1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27
28 #include "internal.h"
29 #include "swap.h"
30
31 struct follow_page_context {
32 struct dev_pagemap *pgmap;
33 unsigned int page_mask;
34 };
35
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)36 static inline void sanity_check_pinned_pages(struct page **pages,
37 unsigned long npages)
38 {
39 if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 return;
41
42 /*
43 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 * can no longer turn them possibly shared and PageAnonExclusive() will
45 * stick around until the page is freed.
46 *
47 * We'd like to verify that our pinned anonymous pages are still mapped
48 * exclusively. The issue with anon THP is that we don't know how
49 * they are/were mapped when pinning them. However, for anon
50 * THP we can assume that either the given page (PTE-mapped THP) or
51 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 * neither is the case, there is certainly something wrong.
53 */
54 for (; npages; npages--, pages++) {
55 struct page *page = *pages;
56 struct folio *folio;
57
58 if (!page)
59 continue;
60
61 folio = page_folio(page);
62
63 if (is_zero_page(page) ||
64 !folio_test_anon(folio))
65 continue;
66 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
68 else
69 /* Either a PTE-mapped or a PMD-mapped THP. */
70 VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
71 !PageAnonExclusive(page), page);
72 }
73 }
74
75 /*
76 * Return the folio with ref appropriately incremented,
77 * or NULL if that failed.
78 */
try_get_folio(struct page * page,int refs)79 static inline struct folio *try_get_folio(struct page *page, int refs)
80 {
81 struct folio *folio;
82
83 retry:
84 folio = page_folio(page);
85 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86 return NULL;
87 if (unlikely(!folio_ref_try_add(folio, refs)))
88 return NULL;
89
90 /*
91 * At this point we have a stable reference to the folio; but it
92 * could be that between calling page_folio() and the refcount
93 * increment, the folio was split, in which case we'd end up
94 * holding a reference on a folio that has nothing to do with the page
95 * we were given anymore.
96 * So now that the folio is stable, recheck that the page still
97 * belongs to this folio.
98 */
99 if (unlikely(page_folio(page) != folio)) {
100 folio_put_refs(folio, refs);
101 goto retry;
102 }
103
104 return folio;
105 }
106
gup_put_folio(struct folio * folio,int refs,unsigned int flags)107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 if (flags & FOLL_PIN) {
110 if (is_zero_folio(folio))
111 return;
112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 if (folio_has_pincount(folio))
114 atomic_sub(refs, &folio->_pincount);
115 else
116 refs *= GUP_PIN_COUNTING_BIAS;
117 }
118
119 folio_put_refs(folio, refs);
120 }
121
122 /**
123 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124 * @folio: pointer to folio to be grabbed
125 * @refs: the value to (effectively) add to the folio's refcount
126 * @flags: gup flags: these are the FOLL_* flag values
127 *
128 * This might not do anything at all, depending on the flags argument.
129 *
130 * "grab" names in this file mean, "look at flags to decide whether to use
131 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132 *
133 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134 * time.
135 *
136 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
138 *
139 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
140 * be grabbed.
141 *
142 * It is called when we have a stable reference for the folio, typically in
143 * GUP slow path.
144 */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)145 int __must_check try_grab_folio(struct folio *folio, int refs,
146 unsigned int flags)
147 {
148 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149 return -ENOMEM;
150
151 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152 return -EREMOTEIO;
153
154 if (flags & FOLL_GET)
155 folio_ref_add(folio, refs);
156 else if (flags & FOLL_PIN) {
157 /*
158 * Don't take a pin on the zero page - it's not going anywhere
159 * and it is used in a *lot* of places.
160 */
161 if (is_zero_folio(folio))
162 return 0;
163
164 /*
165 * Increment the normal page refcount field at least once,
166 * so that the page really is pinned.
167 */
168 if (folio_has_pincount(folio)) {
169 folio_ref_add(folio, refs);
170 atomic_add(refs, &folio->_pincount);
171 } else {
172 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173 }
174
175 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176 }
177
178 return 0;
179 }
180
181 /**
182 * unpin_user_page() - release a dma-pinned page
183 * @page: pointer to page to be released
184 *
185 * Pages that were pinned via pin_user_pages*() must be released via either
186 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187 * that such pages can be separately tracked and uniquely handled. In
188 * particular, interactions with RDMA and filesystems need special handling.
189 */
unpin_user_page(struct page * page)190 void unpin_user_page(struct page *page)
191 {
192 sanity_check_pinned_pages(&page, 1);
193 gup_put_folio(page_folio(page), 1, FOLL_PIN);
194 }
195 EXPORT_SYMBOL(unpin_user_page);
196
197 /**
198 * unpin_folio() - release a dma-pinned folio
199 * @folio: pointer to folio to be released
200 *
201 * Folios that were pinned via memfd_pin_folios() or other similar routines
202 * must be released either using unpin_folio() or unpin_folios().
203 */
unpin_folio(struct folio * folio)204 void unpin_folio(struct folio *folio)
205 {
206 gup_put_folio(folio, 1, FOLL_PIN);
207 }
208 EXPORT_SYMBOL_GPL(unpin_folio);
209
210 /**
211 * folio_add_pin - Try to get an additional pin on a pinned folio
212 * @folio: The folio to be pinned
213 *
214 * Get an additional pin on a folio we already have a pin on. Makes no change
215 * if the folio is a zero_page.
216 */
folio_add_pin(struct folio * folio)217 void folio_add_pin(struct folio *folio)
218 {
219 if (is_zero_folio(folio))
220 return;
221
222 /*
223 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 * page refcount field at least once, so that the page really is
225 * pinned.
226 */
227 if (folio_has_pincount(folio)) {
228 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 folio_ref_inc(folio);
230 atomic_inc(&folio->_pincount);
231 } else {
232 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234 }
235 }
236
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)237 static inline struct folio *gup_folio_range_next(struct page *start,
238 unsigned long npages, unsigned long i, unsigned int *ntails)
239 {
240 struct page *next = nth_page(start, i);
241 struct folio *folio = page_folio(next);
242 unsigned int nr = 1;
243
244 if (folio_test_large(folio))
245 nr = min_t(unsigned int, npages - i,
246 folio_nr_pages(folio) - folio_page_idx(folio, next));
247
248 *ntails = nr;
249 return folio;
250 }
251
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)252 static inline struct folio *gup_folio_next(struct page **list,
253 unsigned long npages, unsigned long i, unsigned int *ntails)
254 {
255 struct folio *folio = page_folio(list[i]);
256 unsigned int nr;
257
258 for (nr = i + 1; nr < npages; nr++) {
259 if (page_folio(list[nr]) != folio)
260 break;
261 }
262
263 *ntails = nr - i;
264 return folio;
265 }
266
267 /**
268 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269 * @pages: array of pages to be maybe marked dirty, and definitely released.
270 * @npages: number of pages in the @pages array.
271 * @make_dirty: whether to mark the pages dirty
272 *
273 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274 * variants called on that page.
275 *
276 * For each page in the @pages array, make that page (or its head page, if a
277 * compound page) dirty, if @make_dirty is true, and if the page was previously
278 * listed as clean. In any case, releases all pages using unpin_user_page(),
279 * possibly via unpin_user_pages(), for the non-dirty case.
280 *
281 * Please see the unpin_user_page() documentation for details.
282 *
283 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284 * required, then the caller should a) verify that this is really correct,
285 * because _lock() is usually required, and b) hand code it:
286 * set_page_dirty_lock(), unpin_user_page().
287 *
288 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290 bool make_dirty)
291 {
292 unsigned long i;
293 struct folio *folio;
294 unsigned int nr;
295
296 if (!make_dirty) {
297 unpin_user_pages(pages, npages);
298 return;
299 }
300
301 sanity_check_pinned_pages(pages, npages);
302 for (i = 0; i < npages; i += nr) {
303 folio = gup_folio_next(pages, npages, i, &nr);
304 /*
305 * Checking PageDirty at this point may race with
306 * clear_page_dirty_for_io(), but that's OK. Two key
307 * cases:
308 *
309 * 1) This code sees the page as already dirty, so it
310 * skips the call to set_page_dirty(). That could happen
311 * because clear_page_dirty_for_io() called
312 * folio_mkclean(), followed by set_page_dirty().
313 * However, now the page is going to get written back,
314 * which meets the original intention of setting it
315 * dirty, so all is well: clear_page_dirty_for_io() goes
316 * on to call TestClearPageDirty(), and write the page
317 * back.
318 *
319 * 2) This code sees the page as clean, so it calls
320 * set_page_dirty(). The page stays dirty, despite being
321 * written back, so it gets written back again in the
322 * next writeback cycle. This is harmless.
323 */
324 if (!folio_test_dirty(folio)) {
325 folio_lock(folio);
326 folio_mark_dirty(folio);
327 folio_unlock(folio);
328 }
329 gup_put_folio(folio, nr, FOLL_PIN);
330 }
331 }
332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333
334 /**
335 * unpin_user_page_range_dirty_lock() - release and optionally dirty
336 * gup-pinned page range
337 *
338 * @page: the starting page of a range maybe marked dirty, and definitely released.
339 * @npages: number of consecutive pages to release.
340 * @make_dirty: whether to mark the pages dirty
341 *
342 * "gup-pinned page range" refers to a range of pages that has had one of the
343 * pin_user_pages() variants called on that page.
344 *
345 * For the page ranges defined by [page .. page+npages], make that range (or
346 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347 * page range was previously listed as clean.
348 *
349 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350 * required, then the caller should a) verify that this is really correct,
351 * because _lock() is usually required, and b) hand code it:
352 * set_page_dirty_lock(), unpin_user_page().
353 *
354 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356 bool make_dirty)
357 {
358 unsigned long i;
359 struct folio *folio;
360 unsigned int nr;
361
362 for (i = 0; i < npages; i += nr) {
363 folio = gup_folio_range_next(page, npages, i, &nr);
364 if (make_dirty && !folio_test_dirty(folio)) {
365 folio_lock(folio);
366 folio_mark_dirty(folio);
367 folio_unlock(folio);
368 }
369 gup_put_folio(folio, nr, FOLL_PIN);
370 }
371 }
372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375 {
376 unsigned long i;
377 struct folio *folio;
378 unsigned int nr;
379
380 /*
381 * Don't perform any sanity checks because we might have raced with
382 * fork() and some anonymous pages might now actually be shared --
383 * which is why we're unpinning after all.
384 */
385 for (i = 0; i < npages; i += nr) {
386 folio = gup_folio_next(pages, npages, i, &nr);
387 gup_put_folio(folio, nr, FOLL_PIN);
388 }
389 }
390
391 /**
392 * unpin_user_pages() - release an array of gup-pinned pages.
393 * @pages: array of pages to be marked dirty and released.
394 * @npages: number of pages in the @pages array.
395 *
396 * For each page in the @pages array, release the page using unpin_user_page().
397 *
398 * Please see the unpin_user_page() documentation for details.
399 */
unpin_user_pages(struct page ** pages,unsigned long npages)400 void unpin_user_pages(struct page **pages, unsigned long npages)
401 {
402 unsigned long i;
403 struct folio *folio;
404 unsigned int nr;
405
406 /*
407 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 * leaving them pinned), but probably not. More likely, gup/pup returned
409 * a hard -ERRNO error to the caller, who erroneously passed it here.
410 */
411 if (WARN_ON(IS_ERR_VALUE(npages)))
412 return;
413
414 sanity_check_pinned_pages(pages, npages);
415 for (i = 0; i < npages; i += nr) {
416 if (!pages[i]) {
417 nr = 1;
418 continue;
419 }
420 folio = gup_folio_next(pages, npages, i, &nr);
421 gup_put_folio(folio, nr, FOLL_PIN);
422 }
423 }
424 EXPORT_SYMBOL(unpin_user_pages);
425
426 /**
427 * unpin_user_folio() - release pages of a folio
428 * @folio: pointer to folio to be released
429 * @npages: number of pages of same folio
430 *
431 * Release npages of the folio
432 */
unpin_user_folio(struct folio * folio,unsigned long npages)433 void unpin_user_folio(struct folio *folio, unsigned long npages)
434 {
435 gup_put_folio(folio, npages, FOLL_PIN);
436 }
437 EXPORT_SYMBOL(unpin_user_folio);
438
439 /**
440 * unpin_folios() - release an array of gup-pinned folios.
441 * @folios: array of folios to be marked dirty and released.
442 * @nfolios: number of folios in the @folios array.
443 *
444 * For each folio in the @folios array, release the folio using gup_put_folio.
445 *
446 * Please see the unpin_folio() documentation for details.
447 */
unpin_folios(struct folio ** folios,unsigned long nfolios)448 void unpin_folios(struct folio **folios, unsigned long nfolios)
449 {
450 unsigned long i = 0, j;
451
452 /*
453 * If this WARN_ON() fires, then the system *might* be leaking folios
454 * (by leaving them pinned), but probably not. More likely, gup/pup
455 * returned a hard -ERRNO error to the caller, who erroneously passed
456 * it here.
457 */
458 if (WARN_ON(IS_ERR_VALUE(nfolios)))
459 return;
460
461 while (i < nfolios) {
462 for (j = i + 1; j < nfolios; j++)
463 if (folios[i] != folios[j])
464 break;
465
466 if (folios[i])
467 gup_put_folio(folios[i], j - i, FOLL_PIN);
468 i = j;
469 }
470 }
471 EXPORT_SYMBOL_GPL(unpin_folios);
472
473 /*
474 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
476 * cache bouncing on large SMP machines for concurrent pinned gups.
