xref: /linux/drivers/regulator/core.c (revision 31ca9ff64ae91283436739ce3277facb89c7901d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 /*
87  * Work item used to forward regulator events.
88  *
89  * @work: workqueue entry
90  * @rdev: regulator device to notify (consumer receiving the forwarded event)
91  * @event: event code to be forwarded
92  */
93 struct regulator_event_work {
94 	struct work_struct work;
95 	struct regulator_dev *rdev;
96 	unsigned long event;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109 				     suspend_state_t state);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void destroy_regulator(struct regulator *regulator);
114 static void _regulator_put(struct regulator *regulator);
115 
rdev_get_name(struct regulator_dev * rdev)116 const char *rdev_get_name(struct regulator_dev *rdev)
117 {
118 	if (rdev->constraints && rdev->constraints->name)
119 		return rdev->constraints->name;
120 	else if (rdev->desc->name)
121 		return rdev->desc->name;
122 	else
123 		return "";
124 }
125 EXPORT_SYMBOL_GPL(rdev_get_name);
126 
have_full_constraints(void)127 static bool have_full_constraints(void)
128 {
129 	return has_full_constraints || of_have_populated_dt();
130 }
131 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)132 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
133 {
134 	if (!rdev->constraints) {
135 		rdev_err(rdev, "no constraints\n");
136 		return false;
137 	}
138 
139 	if (rdev->constraints->valid_ops_mask & ops)
140 		return true;
141 
142 	return false;
143 }
144 
145 /**
146  * regulator_lock_nested - lock a single regulator
147  * @rdev:		regulator source
148  * @ww_ctx:		w/w mutex acquire context
149  *
150  * This function can be called many times by one task on
151  * a single regulator and its mutex will be locked only
152  * once. If a task, which is calling this function is other
153  * than the one, which initially locked the mutex, it will
154  * wait on mutex.
155  *
156  * Return: 0 on success or a negative error number on failure.
157  */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)158 static inline int regulator_lock_nested(struct regulator_dev *rdev,
159 					struct ww_acquire_ctx *ww_ctx)
160 {
161 	bool lock = false;
162 	int ret = 0;
163 
164 	mutex_lock(&regulator_nesting_mutex);
165 
166 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
167 		if (rdev->mutex_owner == current)
168 			rdev->ref_cnt++;
169 		else
170 			lock = true;
171 
172 		if (lock) {
173 			mutex_unlock(&regulator_nesting_mutex);
174 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
175 			mutex_lock(&regulator_nesting_mutex);
176 		}
177 	} else {
178 		lock = true;
179 	}
180 
181 	if (lock && ret != -EDEADLK) {
182 		rdev->ref_cnt++;
183 		rdev->mutex_owner = current;
184 	}
185 
186 	mutex_unlock(&regulator_nesting_mutex);
187 
188 	return ret;
189 }
190 
191 /**
192  * regulator_lock - lock a single regulator
193  * @rdev:		regulator source
194  *
195  * This function can be called many times by one task on
196  * a single regulator and its mutex will be locked only
197  * once. If a task, which is calling this function is other
198  * than the one, which initially locked the mutex, it will
199  * wait on mutex.
200  */
regulator_lock(struct regulator_dev * rdev)201 static void regulator_lock(struct regulator_dev *rdev)
202 {
203 	regulator_lock_nested(rdev, NULL);
204 }
205 
206 /**
207  * regulator_unlock - unlock a single regulator
208  * @rdev:		regulator_source
209  *
210  * This function unlocks the mutex when the
211  * reference counter reaches 0.
212  */
regulator_unlock(struct regulator_dev * rdev)213 static void regulator_unlock(struct regulator_dev *rdev)
214 {
215 	mutex_lock(&regulator_nesting_mutex);
216 
217 	if (--rdev->ref_cnt == 0) {
218 		rdev->mutex_owner = NULL;
219 		ww_mutex_unlock(&rdev->mutex);
220 	}
221 
222 	WARN_ON_ONCE(rdev->ref_cnt < 0);
223 
224 	mutex_unlock(&regulator_nesting_mutex);
225 }
226 
227 /**
228  * regulator_lock_two - lock two regulators
229  * @rdev1:		first regulator
230  * @rdev2:		second regulator
231  * @ww_ctx:		w/w mutex acquire context
232  *
233  * Locks both rdevs using the regulator_ww_class.
234  */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)235 static void regulator_lock_two(struct regulator_dev *rdev1,
236 			       struct regulator_dev *rdev2,
237 			       struct ww_acquire_ctx *ww_ctx)
238 {
239 	struct regulator_dev *held, *contended;
240 	int ret;
241 
242 	ww_acquire_init(ww_ctx, &regulator_ww_class);
243 
244 	/* Try to just grab both of them */
245 	ret = regulator_lock_nested(rdev1, ww_ctx);
246 	WARN_ON(ret);
247 	ret = regulator_lock_nested(rdev2, ww_ctx);
248 	if (ret != -EDEADLOCK) {
249 		WARN_ON(ret);
250 		goto exit;
251 	}
252 
253 	held = rdev1;
254 	contended = rdev2;
255 	while (true) {
256 		regulator_unlock(held);
257 
258 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
259 		contended->ref_cnt++;
260 		contended->mutex_owner = current;
261 		swap(held, contended);
262 		ret = regulator_lock_nested(contended, ww_ctx);
263 
264 		if (ret != -EDEADLOCK) {
265 			WARN_ON(ret);
266 			break;
267 		}
268 	}
269 
270 exit:
271 	ww_acquire_done(ww_ctx);
272 }
273 
274 /**
275  * regulator_unlock_two - unlock two regulators
276  * @rdev1:		first regulator
277  * @rdev2:		second regulator
278  * @ww_ctx:		w/w mutex acquire context
279  *
280  * The inverse of regulator_lock_two().
281  */
282 
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)283 static void regulator_unlock_two(struct regulator_dev *rdev1,
284 				 struct regulator_dev *rdev2,
285 				 struct ww_acquire_ctx *ww_ctx)
286 {
287 	regulator_unlock(rdev2);
288 	regulator_unlock(rdev1);
289 	ww_acquire_fini(ww_ctx);
290 }
291 
regulator_supply_is_couple(struct regulator_dev * rdev)292 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
293 {
294 	struct regulator_dev *c_rdev;
295 	int i;
296 
297 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
298 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
299 
300 		if (rdev->supply->rdev == c_rdev)
301 			return true;
302 	}
303 
304 	return false;
305 }
306 
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)307 static void regulator_unlock_recursive(struct regulator_dev *rdev,
308 				       unsigned int n_coupled)
309 {
310 	struct regulator_dev *c_rdev, *supply_rdev;
311 	int i, supply_n_coupled;
312 
313 	for (i = n_coupled; i > 0; i--) {
314 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
315 
316 		if (!c_rdev)
317 			continue;
318 
319 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
320 			supply_rdev = c_rdev->supply->rdev;
321 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
322 
323 			regulator_unlock_recursive(supply_rdev,
324 						   supply_n_coupled);
325 		}
326 
327 		regulator_unlock(c_rdev);
328 	}
329 }
330 
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)331 static int regulator_lock_recursive(struct regulator_dev *rdev,
332 				    struct regulator_dev **new_contended_rdev,
333 				    struct regulator_dev **old_contended_rdev,
334 				    struct ww_acquire_ctx *ww_ctx)
335 {
336 	struct regulator_dev *c_rdev;
337 	int i, err;
338 
339 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
340 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
341 
342 		if (!c_rdev)
343 			continue;
344 
345 		if (c_rdev != *old_contended_rdev) {
346 			err = regulator_lock_nested(c_rdev, ww_ctx);
347 			if (err) {
348 				if (err == -EDEADLK) {
349 					*new_contended_rdev = c_rdev;
350 					goto err_unlock;
351 				}
352 
353 				/* shouldn't happen */
354 				WARN_ON_ONCE(err != -EALREADY);
355 			}
356 		} else {
357 			*old_contended_rdev = NULL;
358 		}
359 
360 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
361 			err = regulator_lock_recursive(c_rdev->supply->rdev,
362 						       new_contended_rdev,
363 						       old_contended_rdev,
364 						       ww_ctx);
365 			if (err) {
366 				regulator_unlock(c_rdev);
367 				goto err_unlock;
368 			}
369 		}
370 	}
371 
372 	return 0;
373 
374 err_unlock:
375 	regulator_unlock_recursive(rdev, i);
376 
377 	return err;
378 }
379 
380 /**
381  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
382  *				regulators
383  * @rdev:			regulator source
384  * @ww_ctx:			w/w mutex acquire context
385  *
386  * Unlock all regulators related with rdev by coupling or supplying.
387  */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)388 static void regulator_unlock_dependent(struct regulator_dev *rdev,
389 				       struct ww_acquire_ctx *ww_ctx)
390 {
391 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
392 	ww_acquire_fini(ww_ctx);
393 }
394 
395 /**
396  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
397  * @rdev:			regulator source
398  * @ww_ctx:			w/w mutex acquire context
399  *
400  * This function as a wrapper on regulator_lock_recursive(), which locks
401  * all regulators related with rdev by coupling or supplying.
402  */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)403 static void regulator_lock_dependent(struct regulator_dev *rdev,
404 				     struct ww_acquire_ctx *ww_ctx)
405 {
406 	struct regulator_dev *new_contended_rdev = NULL;
407 	struct regulator_dev *old_contended_rdev = NULL;
408 	int err;
409 
410 	mutex_lock(&regulator_list_mutex);
411 
412 	ww_acquire_init(ww_ctx, &regulator_ww_class);
413 
414 	do {
415 		if (new_contended_rdev) {
416 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
417 			old_contended_rdev = new_contended_rdev;
418 			old_contended_rdev->ref_cnt++;
419 			old_contended_rdev->mutex_owner = current;
420 		}
421 
422 		err = regulator_lock_recursive(rdev,
423 					       &new_contended_rdev,
424 					       &old_contended_rdev,
425 					       ww_ctx);
426 
427 		if (old_contended_rdev)
428 			regulator_unlock(old_contended_rdev);
429 
430 	} while (err == -EDEADLK);
431 
432 	ww_acquire_done(ww_ctx);
433 
434 	mutex_unlock(&regulator_list_mutex);
435 }
436 
437 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)438 int regulator_check_voltage(struct regulator_dev *rdev,
439 			    int *min_uV, int *max_uV)
440 {
441 	BUG_ON(*min_uV > *max_uV);
442 
443 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
444 		rdev_err(rdev, "voltage operation not allowed\n");
445 		return -EPERM;
446 	}
447 
448 	if (*max_uV > rdev->constraints->max_uV)
449 		*max_uV = rdev->constraints->max_uV;
450 	if (*min_uV < rdev->constraints->min_uV)
451 		*min_uV = rdev->constraints->min_uV;
452 
453 	if (*min_uV > *max_uV) {
454 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
455 			 *min_uV, *max_uV);
456 		return -EINVAL;
457 	}
458 
459 	return 0;
460 }
461 
462 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)463 static int regulator_check_states(suspend_state_t state)
464 {
465 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
466 }
467 
468 /* Make sure we select a voltage that suits the needs of all
469  * regulator consumers
470  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)471 int regulator_check_consumers(struct regulator_dev *rdev,
472 			      int *min_uV, int *max_uV,
473 			      suspend_state_t state)
474 {
475 	struct regulator *regulator;
476 	struct regulator_voltage *voltage;
477 
478 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
479 		voltage = &regulator->voltage[state];
480 		/*
481 		 * Assume consumers that didn't say anything are OK
482 		 * with anything in the constraint range.
