1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023-2024 Intel Corporation
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/bsearch.h>
8
9 #include <drm/drm_managed.h>
10 #include <drm/drm_print.h>
11
12 #include "abi/guc_actions_sriov_abi.h"
13 #include "abi/guc_communication_mmio_abi.h"
14 #include "abi/guc_klvs_abi.h"
15 #include "abi/guc_relay_actions_abi.h"
16 #include "regs/xe_gt_regs.h"
17 #include "regs/xe_gtt_defs.h"
18
19 #include "xe_assert.h"
20 #include "xe_device.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt_sriov_printk.h"
23 #include "xe_gt_sriov_vf.h"
24 #include "xe_gt_sriov_vf_types.h"
25 #include "xe_guc.h"
26 #include "xe_guc_ct.h"
27 #include "xe_guc_hxg_helpers.h"
28 #include "xe_guc_relay.h"
29 #include "xe_guc_submit.h"
30 #include "xe_irq.h"
31 #include "xe_lrc.h"
32 #include "xe_memirq.h"
33 #include "xe_mmio.h"
34 #include "xe_sriov.h"
35 #include "xe_sriov_vf.h"
36 #include "xe_sriov_vf_ccs.h"
37 #include "xe_tile_sriov_vf.h"
38 #include "xe_tlb_inval.h"
39 #include "xe_uc_fw.h"
40 #include "xe_wopcm.h"
41
42 #define make_u64_from_u32(hi, lo) ((u64)((u64)(u32)(hi) << 32 | (u32)(lo)))
43
guc_action_vf_reset(struct xe_guc * guc)44 static int guc_action_vf_reset(struct xe_guc *guc)
45 {
46 u32 request[GUC_HXG_REQUEST_MSG_MIN_LEN] = {
47 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
48 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
49 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_VF2GUC_VF_RESET),
50 };
51 int ret;
52
53 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
54
55 return ret > 0 ? -EPROTO : ret;
56 }
57
58 #define GUC_RESET_VF_STATE_RETRY_MAX 10
vf_reset_guc_state(struct xe_gt * gt)59 static int vf_reset_guc_state(struct xe_gt *gt)
60 {
61 unsigned int retry = GUC_RESET_VF_STATE_RETRY_MAX;
62 struct xe_guc *guc = >->uc.guc;
63 int err;
64
65 do {
66 err = guc_action_vf_reset(guc);
67 if (!err || err != -ETIMEDOUT)
68 break;
69 } while (--retry);
70
71 if (unlikely(err))
72 xe_gt_sriov_err(gt, "Failed to reset GuC state (%pe)\n", ERR_PTR(err));
73 return err;
74 }
75
76 /**
77 * xe_gt_sriov_vf_reset - Reset GuC VF internal state.
78 * @gt: the &xe_gt
79 *
80 * It requires functional `GuC MMIO based communication`_.
81 *
82 * Return: 0 on success or a negative error code on failure.
83 */
xe_gt_sriov_vf_reset(struct xe_gt * gt)84 int xe_gt_sriov_vf_reset(struct xe_gt *gt)
85 {
86 if (!xe_device_uc_enabled(gt_to_xe(gt)))
87 return -ENODEV;
88
89 return vf_reset_guc_state(gt);
90 }
91
guc_action_match_version(struct xe_guc * guc,struct xe_uc_fw_version * wanted,struct xe_uc_fw_version * found)92 static int guc_action_match_version(struct xe_guc *guc,
93 struct xe_uc_fw_version *wanted,
94 struct xe_uc_fw_version *found)
95 {
96 u32 request[VF2GUC_MATCH_VERSION_REQUEST_MSG_LEN] = {
97 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
98 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
99 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
100 GUC_ACTION_VF2GUC_MATCH_VERSION),
101 FIELD_PREP(VF2GUC_MATCH_VERSION_REQUEST_MSG_1_BRANCH, wanted->branch) |
102 FIELD_PREP(VF2GUC_MATCH_VERSION_REQUEST_MSG_1_MAJOR, wanted->major) |
103 FIELD_PREP(VF2GUC_MATCH_VERSION_REQUEST_MSG_1_MINOR, wanted->minor),
104 };
105 u32 response[GUC_MAX_MMIO_MSG_LEN];
106 int ret;
107
108 BUILD_BUG_ON(VF2GUC_MATCH_VERSION_RESPONSE_MSG_LEN > GUC_MAX_MMIO_MSG_LEN);
109
110 ret = xe_guc_mmio_send_recv(guc, request, ARRAY_SIZE(request), response);
111 if (unlikely(ret < 0))
112 return ret;
113
114 if (unlikely(FIELD_GET(VF2GUC_MATCH_VERSION_RESPONSE_MSG_0_MBZ, response[0])))
115 return -EPROTO;
116
117 memset(found, 0, sizeof(struct xe_uc_fw_version));
118 found->branch = FIELD_GET(VF2GUC_MATCH_VERSION_RESPONSE_MSG_1_BRANCH, response[1]);
119 found->major = FIELD_GET(VF2GUC_MATCH_VERSION_RESPONSE_MSG_1_MAJOR, response[1]);
120 found->minor = FIELD_GET(VF2GUC_MATCH_VERSION_RESPONSE_MSG_1_MINOR, response[1]);
121 found->patch = FIELD_GET(VF2GUC_MATCH_VERSION_RESPONSE_MSG_1_PATCH, response[1]);
122
123 return 0;
124 }
125
guc_action_match_version_any(struct xe_guc * guc,struct xe_uc_fw_version * found)126 static int guc_action_match_version_any(struct xe_guc *guc,
127 struct xe_uc_fw_version *found)
128 {
129 struct xe_uc_fw_version wanted = {
130 .branch = GUC_VERSION_BRANCH_ANY,
131 .major = GUC_VERSION_MAJOR_ANY,
132 .minor = GUC_VERSION_MINOR_ANY,
133 .patch = 0
134 };
135
136 return guc_action_match_version(guc, &wanted, found);
137 }
138
vf_minimum_guc_version(struct xe_gt * gt,struct xe_uc_fw_version * ver)139 static void vf_minimum_guc_version(struct xe_gt *gt, struct xe_uc_fw_version *ver)
140 {
141 struct xe_device *xe = gt_to_xe(gt);
142
143 memset(ver, 0, sizeof(struct xe_uc_fw_version));
144
145 switch (xe->info.platform) {
146 case XE_TIGERLAKE ... XE_PVC:
147 /* 1.1 this is current baseline for Xe driver */
148 ver->branch = 0;
149 ver->major = 1;
150 ver->minor = 1;
151 break;
152 default:
153 /* 1.2 has support for the GMD_ID KLV */
154 ver->branch = 0;
155 ver->major = 1;
156 ver->minor = 2;
157 break;
158 }
159 }
160
vf_wanted_guc_version(struct xe_gt * gt,struct xe_uc_fw_version * ver)161 static void vf_wanted_guc_version(struct xe_gt *gt, struct xe_uc_fw_version *ver)