477 */
mm_set_has_pinned_flag(unsigned long * mm_flags)478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479 {
480 if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 set_bit(MMF_HAS_PINNED, mm_flags);
482 }
483
484 #ifdef CONFIG_MMU
485
486 #ifdef CONFIG_HAVE_GUP_FAST
record_subpages(struct page * page,unsigned long sz,unsigned long addr,unsigned long end,struct page ** pages)487 static int record_subpages(struct page *page, unsigned long sz,
488 unsigned long addr, unsigned long end,
489 struct page **pages)
490 {
491 struct page *start_page;
492 int nr;
493
494 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 pages[nr] = nth_page(start_page, nr);
497
498 return nr;
499 }
500
501 /**
502 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503 * @page: pointer to page to be grabbed
504 * @refs: the value to (effectively) add to the folio's refcount
505 * @flags: gup flags: these are the FOLL_* flag values.
506 *
507 * "grab" names in this file mean, "look at flags to decide whether to use
508 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509 *
510 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511 * same time. (That's true throughout the get_user_pages*() and
512 * pin_user_pages*() APIs.) Cases:
513 *
514 * FOLL_GET: folio's refcount will be incremented by @refs.
515 *
516 * FOLL_PIN on large folios: folio's refcount will be incremented by
517 * @refs, and its pincount will be incremented by @refs.
518 *
519 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
520 * @refs * GUP_PIN_COUNTING_BIAS.
521 *
522 * Return: The folio containing @page (with refcount appropriately
523 * incremented) for success, or NULL upon failure. If neither FOLL_GET
524 * nor FOLL_PIN was set, that's considered failure, and furthermore,
525 * a likely bug in the caller, so a warning is also emitted.
526 *
527 * It uses add ref unless zero to elevate the folio refcount and must be called
528 * in fast path only.
529 */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)530 static struct folio *try_grab_folio_fast(struct page *page, int refs,
531 unsigned int flags)
532 {
533 struct folio *folio;
534
535 /* Raise warn if it is not called in fast GUP */
536 VM_WARN_ON_ONCE(!irqs_disabled());
537
538 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539 return NULL;
540
541 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542 return NULL;
543
544 if (flags & FOLL_GET)
545 return try_get_folio(page, refs);
546
547 /* FOLL_PIN is set */
548
549 /*
550 * Don't take a pin on the zero page - it's not going anywhere
551 * and it is used in a *lot* of places.
552 */
553 if (is_zero_page(page))
554 return page_folio(page);
555
556 folio = try_get_folio(page, refs);
557 if (!folio)
558 return NULL;
559
560 /*
561 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 * right zone, so fail and let the caller fall back to the slow
563 * path.
564 */
565 if (unlikely((flags & FOLL_LONGTERM) &&
566 !folio_is_longterm_pinnable(folio))) {
567 folio_put_refs(folio, refs);
568 return NULL;
569 }
570
571 /*
572 * When pinning a large folio, use an exact count to track it.
573 *
574 * However, be sure to *also* increment the normal folio
575 * refcount field at least once, so that the folio really
576 * is pinned. That's why the refcount from the earlier
577 * try_get_folio() is left intact.
578 */
579 if (folio_has_pincount(folio))
580 atomic_add(refs, &folio->_pincount);
581 else
582 folio_ref_add(folio,
583 refs * (GUP_PIN_COUNTING_BIAS - 1));
584 /*
585 * Adjust the pincount before re-checking the PTE for changes.
586 * This is essentially a smp_mb() and is paired with a memory
587 * barrier in folio_try_share_anon_rmap_*().
588 */
589 smp_mb__after_atomic();
590
591 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592
593 return folio;
594 }
595 #endif /* CONFIG_HAVE_GUP_FAST */
596
597 /* Common code for can_follow_write_* */
can_follow_write_common(struct page * page,struct vm_area_struct * vma,unsigned int flags)598 static inline bool can_follow_write_common(struct page *page,
599 struct vm_area_struct *vma, unsigned int flags)
600 {
601 /* Maybe FOLL_FORCE is set to override it? */
602 if (!(flags & FOLL_FORCE))
603 return false;
604
605 /* But FOLL_FORCE has no effect on shared mappings */
606 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607 return false;
608
609 /* ... or read-only private ones */
610 if (!(vma->vm_flags & VM_MAYWRITE))
611 return false;
612
613 /* ... or already writable ones that just need to take a write fault */
614 if (vma->vm_flags & VM_WRITE)
615 return false;
616
617 /*
618 * See can_change_pte_writable(): we broke COW and could map the page
619 * writable if we have an exclusive anonymous page ...
620 */
621 return page && PageAnon(page) && PageAnonExclusive(page);
622 }
623
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)624 static struct page *no_page_table(struct vm_area_struct *vma,
625 unsigned int flags, unsigned long address)
626 {
627 if (!(flags & FOLL_DUMP))
628 return NULL;
629
630 /*
631 * When core dumping, we don't want to allocate unnecessary pages or
632 * page tables. Return error instead of NULL to skip handle_mm_fault,
633 * then get_dump_page() will return NULL to leave a hole in the dump.
634 * But we can only make this optimization where a hole would surely
635 * be zero-filled if handle_mm_fault() actually did handle it.
636 */
637 if (is_vm_hugetlb_page(vma)) {
638 struct hstate *h = hstate_vma(vma);
639
640 if (!hugetlbfs_pagecache_present(h, vma, address))
641 return ERR_PTR(-EFAULT);
642 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 return ERR_PTR(-EFAULT);
644 }
645
646 return NULL;
647 }
648
649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
can_follow_write_pud(pud_t pud,struct page * page,struct vm_area_struct * vma,unsigned int flags)651 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 struct vm_area_struct *vma,
653 unsigned int flags)
654 {
655 /* If the pud is writable, we can write to the page. */
656 if (pud_write(pud))
657 return true;
658
659 return can_follow_write_common(page, vma, flags);
660 }
661
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)662 static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 unsigned long addr, pud_t *pudp,
664 int flags, struct follow_page_context *ctx)
665 {
666 struct mm_struct *mm = vma->vm_mm;
667 struct page *page;
668 pud_t pud = *pudp;
669 unsigned long pfn = pud_pfn(pud);
670 int ret;
671
672 assert_spin_locked(pud_lockptr(mm, pudp));
673
674 if (!pud_present(pud))
675 return NULL;
676
677 if ((flags & FOLL_WRITE) &&
678 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679 return NULL;
680
681 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682 page = pfn_to_page(pfn);
683
684 if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
685 return ERR_PTR(-EMLINK);
686
687 ret = try_grab_folio(page_folio(page), 1, flags);
688 if (ret)
689 page = ERR_PTR(ret);
690 else
691 ctx->page_mask = HPAGE_PUD_NR - 1;
692
693 return page;
694 }
695
696 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)697 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
698 struct vm_area_struct *vma,
699 unsigned int flags)
700 {
701 /* If the pmd is writable, we can write to the page. */
702 if (pmd_write(pmd))
703 return true;
704
705 if (!can_follow_write_common(page, vma, flags))
706 return false;
707
708 /* ... and a write-fault isn't required for other reasons. */
709 if (pmd_needs_soft_dirty_wp(vma, pmd))
710 return false;
711 return !userfaultfd_huge_pmd_wp(vma, pmd);
712 }
713
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)714 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
715 unsigned long addr, pmd_t *pmd,
716 unsigned int flags,
717 struct follow_page_context *ctx)
718 {
719 struct mm_struct *mm = vma->vm_mm;
720 pmd_t pmdval = *pmd;
721 struct page *page;
722 int ret;
723
724 assert_spin_locked(pmd_lockptr(mm, pmd));
725
726 page = pmd_page(pmdval);
727 if ((flags & FOLL_WRITE) &&
728 !can_follow_write_pmd(pmdval, page, vma, flags))
729 return NULL;
730
731 /* Avoid dumping huge zero page */
732 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
733 return ERR_PTR(-EFAULT);
734
735 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
736 return NULL;
737
738 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
739 return ERR_PTR(-EMLINK);
740
741 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
742 !PageAnonExclusive(page), page);
743
744 ret = try_grab_folio(page_folio(page), 1, flags);
745 if (ret)
746 return ERR_PTR(ret);
747
748 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
749 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
750 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
751 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
752
753 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
754 ctx->page_mask = HPAGE_PMD_NR - 1;
755
756 return page;
757 }
758
759 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)760 static struct page *follow_huge_pud(struct vm_area_struct *vma,
761 unsigned long addr, pud_t *pudp,
762 int flags, struct follow_page_context *ctx)
763 {
764 return NULL;
765 }
766
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)767 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
768 unsigned long addr, pmd_t *pmd,
769 unsigned int flags,
770 struct follow_page_context *ctx)
771 {
772 return NULL;
773 }
774 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
775
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)776 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
777 pte_t *pte, unsigned int flags)
778 {
779 if (flags & FOLL_TOUCH) {
780 pte_t orig_entry = ptep_get(pte);
781 pte_t entry = orig_entry;
782
783 if (flags & FOLL_WRITE)
784 entry = pte_mkdirty(entry);
785 entry = pte_mkyoung(entry);
786
787 if (!pte_same(orig_entry, entry)) {
788 set_pte_at(vma->vm_mm, address, pte, entry);
789 update_mmu_cache(vma, address, pte);
790 }
791 }
792
793 /* Proper page table entry exists, but no corresponding struct page */
794 return -EEXIST;
795 }
796
797 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)798 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
799 struct vm_area_struct *vma,
800 unsigned int flags)
801 {
802 /* If the pte is writable, we can write to the page. */
803 if (pte_write(pte))
804 return true;
805
806 if (!can_follow_write_common(page, vma, flags))
807 return false;
808
809 /* ... and a write-fault isn't required for other reasons. */
810 if (pte_needs_soft_dirty_wp(vma, pte))
811 return false;
812 return !userfaultfd_pte_wp(vma, pte);
813 }
814
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)815 static struct page *follow_page_pte(struct vm_area_struct *vma,
816 unsigned long address, pmd_t *pmd, unsigned int flags,
817 struct dev_pagemap **pgmap)
818 {
819 struct mm_struct *mm = vma->vm_mm;
820 struct folio *folio;
821 struct page *page;
822 spinlock_t *ptl;
823 pte_t *ptep, pte;
824 int ret;
825
826 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
827 if (!ptep)
828 return no_page_table(vma, flags, address);
829 pte = ptep_get(ptep);
830 if (!pte_present(pte))
831 goto no_page;
832 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
833 goto no_page;
834
835 page = vm_normal_page(vma, address, pte);
836
837 /*
838 * We only care about anon pages in can_follow_write_pte().
839 */
840 if ((flags & FOLL_WRITE) &&
841 !can_follow_write_pte(pte, page, vma, flags)) {
842 page = NULL;
843 goto out;
844 }
845
846 if (unlikely(!page)) {
847 if (flags & FOLL_DUMP) {
848 /* Avoid special (like zero) pages in core dumps */
849 page = ERR_PTR(-EFAULT);
850 goto out;
851 }
852
853 if (is_zero_pfn(pte_pfn(pte))) {
854 page = pte_page(pte);
855 } else {
856 ret = follow_pfn_pte(vma, address, ptep, flags);
857 page = ERR_PTR(ret);
858 goto out;
859 }
860 }
861 folio = page_folio(page);
862
863 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
864 page = ERR_PTR(-EMLINK);
865 goto out;
866 }
867
868 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
869 !PageAnonExclusive(page), page);
870
871 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
872 ret = try_grab_folio(folio, 1, flags);
873 if (unlikely(ret)) {
874 page = ERR_PTR(ret);
875 goto out;
876 }
877
878 /*
879 * We need to make the page accessible if and only if we are going
880 * to access its content (the FOLL_PIN case). Please see
881 * Documentation/core-api/pin_user_pages.rst for details.
882 */
883 if (flags & FOLL_PIN) {
884 ret = arch_make_folio_accessible(folio);
885 if (ret) {
886 unpin_user_page(page);
887 page = ERR_PTR(ret);
888 goto out;
889 }
890 }
891 if (flags & FOLL_TOUCH) {
892 if ((flags & FOLL_WRITE) &&
893 !pte_dirty(pte) && !folio_test_dirty(folio))
894 folio_mark_dirty(folio);
895 /*
896 * pte_mkyoung() would be more correct here, but atomic care
897 * is needed to avoid losing the dirty bit: it is easier to use
898 * folio_mark_accessed().
