  * least 1 task to be running on each physical CPU where possible, and
12055  * avoids physical / logical imbalances.
12056  */
active_load_balance_cpu_stop(void * data)12057 static int active_load_balance_cpu_stop(void *data)
12058 {
12059 	struct rq *busiest_rq = data;
12060 	int busiest_cpu = cpu_of(busiest_rq);
12061 	int target_cpu = busiest_rq->push_cpu;
12062 	struct rq *target_rq = cpu_rq(target_cpu);
12063 	struct sched_domain *sd;
12064 	struct task_struct *p = NULL;
12065 	struct rq_flags rf;
12066 
12067 	rq_lock_irq(busiest_rq, &rf);
12068 	/*
12069 	 * Between queueing the stop-work and running it is a hole in which
12070 	 * CPUs can become inactive. We should not move tasks from or to
12071 	 * inactive CPUs.
12072 	 */
12073 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12074 		goto out_unlock;
12075 
12076 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12077 	if (unlikely(busiest_cpu != smp_processor_id() ||
12078 		     !busiest_rq->active_balance))
12079 		goto out_unlock;
12080 
12081 	/* Is there any task to move? */
12082 	if (busiest_rq->nr_running <= 1)
12083 		goto out_unlock;
12084 
12085 	/*
12086 	 * This condition is "impossible", if it occurs
12087 	 * we need to fix it. Originally reported by
12088 	 * Bjorn Helgaas on a 128-CPU setup.
12089 	 */
12090 	WARN_ON_ONCE(busiest_rq == target_rq);
12091 
12092 	/* Search for an sd spanning us and the target CPU. */
12093 	rcu_read_lock();
12094 	for_each_domain(target_cpu, sd) {
12095 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12096 			break;
12097 	}
12098 
12099 	if (likely(sd)) {
12100 		struct lb_env env = {
12101 			.sd		= sd,
12102 			.dst_cpu	= target_cpu,
12103 			.dst_rq		= target_rq,
12104 			.src_cpu	= busiest_rq->cpu,
12105 			.src_rq		= busiest_rq,
12106 			.idle		= CPU_IDLE,
12107 			.flags		= LBF_ACTIVE_LB,
12108 		};
12109 
12110 		schedstat_inc(sd->alb_count);
12111 		update_rq_clock(busiest_rq);
12112 
12113 		p = detach_one_task(&env);
12114 		if (p) {
12115 			schedstat_inc(sd->alb_pushed);
12116 			/* Active balancing done, reset the failure counter. */
12117 			sd->nr_balance_failed = 0;
12118 		} else {
12119 			schedstat_inc(sd->alb_failed);
12120 		}
12121 	}
12122 	rcu_read_unlock();
12123 out_unlock:
12124 	busiest_rq->active_balance = 0;
12125 	rq_unlock(busiest_rq, &rf);
12126 
12127 	if (p)
12128 		attach_one_task(target_rq, p);
12129 
12130 	local_irq_enable();
12131 
12132 	return 0;
12133 }
12134 
12135 /*
12136  * This flag serializes load-balancing passes over large domains
12137  * (above the NODE topology level) - only one load-balancing instance
12138  * may run at a time, to reduce overhead on very large systems with
12139  * lots of CPUs and large NUMA distances.
12140  *
12141  * - Note that load-balancing passes triggered while another one
12142  *   is executing are skipped and not re-tried.
12143  *
12144  * - Also note that this does not serialize rebalance_domains()
12145  *   execution, as non-SD_SERIALIZE domains will still be
12146  *   load-balanced in parallel.
12147  */
12148 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12149 
12150 /*
12151  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12152  * This trades load-balance latency on larger machines for less cross talk.
12153  */
update_max_interval(void)12154 void update_max_interval(void)
12155 {
12156 	max_load_balance_interval = HZ*num_online_cpus()/10;
12157 }
12158 
update_newidle_cost(struct sched_domain * sd,u64 cost)12159 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12160 {
12161 	if (cost > sd->max_newidle_lb_cost) {
12162 		/*
12163 		 * Track max cost of a domain to make sure to not delay the
12164 		 * next wakeup on the CPU.
12165 		 *
12166 		 * sched_balance_newidle() bumps the cost whenever newidle
12167 		 * balance fails, and we don't want things to grow out of
12168 		 * control.  Use the sysctl_sched_migration_cost as the upper
12169 		 * limit, plus a litle extra to avoid off by ones.
12170 		 */
12171 		sd->max_newidle_lb_cost =
12172 			min(cost, sysctl_sched_migration_cost + 200);
12173 		sd->last_decay_max_lb_cost = jiffies;
12174 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12175 		/*
12176 		 * Decay the newidle max times by ~1% per second to ensure that
12177 		 * it is not outdated and the current max cost is actually
12178 		 * shorter.
12179 		 */
12180 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12181 		sd->last_decay_max_lb_cost = jiffies;
12182 
12183 		return true;
12184 	}
12185 
12186 	return false;
12187 }
12188 
12189 /*
12190  * It checks each scheduling domain to see if it is due to be balanced,
12191  * and initiates a balancing operation if so.
12192  *
12193  * Balancing parameters are set up in init_sched_domains.
12194  */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12195 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12196 {
12197 	int continue_balancing = 1;
12198 	int cpu = rq->cpu;
12199 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12200 	unsigned long interval;
12201 	struct sched_domain *sd;
12202 	/* Earliest time when we have to do rebalance again */
12203 	unsigned long next_balance = jiffies + 60*HZ;
12204 	int update_next_balance = 0;
12205 	int need_serialize, need_decay = 0;
12206 	u64 max_cost = 0;
12207 
12208 	rcu_read_lock();
12209 	for_each_domain(cpu, sd) {
12210 		/*
12211 		 * Decay the newidle max times here because this is a regular
12212 		 * visit to all the domains.
12213 		 */
12214 		need_decay = update_newidle_cost(sd, 0);
12215 		max_cost += sd->max_newidle_lb_cost;
12216 
12217 		/*
12218 		 * Stop the load balance at this level. There is another
12219 		 * CPU in our sched group which is doing load balancing more
12220 		 * actively.
12221 		 */
12222 		if (!continue_balancing) {
12223 			if (need_decay)
12224 				continue;
12225 			break;
12226 		}
12227 
12228 		interval = get_sd_balance_interval(sd, busy);
12229 
12230 		need_serialize = sd->flags & SD_SERIALIZE;
12231 		if (need_serialize) {
12232 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12233 				goto out;
12234 		}
12235 
12236 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12237 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12238 				/*
12239 				 * The LBF_DST_PINNED logic could have changed
12240 				 * env->dst_cpu, so we can't know our idle
12241 				 * state even if we migrated tasks. Update it.