162 {
163 /* for now it's the same as minimum */
164 return vf_minimum_guc_version(gt, ver);
165 }
166
vf_handshake_with_guc(struct xe_gt * gt)167 static int vf_handshake_with_guc(struct xe_gt *gt)
168 {
169 struct xe_uc_fw_version *guc_version = >->sriov.vf.guc_version;
170 struct xe_uc_fw_version wanted = {0};
171 struct xe_guc *guc = >->uc.guc;
172 bool old = false;
173 int err;
174
175 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
176
177 /* select wanted version - prefer previous (if any) */
178 if (guc_version->major || guc_version->minor) {
179 wanted = *guc_version;
180 old = true;
181 } else {
182 vf_wanted_guc_version(gt, &wanted);
183 xe_gt_assert(gt, wanted.major != GUC_VERSION_MAJOR_ANY);
184
185 /* First time we handshake, so record the minimum wanted */
186 gt->sriov.vf.wanted_guc_version = wanted;
187 }
188
189 err = guc_action_match_version(guc, &wanted, guc_version);
190 if (unlikely(err))
191 goto fail;
192
193 if (old) {
194 /* we don't support interface version change */
195 if (MAKE_GUC_VER_STRUCT(*guc_version) != MAKE_GUC_VER_STRUCT(wanted)) {
196 xe_gt_sriov_err(gt, "New GuC interface version detected: %u.%u.%u.%u\n",
197 guc_version->branch, guc_version->major,
198 guc_version->minor, guc_version->patch);
199 xe_gt_sriov_info(gt, "Previously used version was: %u.%u.%u.%u\n",
200 wanted.branch, wanted.major,
201 wanted.minor, wanted.patch);
202 err = -EREMCHG;
203 goto fail;
204 } else {
205 /* version is unchanged, no need to re-verify it */
206 return 0;
207 }
208 }
209
210 /* illegal */
211 if (guc_version->major > wanted.major) {
212 err = -EPROTO;
213 goto unsupported;
214 }
215
216 /* there's no fallback on major version. */
217 if (guc_version->major != wanted.major) {
218 err = -ENOPKG;
219 goto unsupported;
220 }
221
222 /* check against minimum version supported by us */
223 vf_minimum_guc_version(gt, &wanted);
224 xe_gt_assert(gt, wanted.major != GUC_VERSION_MAJOR_ANY);
225 if (MAKE_GUC_VER_STRUCT(*guc_version) < MAKE_GUC_VER_STRUCT(wanted)) {
226 err = -ENOKEY;
227 goto unsupported;
228 }
229
230 xe_gt_sriov_dbg(gt, "using GuC interface version %u.%u.%u.%u\n",
231 guc_version->branch, guc_version->major,
232 guc_version->minor, guc_version->patch);
233
234 return 0;
235
236 unsupported:
237 xe_gt_sriov_err(gt, "Unsupported GuC version %u.%u.%u.%u (%pe)\n",
238 guc_version->branch, guc_version->major,
239 guc_version->minor, guc_version->patch,
240 ERR_PTR(err));
241 fail:
242 xe_gt_sriov_err(gt, "Unable to confirm GuC version %u.%u (%pe)\n",
243 wanted.major, wanted.minor, ERR_PTR(err));
244
245 /* try again with *any* just to query which version is supported */
246 if (!guc_action_match_version_any(guc, &wanted))
247 xe_gt_sriov_notice(gt, "GuC reports interface version %u.%u.%u.%u\n",
248 wanted.branch, wanted.major, wanted.minor, wanted.patch);
249 return err;
250 }
251
252 /**
253 * xe_gt_sriov_vf_bootstrap - Query and setup GuC ABI interface version.
254 * @gt: the &xe_gt
255 *
256 * This function is for VF use only.
257 * It requires functional `GuC MMIO based communication`_.
258 *
259 * Return: 0 on success or a negative error code on failure.
260 */
xe_gt_sriov_vf_bootstrap(struct xe_gt * gt)261 int xe_gt_sriov_vf_bootstrap(struct xe_gt *gt)
262 {
263 int err;
264
265 if (!xe_device_uc_enabled(gt_to_xe(gt)))
266 return -ENODEV;
267
268 err = vf_reset_guc_state(gt);
269 if (unlikely(err))
270 return err;
271
272 err = vf_handshake_with_guc(gt);
273 if (unlikely(err))
274 return err;
275
276 return 0;
277 }
278
279 /**
280 * xe_gt_sriov_vf_guc_versions - Minimum required and found GuC ABI versions
281 * @gt: the &xe_gt
282 * @wanted: pointer to the xe_uc_fw_version to be filled with the wanted version
283 * @found: pointer to the xe_uc_fw_version to be filled with the found version
284 *
285 * This function is for VF use only and it can only be used after successful
286 * version handshake with the GuC.
287 */
xe_gt_sriov_vf_guc_versions(struct xe_gt * gt,struct xe_uc_fw_version * wanted,struct xe_uc_fw_version * found)288 void xe_gt_sriov_vf_guc_versions(struct xe_gt *gt,
289 struct xe_uc_fw_version *wanted,
290 struct xe_uc_fw_version *found)
291 {
292 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
293 xe_gt_assert(gt, gt->sriov.vf.guc_version.major);
294
295 if (wanted)
296 *wanted = gt->sriov.vf.wanted_guc_version;
297
298 if (found)
299 *found = gt->sriov.vf.guc_version;
300 }
301
guc_action_vf_notify_resfix_done(struct xe_guc * guc)302 static int guc_action_vf_notify_resfix_done(struct xe_guc *guc)
303 {
304 u32 request[GUC_HXG_REQUEST_MSG_MIN_LEN] = {
305 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
306 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
307 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_VF2GUC_NOTIFY_RESFIX_DONE),
308 };
309 int ret;
310
311 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
312
313 return ret > 0 ? -EPROTO : ret;
314 }
315
316 /**
317 * vf_notify_resfix_done - Notify GuC about resource fixups apply completed.
318 * @gt: the &xe_gt struct instance linked to target GuC
319 *
320 * Returns: 0 if the operation completed successfully, or a negative error
321 * code otherwise.
