1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
3 */
4 #include "sja1105.h"
5
6 #define SJA1105_TAS_CLKSRC_DISABLED 0
7 #define SJA1105_TAS_CLKSRC_STANDALONE 1
8 #define SJA1105_TAS_CLKSRC_AS6802 2
9 #define SJA1105_TAS_CLKSRC_PTP 3
10 #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
11
12 #define work_to_sja1105_tas(d) \
13 container_of((d), struct sja1105_tas_data, tas_work)
14 #define tas_to_sja1105(d) \
15 container_of((d), struct sja1105_private, tas_data)
16
sja1105_tas_set_runtime_params(struct sja1105_private * priv)17 static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
18 {
19 struct sja1105_tas_data *tas_data = &priv->tas_data;
20 struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
21 struct dsa_switch *ds = priv->ds;
22 s64 earliest_base_time = S64_MAX;
23 s64 latest_base_time = 0;
24 s64 its_cycle_time = 0;
25 s64 max_cycle_time = 0;
26 int port;
27
28 tas_data->enabled = false;
29
30 for (port = 0; port < ds->num_ports; port++) {
31 const struct tc_taprio_qopt_offload *offload;
32
33 offload = tas_data->offload[port];
34 if (!offload)
35 continue;
36
37 tas_data->enabled = true;
38
39 if (max_cycle_time < offload->cycle_time)
40 max_cycle_time = offload->cycle_time;
41 if (latest_base_time < offload->base_time)
42 latest_base_time = offload->base_time;
43 if (earliest_base_time > offload->base_time) {
44 earliest_base_time = offload->base_time;
45 its_cycle_time = offload->cycle_time;
46 }
47 }
48
49 if (!list_empty(&gating_cfg->entries)) {
50 tas_data->enabled = true;
51
52 if (max_cycle_time < gating_cfg->cycle_time)
53 max_cycle_time = gating_cfg->cycle_time;
54 if (latest_base_time < gating_cfg->base_time)
55 latest_base_time = gating_cfg->base_time;
56 if (earliest_base_time > gating_cfg->base_time) {
57 earliest_base_time = gating_cfg->base_time;
58 its_cycle_time = gating_cfg->cycle_time;
59 }
60 }
61
62 if (!tas_data->enabled)
63 return 0;
64
65 /* Roll the earliest base time over until it is in a comparable
66 * time base with the latest, then compare their deltas.
67 * We want to enforce that all ports' base times are within
68 * SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
69 */
70 earliest_base_time = future_base_time(earliest_base_time,
71 its_cycle_time,
72 latest_base_time);
73 while (earliest_base_time > latest_base_time)
74 earliest_base_time -= its_cycle_time;
75 if (latest_base_time - earliest_base_time >
76 sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
77 dev_err(ds->dev,
78 "Base times too far apart: min %llu max %llu\n",
79 earliest_base_time, latest_base_time);
80 return -ERANGE;
81 }
82
83 tas_data->earliest_base_time = earliest_base_time;
84 tas_data->max_cycle_time = max_cycle_time;
85
86 dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
87 dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
88 dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
89
90 return 0;
91 }
92
93 /* Lo and behold: the egress scheduler from hell.
94 *
95 * At the hardware level, the Time-Aware Shaper holds a global linear arrray of
96 * all schedule entries for all ports. These are the Gate Control List (GCL)
97 * entries, let's call them "timeslots" for short. This linear array of
98 * timeslots is held in BLK_IDX_SCHEDULE.
99 *
100 * Then there are a maximum of 8 "execution threads" inside the switch, which
101 * iterate cyclically through the "schedule". Each "cycle" has an entry point
102 * and an exit point, both being timeslot indices in the schedule table. The
103 * hardware calls each cycle a "subschedule".