483 		 */
484 		if (!voltage->min_uV && !voltage->max_uV)
485 			continue;
486 
487 		if (*max_uV > voltage->max_uV)
488 			*max_uV = voltage->max_uV;
489 		if (*min_uV < voltage->min_uV)
490 			*min_uV = voltage->min_uV;
491 	}
492 
493 	if (*min_uV > *max_uV) {
494 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
495 			*min_uV, *max_uV);
496 		return -EINVAL;
497 	}
498 
499 	return 0;
500 }
501 
502 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)503 static int regulator_check_current_limit(struct regulator_dev *rdev,
504 					int *min_uA, int *max_uA)
505 {
506 	BUG_ON(*min_uA > *max_uA);
507 
508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
509 		rdev_err(rdev, "current operation not allowed\n");
510 		return -EPERM;
511 	}
512 
513 	if (*max_uA > rdev->constraints->max_uA &&
514 	    rdev->constraints->max_uA)
515 		*max_uA = rdev->constraints->max_uA;
516 	if (*min_uA < rdev->constraints->min_uA)
517 		*min_uA = rdev->constraints->min_uA;
518 
519 	if (*min_uA > *max_uA) {
520 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
521 			 *min_uA, *max_uA);
522 		return -EINVAL;
523 	}
524 
525 	return 0;
526 }
527 
528 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)529 static int regulator_mode_constrain(struct regulator_dev *rdev,
530 				    unsigned int *mode)
531 {
532 	switch (*mode) {
533 	case REGULATOR_MODE_FAST:
534 	case REGULATOR_MODE_NORMAL:
535 	case REGULATOR_MODE_IDLE:
536 	case REGULATOR_MODE_STANDBY:
537 		break;
538 	default:
539 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
540 		return -EINVAL;
541 	}
542 
543 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
544 		rdev_err(rdev, "mode operation not allowed\n");
545 		return -EPERM;
546 	}
547 
548 	/* The modes are bitmasks, the most power hungry modes having
549 	 * the lowest values. If the requested mode isn't supported
550 	 * try higher modes.
551 	 */
552 	while (*mode) {
553 		if (rdev->constraints->valid_modes_mask & *mode)
554 			return 0;
555 		*mode /= 2;
556 	}
557 
558 	return -EINVAL;
559 }
560 
561 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)562 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
563 {
564 	if (rdev->constraints == NULL)
565 		return NULL;
566 
567 	switch (state) {
568 	case PM_SUSPEND_STANDBY:
569 		return &rdev->constraints->state_standby;
570 	case PM_SUSPEND_MEM:
571 		return &rdev->constraints->state_mem;
572 	case PM_SUSPEND_MAX:
573 		return &rdev->constraints->state_disk;
574 	default:
575 		return NULL;
576 	}
577 }
578 
579 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)580 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
581 {
582 	const struct regulator_state *rstate;
583 
584 	rstate = regulator_get_suspend_state(rdev, state);
585 	if (rstate == NULL)
586 		return NULL;
587 
588 	/* If we have no suspend mode configuration don't set anything;
589 	 * only warn if the driver implements set_suspend_voltage or
590 	 * set_suspend_mode callback.
591 	 */
592 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
593 	    rstate->enabled != DISABLE_IN_SUSPEND) {
594 		if (rdev->desc->ops->set_suspend_voltage ||
595 		    rdev->desc->ops->set_suspend_mode)
596 			rdev_warn(rdev, "No configuration\n");
597 		return NULL;
598 	}
599 
600 	return rstate;
601 }
602 
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)603 static ssize_t microvolts_show(struct device *dev,
604 			       struct device_attribute *attr, char *buf)
605 {
606 	struct regulator_dev *rdev = dev_get_drvdata(dev);
607 	int uV;
608 
609 	regulator_lock(rdev);
610 	uV = regulator_get_voltage_rdev(rdev);
611 	regulator_unlock(rdev);
612 
613 	if (uV < 0)
614 		return uV;
615 	return sprintf(buf, "%d\n", uV);
616 }
617 static DEVICE_ATTR_RO(microvolts);
618 
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)619 static ssize_t microamps_show(struct device *dev,
620 			      struct device_attribute *attr, char *buf)
621 {
622 	struct regulator_dev *rdev = dev_get_drvdata(dev);
623 
624 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
625 }
626 static DEVICE_ATTR_RO(microamps);
627 
name_show(struct device * dev,struct device_attribute * attr,char * buf)628 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
629 			 char *buf)
630 {
631 	struct regulator_dev *rdev = dev_get_drvdata(dev);
632 
633 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
634 }
635 static DEVICE_ATTR_RO(name);
636 
regulator_opmode_to_str(int mode)637 static const char *regulator_opmode_to_str(int mode)
638 {
639 	switch (mode) {
640 	case REGULATOR_MODE_FAST:
641 		return "fast";
642 	case REGULATOR_MODE_NORMAL:
643 		return "normal";
644 	case REGULATOR_MODE_IDLE:
645 		return "idle";
646 	case REGULATOR_MODE_STANDBY:
647 		return "standby";
648 	}
649 	return "unknown";
650 }
651 
regulator_print_opmode(char * buf,int mode)652 static ssize_t regulator_print_opmode(char *buf, int mode)
653 {
654 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
655 }
656 
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)657 static ssize_t opmode_show(struct device *dev,
658 			   struct device_attribute *attr, char *buf)
659 {
660 	struct regulator_dev *rdev = dev_get_drvdata(dev);
661 
662 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
663 }
664 static DEVICE_ATTR_RO(opmode);
665 
regulator_print_state(char * buf,int state)666 static ssize_t regulator_print_state(char *buf, int state)
667 {
668 	if (state > 0)
669 		return sprintf(buf, "enabled\n");
670 	else if (state == 0)
671 		return sprintf(buf, "disabled\n");
672 	else
673 		return sprintf(buf, "unknown\n");
674 }
675 
state_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t state_show(struct device *dev,
677 			  struct device_attribute *attr, char *buf)
678 {
679 	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 	ssize_t ret;
681 
682 	regulator_lock(rdev);
683 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
684 	regulator_unlock(rdev);
685 
686 	return ret;
687 }
688 static DEVICE_ATTR_RO(state);
689 
status_show(struct device * dev,struct device_attribute * attr,char * buf)690 static ssize_t status_show(struct device *dev,
691 			   struct device_attribute *attr, char *buf)
692 {
693 	struct regulator_dev *rdev = dev_get_drvdata(dev);
694 	int status;
695 	char *label;
696 
697 	status = rdev->desc->ops->get_status(rdev);
698 	if (status < 0)
699 		return status;
700 
701 	switch (status) {
702 	case REGULATOR_STATUS_OFF:
703 		label = "off";
704 		break;
705 	case REGULATOR_STATUS_ON:
706 		label = "on";
707 		break;
708 	case REGULATOR_STATUS_ERROR:
709 		label = "error";
710 		break;
711 	case REGULATOR_STATUS_FAST:
712 		label = "fast";
713 		break;
714 	case REGULATOR_STATUS_NORMAL:
715 		label = "normal";
716 		break;
717 	case REGULATOR_STATUS_IDLE:
718 		label = "idle";
719 		break;
720 	case REGULATOR_STATUS_STANDBY:
721 		label = "standby";
722 		break;
723 	case REGULATOR_STATUS_BYPASS:
724 		label = "bypass";
725 		break;
726 	case REGULATOR_STATUS_UNDEFINED:
727 		label = "undefined";
728 		break;
729 	default:
730 		return -ERANGE;
731 	}
732 
733 	return sprintf(buf, "%s\n", label);
734 }
735 static DEVICE_ATTR_RO(status);
736 
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)737 static ssize_t min_microamps_show(struct device *dev,
738 				  struct device_attribute *attr, char *buf)
739 {
740 	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 
742 	if (!rdev->constraints)
743 		return sprintf(buf, "constraint not defined\n");
744 
745 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
746 }
747 static DEVICE_ATTR_RO(min_microamps);
748 
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)749 static ssize_t max_microamps_show(struct device *dev,
750 				  struct device_attribute *attr, char *buf)
751 {
752 	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 
754 	if (!rdev->constraints)
755 		return sprintf(buf, "constraint not defined\n");
756 
757 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
758 }
759 static DEVICE_ATTR_RO(max_microamps);
760 
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)761 static ssize_t min_microvolts_show(struct device *dev,
762 				   struct device_attribute *attr, char *buf)
763 {
764 	struct regulator_dev *rdev = dev_get_drvdata(dev);
765 
766 	if (!rdev->constraints)
767 		return sprintf(buf, "constraint not defined\n");
768 
769 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
770 }
771 static DEVICE_ATTR_RO(min_microvolts);
772 
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)773 static ssize_t max_microvolts_show(struct device *dev,
774 				   struct device_attribute *attr, char *buf)
775 {
776 	struct regulator_dev *rdev = dev_get_drvdata(dev);
777 
778 	if (!rdev->constraints)
779 		return sprintf(buf, "constraint not defined\n");
780 
781 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
782 }
783 static DEVICE_ATTR_RO(max_microvolts);
784 
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t requested_microamps_show(struct device *dev,
786 					struct device_attribute *attr, char *buf)
787 {
788 	struct regulator_dev *rdev = dev_get_drvdata(dev);
789 	struct regulator *regulator;
790 	int uA = 0;
791 
792 	regulator_lock(rdev);
