1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)20 static int migrate_vma_collect_skip(unsigned long start,
21 unsigned long end,
22 struct mm_walk *walk)
23 {
24 struct migrate_vma *migrate = walk->private;
25 unsigned long addr;
26
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
30 }
31
32 return 0;
33 }
34
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)35 static int migrate_vma_collect_hole(unsigned long start,
36 unsigned long end,
37 __always_unused int depth,
38 struct mm_walk *walk)
39 {
40 struct migrate_vma *migrate = walk->private;
41 unsigned long addr;
42
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
46
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
50 migrate->npages++;
51 migrate->cpages++;
52 }
53
54 return 0;
55 }
56
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 unsigned long start,
59 unsigned long end,
60 struct mm_walk *walk)
61 {
62 struct migrate_vma *migrate = walk->private;
63 struct folio *fault_folio = migrate->fault_page ?
64 page_folio(migrate->fault_page) : NULL;
65 struct vm_area_struct *vma = walk->vma;
66 struct mm_struct *mm = vma->vm_mm;
67 unsigned long addr = start, unmapped = 0;
68 spinlock_t *ptl;
69 pte_t *ptep;
70
71 again:
72 if (pmd_none(*pmdp))
73 return migrate_vma_collect_hole(start, end, -1, walk);
74
75 if (pmd_trans_huge(*pmdp)) {
76 struct folio *folio;
77
78 ptl = pmd_lock(mm, pmdp);
79 if (unlikely(!pmd_trans_huge(*pmdp))) {
80 spin_unlock(ptl);
81 goto again;
82 }
83
84 folio = pmd_folio(*pmdp);
85 if (is_huge_zero_folio(folio)) {
86 spin_unlock(ptl);
87 split_huge_pmd(vma, pmdp, addr);
88 } else {
89 int ret;
90
91 folio_get(folio);
92 spin_unlock(ptl);
93 /* FIXME: we don't expect THP for fault_folio */
94 if (WARN_ON_ONCE(fault_folio == folio))
95 return migrate_vma_collect_skip(start, end,
96 walk);
97 if (unlikely(!folio_trylock(folio)))
98 return migrate_vma_collect_skip(start, end,
99 walk);
100 ret = split_folio(folio);
101 if (fault_folio != folio)
102 folio_unlock(folio);
103 folio_put(folio);
104 if (ret)
105 return migrate_vma_collect_skip(start, end,
106 walk);
107 }
108 }
109
110 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
111 if (!ptep)
112 goto again;
113 arch_enter_lazy_mmu_mode();
114
115 for (; addr < end; addr += PAGE_SIZE, ptep++) {
116 struct dev_pagemap *pgmap;
117 unsigned long mpfn = 0, pfn;
118 struct folio *folio;
119 struct page *page;
120 swp_entry_t entry;
121 pte_t pte;
122
123 pte = ptep_get(ptep);
124
125 if (pte_none(pte)) {
126 if (vma_is_anonymous(vma)) {
127 mpfn = MIGRATE_PFN_MIGRATE;
128 migrate->cpages++;
129 }
130 goto next;
131 }
132
133 if (!pte_present(pte)) {
134 /*
135 * Only care about unaddressable device page special
136 * page table entry. Other special swap entries are not
137 * migratable, and we ignore regular swapped page.
138 */
139 entry = pte_to_swp_entry(pte);
140 if (!is_device_private_entry(entry))
141 goto next;
142
143 page = pfn_swap_entry_to_page(entry);
144 pgmap = page_pgmap(page);
145 if (!(migrate->flags &
146 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
147 pgmap->owner != migrate->pgmap_owner)
148 goto next;
149
150 mpfn = migrate_pfn(page_to_pfn(page)) |
151 MIGRATE_PFN_MIGRATE;
152 if (is_writable_device_private_entry(entry))
153 mpfn |= MIGRATE_PFN_WRITE;
154 } else {
155 pfn = pte_pfn(pte);
156 if (is_zero_pfn(pfn) &&
157 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
158 mpfn = MIGRATE_PFN_MIGRATE;
159 migrate->cpages++;
160 goto next;
161 }
162 page = vm_normal_page(migrate->vma, addr, pte);
163 if (page && !is_zone_device_page(page) &&
164 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
165 goto next;
166 } else if (page && is_device_coherent_page(page)) {
167 pgmap = page_pgmap(page);
168
169 if (!(migrate->flags &
170 MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
171 pgmap->owner != migrate->pgmap_owner)
172 goto next;
173 }
174 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
175 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
176 }
177
178 /* FIXME support THP */
179 if (!page || !page->mapping || PageTransCompound(page)) {
180 mpfn = 0;
181 goto next;
182 }
183
184 /*
185 * By getting a reference on the folio we pin it and that blocks
186 * any kind of migration. Side effect is that it "freezes" the
187 * pte.