12242 				 */
12243 				idle = idle_cpu(cpu);
12244 				busy = !idle && !sched_idle_cpu(cpu);
12245 			}
12246 			sd->last_balance = jiffies;
12247 			interval = get_sd_balance_interval(sd, busy);
12248 		}
12249 		if (need_serialize)
12250 			atomic_set_release(&sched_balance_running, 0);
12251 out:
12252 		if (time_after(next_balance, sd->last_balance + interval)) {
12253 			next_balance = sd->last_balance + interval;
12254 			update_next_balance = 1;
12255 		}
12256 	}
12257 	if (need_decay) {
12258 		/*
12259 		 * Ensure the rq-wide value also decays but keep it at a
12260 		 * reasonable floor to avoid funnies with rq->avg_idle.
12261 		 */
12262 		rq->max_idle_balance_cost =
12263 			max((u64)sysctl_sched_migration_cost, max_cost);
12264 	}
12265 	rcu_read_unlock();
12266 
12267 	/*
12268 	 * next_balance will be updated only when there is a need.
12269 	 * When the cpu is attached to null domain for ex, it will not be
12270 	 * updated.
12271 	 */
12272 	if (likely(update_next_balance))
12273 		rq->next_balance = next_balance;
12274 
12275 }
12276 
on_null_domain(struct rq * rq)12277 static inline int on_null_domain(struct rq *rq)
12278 {
12279 	return unlikely(!rcu_dereference_sched(rq->sd));
12280 }
12281 
12282 #ifdef CONFIG_NO_HZ_COMMON
12283 /*
12284  * NOHZ idle load balancing (ILB) details:
12285  *
12286  * - When one of the busy CPUs notices that there may be an idle rebalancing
12287  *   needed, they will kick the idle load balancer, which then does idle
12288  *   load balancing for all the idle CPUs.
12289  */
find_new_ilb(void)12290 static inline int find_new_ilb(void)
12291 {
12292 	const struct cpumask *hk_mask;
12293 	int ilb_cpu;
12294 
12295 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12296 
12297 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12298 
12299 		if (ilb_cpu == smp_processor_id())
12300 			continue;
12301 
12302 		if (idle_cpu(ilb_cpu))
12303 			return ilb_cpu;
12304 	}
12305 
12306 	return -1;
12307 }
12308 
12309 /*
12310  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12311  * SMP function call (IPI).
12312  *
12313  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12314  * (if there is one).
12315  */
kick_ilb(unsigned int flags)12316 static void kick_ilb(unsigned int flags)
12317 {
12318 	int ilb_cpu;
12319 
12320 	/*
12321 	 * Increase nohz.next_balance only when if full ilb is triggered but
12322 	 * not if we only update stats.
12323 	 */
12324 	if (flags & NOHZ_BALANCE_KICK)
12325 		nohz.next_balance = jiffies+1;
12326 
12327 	ilb_cpu = find_new_ilb();
12328 	if (ilb_cpu < 0)
12329 		return;
12330 
12331 	/*
12332 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12333 	 * i.e. all bits in flags are already set in ilb_cpu.
12334 	 */
12335 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12336 		return;
12337 
12338 	/*
12339 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12340 	 * the first flag owns it; cleared by nohz_csd_func().
12341 	 */
12342 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12343 	if (flags & NOHZ_KICK_MASK)
12344 		return;
12345 
12346 	/*
12347 	 * This way we generate an IPI on the target CPU which
12348 	 * is idle, and the softirq performing NOHZ idle load balancing
12349 	 * will be run before returning from the IPI.
12350 	 */
12351 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12352 }
12353 
12354 /*
12355  * Current decision point for kicking the idle load balancer in the presence
12356  * of idle CPUs in the system.
12357  */
nohz_balancer_kick(struct rq * rq)12358 static void nohz_balancer_kick(struct rq *rq)
12359 {
12360 	unsigned long now = jiffies;
12361 	struct sched_domain_shared *sds;
12362 	struct sched_domain *sd;
12363 	int nr_busy, i, cpu = rq->cpu;
12364 	unsigned int flags = 0;
12365 
12366 	if (unlikely(rq->idle_balance))
12367 		return;
12368 
12369 	/*
12370 	 * We may be recently in ticked or tickless idle mode. At the first
12371 	 * busy tick after returning from idle, we will update the busy stats.
12372 	 */
12373 	nohz_balance_exit_idle(rq);
12374 
12375 	/*
12376 	 * None are in tickless mode and hence no need for NOHZ idle load
12377 	 * balancing:
12378 	 */
12379 	if (likely(!atomic_read(&nohz.nr_cpus)))
12380 		return;
12381 
12382 	if (READ_ONCE(nohz.has_blocked) &&
12383 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12384 		flags = NOHZ_STATS_KICK;
12385 
12386 	if (time_before(now, nohz.next_balance))
12387 		goto out;
12388 
12389 	if (rq->nr_running >= 2) {
12390 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12391 		goto out;
12392 	}
12393 
12394 	rcu_read_lock();
12395 
12396 	sd = rcu_dereference(rq->sd);
12397 	if (sd) {
12398 		/*
12399 		 * If there's a runnable CFS task and the current CPU has reduced
12400 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12401 		 */
12402 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12403 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12404 			goto unlock;
12405 		}
12406 	}
12407 
12408 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12409 	if (sd) {
12410 		/*
12411 		 * When ASYM_PACKING; see if there's a more preferred CPU
12412 		 * currently idle; in which case, kick the ILB to move tasks
12413 		 * around.
12414 		 *
12415 		 * When balancing between cores, all the SMT siblings of the
12416 		 * preferred CPU must be idle.
12417 		 */
12418 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12419 			if (sched_asym(sd, i, cpu)) {
12420 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12421 				goto unlock;
12422 			}
12423 		}
12424 	}
12425 
12426 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12427 	if (sd) {
12428 		/*
12429 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12430 		 * to run the misfit task on.
12431 		 */
12432 		if (check_misfit_status(rq)) {
12433 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12434 			goto unlock;
12435 		}
12436 
12437 		/*
12438 		 * For asymmetric systems, we do not want to nicely balance
12439 		 * cache use, instead we want to embrace asymmetry and only
12440 		 * ensure tasks have enough CPU capacity.
12441 		 *
12442 		 * Skip the LLC logic because it's not relevant in that case.
12443 		 */
12444 		goto unlock;
12445 	}
12446 
12447 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12448 	if (sds) {
12449 		/*
12450 		 * If there is an imbalance between LLC domains (IOW we could
12451 		 * increase the overall cache utilization), we need a less-loaded LLC
12452 		 * domain to pull some load from. Likewise, we may need to spread
12453 		 * load within the current LLC domain (e.g. packed SMT cores but
12454 		 * other CPUs are idle). We can't really know from here how busy
12455 		 * the others are - so just get a NOHZ balance going if it looks
12456 		 * like this LLC domain has tasks we could move.
