1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/alpha/kernel/sys_mikasa.c
4 *
5 * Copyright (C) 1995 David A Rusling
6 * Copyright (C) 1996 Jay A Estabrook
7 * Copyright (C) 1998, 1999 Richard Henderson
8 *
9 * Code supporting the MIKASA (AlphaServer 1000).
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/mm.h>
15 #include <linux/sched.h>
16 #include <linux/pci.h>
17 #include <linux/init.h>
18 #include <linux/bitops.h>
19
20 #include <asm/ptrace.h>
21 #include <asm/mce.h>
22 #include <asm/dma.h>
23 #include <asm/irq.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io.h>
26 #include <asm/core_cia.h>
27 #include <asm/tlbflush.h>
28
29 #include "proto.h"
30 #include "irq_impl.h"
31 #include "pci_impl.h"
32 #include "machvec_impl.h"
33
34
35 /* Note mask bit is true for ENABLED irqs. */
36 static int cached_irq_mask;
37
38 static inline void
mikasa_update_irq_hw(int mask)39 mikasa_update_irq_hw(int mask)
40 {
41 outw(mask, 0x536);
42 }
43
44 static inline void
mikasa_enable_irq(struct irq_data * d)45 mikasa_enable_irq(struct irq_data *d)
46 {
47 mikasa_update_irq_hw(cached_irq_mask |= 1 << (d->irq - 16));
48 }
49
50 static void
mikasa_disable_irq(struct irq_data * d)51 mikasa_disable_irq(struct irq_data *d)
52 {
53 mikasa_update_irq_hw(cached_irq_mask &= ~(1 << (d->irq - 16)));
54 }
55
56 static struct irq_chip mikasa_irq_type = {
57 .name = "MIKASA",
58 .irq_unmask = mikasa_enable_irq,
59 .irq_mask = mikasa_disable_irq,
60 .irq_mask_ack = mikasa_disable_irq,
61 };
62
63 static void
mikasa_device_interrupt(unsigned long vector)64 mikasa_device_interrupt(unsigned long vector)
65 {
66 unsigned long pld;
67 unsigned int i;
68
69 /* Read the interrupt summary registers */
70 pld = (((~inw(0x534) & 0x0000ffffUL) << 16)
71 | (((unsigned long) inb(0xa0)) << 8)
72 | inb(0x20));
73
74 /*
75 * Now for every possible bit set, work through them and call
76 * the appropriate interrupt handler.
77 */
78 while (pld) {
79 i = ffz(~pld);
80 pld &= pld - 1; /* clear least bit set */
81 if (i < 16) {
82 isa_device_interrupt(vector);
83 } else {
84 handle_irq(i);
85 }
86 }
87 }
88
89 static void __init
mikasa_init_irq(void)90 mikasa_init_irq(void)
91 {
92 long i;
93
94 if (alpha_using_srm)
95 alpha_mv.device_interrupt = srm_device_interrupt;
96
97 mikasa_update_irq_hw(0);
98
99 for (i = 16; i < 32; ++i) {
100 irq_set_chip_and_handler(i, &mikasa_irq_type,
101 handle_level_irq);
102 irq_set_status_flags(i, IRQ_LEVEL);
103 }
104
105 init_i8259a_irqs();
106 common_init_isa_dma();
107 }
108
109
110 /*
111 * PCI Fixup configuration.
112 *
113 * Summary @ 0x536:
114 * Bit Meaning
115 * 0 Interrupt Line A from slot 0
116 * 1 Interrupt Line B from slot 0
117 * 2 Interrupt Line C from slot 0
118 * 3 Interrupt Line D from slot 0
119 * 4 Interrupt Line A from slot 1
120 * 5 Interrupt line B from slot 1
121 * 6 Interrupt Line C from slot 1
122 * 7 Interrupt Line D from slot 1
123 * 8 Interrupt Line A from slot 2
124 * 9 Interrupt Line B from slot 2
125 *10 Interrupt Line C from slot 2
126 *11 Interrupt Line D from slot 2
127 *12 NCR 810 SCSI
128 *13 Power Supply Fail
129 *14 Temperature Warn
130 *15 Reserved
131 *
132 * The device to slot mapping looks like:
133 *
134 * Slot Device
135 * 6 NCR SCSI controller
136 * 7 Intel PCI-EISA bridge chip
137 * 11 PCI on board slot 0
138 * 12 PCI on board slot 1
139 * 13 PCI on board slot 2
140 *
141 *
142 * This two layered interrupt approach means that we allocate IRQ 16 and
143 * above for PCI interrupts. The IRQ relates to which bit the interrupt
144 * comes in on. This makes interrupt processing much easier.
145 */
146
147 static int
mikasa_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)148 mikasa_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
149 {
150 static char irq_tab[8][5] = {
151 /*INT INTA INTB INTC INTD */
152 {16+12, 16+12, 16+12, 16+12, 16+12}, /* IdSel 17, SCSI */
153 { -1, -1, -1, -1, -1}, /* IdSel 18, PCEB */
154 { -1, -1, -1, -1, -1}, /* IdSel 19, ???? */
155 { -1, -1, -1, -1, -1}, /* IdSel 20, ???? */
156 { -1, -1, -1, -1, -1}, /* IdSel 21, ???? */
157 { 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 0 */
158 { 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */
159 { 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 24, slot 2 */
160 };
161 const long min_idsel = 6, max_idsel = 13, irqs_per_slot = 5;
162 return COMMON_TABLE_LOOKUP;
163 }
164
165
166 /*
167 * The System Vector
168 */
169 struct alpha_machine_vector mikasa_primo_mv __initmv = {
170 .vector_name = "Mikasa-Primo",
171 DO_EV5_MMU,
172 DO_DEFAULT_RTC,
173 DO_CIA_IO,
174 .machine_check = cia_machine_check,
175 .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
176 .min_io_address = DEFAULT_IO_BASE,
177 .min_mem_address = CIA_DEFAULT_MEM_BASE,
178
179 .nr_irqs = 32,
180 .device_interrupt = mikasa_device_interrupt,
181
182 .init_arch = cia_init_arch,
183 .init_irq = mikasa_init_irq,
184 .init_rtc = common_init_rtc,
185 .init_pci = cia_init_pci,
186 .kill_arch = cia_kill_arch,
187 .pci_map_irq = mikasa_map_irq,
188 .pci_swizzle = common_swizzle,
189 };
190 ALIAS_MV(mikasa_primo)
191