188 *
189 * We drop this reference after isolating the folio from the lru
190 * for non device folio (device folio are not on the lru and thus
191 * can't be dropped from it).
192 */
193 folio = page_folio(page);
194 folio_get(folio);
195
196 /*
197 * We rely on folio_trylock() to avoid deadlock between
198 * concurrent migrations where each is waiting on the others
199 * folio lock. If we can't immediately lock the folio we fail this
200 * migration as it is only best effort anyway.
201 *
202 * If we can lock the folio it's safe to set up a migration entry
203 * now. In the common case where the folio is mapped once in a
204 * single process setting up the migration entry now is an
205 * optimisation to avoid walking the rmap later with
206 * try_to_migrate().
207 */
208 if (fault_folio == folio || folio_trylock(folio)) {
209 bool anon_exclusive;
210 pte_t swp_pte;
211
212 flush_cache_page(vma, addr, pte_pfn(pte));
213 anon_exclusive = folio_test_anon(folio) &&
214 PageAnonExclusive(page);
215 if (anon_exclusive) {
216 pte = ptep_clear_flush(vma, addr, ptep);
217
218 if (folio_try_share_anon_rmap_pte(folio, page)) {
219 set_pte_at(mm, addr, ptep, pte);
220 if (fault_folio != folio)
221 folio_unlock(folio);
222 folio_put(folio);
223 mpfn = 0;
224 goto next;
225 }
226 } else {
227 pte = ptep_get_and_clear(mm, addr, ptep);
228 }
229
230 migrate->cpages++;
231
232 /* Set the dirty flag on the folio now the pte is gone. */
233 if (pte_dirty(pte))
234 folio_mark_dirty(folio);
235
236 /* Setup special migration page table entry */
237 if (mpfn & MIGRATE_PFN_WRITE)
238 entry = make_writable_migration_entry(
239 page_to_pfn(page));
240 else if (anon_exclusive)
241 entry = make_readable_exclusive_migration_entry(
242 page_to_pfn(page));
243 else
244 entry = make_readable_migration_entry(
245 page_to_pfn(page));
246 if (pte_present(pte)) {
247 if (pte_young(pte))
248 entry = make_migration_entry_young(entry);
249 if (pte_dirty(pte))
250 entry = make_migration_entry_dirty(entry);
251 }
252 swp_pte = swp_entry_to_pte(entry);
253 if (pte_present(pte)) {
254 if (pte_soft_dirty(pte))
255 swp_pte = pte_swp_mksoft_dirty(swp_pte);
256 if (pte_uffd_wp(pte))
257 swp_pte = pte_swp_mkuffd_wp(swp_pte);
258 } else {
259 if (pte_swp_soft_dirty(pte))
260 swp_pte = pte_swp_mksoft_dirty(swp_pte);
261 if (pte_swp_uffd_wp(pte))
262 swp_pte = pte_swp_mkuffd_wp(swp_pte);
263 }
264 set_pte_at(mm, addr, ptep, swp_pte);
265
266 /*
267 * This is like regular unmap: we remove the rmap and
268 * drop the folio refcount. The folio won't be freed, as
269 * we took a reference just above.