12457 		 */
12458 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12459 		if (nr_busy > 1) {
12460 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12461 			goto unlock;
12462 		}
12463 	}
12464 unlock:
12465 	rcu_read_unlock();
12466 out:
12467 	if (READ_ONCE(nohz.needs_update))
12468 		flags |= NOHZ_NEXT_KICK;
12469 
12470 	if (flags)
12471 		kick_ilb(flags);
12472 }
12473 
set_cpu_sd_state_busy(int cpu)12474 static void set_cpu_sd_state_busy(int cpu)
12475 {
12476 	struct sched_domain *sd;
12477 
12478 	rcu_read_lock();
12479 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12480 
12481 	if (!sd || !sd->nohz_idle)
12482 		goto unlock;
12483 	sd->nohz_idle = 0;
12484 
12485 	atomic_inc(&sd->shared->nr_busy_cpus);
12486 unlock:
12487 	rcu_read_unlock();
12488 }
12489 
nohz_balance_exit_idle(struct rq * rq)12490 void nohz_balance_exit_idle(struct rq *rq)
12491 {
12492 	WARN_ON_ONCE(rq != this_rq());
12493 
12494 	if (likely(!rq->nohz_tick_stopped))
12495 		return;
12496 
12497 	rq->nohz_tick_stopped = 0;
12498 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12499 	atomic_dec(&nohz.nr_cpus);
12500 
12501 	set_cpu_sd_state_busy(rq->cpu);
12502 }
12503 
set_cpu_sd_state_idle(int cpu)12504 static void set_cpu_sd_state_idle(int cpu)
12505 {
12506 	struct sched_domain *sd;
12507 
12508 	rcu_read_lock();
12509 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12510 
12511 	if (!sd || sd->nohz_idle)
12512 		goto unlock;
12513 	sd->nohz_idle = 1;
12514 
12515 	atomic_dec(&sd->shared->nr_busy_cpus);
12516 unlock:
12517 	rcu_read_unlock();
12518 }
12519 
12520 /*
12521  * This routine will record that the CPU is going idle with tick stopped.
12522  * This info will be used in performing idle load balancing in the future.
12523  */
nohz_balance_enter_idle(int cpu)12524 void nohz_balance_enter_idle(int cpu)
12525 {
12526 	struct rq *rq = cpu_rq(cpu);
12527 
12528 	WARN_ON_ONCE(cpu != smp_processor_id());
12529 
12530 	/* If this CPU is going down, then nothing needs to be done: */
12531 	if (!cpu_active(cpu))
12532 		return;
12533 
12534 	/*
12535 	 * Can be set safely without rq->lock held
12536 	 * If a clear happens, it will have evaluated last additions because
12537 	 * rq->lock is held during the check and the clear
12538 	 */
12539 	rq->has_blocked_load = 1;
12540 
12541 	/*
12542 	 * The tick is still stopped but load could have been added in the
12543 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12544 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12545 	 * of nohz.has_blocked can only happen after checking the new load
12546 	 */
12547 	if (rq->nohz_tick_stopped)
12548 		goto out;
12549 
12550 	/* If we're a completely isolated CPU, we don't play: */
12551 	if (on_null_domain(rq))
12552 		return;
12553 
12554 	rq->nohz_tick_stopped = 1;
12555 
12556 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12557 	atomic_inc(&nohz.nr_cpus);
12558 
12559 	/*
12560 	 * Ensures that if nohz_idle_balance() fails to observe our
12561 	 * @idle_cpus_mask store, it must observe the @has_blocked
12562 	 * and @needs_update stores.
12563 	 */
12564 	smp_mb__after_atomic();
12565 
12566 	set_cpu_sd_state_idle(cpu);
12567 
12568 	WRITE_ONCE(nohz.needs_update, 1);
12569 out:
12570 	/*
12571 	 * Each time a cpu enter idle, we assume that it has blocked load and
12572 	 * enable the periodic update of the load of idle CPUs
12573 	 */
12574 	WRITE_ONCE(nohz.has_blocked, 1);
12575 }
12576 
update_nohz_stats(struct rq * rq)12577 static bool update_nohz_stats(struct rq *rq)
12578 {
12579 	unsigned int cpu = rq->cpu;
12580 
12581 	if (!rq->has_blocked_load)
12582 		return false;
12583 
12584 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12585 		return false;
12586 
12587 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12588 		return true;
12589 
12590 	sched_balance_update_blocked_averages(cpu);
12591 
12592 	return rq->has_blocked_load;
12593 }
12594 
12595 /*
12596  * Internal function that runs load balance for all idle CPUs. The load balance
12597  * can be a simple update of blocked load or a complete load balance with
12598  * tasks movement depending of flags.
12599  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12600 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12601 {
12602 	/* Earliest time when we have to do rebalance again */
12603 	unsigned long now = jiffies;
12604 	unsigned long next_balance = now + 60*HZ;
12605 	bool has_blocked_load = false;
12606 	int update_next_balance = 0;
12607 	int this_cpu = this_rq->cpu;
12608 	int balance_cpu;
12609 	struct rq *rq;
12610 
12611 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12612 
12613 	/*
12614 	 * We assume there will be no idle load after this update and clear
12615 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12616 	 * set the has_blocked flag and trigger another update of idle load.
12617 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12618 	 * setting the flag, we are sure to not clear the state and not
12619 	 * check the load of an idle cpu.
12620 	 *
12621 	 * Same applies to idle_cpus_mask vs needs_update.
12622 	 */
12623 	if (flags & NOHZ_STATS_KICK)
12624 		WRITE_ONCE(nohz.has_blocked, 0);
12625 	if (flags & NOHZ_NEXT_KICK)
12626 		WRITE_ONCE(nohz.needs_update, 0);
12627 
12628 	/*
12629 	 * Ensures that if we miss the CPU, we must see the has_blocked
12630 	 * store from nohz_balance_enter_idle().
12631 	 */
12632 	smp_mb();
12633 
12634 	/*
12635 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12636 	 * chance for other idle cpu to pull load.
12637 	 */
12638 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12639 		if (!idle_cpu(balance_cpu))
12640 			continue;
12641 
12642 		/*
12643 		 * If this CPU gets work to do, stop the load balancing
12644 		 * work being done for other CPUs. Next load
12645 		 * balancing owner will pick it up.
12646 		 */
12647 		if (!idle_cpu(this_cpu) && need_resched()) {
12648 			if (flags & NOHZ_STATS_KICK)
12649 				has_blocked_load = true;
12650 			if (flags & NOHZ_NEXT_KICK)
12651 				WRITE_ONCE(nohz.needs_update, 1);
12652 			goto abort;
12653 		}
12654 
12655 		rq = cpu_rq(balance_cpu);
12656 
12657 		if (flags & NOHZ_STATS_KICK)
12658 			has_blocked_load |= update_nohz_stats(rq);
12659 
12660 		/*
12661 		 * If time for next balance is due,
12662 		 * do the balance.