793 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
794 		if (regulator->enable_count)
795 			uA += regulator->uA_load;
796 	}
797 	regulator_unlock(rdev);
798 	return sprintf(buf, "%d\n", uA);
799 }
800 static DEVICE_ATTR_RO(requested_microamps);
801 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)802 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
803 			      char *buf)
804 {
805 	struct regulator_dev *rdev = dev_get_drvdata(dev);
806 	return sprintf(buf, "%d\n", rdev->use_count);
807 }
808 static DEVICE_ATTR_RO(num_users);
809 
type_show(struct device * dev,struct device_attribute * attr,char * buf)810 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
811 			 char *buf)
812 {
813 	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 
815 	switch (rdev->desc->type) {
816 	case REGULATOR_VOLTAGE:
817 		return sprintf(buf, "voltage\n");
818 	case REGULATOR_CURRENT:
819 		return sprintf(buf, "current\n");
820 	}
821 	return sprintf(buf, "unknown\n");
822 }
823 static DEVICE_ATTR_RO(type);
824 
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t suspend_mem_microvolts_show(struct device *dev,
826 					   struct device_attribute *attr, char *buf)
827 {
828 	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 
830 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_mem_microvolts);
833 
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)834 static ssize_t suspend_disk_microvolts_show(struct device *dev,
835 					    struct device_attribute *attr, char *buf)
836 {
837 	struct regulator_dev *rdev = dev_get_drvdata(dev);
838 
839 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
840 }
841 static DEVICE_ATTR_RO(suspend_disk_microvolts);
842 
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)843 static ssize_t suspend_standby_microvolts_show(struct device *dev,
844 					       struct device_attribute *attr, char *buf)
845 {
846 	struct regulator_dev *rdev = dev_get_drvdata(dev);
847 
848 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
849 }
850 static DEVICE_ATTR_RO(suspend_standby_microvolts);
851 
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)852 static ssize_t suspend_mem_mode_show(struct device *dev,
853 				     struct device_attribute *attr, char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 
857 	return regulator_print_opmode(buf,
858 		rdev->constraints->state_mem.mode);
859 }
860 static DEVICE_ATTR_RO(suspend_mem_mode);
861 
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)862 static ssize_t suspend_disk_mode_show(struct device *dev,
863 				      struct device_attribute *attr, char *buf)
864 {
865 	struct regulator_dev *rdev = dev_get_drvdata(dev);
866 
867 	return regulator_print_opmode(buf,
868 		rdev->constraints->state_disk.mode);
869 }
870 static DEVICE_ATTR_RO(suspend_disk_mode);
871 
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)872 static ssize_t suspend_standby_mode_show(struct device *dev,
873 					 struct device_attribute *attr, char *buf)
874 {
875 	struct regulator_dev *rdev = dev_get_drvdata(dev);
876 
877 	return regulator_print_opmode(buf,
878 		rdev->constraints->state_standby.mode);
879 }
880 static DEVICE_ATTR_RO(suspend_standby_mode);
881 
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)882 static ssize_t suspend_mem_state_show(struct device *dev,
883 				      struct device_attribute *attr, char *buf)
884 {
885 	struct regulator_dev *rdev = dev_get_drvdata(dev);
886 
887 	return regulator_print_state(buf,
888 			rdev->constraints->state_mem.enabled);
889 }
890 static DEVICE_ATTR_RO(suspend_mem_state);
891 
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)892 static ssize_t suspend_disk_state_show(struct device *dev,
893 				       struct device_attribute *attr, char *buf)
894 {
895 	struct regulator_dev *rdev = dev_get_drvdata(dev);
896 
897 	return regulator_print_state(buf,
898 			rdev->constraints->state_disk.enabled);
899 }
900 static DEVICE_ATTR_RO(suspend_disk_state);
901 
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)902 static ssize_t suspend_standby_state_show(struct device *dev,
903 					  struct device_attribute *attr, char *buf)
904 {
905 	struct regulator_dev *rdev = dev_get_drvdata(dev);
906 
907 	return regulator_print_state(buf,
908 			rdev->constraints->state_standby.enabled);
909 }
910 static DEVICE_ATTR_RO(suspend_standby_state);
911 
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)912 static ssize_t bypass_show(struct device *dev,
913 			   struct device_attribute *attr, char *buf)
914 {
915 	struct regulator_dev *rdev = dev_get_drvdata(dev);
916 	const char *report;
917 	bool bypass;
918 	int ret;
919 
920 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
921 
922 	if (ret != 0)
923 		report = "unknown";
924 	else if (bypass)
925 		report = "enabled";
926 	else
927 		report = "disabled";
928 
929 	return sprintf(buf, "%s\n", report);
930 }
931 static DEVICE_ATTR_RO(bypass);
932 
power_budget_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)933 static ssize_t power_budget_milliwatt_show(struct device *dev,
934 					   struct device_attribute *attr,
935 					   char *buf)
936 {
937 	struct regulator_dev *rdev = dev_get_drvdata(dev);
938 
939 	return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW);
940 }
941 static DEVICE_ATTR_RO(power_budget_milliwatt);
942 
power_requested_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)943 static ssize_t power_requested_milliwatt_show(struct device *dev,
944 					      struct device_attribute *attr,
945 					      char *buf)
946 {
947 	struct regulator_dev *rdev = dev_get_drvdata(dev);
948 
949 	return sprintf(buf, "%d\n", rdev->pw_requested_mW);
950 }
951 static DEVICE_ATTR_RO(power_requested_milliwatt);
952 
953 #define REGULATOR_ERROR_ATTR(name, bit)							\
954 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
955 				   char *buf)						\
956 	{										\
957 		int ret;								\
958 		unsigned int flags;							\
959 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
960 		ret = _regulator_get_error_flags(rdev, &flags);				\
961 		if (ret)								\
962 			return ret;							\
963 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
964 	}										\
965 	static DEVICE_ATTR_RO(name)
966 
967 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
968 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
969 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
970 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
971 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
972 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
973 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
974 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
975 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
976 
977 /* Calculate the new optimum regulator operating mode based on the new total
978  * consumer load. All locks held by caller
979  */
drms_uA_update(struct regulator_dev * rdev)980 static int drms_uA_update(struct regulator_dev *rdev)
981 {
982 	struct regulator *sibling;
983 	int current_uA = 0, output_uV, input_uV, err;
984 	unsigned int mode;
985 
986 	/*
987 	 * first check to see if we can set modes at all, otherwise just
988 	 * tell the consumer everything is OK.
989 	 */
990 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
991 		rdev_dbg(rdev, "DRMS operation not allowed\n");
992 		return 0;
993 	}
994 
995 	if (!rdev->desc->ops->get_optimum_mode &&
996 	    !rdev->desc->ops->set_load)
997 		return 0;
998 
999 	if (!rdev->desc->ops->set_mode &&
1000 	    !rdev->desc->ops->set_load)
1001 		return -EINVAL;
1002 
1003 	/* calc total requested load */
1004 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1005 		if (sibling->enable_count)
1006 			current_uA += sibling->uA_load;
1007 	}
1008 
1009 	current_uA += rdev->constraints->system_load;
1010 
1011 	if (rdev->desc->ops->set_load) {
1012 		/* set the optimum mode for our new total regulator load */
1013 		err = rdev->desc->ops->set_load(rdev, current_uA);
1014 		if (err < 0)
1015 			rdev_err(rdev, "failed to set load %d: %pe\n",
1016 				 current_uA, ERR_PTR(err));
1017 	} else {
1018 		/*
1019 		 * Unfortunately in some cases the constraints->valid_ops has
1020 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1021 		 * That's not really legit but we won't consider it a fatal
1022 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1023 		 * wasn't set.
1024 		 */
1025 		if (!rdev->constraints->valid_modes_mask) {
1026 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1027 			return 0;
1028 		}
1029 
1030 		/* get output voltage */
1031 		output_uV = regulator_get_voltage_rdev(rdev);
1032 
1033 		/*
1034 		 * Don't return an error; if regulator driver cares about
1035 		 * output_uV then it's up to the driver to validate.
1036 		 */
1037 		if (output_uV <= 0)
1038 			rdev_dbg(rdev, "invalid output voltage found\n");
1039 
1040 		/* get input voltage */
1041 		input_uV = 0;
1042 		if (rdev->supply)
1043 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1044 		if (input_uV <= 0)
1045 			input_uV = rdev->constraints->input_uV;
1046 
1047 		/*
1048 		 * Don't return an error; if regulator driver cares about
1049 		 * input_uV then it's up to the driver to validate.