322 */
vf_notify_resfix_done(struct xe_gt * gt)323 static int vf_notify_resfix_done(struct xe_gt *gt)
324 {
325 struct xe_guc *guc = >->uc.guc;
326 int err;
327
328 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
329
330 err = guc_action_vf_notify_resfix_done(guc);
331 if (unlikely(err))
332 xe_gt_sriov_err(gt, "Failed to notify GuC about resource fixup done (%pe)\n",
333 ERR_PTR(err));
334 else
335 xe_gt_sriov_dbg_verbose(gt, "sent GuC resource fixup done\n");
336
337 return err;
338 }
339
guc_action_query_single_klv(struct xe_guc * guc,u32 key,u32 * value,u32 value_len)340 static int guc_action_query_single_klv(struct xe_guc *guc, u32 key,
341 u32 *value, u32 value_len)
342 {
343 u32 request[VF2GUC_QUERY_SINGLE_KLV_REQUEST_MSG_LEN] = {
344 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
345 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
346 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
347 GUC_ACTION_VF2GUC_QUERY_SINGLE_KLV),
348 FIELD_PREP(VF2GUC_QUERY_SINGLE_KLV_REQUEST_MSG_1_KEY, key),
349 };
350 u32 response[GUC_MAX_MMIO_MSG_LEN];
351 u32 length;
352 int ret;
353
354 BUILD_BUG_ON(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_MAX_LEN > GUC_MAX_MMIO_MSG_LEN);
355 ret = xe_guc_mmio_send_recv(guc, request, ARRAY_SIZE(request), response);
356 if (unlikely(ret < 0))
357 return ret;
358
359 if (unlikely(FIELD_GET(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_0_MBZ, response[0])))
360 return -EPROTO;
361
362 length = FIELD_GET(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_0_LENGTH, response[0]);
363 if (unlikely(length > value_len))
364 return -EOVERFLOW;
365 if (unlikely(length < value_len))
366 return -ENODATA;
367
368 switch (value_len) {
369 default:
370 xe_gt_WARN_ON(guc_to_gt(guc), value_len > 3);
371 fallthrough;
372 case 3:
373 value[2] = FIELD_GET(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_3_VALUE96, response[3]);
374 fallthrough;
375 case 2:
376 value[1] = FIELD_GET(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_2_VALUE64, response[2]);
377 fallthrough;
378 case 1:
379 value[0] = FIELD_GET(VF2GUC_QUERY_SINGLE_KLV_RESPONSE_MSG_1_VALUE32, response[1]);
380 fallthrough;
381 case 0:
382 break;
383 }
384
385 return 0;
386 }
387
guc_action_query_single_klv32(struct xe_guc * guc,u32 key,u32 * value32)388 static int guc_action_query_single_klv32(struct xe_guc *guc, u32 key, u32 *value32)
389 {
390 return guc_action_query_single_klv(guc, key, value32, hxg_sizeof(u32));
391 }
392
guc_action_query_single_klv64(struct xe_guc * guc,u32 key,u64 * value64)393 static int guc_action_query_single_klv64(struct xe_guc *guc, u32 key, u64 *value64)
394 {
395 u32 value[2];
396 int err;
397
398 err = guc_action_query_single_klv(guc, key, value, hxg_sizeof(value));
399 if (unlikely(err))
400 return err;
401
402 *value64 = make_u64_from_u32(value[1], value[0]);
403 return 0;
404 }
405
has_gmdid(struct xe_device * xe)406 static bool has_gmdid(struct xe_device *xe)
407 {
408 return GRAPHICS_VERx100(xe) >= 1270;
409 }
410
411 /**
412 * xe_gt_sriov_vf_gmdid - Query GMDID over MMIO.
413 * @gt: the &xe_gt
414 *
415 * This function is for VF use only.
416 *
417 * Return: value of GMDID KLV on success or 0 on failure.
418 */
xe_gt_sriov_vf_gmdid(struct xe_gt * gt)419 u32 xe_gt_sriov_vf_gmdid(struct xe_gt *gt)
420 {
421 const char *type = xe_gt_is_media_type(gt) ? "media" : "graphics";
422 struct xe_guc *guc = >->uc.guc;
423 u32 value;
424 int err;
425
426 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
427 xe_gt_assert(gt, !GRAPHICS_VERx100(gt_to_xe(gt)) || has_gmdid(gt_to_xe(gt)));
428 xe_gt_assert(gt, gt->sriov.vf.guc_version.major > 1 || gt->sriov.vf.guc_version.minor >= 2);
429
430 err = guc_action_query_single_klv32(guc, GUC_KLV_GLOBAL_CFG_GMD_ID_KEY, &value);
431 if (unlikely(err)) {
432 xe_gt_sriov_err(gt, "Failed to obtain %s GMDID (%pe)\n",
433 type, ERR_PTR(err));
434 return 0;
435 }
436
437 xe_gt_sriov_dbg(gt, "%s GMDID = %#x\n", type, value);
438 return value;
439 }
440
vf_get_ggtt_info(struct xe_gt * gt)441 static int vf_get_ggtt_info(struct xe_gt *gt)
442 {
443 struct xe_tile *tile = gt_to_tile(gt);
444 struct xe_ggtt *ggtt = tile->mem.ggtt;
445 struct xe_guc *guc = >->uc.guc;
446 u64 start, size, ggtt_size;
447 s64 shift;
448 int err;
449
450 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
451
452 guard(mutex)(&ggtt->lock);
453
454 err = guc_action_query_single_klv64(guc, GUC_KLV_VF_CFG_GGTT_START_KEY, &start);
455 if (unlikely(err))
456 return err;
457
458 err = guc_action_query_single_klv64(guc, GUC_KLV_VF_CFG_GGTT_SIZE_KEY, &size);
459 if (unlikely(err))
460 return err;
461
462 if (!size)
463 return -ENODATA;
464
465 ggtt_size = xe_tile_sriov_vf_ggtt(tile);
466 if (ggtt_size && ggtt_size != size) {
467 xe_gt_sriov_err(gt, "Unexpected GGTT reassignment: %lluK != %lluK\n",
468 size / SZ_1K, ggtt_size / SZ_1K);
469 return -EREMCHG;
470 }
471
472 xe_gt_sriov_dbg_verbose(gt, "GGTT %#llx-%#llx = %lluK\n",
473 start, start + size - 1, size / SZ_1K);
474
475 shift = start - (s64)xe_tile_sriov_vf_ggtt_base(tile);
476 xe_tile_sriov_vf_ggtt_base_store(tile, start);
477 xe_tile_sriov_vf_ggtt_store(tile, size);
478
479 if (shift && shift != start) {
480 xe_gt_sriov_info(gt, "Shifting GGTT base by %lld to 0x%016llx\n",
481 shift, start);
482 xe_tile_sriov_vf_fixup_ggtt_nodes_locked(gt_to_tile(gt), shift);
483 }
484
485 if (xe_sriov_vf_migration_supported(gt_to_xe(gt))) {
486 WRITE_ONCE(gt->sriov.vf.migration.ggtt_need_fixes, false);
487 smp_wmb(); /* Ensure above write visible before wake */
488 wake_up_all(>->sriov.vf.migration.wq);
489 }
490
491 return 0;
492 }
493
vf_get_lmem_info(struct xe_gt * gt)494 static int vf_get_lmem_info(struct xe_gt *gt)
495 {
496 struct xe_tile *tile = gt_to_tile(gt);
497 struct xe_guc *guc = >->uc.guc;
498 char size_str[10];
499 u64 size, lmem_size;
500 int err;
501
502 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
503
504 err = guc_action_query_single_klv64(guc, GUC_KLV_VF_CFG_LMEM_SIZE_KEY, &size);
505 if (unlikely(err))
506 return err;
507
508 lmem_size = xe_tile_sriov_vf_lmem(tile);
509 if (lmem_size && lmem_size != size) {
510 xe_gt_sriov_err(gt, "Unexpected LMEM reassignment: %lluM != %lluM\n",
511 size / SZ_1M, lmem_size / SZ_1M);
512 return -EREMCHG;
513 }
514
515 string_get_size(size, 1, STRING_UNITS_2, size_str, sizeof(size_str));
516 xe_gt_sriov_dbg_verbose(gt, "LMEM %lluM %s\n", size / SZ_1M, size_str);
517
518 xe_tile_sriov_vf_lmem_store(tile, size);
519
520 return size ? 0 : -ENODATA;
521 }
522
vf_get_submission_cfg(struct xe_gt * gt)523 static int vf_get_submission_cfg(struct xe_gt *gt)
524 {
525 struct xe_gt_sriov_vf_selfconfig *config = >->sriov.vf.self_config;
526 struct xe_guc *guc = >->uc.guc;
527 u32 num_ctxs, num_dbs;
528 int err;
529
530 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
531
532 err = guc_action_query_single_klv32(guc, GUC_KLV_VF_CFG_NUM_CONTEXTS_KEY, &num_ctxs);
533 if (unlikely(err))
534 return err;
535
536 err = guc_action_query_single_klv32(guc, GUC_KLV_VF_CFG_NUM_DOORBELLS_KEY, &num_dbs);
537 if (unlikely(err))
538 return err;
539
540 if (config->num_ctxs && config->num_ctxs != num_ctxs) {
541 xe_gt_sriov_err(gt, "Unexpected CTXs reassignment: %u != %u\n",
542 num_ctxs, config->num_ctxs);
543 return -EREMCHG;
544 }
545 if (config->num_dbs && config->num_dbs != num_dbs) {
546 xe_gt_sriov_err(gt, "Unexpected DBs reassignment: %u != %u\n",
547 num_dbs, config->num_dbs);
548 return -EREMCHG;
549 }
550
551 xe_gt_sriov_dbg_verbose(gt, "CTXs %u DBs %u\n", num_ctxs, num_dbs);
552
553 config->num_ctxs = num_ctxs;
554 config->num_dbs = num_dbs;
555
556 return config->num_ctxs ? 0 : -ENODATA;
557 }
558
vf_cache_gmdid(struct xe_gt * gt)559 static void vf_cache_gmdid(struct xe_gt *gt)
560 {
561 xe_gt_assert(gt, has_gmdid(gt_to_xe(gt)));
562 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
563
564 gt->sriov.vf.runtime.gmdid = xe_gt_sriov_vf_gmdid(gt);
565 }
566
567 /**
568 * xe_gt_sriov_vf_query_config - Query SR-IOV config data over MMIO.