12663 		 */
12664 		if (time_after_eq(jiffies, rq->next_balance)) {
12665 			struct rq_flags rf;
12666 
12667 			rq_lock_irqsave(rq, &rf);
12668 			update_rq_clock(rq);
12669 			rq_unlock_irqrestore(rq, &rf);
12670 
12671 			if (flags & NOHZ_BALANCE_KICK)
12672 				sched_balance_domains(rq, CPU_IDLE);
12673 		}
12674 
12675 		if (time_after(next_balance, rq->next_balance)) {
12676 			next_balance = rq->next_balance;
12677 			update_next_balance = 1;
12678 		}
12679 	}
12680 
12681 	/*
12682 	 * next_balance will be updated only when there is a need.
12683 	 * When the CPU is attached to null domain for ex, it will not be
12684 	 * updated.
12685 	 */
12686 	if (likely(update_next_balance))
12687 		nohz.next_balance = next_balance;
12688 
12689 	if (flags & NOHZ_STATS_KICK)
12690 		WRITE_ONCE(nohz.next_blocked,
12691 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12692 
12693 abort:
12694 	/* There is still blocked load, enable periodic update */
12695 	if (has_blocked_load)
12696 		WRITE_ONCE(nohz.has_blocked, 1);
12697 }
12698 
12699 /*
12700  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12701  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12702  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12703 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12704 {
12705 	unsigned int flags = this_rq->nohz_idle_balance;
12706 
12707 	if (!flags)
12708 		return false;
12709 
12710 	this_rq->nohz_idle_balance = 0;
12711 
12712 	if (idle != CPU_IDLE)
12713 		return false;
12714 
12715 	_nohz_idle_balance(this_rq, flags);
12716 
12717 	return true;
12718 }
12719 
12720 /*
12721  * Check if we need to directly run the ILB for updating blocked load before
12722  * entering idle state. Here we run ILB directly without issuing IPIs.
12723  *
12724  * Note that when this function is called, the tick may not yet be stopped on
12725  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12726  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12727  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12728  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12729  * called from this function on (this) CPU that's not yet in the mask. That's
12730  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12731  * updating the blocked load of already idle CPUs without waking up one of
12732  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12733  * cpu about to enter idle, because it can take a long time.
12734  */
nohz_run_idle_balance(int cpu)12735 void nohz_run_idle_balance(int cpu)
12736 {
12737 	unsigned int flags;
12738 
12739 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12740 
12741 	/*
12742 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12743 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12744 	 */
12745 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12746 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12747 }
12748 
nohz_newidle_balance(struct rq * this_rq)12749 static void nohz_newidle_balance(struct rq *this_rq)
12750 {
12751 	int this_cpu = this_rq->cpu;
12752 
12753 	/* Will wake up very soon. No time for doing anything else*/
12754 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12755 		return;
12756 
12757 	/* Don't need to update blocked load of idle CPUs*/
12758 	if (!READ_ONCE(nohz.has_blocked) ||
12759 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12760 		return;
12761 
12762 	/*
12763 	 * Set the need to trigger ILB in order to update blocked load
12764 	 * before entering idle state.
12765 	 */
12766 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12767 }
12768 
12769 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balancer_kick(struct rq * rq)12770 static inline void nohz_balancer_kick(struct rq *rq) { }
12771 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12772 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12773 {
12774 	return false;
12775 }
12776 
nohz_newidle_balance(struct rq * this_rq)12777 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12778 #endif /* !CONFIG_NO_HZ_COMMON */
12779 
12780 /*
12781  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12782  * idle. Attempts to pull tasks from other CPUs.
12783  *
12784  * Returns:
12785  *   < 0 - we released the lock and there are !fair tasks present
12786  *     0 - failed, no new tasks
12787  *   > 0 - success, new (fair) tasks present
12788  */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12789 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12790 {
12791 	unsigned long next_balance = jiffies + HZ;
12792 	int this_cpu = this_rq->cpu;
12793 	int continue_balancing = 1;
12794 	u64 t0, t1, curr_cost = 0;
12795 	struct sched_domain *sd;
12796 	int pulled_task = 0;
12797 
12798 	update_misfit_status(NULL, this_rq);
12799 
12800 	/*
12801 	 * There is a task waiting to run. No need to search for one.
12802 	 * Return 0; the task will be enqueued when switching to idle.
12803 	 */
12804 	if (this_rq->ttwu_pending)
12805 		return 0;
12806 
12807 	/*
12808 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12809 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12810 	 * as idle time.
12811 	 */
12812 	this_rq->idle_stamp = rq_clock(this_rq);
12813 
12814 	/*
12815 	 * Do not pull tasks towards !active CPUs...
12816 	 */
12817 	if (!cpu_active(this_cpu))
12818 		return 0;
12819 
12820 	/*
12821 	 * This is OK, because current is on_cpu, which avoids it being picked
12822 	 * for load-balance and preemption/IRQs are still disabled avoiding
12823 	 * further scheduler activity on it and we're being very careful to
12824 	 * re-start the picking loop.
12825 	 */
12826 	rq_unpin_lock(this_rq, rf);
12827 
12828 	rcu_read_lock();
12829 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12830 
12831 	if (!get_rd_overloaded(this_rq->rd) ||
12832 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12833 
12834 		if (sd)
12835 			update_next_balance(sd, &next_balance);
12836 		rcu_read_unlock();
12837 
12838 		goto out;
12839 	}
12840 	rcu_read_unlock();
12841 
12842 	raw_spin_rq_unlock(this_rq);
12843 
12844 	t0 = sched_clock_cpu(this_cpu);
12845 	sched_balance_update_blocked_averages(this_cpu);
12846 
12847 	rcu_read_lock();
12848 	for_each_domain(this_cpu, sd) {
12849 		u64 domain_cost;
12850 
12851 		update_next_balance(sd, &next_balance);
12852 
12853 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12854 			break;
12855 
12856 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12857 
12858 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12859 						   sd, CPU_NEWLY_IDLE,
12860 						   &continue_balancing);
12861 
12862 			t1 = sched_clock_cpu(this_cpu);
12863 			domain_cost = t1 - t0;
12864 			curr_cost += domain_cost;
12865 			t0 = t1;
12866 
12867 			/*
12868 			 * Failing newidle means it is not effective;
12869 			 * bump the cost so we end up doing less of it.
12870 			 */
12871 			if (!pulled_task)
12872 				domain_cost = (3 * sd->max_newidle_lb_cost) / 2;
12873 
12874 			update_newidle_cost(sd, domain_cost);
12875 		}
12876 
12877 		/*
12878 		 * Stop searching for tasks to pull if there are
12879 		 * now runnable tasks on this rq.