899 */
900 folio_mark_accessed(folio);
901 }
902 out:
903 pte_unmap_unlock(ptep, ptl);
904 return page;
905 no_page:
906 pte_unmap_unlock(ptep, ptl);
907 if (!pte_none(pte))
908 return NULL;
909 return no_page_table(vma, flags, address);
910 }
911
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)912 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
913 unsigned long address, pud_t *pudp,
914 unsigned int flags,
915 struct follow_page_context *ctx)
916 {
917 pmd_t *pmd, pmdval;
918 spinlock_t *ptl;
919 struct page *page;
920 struct mm_struct *mm = vma->vm_mm;
921
922 pmd = pmd_offset(pudp, address);
923 pmdval = pmdp_get_lockless(pmd);
924 if (pmd_none(pmdval))
925 return no_page_table(vma, flags, address);
926 if (!pmd_present(pmdval))
927 return no_page_table(vma, flags, address);
928 if (likely(!pmd_leaf(pmdval)))
929 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
930
931 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
932 return no_page_table(vma, flags, address);
933
934 ptl = pmd_lock(mm, pmd);
935 pmdval = *pmd;
936 if (unlikely(!pmd_present(pmdval))) {
937 spin_unlock(ptl);
938 return no_page_table(vma, flags, address);
939 }
940 if (unlikely(!pmd_leaf(pmdval))) {
941 spin_unlock(ptl);
942 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
943 }
944 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
945 spin_unlock(ptl);
946 split_huge_pmd(vma, pmd, address);
947 /* If pmd was left empty, stuff a page table in there quickly */
948 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
949 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
950 }
951 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
952 spin_unlock(ptl);
953 return page;
954 }
955
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)956 static struct page *follow_pud_mask(struct vm_area_struct *vma,
957 unsigned long address, p4d_t *p4dp,
958 unsigned int flags,
959 struct follow_page_context *ctx)
960 {
961 pud_t *pudp, pud;
962 spinlock_t *ptl;
963 struct page *page;
964 struct mm_struct *mm = vma->vm_mm;
965
966 pudp = pud_offset(p4dp, address);
967 pud = READ_ONCE(*pudp);
968 if (!pud_present(pud))
969 return no_page_table(vma, flags, address);
970 if (pud_leaf(pud)) {
971 ptl = pud_lock(mm, pudp);
972 page = follow_huge_pud(vma, address, pudp, flags, ctx);
973 spin_unlock(ptl);
974 if (page)
975 return page;
976 return no_page_table(vma, flags, address);
977 }
978 if (unlikely(pud_bad(pud)))
979 return no_page_table(vma, flags, address);
980
981 return follow_pmd_mask(vma, address, pudp, flags, ctx);
982 }
983
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)984 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
985 unsigned long address, pgd_t *pgdp,
986 unsigned int flags,
987 struct follow_page_context *ctx)
988 {
989 p4d_t *p4dp, p4d;
990
991 p4dp = p4d_offset(pgdp, address);
992 p4d = READ_ONCE(*p4dp);
993 BUILD_BUG_ON(p4d_leaf(p4d));
994
995 if (!p4d_present(p4d) || p4d_bad(p4d))
996 return no_page_table(vma, flags, address);
997
998 return follow_pud_mask(vma, address, p4dp, flags, ctx);
999 }
1000
1001 /**
1002 * follow_page_mask - look up a page descriptor from a user-virtual address
1003 * @vma: vm_area_struct mapping @address
1004 * @address: virtual address to look up
1005 * @flags: flags modifying lookup behaviour
1006 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1007 * pointer to output page_mask
1008 *
1009 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1010 *
1011 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1012 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1013 *
1014 * When getting an anonymous page and the caller has to trigger unsharing
1015 * of a shared anonymous page first, -EMLINK is returned. The caller should
1016 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1017 * relevant with FOLL_PIN and !FOLL_WRITE.
1018 *
1019 * On output, the @ctx->page_mask is set according to the size of the page.
1020 *
1021 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1022 * an error pointer if there is a mapping to something not represented
1023 * by a page descriptor (see also vm_normal_page()).
1024 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)1025 static struct page *follow_page_mask(struct vm_area_struct *vma,
1026 unsigned long address, unsigned int flags,
1027 struct follow_page_context *ctx)
1028 {
1029 pgd_t *pgd;
1030 struct mm_struct *mm = vma->vm_mm;
1031 struct page *page;
1032
1033 vma_pgtable_walk_begin(vma);
1034
1035 ctx->page_mask = 0;
1036 pgd = pgd_offset(mm, address);
1037
1038 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1039 page = no_page_table(vma, flags, address);
1040 else
1041 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1042
1043 vma_pgtable_walk_end(vma);
1044
1045 return page;
1046 }
1047
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1048 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1049 unsigned int gup_flags, struct vm_area_struct **vma,
1050 struct page **page)
1051 {
1052 pgd_t *pgd;
1053 p4d_t *p4d;
1054 pud_t *pud;
1055 pmd_t *pmd;
1056 pte_t *pte;
1057 pte_t entry;
1058 int ret = -EFAULT;
1059
1060 /* user gate pages are read-only */
1061 if (gup_flags & FOLL_WRITE)
1062 return -EFAULT;
1063 pgd = pgd_offset(mm, address);
1064 if (pgd_none(*pgd))
1065 return -EFAULT;
1066 p4d = p4d_offset(pgd, address);
1067 if (p4d_none(*p4d))
1068 return -EFAULT;
1069 pud = pud_offset(p4d, address);
1070 if (pud_none(*pud))
1071 return -EFAULT;
1072 pmd = pmd_offset(pud, address);
1073 if (!pmd_present(*pmd))
1074 return -EFAULT;
1075 pte = pte_offset_map(pmd, address);
1076 if (!pte)
1077 return -EFAULT;
1078 entry = ptep_get(pte);
1079 if (pte_none(entry))
1080 goto unmap;
1081 *vma = get_gate_vma(mm);
1082 if (!page)
1083 goto out;
1084 *page = vm_normal_page(*vma, address, entry);
1085 if (!*page) {
1086 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1087 goto unmap;
1088 *page = pte_page(entry);
1089 }
1090 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1091 if (unlikely(ret))
1092 goto unmap;
1093 out:
1094 ret = 0;
1095 unmap:
1096 pte_unmap(pte);
1097 return ret;
1098 }
1099
1100 /*
1101 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1102 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1103 * to 0 and -EBUSY returned.
1104 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1105 static int faultin_page(struct vm_area_struct *vma,
1106 unsigned long address, unsigned int flags, bool unshare,
1107 int *locked)
1108 {
1109 unsigned int fault_flags = 0;
1110 vm_fault_t ret;
1111
1112 if (flags & FOLL_NOFAULT)
1113 return -EFAULT;
1114 if (flags & FOLL_WRITE)
1115 fault_flags |= FAULT_FLAG_WRITE;
1116 if (flags & FOLL_REMOTE)
1117 fault_flags |= FAULT_FLAG_REMOTE;
1118 if (flags & FOLL_UNLOCKABLE) {
1119 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1120 /*
1121 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1122 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1123 * That's because some callers may not be prepared to
1124 * handle early exits caused by non-fatal signals.
1125 */
1126 if (flags & FOLL_INTERRUPTIBLE)
1127 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1128 }
1129 if (flags & FOLL_NOWAIT)
1130 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1131 if (flags & FOLL_TRIED) {
1132 /*
1133 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1134 * can co-exist
1135 */
1136 fault_flags |= FAULT_FLAG_TRIED;
1137 }
1138 if (unshare) {
1139 fault_flags |= FAULT_FLAG_UNSHARE;
1140 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1141 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1142 }
1143
1144 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1145
1146 if (ret & VM_FAULT_COMPLETED) {
1147 /*
1148 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1149 * mmap lock in the page fault handler. Sanity check this.
1150 */
1151 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1152 *locked = 0;
1153
1154 /*
1155 * We should do the same as VM_FAULT_RETRY, but let's not
1156 * return -EBUSY since that's not reflecting the reality of
1157 * what has happened - we've just fully completed a page
1158 * fault, with the mmap lock released. Use -EAGAIN to show
1159 * that we want to take the mmap lock _again_.
1160 */
1161 return -EAGAIN;
1162 }
1163
1164 if (ret & VM_FAULT_ERROR) {
1165 int err = vm_fault_to_errno(ret, flags);
1166
1167 if (err)
1168 return err;
1169 BUG();
1170 }
1171
1172 if (ret & VM_FAULT_RETRY) {
1173 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1174 *locked = 0;
1175 return -EBUSY;
1176 }
1177
1178 return 0;
1179 }
1180
1181 /*
1182 * Writing to file-backed mappings which require folio dirty tracking using GUP
1183 * is a fundamentally broken operation, as kernel write access to GUP mappings
1184 * do not adhere to the semantics expected by a file system.
1185 *
1186 * Consider the following scenario:-
1187 *
1188 * 1. A folio is written to via GUP which write-faults the memory, notifying
1189 * the file system and dirtying the folio.
1190 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1191 * the PTE being marked read-only.
1192 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1193 * direct mapping.
1194 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1195 * (though it does not have to).
1196 *
1197 * This results in both data being written to a folio without writenotify, and
1198 * the folio being dirtied unexpectedly (if the caller decides to do so).
1199 */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1200 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1201 unsigned long gup_flags)
1202 {
1203 /*
1204 * If we aren't pinning then no problematic write can occur. A long term
1205 * pin is the most egregious case so this is the case we disallow.
1206 */
1207 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1208 (FOLL_PIN | FOLL_LONGTERM))
1209 return true;
1210
1211 /*
1212 * If the VMA does not require dirty tracking then no problematic write
1213 * can occur either.
1214 */
1215 return !vma_needs_dirty_tracking(vma);
1216 }
1217
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1218 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1219 {
1220 vm_flags_t vm_flags = vma->vm_flags;
1221 int write = (gup_flags & FOLL_WRITE);
1222 int foreign = (gup_flags & FOLL_REMOTE);
1223 bool vma_anon = vma_is_anonymous(vma);
1224
1225 if (vm_flags & (VM_IO | VM_PFNMAP))
1226 return -EFAULT;
1227
1228 if ((gup_flags & FOLL_ANON) && !vma_anon)
1229 return -EFAULT;
1230
1231 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1232 return -EOPNOTSUPP;
1233
1234 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1235 return -EOPNOTSUPP;
1236
1237 if (vma_is_secretmem(vma))
1238 return -EFAULT;
1239
1240 if (write) {
1241 if (!vma_anon &&
1242 !writable_file_mapping_allowed(vma, gup_flags))
1243 return -EFAULT;
1244
1245 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1246 if (!(gup_flags & FOLL_FORCE))
1247 return -EFAULT;
1248 /*
1249 * We used to let the write,force case do COW in a
1250 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1251 * set a breakpoint in a read-only mapping of an
1252 * executable, without corrupting the file (yet only
1253 * when that file had been opened for writing!).
1254 * Anon pages in shared mappings are surprising: now
1255 * just reject it.
1256 */
1257 if (!is_cow_mapping(vm_flags))
1258 return -EFAULT;
1259 }
1260 } else if (!(vm_flags & VM_READ)) {
1261 if (!(gup_flags & FOLL_FORCE))
1262 return -EFAULT;
1263 /*
1264 * Is there actually any vma we can reach here which does not
1265 * have VM_MAYREAD set?
1266 */
1267 if (!(vm_flags & VM_MAYREAD))
1268 return -EFAULT;
1269 }
1270 /*
1271 * gups are always data accesses, not instruction
1272 * fetches, so execute=false here
1273 */
1274 if (!arch_vma_access_permitted(vma, write, false, foreign))
1275 return -EFAULT;
1276 return 0;
1277 }
1278
1279 /*
1280 * This is "vma_lookup()", but with a warning if we would have
1281 * historically expanded the stack in the GUP code.
1282 */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1283 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1284 unsigned long addr)
1285 {
1286 #ifdef CONFIG_STACK_GROWSUP
1287 return vma_lookup(mm, addr);
1288 #else
1289 static volatile unsigned long next_warn;
1290 struct vm_area_struct *vma;
1291 unsigned long now, next;
1292
1293 vma = find_vma(mm, addr);
1294 if (!vma || (addr >= vma->vm_start))
1295 return vma;
1296
1297 /* Only warn for half-way relevant accesses */
1298 if (!(vma->vm_flags & VM_GROWSDOWN))
1299 return NULL;
1300 if (vma->vm_start - addr > 65536)
1301 return NULL;
1302
1303 /* Let's not warn more than once an hour.. */
1304 now = jiffies; next = next_warn;
1305 if (next && time_before(now, next))
1306 return NULL;
1307 next_warn = now + 60*60*HZ;
1308
1309 /* Let people know things may have changed. */
1310 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1311 current->comm, task_pid_nr(current),
1312 vma->vm_start, vma->vm_end, addr);
1313 dump_stack();
1314 return NULL;
1315 #endif
1316 }
1317
1318 /**
1319 * __get_user_pages() - pin user pages in memory
1320 * @mm: mm_struct of target mm
1321 * @start: starting user address
1322 * @nr_pages: number of pages from start to pin
1323 * @gup_flags: flags modifying pin behaviour
1324 * @pages: array that receives pointers to the pages pinned.
1325 * Should be at least nr_pages long. Or NULL, if caller
1326 * only intends to ensure the pages are faulted in.
1327 * @locked: whether we're still with the mmap_lock held
1328 *
1329 * Returns either number of pages pinned (which may be less than the
1330 * number requested), or an error. Details about the return value:
1331 *
1332 * -- If nr_pages is 0, returns 0.
1333 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1334 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1335 * pages pinned. Again, this may be less than nr_pages.
1336 * -- 0 return value is possible when the fault would need to be retried.
1337 *
1338 * The caller is responsible for releasing returned @pages, via put_page().
1339 *
1340 * Must be called with mmap_lock held. It may be released. See below.
1341 *
1342 * __get_user_pages walks a process's page tables and takes a reference to
1343 * each struct page that each user address corresponds to at a given
1344 * instant. That is, it takes the page that would be accessed if a user
1345 * thread accesses the given user virtual address at that instant.
1346 *
1347 * This does not guarantee that the page exists in the user mappings when
1348 * __get_user_pages returns, and there may even be a completely different
1349 * page there in some cases (eg. if mmapped pagecache has been invalidated
1350 * and subsequently re-faulted). However it does guarantee that the page
1351 * won't be freed completely. And mostly callers simply care that the page
1352 * contains data that was valid *at some point in time*. Typically, an IO
1353 * or similar operation cannot guarantee anything stronger anyway because
1354 * locks can't be held over the syscall boundary.