270 */
271 folio_remove_rmap_pte(folio, page, vma);
272 folio_put(folio);
273
274 if (pte_present(pte))
275 unmapped++;
276 } else {
277 folio_put(folio);
278 mpfn = 0;
279 }
280
281 next:
282 migrate->dst[migrate->npages] = 0;
283 migrate->src[migrate->npages++] = mpfn;
284 }
285
286 /* Only flush the TLB if we actually modified any entries */
287 if (unmapped)
288 flush_tlb_range(walk->vma, start, end);
289
290 arch_leave_lazy_mmu_mode();
291 pte_unmap_unlock(ptep - 1, ptl);
292
293 return 0;
294 }
295
296 static const struct mm_walk_ops migrate_vma_walk_ops = {
297 .pmd_entry = migrate_vma_collect_pmd,
298 .pte_hole = migrate_vma_collect_hole,
299 .walk_lock = PGWALK_RDLOCK,
300 };
301
302 /*
303 * migrate_vma_collect() - collect pages over a range of virtual addresses
304 * @migrate: migrate struct containing all migration information
305 *
306 * This will walk the CPU page table. For each virtual address backed by a
307 * valid page, it updates the src array and takes a reference on the page, in
308 * order to pin the page until we lock it and unmap it.
309 */
migrate_vma_collect(struct migrate_vma * migrate)310 static void migrate_vma_collect(struct migrate_vma *migrate)
311 {
312 struct mmu_notifier_range range;
313
314 /*
315 * Note that the pgmap_owner is passed to the mmu notifier callback so
316 * that the registered device driver can skip invalidating device
317 * private page mappings that won't be migrated.
318 */
319 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
320 migrate->vma->vm_mm, migrate->start, migrate->end,
321 migrate->pgmap_owner);
322 mmu_notifier_invalidate_range_start(&range);
323
324 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
325 &migrate_vma_walk_ops, migrate);
326
327 mmu_notifier_invalidate_range_end(&range);
328 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
329 }
330
331 /*
332 * migrate_vma_check_page() - check if page is pinned or not
333 * @page: struct page to check
334 *
335 * Pinned pages cannot be migrated. This is the same test as in
336 * folio_migrate_mapping(), except that here we allow migration of a
337 * ZONE_DEVICE page.
338 */
migrate_vma_check_page(struct page * page,struct page * fault_page)339 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
340 {
341 struct folio *folio = page_folio(page);
342
343 /*
344 * One extra ref because caller holds an extra reference, either from
345 * folio_isolate_lru() for a regular folio, or migrate_vma_collect() for
346 * a device folio.
347 */
348 int extra = 1 + (page == fault_page);
349
350 /*
351 * FIXME support THP (transparent huge page), it is bit more complex to
352 * check them than regular pages, because they can be mapped with a pmd
353 * or with a pte (split pte mapping).
354 */
355 if (folio_test_large(folio))
356 return false;
357
358 /* Page from ZONE_DEVICE have one extra reference */
359 if (folio_is_zone_device(folio))
360 extra++;
361
362 /* For file back page */
363 if (folio_mapping(folio))
364 extra += 1 + folio_has_private(folio);
365
366 if ((folio_ref_count(folio) - extra) > folio_mapcount(folio))
367 return false;
368
369 return true;
370 }
371
372 /*
373 * Unmaps pages for migration. Returns number of source pfns marked as
374 * migrating.
375 */
migrate_device_unmap(unsigned long * src_pfns,unsigned long npages,struct page * fault_page)376 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
377 unsigned long npages,
378 struct page *fault_page)
379 {
380 struct folio *fault_folio = fault_page ?