12880 		 */
12881 		if (pulled_task || !continue_balancing)
12882 			break;
12883 	}
12884 	rcu_read_unlock();
12885 
12886 	raw_spin_rq_lock(this_rq);
12887 
12888 	if (curr_cost > this_rq->max_idle_balance_cost)
12889 		this_rq->max_idle_balance_cost = curr_cost;
12890 
12891 	/*
12892 	 * While browsing the domains, we released the rq lock, a task could
12893 	 * have been enqueued in the meantime. Since we're not going idle,
12894 	 * pretend we pulled a task.
12895 	 */
12896 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12897 		pulled_task = 1;
12898 
12899 	/* Is there a task of a high priority class? */
12900 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12901 		pulled_task = -1;
12902 
12903 out:
12904 	/* Move the next balance forward */
12905 	if (time_after(this_rq->next_balance, next_balance))
12906 		this_rq->next_balance = next_balance;
12907 
12908 	if (pulled_task)
12909 		this_rq->idle_stamp = 0;
12910 	else
12911 		nohz_newidle_balance(this_rq);
12912 
12913 	rq_repin_lock(this_rq, rf);
12914 
12915 	return pulled_task;
12916 }
12917 
12918 /*
12919  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12920  *
12921  * - directly from the local sched_tick() for periodic load balancing
12922  *
12923  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12924  *   through the SMP cross-call nohz_csd_func()
12925  */
sched_balance_softirq(void)12926 static __latent_entropy void sched_balance_softirq(void)
12927 {
12928 	struct rq *this_rq = this_rq();
12929 	enum cpu_idle_type idle = this_rq->idle_balance;
12930 	/*
12931 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12932 	 * balancing on behalf of the other idle CPUs whose ticks are
12933 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12934 	 * give the idle CPUs a chance to load balance. Else we may
12935 	 * load balance only within the local sched_domain hierarchy
12936 	 * and abort nohz_idle_balance altogether if we pull some load.
12937 	 */
12938 	if (nohz_idle_balance(this_rq, idle))
12939 		return;
12940 
12941 	/* normal load balance */
12942 	sched_balance_update_blocked_averages(this_rq->cpu);
12943 	sched_balance_domains(this_rq, idle);
12944 }
12945 
12946 /*
12947  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12948  */
sched_balance_trigger(struct rq * rq)12949 void sched_balance_trigger(struct rq *rq)
12950 {
12951 	/*
12952 	 * Don't need to rebalance while attached to NULL domain or
12953 	 * runqueue CPU is not active
12954 	 */
12955 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12956 		return;
12957 
12958 	if (time_after_eq(jiffies, rq->next_balance))
12959 		raise_softirq(SCHED_SOFTIRQ);
12960 
12961 	nohz_balancer_kick(rq);
12962 }
12963 
rq_online_fair(struct rq * rq)12964 static void rq_online_fair(struct rq *rq)
12965 {
12966 	update_sysctl();
12967 
12968 	update_runtime_enabled(rq);
12969 }
12970 
rq_offline_fair(struct rq * rq)12971 static void rq_offline_fair(struct rq *rq)
12972 {
12973 	update_sysctl();
12974 
12975 	/* Ensure any throttled groups are reachable by pick_next_task */
12976 	unthrottle_offline_cfs_rqs(rq);
12977 
12978 	/* Ensure that we remove rq contribution to group share: */
12979 	clear_tg_offline_cfs_rqs(rq);
12980 }
12981 
12982 #ifdef CONFIG_SCHED_CORE
12983 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12984 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12985 {
12986 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12987 	u64 slice = se->slice;
12988 
12989 	return (rtime * min_nr_tasks > slice);
12990 }
12991 
12992 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12993 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12994 {
12995 	if (!sched_core_enabled(rq))
12996 		return;
12997 
12998 	/*
12999 	 * If runqueue has only one task which used up its slice and
13000 	 * if the sibling is forced idle, then trigger schedule to
13001 	 * give forced idle task a chance.
13002 	 *
13003 	 * sched_slice() considers only this active rq and it gets the
13004 	 * whole slice. But during force idle, we have siblings acting
13005 	 * like a single runqueue and hence we need to consider runnable
13006 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
13007 	 * go through the forced idle rq, but that would be a perf hit.
13008 	 * We can assume that the forced idle CPU has at least
13009 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13010 	 * if we need to give up the CPU.
13011 	 */
13012 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13013 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13014 		resched_curr(rq);
13015 }
13016 
13017 /*
13018  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13019  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13020 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13021 			 bool forceidle)
13022 {
13023 	for_each_sched_entity(se) {
13024 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13025 
13026 		if (forceidle) {
13027 			if (cfs_rq->forceidle_seq == fi_seq)
13028 				break;
13029 			cfs_rq->forceidle_seq = fi_seq;
13030 		}
13031 
13032 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13033 	}
13034 }
13035 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13036 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13037 {
13038 	struct sched_entity *se = &p->se;
13039 
13040 	if (p->sched_class != &fair_sched_class)
13041 		return;
13042 
13043 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13044 }
13045 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13046 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13047 			bool in_fi)
13048 {
13049 	struct rq *rq = task_rq(a);
13050 	const struct sched_entity *sea = &a->se;
13051 	const struct sched_entity *seb = &b->se;
13052 	struct cfs_rq *cfs_rqa;
13053 	struct cfs_rq *cfs_rqb;
13054 	s64 delta;
13055 
13056 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
13057 
13058 #ifdef CONFIG_FAIR_GROUP_SCHED
13059 	/*
13060 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13061 	 * are immediate siblings.
13062 	 */
13063 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13064 		int sea_depth = sea->depth;
13065 		int seb_depth = seb->depth;
13066 
13067 		if (sea_depth >= seb_depth)
13068 			sea = parent_entity(sea);
13069 		if (sea_depth <= seb_depth)
13070 			seb = parent_entity(seb);
13071 	}
13072 
13073 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13074 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13075 
13076 	cfs_rqa = sea->cfs_rq;
13077 	cfs_rqb = seb->cfs_rq;
13078 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13079 	cfs_rqa = &task_rq(a)->cfs;
13080 	cfs_rqb = &task_rq(b)->cfs;
13081 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13082 
13083 	/*
13084 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13085 	 * min_vruntime_fi, which would have been updated in prior calls
13086 	 * to se_fi_update().
13087 	 */
13088 	delta = (s64)(sea->vruntime - seb->vruntime) +
13089 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13090 
13091 	return delta > 0;
13092 }
13093 
task_is_throttled_fair(struct task_struct * p,int cpu)13094 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13095 {
13096 	struct cfs_rq *cfs_rq;
13097 
13098 #ifdef CONFIG_FAIR_GROUP_SCHED
13099 	cfs_rq = task_group(p)->cfs_rq[cpu];
13100 #else
13101 	cfs_rq = &cpu_rq(cpu)->cfs;
13102 #endif
13103 	return throttled_hierarchy(cfs_rq);
13104 }
13105 #else /* !CONFIG_SCHED_CORE: */
task_tick_core(struct rq * rq,struct task_struct * curr)13106 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13107 #endif /* !CONFIG_SCHED_CORE */
13108 
13109 /*
13110  * scheduler tick hitting a task of our scheduling class.