569 * @gt: the &xe_gt
570 *
571 * This function is for VF use only. This function may shift the GGTT and is
572 * performed under GGTT lock, making this step visible to all GTs that share a
573 * GGTT.
574 *
575 * Return: 0 on success or a negative error code on failure.
576 */
xe_gt_sriov_vf_query_config(struct xe_gt * gt)577 int xe_gt_sriov_vf_query_config(struct xe_gt *gt)
578 {
579 struct xe_device *xe = gt_to_xe(gt);
580 int err;
581
582 err = vf_get_ggtt_info(gt);
583 if (unlikely(err))
584 return err;
585
586 if (IS_DGFX(xe) && xe_gt_is_main_type(gt)) {
587 err = vf_get_lmem_info(gt);
588 if (unlikely(err))
589 return err;
590 }
591
592 err = vf_get_submission_cfg(gt);
593 if (unlikely(err))
594 return err;
595
596 if (has_gmdid(xe))
597 vf_cache_gmdid(gt);
598
599 return 0;
600 }
601
602 /**
603 * xe_gt_sriov_vf_guc_ids - VF GuC context IDs configuration.
604 * @gt: the &xe_gt
605 *
606 * This function is for VF use only.
607 *
608 * Return: number of GuC context IDs assigned to VF.
609 */
xe_gt_sriov_vf_guc_ids(struct xe_gt * gt)610 u16 xe_gt_sriov_vf_guc_ids(struct xe_gt *gt)
611 {
612 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
613 xe_gt_assert(gt, gt->sriov.vf.guc_version.major);
614 xe_gt_assert(gt, gt->sriov.vf.self_config.num_ctxs);
615
616 return gt->sriov.vf.self_config.num_ctxs;
617 }
618
relay_action_handshake(struct xe_gt * gt,u32 * major,u32 * minor)619 static int relay_action_handshake(struct xe_gt *gt, u32 *major, u32 *minor)
620 {
621 u32 request[VF2PF_HANDSHAKE_REQUEST_MSG_LEN] = {
622 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
623 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
624 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_RELAY_ACTION_VF2PF_HANDSHAKE),
625 FIELD_PREP(VF2PF_HANDSHAKE_REQUEST_MSG_1_MAJOR, *major) |
626 FIELD_PREP(VF2PF_HANDSHAKE_REQUEST_MSG_1_MINOR, *minor),
627 };
628 u32 response[VF2PF_HANDSHAKE_RESPONSE_MSG_LEN];
629 int ret;
630
631 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
632
633 ret = xe_guc_relay_send_to_pf(>->uc.guc.relay,
634 request, ARRAY_SIZE(request),
635 response, ARRAY_SIZE(response));
636 if (unlikely(ret < 0))
637 return ret;
638
639 if (unlikely(ret != VF2PF_HANDSHAKE_RESPONSE_MSG_LEN))
640 return -EPROTO;
641
642 if (unlikely(FIELD_GET(VF2PF_HANDSHAKE_RESPONSE_MSG_0_MBZ, response[0])))
643 return -EPROTO;
644
645 *major = FIELD_GET(VF2PF_HANDSHAKE_RESPONSE_MSG_1_MAJOR, response[1]);
646 *minor = FIELD_GET(VF2PF_HANDSHAKE_RESPONSE_MSG_1_MINOR, response[1]);
647
648 return 0;
649 }
650
vf_connect_pf(struct xe_device * xe,u16 major,u16 minor)651 static void vf_connect_pf(struct xe_device *xe, u16 major, u16 minor)
652 {
653 xe_assert(xe, IS_SRIOV_VF(xe));
654
655 xe->sriov.vf.pf_version.major = major;
656 xe->sriov.vf.pf_version.minor = minor;
657 }
658
vf_disconnect_pf(struct xe_device * xe)659 static void vf_disconnect_pf(struct xe_device *xe)
660 {
661 vf_connect_pf(xe, 0, 0);
662 }
663
vf_handshake_with_pf(struct xe_gt * gt)664 static int vf_handshake_with_pf(struct xe_gt *gt)
665 {
666 struct xe_device *xe = gt_to_xe(gt);
667 u32 major_wanted = GUC_RELAY_VERSION_LATEST_MAJOR;
668 u32 minor_wanted = GUC_RELAY_VERSION_LATEST_MINOR;
669 u32 major = major_wanted, minor = minor_wanted;
670 int err;
671
672 err = relay_action_handshake(gt, &major, &minor);
673 if (unlikely(err))
674 goto failed;
675
676 if (!major && !minor) {
677 err = -ENODATA;
678 goto failed;
679 }
680
681 xe_gt_sriov_dbg(gt, "using VF/PF ABI %u.%u\n", major, minor);
682 vf_connect_pf(xe, major, minor);
683 return 0;
684
685 failed:
686 xe_gt_sriov_err(gt, "Unable to confirm VF/PF ABI version %u.%u (%pe)\n",
687 major, minor, ERR_PTR(err));
688 vf_disconnect_pf(xe);
689 return err;
690 }
691
692 /**
693 * xe_gt_sriov_vf_connect - Establish connection with the PF driver.
694 * @gt: the &xe_gt
695 *
696 * This function is for VF use only.
697 *
698 * Return: 0 on success or a negative error code on failure.