1050 		 */
1051 		if (input_uV <= 0)
1052 			rdev_dbg(rdev, "invalid input voltage found\n");
1053 
1054 		/* now get the optimum mode for our new total regulator load */
1055 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1056 							 output_uV, current_uA);
1057 
1058 		/* check the new mode is allowed */
1059 		err = regulator_mode_constrain(rdev, &mode);
1060 		if (err < 0) {
1061 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1062 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1063 			return err;
1064 		}
1065 
1066 		err = rdev->desc->ops->set_mode(rdev, mode);
1067 		if (err < 0)
1068 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1069 				 mode, ERR_PTR(err));
1070 	}
1071 
1072 	return err;
1073 }
1074 
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1075 static int __suspend_set_state(struct regulator_dev *rdev,
1076 			       const struct regulator_state *rstate)
1077 {
1078 	int ret = 0;
1079 
1080 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1081 		rdev->desc->ops->set_suspend_enable)
1082 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1083 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1084 		rdev->desc->ops->set_suspend_disable)
1085 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1086 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1087 		ret = 0;
1088 
1089 	if (ret < 0) {
1090 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1091 		return ret;
1092 	}
1093 
1094 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1095 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1096 		if (ret < 0) {
1097 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1098 			return ret;
1099 		}
1100 	}
1101 
1102 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1103 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1104 		if (ret < 0) {
1105 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	return ret;
1111 }
1112 
suspend_set_initial_state(struct regulator_dev * rdev)1113 static int suspend_set_initial_state(struct regulator_dev *rdev)
1114 {
1115 	const struct regulator_state *rstate;
1116 
1117 	rstate = regulator_get_suspend_state_check(rdev,
1118 			rdev->constraints->initial_state);
1119 	if (!rstate)
1120 		return 0;
1121 
1122 	return __suspend_set_state(rdev, rstate);
1123 }
1124 
1125 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1126 static void print_constraints_debug(struct regulator_dev *rdev)
1127 {
1128 	struct regulation_constraints *constraints = rdev->constraints;
1129 	char buf[160] = "";
1130 	size_t len = sizeof(buf) - 1;
1131 	int count = 0;
1132 	int ret;
1133 
1134 	if (constraints->min_uV && constraints->max_uV) {
1135 		if (constraints->min_uV == constraints->max_uV)
1136 			count += scnprintf(buf + count, len - count, "%d mV ",
1137 					   constraints->min_uV / 1000);
1138 		else
1139 			count += scnprintf(buf + count, len - count,
1140 					   "%d <--> %d mV ",
1141 					   constraints->min_uV / 1000,
1142 					   constraints->max_uV / 1000);
1143 	}
1144 
1145 	if (!constraints->min_uV ||
1146 	    constraints->min_uV != constraints->max_uV) {
1147 		ret = regulator_get_voltage_rdev(rdev);
1148 		if (ret > 0)
1149 			count += scnprintf(buf + count, len - count,
1150 					   "at %d mV ", ret / 1000);
1151 	}
1152 
1153 	if (constraints->uV_offset)
1154 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1155 				   constraints->uV_offset / 1000);
1156 
1157 	if (constraints->min_uA && constraints->max_uA) {
1158 		if (constraints->min_uA == constraints->max_uA)
1159 			count += scnprintf(buf + count, len - count, "%d mA ",
1160 					   constraints->min_uA / 1000);
1161 		else
1162 			count += scnprintf(buf + count, len - count,
1163 					   "%d <--> %d mA ",
1164 					   constraints->min_uA / 1000,
1165 					   constraints->max_uA / 1000);
1166 	}
1167 
1168 	if (!constraints->min_uA ||
1169 	    constraints->min_uA != constraints->max_uA) {
1170 		ret = _regulator_get_current_limit(rdev);
1171 		if (ret > 0)
1172 			count += scnprintf(buf + count, len - count,
1173 					   "at %d mA ", ret / 1000);
1174 	}
1175 
1176 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1177 		count += scnprintf(buf + count, len - count, "fast ");
1178 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1179 		count += scnprintf(buf + count, len - count, "normal ");
1180 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1181 		count += scnprintf(buf + count, len - count, "idle ");
1182 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1183 		count += scnprintf(buf + count, len - count, "standby ");
1184 
1185 	if (constraints->pw_budget_mW)
1186 		count += scnprintf(buf + count, len - count, "%d mW budget",
1187 				   constraints->pw_budget_mW);
1188 
1189 	if (!count)
1190 		count = scnprintf(buf, len, "no parameters");
1191 	else
1192 		--count;
1193 
1194 	count += scnprintf(buf + count, len - count, ", %s",
1195 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1196 
1197 	rdev_dbg(rdev, "%s\n", buf);
1198 }
1199 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1200 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1201 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1202 
print_constraints(struct regulator_dev * rdev)1203 static void print_constraints(struct regulator_dev *rdev)
1204 {
1205 	struct regulation_constraints *constraints = rdev->constraints;
1206 
1207 	print_constraints_debug(rdev);
1208 
1209 	if ((constraints->min_uV != constraints->max_uV) &&
1210 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1211 		rdev_warn(rdev,
1212 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1213 }
1214 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1215 static int machine_constraints_voltage(struct regulator_dev *rdev,
1216 	struct regulation_constraints *constraints)
1217 {
1218 	const struct regulator_ops *ops = rdev->desc->ops;
1219 	int ret;
1220 
1221 	/* do we need to apply the constraint voltage */
1222 	if (rdev->constraints->apply_uV &&
1223 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1224 		int target_min, target_max;
1225 		int current_uV = regulator_get_voltage_rdev(rdev);
1226 
1227 		if (current_uV == -ENOTRECOVERABLE) {
1228 			/* This regulator can't be read and must be initialized */
1229 			rdev_info(rdev, "Setting %d-%duV\n",
1230 				  rdev->constraints->min_uV,
1231 				  rdev->constraints->max_uV);
1232 			_regulator_do_set_voltage(rdev,
1233 						  rdev->constraints->min_uV,
1234 						  rdev->constraints->max_uV);
1235 			current_uV = regulator_get_voltage_rdev(rdev);
1236 		}
1237 
1238 		if (current_uV < 0) {
1239 			if (current_uV != -EPROBE_DEFER)
1240 				rdev_err(rdev,
1241 					 "failed to get the current voltage: %pe\n",
1242 					 ERR_PTR(current_uV));
1243 			return current_uV;
1244 		}
1245 
1246 		/*
1247 		 * If we're below the minimum voltage move up to the
1248 		 * minimum voltage, if we're above the maximum voltage
1249 		 * then move down to the maximum.
1250 		 */
1251 		target_min = current_uV;
1252 		target_max = current_uV;
1253 
1254 		if (current_uV < rdev->constraints->min_uV) {
1255 			target_min = rdev->constraints->min_uV;
1256 			target_max = rdev->constraints->min_uV;
1257 		}
1258 
1259 		if (current_uV > rdev->constraints->max_uV) {
1260 			target_min = rdev->constraints->max_uV;
1261 			target_max = rdev->constraints->max_uV;
1262 		}
1263 
1264 		if (target_min != current_uV || target_max != current_uV) {
1265 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1266 				  current_uV, target_min, target_max);
1267 			ret = _regulator_do_set_voltage(
1268 				rdev, target_min, target_max);
1269 			if (ret < 0) {
1270 				rdev_err(rdev,
1271 					"failed to apply %d-%duV constraint: %pe\n",
1272 					target_min, target_max, ERR_PTR(ret));
1273 				return ret;
1274 			}
1275 		}
1276 	}
1277 
1278 	/* constrain machine-level voltage specs to fit
1279 	 * the actual range supported by this regulator.
1280 	 */
1281 	if (ops->list_voltage && rdev->desc->n_voltages) {
1282 		int	count = rdev->desc->n_voltages;
1283 		int	i;
1284 		int	min_uV = INT_MAX;
1285 		int	max_uV = INT_MIN;
1286 		int	cmin = constraints->min_uV;
1287 		int	cmax = constraints->max_uV;
1288 
1289 		/* it's safe to autoconfigure fixed-voltage supplies
1290 		 * and the constraints are used by list_voltage.
1291 		 */
1292 		if (count == 1 && !cmin) {
1293 			cmin = 1;
1294 			cmax = INT_MAX;
1295 			constraints->min_uV = cmin;
1296 			constraints->max_uV = cmax;
1297 		}
1298 
1299 		/* voltage constraints are optional */
1300 		if ((cmin == 0) && (cmax == 0))
1301 			return 0;
1302 
1303 		/* else require explicit machine-level constraints */
1304 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1305 			rdev_err(rdev, "invalid voltage constraints\n");
1306 			return -EINVAL;
1307 		}
1308 
1309 		/* no need to loop voltages if range is continuous */
1310 		if (rdev->desc->continuous_voltage_range)
1311 			return 0;
1312 
1313 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1314 		for (i = 0; i < count; i++) {
1315 			int	value;
1316 
1317 			value = ops->list_voltage(rdev, i);
1318 			if (value <= 0)
1319 				continue;
1320 
1321 			/* maybe adjust [min_uV..max_uV] */
1322 			if (value >= cmin && value < min_uV)
1323 				min_uV = value;
1324 			if (value <= cmax && value > max_uV)
1325 				max_uV = value;
1326 		}
1327 
1328 		/* final: [min_uV..max_uV] valid iff constraints valid */
1329 		if (max_uV < min_uV) {
1330 			rdev_err(rdev,
1331 				 "unsupportable voltage constraints %u-%uuV\n",
1332 				 min_uV, max_uV);
1333 			return -EINVAL;
1334 		}
1335 
1336 		/* use regulator's subset of machine constraints */
1337 		if (constraints->min_uV < min_uV) {
1338 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1339 				 constraints->min_uV, min_uV);
1340 			constraints->min_uV = min_uV;
1341 		}
1342 		if (constraints->max_uV > max_uV) {
1343 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1344 				 constraints->max_uV, max_uV);
1345 			constraints->max_uV = max_uV;
1346 		}
1347 	}
1348 
1349 	return 0;
1350 }
1351 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1352 static int machine_constraints_current(struct regulator_dev *rdev,
1353 	struct regulation_constraints *constraints)
1354 {
1355 	const struct regulator_ops *ops = rdev->desc->ops;
1356 	int ret;
1357 
1358 	if (!constraints->min_uA && !constraints->max_uA)
1359 		return 0;
1360 
1361 	if (constraints->min_uA > constraints->max_uA) {
1362 		rdev_err(rdev, "Invalid current constraints\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	if (!ops->set_current_limit || !ops->get_current_limit) {
1367 		rdev_warn(rdev, "Operation of current configuration missing\n");
1368 		return 0;
1369 	}
1370 
1371 	/* Set regulator current in constraints range */
1372 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1373 			constraints->max_uA);
1374 	if (ret < 0) {
1375 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1376 		return ret;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 static int _regulator_do_enable(struct regulator_dev *rdev);
1383 
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1384 static int notif_set_limit(struct regulator_dev *rdev,
1385 			   int (*set)(struct regulator_dev *, int, int, bool),
1386 			   int limit, int severity)
1387 {
1388 	bool enable;
1389 
1390 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1391 		enable = false;
1392 		limit = 0;
1393 	} else {
1394 		enable = true;
1395 	}
1396 
1397 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1398 		limit = 0;
1399 
1400 	return set(rdev, limit, severity, enable);
1401 }
1402 
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1403 static int handle_notify_limits(struct regulator_dev *rdev,
1404 			int (*set)(struct regulator_dev *, int, int, bool),
1405 			struct notification_limit *limits)
1406 {
1407 	int ret = 0;
1408 
1409 	if (!set)
1410 		return -EOPNOTSUPP;
1411 
1412 	if (limits->prot)
1413 		ret = notif_set_limit(rdev, set, limits->prot,
1414 				      REGULATOR_SEVERITY_PROT);
1415 	if (ret)
1416 		return ret;
1417 
1418 	if (limits->err)
1419 		ret = notif_set_limit(rdev, set, limits->err,
1420 				      REGULATOR_SEVERITY_ERR);
1421 	if (ret)
1422 		return ret;
1423 
1424 	if (limits->warn)
1425 		ret = notif_set_limit(rdev, set, limits->warn,
1426 				      REGULATOR_SEVERITY_WARN);
1427 
1428 	return ret;
1429 }
1430 /**
1431  * set_machine_constraints - sets regulator constraints
1432  * @rdev: regulator source
1433  *
1434  * Allows platform initialisation code to define and constrain
1435  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1436  * Constraints *must* be set by platform code in order for some
1437  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1438  * set_mode.
1439  *
1440  * Return: 0 on success or a negative error number on failure.