381 page_folio(fault_page) : NULL;
382 unsigned long i, restore = 0;
383 bool allow_drain = true;
384 unsigned long unmapped = 0;
385
386 lru_add_drain();
387
388 for (i = 0; i < npages; i++) {
389 struct page *page = migrate_pfn_to_page(src_pfns[i]);
390 struct folio *folio;
391
392 if (!page) {
393 if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
394 unmapped++;
395 continue;
396 }
397
398 folio = page_folio(page);
399 /* ZONE_DEVICE folios are not on LRU */
400 if (!folio_is_zone_device(folio)) {
401 if (!folio_test_lru(folio) && allow_drain) {
402 /* Drain CPU's lru cache */
403 lru_add_drain_all();
404 allow_drain = false;
405 }
406
407 if (!folio_isolate_lru(folio)) {
408 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
409 restore++;
410 continue;
411 }
412
413 /* Drop the reference we took in collect */
414 folio_put(folio);
415 }
416
417 if (folio_mapped(folio))
418 try_to_migrate(folio, 0);
419
420 if (folio_mapped(folio) ||
421 !migrate_vma_check_page(page, fault_page)) {
422 if (!folio_is_zone_device(folio)) {
423 folio_get(folio);
424 folio_putback_lru(folio);
425 }
426
427 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
428 restore++;
429 continue;
430 }
431
432 unmapped++;
433 }
434
435 for (i = 0; i < npages && restore; i++) {
436 struct page *page = migrate_pfn_to_page(src_pfns[i]);
437 struct folio *folio;
438
439 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
440 continue;
441
442 folio = page_folio(page);
443 remove_migration_ptes(folio, folio, 0);
444
445 src_pfns[i] = 0;
446 if (fault_folio != folio)
447 folio_unlock(folio);
448 folio_put(folio);
449 restore--;
450 }
451
452 return unmapped;
453 }
454
455 /*
456 * migrate_vma_unmap() - replace page mapping with special migration pte entry
457 * @migrate: migrate struct containing all migration information
458 *
459 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
460 * special migration pte entry and check if it has been pinned. Pinned pages are
461 * restored because we cannot migrate them.
462 *
463 * This is the last step before we call the device driver callback to allocate
464 * destination memory and copy contents of original page over to new page.
465 */
migrate_vma_unmap(struct migrate_vma * migrate)466 static void migrate_vma_unmap(struct migrate_vma *migrate)
467 {
468 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
469 migrate->fault_page);
470 }
471
472 /**
473 * migrate_vma_setup() - prepare to migrate a range of memory
474 * @args: contains the vma, start, and pfns arrays for the migration
475 *
476 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
477 * without an error.
478 *
479 * Prepare to migrate a range of memory virtual address range by collecting all
480 * the pages backing each virtual address in the range, saving them inside the
481 * src array. Then lock those pages and unmap them. Once the pages are locked
482 * and unmapped, check whether each page is pinned or not. Pages that aren't
483 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
484 * corresponding src array entry. Then restores any pages that are pinned, by
485 * remapping and unlocking those pages.
486 *
487 * The caller should then allocate destination memory and copy source memory to
488 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
489 * flag set). Once these are allocated and copied, the caller must update each
490 * corresponding entry in the dst array with the pfn value of the destination
491 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
492 * lock_page().
493 *
494 * Note that the caller does not have to migrate all the pages that are marked
495 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
496 * device memory to system memory. If the caller cannot migrate a device page
497 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
498 * consequences for the userspace process, so it must be avoided if at all
499 * possible.
500 *
501 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
502 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
503 * allowing the caller to allocate device memory for those unbacked virtual
504 * addresses. For this the caller simply has to allocate device memory and
505 * properly set the destination entry like for regular migration. Note that
506 * this can still fail, and thus inside the device driver you must check if the
507 * migration was successful for those entries after calling migrate_vma_pages(),
508 * just like for regular migration.
509 *
510 * After that, the callers must call migrate_vma_pages() to go over each entry
511 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
512 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
513 * then migrate_vma_pages() to migrate struct page information from the source
514 * struct page to the destination struct page. If it fails to migrate the
515 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
516 * src array.
517 *
518 * At this point all successfully migrated pages have an entry in the src
519 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
520 * array entry with MIGRATE_PFN_VALID flag set.
521 *
522 * Once migrate_vma_pages() returns the caller may inspect which pages were
523 * successfully migrated, and which were not. Successfully migrated pages will
524 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
525 *
526 * It is safe to update device page table after migrate_vma_pages() because
527 * both destination and source page are still locked, and the mmap_lock is held
528 * in read mode (hence no one can unmap the range being migrated).