699 */
xe_gt_sriov_vf_connect(struct xe_gt * gt)700 int xe_gt_sriov_vf_connect(struct xe_gt *gt)
701 {
702 int err;
703
704 err = vf_handshake_with_pf(gt);
705 if (unlikely(err))
706 goto failed;
707
708 return 0;
709
710 failed:
711 xe_gt_sriov_err(gt, "Failed to get version info (%pe)\n", ERR_PTR(err));
712 return err;
713 }
714
715 /**
716 * xe_gt_sriov_vf_default_lrcs_hwsp_rebase - Update GGTT references in HWSP of default LRCs.
717 * @gt: the &xe_gt struct instance
718 */
xe_gt_sriov_vf_default_lrcs_hwsp_rebase(struct xe_gt * gt)719 static void xe_gt_sriov_vf_default_lrcs_hwsp_rebase(struct xe_gt *gt)
720 {
721 struct xe_hw_engine *hwe;
722 enum xe_hw_engine_id id;
723
724 for_each_hw_engine(hwe, gt, id)
725 xe_default_lrc_update_memirq_regs_with_address(hwe);
726 }
727
vf_start_migration_recovery(struct xe_gt * gt)728 static void vf_start_migration_recovery(struct xe_gt *gt)
729 {
730 bool started;
731
732 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
733
734 spin_lock(>->sriov.vf.migration.lock);
735
736 if (!gt->sriov.vf.migration.recovery_queued &&
737 !gt->sriov.vf.migration.recovery_teardown) {
738 gt->sriov.vf.migration.recovery_queued = true;
739 WRITE_ONCE(gt->sriov.vf.migration.recovery_inprogress, true);
740 WRITE_ONCE(gt->sriov.vf.migration.ggtt_need_fixes, true);
741 smp_wmb(); /* Ensure above writes visible before wake */
742
743 xe_guc_ct_wake_waiters(>->uc.guc.ct);
744
745 started = queue_work(gt->ordered_wq, >->sriov.vf.migration.worker);
746 xe_gt_sriov_info(gt, "VF migration recovery %s\n", started ?
747 "scheduled" : "already in progress");
748 }
749
750 spin_unlock(>->sriov.vf.migration.lock);
751 }
752
753 /**
754 * xe_gt_sriov_vf_migrated_event_handler - Start a VF migration recovery,
755 * or just mark that a GuC is ready for it.
756 * @gt: the &xe_gt struct instance linked to target GuC
757 *
758 * This function shall be called only by VF.
759 */
xe_gt_sriov_vf_migrated_event_handler(struct xe_gt * gt)760 void xe_gt_sriov_vf_migrated_event_handler(struct xe_gt *gt)
761 {
762 struct xe_device *xe = gt_to_xe(gt);
763
764 xe_gt_assert(gt, IS_SRIOV_VF(xe));
765 xe_gt_assert(gt, xe_gt_sriov_vf_recovery_pending(gt));
766
767 if (!xe_sriov_vf_migration_supported(xe)) {
768 xe_gt_sriov_err(gt, "migration not supported\n");
769 return;
770 }
771
772 xe_gt_sriov_info(gt, "ready for recovery after migration\n");
773 vf_start_migration_recovery(gt);
774 }
775
vf_is_negotiated(struct xe_gt * gt,u16 major,u16 minor)776 static bool vf_is_negotiated(struct xe_gt *gt, u16 major, u16 minor)
777 {
778 struct xe_device *xe = gt_to_xe(gt);
779
780 xe_gt_assert(gt, IS_SRIOV_VF(xe));
781
782 return major == xe->sriov.vf.pf_version.major &&
783 minor <= xe->sriov.vf.pf_version.minor;
784 }
785
vf_prepare_runtime_info(struct xe_gt * gt,unsigned int num_regs)786 static int vf_prepare_runtime_info(struct xe_gt *gt, unsigned int num_regs)
787 {
788 struct vf_runtime_reg *regs = gt->sriov.vf.runtime.regs;
789 unsigned int regs_size = round_up(num_regs, 4);
790 struct xe_device *xe = gt_to_xe(gt);
791
792 xe_gt_assert(gt, IS_SRIOV_VF(xe));
793
794 if (regs) {
795 if (num_regs <= gt->sriov.vf.runtime.regs_size) {
796 memset(regs, 0, num_regs * sizeof(*regs));
797 gt->sriov.vf.runtime.num_regs = num_regs;
798 return 0;
799 }
800
801 drmm_kfree(&xe->drm, regs);
802 gt->sriov.vf.runtime.regs = NULL;
803 gt->sriov.vf.runtime.num_regs = 0;
804 gt->sriov.vf.runtime.regs_size = 0;
805 }
806
807 regs = drmm_kcalloc(&xe->drm, regs_size, sizeof(*regs), GFP_KERNEL);
808 if (unlikely(!regs))
809 return -ENOMEM;
810
811 gt->sriov.vf.runtime.regs = regs;
812 gt->sriov.vf.runtime.num_regs = num_regs;
813 gt->sriov.vf.runtime.regs_size = regs_size;
814 return 0;
815 }
816
vf_query_runtime_info(struct xe_gt * gt)817 static int vf_query_runtime_info(struct xe_gt *gt)
818 {
819 u32 request[VF2PF_QUERY_RUNTIME_REQUEST_MSG_LEN];
820 u32 response[VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN + 32]; /* up to 16 regs */
821 u32 limit = (ARRAY_SIZE(response) - VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN) / 2;
822 u32 count, remaining, num, i;
823 u32 start = 0;
824 int ret;
825
826 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
827 xe_gt_assert(gt, limit);
828
829 /* this is part of the 1.0 PF/VF ABI */
830 if (!vf_is_negotiated(gt, 1, 0))
831 return -ENOPKG;
832
833 request[0] = FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
834 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
835 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
836 GUC_RELAY_ACTION_VF2PF_QUERY_RUNTIME) |
837 FIELD_PREP(VF2PF_QUERY_RUNTIME_REQUEST_MSG_0_LIMIT, limit);
838
839 repeat:
840 request[1] = FIELD_PREP(VF2PF_QUERY_RUNTIME_REQUEST_MSG_1_START, start);
841 ret = xe_guc_relay_send_to_pf(>->uc.guc.relay,
842 request, ARRAY_SIZE(request),
843 response, ARRAY_SIZE(response));
844 if (unlikely(ret < 0))
845 goto failed;
846
847 if (unlikely(ret < VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN)) {
848 ret = -EPROTO;
849 goto failed;
850 }
851 if (unlikely((ret - VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN) % 2)) {
852 ret = -EPROTO;
853 goto failed;
854 }
855
856 num = (ret - VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN) / 2;
857 count = FIELD_GET(VF2PF_QUERY_RUNTIME_RESPONSE_MSG_0_COUNT, response[0]);
858 remaining = FIELD_GET(VF2PF_QUERY_RUNTIME_RESPONSE_MSG_1_REMAINING, response[1]);
859
860 xe_gt_sriov_dbg_verbose(gt, "count=%u num=%u ret=%d start=%u remaining=%u\n",
861 count, num, ret, start, remaining);
862
863 if (unlikely(count != num)) {
864 ret = -EPROTO;
865 goto failed;
866 }
867
868 if (start == 0) {
869 ret = vf_prepare_runtime_info(gt, num + remaining);
870 if (unlikely(ret < 0))
871 goto failed;
872 } else if (unlikely(start + num > gt->sriov.vf.runtime.num_regs)) {
873 ret = -EPROTO;
874 goto failed;
875 }
876
877 for (i = 0; i < num; ++i) {
878 struct vf_runtime_reg *reg = >->sriov.vf.runtime.regs[start + i];
879
880 reg->offset = response[VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN + 2 * i];
881 reg->value = response[VF2PF_QUERY_RUNTIME_RESPONSE_MSG_MIN_LEN + 2 * i + 1];
882 }
883
884 if (remaining) {
885 start += num;
886 goto repeat;
887 }
888
889 return 0;
890
891 failed:
892 vf_prepare_runtime_info(gt, 0);
893 return ret;
894 }
895
vf_show_runtime_info(struct xe_gt * gt)896 static void vf_show_runtime_info(struct xe_gt *gt)
897 {
898 struct vf_runtime_reg *vf_regs = gt->sriov.vf.runtime.regs;
899 unsigned int size = gt->sriov.vf.runtime.num_regs;
900
901 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
902
903 for (; size--; vf_regs++)
904 xe_gt_sriov_dbg(gt, "runtime(%#x) = %#x\n",
905 vf_regs->offset, vf_regs->value);
906 }
907
908 /**
909 * xe_gt_sriov_vf_query_runtime - Query SR-IOV runtime data.