1441  */
set_machine_constraints(struct regulator_dev * rdev)1442 static int set_machine_constraints(struct regulator_dev *rdev)
1443 {
1444 	int ret = 0;
1445 	const struct regulator_ops *ops = rdev->desc->ops;
1446 
1447 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1448 	if (ret != 0)
1449 		return ret;
1450 
1451 	ret = machine_constraints_current(rdev, rdev->constraints);
1452 	if (ret != 0)
1453 		return ret;
1454 
1455 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1456 		ret = ops->set_input_current_limit(rdev,
1457 						   rdev->constraints->ilim_uA);
1458 		if (ret < 0) {
1459 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1460 			return ret;
1461 		}
1462 	}
1463 
1464 	/* do we need to setup our suspend state */
1465 	if (rdev->constraints->initial_state) {
1466 		ret = suspend_set_initial_state(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	if (rdev->constraints->initial_mode) {
1474 		if (!ops->set_mode) {
1475 			rdev_err(rdev, "no set_mode operation\n");
1476 			return -EINVAL;
1477 		}
1478 
1479 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1480 		if (ret < 0) {
1481 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1482 			return ret;
1483 		}
1484 	} else if (rdev->constraints->system_load) {
1485 		/*
1486 		 * We'll only apply the initial system load if an
1487 		 * initial mode wasn't specified.
1488 		 */
1489 		drms_uA_update(rdev);
1490 	}
1491 
1492 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1493 		&& ops->set_ramp_delay) {
1494 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1495 		if (ret < 0) {
1496 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1497 			return ret;
1498 		}
1499 	}
1500 
1501 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1502 		ret = ops->set_pull_down(rdev);
1503 		if (ret < 0) {
1504 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1505 			return ret;
1506 		}
1507 	}
1508 
1509 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1510 		ret = ops->set_soft_start(rdev);
1511 		if (ret < 0) {
1512 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1513 			return ret;
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * Existing logic does not warn if over_current_protection is given as
1519 	 * a constraint but driver does not support that. I think we should
1520 	 * warn about this type of issues as it is possible someone changes
1521 	 * PMIC on board to another type - and the another PMIC's driver does
1522 	 * not support setting protection. Board composer may happily believe
1523 	 * the DT limits are respected - especially if the new PMIC HW also
1524 	 * supports protection but the driver does not. I won't change the logic
1525 	 * without hearing more experienced opinion on this though.
1526 	 *
1527 	 * If warning is seen as a good idea then we can merge handling the
1528 	 * over-curret protection and detection and get rid of this special
1529 	 * handling.
1530 	 */
1531 	if (rdev->constraints->over_current_protection
1532 		&& ops->set_over_current_protection) {
1533 		int lim = rdev->constraints->over_curr_limits.prot;
1534 
1535 		ret = ops->set_over_current_protection(rdev, lim,
1536 						       REGULATOR_SEVERITY_PROT,
1537 						       true);
1538 		if (ret < 0) {
1539 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1540 				 ERR_PTR(ret));
1541 			return ret;
1542 		}
1543 	}
1544 
1545 	if (rdev->constraints->over_current_detection)
1546 		ret = handle_notify_limits(rdev,
1547 					   ops->set_over_current_protection,
1548 					   &rdev->constraints->over_curr_limits);
1549 	if (ret) {
1550 		if (ret != -EOPNOTSUPP) {
1551 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1552 				 ERR_PTR(ret));
1553 			return ret;
1554 		}
1555 		rdev_warn(rdev,
1556 			  "IC does not support requested over-current limits\n");
1557 	}
1558 
1559 	if (rdev->constraints->over_voltage_detection)
1560 		ret = handle_notify_limits(rdev,
1561 					   ops->set_over_voltage_protection,
1562 					   &rdev->constraints->over_voltage_limits);
1563 	if (ret) {
1564 		if (ret != -EOPNOTSUPP) {
1565 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1566 				 ERR_PTR(ret));
1567 			return ret;
1568 		}
1569 		rdev_warn(rdev,
1570 			  "IC does not support requested over voltage limits\n");
1571 	}
1572 
1573 	if (rdev->constraints->under_voltage_detection)
1574 		ret = handle_notify_limits(rdev,
1575 					   ops->set_under_voltage_protection,
1576 					   &rdev->constraints->under_voltage_limits);
1577 	if (ret) {
1578 		if (ret != -EOPNOTSUPP) {
1579 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1580 				 ERR_PTR(ret));
1581 			return ret;
1582 		}
1583 		rdev_warn(rdev,
1584 			  "IC does not support requested under voltage limits\n");
1585 	}
1586 
1587 	if (rdev->constraints->over_temp_detection)
1588 		ret = handle_notify_limits(rdev,
1589 					   ops->set_thermal_protection,
1590 					   &rdev->constraints->temp_limits);
1591 	if (ret) {
1592 		if (ret != -EOPNOTSUPP) {
1593 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1594 				 ERR_PTR(ret));
1595 			return ret;
1596 		}
1597 		rdev_warn(rdev,
1598 			  "IC does not support requested temperature limits\n");
1599 	}
1600 
1601 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1602 		bool ad_state = rdev->constraints->active_discharge ==
1603 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE;
1604 
1605 		ret = ops->set_active_discharge(rdev, ad_state);
1606 		if (ret < 0) {
1607 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1608 			return ret;
1609 		}
1610 	}
1611 
1612 	/*
1613 	 * If there is no mechanism for controlling the regulator then
1614 	 * flag it as always_on so we don't end up duplicating checks
1615 	 * for this so much.  Note that we could control the state of
1616 	 * a supply to control the output on a regulator that has no
1617 	 * direct control.
1618 	 */
1619 	if (!rdev->ena_pin && !ops->enable) {
1620 		if (rdev->supply_name && !rdev->supply)
1621 			return -EPROBE_DEFER;
1622 
1623 		if (rdev->supply)
1624 			rdev->constraints->always_on =
1625 				rdev->supply->rdev->constraints->always_on;
1626 		else
1627 			rdev->constraints->always_on = true;
1628 	}
1629 
1630 	/* If the constraints say the regulator should be on at this point
1631 	 * and we have control then make sure it is enabled.
1632 	 */
1633 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1634 		bool supply_enabled = false;
1635 
1636 		/* If we want to enable this regulator, make sure that we know
1637 		 * the supplying regulator.
1638 		 */
1639 		if (rdev->supply_name && !rdev->supply)
1640 			return -EPROBE_DEFER;
1641 
1642 		/* If supplying regulator has already been enabled,
1643 		 * it's not intended to have use_count increment
1644 		 * when rdev is only boot-on.
1645 		 */
1646 		if (rdev->supply &&
1647 		    (rdev->constraints->always_on ||
1648 		     !regulator_is_enabled(rdev->supply))) {
1649 			ret = regulator_enable(rdev->supply);
1650 			if (ret < 0) {
1651 				_regulator_put(rdev->supply);
1652 				rdev->supply = NULL;
1653 				return ret;
1654 			}
1655 			supply_enabled = true;
1656 		}
1657 
1658 		ret = _regulator_do_enable(rdev);
1659 		if (ret < 0 && ret != -EINVAL) {
1660 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1661 			if (supply_enabled)
1662 				regulator_disable(rdev->supply);
1663 			return ret;
1664 		}
1665 
1666 		if (rdev->constraints->always_on)
1667 			rdev->use_count++;
1668 	} else if (rdev->desc->off_on_delay) {
1669 		rdev->last_off = ktime_get();
1670 	}
1671 
1672 	if (!rdev->constraints->pw_budget_mW)
1673 		rdev->constraints->pw_budget_mW = INT_MAX;
1674 
1675 	print_constraints(rdev);
1676 	return 0;
1677 }
1678 
1679 /**
1680  * regulator_event_work_fn - process a deferred regulator event
1681  * @work: work_struct queued by the notifier
1682  *
1683  * Calls the regulator's notifier chain in process context while holding
1684  * the rdev lock, then releases the device reference.
1685  */
regulator_event_work_fn(struct work_struct * work)1686 static void regulator_event_work_fn(struct work_struct *work)
1687 {
1688 	struct regulator_event_work *rew =
1689 		container_of(work, struct regulator_event_work, work);
1690 	struct regulator_dev *rdev = rew->rdev;
1691 	int ret;
1692 
1693 	regulator_lock(rdev);
1694 	ret = regulator_notifier_call_chain(rdev, rew->event, NULL);
1695 	regulator_unlock(rdev);
1696 	if (ret == NOTIFY_BAD)
1697 		dev_err(rdev_get_dev(rdev), "failed to forward regulator event\n");
1698 
1699 	put_device(rdev_get_dev(rdev));
1700 	kfree(rew);
1701 }
1702 
1703 /**
1704  * regulator_event_forward_notifier - notifier callback for supply events
1705  * @nb:    notifier block embedded in the regulator
1706  * @event: regulator event code
1707  * @data:  unused
1708  *
1709  * Packages the event into a work item and schedules it in process context.
1710  * Takes a reference on @rdev->dev to pin the regulator until the work
1711  * completes (see put_device() in the worker).
1712  *
1713  * Return: NOTIFY_OK on success, NOTIFY_DONE for events that are not forwarded.
1714  */
regulator_event_forward_notifier(struct notifier_block * nb,unsigned long event,void __always_unused * data)1715 static int regulator_event_forward_notifier(struct notifier_block *nb,
1716 					    unsigned long event,
1717 					    void __always_unused *data)
1718 {
1719 	struct regulator_dev *rdev = container_of(nb, struct regulator_dev,
1720 						  supply_fwd_nb);
1721 	struct regulator_event_work *rew;
1722 
1723 	switch (event) {
1724 	case REGULATOR_EVENT_UNDER_VOLTAGE:
1725 		break;
1726 	default:
1727 		/* Only forward allowed events downstream. */
1728 		return NOTIFY_DONE;
1729 	}
1730 
1731 	rew = kmalloc(sizeof(*rew), GFP_ATOMIC);
1732 	if (!rew)
1733 		return NOTIFY_DONE;
1734 
1735 	get_device(rdev_get_dev(rdev));
1736 	rew->rdev = rdev;
1737 	rew->event = event;
1738 	INIT_WORK(&rew->work, regulator_event_work_fn);
1739 
1740 	queue_work(system_highpri_wq, &rew->work);
1741 
1742 	return NOTIFY_OK;
1743 }
1744 
1745 /**
1746  * register_regulator_event_forwarding - enable supply event forwarding
1747  * @rdev: regulator device
1748  *
1749  * Registers a notifier on the regulator's supply so that supply events
1750  * are forwarded to the consumer regulator via the deferred work handler.
1751  *
1752  * Return: 0 on success, -EALREADY if already enabled, or a negative error code.