104 *
105 * Subschedule (cycle) i starts when
106 * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
107 *
108 * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
109 * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
110 * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
111 *
112 * For each schedule entry (timeslot) k, the engine executes the gate control
113 * list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
114 *
115 * +---------+
116 * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
117 * +---------+
118 * |
119 * +-----------------+
120 * | .actsubsch
121 * BLK_IDX_SCHEDULE_ENTRY_POINTS v
122 * +-------+-------+
123 * |cycle 0|cycle 1|
124 * +-------+-------+
125 * | | | |
126 * +----------------+ | | +-------------------------------------+
127 * | .subschindx | | .subschindx |
128 * | | +---------------+ |
129 * | .address | .address | |
130 * | | | |
131 * | | | |
132 * | BLK_IDX_SCHEDULE v v |
133 * | +-------+-------+-------+-------+-------+------+ |
134 * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| |
135 * | +-------+-------+-------+-------+-------+------+ |
136 * | ^ ^ ^ ^ |
137 * | | | | | |
138 * | +-------------------------+ | | | |
139 * | | +-------------------------------+ | | |
140 * | | | +-------------------+ | |
141 * | | | | | |
142 * | +---------------------------------------------------------------+ |
143 * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
144 * | +---------------------------------------------------------------+ |
145 * | ^ ^ BLK_IDX_SCHEDULE_PARAMS |
146 * | | | |
147 * +--------+ +-------------------------------------------+
148 *
149 * In the above picture there are two subschedules (cycles):
150 *
151 * - cycle 0: iterates the schedule table from 0 to 2 (and back)
152 * - cycle 1: iterates the schedule table from 3 to 5 (and back)
153 *
154 * All other possible execution threads must be marked as unused by making
155 * their "subschedule end index" (subscheind) equal to the last valid
156 * subschedule's end index (in this case 5).
157 */
sja1105_init_scheduling(struct sja1105_private * priv)158 int sja1105_init_scheduling(struct sja1105_private *priv)
159 {
160 struct sja1105_schedule_entry_points_entry *schedule_entry_points;
161 struct sja1105_schedule_entry_points_params_entry
162 *schedule_entry_points_params;
163 struct sja1105_schedule_params_entry *schedule_params;
164 struct sja1105_tas_data *tas_data = &priv->tas_data;
165 struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
166 struct sja1105_schedule_entry *schedule;
167 struct dsa_switch *ds = priv->ds;
168 struct sja1105_table *table;
169 int schedule_start_idx;
170 s64 entry_point_delta;
171 int schedule_end_idx;
172 int num_entries = 0;
173 int num_cycles = 0;
174 int cycle = 0;
175 int i, k = 0;
176 int port, rc;
177
178 rc = sja1105_tas_set_runtime_params(priv);
179 if (rc < 0)
180 return rc;
181
182 /* Discard previous Schedule Table */
183 table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
184 if (table->entry_count) {
185 kfree(table->entries);
186 table->entry_count = 0;
187 }
188
189 /* Discard previous Schedule Entry Points Parameters Table */
190 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
191 if (table->entry_count) {
192 kfree(table->entries);
193 table->entry_count = 0;
194 }
195
196 /* Discard previous Schedule Parameters Table */
197 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
198 if (table->entry_count) {
199 kfree(table->entries);
200 table->entry_count = 0;
201 }
202
203 /* Discard previous Schedule Entry Points Table */
204 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
205 if (table->entry_count) {
206 kfree(table->entries);
207 table->entry_count = 0;
208 }
209
210 /* Figure out the dimensioning of the problem */
211 for (port = 0; port < ds->num_ports; port++) {
212 if (tas_data->offload[port]) {
213 num_entries += tas_data->offload[port]->num_entries;
214 num_cycles++;
215 }
216 }
217
218 if (!list_empty(&gating_cfg->entries)) {
219 num_entries += gating_cfg->num_entries;
220 num_cycles++;
221 }
222
223 /* Nothing to do */
224 if (!num_cycles)
225 return 0;
226
227 /* Pre-allocate space in the static config tables */
228
229 /* Schedule Table */
230 table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
231 table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
232 GFP_KERNEL);
233 if (!table->entries)
234 return -ENOMEM;
235 table->entry_count = num_entries;
236 schedule = table->entries;
237
238 /* Schedule Points Parameters Table */
239 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
240 table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
241 table->ops->unpacked_entry_size, GFP_KERNEL);
242 if (!table->entries)
243 /* Previously allocated memory will be freed automatically in
244 * sja1105_static_config_free. This is true for all early
245 * returns below.