910 * @gt: the &xe_gt
911 *
912 * This function is for VF use only.
913 *
914 * Return: 0 on success or a negative error code on failure.
915 */
xe_gt_sriov_vf_query_runtime(struct xe_gt * gt)916 int xe_gt_sriov_vf_query_runtime(struct xe_gt *gt)
917 {
918 int err;
919
920 err = vf_query_runtime_info(gt);
921 if (unlikely(err))
922 goto failed;
923
924 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG))
925 vf_show_runtime_info(gt);
926
927 return 0;
928
929 failed:
930 xe_gt_sriov_err(gt, "Failed to get runtime info (%pe)\n",
931 ERR_PTR(err));
932 return err;
933 }
934
vf_runtime_reg_cmp(const void * a,const void * b)935 static int vf_runtime_reg_cmp(const void *a, const void *b)
936 {
937 const struct vf_runtime_reg *ra = a;
938 const struct vf_runtime_reg *rb = b;
939
940 return (int)ra->offset - (int)rb->offset;
941 }
942
vf_lookup_reg(struct xe_gt * gt,u32 addr)943 static struct vf_runtime_reg *vf_lookup_reg(struct xe_gt *gt, u32 addr)
944 {
945 struct xe_gt_sriov_vf_runtime *runtime = >->sriov.vf.runtime;
946 struct vf_runtime_reg key = { .offset = addr };
947
948 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
949
950 return bsearch(&key, runtime->regs, runtime->num_regs, sizeof(key),
951 vf_runtime_reg_cmp);
952 }
953
954 /**
955 * xe_gt_sriov_vf_read32 - Get a register value from the runtime data.
956 * @gt: the &xe_gt
957 * @reg: the register to read
958 *
959 * This function is for VF use only.
960 * This function shall be called after VF has connected to PF.
961 * This function is dedicated for registers that VFs can't read directly.
962 *
963 * Return: register value obtained from the PF or 0 if not found.
964 */
xe_gt_sriov_vf_read32(struct xe_gt * gt,struct xe_reg reg)965 u32 xe_gt_sriov_vf_read32(struct xe_gt *gt, struct xe_reg reg)
966 {
967 u32 addr = xe_mmio_adjusted_addr(>->mmio, reg.addr);
968 struct vf_runtime_reg *rr;
969
970 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
971 xe_gt_assert(gt, !reg.vf);
972
973 if (reg.addr == GMD_ID.addr) {
974 xe_gt_sriov_dbg_verbose(gt, "gmdid(%#x) = %#x\n",
975 addr, gt->sriov.vf.runtime.gmdid);
976 return gt->sriov.vf.runtime.gmdid;
977 }
978
979 rr = vf_lookup_reg(gt, addr);
980 if (!rr) {
981 xe_gt_WARN(gt, IS_ENABLED(CONFIG_DRM_XE_DEBUG),
982 "VF is trying to read an inaccessible register %#x+%#x\n",
983 reg.addr, addr - reg.addr);
984 return 0;
985 }
986
987 xe_gt_sriov_dbg_verbose(gt, "runtime[%#x] = %#x\n", addr, rr->value);
988 return rr->value;
989 }
990
991 /**
992 * xe_gt_sriov_vf_write32 - Handle a write to an inaccessible register.
993 * @gt: the &xe_gt
994 * @reg: the register to write
995 * @val: value to write
996 *
997 * This function is for VF use only.
998 * Currently it will trigger a WARN if running on debug build.
999 */
xe_gt_sriov_vf_write32(struct xe_gt * gt,struct xe_reg reg,u32 val)1000 void xe_gt_sriov_vf_write32(struct xe_gt *gt, struct xe_reg reg, u32 val)
1001 {
1002 u32 addr = xe_mmio_adjusted_addr(>->mmio, reg.addr);
1003
1004 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1005 xe_gt_assert(gt, !reg.vf);
1006
1007 /*
1008 * In the future, we may want to handle selected writes to inaccessible
1009 * registers in some custom way, but for now let's just log a warning
1010 * about such attempt, as likely we might be doing something wrong.
1011 */
1012 xe_gt_WARN(gt, IS_ENABLED(CONFIG_DRM_XE_DEBUG),
1013 "VF is trying to write %#x to an inaccessible register %#x+%#x\n",
1014 val, reg.addr, addr - reg.addr);
1015 }
1016
1017 /**
1018 * xe_gt_sriov_vf_print_config - Print VF self config.
1019 * @gt: the &xe_gt
1020 * @p: the &drm_printer
1021 *
1022 * This function is for VF use only.
1023 */
xe_gt_sriov_vf_print_config(struct xe_gt * gt,struct drm_printer * p)1024 void xe_gt_sriov_vf_print_config(struct xe_gt *gt, struct drm_printer *p)
1025 {
1026 struct xe_gt_sriov_vf_selfconfig *config = >->sriov.vf.self_config;
1027 struct xe_device *xe = gt_to_xe(gt);
1028 u64 lmem_size;
1029 char buf[10];
1030
1031 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1032
1033 if (xe_gt_is_main_type(gt)) {
1034 u64 ggtt_size = xe_tile_sriov_vf_ggtt(gt_to_tile(gt));
1035 u64 ggtt_base = xe_tile_sriov_vf_ggtt_base(gt_to_tile(gt));
1036
1037 drm_printf(p, "GGTT range:\t%#llx-%#llx\n",
1038 ggtt_base, ggtt_base + ggtt_size - 1);
1039 string_get_size(ggtt_size, 1, STRING_UNITS_2, buf, sizeof(buf));
1040 drm_printf(p, "GGTT size:\t%llu (%s)\n", ggtt_size, buf);
1041
1042 if (IS_DGFX(xe)) {
1043 lmem_size = xe_tile_sriov_vf_lmem(gt_to_tile(gt));
1044 string_get_size(lmem_size, 1, STRING_UNITS_2, buf, sizeof(buf));
1045 drm_printf(p, "LMEM size:\t%llu (%s)\n", lmem_size, buf);
1046 }
1047 }
1048
1049 drm_printf(p, "GuC contexts:\t%u\n", config->num_ctxs);
1050 drm_printf(p, "GuC doorbells:\t%u\n", config->num_dbs);
1051 }
1052
1053 /**
1054 * xe_gt_sriov_vf_print_runtime - Print VF's runtime regs received from PF.