529 *
530 * Once the caller is done cleaning up things and updating its page table (if it
531 * chose to do so, this is not an obligation) it finally calls
532 * migrate_vma_finalize() to update the CPU page table to point to new pages
533 * for successfully migrated pages or otherwise restore the CPU page table to
534 * point to the original source pages.
535 */
migrate_vma_setup(struct migrate_vma * args)536 int migrate_vma_setup(struct migrate_vma *args)
537 {
538 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
539
540 args->start &= PAGE_MASK;
541 args->end &= PAGE_MASK;
542 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
543 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
544 return -EINVAL;
545 if (nr_pages <= 0)
546 return -EINVAL;
547 if (args->start < args->vma->vm_start ||
548 args->start >= args->vma->vm_end)
549 return -EINVAL;
550 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
551 return -EINVAL;
552 if (!args->src || !args->dst)
553 return -EINVAL;
554 if (args->fault_page && !is_device_private_page(args->fault_page))
555 return -EINVAL;
556 if (args->fault_page && !PageLocked(args->fault_page))
557 return -EINVAL;
558
559 memset(args->src, 0, sizeof(*args->src) * nr_pages);
560 args->cpages = 0;
561 args->npages = 0;
562
563 migrate_vma_collect(args);
564
565 if (args->cpages)
566 migrate_vma_unmap(args);
567
568 /*
569 * At this point pages are locked and unmapped, and thus they have
570 * stable content and can safely be copied to destination memory that
571 * is allocated by the drivers.
572 */
573 return 0;
574
575 }
576 EXPORT_SYMBOL(migrate_vma_setup);
577
578 /*
579 * This code closely matches the code in:
580 * __handle_mm_fault()
581 * handle_pte_fault()
582 * do_anonymous_page()
583 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
584 * private or coherent page.
585 */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src)586 static void migrate_vma_insert_page(struct migrate_vma *migrate,
587 unsigned long addr,
588 struct page *page,
589 unsigned long *src)
590 {
591 struct folio *folio = page_folio(page);
592 struct vm_area_struct *vma = migrate->vma;
593 struct mm_struct *mm = vma->vm_mm;
594 bool flush = false;
595 spinlock_t *ptl;
596 pte_t entry;
597 pgd_t *pgdp;
598 p4d_t *p4dp;
599 pud_t *pudp;
600 pmd_t *pmdp;
601 pte_t *ptep;
602 pte_t orig_pte;
603
604 /* Only allow populating anonymous memory */
605 if (!vma_is_anonymous(vma))
606 goto abort;
607
608 pgdp = pgd_offset(mm, addr);
609 p4dp = p4d_alloc(mm, pgdp, addr);
610 if (!p4dp)
611 goto abort;
612 pudp = pud_alloc(mm, p4dp, addr);
613 if (!pudp)
614 goto abort;
615 pmdp = pmd_alloc(mm, pudp, addr);
616 if (!pmdp)
617 goto abort;
618 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
619 goto abort;
620 if (pte_alloc(mm, pmdp))
621 goto abort;
622 if (unlikely(anon_vma_prepare(vma)))
623 goto abort;
624 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
625 goto abort;
626
627 /*
628 * The memory barrier inside __folio_mark_uptodate makes sure that
629 * preceding stores to the folio contents become visible before
630 * the set_pte_at() write.
631 */
632 __folio_mark_uptodate(folio);
633
634 if (folio_is_device_private(folio)) {
635 swp_entry_t swp_entry;
636
637 if (vma->vm_flags & VM_WRITE)
638 swp_entry = make_writable_device_private_entry(
639 page_to_pfn(page));
640 else
641 swp_entry = make_readable_device_private_entry(
642 page_to_pfn(page));
643 entry = swp_entry_to_pte(swp_entry);
644 } else {
645 if (folio_is_zone_device(folio) &&
646 !folio_is_device_coherent(folio)) {
647 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
648 goto abort;
649 }
650 entry = mk_pte(page, vma->vm_page_prot);
651 if (vma->vm_flags & VM_WRITE)
652 entry = pte_mkwrite(pte_mkdirty(entry), vma);
653 }
654
655 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
656 if (!ptep)
657 goto abort;
658 orig_pte = ptep_get(ptep);
659
660 if (check_stable_address_space(mm))
661 goto unlock_abort;
662
663 if (pte_present(orig_pte)) {
664 unsigned long pfn = pte_pfn(orig_pte);
665
666 if (!is_zero_pfn(pfn))
667 goto unlock_abort;
668 flush = true;
669 } else if (!pte_none(orig_pte))
670 goto unlock_abort;
671
672 /*
673 * Check for userfaultfd but do not deliver the fault. Instead,
674 * just back off.