246 */
247 return -ENOMEM;
248 table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
249 schedule_entry_points_params = table->entries;
250
251 /* Schedule Parameters Table */
252 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
253 table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
254 table->ops->unpacked_entry_size, GFP_KERNEL);
255 if (!table->entries)
256 return -ENOMEM;
257 table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
258 schedule_params = table->entries;
259
260 /* Schedule Entry Points Table */
261 table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
262 table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
263 GFP_KERNEL);
264 if (!table->entries)
265 return -ENOMEM;
266 table->entry_count = num_cycles;
267 schedule_entry_points = table->entries;
268
269 /* Finally start populating the static config tables */
270 schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
271 schedule_entry_points_params->actsubsch = num_cycles - 1;
272
273 for (port = 0; port < ds->num_ports; port++) {
274 const struct tc_taprio_qopt_offload *offload;
275 /* Relative base time */
276 s64 rbt;
277
278 offload = tas_data->offload[port];
279 if (!offload)
280 continue;
281
282 schedule_start_idx = k;
283 schedule_end_idx = k + offload->num_entries - 1;
284 /* This is the base time expressed as a number of TAS ticks
285 * relative to PTPSCHTM, which we'll (perhaps improperly) call
286 * the operational base time.
287 */
288 rbt = future_base_time(offload->base_time,
289 offload->cycle_time,
290 tas_data->earliest_base_time);
291 rbt -= tas_data->earliest_base_time;
292 /* UM10944.pdf 4.2.2. Schedule Entry Points table says that
293 * delta cannot be zero, which is shitty. Advance all relative
294 * base times by 1 TAS delta, so that even the earliest base
295 * time becomes 1 in relative terms. Then start the operational
296 * base time (PTPSCHTM) one TAS delta earlier than planned.
297 */
298 entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
299
300 schedule_entry_points[cycle].subschindx = cycle;
301 schedule_entry_points[cycle].delta = entry_point_delta;
302 schedule_entry_points[cycle].address = schedule_start_idx;
303
304 /* The subschedule end indices need to be
305 * monotonically increasing.
306 */
307 for (i = cycle; i < 8; i++)
308 schedule_params->subscheind[i] = schedule_end_idx;
309
310 for (i = 0; i < offload->num_entries; i++, k++) {
311 s64 delta_ns = offload->entries[i].interval;
312
313 schedule[k].delta = ns_to_sja1105_delta(delta_ns);
314 schedule[k].destports = BIT(port);
315 schedule[k].resmedia_en = true;
316 schedule[k].resmedia = SJA1105_GATE_MASK &
317 ~offload->entries[i].gate_mask;
318 }
319 cycle++;
320 }
321
322 if (!list_empty(&gating_cfg->entries)) {
323 struct sja1105_gate_entry *e;
324
325 /* Relative base time */
326 s64 rbt;
327
328 schedule_start_idx = k;
329 schedule_end_idx = k + gating_cfg->num_entries - 1;
330 rbt = future_base_time(gating_cfg->base_time,
331 gating_cfg->cycle_time,
332 tas_data->earliest_base_time);
333 rbt -= tas_data->earliest_base_time;
334 entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
335
336 schedule_entry_points[cycle].subschindx = cycle;
337 schedule_entry_points[cycle].delta = entry_point_delta;
338 schedule_entry_points[cycle].address = schedule_start_idx;
339
340 for (i = cycle; i < 8; i++)
341 schedule_params->subscheind[i] = schedule_end_idx;
342
343 list_for_each_entry(e, &gating_cfg->entries, list) {
344 schedule[k].delta = ns_to_sja1105_delta(e->interval);
345 schedule[k].destports = e->rule->vl.destports;
346 schedule[k].setvalid = true;
347 schedule[k].txen = true;
348 schedule[k].vlindex = e->rule->vl.sharindx;
349 schedule[k].winstindex = e->rule->vl.sharindx;
350 if (e->gate_state) /* Gate open */
351 schedule[k].winst = true;
352 else /* Gate closed */
353 schedule[k].winend = true;
354 k++;
355 }
356 }
357
358 return 0;
359 }
360
361 /* Be there 2 port subschedules, each executing an arbitrary number of gate
362 * open/close events cyclically.