1355 *
1356 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1357 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1358 * appropriate) must be called after the page is finished with, and
1359 * before put_page is called.
1360 *
1361 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1362 * be released. If this happens *@locked will be set to 0 on return.
1363 *
1364 * A caller using such a combination of @gup_flags must therefore hold the
1365 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1366 * it must be held for either reading or writing and will not be released.
1367 *
1368 * In most cases, get_user_pages or get_user_pages_fast should be used
1369 * instead of __get_user_pages. __get_user_pages should be used only if
1370 * you need some special @gup_flags.
1371 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1372 static long __get_user_pages(struct mm_struct *mm,
1373 unsigned long start, unsigned long nr_pages,
1374 unsigned int gup_flags, struct page **pages,
1375 int *locked)
1376 {
1377 long ret = 0, i = 0;
1378 struct vm_area_struct *vma = NULL;
1379 struct follow_page_context ctx = { NULL };
1380
1381 if (!nr_pages)
1382 return 0;
1383
1384 start = untagged_addr_remote(mm, start);
1385
1386 VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1387
1388 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1389 VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1390 (FOLL_PIN | FOLL_GET));
1391
1392 do {
1393 struct page *page;
1394 unsigned int page_increm;
1395
1396 /* first iteration or cross vma bound */
1397 if (!vma || start >= vma->vm_end) {
1398 /*
1399 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1400 * lookups+error reporting differently.
1401 */
1402 if (gup_flags & FOLL_MADV_POPULATE) {
1403 vma = vma_lookup(mm, start);
1404 if (!vma) {
1405 ret = -ENOMEM;
1406 goto out;
1407 }
1408 if (check_vma_flags(vma, gup_flags)) {
1409 ret = -EINVAL;
1410 goto out;
1411 }
1412 goto retry;
1413 }
1414 vma = gup_vma_lookup(mm, start);
1415 if (!vma && in_gate_area(mm, start)) {
1416 ret = get_gate_page(mm, start & PAGE_MASK,
1417 gup_flags, &vma,
1418 pages ? &page : NULL);
1419 if (ret)
1420 goto out;
1421 ctx.page_mask = 0;
1422 goto next_page;
1423 }
1424
1425 if (!vma) {
1426 ret = -EFAULT;
1427 goto out;
1428 }
1429 ret = check_vma_flags(vma, gup_flags);
1430 if (ret)
1431 goto out;
1432 }
1433 retry:
1434 /*
1435 * If we have a pending SIGKILL, don't keep faulting pages and
1436 * potentially allocating memory.
1437 */
1438 if (fatal_signal_pending(current)) {
1439 ret = -EINTR;
1440 goto out;
1441 }
1442 cond_resched();
1443
1444 page = follow_page_mask(vma, start, gup_flags, &ctx);
1445 if (!page || PTR_ERR(page) == -EMLINK) {
1446 ret = faultin_page(vma, start, gup_flags,
1447 PTR_ERR(page) == -EMLINK, locked);
1448 switch (ret) {
1449 case 0:
1450 goto retry;
1451 case -EBUSY:
1452 case -EAGAIN:
1453 ret = 0;
1454 fallthrough;
1455 case -EFAULT:
1456 case -ENOMEM:
1457 case -EHWPOISON:
1458 goto out;
1459 }
1460 BUG();
1461 } else if (PTR_ERR(page) == -EEXIST) {
1462 /*
1463 * Proper page table entry exists, but no corresponding
1464 * struct page. If the caller expects **pages to be
1465 * filled in, bail out now, because that can't be done
1466 * for this page.
1467 */
1468 if (pages) {
1469 ret = PTR_ERR(page);
1470 goto out;
1471 }
1472 } else if (IS_ERR(page)) {
1473 ret = PTR_ERR(page);
1474 goto out;
1475 }
1476 next_page:
1477 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1478 if (page_increm > nr_pages)
1479 page_increm = nr_pages;
1480
1481 if (pages) {
1482 struct page *subpage;
1483 unsigned int j;
1484
1485 /*
1486 * This must be a large folio (and doesn't need to
1487 * be the whole folio; it can be part of it), do
1488 * the refcount work for all the subpages too.
1489 *
1490 * NOTE: here the page may not be the head page
1491 * e.g. when start addr is not thp-size aligned.
1492 * try_grab_folio() should have taken care of tail
1493 * pages.
1494 */
1495 if (page_increm > 1) {
1496 struct folio *folio = page_folio(page);
1497
1498 /*
1499 * Since we already hold refcount on the
1500 * large folio, this should never fail.
1501 */
1502 if (try_grab_folio(folio, page_increm - 1,
1503 gup_flags)) {
1504 /*
1505 * Release the 1st page ref if the
1506 * folio is problematic, fail hard.
1507 */
1508 gup_put_folio(folio, 1, gup_flags);
1509 ret = -EFAULT;
1510 goto out;
1511 }
1512 }
1513
1514 for (j = 0; j < page_increm; j++) {
1515 subpage = nth_page(page, j);
1516 pages[i + j] = subpage;
1517 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1518 flush_dcache_page(subpage);
1519 }
1520 }
1521
1522 i += page_increm;
1523 start += page_increm * PAGE_SIZE;
1524 nr_pages -= page_increm;
1525 } while (nr_pages);
1526 out:
1527 if (ctx.pgmap)
1528 put_dev_pagemap(ctx.pgmap);
1529 return i ? i : ret;
1530 }
1531
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1532 static bool vma_permits_fault(struct vm_area_struct *vma,
1533 unsigned int fault_flags)
1534 {
1535 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1536 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1537 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1538
1539 if (!(vm_flags & vma->vm_flags))
1540 return false;
1541
1542 /*
1543 * The architecture might have a hardware protection
1544 * mechanism other than read/write that can deny access.
1545 *
1546 * gup always represents data access, not instruction
1547 * fetches, so execute=false here:
1548 */
1549 if (!arch_vma_access_permitted(vma, write, false, foreign))
1550 return false;
1551
1552 return true;
1553 }
1554
1555 /**
1556 * fixup_user_fault() - manually resolve a user page fault
1557 * @mm: mm_struct of target mm
1558 * @address: user address
1559 * @fault_flags:flags to pass down to handle_mm_fault()
1560 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1561 * does not allow retry. If NULL, the caller must guarantee
1562 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1563 *
1564 * This is meant to be called in the specific scenario where for locking reasons
1565 * we try to access user memory in atomic context (within a pagefault_disable()
1566 * section), this returns -EFAULT, and we want to resolve the user fault before
1567 * trying again.
1568 *
1569 * Typically this is meant to be used by the futex code.
1570 *
1571 * The main difference with get_user_pages() is that this function will
1572 * unconditionally call handle_mm_fault() which will in turn perform all the
1573 * necessary SW fixup of the dirty and young bits in the PTE, while
1574 * get_user_pages() only guarantees to update these in the struct page.
1575 *
1576 * This is important for some architectures where those bits also gate the
1577 * access permission to the page because they are maintained in software. On
1578 * such architectures, gup() will not be enough to make a subsequent access
1579 * succeed.
1580 *
1581 * This function will not return with an unlocked mmap_lock. So it has not the
1582 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1583 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1584 int fixup_user_fault(struct mm_struct *mm,
1585 unsigned long address, unsigned int fault_flags,
1586 bool *unlocked)
1587 {
1588 struct vm_area_struct *vma;
1589 vm_fault_t ret;
1590
1591 address = untagged_addr_remote(mm, address);
1592
1593 if (unlocked)
1594 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1595
1596 retry:
1597 vma = gup_vma_lookup(mm, address);
1598 if (!vma)
1599 return -EFAULT;
1600
1601 if (!vma_permits_fault(vma, fault_flags))
1602 return -EFAULT;
1603
1604 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1605 fatal_signal_pending(current))
1606 return -EINTR;
1607
1608 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1609
1610 if (ret & VM_FAULT_COMPLETED) {
1611 /*
1612 * NOTE: it's a pity that we need to retake the lock here
1613 * to pair with the unlock() in the callers. Ideally we
1614 * could tell the callers so they do not need to unlock.
1615 */
1616 mmap_read_lock(mm);
1617 *unlocked = true;
1618 return 0;
1619 }
1620
1621 if (ret & VM_FAULT_ERROR) {
1622 int err = vm_fault_to_errno(ret, 0);
1623
1624 if (err)
1625 return err;
1626 BUG();
1627 }
1628
1629 if (ret & VM_FAULT_RETRY) {
1630 mmap_read_lock(mm);
1631 *unlocked = true;
1632 fault_flags |= FAULT_FLAG_TRIED;
1633 goto retry;
1634 }
1635
1636 return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(fixup_user_fault);
1639
1640 /*
1641 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1642 * specified, it'll also respond to generic signals. The caller of GUP
1643 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1644 */
gup_signal_pending(unsigned int flags)1645 static bool gup_signal_pending(unsigned int flags)
1646 {
1647 if (fatal_signal_pending(current))
1648 return true;
1649
1650 if (!(flags & FOLL_INTERRUPTIBLE))
1651 return false;
1652
1653 return signal_pending(current);
1654 }
1655
1656 /*
1657 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1658 * the caller. This function may drop the mmap_lock. If it does so, then it will
1659 * set (*locked = 0).
1660 *
1661 * (*locked == 0) means that the caller expects this function to acquire and
1662 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1663 * the function returns, even though it may have changed temporarily during
1664 * function execution.
1665 *
1666 * Please note that this function, unlike __get_user_pages(), will not return 0
1667 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1668 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1669 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1670 unsigned long start,
1671 unsigned long nr_pages,
1672 struct page **pages,
1673 int *locked,
1674 unsigned int flags)
1675 {
1676 long ret, pages_done;
1677 bool must_unlock = false;
1678
1679 if (!nr_pages)
1680 return 0;
1681
1682 /*
1683 * The internal caller expects GUP to manage the lock internally and the
1684 * lock must be released when this returns.
1685 */
1686 if (!*locked) {
1687 if (mmap_read_lock_killable(mm))
1688 return -EAGAIN;
1689 must_unlock = true;
1690 *locked = 1;
1691 }
1692 else
1693 mmap_assert_locked(mm);
1694
1695 if (flags & FOLL_PIN)
1696 mm_set_has_pinned_flag(&mm->flags);
1697
1698 /*
1699 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1700 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1701 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1702 * for FOLL_GET, not for the newer FOLL_PIN.
1703 *
1704 * FOLL_PIN always expects pages to be non-null, but no need to assert
1705 * that here, as any failures will be obvious enough.
1706 */
1707 if (pages && !(flags & FOLL_PIN))
1708 flags |= FOLL_GET;
1709
1710 pages_done = 0;
1711 for (;;) {
1712 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1713 locked);
1714 if (!(flags & FOLL_UNLOCKABLE)) {
1715 /* VM_FAULT_RETRY couldn't trigger, bypass */
1716 pages_done = ret;
1717 break;
1718 }
1719
1720 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1721 VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1722
1723 if (ret > 0) {
1724 nr_pages -= ret;
1725 pages_done += ret;
1726 if (!nr_pages)
1727 break;
1728 }
1729 if (*locked) {
1730 /*
1731 * VM_FAULT_RETRY didn't trigger or it was a
1732 * FOLL_NOWAIT.
1733 */
1734 if (!pages_done)
1735 pages_done = ret;
1736 break;
1737 }
1738 /*
1739 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1740 * For the prefault case (!pages) we only update counts.
1741 */
1742 if (likely(pages))
1743 pages += ret;
1744 start += ret << PAGE_SHIFT;
1745
1746 /* The lock was temporarily dropped, so we must unlock later */
1747 must_unlock = true;
1748
1749 retry:
1750 /*
1751 * Repeat on the address that fired VM_FAULT_RETRY
1752 * with both FAULT_FLAG_ALLOW_RETRY and
1753 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1754 * by fatal signals of even common signals, depending on
1755 * the caller's request. So we need to check it before we
1756 * start trying again otherwise it can loop forever.
1757 */
1758 if (gup_signal_pending(flags)) {
1759 if (!pages_done)
1760 pages_done = -EINTR;
1761 break;
1762 }
1763
1764 ret = mmap_read_lock_killable(mm);
1765 if (ret) {
1766 if (!pages_done)
1767 pages_done = ret;
1768 break;
1769 }
1770
1771 *locked = 1;
1772 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1773 pages, locked);
1774 if (!*locked) {
1775 /* Continue to retry until we succeeded */
1776 VM_WARN_ON_ONCE(ret != 0);
1777 goto retry;
1778 }
1779 if (ret != 1) {
1780 VM_WARN_ON_ONCE(ret > 1);
1781 if (!pages_done)
1782 pages_done = ret;
1783 break;
1784 }
1785 nr_pages--;
1786 pages_done++;
1787 if (!nr_pages)
1788 break;
1789 if (likely(pages))
1790 pages++;
1791 start += PAGE_SIZE;
1792 }
1793 if (must_unlock && *locked) {
1794 /*
1795 * We either temporarily dropped the lock, or the caller
1796 * requested that we both acquire and drop the lock. Either way,
1797 * we must now unlock, and notify the caller of that state.
1798 */
1799 mmap_read_unlock(mm);
1800 *locked = 0;
1801 }
1802
1803 /*
1804 * Failing to pin anything implies something has gone wrong (except when
1805 * FOLL_NOWAIT is specified).
1806 */
1807 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1808 return -EFAULT;
1809
1810 return pages_done;
1811 }
1812
1813 /**
1814 * populate_vma_page_range() - populate a range of pages in the vma.