13111  *
13112  * NOTE: This function can be called remotely by the tick offload that
13113  * goes along full dynticks. Therefore no local assumption can be made
13114  * and everything must be accessed through the @rq and @curr passed in
13115  * parameters.
13116  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13117 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13118 {
13119 	struct cfs_rq *cfs_rq;
13120 	struct sched_entity *se = &curr->se;
13121 
13122 	for_each_sched_entity(se) {
13123 		cfs_rq = cfs_rq_of(se);
13124 		entity_tick(cfs_rq, se, queued);
13125 	}
13126 
13127 	if (static_branch_unlikely(&sched_numa_balancing))
13128 		task_tick_numa(rq, curr);
13129 
13130 	update_misfit_status(curr, rq);
13131 	check_update_overutilized_status(task_rq(curr));
13132 
13133 	task_tick_core(rq, curr);
13134 }
13135 
13136 /*
13137  * called on fork with the child task as argument from the parent's context
13138  *  - child not yet on the tasklist
13139  *  - preemption disabled
13140  */
task_fork_fair(struct task_struct * p)13141 static void task_fork_fair(struct task_struct *p)
13142 {
13143 	set_task_max_allowed_capacity(p);
13144 }
13145 
13146 /*
13147  * Priority of the task has changed. Check to see if we preempt
13148  * the current task.
13149  */
13150 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13151 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13152 {
13153 	if (!task_on_rq_queued(p))
13154 		return;
13155 
13156 	if (rq->cfs.nr_queued == 1)
13157 		return;
13158 
13159 	/*
13160 	 * Reschedule if we are currently running on this runqueue and
13161 	 * our priority decreased, or if we are not currently running on
13162 	 * this runqueue and our priority is higher than the current's
13163 	 */
13164 	if (task_current_donor(rq, p)) {
13165 		if (p->prio > oldprio)
13166 			resched_curr(rq);
13167 	} else
13168 		wakeup_preempt(rq, p, 0);
13169 }
13170 
13171 #ifdef CONFIG_FAIR_GROUP_SCHED
13172 /*
13173  * Propagate the changes of the sched_entity across the tg tree to make it
13174  * visible to the root
13175  */
propagate_entity_cfs_rq(struct sched_entity * se)13176 static void propagate_entity_cfs_rq(struct sched_entity *se)
13177 {
13178 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13179 
13180 	/*
13181 	 * If a task gets attached to this cfs_rq and before being queued,
13182 	 * it gets migrated to another CPU due to reasons like affinity
13183 	 * change, make sure this cfs_rq stays on leaf cfs_rq list to have
13184 	 * that removed load decayed or it can cause faireness problem.
13185 	 */
13186 	if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13187 		list_add_leaf_cfs_rq(cfs_rq);
13188 
13189 	/* Start to propagate at parent */
13190 	se = se->parent;
13191 
13192 	for_each_sched_entity(se) {
13193 		cfs_rq = cfs_rq_of(se);
13194 
13195 		update_load_avg(cfs_rq, se, UPDATE_TG);
13196 
13197 		if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13198 			list_add_leaf_cfs_rq(cfs_rq);
13199 	}
13200 
13201 	assert_list_leaf_cfs_rq(rq_of(cfs_rq));
13202 }
13203 #else /* !CONFIG_FAIR_GROUP_SCHED: */
propagate_entity_cfs_rq(struct sched_entity * se)13204 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13205 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13206 
detach_entity_cfs_rq(struct sched_entity * se)13207 static void detach_entity_cfs_rq(struct sched_entity *se)
13208 {
13209 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13210 
13211 	/*
13212 	 * In case the task sched_avg hasn't been attached:
13213 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13214 	 * - A task which has been woken up by try_to_wake_up() but is
13215 	 *   waiting for actually being woken up by sched_ttwu_pending().
13216 	 */
13217 	if (!se->avg.last_update_time)
13218 		return;
13219 
13220 	/* Catch up with the cfs_rq and remove our load when we leave */
13221 	update_load_avg(cfs_rq, se, 0);
13222 	detach_entity_load_avg(cfs_rq, se);
13223 	update_tg_load_avg(cfs_rq);
13224 	propagate_entity_cfs_rq(se);
13225 }
13226 
attach_entity_cfs_rq(struct sched_entity * se)13227 static void attach_entity_cfs_rq(struct sched_entity *se)
13228 {
13229 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13230 
13231 	/* Synchronize entity with its cfs_rq */
13232 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13233 	attach_entity_load_avg(cfs_rq, se);
13234 	update_tg_load_avg(cfs_rq);
13235 	propagate_entity_cfs_rq(se);
13236 }
13237 
detach_task_cfs_rq(struct task_struct * p)13238 static void detach_task_cfs_rq(struct task_struct *p)
13239 {
13240 	struct sched_entity *se = &p->se;
13241 
13242 	detach_entity_cfs_rq(se);
13243 }
13244 
attach_task_cfs_rq(struct task_struct * p)13245 static void attach_task_cfs_rq(struct task_struct *p)
13246 {
13247 	struct sched_entity *se = &p->se;
13248 
13249 	attach_entity_cfs_rq(se);
13250 }
13251 
switched_from_fair(struct rq * rq,struct task_struct * p)13252 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13253 {
13254 	detach_task_cfs_rq(p);
13255 }
13256 
switched_to_fair(struct rq * rq,struct task_struct * p)13257 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13258 {
13259 	WARN_ON_ONCE(p->se.sched_delayed);
13260 
13261 	attach_task_cfs_rq(p);
13262 
13263 	set_task_max_allowed_capacity(p);
13264 
13265 	if (task_on_rq_queued(p)) {
13266 		/*
13267 		 * We were most likely switched from sched_rt, so
13268 		 * kick off the schedule if running, otherwise just see
13269 		 * if we can still preempt the current task.
13270 		 */
13271 		if (task_current_donor(rq, p))
13272 			resched_curr(rq);
13273 		else
13274 			wakeup_preempt(rq, p, 0);
13275 	}
13276 }
13277 
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13278 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13279 {
13280 	struct sched_entity *se = &p->se;
13281 
13282 	if (task_on_rq_queued(p)) {
13283 		/*
13284 		 * Move the next running task to the front of the list, so our
13285 		 * cfs_tasks list becomes MRU one.