363 * None of those gate events must ever occur at the exact same time, otherwise
364 * the switch is known to act in exotically strange ways.
365 * However the hardware doesn't bother performing these integrity checks.
366 * So here we are with the task of validating whether the new @admin offload
367 * has any conflict with the already established TAS configuration in
368 * tas_data->offload. We already know the other ports are in harmony with one
369 * another, otherwise we wouldn't have saved them.
370 * Each gate event executes periodically, with a period of @cycle_time and a
371 * phase given by its cycle's @base_time plus its offset within the cycle
372 * (which in turn is given by the length of the events prior to it).
373 * There are two aspects to possible collisions:
374 * - Collisions within one cycle's (actually the longest cycle's) time frame.
375 * For that, we need to compare the cartesian product of each possible
376 * occurrence of each event within one cycle time.
377 * - Collisions in the future. Events may not collide within one cycle time,
378 * but if two port schedules don't have the same periodicity (aka the cycle
379 * times aren't multiples of one another), they surely will some time in the
380 * future (actually they will collide an infinite amount of times).
381 */
382 static bool
sja1105_tas_check_conflicts(struct sja1105_private * priv,int port,const struct tc_taprio_qopt_offload * admin)383 sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
384 const struct tc_taprio_qopt_offload *admin)
385 {
386 struct sja1105_tas_data *tas_data = &priv->tas_data;
387 const struct tc_taprio_qopt_offload *offload;
388 s64 max_cycle_time, min_cycle_time;
389 s64 delta1, delta2;
390 s64 rbt1, rbt2;
391 s64 stop_time;
392 s64 t1, t2;
393 int i, j;
394 s32 rem;
395
396 offload = tas_data->offload[port];
397 if (!offload)
398 return false;
399
400 /* Check if the two cycle times are multiples of one another.
401 * If they aren't, then they will surely collide.
402 */
403 max_cycle_time = max(offload->cycle_time, admin->cycle_time);
404 min_cycle_time = min(offload->cycle_time, admin->cycle_time);
405 div_s64_rem(max_cycle_time, min_cycle_time, &rem);
406 if (rem)
407 return true;
408
409 /* Calculate the "reduced" base time of each of the two cycles
410 * (transposed back as close to 0 as possible) by dividing to
411 * the cycle time.
412 */
413 div_s64_rem(offload->base_time, offload->cycle_time, &rem);
414 rbt1 = rem;
415
416 div_s64_rem(admin->base_time, admin->cycle_time, &rem);
417 rbt2 = rem;
418
419 stop_time = max_cycle_time + max(rbt1, rbt2);
420
421 /* delta1 is the relative base time of each GCL entry within
422 * the established ports' TAS config.
423 */
424 for (i = 0, delta1 = 0;
425 i < offload->num_entries;
426 delta1 += offload->entries[i].interval, i++) {
427 /* delta2 is the relative base time of each GCL entry
428 * within the newly added TAS config.
429 */
430 for (j = 0, delta2 = 0;
431 j < admin->num_entries;
432 delta2 += admin->entries[j].interval, j++) {
433 /* t1 follows all possible occurrences of the
434 * established ports' GCL entry i within the
435 * first cycle time.