1753  */
register_regulator_event_forwarding(struct regulator_dev * rdev)1754 static int register_regulator_event_forwarding(struct regulator_dev *rdev)
1755 {
1756 	int ret;
1757 
1758 	if (!rdev->supply)
1759 		return 0; /* top-level regulator: nothing to forward */
1760 
1761 	if (rdev->supply_fwd_nb.notifier_call)
1762 		return -EALREADY;
1763 
1764 	rdev->supply_fwd_nb.notifier_call = regulator_event_forward_notifier;
1765 
1766 	ret = regulator_register_notifier(rdev->supply, &rdev->supply_fwd_nb);
1767 	if (ret) {
1768 		dev_err(&rdev->dev, "failed to register supply notifier: %pe\n",
1769 			ERR_PTR(ret));
1770 		rdev->supply_fwd_nb.notifier_call = NULL;
1771 		return ret;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 /**
1778  * set_supply - set regulator supply regulator
1779  * @rdev: regulator (locked)
1780  * @supply_rdev: supply regulator (locked))
1781  *
1782  * Called by platform initialisation code to set the supply regulator for this
1783  * regulator. This ensures that a regulators supply will also be enabled by the
1784  * core if it's child is enabled.
1785  *
1786  * Return: 0 on success or a negative error number on failure.
1787  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1788 static int set_supply(struct regulator_dev *rdev,
1789 		      struct regulator_dev *supply_rdev)
1790 {
1791 	int err;
1792 
1793 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1794 
1795 	if (!try_module_get(supply_rdev->owner))
1796 		return -ENODEV;
1797 
1798 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1799 	if (rdev->supply == NULL) {
1800 		module_put(supply_rdev->owner);
1801 		err = -ENOMEM;
1802 		return err;
1803 	}
1804 	supply_rdev->open_count++;
1805 
1806 	return 0;
1807 }
1808 
1809 /**
1810  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1811  * @rdev:         regulator source
1812  * @consumer_dev_name: dev_name() string for device supply applies to
1813  * @supply:       symbolic name for supply
1814  *
1815  * Allows platform initialisation code to map physical regulator
1816  * sources to symbolic names for supplies for use by devices.  Devices
1817  * should use these symbolic names to request regulators, avoiding the
1818  * need to provide board-specific regulator names as platform data.
1819  *
1820  * Return: 0 on success or a negative error number on failure.
1821  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1822 static int set_consumer_device_supply(struct regulator_dev *rdev,
1823 				      const char *consumer_dev_name,
1824 				      const char *supply)
1825 {
1826 	struct regulator_map *node, *new_node;
1827 	int has_dev;
1828 
1829 	if (supply == NULL)
1830 		return -EINVAL;
1831 
1832 	if (consumer_dev_name != NULL)
1833 		has_dev = 1;
1834 	else
1835 		has_dev = 0;
1836 
1837 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1838 	if (new_node == NULL)
1839 		return -ENOMEM;
1840 
1841 	new_node->regulator = rdev;
1842 	new_node->supply = supply;
1843 
1844 	if (has_dev) {
1845 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1846 		if (new_node->dev_name == NULL) {
1847 			kfree(new_node);
1848 			return -ENOMEM;
1849 		}
1850 	}
1851 
1852 	mutex_lock(&regulator_list_mutex);
1853 	list_for_each_entry(node, &regulator_map_list, list) {
1854 		if (node->dev_name && consumer_dev_name) {
1855 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1856 				continue;
1857 		} else if (node->dev_name || consumer_dev_name) {
1858 			continue;
1859 		}
1860 
1861 		if (strcmp(node->supply, supply) != 0)
1862 			continue;
1863 
1864 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1865 			 consumer_dev_name,
1866 			 dev_name(&node->regulator->dev),
1867 			 node->regulator->desc->name,
1868 			 supply,
1869 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1870 		goto fail;
1871 	}
1872 
1873 	list_add(&new_node->list, &regulator_map_list);
1874 	mutex_unlock(&regulator_list_mutex);
1875 
1876 	return 0;
1877 
1878 fail:
1879 	mutex_unlock(&regulator_list_mutex);
1880 	kfree(new_node->dev_name);
1881 	kfree(new_node);
1882 	return -EBUSY;
1883 }
1884 
unset_regulator_supplies(struct regulator_dev * rdev)1885 static void unset_regulator_supplies(struct regulator_dev *rdev)
1886 {
1887 	struct regulator_map *node, *n;
1888 
1889 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1890 		if (rdev == node->regulator) {
1891 			list_del(&node->list);
1892 			kfree(node->dev_name);
1893 			kfree(node);
1894 		}
1895 	}
1896 }
1897 
1898 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1899 static ssize_t constraint_flags_read_file(struct file *file,
1900 					  char __user *user_buf,
1901 					  size_t count, loff_t *ppos)
1902 {
1903 	const struct regulator *regulator = file->private_data;
1904 	const struct regulation_constraints *c = regulator->rdev->constraints;
1905 	char *buf;
1906 	ssize_t ret;
1907 
1908 	if (!c)
1909 		return 0;
1910 
1911 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1912 	if (!buf)
1913 		return -ENOMEM;
1914 
1915 	ret = snprintf(buf, PAGE_SIZE,
1916 			"always_on: %u\n"
1917 			"boot_on: %u\n"
1918 			"apply_uV: %u\n"
1919 			"ramp_disable: %u\n"
1920 			"soft_start: %u\n"
1921 			"pull_down: %u\n"
1922 			"over_current_protection: %u\n",
1923 			c->always_on,
1924 			c->boot_on,
1925 			c->apply_uV,
1926 			c->ramp_disable,
1927 			c->soft_start,
1928 			c->pull_down,
1929 			c->over_current_protection);
1930 
1931 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1932 	kfree(buf);
1933 
1934 	return ret;
1935 }
1936 
1937 #endif
1938 
1939 static const struct file_operations constraint_flags_fops = {
1940 #ifdef CONFIG_DEBUG_FS
1941 	.open = simple_open,
1942 	.read = constraint_flags_read_file,
1943 	.llseek = default_llseek,
1944 #endif
1945 };
1946 
1947 #define REG_STR_SIZE	64
1948 
link_and_create_debugfs(struct regulator * regulator,struct regulator_dev * rdev,struct device * dev)1949 static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev,
1950 				    struct device *dev)
1951 {
1952 	int err = 0;
1953 
1954 	if (dev) {
1955 		regulator->dev = dev;
1956 
1957 		/* Add a link to the device sysfs entry */
1958 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1959 					       regulator->supply_name);
1960 		if (err) {
1961 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1962 				 dev->kobj.name, ERR_PTR(err));
1963 			/* non-fatal */
1964 		}
1965 	}
1966 
1967 	if (err != -EEXIST) {
1968 		regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs);
1969 		if (IS_ERR(regulator->debugfs)) {
1970 			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1971 			regulator->debugfs = NULL;
1972 		}
1973 	}
1974 
1975 	if (regulator->debugfs) {
1976 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1977 				   &regulator->uA_load);
1978 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1979 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1980 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1981 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1982 		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1983 				    regulator, &constraint_flags_fops);
1984 	}
1985 }
1986 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1987 static struct regulator *create_regulator(struct regulator_dev *rdev,
1988 					  struct device *dev,
1989 					  const char *supply_name)
1990 {
1991 	struct regulator *regulator;
1992 
1993 	lockdep_assert_held_once(&rdev->mutex.base);
1994 
1995 	if (dev) {
1996 		char buf[REG_STR_SIZE];
1997 		int size;
1998 
1999 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
2000 				dev->kobj.name, supply_name);
2001 		if (size >= REG_STR_SIZE)
2002 			return NULL;
2003 
2004 		supply_name = kstrdup(buf, GFP_KERNEL);
2005 		if (supply_name == NULL)
2006 			return NULL;
2007 	} else {
2008 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
2009 		if (supply_name == NULL)
2010 			return NULL;
2011 	}
2012 
2013 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
2014 	if (regulator == NULL) {
2015 		kfree_const(supply_name);
2016 		return NULL;
2017 	}
2018 
2019 	regulator->rdev = rdev;
2020 	regulator->supply_name = supply_name;
2021 
2022 	list_add(&regulator->list, &rdev->consumer_list);
2023 
2024 	/*
2025 	 * Check now if the regulator is an always on regulator - if
2026 	 * it is then we don't need to do nearly so much work for
2027 	 * enable/disable calls.
2028 	 */
2029 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
2030 	    _regulator_is_enabled(rdev))
2031 		regulator->always_on = true;
2032 
2033 	return regulator;
2034 }
2035 
_regulator_get_enable_time(struct regulator_dev * rdev)2036 static int _regulator_get_enable_time(struct regulator_dev *rdev)
2037 {
2038 	if (rdev->constraints && rdev->constraints->enable_time)
2039 		return rdev->constraints->enable_time;
2040 	if (rdev->desc->ops->enable_time)
2041 		return rdev->desc->ops->enable_time(rdev);
2042 	return rdev->desc->enable_time;
2043 }
2044 
regulator_find_supply_alias(struct device * dev,const char * supply)2045 static struct regulator_supply_alias *regulator_find_supply_alias(
2046 		struct device *dev, const char *supply)
2047 {
2048 	struct regulator_supply_alias *map;
2049 
2050 	list_for_each_entry(map, &regulator_supply_alias_list, list)
2051 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
2052 			return map;
2053 
2054 	return NULL;
2055 }
2056 
regulator_supply_alias(struct device ** dev,const char ** supply)2057 static void regulator_supply_alias(struct device **dev, const char **supply)
2058 {
2059 	struct regulator_supply_alias *map;
2060 
2061 	mutex_lock(&regulator_list_mutex);
2062 	map = regulator_find_supply_alias(*dev, *supply);
2063 	if (map) {
2064 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
2065 				*supply, map->alias_supply,
2066 				dev_name(map->alias_dev));
2067 		*dev = map->alias_dev;
2068 		*supply = map->alias_supply;
2069 	}
2070 	mutex_unlock(&regulator_list_mutex);
2071 }
2072 
regulator_match(struct device * dev,const void * data)2073 static int regulator_match(struct device *dev, const void *data)
2074 {
2075 	struct regulator_dev *r = dev_to_rdev(dev);
2076 
2077 	return strcmp(rdev_get_name(r), data) == 0;
2078 }
2079 
regulator_lookup_by_name(const char * name)2080 static struct regulator_dev *regulator_lookup_by_name(const char *name)
2081 {
2082 	struct device *dev;
2083 
2084 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
2085 
2086 	return dev ? dev_to_rdev(dev) : NULL;
2087 }
2088 
regulator_dt_lookup(struct device * dev,const char * supply)2089 static struct regulator_dev *regulator_dt_lookup(struct device *dev,
2090 						 const char *supply)
2091 {
2092 	struct regulator_dev *r = NULL;
2093 
2094 	if (dev_of_node(dev)) {
2095 		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
2096 		if (PTR_ERR(r) == -ENODEV)
2097 			r = NULL;
2098 	}
2099 
2100 	return r;
2101 }
2102 
2103 /**
2104  * regulator_dev_lookup - lookup a regulator device.
2105  * @dev: device for regulator "consumer".
2106  * @supply: Supply name or regulator ID.