1815 * @vma: target vma
1816 * @start: start address
1817 * @end: end address
1818 * @locked: whether the mmap_lock is still held
1819 *
1820 * This takes care of mlocking the pages too if VM_LOCKED is set.
1821 *
1822 * Return either number of pages pinned in the vma, or a negative error
1823 * code on error.
1824 *
1825 * vma->vm_mm->mmap_lock must be held.
1826 *
1827 * If @locked is NULL, it may be held for read or write and will
1828 * be unperturbed.
1829 *
1830 * If @locked is non-NULL, it must held for read only and may be
1831 * released. If it's released, *@locked will be set to 0.
1832 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1833 long populate_vma_page_range(struct vm_area_struct *vma,
1834 unsigned long start, unsigned long end, int *locked)
1835 {
1836 struct mm_struct *mm = vma->vm_mm;
1837 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1838 int local_locked = 1;
1839 int gup_flags;
1840 long ret;
1841
1842 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1843 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1844 VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1845 VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma);
1846 mmap_assert_locked(mm);
1847
1848 /*
1849 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1850 * faultin_page() to break COW, so it has no work to do here.
1851 */
1852 if (vma->vm_flags & VM_LOCKONFAULT)
1853 return nr_pages;
1854
1855 /* ... similarly, we've never faulted in PROT_NONE pages */
1856 if (!vma_is_accessible(vma))
1857 return -EFAULT;
1858
1859 gup_flags = FOLL_TOUCH;
1860 /*
1861 * We want to touch writable mappings with a write fault in order
1862 * to break COW, except for shared mappings because these don't COW
1863 * and we would not want to dirty them for nothing.
1864 *
1865 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1866 * readable (ie write-only or executable).
1867 */
1868 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1869 gup_flags |= FOLL_WRITE;
1870 else
1871 gup_flags |= FOLL_FORCE;
1872
1873 if (locked)
1874 gup_flags |= FOLL_UNLOCKABLE;
1875
1876 /*
1877 * We made sure addr is within a VMA, so the following will
1878 * not result in a stack expansion that recurses back here.
1879 */
1880 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1881 NULL, locked ? locked : &local_locked);
1882 lru_add_drain();
1883 return ret;
1884 }
1885
1886 /*
1887 * faultin_page_range() - populate (prefault) page tables inside the
1888 * given range readable/writable
1889 *
1890 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1891 *
1892 * @mm: the mm to populate page tables in
1893 * @start: start address
1894 * @end: end address
1895 * @write: whether to prefault readable or writable
1896 * @locked: whether the mmap_lock is still held
1897 *
1898 * Returns either number of processed pages in the MM, or a negative error
1899 * code on error (see __get_user_pages()). Note that this function reports
1900 * errors related to VMAs, such as incompatible mappings, as expected by
1901 * MADV_POPULATE_(READ|WRITE).
1902 *
1903 * The range must be page-aligned.
1904 *
1905 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1906 */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1907 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1908 unsigned long end, bool write, int *locked)
1909 {
1910 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1911 int gup_flags;
1912 long ret;
1913
1914 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1915 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1916 mmap_assert_locked(mm);
1917
1918 /*
1919 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1920 * the page dirty with FOLL_WRITE -- which doesn't make a
1921 * difference with !FOLL_FORCE, because the page is writable
1922 * in the page table.
1923 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1924 * a poisoned page.
1925 * !FOLL_FORCE: Require proper access permissions.
1926 */
1927 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1928 FOLL_MADV_POPULATE;
1929 if (write)
1930 gup_flags |= FOLL_WRITE;
1931
1932 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1933 gup_flags);
1934 lru_add_drain();
1935 return ret;
1936 }
1937
1938 /*
1939 * __mm_populate - populate and/or mlock pages within a range of address space.
1940 *
1941 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1942 * flags. VMAs must be already marked with the desired vm_flags, and
1943 * mmap_lock must not be held.
1944 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1945 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1946 {
1947 struct mm_struct *mm = current->mm;
1948 unsigned long end, nstart, nend;
1949 struct vm_area_struct *vma = NULL;
1950 int locked = 0;
1951 long ret = 0;
1952
1953 end = start + len;
1954
1955 for (nstart = start; nstart < end; nstart = nend) {
1956 /*
1957 * We want to fault in pages for [nstart; end) address range.
1958 * Find first corresponding VMA.
1959 */
1960 if (!locked) {
1961 locked = 1;
1962 mmap_read_lock(mm);
1963 vma = find_vma_intersection(mm, nstart, end);
1964 } else if (nstart >= vma->vm_end)
1965 vma = find_vma_intersection(mm, vma->vm_end, end);
1966
1967 if (!vma)
1968 break;
1969 /*
1970 * Set [nstart; nend) to intersection of desired address
1971 * range with the first VMA. Also, skip undesirable VMA types.
1972 */
1973 nend = min(end, vma->vm_end);
1974 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1975 continue;
1976 if (nstart < vma->vm_start)
1977 nstart = vma->vm_start;
1978 /*
1979 * Now fault in a range of pages. populate_vma_page_range()
1980 * double checks the vma flags, so that it won't mlock pages
1981 * if the vma was already munlocked.
1982 */
1983 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1984 if (ret < 0) {
1985 if (ignore_errors) {
1986 ret = 0;
1987 continue; /* continue at next VMA */
1988 }
1989 break;
1990 }
1991 nend = nstart + ret * PAGE_SIZE;
1992 ret = 0;
1993 }
1994 if (locked)
1995 mmap_read_unlock(mm);
1996 return ret; /* 0 or negative error code */
1997 }
1998 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)1999 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2000 unsigned long nr_pages, struct page **pages,
2001 int *locked, unsigned int foll_flags)
2002 {
2003 struct vm_area_struct *vma;
2004 bool must_unlock = false;
2005 vm_flags_t vm_flags;
2006 long i;
2007
2008 if (!nr_pages)
2009 return 0;
2010
2011 /*
2012 * The internal caller expects GUP to manage the lock internally and the
2013 * lock must be released when this returns.
2014 */
2015 if (!*locked) {
2016 if (mmap_read_lock_killable(mm))
2017 return -EAGAIN;
2018 must_unlock = true;
2019 *locked = 1;
2020 }
2021
2022 /* calculate required read or write permissions.
2023 * If FOLL_FORCE is set, we only require the "MAY" flags.
2024 */
2025 vm_flags = (foll_flags & FOLL_WRITE) ?
2026 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2027 vm_flags &= (foll_flags & FOLL_FORCE) ?
2028 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2029
2030 for (i = 0; i < nr_pages; i++) {
2031 vma = find_vma(mm, start);
2032 if (!vma)
2033 break;
2034
2035 /* protect what we can, including chardevs */
2036 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2037 !(vm_flags & vma->vm_flags))
2038 break;
2039
2040 if (pages) {
2041 pages[i] = virt_to_page((void *)start);
2042 if (pages[i])
2043 get_page(pages[i]);
2044 }
2045
2046 start = (start + PAGE_SIZE) & PAGE_MASK;
2047 }
2048
2049 if (must_unlock && *locked) {
2050 mmap_read_unlock(mm);
2051 *locked = 0;
2052 }
2053
2054 return i ? : -EFAULT;
2055 }
2056 #endif /* !CONFIG_MMU */
2057
2058 /**
2059 * fault_in_writeable - fault in userspace address range for writing
2060 * @uaddr: start of address range
2061 * @size: size of address range
2062 *
2063 * Returns the number of bytes not faulted in (like copy_to_user() and
2064 * copy_from_user()).
2065 */
fault_in_writeable(char __user * uaddr,size_t size)2066 size_t fault_in_writeable(char __user *uaddr, size_t size)
2067 {
2068 const unsigned long start = (unsigned long)uaddr;
2069 const unsigned long end = start + size;
2070 unsigned long cur;
2071
2072 if (unlikely(size == 0))
2073 return 0;
2074 if (!user_write_access_begin(uaddr, size))
2075 return size;
2076
2077 /* Stop once we overflow to 0. */
2078 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2079 unsafe_put_user(0, (char __user *)cur, out);
2080 out:
2081 user_write_access_end();
2082 if (size > cur - start)
2083 return size - (cur - start);
2084 return 0;
2085 }
2086 EXPORT_SYMBOL(fault_in_writeable);
2087
2088 /**
2089 * fault_in_subpage_writeable - fault in an address range for writing
2090 * @uaddr: start of address range
2091 * @size: size of address range
2092 *
2093 * Fault in a user address range for writing while checking for permissions at
2094 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2095 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2096 *
2097 * Returns the number of bytes not faulted in (like copy_to_user() and
2098 * copy_from_user()).
2099 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2100 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2101 {
2102 size_t faulted_in;
2103
2104 /*
2105 * Attempt faulting in at page granularity first for page table
2106 * permission checking. The arch-specific probe_subpage_writeable()
2107 * functions may not check for this.
2108 */
2109 faulted_in = size - fault_in_writeable(uaddr, size);
2110 if (faulted_in)
2111 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2112
2113 return size - faulted_in;
2114 }
2115 EXPORT_SYMBOL(fault_in_subpage_writeable);
2116
2117 /*
2118 * fault_in_safe_writeable - fault in an address range for writing
2119 * @uaddr: start of address range
2120 * @size: length of address range
2121 *
2122 * Faults in an address range for writing. This is primarily useful when we
2123 * already know that some or all of the pages in the address range aren't in
2124 * memory.
2125 *
2126 * Unlike fault_in_writeable(), this function is non-destructive.
2127 *
2128 * Note that we don't pin or otherwise hold the pages referenced that we fault
2129 * in. There's no guarantee that they'll stay in memory for any duration of
2130 * time.
2131 *
2132 * Returns the number of bytes not faulted in, like copy_to_user() and
2133 * copy_from_user().
2134 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2135 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2136 {
2137 const unsigned long start = (unsigned long)uaddr;
2138 const unsigned long end = start + size;
2139 unsigned long cur;
2140 struct mm_struct *mm = current->mm;
2141 bool unlocked = false;
2142
2143 if (unlikely(size == 0))
2144 return 0;
2145
2146 mmap_read_lock(mm);
2147 /* Stop once we overflow to 0. */
2148 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2149 if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2150 break;
2151 mmap_read_unlock(mm);
2152
2153 if (size > cur - start)
2154 return size - (cur - start);
2155 return 0;
2156 }
2157 EXPORT_SYMBOL(fault_in_safe_writeable);
2158
2159 /**
2160 * fault_in_readable - fault in userspace address range for reading
2161 * @uaddr: start of user address range
2162 * @size: size of user address range
2163 *
2164 * Returns the number of bytes not faulted in (like copy_to_user() and
2165 * copy_from_user()).
2166 */
fault_in_readable(const char __user * uaddr,size_t size)2167 size_t fault_in_readable(const char __user *uaddr, size_t size)
2168 {
2169 const unsigned long start = (unsigned long)uaddr;
2170 const unsigned long end = start + size;
2171 unsigned long cur;
2172 volatile char c;
2173
2174 if (unlikely(size == 0))
2175 return 0;
2176 if (!user_read_access_begin(uaddr, size))
2177 return size;
2178
2179 /* Stop once we overflow to 0. */
2180 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2181 unsafe_get_user(c, (const char __user *)cur, out);
2182 out:
2183 user_read_access_end();
2184 (void)c;
2185 if (size > cur - start)
2186 return size - (cur - start);
2187 return 0;
2188 }
2189 EXPORT_SYMBOL(fault_in_readable);
2190
2191 /**
2192 * get_dump_page() - pin user page in memory while writing it to core dump
2193 * @addr: user address
2194 * @locked: a pointer to an int denoting whether the mmap sem is held
2195 *
2196 * Returns struct page pointer of user page pinned for dump,
2197 * to be freed afterwards by put_page().
2198 *
2199 * Returns NULL on any kind of failure - a hole must then be inserted into
2200 * the corefile, to preserve alignment with its headers; and also returns
2201 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2202 * allowing a hole to be left in the corefile to save disk space.
2203 *
2204 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2205 */
2206 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr,int * locked)2207 struct page *get_dump_page(unsigned long addr, int *locked)
2208 {
2209 struct page *page;
2210 int ret;
2211
2212 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2213 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2214 return (ret == 1) ? page : NULL;
2215 }
2216 #endif /* CONFIG_ELF_CORE */
2217
2218 #ifdef CONFIG_MIGRATION
2219
2220 /*
2221 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2222 * avoid this complication, by simply interpreting a list of folios as a list of
2223 * pages, that approach won't work in the longer term, because eventually the
2224 * layouts of struct page and struct folio will become completely different.
2225 * Furthermore, this pof approach avoids excessive page_folio() calls.
2226 */
2227 struct pages_or_folios {
2228 union {
2229 struct page **pages;
2230 struct folio **folios;
2231 void **entries;
2232 };
2233 bool has_folios;
2234 long nr_entries;
2235 };
2236
pofs_get_folio(struct pages_or_folios * pofs,long i)2237 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2238 {
2239 if (pofs->has_folios)
2240 return pofs->folios[i];
2241 return page_folio(pofs->pages[i]);
2242 }
2243
pofs_clear_entry(struct pages_or_folios * pofs,long i)2244 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2245 {
2246 pofs->entries[i] = NULL;
2247 }
2248
pofs_unpin(struct pages_or_folios * pofs)2249 static void pofs_unpin(struct pages_or_folios *pofs)
2250 {
2251 if (pofs->has_folios)
2252 unpin_folios(pofs->folios, pofs->nr_entries);
2253 else
2254 unpin_user_pages(pofs->pages, pofs->nr_entries);
2255 }
2256
pofs_next_folio(struct folio * folio,struct pages_or_folios * pofs,long * index_ptr)2257 static struct folio *pofs_next_folio(struct folio *folio,
2258 struct pages_or_folios *pofs, long *index_ptr)
2259 {
2260 long i = *index_ptr + 1;
2261
2262 if (!pofs->has_folios && folio_test_large(folio)) {
2263 const unsigned long start_pfn = folio_pfn(folio);
2264 const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2265
2266 for (; i < pofs->nr_entries; i++) {
2267 unsigned long pfn = page_to_pfn(pofs->pages[i]);
2268
2269 /* Is this page part of this folio? */
2270 if (pfn < start_pfn || pfn >= end_pfn)
2271 break;
2272 }
2273 }
2274
2275 if (unlikely(i == pofs->nr_entries))
2276 return NULL;
2277 *index_ptr = i;
2278
2279 return pofs_get_folio(pofs, i);
2280 }
2281
2282 /*
2283 * Returns the number of collected folios. Return value is always >= 0.