436 */
437 for (t1 = rbt1 + delta1;
438 t1 <= stop_time;
439 t1 += offload->cycle_time) {
440 /* t2 follows all possible occurrences
441 * of the newly added GCL entry j
442 * within the first cycle time.
443 */
444 for (t2 = rbt2 + delta2;
445 t2 <= stop_time;
446 t2 += admin->cycle_time) {
447 if (t1 == t2) {
448 dev_warn(priv->ds->dev,
449 "GCL entry %d collides with entry %d of port %d\n",
450 j, i, port);
451 return true;
452 }
453 }
454 }
455 }
456 }
457
458 return false;
459 }
460
461 /* Check the tc-taprio configuration on @port for conflicts with the tc-gate
462 * global subschedule. If @port is -1, check it against all ports.
463 * To reuse the sja1105_tas_check_conflicts logic without refactoring it,
464 * convert the gating configuration to a dummy tc-taprio offload structure.
465 */
sja1105_gating_check_conflicts(struct sja1105_private * priv,int port,struct netlink_ext_ack * extack)466 bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port,
467 struct netlink_ext_ack *extack)
468 {
469 struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg;
470 size_t num_entries = gating_cfg->num_entries;
471 struct tc_taprio_qopt_offload *dummy;
472 struct dsa_switch *ds = priv->ds;
473 struct sja1105_gate_entry *e;
474 bool conflict;
475 int i = 0;
476
477 if (list_empty(&gating_cfg->entries))
478 return false;
479
480 dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL);
481 if (!dummy) {
482 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory");
483 return true;
484 }
485
486 dummy->num_entries = num_entries;
487 dummy->base_time = gating_cfg->base_time;
488 dummy->cycle_time = gating_cfg->cycle_time;
489
490 list_for_each_entry(e, &gating_cfg->entries, list)
491 dummy->entries[i++].interval = e->interval;
492
493 if (port != -1) {
494 conflict = sja1105_tas_check_conflicts(priv, port, dummy);
495 } else {
496 for (port = 0; port < ds->num_ports; port++) {
497 conflict = sja1105_tas_check_conflicts(priv, port,
498 dummy);
499 if (conflict)
500 break;
501 }
502 }
503
504 kfree(dummy);
505
506 return conflict;
507 }
508
sja1105_setup_tc_taprio(struct dsa_switch * ds,int port,struct tc_taprio_qopt_offload * admin)509 int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
510 struct tc_taprio_qopt_offload *admin)
511 {
512 struct sja1105_private *priv = ds->priv;
513 struct sja1105_tas_data *tas_data = &priv->tas_data;
514 int other_port, rc, i;
515
516 /* Can't change an already configured port (must delete qdisc first).
517 * Can't delete the qdisc from an unconfigured port.
518 */
519 if ((!!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_REPLACE) ||
520 (!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_DESTROY))
521 return -EINVAL;
522
523 if (admin->cmd == TAPRIO_CMD_DESTROY) {
524 taprio_offload_free(tas_data->offload[port]);
525 tas_data->offload[port] = NULL;
526
527 rc = sja1105_init_scheduling(priv);
528 if (rc < 0)
529 return rc;
530
531 return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
532 } else if (admin->cmd != TAPRIO_CMD_REPLACE) {
533 return -EOPNOTSUPP;
534 }
535
536 /* The cycle time extension is the amount of time the last cycle from
537 * the old OPER needs to be extended in order to phase-align with the
538 * base time of the ADMIN when that becomes the new OPER.
539 * But of course our switch needs to be reset to switch-over between
540 * the ADMIN and the OPER configs - so much for a seamless transition.
541 * So don't add insult over injury and just say we don't support cycle
542 * time extension.