13286 		 */
13287 		list_move(&se->group_node, &rq->cfs_tasks);
13288 	}
13289 	if (!first)
13290 		return;
13291 
13292 	WARN_ON_ONCE(se->sched_delayed);
13293 
13294 	if (hrtick_enabled_fair(rq))
13295 		hrtick_start_fair(rq, p);
13296 
13297 	update_misfit_status(p, rq);
13298 	sched_fair_update_stop_tick(rq, p);
13299 }
13300 
13301 /*
13302  * Account for a task changing its policy or group.
13303  *
13304  * This routine is mostly called to set cfs_rq->curr field when a task
13305  * migrates between groups/classes.
13306  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13307 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13308 {
13309 	struct sched_entity *se = &p->se;
13310 
13311 	for_each_sched_entity(se) {
13312 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13313 
13314 		set_next_entity(cfs_rq, se);
13315 		/* ensure bandwidth has been allocated on our new cfs_rq */
13316 		account_cfs_rq_runtime(cfs_rq, 0);
13317 	}
13318 
13319 	__set_next_task_fair(rq, p, first);
13320 }
13321 
init_cfs_rq(struct cfs_rq * cfs_rq)13322 void init_cfs_rq(struct cfs_rq *cfs_rq)
13323 {
13324 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13325 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13326 	raw_spin_lock_init(&cfs_rq->removed.lock);
13327 }
13328 
13329 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13330 static void task_change_group_fair(struct task_struct *p)
13331 {
13332 	/*
13333 	 * We couldn't detach or attach a forked task which
13334 	 * hasn't been woken up by wake_up_new_task().
13335 	 */
13336 	if (READ_ONCE(p->__state) == TASK_NEW)
13337 		return;
13338 
13339 	detach_task_cfs_rq(p);
13340 
13341 	/* Tell se's cfs_rq has been changed -- migrated */
13342 	p->se.avg.last_update_time = 0;
13343 	set_task_rq(p, task_cpu(p));
13344 	attach_task_cfs_rq(p);
13345 }
13346 
free_fair_sched_group(struct task_group * tg)13347 void free_fair_sched_group(struct task_group *tg)
13348 {
13349 	int i;
13350 
13351 	for_each_possible_cpu(i) {
13352 		if (tg->cfs_rq)
13353 			kfree(tg->cfs_rq[i]);
13354 		if (tg->se)
13355 			kfree(tg->se[i]);
13356 	}
13357 
13358 	kfree(tg->cfs_rq);
13359 	kfree(tg->se);
13360 }
13361 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13362 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13363 {
13364 	struct sched_entity *se;
13365 	struct cfs_rq *cfs_rq;
13366 	int i;
13367 
13368 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13369 	if (!tg->cfs_rq)
13370 		goto err;
13371 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13372 	if (!tg->se)
13373 		goto err;
13374 
13375 	tg->shares = NICE_0_LOAD;
13376 
13377 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13378 
13379 	for_each_possible_cpu(i) {
13380 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13381 				      GFP_KERNEL, cpu_to_node(i));
13382 		if (!cfs_rq)
13383 			goto err;
13384 
13385 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13386 				  GFP_KERNEL, cpu_to_node(i));
13387 		if (!se)
13388 			goto err_free_rq;
13389 
13390 		init_cfs_rq(cfs_rq);
13391 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13392 		init_entity_runnable_average(se);
13393 	}
13394 
13395 	return 1;
13396 
13397 err_free_rq:
13398 	kfree(cfs_rq);
13399 err:
13400 	return 0;
13401 }
13402 
online_fair_sched_group(struct task_group * tg)13403 void online_fair_sched_group(struct task_group *tg)
13404 {
13405 	struct sched_entity *se;
13406 	struct rq_flags rf;
13407 	struct rq *rq;
13408 	int i;
13409 
13410 	for_each_possible_cpu(i) {
13411 		rq = cpu_rq(i);
13412 		se = tg->se[i];
13413 		rq_lock_irq(rq, &rf);
13414 		update_rq_clock(rq);
13415 		attach_entity_cfs_rq(se);
13416 		sync_throttle(tg, i);
13417 		rq_unlock_irq(rq, &rf);
13418 	}
13419 }
13420 
unregister_fair_sched_group(struct task_group * tg)13421 void unregister_fair_sched_group(struct task_group *tg)
13422 {
13423 	int cpu;
13424 
13425 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13426 
13427 	for_each_possible_cpu(cpu) {
13428 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13429 		struct sched_entity *se = tg->se[cpu];
13430 		struct rq *rq = cpu_rq(cpu);
13431 
13432 		if (se) {
13433 			if (se->sched_delayed) {
13434 				guard(rq_lock_irqsave)(rq);
13435 				if (se->sched_delayed) {
13436 					update_rq_clock(rq);
13437 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13438 				}
13439 				list_del_leaf_cfs_rq(cfs_rq);
13440 			}
13441 			remove_entity_load_avg(se);
13442 		}
13443 
13444 		/*
13445 		 * Only empty task groups can be destroyed; so we can speculatively
13446 		 * check on_list without danger of it being re-added.
13447 		 */
13448 		if (cfs_rq->on_list) {
13449 			guard(rq_lock_irqsave)(rq);
13450 			list_del_leaf_cfs_rq(cfs_rq);
13451 		}
13452 	}
13453 }
13454 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13455 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13456 			struct sched_entity *se, int cpu,
13457 			struct sched_entity *parent)
13458 {
13459 	struct rq *rq = cpu_rq(cpu);
13460 
13461 	cfs_rq->tg = tg;
13462 	cfs_rq->rq = rq;
13463 	init_cfs_rq_runtime(cfs_rq);
13464 
13465 	tg->cfs_rq[cpu] = cfs_rq;
13466 	tg->se[cpu] = se;
13467 
13468 	/* se could be NULL for root_task_group */
13469 	if (!se)
13470 		return;
13471 
13472 	if (!parent) {
13473 		se->cfs_rq = &rq->cfs;
13474 		se->depth = 0;
13475 	} else {
13476 		se->cfs_rq = parent->my_q;
13477 		se->depth = parent->depth + 1;
13478 	}
13479 
13480 	se->my_q = cfs_rq;
13481 	/* guarantee group entities always have weight */
13482 	update_load_set(&se->load, NICE_0_LOAD);
13483 	se->parent = parent;
13484 }
13485 
13486 static DEFINE_MUTEX(shares_mutex);
13487 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13488 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13489 {
13490 	int i;
13491 
13492 	lockdep_assert_held(&shares_mutex);
13493 
13494 	/*
13495 	 * We can't change the weight of the root cgroup.