2284 */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2285 static unsigned long collect_longterm_unpinnable_folios(
2286 struct list_head *movable_folio_list,
2287 struct pages_or_folios *pofs)
2288 {
2289 unsigned long collected = 0;
2290 bool drain_allow = true;
2291 struct folio *folio;
2292 long i = 0;
2293
2294 for (folio = pofs_get_folio(pofs, i); folio;
2295 folio = pofs_next_folio(folio, pofs, &i)) {
2296
2297 if (folio_is_longterm_pinnable(folio))
2298 continue;
2299
2300 collected++;
2301
2302 if (folio_is_device_coherent(folio))
2303 continue;
2304
2305 if (folio_test_hugetlb(folio)) {
2306 folio_isolate_hugetlb(folio, movable_folio_list);
2307 continue;
2308 }
2309
2310 if (!folio_test_lru(folio) && drain_allow) {
2311 lru_add_drain_all();
2312 drain_allow = false;
2313 }
2314
2315 if (!folio_isolate_lru(folio))
2316 continue;
2317
2318 list_add_tail(&folio->lru, movable_folio_list);
2319 node_stat_mod_folio(folio,
2320 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2321 folio_nr_pages(folio));
2322 }
2323
2324 return collected;
2325 }
2326
2327 /*
2328 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2329 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2330 * failure (or partial success).
2331 */
2332 static int
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2333 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2334 struct pages_or_folios *pofs)
2335 {
2336 int ret;
2337 unsigned long i;
2338
2339 for (i = 0; i < pofs->nr_entries; i++) {
2340 struct folio *folio = pofs_get_folio(pofs, i);
2341
2342 if (folio_is_device_coherent(folio)) {
2343 /*
2344 * Migration will fail if the folio is pinned, so
2345 * convert the pin on the source folio to a normal
2346 * reference.
2347 */
2348 pofs_clear_entry(pofs, i);
2349 folio_get(folio);
2350 gup_put_folio(folio, 1, FOLL_PIN);
2351
2352 if (migrate_device_coherent_folio(folio)) {
2353 ret = -EBUSY;
2354 goto err;
2355 }
2356
2357 continue;
2358 }
2359
2360 /*
2361 * We can't migrate folios with unexpected references, so drop
2362 * the reference obtained by __get_user_pages_locked().
2363 * Migrating folios have been added to movable_folio_list after
2364 * calling folio_isolate_lru() which takes a reference so the
2365 * folio won't be freed if it's migrating.
2366 */
2367 unpin_folio(folio);
2368 pofs_clear_entry(pofs, i);
2369 }
2370
2371 if (!list_empty(movable_folio_list)) {
2372 struct migration_target_control mtc = {
2373 .nid = NUMA_NO_NODE,
2374 .gfp_mask = GFP_USER | __GFP_NOWARN,
2375 .reason = MR_LONGTERM_PIN,
2376 };
2377
2378 if (migrate_pages(movable_folio_list, alloc_migration_target,
2379 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2380 MR_LONGTERM_PIN, NULL)) {
2381 ret = -ENOMEM;
2382 goto err;
2383 }
2384 }
2385
2386 putback_movable_pages(movable_folio_list);
2387
2388 return -EAGAIN;
2389
2390 err:
2391 pofs_unpin(pofs);
2392 putback_movable_pages(movable_folio_list);
2393
2394 return ret;
2395 }
2396
2397 static long
check_and_migrate_movable_pages_or_folios(struct pages_or_folios * pofs)2398 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2399 {
2400 LIST_HEAD(movable_folio_list);
2401 unsigned long collected;
2402
2403 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2404 pofs);
2405 if (!collected)
2406 return 0;
2407
2408 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2409 }
2410
2411 /*
2412 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2413 * Rather confusingly, all folios in the range are required to be pinned via
2414 * FOLL_PIN, before calling this routine.
2415 *
2416 * Return values:
2417 *
2418 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2419 * then this routine leaves all folios pinned and returns zero for success.
2420 *
2421 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2422 * routine will migrate those folios away, unpin all the folios in the range. If
2423 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2424 * caller should re-pin the entire range with FOLL_PIN and then call this
2425 * routine again.
2426 *
2427 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2428 * indicates a migration failure. The caller should give up, and propagate the
2429 * error back up the call stack. The caller does not need to unpin any folios in
2430 * that case, because this routine will do the unpinning.
2431 */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2432 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2433 struct folio **folios)
2434 {
2435 struct pages_or_folios pofs = {
2436 .folios = folios,
2437 .has_folios = true,
2438 .nr_entries = nr_folios,
2439 };
2440
2441 return check_and_migrate_movable_pages_or_folios(&pofs);
2442 }
2443
2444 /*
2445 * Return values and behavior are the same as those for
2446 * check_and_migrate_movable_folios().
2447 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2448 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2449 struct page **pages)
2450 {
2451 struct pages_or_folios pofs = {
2452 .pages = pages,
2453 .has_folios = false,
2454 .nr_entries = nr_pages,
2455 };
2456
2457 return check_and_migrate_movable_pages_or_folios(&pofs);
2458 }
2459 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2460 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2461 struct page **pages)
2462 {
2463 return 0;
2464 }
2465
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2466 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2467 struct folio **folios)
2468 {
2469 return 0;
2470 }
2471 #endif /* CONFIG_MIGRATION */
2472
2473 /*
2474 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2475 * allows us to process the FOLL_LONGTERM flag.
2476 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2477 static long __gup_longterm_locked(struct mm_struct *mm,
2478 unsigned long start,
2479 unsigned long nr_pages,
2480 struct page **pages,
2481 int *locked,
2482 unsigned int gup_flags)
2483 {
2484 unsigned int flags;
2485 long rc, nr_pinned_pages;
2486
2487 if (!(gup_flags & FOLL_LONGTERM))
2488 return __get_user_pages_locked(mm, start, nr_pages, pages,
2489 locked, gup_flags);
2490
2491 flags = memalloc_pin_save();
2492 do {
2493 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2494 pages, locked,
2495 gup_flags);
2496 if (nr_pinned_pages <= 0) {
2497 rc = nr_pinned_pages;
2498 break;
2499 }
2500
2501 /* FOLL_LONGTERM implies FOLL_PIN */
2502 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2503 } while (rc == -EAGAIN);
2504 memalloc_pin_restore(flags);
2505 return rc ? rc : nr_pinned_pages;
2506 }
2507
2508 /*
2509 * Check that the given flags are valid for the exported gup/pup interface, and
2510 * update them with the required flags that the caller must have set.
2511 */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2512 static bool is_valid_gup_args(struct page **pages, int *locked,
2513 unsigned int *gup_flags_p, unsigned int to_set)
2514 {
2515 unsigned int gup_flags = *gup_flags_p;
2516
2517 /*
2518 * These flags not allowed to be specified externally to the gup
2519 * interfaces:
2520 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2521 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2522 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2523 */
2524 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2525 return false;
2526
2527 gup_flags |= to_set;
2528 if (locked) {
2529 /* At the external interface locked must be set */
2530 if (WARN_ON_ONCE(*locked != 1))
2531 return false;
2532
2533 gup_flags |= FOLL_UNLOCKABLE;
2534 }
2535
2536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2537 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2538 (FOLL_PIN | FOLL_GET)))
2539 return false;
2540
2541 /* LONGTERM can only be specified when pinning */
2542 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2543 return false;
2544
2545 /* Pages input must be given if using GET/PIN */
2546 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2547 return false;
2548
2549 /* We want to allow the pgmap to be hot-unplugged at all times */
2550 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2551 (gup_flags & FOLL_PCI_P2PDMA)))
2552 return false;
2553
2554 *gup_flags_p = gup_flags;
2555 return true;
2556 }
2557
2558 #ifdef CONFIG_MMU
2559 /**
2560 * get_user_pages_remote() - pin user pages in memory
2561 * @mm: mm_struct of target mm
2562 * @start: starting user address
2563 * @nr_pages: number of pages from start to pin
2564 * @gup_flags: flags modifying lookup behaviour
2565 * @pages: array that receives pointers to the pages pinned.
2566 * Should be at least nr_pages long. Or NULL, if caller
2567 * only intends to ensure the pages are faulted in.
2568 * @locked: pointer to lock flag indicating whether lock is held and
2569 * subsequently whether VM_FAULT_RETRY functionality can be
2570 * utilised. Lock must initially be held.
2571 *
2572 * Returns either number of pages pinned (which may be less than the
2573 * number requested), or an error. Details about the return value:
2574 *
2575 * -- If nr_pages is 0, returns 0.
2576 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2577 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2578 * pages pinned. Again, this may be less than nr_pages.
2579 *
2580 * The caller is responsible for releasing returned @pages, via put_page().
2581 *
2582 * Must be called with mmap_lock held for read or write.
2583 *
2584 * get_user_pages_remote walks a process's page tables and takes a reference
2585 * to each struct page that each user address corresponds to at a given
2586 * instant. That is, it takes the page that would be accessed if a user
2587 * thread accesses the given user virtual address at that instant.
2588 *
2589 * This does not guarantee that the page exists in the user mappings when
2590 * get_user_pages_remote returns, and there may even be a completely different
2591 * page there in some cases (eg. if mmapped pagecache has been invalidated
2592 * and subsequently re-faulted). However it does guarantee that the page
2593 * won't be freed completely. And mostly callers simply care that the page
2594 * contains data that was valid *at some point in time*. Typically, an IO
2595 * or similar operation cannot guarantee anything stronger anyway because
2596 * locks can't be held over the syscall boundary.
2597 *
2598 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2599 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2600 * be called after the page is finished with, and before put_page is called.
2601 *
2602 * get_user_pages_remote is typically used for fewer-copy IO operations,
2603 * to get a handle on the memory by some means other than accesses
2604 * via the user virtual addresses. The pages may be submitted for
2605 * DMA to devices or accessed via their kernel linear mapping (via the
2606 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2607 *
2608 * See also get_user_pages_fast, for performance critical applications.
2609 *
2610 * get_user_pages_remote should be phased out in favor of
2611 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2612 * should use get_user_pages_remote because it cannot pass
2613 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2614 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2615 long get_user_pages_remote(struct mm_struct *mm,
2616 unsigned long start, unsigned long nr_pages,
2617 unsigned int gup_flags, struct page **pages,
2618 int *locked)
2619 {
2620 int local_locked = 1;
2621
2622 if (!is_valid_gup_args(pages, locked, &gup_flags,
2623 FOLL_TOUCH | FOLL_REMOTE))
2624 return -EINVAL;
2625
2626 return __get_user_pages_locked(mm, start, nr_pages, pages,
2627 locked ? locked : &local_locked,
2628 gup_flags);
2629 }
2630 EXPORT_SYMBOL(get_user_pages_remote);
2631
2632 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2633 long get_user_pages_remote(struct mm_struct *mm,
2634 unsigned long start, unsigned long nr_pages,
2635 unsigned int gup_flags, struct page **pages,
2636 int *locked)
2637 {
2638 return 0;
2639 }
2640 #endif /* !CONFIG_MMU */
2641
2642 /**
2643 * get_user_pages() - pin user pages in memory
2644 * @start: starting user address
2645 * @nr_pages: number of pages from start to pin
2646 * @gup_flags: flags modifying lookup behaviour
2647 * @pages: array that receives pointers to the pages pinned.
2648 * Should be at least nr_pages long. Or NULL, if caller
2649 * only intends to ensure the pages are faulted in.
2650 *
2651 * This is the same as get_user_pages_remote(), just with a less-flexible
2652 * calling convention where we assume that the mm being operated on belongs to
2653 * the current task, and doesn't allow passing of a locked parameter. We also
2654 * obviously don't pass FOLL_REMOTE in here.
2655 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2656 long get_user_pages(unsigned long start, unsigned long nr_pages,
2657 unsigned int gup_flags, struct page **pages)
2658 {
2659 int locked = 1;
2660
2661 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2662 return -EINVAL;
2663
2664 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2665 &locked, gup_flags);
2666 }
2667 EXPORT_SYMBOL(get_user_pages);
2668
2669 /*
2670 * get_user_pages_unlocked() is suitable to replace the form:
2671 *
2672 * mmap_read_lock(mm);
2673 * get_user_pages(mm, ..., pages, NULL);
2674 * mmap_read_unlock(mm);
2675 *
2676 * with:
2677 *
2678 * get_user_pages_unlocked(mm, ..., pages);
2679 *
2680 * It is functionally equivalent to get_user_pages_fast so
2681 * get_user_pages_fast should be used instead if specific gup_flags
2682 * (e.g. FOLL_FORCE) are not required.