543 */
544 if (admin->cycle_time_extension)
545 return -ENOTSUPP;
546
547 for (i = 0; i < admin->num_entries; i++) {
548 s64 delta_ns = admin->entries[i].interval;
549 s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
550 bool too_long, too_short;
551
552 too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
553 too_short = (delta_cycles == 0);
554 if (too_long || too_short) {
555 dev_err(priv->ds->dev,
556 "Interval %llu too %s for GCL entry %d\n",
557 delta_ns, too_long ? "long" : "short", i);
558 return -ERANGE;
559 }
560 }
561
562 for (other_port = 0; other_port < ds->num_ports; other_port++) {
563 if (other_port == port)
564 continue;
565
566 if (sja1105_tas_check_conflicts(priv, other_port, admin))
567 return -ERANGE;
568 }
569
570 if (sja1105_gating_check_conflicts(priv, port, NULL)) {
571 dev_err(ds->dev, "Conflict with tc-gate schedule\n");
572 return -ERANGE;
573 }
574
575 tas_data->offload[port] = taprio_offload_get(admin);
576
577 rc = sja1105_init_scheduling(priv);
578 if (rc < 0)
579 return rc;
580
581 return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
582 }
583
sja1105_tas_check_running(struct sja1105_private * priv)584 static int sja1105_tas_check_running(struct sja1105_private *priv)
585 {
586 struct sja1105_tas_data *tas_data = &priv->tas_data;
587 struct dsa_switch *ds = priv->ds;
588 struct sja1105_ptp_cmd cmd = {0};
589 int rc;
590
591 rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
592 if (rc < 0)
593 return rc;
594
595 if (cmd.ptpstrtsch == 1)
596 /* Schedule successfully started */
597 tas_data->state = SJA1105_TAS_STATE_RUNNING;
598 else if (cmd.ptpstopsch == 1)
599 /* Schedule is stopped */
600 tas_data->state = SJA1105_TAS_STATE_DISABLED;
601 else
602 /* Schedule is probably not configured with PTP clock source */
603 rc = -EINVAL;
604
605 return rc;
606 }
607
608 /* Write to PTPCLKCORP */
sja1105_tas_adjust_drift(struct sja1105_private * priv,u64 correction)609 static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
610 u64 correction)
611 {
612 const struct sja1105_regs *regs = priv->info->regs;
613 u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
614
615 return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
616 &ptpclkcorp, NULL);
617 }
618
619 /* Write to PTPSCHTM */
sja1105_tas_set_base_time(struct sja1105_private * priv,u64 base_time)620 static int sja1105_tas_set_base_time(struct sja1105_private *priv,
621 u64 base_time)
622 {
623 const struct sja1105_regs *regs = priv->info->regs;
624 u64 ptpschtm = ns_to_sja1105_ticks(base_time);
625
626 return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
627 &ptpschtm, NULL);
628 }
629
sja1105_tas_start(struct sja1105_private * priv)630 static int sja1105_tas_start(struct sja1105_private *priv)
631 {
632 struct sja1105_tas_data *tas_data = &priv->tas_data;
633 struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
634 struct dsa_switch *ds = priv->ds;
635 int rc;
636
637 dev_dbg(ds->dev, "Starting the TAS\n");
638
639 if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
640 tas_data->state == SJA1105_TAS_STATE_RUNNING) {
641 dev_err(ds->dev, "TAS already started\n");
642 return -EINVAL;
643 }
644
645 cmd->ptpstrtsch = 1;
646 cmd->ptpstopsch = 0;
647
648 rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
649 if (rc < 0)
650 return rc;
651
652 tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
653
654 return 0;
655 }
656
sja1105_tas_stop(struct sja1105_private * priv)657 static int sja1105_tas_stop(struct sja1105_private *priv)
658 {
659 struct sja1105_tas_data *tas_data = &priv->tas_data;
660 struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
661 struct dsa_switch *ds = priv->ds;
662 int rc;
663
664 dev_dbg(ds->dev, "Stopping the TAS\n");
665
666 if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
667 dev_err(ds->dev, "TAS already disabled\n");
668 return -EINVAL;
669 }
670
671 cmd->ptpstopsch = 1;
672 cmd->ptpstrtsch = 0;
673
674 rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
675 if (rc < 0)
676 return rc;
677
678 tas_data->state = SJA1105_TAS_STATE_DISABLED;
679
680 return 0;
681 }
682
683 /* The schedule engine and the PTP clock are driven by the same oscillator, and
684 * they run in parallel. But whilst the PTP clock can keep an absolute
685 * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
686 * up a delta, which is 200ns), and wrapping around at the end of each cycle.