675 */
676 if (userfaultfd_missing(vma))
677 goto unlock_abort;
678
679 inc_mm_counter(mm, MM_ANONPAGES);
680 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
681 if (!folio_is_zone_device(folio))
682 folio_add_lru_vma(folio, vma);
683 folio_get(folio);
684
685 if (flush) {
686 flush_cache_page(vma, addr, pte_pfn(orig_pte));
687 ptep_clear_flush(vma, addr, ptep);
688 }
689 set_pte_at(mm, addr, ptep, entry);
690 update_mmu_cache(vma, addr, ptep);
691
692 pte_unmap_unlock(ptep, ptl);
693 *src = MIGRATE_PFN_MIGRATE;
694 return;
695
696 unlock_abort:
697 pte_unmap_unlock(ptep, ptl);
698 abort:
699 *src &= ~MIGRATE_PFN_MIGRATE;
700 }
701
__migrate_device_pages(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages,struct migrate_vma * migrate)702 static void __migrate_device_pages(unsigned long *src_pfns,
703 unsigned long *dst_pfns, unsigned long npages,
704 struct migrate_vma *migrate)
705 {
706 struct mmu_notifier_range range;
707 unsigned long i;
708 bool notified = false;
709
710 for (i = 0; i < npages; i++) {
711 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
712 struct page *page = migrate_pfn_to_page(src_pfns[i]);
713 struct address_space *mapping;
714 struct folio *newfolio, *folio;
715 int r, extra_cnt = 0;
716
717 if (!newpage) {
718 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
719 continue;
720 }
721
722 if (!page) {
723 unsigned long addr;
724
725 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
726 continue;
727
728 /*
729 * The only time there is no vma is when called from
730 * migrate_device_coherent_folio(). However this isn't
731 * called if the page could not be unmapped.
732 */
733 VM_BUG_ON(!migrate);
734 addr = migrate->start + i*PAGE_SIZE;
735 if (!notified) {
736 notified = true;
737
738 mmu_notifier_range_init_owner(&range,
739 MMU_NOTIFY_MIGRATE, 0,
740 migrate->vma->vm_mm, addr, migrate->end,
741 migrate->pgmap_owner);
742 mmu_notifier_invalidate_range_start(&range);
743 }
744 migrate_vma_insert_page(migrate, addr, newpage,
745 &src_pfns[i]);
746 continue;
747 }
748
749 newfolio = page_folio(newpage);
750 folio = page_folio(page);
751 mapping = folio_mapping(folio);
752
753 if (folio_is_device_private(newfolio) ||
754 folio_is_device_coherent(newfolio)) {
755 if (mapping) {
756 /*
757 * For now only support anonymous memory migrating to
758 * device private or coherent memory.
759 *
760 * Try to get rid of swap cache if possible.
761 */
762 if (!folio_test_anon(folio) ||
763 !folio_free_swap(folio)) {
764 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
765 continue;
766 }
767 }
768 } else if (folio_is_zone_device(newfolio)) {
769 /*
770 * Other types of ZONE_DEVICE page are not supported.
771 */
772 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
773 continue;
774 }
775
776 BUG_ON(folio_test_writeback(folio));
777
778 if (migrate && migrate->fault_page == page)
779 extra_cnt = 1;
780 r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt);
781 if (r != MIGRATEPAGE_SUCCESS)
782 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
783 else
784 folio_migrate_flags(newfolio, folio);
785 }
786
787 if (notified)
788 mmu_notifier_invalidate_range_end(&range);
789 }
790
791 /**
792 * migrate_device_pages() - migrate meta-data from src page to dst page
793 * @src_pfns: src_pfns returned from migrate_device_range()
794 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
795 * @npages: number of pages in the range
796 *
797 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
798 * meta-data from source struct page to destination.