2683 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2684 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2685 struct page **pages, unsigned int gup_flags)
2686 {
2687 int locked = 0;
2688
2689 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2690 FOLL_TOUCH | FOLL_UNLOCKABLE))
2691 return -EINVAL;
2692
2693 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2694 &locked, gup_flags);
2695 }
2696 EXPORT_SYMBOL(get_user_pages_unlocked);
2697
2698 /*
2699 * GUP-fast
2700 *
2701 * get_user_pages_fast attempts to pin user pages by walking the page
2702 * tables directly and avoids taking locks. Thus the walker needs to be
2703 * protected from page table pages being freed from under it, and should
2704 * block any THP splits.
2705 *
2706 * One way to achieve this is to have the walker disable interrupts, and
2707 * rely on IPIs from the TLB flushing code blocking before the page table
2708 * pages are freed. This is unsuitable for architectures that do not need
2709 * to broadcast an IPI when invalidating TLBs.
2710 *
2711 * Another way to achieve this is to batch up page table containing pages
2712 * belonging to more than one mm_user, then rcu_sched a callback to free those
2713 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2714 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2715 * (which is a relatively rare event). The code below adopts this strategy.
2716 *
2717 * Before activating this code, please be aware that the following assumptions
2718 * are currently made:
2719 *
2720 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2721 * free pages containing page tables or TLB flushing requires IPI broadcast.
2722 *
2723 * *) ptes can be read atomically by the architecture.
2724 *
2725 * *) valid user addesses are below TASK_MAX_SIZE
2726 *
2727 * The last two assumptions can be relaxed by the addition of helper functions.
2728 *
2729 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2730 */
2731 #ifdef CONFIG_HAVE_GUP_FAST
2732 /*
2733 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2734 * a specific folio.
2735 *
2736 * This call assumes the caller has pinned the folio, that the lowest page table
2737 * level still points to this folio, and that interrupts have been disabled.
2738 *
2739 * GUP-fast must reject all secretmem folios.
2740 *
2741 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2742 * (see comment describing the writable_file_mapping_allowed() function). We
2743 * therefore try to avoid the most egregious case of a long-term mapping doing
2744 * so.
2745 *
2746 * This function cannot be as thorough as that one as the VMA is not available
2747 * in the fast path, so instead we whitelist known good cases and if in doubt,
2748 * fall back to the slow path.
2749 */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2750 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2751 {
2752 bool reject_file_backed = false;
2753 struct address_space *mapping;
2754 bool check_secretmem = false;
2755 unsigned long mapping_flags;
2756
2757 /*
2758 * If we aren't pinning then no problematic write can occur. A long term
2759 * pin is the most egregious case so this is the one we disallow.
2760 */
2761 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2762 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2763 reject_file_backed = true;
2764
2765 /* We hold a folio reference, so we can safely access folio fields. */
2766
2767 /* secretmem folios are always order-0 folios. */
2768 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2769 check_secretmem = true;
2770
2771 if (!reject_file_backed && !check_secretmem)
2772 return true;
2773
2774 if (WARN_ON_ONCE(folio_test_slab(folio)))
2775 return false;
2776
2777 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2778 if (folio_test_hugetlb(folio))
2779 return true;
2780
2781 /*
2782 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2783 * cannot proceed, which means no actions performed under RCU can
2784 * proceed either.
2785 *
2786 * inodes and thus their mappings are freed under RCU, which means the
2787 * mapping cannot be freed beneath us and thus we can safely dereference
2788 * it.
2789 */
2790 lockdep_assert_irqs_disabled();
2791
2792 /*
2793 * However, there may be operations which _alter_ the mapping, so ensure
2794 * we read it once and only once.
2795 */
2796 mapping = READ_ONCE(folio->mapping);
2797
2798 /*
2799 * The mapping may have been truncated, in any case we cannot determine
2800 * if this mapping is safe - fall back to slow path to determine how to
2801 * proceed.
2802 */
2803 if (!mapping)
2804 return false;
2805
2806 /* Anonymous folios pose no problem. */
2807 mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2808 if (mapping_flags)
2809 return mapping_flags & FOLIO_MAPPING_ANON;
2810
2811 /*
2812 * At this point, we know the mapping is non-null and points to an
2813 * address_space object.
2814 */
2815 if (check_secretmem && secretmem_mapping(mapping))
2816 return false;
2817 /* The only remaining allowed file system is shmem. */
2818 return !reject_file_backed || shmem_mapping(mapping);
2819 }
2820
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2821 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2822 unsigned int flags, struct page **pages)
2823 {
2824 while ((*nr) - nr_start) {
2825 struct folio *folio = page_folio(pages[--(*nr)]);
2826
2827 folio_clear_referenced(folio);
2828 gup_put_folio(folio, 1, flags);
2829 }
2830 }
2831
2832 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2833 /*
2834 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2835 * operations.
2836 *
2837 * To pin the page, GUP-fast needs to do below in order:
2838 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2839 *
2840 * For the rest of pgtable operations where pgtable updates can be racy
2841 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2842 * is pinned.
2843 *
2844 * Above will work for all pte-level operations, including THP split.
2845 *
2846 * For THP collapse, it's a bit more complicated because GUP-fast may be
2847 * walking a pgtable page that is being freed (pte is still valid but pmd
2848 * can be cleared already). To avoid race in such condition, we need to
2849 * also check pmd here to make sure pmd doesn't change (corresponds to
2850 * pmdp_collapse_flush() in the THP collapse code path).
2851 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2852 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2853 unsigned long end, unsigned int flags, struct page **pages,
2854 int *nr)
2855 {
2856 struct dev_pagemap *pgmap = NULL;
2857 int ret = 0;
2858 pte_t *ptep, *ptem;
2859
2860 ptem = ptep = pte_offset_map(&pmd, addr);
2861 if (!ptep)
2862 return 0;
2863 do {
2864 pte_t pte = ptep_get_lockless(ptep);
2865 struct page *page;
2866 struct folio *folio;
2867
2868 /*
2869 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2870 * pte_access_permitted() better should reject these pages
2871 * either way: otherwise, GUP-fast might succeed in
2872 * cases where ordinary GUP would fail due to VMA access
2873 * permissions.
2874 */
2875 if (pte_protnone(pte))
2876 goto pte_unmap;
2877
2878 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2879 goto pte_unmap;
2880
2881 if (pte_special(pte))
2882 goto pte_unmap;
2883
2884 /* If it's not marked as special it must have a valid memmap. */
2885 VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2886 page = pte_page(pte);
2887
2888 folio = try_grab_folio_fast(page, 1, flags);
2889 if (!folio)
2890 goto pte_unmap;
2891
2892 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2893 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2894 gup_put_folio(folio, 1, flags);
2895 goto pte_unmap;
2896 }
2897
2898 if (!gup_fast_folio_allowed(folio, flags)) {
2899 gup_put_folio(folio, 1, flags);
2900 goto pte_unmap;
2901 }
2902
2903 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2904 gup_put_folio(folio, 1, flags);
2905 goto pte_unmap;
2906 }
2907
2908 /*
2909 * We need to make the page accessible if and only if we are
2910 * going to access its content (the FOLL_PIN case). Please
2911 * see Documentation/core-api/pin_user_pages.rst for
2912 * details.
2913 */
2914 if (flags & FOLL_PIN) {
2915 ret = arch_make_folio_accessible(folio);
2916 if (ret) {
2917 gup_put_folio(folio, 1, flags);
2918 goto pte_unmap;
2919 }
2920 }
2921 folio_set_referenced(folio);
2922 pages[*nr] = page;
2923 (*nr)++;
2924 } while (ptep++, addr += PAGE_SIZE, addr != end);
2925
2926 ret = 1;
2927
2928 pte_unmap:
2929 if (pgmap)
2930 put_dev_pagemap(pgmap);
2931 pte_unmap(ptem);
2932 return ret;
2933 }
2934 #else
2935
2936 /*
2937 * If we can't determine whether or not a pte is special, then fail immediately
2938 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2939 * to be special.
2940 *
2941 * For a futex to be placed on a THP tail page, get_futex_key requires a
2942 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2943 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2944 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2945 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2946 unsigned long end, unsigned int flags, struct page **pages,
2947 int *nr)
2948 {
2949 return 0;
2950 }
2951 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2952
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2953 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2954 unsigned long end, unsigned int flags, struct page **pages,
2955 int *nr)
2956 {
2957 struct page *page;
2958 struct folio *folio;
2959 int refs;
2960
2961 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2962 return 0;
2963
2964 if (pmd_special(orig))
2965 return 0;
2966
2967 page = pmd_page(orig);
2968 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2969
2970 folio = try_grab_folio_fast(page, refs, flags);
2971 if (!folio)
2972 return 0;
2973
2974 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2975 gup_put_folio(folio, refs, flags);
2976 return 0;
2977 }
2978
2979 if (!gup_fast_folio_allowed(folio, flags)) {
2980 gup_put_folio(folio, refs, flags);
2981 return 0;
2982 }
2983 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2984 gup_put_folio(folio, refs, flags);
2985 return 0;
2986 }
2987
2988 *nr += refs;
2989 folio_set_referenced(folio);
2990 return 1;
2991 }
2992
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2993 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
2994 unsigned long end, unsigned int flags, struct page **pages,
2995 int *nr)
2996 {
2997 struct page *page;
2998 struct folio *folio;
2999 int refs;
3000
3001 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3002 return 0;
3003
3004 if (pud_special(orig))
3005 return 0;
3006
3007 page = pud_page(orig);
3008 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3009
3010 folio = try_grab_folio_fast(page, refs, flags);
3011 if (!folio)
3012 return 0;
3013
3014 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3015 gup_put_folio(folio, refs, flags);
3016 return 0;
3017 }
3018
3019 if (!gup_fast_folio_allowed(folio, flags)) {
3020 gup_put_folio(folio, refs, flags);
3021 return 0;
3022 }
3023
3024 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3025 gup_put_folio(folio, refs, flags);
3026 return 0;
3027 }
3028
3029 *nr += refs;
3030 folio_set_referenced(folio);
3031 return 1;
3032 }
3033
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3034 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3035 unsigned long end, unsigned int flags, struct page **pages,
3036 int *nr)
3037 {
3038 unsigned long next;
3039 pmd_t *pmdp;
3040
3041 pmdp = pmd_offset_lockless(pudp, pud, addr);
3042 do {
3043 pmd_t pmd = pmdp_get_lockless(pmdp);
3044
3045 next = pmd_addr_end(addr, end);
3046 if (!pmd_present(pmd))
3047 return 0;
3048
3049 if (unlikely(pmd_leaf(pmd))) {
3050 /* See gup_fast_pte_range() */
3051 if (pmd_protnone(pmd))
3052 return 0;
3053
3054 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3055 pages, nr))
3056 return 0;
3057
3058 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3059 pages, nr))
3060 return 0;
3061 } while (pmdp++, addr = next, addr != end);
3062
3063 return 1;
3064 }
3065
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3066 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3067 unsigned long end, unsigned int flags, struct page **pages,
3068 int *nr)
3069 {
3070 unsigned long next;
3071 pud_t *pudp;
3072
3073 pudp = pud_offset_lockless(p4dp, p4d, addr);
3074 do {
3075 pud_t pud = READ_ONCE(*pudp);
3076
3077 next = pud_addr_end(addr, end);
3078 if (unlikely(!pud_present(pud)))
3079 return 0;
3080 if (unlikely(pud_leaf(pud))) {
3081 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3082 pages, nr))
3083 return 0;
3084 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3085 pages, nr))
3086 return 0;
3087 } while (pudp++, addr = next, addr != end);
3088
3089 return 1;
3090 }
3091
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3092 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3093 unsigned long end, unsigned int flags, struct page **pages,
3094 int *nr)
3095 {
3096 unsigned long next;
3097 p4d_t *p4dp;
3098
3099 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3100 do {
3101 p4d_t p4d = READ_ONCE(*p4dp);
3102
3103 next = p4d_addr_end(addr, end);
3104 if (!p4d_present(p4d))
3105 return 0;
3106 BUILD_BUG_ON(p4d_leaf(p4d));
3107 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3108 pages, nr))
3109 return 0;
3110 } while (p4dp++, addr = next, addr != end);
3111
3112 return 1;
3113 }
3114
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3115 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3116 unsigned int flags, struct page **pages, int *nr)
3117 {
3118 unsigned long next;
3119 pgd_t *pgdp;
3120
3121 pgdp = pgd_offset(current->mm, addr);
3122 do {
3123 pgd_t pgd = READ_ONCE(*pgdp);
3124
3125 next = pgd_addr_end(addr, end);
3126 if (pgd_none(pgd))
3127 return;
3128 BUILD_BUG_ON(pgd_leaf(pgd));
3129 if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3130 pages, nr))
3131 return;
3132 } while (pgdp++, addr = next, addr != end);
3133 }
3134 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3135 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3136 unsigned int flags, struct page **pages, int *nr)
3137 {
3138 }
3139 #endif /* CONFIG_HAVE_GUP_FAST */
3140
3141 #ifndef gup_fast_permitted
3142 /*
3143 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3144 * we need to fall back to the slow version:
3145 */
gup_fast_permitted(unsigned long start,unsigned long end)3146 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3147 {
3148 return true;
3149 }
3150 #endif
3151
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3152 static unsigned long gup_fast(unsigned long start, unsigned long end,
3153 unsigned int gup_flags, struct page **pages)
3154 {
3155 unsigned long flags;
3156 int nr_pinned = 0;
3157 unsigned seq;
3158
3159 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3160 !gup_fast_permitted(start, end))
3161 return 0;
3162
3163 if (gup_flags & FOLL_PIN) {
3164 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq))
3165 return 0;
3166 }
3167
3168 /*
3169 * Disable interrupts. The nested form is used, in order to allow full,
3170 * general purpose use of this routine.