687 * The schedule engine is started when the PTP clock reaches the PTPSCHTM time
688 * (in PTP domain).
689 * Because the PTP clock can be rate-corrected (accelerated or slowed down) by
690 * a software servo, and the schedule engine clock runs in parallel to the PTP
691 * clock, there is logic internal to the switch that periodically keeps the
692 * schedule engine from drifting away. The frequency with which this internal
693 * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
694 * a value also in the PTP clock domain, and is also rate-corrected.
695 * To be precise, during a correction period, there is logic to determine by
696 * how many scheduler clock ticks has the PTP clock drifted. At the end of each
697 * correction period/beginning of new one, the length of a delta is shrunk or
698 * expanded with an integer number of ticks, compared with the typical 25.
699 * So a delta lasts for 200ns (or 25 ticks) only on average.
700 * Sometimes it is longer, sometimes it is shorter. The internal syntonization
701 * logic can adjust for at most 5 ticks each 20 ticks.
702 *
703 * The first implication is that you should choose your schedule correction
704 * period to be an integer multiple of the schedule length. Preferably one.
705 * In case there are schedules of multiple ports active, then the correction
706 * period needs to be a multiple of them all. Given the restriction that the
707 * cycle times have to be multiples of one another anyway, this means the
708 * correction period can simply be the largest cycle time, hence the current
709 * choice. This way, the updates are always synchronous to the transmission
710 * cycle, and therefore predictable.
711 *
712 * The second implication is that at the beginning of a correction period, the
713 * first few deltas will be modulated in time, until the schedule engine is
714 * properly phase-aligned with the PTP clock. For this reason, you should place
715 * your best-effort traffic at the beginning of a cycle, and your
716 * time-triggered traffic afterwards.
717 *
718 * The third implication is that once the schedule engine is started, it can
719 * only adjust for so much drift within a correction period. In the servo you
720 * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
721 * want to do the latter, you need to stop and restart the schedule engine,
722 * which is what the state machine handles.
723 */
sja1105_tas_state_machine(struct work_struct * work)724 static void sja1105_tas_state_machine(struct work_struct *work)
725 {
726 struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
727 struct sja1105_private *priv = tas_to_sja1105(tas_data);
728 struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
729 struct timespec64 base_time_ts, now_ts;
730 struct dsa_switch *ds = priv->ds;
731 struct timespec64 diff;
732 s64 base_time, now;
733 int rc = 0;
734
735 mutex_lock(&ptp_data->lock);
736
737 switch (tas_data->state) {
738 case SJA1105_TAS_STATE_DISABLED:
739 /* Can't do anything at all if clock is still being stepped */
740 if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
741 break;
742
743 rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
744 if (rc < 0)
745 break;
746
747 rc = __sja1105_ptp_gettimex(ds, &now, NULL);
748 if (rc < 0)
749 break;
750
751 /* Plan to start the earliest schedule first. The others
752 * will be started in hardware, by way of their respective
753 * entry points delta.
754 * Try our best to avoid fringe cases (race condition between
755 * ptpschtm and ptpstrtsch) by pushing the oper_base_time at
756 * least one second in the future from now. This is not ideal,
757 * but this only needs to buy us time until the
758 * sja1105_tas_start command below gets executed.