2107  *
2108  * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
2109  *
2110  * If successful, returns a struct regulator_dev that corresponds to the name
2111  * @supply and with the embedded struct device refcount incremented by one.
2112  * The refcount must be dropped by calling put_device().
2113  * On failure one of the following ERR_PTR() encoded values is returned:
2114  * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
2115  * in the future.
2116  */
regulator_dev_lookup(struct device * dev,const char * supply)2117 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2118 						  const char *supply)
2119 {
2120 	struct regulator_dev *r = NULL;
2121 	struct regulator_map *map;
2122 	const char *devname = NULL;
2123 
2124 	regulator_supply_alias(&dev, &supply);
2125 
2126 	/* first do a dt based lookup */
2127 	r = regulator_dt_lookup(dev, supply);
2128 	if (r)
2129 		return r;
2130 
2131 	/* if not found, try doing it non-dt way */
2132 	if (dev)
2133 		devname = dev_name(dev);
2134 
2135 	mutex_lock(&regulator_list_mutex);
2136 	list_for_each_entry(map, &regulator_map_list, list) {
2137 		/* If the mapping has a device set up it must match */
2138 		if (map->dev_name &&
2139 		    (!devname || strcmp(map->dev_name, devname)))
2140 			continue;
2141 
2142 		if (strcmp(map->supply, supply) == 0 &&
2143 		    get_device(&map->regulator->dev)) {
2144 			r = map->regulator;
2145 			break;
2146 		}
2147 	}
2148 	mutex_unlock(&regulator_list_mutex);
2149 
2150 	if (r)
2151 		return r;
2152 
2153 	r = regulator_lookup_by_name(supply);
2154 	if (r)
2155 		return r;
2156 
2157 	return ERR_PTR(-ENODEV);
2158 }
2159 
regulator_resolve_supply(struct regulator_dev * rdev)2160 static int regulator_resolve_supply(struct regulator_dev *rdev)
2161 {
2162 	struct regulator_dev *r;
2163 	struct device *dev = rdev->dev.parent;
2164 	struct ww_acquire_ctx ww_ctx;
2165 	int ret = 0;
2166 
2167 	/* No supply to resolve? */
2168 	if (!rdev->supply_name)
2169 		return 0;
2170 
2171 	/* Supply already resolved? (fast-path without locking contention) */
2172 	if (rdev->supply)
2173 		return 0;
2174 
2175 	/* first do a dt based lookup on the node described in the virtual
2176 	 * device.
2177 	 */
2178 	r = regulator_dt_lookup(&rdev->dev, rdev->supply_name);
2179 
2180 	/* If regulator not found use usual search path in the parent
2181 	 * device.
2182 	 */
2183 	if (!r)
2184 		r = regulator_dev_lookup(dev, rdev->supply_name);
2185 
2186 	if (IS_ERR(r)) {
2187 		ret = PTR_ERR(r);
2188 
2189 		/* Did the lookup explicitly defer for us? */
2190 		if (ret == -EPROBE_DEFER)
2191 			goto out;
2192 
2193 		if (have_full_constraints()) {
2194 			r = dummy_regulator_rdev;
2195 			if (!r) {
2196 				ret = -EPROBE_DEFER;
2197 				goto out;
2198 			}
2199 			get_device(&r->dev);
2200 		} else {
2201 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2202 				rdev->supply_name, rdev->desc->name);
2203 			ret = -EPROBE_DEFER;
2204 			goto out;
2205 		}
2206 	}
2207 
2208 	if (r == rdev) {
2209 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2210 			rdev->desc->name, rdev->supply_name);
2211 		if (!have_full_constraints()) {
2212 			ret = -EINVAL;
2213 			goto out;
2214 		}
2215 		r = dummy_regulator_rdev;
2216 		if (!r) {
2217 			ret = -EPROBE_DEFER;
2218 			goto out;
2219 		}
2220 		get_device(&r->dev);
2221 	}
2222 
2223 	/*
2224 	 * If the supply's parent device is not the same as the
2225 	 * regulator's parent device, then ensure the parent device
2226 	 * is bound before we resolve the supply, in case the parent
2227 	 * device get probe deferred and unregisters the supply.
2228 	 */
2229 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2230 		if (!device_is_bound(r->dev.parent)) {
2231 			put_device(&r->dev);
2232 			ret = -EPROBE_DEFER;
2233 			goto out;
2234 		}
2235 	}
2236 
2237 	/* Recursively resolve the supply of the supply */
2238 	ret = regulator_resolve_supply(r);
2239 	if (ret < 0) {
2240 		put_device(&r->dev);
2241 		goto out;
2242 	}
2243 
2244 	/*
2245 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2246 	 * between rdev->supply null check and setting rdev->supply in
2247 	 * set_supply() from concurrent tasks.
2248 	 */
2249 	regulator_lock_two(rdev, r, &ww_ctx);
2250 
2251 	/* Supply just resolved by a concurrent task? */
2252 	if (rdev->supply) {
2253 		regulator_unlock_two(rdev, r, &ww_ctx);
2254 		put_device(&r->dev);
2255 		goto out;
2256 	}
2257 
2258 	ret = set_supply(rdev, r);
2259 	if (ret < 0) {
2260 		regulator_unlock_two(rdev, r, &ww_ctx);
2261 		put_device(&r->dev);
2262 		goto out;
2263 	}
2264 
2265 	/*
2266 	 * Automatically register for event forwarding from the new supply.
2267 	 * This creates the downstream propagation link for events like
2268 	 * under-voltage.
2269 	 */
2270 	ret = register_regulator_event_forwarding(rdev);
2271 	if (ret < 0)
2272 		rdev_warn(rdev, "Failed to register event forwarding: %pe\n",
2273 			  ERR_PTR(ret));
2274 
2275 	regulator_unlock_two(rdev, r, &ww_ctx);
2276 
2277 	/* rdev->supply was created in set_supply() */
2278 	link_and_create_debugfs(rdev->supply, r, &rdev->dev);
2279 
2280 	/*
2281 	 * In set_machine_constraints() we may have turned this regulator on
2282 	 * but we couldn't propagate to the supply if it hadn't been resolved
2283 	 * yet.  Do it now.
2284 	 */
2285 	if (rdev->use_count) {
2286 		ret = regulator_enable(rdev->supply);
2287 		if (ret < 0) {
2288 			_regulator_put(rdev->supply);
2289 			rdev->supply = NULL;
2290 			goto out;
2291 		}
2292 	}
2293 
2294 out:
2295 	return ret;
2296 }
2297 
2298 /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2299 int _regulator_get_common_check(struct device *dev, const char *id,
2300 				enum regulator_get_type get_type)
2301 {
2302 	if (get_type >= MAX_GET_TYPE) {
2303 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2304 		return -EINVAL;
2305 	}
2306 
2307 	if (id == NULL) {
2308 		dev_err(dev, "regulator request with no identifier\n");
2309 		return -EINVAL;
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 /**
2316  * _regulator_get_common - Common code for regulator requests
2317  * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2318  *       Its reference count is expected to have been incremented.
2319  * @dev: device used for dev_printk messages
2320  * @id: Supply name or regulator ID
2321  * @get_type: enum regulator_get_type value corresponding to type of request
2322  *
2323  * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2324  *	    encoded error.
2325  *
2326  * This function should be chained with *regulator_dev_lookup() functions.
2327  */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2328 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2329 					const char *id, enum regulator_get_type get_type)
2330 {
2331 	struct regulator *regulator;
2332 	struct device_link *link;
2333 	int ret;
2334 
2335 	if (IS_ERR(rdev)) {
2336 		ret = PTR_ERR(rdev);
2337 
2338 		/*
2339 		 * If regulator_dev_lookup() fails with error other
2340 		 * than -ENODEV our job here is done, we simply return it.
2341 		 */
2342 		if (ret != -ENODEV)
2343 			return ERR_PTR(ret);
2344 
2345 		if (!have_full_constraints()) {
2346 			dev_warn(dev,
2347 				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2348 			return ERR_PTR(-ENODEV);
2349 		}
2350 
2351 		switch (get_type) {
2352 		case NORMAL_GET:
2353 			/*
2354 			 * Assume that a regulator is physically present and
2355 			 * enabled, even if it isn't hooked up, and just
2356 			 * provide a dummy.
2357 			 */
2358 			rdev = dummy_regulator_rdev;
2359 			if (!rdev)
2360 				return ERR_PTR(-EPROBE_DEFER);
2361 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2362 			get_device(&rdev->dev);
2363 			break;
2364 
2365 		case EXCLUSIVE_GET:
2366 			dev_warn(dev,
2367 				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2368 			fallthrough;
2369 
2370 		default:
2371 			return ERR_PTR(-ENODEV);
2372 		}
2373 	}
2374 
2375 	if (rdev->exclusive) {
2376 		regulator = ERR_PTR(-EPERM);
2377 		put_device(&rdev->dev);
2378 		return regulator;
2379 	}
2380 
2381 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2382 		regulator = ERR_PTR(-EBUSY);
2383 		put_device(&rdev->dev);
2384 		return regulator;
2385 	}
2386 
2387 	mutex_lock(&regulator_list_mutex);
2388 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2389 	mutex_unlock(&regulator_list_mutex);
2390 
2391 	if (ret != 0) {
2392 		regulator = ERR_PTR(-EPROBE_DEFER);
2393 		put_device(&rdev->dev);
2394 		return regulator;
2395 	}
2396 
2397 	ret = regulator_resolve_supply(rdev);
2398 	if (ret < 0) {
2399 		regulator = ERR_PTR(ret);
2400 		put_device(&rdev->dev);
2401 		return regulator;
2402 	}
2403 
2404 	if (!try_module_get(rdev->owner)) {
2405 		regulator = ERR_PTR(-EPROBE_DEFER);
2406 		put_device(&rdev->dev);
2407 		return regulator;
2408 	}
2409 
2410 	regulator_lock(rdev);
2411 	regulator = create_regulator(rdev, dev, id);
2412 	regulator_unlock(rdev);
2413 	if (regulator == NULL) {
2414 		regulator = ERR_PTR(-ENOMEM);
2415 		module_put(rdev->owner);
2416 		put_device(&rdev->dev);
2417 		return regulator;
2418 	}
2419 
2420 	link_and_create_debugfs(regulator, rdev, dev);
2421 
2422 	rdev->open_count++;
2423 	if (get_type == EXCLUSIVE_GET) {
2424 		rdev->exclusive = 1;
2425 
2426 		ret = _regulator_is_enabled(rdev);
2427 		if (ret > 0) {
2428 			rdev->use_count = 1;
2429 			regulator->enable_count = 1;
2430 
2431 			/* Propagate the regulator state to its supply */
2432 			if (rdev->supply) {
2433 				ret = regulator_enable(rdev->supply);
2434 				if (ret < 0) {
2435 					destroy_regulator(regulator);
2436 					module_put(rdev->owner);
2437 					put_device(&rdev->dev);
2438 					return ERR_PTR(ret);
2439 				}
2440 			}
2441 		} else {
2442 			rdev->use_count = 0;
2443 			regulator->enable_count = 0;
2444 		}
2445 	}
2446 
2447 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2448 	if (!IS_ERR_OR_NULL(link))
2449 		regulator->device_link = true;
2450 
2451 	return regulator;
2452 }
2453 
2454 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2455 struct regulator *_regulator_get(struct device *dev, const char *id,
2456 				 enum regulator_get_type get_type)
2457 {
2458 	struct regulator_dev *rdev;
2459 	int ret;
2460 
2461 	ret = _regulator_get_common_check(dev, id, get_type);
2462 	if (ret)
2463 		return ERR_PTR(ret);
2464 
2465 	rdev = regulator_dev_lookup(dev, id);
2466 	return _regulator_get_common(rdev, dev, id, get_type);
2467 }
2468 
2469 /**
2470  * regulator_get - lookup and obtain a reference to a regulator.