1055 * @gt: the &xe_gt
1056 * @p: the &drm_printer
1057 *
1058 * This function is for VF use only.
1059 */
xe_gt_sriov_vf_print_runtime(struct xe_gt * gt,struct drm_printer * p)1060 void xe_gt_sriov_vf_print_runtime(struct xe_gt *gt, struct drm_printer *p)
1061 {
1062 struct vf_runtime_reg *vf_regs = gt->sriov.vf.runtime.regs;
1063 unsigned int size = gt->sriov.vf.runtime.num_regs;
1064
1065 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1066
1067 for (; size--; vf_regs++)
1068 drm_printf(p, "%#x = %#x\n", vf_regs->offset, vf_regs->value);
1069 }
1070
1071 /**
1072 * xe_gt_sriov_vf_print_version - Print VF ABI versions.
1073 * @gt: the &xe_gt
1074 * @p: the &drm_printer
1075 *
1076 * This function is for VF use only.
1077 */
xe_gt_sriov_vf_print_version(struct xe_gt * gt,struct drm_printer * p)1078 void xe_gt_sriov_vf_print_version(struct xe_gt *gt, struct drm_printer *p)
1079 {
1080 struct xe_device *xe = gt_to_xe(gt);
1081 struct xe_uc_fw_version *guc_version = >->sriov.vf.guc_version;
1082 struct xe_uc_fw_version *wanted = >->sriov.vf.wanted_guc_version;
1083 struct xe_sriov_vf_relay_version *pf_version = &xe->sriov.vf.pf_version;
1084 struct xe_uc_fw_version ver;
1085
1086 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1087
1088 drm_printf(p, "GuC ABI:\n");
1089
1090 vf_minimum_guc_version(gt, &ver);
1091 drm_printf(p, "\tbase:\t%u.%u.%u.*\n", ver.branch, ver.major, ver.minor);
1092
1093 drm_printf(p, "\twanted:\t%u.%u.%u.*\n",
1094 wanted->branch, wanted->major, wanted->minor);
1095
1096 drm_printf(p, "\thandshake:\t%u.%u.%u.%u\n",
1097 guc_version->branch, guc_version->major,
1098 guc_version->minor, guc_version->patch);
1099
1100 drm_printf(p, "PF ABI:\n");
1101
1102 drm_printf(p, "\tbase:\t%u.%u\n",
1103 GUC_RELAY_VERSION_BASE_MAJOR, GUC_RELAY_VERSION_BASE_MINOR);
1104 drm_printf(p, "\twanted:\t%u.%u\n",
1105 GUC_RELAY_VERSION_LATEST_MAJOR, GUC_RELAY_VERSION_LATEST_MINOR);
1106 drm_printf(p, "\thandshake:\t%u.%u\n",
1107 pf_version->major, pf_version->minor);
1108 }
1109
vf_post_migration_shutdown(struct xe_gt * gt)1110 static bool vf_post_migration_shutdown(struct xe_gt *gt)
1111 {
1112 struct xe_device *xe = gt_to_xe(gt);
1113
1114 /*
1115 * On platforms where CCS must be restored by the primary GT, the media
1116 * GT's VF post-migration recovery must run afterward. Detect this case
1117 * and re-queue the media GT's restore work item if necessary.
1118 */
1119 if (xe->info.needs_shared_vf_gt_wq && xe_gt_is_media_type(gt)) {
1120 struct xe_gt *primary_gt = gt_to_tile(gt)->primary_gt;
1121
1122 if (xe_gt_sriov_vf_recovery_pending(primary_gt))
1123 return true;
1124 }
1125
1126 spin_lock_irq(>->sriov.vf.migration.lock);
1127 gt->sriov.vf.migration.recovery_queued = false;
1128 spin_unlock_irq(>->sriov.vf.migration.lock);
1129
1130 xe_guc_ct_flush_and_stop(>->uc.guc.ct);
1131 xe_guc_submit_pause(>->uc.guc);
1132 xe_tlb_inval_reset(>->tlb_inval);
1133
1134 return false;
1135 }
1136
post_migration_scratch_size(struct xe_device * xe)1137 static size_t post_migration_scratch_size(struct xe_device *xe)
1138 {
1139 return max(xe_lrc_reg_size(xe), LRC_WA_BB_SIZE);
1140 }
1141
vf_post_migration_fixups(struct xe_gt * gt)1142 static int vf_post_migration_fixups(struct xe_gt *gt)
1143 {
1144 void *buf = gt->sriov.vf.migration.scratch;
1145 int err;
1146
1147 /* xe_gt_sriov_vf_query_config will fixup the GGTT addresses */
1148 err = xe_gt_sriov_vf_query_config(gt);
1149 if (err)
1150 return err;
1151
1152 if (xe_gt_is_main_type(gt))
1153 xe_sriov_vf_ccs_rebase(gt_to_xe(gt));
1154
1155 xe_gt_sriov_vf_default_lrcs_hwsp_rebase(gt);
1156 err = xe_guc_contexts_hwsp_rebase(>->uc.guc, buf);
1157 if (err)
1158 return err;
1159
1160 return 0;
1161 }
1162
vf_post_migration_rearm(struct xe_gt * gt)1163 static void vf_post_migration_rearm(struct xe_gt *gt)
1164 {
1165 xe_guc_ct_restart(>->uc.guc.ct);
1166 xe_guc_submit_unpause_prepare(>->uc.guc);
1167 }
1168
vf_post_migration_kickstart(struct xe_gt * gt)1169 static void vf_post_migration_kickstart(struct xe_gt *gt)
1170 {
1171 xe_guc_submit_unpause(>->uc.guc);
1172 }
1173
vf_post_migration_abort(struct xe_gt * gt)1174 static void vf_post_migration_abort(struct xe_gt *gt)
1175 {
1176 spin_lock_irq(>->sriov.vf.migration.lock);
1177 WRITE_ONCE(gt->sriov.vf.migration.recovery_inprogress, false);
1178 WRITE_ONCE(gt->sriov.vf.migration.ggtt_need_fixes, false);
1179 spin_unlock_irq(>->sriov.vf.migration.lock);
1180
1181 wake_up_all(>->sriov.vf.migration.wq);
1182
1183 xe_guc_submit_pause_abort(>->uc.guc);
1184 }
1185
vf_post_migration_notify_resfix_done(struct xe_gt * gt)1186 static int vf_post_migration_notify_resfix_done(struct xe_gt *gt)
1187 {
1188 bool skip_resfix = false;
1189
1190 spin_lock_irq(>->sriov.vf.migration.lock);
1191 if (gt->sriov.vf.migration.recovery_queued) {
1192 skip_resfix = true;
1193 xe_gt_sriov_dbg(gt, "another recovery imminent, resfix skipped\n");
1194 } else {
1195 WRITE_ONCE(gt->sriov.vf.migration.recovery_inprogress, false);
1196 }
1197 spin_unlock_irq(>->sriov.vf.migration.lock);
1198
1199 if (skip_resfix)
1200 return -EAGAIN;
1201
1202 /*
1203 * Make sure interrupts on the new HW are properly set. The GuC IRQ
1204 * must be working at this point, since the recovery did started,
1205 * but the rest was not enabled using the procedure from spec.