13496 	 */
13497 	if (!tg->se[0])
13498 		return -EINVAL;
13499 
13500 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13501 
13502 	if (tg->shares == shares)
13503 		return 0;
13504 
13505 	tg->shares = shares;
13506 	for_each_possible_cpu(i) {
13507 		struct rq *rq = cpu_rq(i);
13508 		struct sched_entity *se = tg->se[i];
13509 		struct rq_flags rf;
13510 
13511 		/* Propagate contribution to hierarchy */
13512 		rq_lock_irqsave(rq, &rf);
13513 		update_rq_clock(rq);
13514 		for_each_sched_entity(se) {
13515 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13516 			update_cfs_group(se);
13517 		}
13518 		rq_unlock_irqrestore(rq, &rf);
13519 	}
13520 
13521 	return 0;
13522 }
13523 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13524 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13525 {
13526 	int ret;
13527 
13528 	mutex_lock(&shares_mutex);
13529 	if (tg_is_idle(tg))
13530 		ret = -EINVAL;
13531 	else
13532 		ret = __sched_group_set_shares(tg, shares);
13533 	mutex_unlock(&shares_mutex);
13534 
13535 	return ret;
13536 }
13537 
sched_group_set_idle(struct task_group * tg,long idle)13538 int sched_group_set_idle(struct task_group *tg, long idle)
13539 {
13540 	int i;
13541 
13542 	if (tg == &root_task_group)
13543 		return -EINVAL;
13544 
13545 	if (idle < 0 || idle > 1)
13546 		return -EINVAL;
13547 
13548 	mutex_lock(&shares_mutex);
13549 
13550 	if (tg->idle == idle) {
13551 		mutex_unlock(&shares_mutex);
13552 		return 0;
13553 	}
13554 
13555 	tg->idle = idle;
13556 
13557 	for_each_possible_cpu(i) {
13558 		struct rq *rq = cpu_rq(i);
13559 		struct sched_entity *se = tg->se[i];
13560 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13561 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13562 		long idle_task_delta;
13563 		struct rq_flags rf;
13564 
13565 		rq_lock_irqsave(rq, &rf);
13566 
13567 		grp_cfs_rq->idle = idle;
13568 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13569 			goto next_cpu;
13570 
13571 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13572 				  grp_cfs_rq->h_nr_idle;
13573 		if (!cfs_rq_is_idle(grp_cfs_rq))
13574 			idle_task_delta *= -1;
13575 
13576 		for_each_sched_entity(se) {
13577 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13578 
13579 			if (!se->on_rq)
13580 				break;
13581 
13582 			cfs_rq->h_nr_idle += idle_task_delta;
13583 
13584 			/* Already accounted at parent level and above. */
13585 			if (cfs_rq_is_idle(cfs_rq))
13586 				break;
13587 		}
13588 
13589 next_cpu:
13590 		rq_unlock_irqrestore(rq, &rf);
13591 	}
13592 
13593 	/* Idle groups have minimum weight. */
13594 	if (tg_is_idle(tg))
13595 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13596 	else
13597 		__sched_group_set_shares(tg, NICE_0_LOAD);
13598 
13599 	mutex_unlock(&shares_mutex);
13600 	return 0;
13601 }
13602 
13603 #endif /* CONFIG_FAIR_GROUP_SCHED */
13604 
13605 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13606 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13607 {
13608 	struct sched_entity *se = &task->se;
13609 	unsigned int rr_interval = 0;
13610 
13611 	/*
13612 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13613 	 * idle runqueue:
13614 	 */
13615 	if (rq->cfs.load.weight)
13616 		rr_interval = NS_TO_JIFFIES(se->slice);
13617 
13618 	return rr_interval;
13619 }
13620 
13621 /*
13622  * All the scheduling class methods:
13623  */
13624 DEFINE_SCHED_CLASS(fair) = {
13625 
13626 	.enqueue_task		= enqueue_task_fair,
13627 	.dequeue_task		= dequeue_task_fair,
13628 	.yield_task		= yield_task_fair,
13629 	.yield_to_task		= yield_to_task_fair,
13630 
13631 	.wakeup_preempt		= check_preempt_wakeup_fair,
13632 
13633 	.pick_task		= pick_task_fair,
13634 	.pick_next_task		= __pick_next_task_fair,
13635 	.put_prev_task		= put_prev_task_fair,
13636 	.set_next_task          = set_next_task_fair,
13637 
13638 	.balance		= balance_fair,
13639 	.select_task_rq		= select_task_rq_fair,
13640 	.migrate_task_rq	= migrate_task_rq_fair,
13641 
13642 	.rq_online		= rq_online_fair,
13643 	.rq_offline		= rq_offline_fair,
13644 
13645 	.task_dead		= task_dead_fair,
13646 	.set_cpus_allowed	= set_cpus_allowed_fair,
13647 
13648 	.task_tick		= task_tick_fair,
13649 	.task_fork		= task_fork_fair,
13650 
13651 	.reweight_task		= reweight_task_fair,
13652 	.prio_changed		= prio_changed_fair,
13653 	.switched_from		= switched_from_fair,
13654 	.switched_to		= switched_to_fair,
13655 
13656 	.get_rr_interval	= get_rr_interval_fair,
13657 
13658 	.update_curr		= update_curr_fair,
13659 
13660 #ifdef CONFIG_FAIR_GROUP_SCHED
13661 	.task_change_group	= task_change_group_fair,
13662 #endif
13663 
13664 #ifdef CONFIG_SCHED_CORE
13665 	.task_is_throttled	= task_is_throttled_fair,
13666 #endif
13667 
13668 #ifdef CONFIG_UCLAMP_TASK
13669 	.uclamp_enabled		= 1,
13670 #endif
13671 };
13672 
print_cfs_stats(struct seq_file * m,int cpu)13673 void print_cfs_stats(struct seq_file *m, int cpu)
13674 {
13675 	struct cfs_rq *cfs_rq, *pos;
13676 
13677 	rcu_read_lock();
13678 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13679 		print_cfs_rq(m, cpu, cfs_rq);
13680 	rcu_read_unlock();
13681 }
13682 
13683 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13684 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13685 {
13686 	int node;
13687 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13688 	struct numa_group *ng;
13689 
13690 	rcu_read_lock();
13691 	ng = rcu_dereference(p->numa_group);
13692 	for_each_online_node(node) {
13693 		if (p->numa_faults) {
13694 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13695 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13696 		}
13697 		if (ng) {
13698 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13699 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13700 		}
13701 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13702 	}
13703 	rcu_read_unlock();
13704 }
13705 #endif /* CONFIG_NUMA_BALANCING */
13706 
init_sched_fair_class(void)13707 __init void init_sched_fair_class(void)
13708 {
13709 	int i;
13710 
13711 	for_each_possible_cpu(i) {
13712 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13713 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13714 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13715 					GFP_KERNEL, cpu_to_node(i));
13716 
13717 #ifdef CONFIG_CFS_BANDWIDTH
13718 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13719 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13720 #endif
13721 	}
13722 
13723 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13724 
13725 #ifdef CONFIG_NO_HZ_COMMON
13726 	nohz.next_balance = jiffies;
13727 	nohz.next_blocked = jiffies;
13728 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13729 #endif
13730 }
13731