799 */
migrate_device_pages(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages)800 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
801 unsigned long npages)
802 {
803 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
804 }
805 EXPORT_SYMBOL(migrate_device_pages);
806
807 /**
808 * migrate_vma_pages() - migrate meta-data from src page to dst page
809 * @migrate: migrate struct containing all migration information
810 *
811 * This migrates struct page meta-data from source struct page to destination
812 * struct page. This effectively finishes the migration from source page to the
813 * destination page.
814 */
migrate_vma_pages(struct migrate_vma * migrate)815 void migrate_vma_pages(struct migrate_vma *migrate)
816 {
817 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
818 }
819 EXPORT_SYMBOL(migrate_vma_pages);
820
__migrate_device_finalize(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages,struct page * fault_page)821 static void __migrate_device_finalize(unsigned long *src_pfns,
822 unsigned long *dst_pfns,
823 unsigned long npages,
824 struct page *fault_page)
825 {
826 struct folio *fault_folio = fault_page ?
827 page_folio(fault_page) : NULL;
828 unsigned long i;
829
830 for (i = 0; i < npages; i++) {
831 struct folio *dst = NULL, *src = NULL;
832 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
833 struct page *page = migrate_pfn_to_page(src_pfns[i]);
834
835 if (newpage)
836 dst = page_folio(newpage);
837
838 if (!page) {
839 if (dst) {
840 WARN_ON_ONCE(fault_folio == dst);
841 folio_unlock(dst);
842 folio_put(dst);
843 }
844 continue;
845 }
846
847 src = page_folio(page);
848
849 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !dst) {
850 if (dst) {
851 WARN_ON_ONCE(fault_folio == dst);
852 folio_unlock(dst);
853 folio_put(dst);
854 }
855 dst = src;
856 }
857
858 if (!folio_is_zone_device(dst))
859 folio_add_lru(dst);
860 remove_migration_ptes(src, dst, 0);
861 if (fault_folio != src)
862 folio_unlock(src);
863 folio_put(src);
864
865 if (dst != src) {
866 WARN_ON_ONCE(fault_folio == dst);
867 folio_unlock(dst);
868 folio_put(dst);
869 }
870 }
871 }
872
873 /*
874 * migrate_device_finalize() - complete page migration
875 * @src_pfns: src_pfns returned from migrate_device_range()
876 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
877 * @npages: number of pages in the range
878 *
879 * Completes migration of the page by removing special migration entries.
880 * Drivers must ensure copying of page data is complete and visible to the CPU
881 * before calling this.
882 */
migrate_device_finalize(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages)883 void migrate_device_finalize(unsigned long *src_pfns,
884 unsigned long *dst_pfns, unsigned long npages)
885 {
886 return __migrate_device_finalize(src_pfns, dst_pfns, npages, NULL);
887 }
888 EXPORT_SYMBOL(migrate_device_finalize);
889
890 /**
891 * migrate_vma_finalize() - restore CPU page table entry
892 * @migrate: migrate struct containing all migration information
893 *
894 * This replaces the special migration pte entry with either a mapping to the
895 * new page if migration was successful for that page, or to the original page
896 * otherwise.
897 *
898 * This also unlocks the pages and puts them back on the lru, or drops the extra
899 * refcount, for device pages.
900 */
migrate_vma_finalize(struct migrate_vma * migrate)901 void migrate_vma_finalize(struct migrate_vma *migrate)
902 {
903 __migrate_device_finalize(migrate->src, migrate->dst, migrate->npages,
904 migrate->fault_page);
905 }
906 EXPORT_SYMBOL(migrate_vma_finalize);
907
migrate_device_pfn_lock(unsigned long pfn)908 static unsigned long migrate_device_pfn_lock(unsigned long pfn)
909 {
910 struct folio *folio;
911
912 folio = folio_get_nontail_page(pfn_to_page(pfn));
913 if (!folio)
914 return 0;
915
916 if (!folio_trylock(folio)) {
917 folio_put(folio);
918 return 0;
919 }
920
921 return migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
922 }
923
924 /**
925 * migrate_device_range() - migrate device private pfns to normal memory.