3171 *
3172 * With interrupts disabled, we block page table pages from being freed
3173 * from under us. See struct mmu_table_batch comments in
3174 * include/asm-generic/tlb.h for more details.
3175 *
3176 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3177 * that come from callers of tlb_remove_table_sync_one().
3178 */
3179 local_irq_save(flags);
3180 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3181 local_irq_restore(flags);
3182
3183 /*
3184 * When pinning pages for DMA there could be a concurrent write protect
3185 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3186 */
3187 if (gup_flags & FOLL_PIN) {
3188 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3189 gup_fast_unpin_user_pages(pages, nr_pinned);
3190 return 0;
3191 } else {
3192 sanity_check_pinned_pages(pages, nr_pinned);
3193 }
3194 }
3195 return nr_pinned;
3196 }
3197
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3198 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3199 unsigned int gup_flags, struct page **pages)
3200 {
3201 unsigned long len, end;
3202 unsigned long nr_pinned;
3203 int locked = 0;
3204 int ret;
3205
3206 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3207 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3208 FOLL_FAST_ONLY | FOLL_NOFAULT |
3209 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3210 return -EINVAL;
3211
3212 if (gup_flags & FOLL_PIN)
3213 mm_set_has_pinned_flag(¤t->mm->flags);
3214
3215 if (!(gup_flags & FOLL_FAST_ONLY))
3216 might_lock_read(¤t->mm->mmap_lock);
3217
3218 start = untagged_addr(start) & PAGE_MASK;
3219 len = nr_pages << PAGE_SHIFT;
3220 if (check_add_overflow(start, len, &end))
3221 return -EOVERFLOW;
3222 if (end > TASK_SIZE_MAX)
3223 return -EFAULT;
3224
3225 nr_pinned = gup_fast(start, end, gup_flags, pages);
3226 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3227 return nr_pinned;
3228
3229 /* Slow path: try to get the remaining pages with get_user_pages */
3230 start += nr_pinned << PAGE_SHIFT;
3231 pages += nr_pinned;
3232 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3233 pages, &locked,
3234 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3235 if (ret < 0) {
3236 /*
3237 * The caller has to unpin the pages we already pinned so
3238 * returning -errno is not an option
3239 */
3240 if (nr_pinned)
3241 return nr_pinned;
3242 return ret;
3243 }
3244 return ret + nr_pinned;
3245 }
3246
3247 /**
3248 * get_user_pages_fast_only() - pin user pages in memory
3249 * @start: starting user address
3250 * @nr_pages: number of pages from start to pin
3251 * @gup_flags: flags modifying pin behaviour
3252 * @pages: array that receives pointers to the pages pinned.
3253 * Should be at least nr_pages long.
3254 *
3255 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3256 * the regular GUP.
3257 *
3258 * If the architecture does not support this function, simply return with no
3259 * pages pinned.
3260 *
3261 * Careful, careful! COW breaking can go either way, so a non-write
3262 * access can get ambiguous page results. If you call this function without
3263 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3264 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3265 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3266 unsigned int gup_flags, struct page **pages)
3267 {
3268 /*
3269 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3270 * because gup fast is always a "pin with a +1 page refcount" request.
3271 *
3272 * FOLL_FAST_ONLY is required in order to match the API description of
3273 * this routine: no fall back to regular ("slow") GUP.
3274 */
3275 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3276 FOLL_GET | FOLL_FAST_ONLY))
3277 return -EINVAL;
3278
3279 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3280 }
3281 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3282
3283 /**
3284 * get_user_pages_fast() - pin user pages in memory
3285 * @start: starting user address
3286 * @nr_pages: number of pages from start to pin
3287 * @gup_flags: flags modifying pin behaviour
3288 * @pages: array that receives pointers to the pages pinned.
3289 * Should be at least nr_pages long.
3290 *
3291 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3292 * If not successful, it will fall back to taking the lock and
3293 * calling get_user_pages().
3294 *
3295 * Returns number of pages pinned. This may be fewer than the number requested.
3296 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3297 * -errno.
3298 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3299 int get_user_pages_fast(unsigned long start, int nr_pages,
3300 unsigned int gup_flags, struct page **pages)
3301 {
3302 /*
3303 * The caller may or may not have explicitly set FOLL_GET; either way is
3304 * OK. However, internally (within mm/gup.c), gup fast variants must set
3305 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3306 * request.
3307 */
3308 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3309 return -EINVAL;
3310 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3311 }
3312 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3313
3314 /**
3315 * pin_user_pages_fast() - pin user pages in memory without taking locks
3316 *
3317 * @start: starting user address
3318 * @nr_pages: number of pages from start to pin
3319 * @gup_flags: flags modifying pin behaviour
3320 * @pages: array that receives pointers to the pages pinned.
3321 * Should be at least nr_pages long.
3322 *
3323 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3324 * get_user_pages_fast() for documentation on the function arguments, because
3325 * the arguments here are identical.
3326 *
3327 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3328 * see Documentation/core-api/pin_user_pages.rst for further details.
3329 *
3330 * Note that if a zero_page is amongst the returned pages, it will not have
3331 * pins in it and unpin_user_page() will not remove pins from it.
3332 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3333 int pin_user_pages_fast(unsigned long start, int nr_pages,
3334 unsigned int gup_flags, struct page **pages)
3335 {
3336 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3337 return -EINVAL;
3338 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3339 }
3340 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3341
3342 /**
3343 * pin_user_pages_remote() - pin pages of a remote process
3344 *
3345 * @mm: mm_struct of target mm
3346 * @start: starting user address
3347 * @nr_pages: number of pages from start to pin
3348 * @gup_flags: flags modifying lookup behaviour
3349 * @pages: array that receives pointers to the pages pinned.
3350 * Should be at least nr_pages long.
3351 * @locked: pointer to lock flag indicating whether lock is held and
3352 * subsequently whether VM_FAULT_RETRY functionality can be
3353 * utilised. Lock must initially be held.
3354 *
3355 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3356 * get_user_pages_remote() for documentation on the function arguments, because
3357 * the arguments here are identical.
3358 *
3359 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3360 * see Documentation/core-api/pin_user_pages.rst for details.
3361 *
3362 * Note that if a zero_page is amongst the returned pages, it will not have
3363 * pins in it and unpin_user_page*() will not remove pins from it.
3364 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3365 long pin_user_pages_remote(struct mm_struct *mm,
3366 unsigned long start, unsigned long nr_pages,
3367 unsigned int gup_flags, struct page **pages,
3368 int *locked)
3369 {
3370 int local_locked = 1;
3371
3372 if (!is_valid_gup_args(pages, locked, &gup_flags,
3373 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3374 return 0;
3375 return __gup_longterm_locked(mm, start, nr_pages, pages,
3376 locked ? locked : &local_locked,
3377 gup_flags);
3378 }
3379 EXPORT_SYMBOL(pin_user_pages_remote);
3380
3381 /**
3382 * pin_user_pages() - pin user pages in memory for use by other devices
3383 *
3384 * @start: starting user address
3385 * @nr_pages: number of pages from start to pin
3386 * @gup_flags: flags modifying lookup behaviour
3387 * @pages: array that receives pointers to the pages pinned.
3388 * Should be at least nr_pages long.
3389 *
3390 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3391 * FOLL_PIN is set.
3392 *
3393 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3394 * see Documentation/core-api/pin_user_pages.rst for details.
3395 *
3396 * Note that if a zero_page is amongst the returned pages, it will not have
3397 * pins in it and unpin_user_page*() will not remove pins from it.
3398 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3399 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3400 unsigned int gup_flags, struct page **pages)
3401 {
3402 int locked = 1;
3403
3404 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3405 return 0;
3406 return __gup_longterm_locked(current->mm, start, nr_pages,
3407 pages, &locked, gup_flags);
3408 }
3409 EXPORT_SYMBOL(pin_user_pages);
3410
3411 /*
3412 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3413 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3414 * FOLL_PIN and rejects FOLL_GET.
3415 *
3416 * Note that if a zero_page is amongst the returned pages, it will not have
3417 * pins in it and unpin_user_page*() will not remove pins from it.
3418 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3419 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3420 struct page **pages, unsigned int gup_flags)
3421 {
3422 int locked = 0;
3423
3424 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3425 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3426 return 0;
3427
3428 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3429 &locked, gup_flags);
3430 }
3431 EXPORT_SYMBOL(pin_user_pages_unlocked);
3432
3433 /**
3434 * memfd_pin_folios() - pin folios associated with a memfd
3435 * @memfd: the memfd whose folios are to be pinned
3436 * @start: the first memfd offset
3437 * @end: the last memfd offset (inclusive)
3438 * @folios: array that receives pointers to the folios pinned
3439 * @max_folios: maximum number of entries in @folios
3440 * @offset: the offset into the first folio
3441 *
3442 * Attempt to pin folios associated with a memfd in the contiguous range
3443 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3444 * the folios can either be found in the page cache or need to be allocated
3445 * if necessary. Once the folios are located, they are all pinned via
3446 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3447 * And, eventually, these pinned folios must be released either using
3448 * unpin_folios() or unpin_folio().
3449 *
3450 * It must be noted that the folios may be pinned for an indefinite amount
3451 * of time. And, in most cases, the duration of time they may stay pinned
3452 * would be controlled by the userspace. This behavior is effectively the
3453 * same as using FOLL_LONGTERM with other GUP APIs.
3454 *
3455 * Returns number of folios pinned, which could be less than @max_folios
3456 * as it depends on the folio sizes that cover the range [start, end].
3457 * If no folios were pinned, it returns -errno.
3458 */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3459 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3460 struct folio **folios, unsigned int max_folios,
3461 pgoff_t *offset)
3462 {
3463 unsigned int flags, nr_folios, nr_found;
3464 unsigned int i, pgshift = PAGE_SHIFT;
3465 pgoff_t start_idx, end_idx;
3466 struct folio *folio = NULL;
3467 struct folio_batch fbatch;
3468 struct hstate *h;
3469 long ret = -EINVAL;
3470
3471 if (start < 0 || start > end || !max_folios)
3472 return -EINVAL;
3473
3474 if (!memfd)
3475 return -EINVAL;
3476
3477 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3478 return -EINVAL;
3479
3480 if (end >= i_size_read(file_inode(memfd)))
3481 return -EINVAL;
3482
3483 if (is_file_hugepages(memfd)) {
3484 h = hstate_file(memfd);
3485 pgshift = huge_page_shift(h);
3486 }
3487
3488 flags = memalloc_pin_save();
3489 do {
3490 nr_folios = 0;
3491 start_idx = start >> pgshift;
3492 end_idx = end >> pgshift;
3493 if (is_file_hugepages(memfd)) {
3494 start_idx <<= huge_page_order(h);
3495 end_idx <<= huge_page_order(h);
3496 }
3497
3498 folio_batch_init(&fbatch);
3499 while (start_idx <= end_idx && nr_folios < max_folios) {
3500 /*
3501 * In most cases, we should be able to find the folios
3502 * in the page cache. If we cannot find them for some
3503 * reason, we try to allocate them and add them to the
3504 * page cache.
3505 */
3506 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3507 &start_idx,
3508 end_idx,
3509 &fbatch);
3510 if (folio) {
3511 folio_put(folio);
3512 folio = NULL;
3513 }
3514
3515 for (i = 0; i < nr_found; i++) {
3516 folio = fbatch.folios[i];
3517
3518 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3519 folio_batch_release(&fbatch);
3520 ret = -EINVAL;
3521 goto err;
3522 }
3523
3524 if (nr_folios == 0)
3525 *offset = offset_in_folio(folio, start);
3526
3527 folios[nr_folios] = folio;
3528 if (++nr_folios == max_folios)
3529 break;
3530 }
3531
3532 folio = NULL;
3533 folio_batch_release(&fbatch);
3534 if (!nr_found) {
3535 folio = memfd_alloc_folio(memfd, start_idx);
3536 if (IS_ERR(folio)) {
3537 ret = PTR_ERR(folio);
3538 if (ret != -EEXIST)
3539 goto err;
3540 folio = NULL;
3541 }
3542 }
3543 }
3544
3545 ret = check_and_migrate_movable_folios(nr_folios, folios);
3546 } while (ret == -EAGAIN);
3547
3548 memalloc_pin_restore(flags);
3549 return ret ? ret : nr_folios;
3550 err:
3551 memalloc_pin_restore(flags);
3552 unpin_folios(folios, nr_folios);
3553
3554 return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3557
3558 /**
3559 * folio_add_pins() - add pins to an already-pinned folio
3560 * @folio: the folio to add more pins to
3561 * @pins: number of pins to add
3562 *
3563 * Try to add more pins to an already-pinned folio. The semantics
3564 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3565 * be changed.
3566 *
3567 * This function is helpful when having obtained a pin on a large folio
3568 * using memfd_pin_folios(), but wanting to logically unpin parts
3569 * (e.g., individual pages) of the folio later, for example, using
3570 * unpin_user_page_range_dirty_lock().
3571 *
3572 * This is not the right interface to initially pin a folio.
3573 */
folio_add_pins(struct folio * folio,unsigned int pins)3574 int folio_add_pins(struct folio *folio, unsigned int pins)
3575 {
3576 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3577
3578 return try_grab_folio(folio, pins, FOLL_PIN);
3579 }
3580 EXPORT_SYMBOL_GPL(folio_add_pins);
3581