1206 */
1207 xe_irq_resume(gt_to_xe(gt));
1208
1209 return vf_notify_resfix_done(gt);
1210 }
1211
vf_post_migration_recovery(struct xe_gt * gt)1212 static void vf_post_migration_recovery(struct xe_gt *gt)
1213 {
1214 struct xe_device *xe = gt_to_xe(gt);
1215 int err;
1216 bool retry;
1217
1218 xe_gt_sriov_dbg(gt, "migration recovery in progress\n");
1219
1220 retry = vf_post_migration_shutdown(gt);
1221 if (retry)
1222 goto queue;
1223
1224 if (!xe_sriov_vf_migration_supported(xe)) {
1225 xe_gt_sriov_err(gt, "migration is not supported\n");
1226 err = -ENOTRECOVERABLE;
1227 goto fail;
1228 }
1229
1230 err = vf_post_migration_fixups(gt);
1231 if (err)
1232 goto fail;
1233
1234 vf_post_migration_rearm(gt);
1235
1236 err = vf_post_migration_notify_resfix_done(gt);
1237 if (err && err != -EAGAIN)
1238 goto fail;
1239
1240 vf_post_migration_kickstart(gt);
1241
1242 xe_gt_sriov_notice(gt, "migration recovery ended\n");
1243 return;
1244 fail:
1245 vf_post_migration_abort(gt);
1246 xe_gt_sriov_err(gt, "migration recovery failed (%pe)\n", ERR_PTR(err));
1247 xe_device_declare_wedged(xe);
1248 return;
1249
1250 queue:
1251 xe_gt_sriov_info(gt, "Re-queuing migration recovery\n");
1252 queue_work(gt->ordered_wq, >->sriov.vf.migration.worker);
1253 }
1254
migration_worker_func(struct work_struct * w)1255 static void migration_worker_func(struct work_struct *w)
1256 {
1257 struct xe_gt *gt = container_of(w, struct xe_gt,
1258 sriov.vf.migration.worker);
1259
1260 vf_post_migration_recovery(gt);
1261 }
1262
vf_migration_fini(void * arg)1263 static void vf_migration_fini(void *arg)
1264 {
1265 struct xe_gt *gt = arg;
1266
1267 spin_lock_irq(>->sriov.vf.migration.lock);
1268 gt->sriov.vf.migration.recovery_teardown = true;
1269 spin_unlock_irq(>->sriov.vf.migration.lock);
1270
1271 cancel_work_sync(>->sriov.vf.migration.worker);
1272 }
1273
1274 /**
1275 * xe_gt_sriov_vf_init_early() - GT VF init early
1276 * @gt: the &xe_gt
1277 *
1278 * Return 0 on success, errno on failure
1279 */
xe_gt_sriov_vf_init_early(struct xe_gt * gt)1280 int xe_gt_sriov_vf_init_early(struct xe_gt *gt)
1281 {
1282 void *buf;
1283
1284 if (!xe_sriov_vf_migration_supported(gt_to_xe(gt)))
1285 return 0;
1286
1287 buf = drmm_kmalloc(>_to_xe(gt)->drm,
1288 post_migration_scratch_size(gt_to_xe(gt)),
1289 GFP_KERNEL);
1290 if (!buf)
1291 return -ENOMEM;
1292
1293 gt->sriov.vf.migration.scratch = buf;
1294 spin_lock_init(>->sriov.vf.migration.lock);
1295 INIT_WORK(>->sriov.vf.migration.worker, migration_worker_func);
1296 init_waitqueue_head(>->sriov.vf.migration.wq);
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * xe_gt_sriov_vf_init() - GT VF init
1303 * @gt: the &xe_gt
1304 *
1305 * Return 0 on success, errno on failure
1306 */
xe_gt_sriov_vf_init(struct xe_gt * gt)1307 int xe_gt_sriov_vf_init(struct xe_gt *gt)
1308 {
1309 if (!xe_sriov_vf_migration_supported(gt_to_xe(gt)))
1310 return 0;
1311
1312 /*
1313 * We want to tear down the VF post-migration early during driver
1314 * unload; therefore, we add this finalization action later during
1315 * driver load.
1316 */
1317 return devm_add_action_or_reset(gt_to_xe(gt)->drm.dev,
1318 vf_migration_fini, gt);
1319 }
1320
1321 /**
1322 * xe_gt_sriov_vf_recovery_pending() - VF post migration recovery pending
1323 * @gt: the &xe_gt
1324 *
1325 * The return value of this function must be immediately visible upon vCPU
1326 * unhalt and must persist until RESFIX_DONE is issued. This guarantee is
1327 * currently implemented only for platforms that support memirq. If non-memirq
1328 * platforms begin to support VF migration, this function will need to be
1329 * updated accordingly.
1330 *
1331 * Return: True if VF post migration recovery is pending, False otherwise
1332 */
xe_gt_sriov_vf_recovery_pending(struct xe_gt * gt)1333 bool xe_gt_sriov_vf_recovery_pending(struct xe_gt *gt)
1334 {
1335 struct xe_memirq *memirq = >_to_tile(gt)->memirq;
1336
1337 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1338
1339 /* early detection until recovery starts */
1340 if (xe_device_uses_memirq(gt_to_xe(gt)) &&
1341 xe_memirq_guc_sw_int_0_irq_pending(memirq, >->uc.guc))
1342 return true;
1343
1344 return READ_ONCE(gt->sriov.vf.migration.recovery_inprogress);
1345 }
1346
vf_valid_ggtt(struct xe_gt * gt)1347 static bool vf_valid_ggtt(struct xe_gt *gt)
1348 {
1349 struct xe_memirq *memirq = >_to_tile(gt)->memirq;
1350 bool irq_pending = xe_device_uses_memirq(gt_to_xe(gt)) &&
1351 xe_memirq_guc_sw_int_0_irq_pending(memirq, >->uc.guc);
1352
1353 xe_gt_assert(gt, IS_SRIOV_VF(gt_to_xe(gt)));
1354
1355 if (irq_pending || READ_ONCE(gt->sriov.vf.migration.ggtt_need_fixes))
1356 return false;
1357
1358 return true;
1359 }
1360
1361 /**
1362 * xe_gt_sriov_vf_wait_valid_ggtt() - VF wait for valid GGTT addresses
1363 * @gt: the &xe_gt
1364 */
xe_gt_sriov_vf_wait_valid_ggtt(struct xe_gt * gt)1365 void xe_gt_sriov_vf_wait_valid_ggtt(struct xe_gt *gt)
1366 {
1367 int ret;
1368
1369 if (!IS_SRIOV_VF(gt_to_xe(gt)) ||
1370 !xe_sriov_vf_migration_supported(gt_to_xe(gt)))
1371 return;
1372
1373 ret = wait_event_interruptible_timeout(gt->sriov.vf.migration.wq,
1374 vf_valid_ggtt(gt),
1375 HZ * 5);
1376 xe_gt_WARN_ON(gt, !ret);
1377 }
1378