759 */
760 base_time = future_base_time(tas_data->earliest_base_time,
761 tas_data->max_cycle_time,
762 now + 1ull * NSEC_PER_SEC);
763 base_time -= sja1105_delta_to_ns(1);
764
765 rc = sja1105_tas_set_base_time(priv, base_time);
766 if (rc < 0)
767 break;
768
769 tas_data->oper_base_time = base_time;
770
771 rc = sja1105_tas_start(priv);
772 if (rc < 0)
773 break;
774
775 base_time_ts = ns_to_timespec64(base_time);
776 now_ts = ns_to_timespec64(now);
777
778 dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
779 base_time_ts.tv_sec, base_time_ts.tv_nsec,
780 now_ts.tv_sec, now_ts.tv_nsec);
781
782 break;
783
784 case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
785 if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
786 /* Clock was stepped.. bad news for TAS */
787 sja1105_tas_stop(priv);
788 break;
789 }
790
791 /* Check if TAS has actually started, by comparing the
792 * scheduled start time with the SJA1105 PTP clock
793 */
794 rc = __sja1105_ptp_gettimex(ds, &now, NULL);
795 if (rc < 0)
796 break;
797
798 if (now < tas_data->oper_base_time) {
799 /* TAS has not started yet */
800 diff = ns_to_timespec64(tas_data->oper_base_time - now);
801 dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
802 diff.tv_sec, diff.tv_nsec);
803 break;
804 }
805
806 /* Time elapsed, what happened? */
807 rc = sja1105_tas_check_running(priv);
808 if (rc < 0)
809 break;
810
811 if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
812 /* TAS has started */
813 dev_err(ds->dev,
814 "TAS not started despite time elapsed\n");
815
816 break;
817
818 case SJA1105_TAS_STATE_RUNNING:
819 /* Clock was stepped.. bad news for TAS */
820 if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
821 sja1105_tas_stop(priv);
822 break;
823 }
824
825 rc = sja1105_tas_check_running(priv);
826 if (rc < 0)
827 break;
828
829 if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
830 dev_err(ds->dev, "TAS surprisingly stopped\n");
831
832 break;
833
834 default:
835 if (net_ratelimit())
836 dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
837 }
838
839 if (rc && net_ratelimit())
840 dev_err(ds->dev, "An operation returned %d\n", rc);
841
842 mutex_unlock(&ptp_data->lock);
843 }
844
sja1105_tas_clockstep(struct dsa_switch * ds)845 void sja1105_tas_clockstep(struct dsa_switch *ds)
846 {
847 struct sja1105_private *priv = ds->priv;
848 struct sja1105_tas_data *tas_data = &priv->tas_data;
849
850 if (!tas_data->enabled)
851 return;
852
853 tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
854 schedule_work(&tas_data->tas_work);
855 }
856
sja1105_tas_adjfreq(struct dsa_switch * ds)857 void sja1105_tas_adjfreq(struct dsa_switch *ds)
858 {
859 struct sja1105_private *priv = ds->priv;
860 struct sja1105_tas_data *tas_data = &priv->tas_data;
861
862 if (!tas_data->enabled)
863 return;
864
865 /* No reason to schedule the workqueue, nothing changed */
866 if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
867 return;
868
869 tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
870 schedule_work(&tas_data->tas_work);
871 }
872
sja1105_tas_setup(struct dsa_switch * ds)873 void sja1105_tas_setup(struct dsa_switch *ds)
874 {
875 struct sja1105_private *priv = ds->priv;
876 struct sja1105_tas_data *tas_data = &priv->tas_data;
877
878 INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
879 tas_data->state = SJA1105_TAS_STATE_DISABLED;
880 tas_data->last_op = SJA1105_PTP_NONE;
881
882 INIT_LIST_HEAD(&tas_data->gating_cfg.entries);
883 }
884
sja1105_tas_teardown(struct dsa_switch * ds)885 void sja1105_tas_teardown(struct dsa_switch *ds)
886 {
887 struct sja1105_private *priv = ds->priv;
888 struct tc_taprio_qopt_offload *offload;
889 int port;
890
891 cancel_work_sync(&priv->tas_data.tas_work);
892
893 for (port = 0; port < ds->num_ports; port++) {
894 offload = priv->tas_data.offload[port];
895 if (!offload)
896 continue;
897
898 taprio_offload_free(offload);
899 }
900 }
901