926 * @src_pfns: array large enough to hold migrating source device private pfns.
927 * @start: starting pfn in the range to migrate.
928 * @npages: number of pages to migrate.
929 *
930 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
931 * instead of looking up pages based on virtual address mappings a range of
932 * device pfns that should be migrated to system memory is used instead.
933 *
934 * This is useful when a driver needs to free device memory but doesn't know the
935 * virtual mappings of every page that may be in device memory. For example this
936 * is often the case when a driver is being unloaded or unbound from a device.
937 *
938 * Like migrate_vma_setup() this function will take a reference and lock any
939 * migrating pages that aren't free before unmapping them. Drivers may then
940 * allocate destination pages and start copying data from the device to CPU
941 * memory before calling migrate_device_pages().
942 */
migrate_device_range(unsigned long * src_pfns,unsigned long start,unsigned long npages)943 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
944 unsigned long npages)
945 {
946 unsigned long i, pfn;
947
948 for (pfn = start, i = 0; i < npages; pfn++, i++)
949 src_pfns[i] = migrate_device_pfn_lock(pfn);
950
951 migrate_device_unmap(src_pfns, npages, NULL);
952
953 return 0;
954 }
955 EXPORT_SYMBOL(migrate_device_range);
956
957 /**
958 * migrate_device_pfns() - migrate device private pfns to normal memory.
959 * @src_pfns: pre-popluated array of source device private pfns to migrate.
960 * @npages: number of pages to migrate.
961 *
962 * Similar to migrate_device_range() but supports non-contiguous pre-popluated
963 * array of device pages to migrate.
964 */
migrate_device_pfns(unsigned long * src_pfns,unsigned long npages)965 int migrate_device_pfns(unsigned long *src_pfns, unsigned long npages)
966 {
967 unsigned long i;
968
969 for (i = 0; i < npages; i++)
970 src_pfns[i] = migrate_device_pfn_lock(src_pfns[i]);
971
972 migrate_device_unmap(src_pfns, npages, NULL);
973
974 return 0;
975 }
976 EXPORT_SYMBOL(migrate_device_pfns);
977
978 /*
979 * Migrate a device coherent folio back to normal memory. The caller should have
980 * a reference on folio which will be copied to the new folio if migration is
981 * successful or dropped on failure.
982 */
migrate_device_coherent_folio(struct folio * folio)983 int migrate_device_coherent_folio(struct folio *folio)
984 {
985 unsigned long src_pfn, dst_pfn = 0;
986 struct folio *dfolio;
987
988 WARN_ON_ONCE(folio_test_large(folio));
989
990 folio_lock(folio);
991 src_pfn = migrate_pfn(folio_pfn(folio)) | MIGRATE_PFN_MIGRATE;
992
993 /*
994 * We don't have a VMA and don't need to walk the page tables to find
995 * the source folio. So call migrate_vma_unmap() directly to unmap the
996 * folio as migrate_vma_setup() will fail if args.vma == NULL.
997 */
998 migrate_device_unmap(&src_pfn, 1, NULL);
999 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
1000 return -EBUSY;
1001
1002 dfolio = folio_alloc(GFP_USER | __GFP_NOWARN, 0);
1003 if (dfolio) {
1004 folio_lock(dfolio);
1005 dst_pfn = migrate_pfn(folio_pfn(dfolio));
1006 }
1007
1008 migrate_device_pages(&src_pfn, &dst_pfn, 1);
1009 if (src_pfn & MIGRATE_PFN_MIGRATE)
1010 folio_copy(dfolio, folio);
1011 migrate_device_finalize(&src_pfn, &dst_pfn, 1);
1012
1013 if (src_pfn & MIGRATE_PFN_MIGRATE)
1014 return 0;
1015 return -EBUSY;
1016 }
1017