2471  * @dev: device for regulator "consumer"
2472  * @id: Supply name or regulator ID.
2473  *
2474  * Use of supply names configured via set_consumer_device_supply() is
2475  * strongly encouraged.  It is recommended that the supply name used
2476  * should match the name used for the supply and/or the relevant
2477  * device pins in the datasheet.
2478  *
2479  * Return: Pointer to a &struct regulator corresponding to the regulator
2480  *	   producer, or an ERR_PTR() encoded negative error number.
2481  */
regulator_get(struct device * dev,const char * id)2482 struct regulator *regulator_get(struct device *dev, const char *id)
2483 {
2484 	return _regulator_get(dev, id, NORMAL_GET);
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_get);
2487 
2488 /**
2489  * regulator_get_exclusive - obtain exclusive access to a regulator.
2490  * @dev: device for regulator "consumer"
2491  * @id: Supply name or regulator ID.
2492  *
2493  * Other consumers will be unable to obtain this regulator while this
2494  * reference is held and the use count for the regulator will be
2495  * initialised to reflect the current state of the regulator.
2496  *
2497  * This is intended for use by consumers which cannot tolerate shared
2498  * use of the regulator such as those which need to force the
2499  * regulator off for correct operation of the hardware they are
2500  * controlling.
2501  *
2502  * Use of supply names configured via set_consumer_device_supply() is
2503  * strongly encouraged.  It is recommended that the supply name used
2504  * should match the name used for the supply and/or the relevant
2505  * device pins in the datasheet.
2506  *
2507  * Return: Pointer to a &struct regulator corresponding to the regulator
2508  *	   producer, or an ERR_PTR() encoded negative error number.
2509  */
regulator_get_exclusive(struct device * dev,const char * id)2510 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2511 {
2512 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2513 }
2514 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2515 
2516 /**
2517  * regulator_get_optional - obtain optional access to a regulator.
2518  * @dev: device for regulator "consumer"
2519  * @id: Supply name or regulator ID.
2520  *
2521  * This is intended for use by consumers for devices which can have
2522  * some supplies unconnected in normal use, such as some MMC devices.
2523  * It can allow the regulator core to provide stub supplies for other
2524  * supplies requested using normal regulator_get() calls without
2525  * disrupting the operation of drivers that can handle absent
2526  * supplies.
2527  *
2528  * Use of supply names configured via set_consumer_device_supply() is
2529  * strongly encouraged.  It is recommended that the supply name used
2530  * should match the name used for the supply and/or the relevant
2531  * device pins in the datasheet.
2532  *
2533  * Return: Pointer to a &struct regulator corresponding to the regulator
2534  *	   producer, or an ERR_PTR() encoded negative error number.
2535  */
regulator_get_optional(struct device * dev,const char * id)2536 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2537 {
2538 	return _regulator_get(dev, id, OPTIONAL_GET);
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_get_optional);
2541 
destroy_regulator(struct regulator * regulator)2542 static void destroy_regulator(struct regulator *regulator)
2543 {
2544 	struct regulator_dev *rdev = regulator->rdev;
2545 
2546 	debugfs_remove_recursive(regulator->debugfs);
2547 
2548 	if (regulator->dev) {
2549 		if (regulator->device_link)
2550 			device_link_remove(regulator->dev, &rdev->dev);
2551 
2552 		/* remove any sysfs entries */
2553 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2554 	}
2555 
2556 	regulator_lock(rdev);
2557 	list_del(&regulator->list);
2558 
2559 	rdev->open_count--;
2560 	rdev->exclusive = 0;
2561 	regulator_unlock(rdev);
2562 
2563 	kfree_const(regulator->supply_name);
2564 	kfree(regulator);
2565 }
2566 
2567 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2568 static void _regulator_put(struct regulator *regulator)
2569 {
2570 	struct regulator_dev *rdev;
2571 
2572 	if (IS_ERR_OR_NULL(regulator))
2573 		return;
2574 
2575 	lockdep_assert_held_once(&regulator_list_mutex);
2576 
2577 	/* Docs say you must disable before calling regulator_put() */
2578 	WARN_ON(regulator->enable_count);
2579 
2580 	rdev = regulator->rdev;
2581 
2582 	destroy_regulator(regulator);
2583 
2584 	module_put(rdev->owner);
2585 	put_device(&rdev->dev);
2586 }
2587 
2588 /**
2589  * regulator_put - "free" the regulator source
2590  * @regulator: regulator source
2591  *
2592  * Note: drivers must ensure that all regulator_enable calls made on this
2593  * regulator source are balanced by regulator_disable calls prior to calling
2594  * this function.
2595  */
regulator_put(struct regulator * regulator)2596 void regulator_put(struct regulator *regulator)
2597 {
2598 	mutex_lock(&regulator_list_mutex);
2599 	_regulator_put(regulator);
2600 	mutex_unlock(&regulator_list_mutex);
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_put);
2603 
2604 /**
2605  * regulator_register_supply_alias - Provide device alias for supply lookup
2606  *
2607  * @dev: device that will be given as the regulator "consumer"
2608  * @id: Supply name or regulator ID
2609  * @alias_dev: device that should be used to lookup the supply
2610  * @alias_id: Supply name or regulator ID that should be used to lookup the
2611  * supply
2612  *
2613  * All lookups for id on dev will instead be conducted for alias_id on
2614  * alias_dev.
2615  *
2616  * Return: 0 on success or a negative error number on failure.
2617  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2618 int regulator_register_supply_alias(struct device *dev, const char *id,
2619 				    struct device *alias_dev,
2620 				    const char *alias_id)
2621 {
2622 	struct regulator_supply_alias *map;
2623 	struct regulator_supply_alias *new_map;
2624 
2625 	new_map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2626 	if (!new_map)
2627 		return -ENOMEM;
2628 
2629 	mutex_lock(&regulator_list_mutex);
2630 	map = regulator_find_supply_alias(dev, id);
2631 	if (map) {
2632 		mutex_unlock(&regulator_list_mutex);
2633 		kfree(new_map);
2634 		return -EEXIST;
2635 	}
2636 
2637 	new_map->src_dev = dev;
2638 	new_map->src_supply = id;
2639 	new_map->alias_dev = alias_dev;
2640 	new_map->alias_supply = alias_id;
2641 	list_add(&new_map->list, &regulator_supply_alias_list);
2642 	mutex_unlock(&regulator_list_mutex);
2643 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2644 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2645 
2646 	return 0;
2647 }
2648 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2649 
2650 /**
2651  * regulator_unregister_supply_alias - Remove device alias
2652  *
2653  * @dev: device that will be given as the regulator "consumer"
2654  * @id: Supply name or regulator ID
2655  *
2656  * Remove a lookup alias if one exists for id on dev.
2657  */
regulator_unregister_supply_alias(struct device * dev,const char * id)2658 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2659 {
2660 	struct regulator_supply_alias *map;
2661 
2662 	mutex_lock(&regulator_list_mutex);
2663 	map = regulator_find_supply_alias(dev, id);
2664 	if (map) {
2665 		list_del(&map->list);
2666 		kfree(map);
2667 	}
2668 	mutex_unlock(&regulator_list_mutex);
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2671 
2672 /**
2673  * regulator_bulk_register_supply_alias - register multiple aliases
2674  *
2675  * @dev: device that will be given as the regulator "consumer"
2676  * @id: List of supply names or regulator IDs
2677  * @alias_dev: device that should be used to lookup the supply
2678  * @alias_id: List of supply names or regulator IDs that should be used to
2679  * lookup the supply
2680  * @num_id: Number of aliases to register
2681  *
2682  * This helper function allows drivers to register several supply
2683  * aliases in one operation.  If any of the aliases cannot be
2684  * registered any aliases that were registered will be removed
2685  * before returning to the caller.
2686  *
2687  * Return: 0 on success or a negative error number on failure.
2688  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2689 int regulator_bulk_register_supply_alias(struct device *dev,
2690 					 const char *const *id,
2691 					 struct device *alias_dev,
2692 					 const char *const *alias_id,
2693 					 int num_id)
2694 {
2695 	int i;
2696 	int ret;
2697 
2698 	for (i = 0; i < num_id; ++i) {
2699 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2700 						      alias_id[i]);
2701 		if (ret < 0)
2702 			goto err;
2703 	}
2704 
2705 	return 0;
2706 
2707 err:
2708 	dev_err(dev,
2709 		"Failed to create supply alias %s,%s -> %s,%s\n",
2710 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2711 
2712 	while (--i >= 0)
2713 		regulator_unregister_supply_alias(dev, id[i]);
2714 
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2718 
2719 /**
2720  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2721  *
2722  * @dev: device that will be given as the regulator "consumer"
2723  * @id: List of supply names or regulator IDs
2724  * @num_id: Number of aliases to unregister
2725  *
2726  * This helper function allows drivers to unregister several supply
2727  * aliases in one operation.
2728  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2729 void regulator_bulk_unregister_supply_alias(struct device *dev,
2730 					    const char *const *id,
2731 					    int num_id)
2732 {
2733 	int i;
2734 
2735 	for (i = 0; i < num_id; ++i)
2736 		regulator_unregister_supply_alias(dev, id[i]);
2737 }
2738 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2739 
2740 
2741 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2742 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2743 				const struct regulator_config *config)
2744 {
2745 	struct regulator_enable_gpio *pin, *new_pin;
2746 	struct gpio_desc *gpiod;
2747 
2748 	gpiod = config->ena_gpiod;
2749 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2750 
2751 	mutex_lock(&regulator_list_mutex);
2752 
2753 	if (gpiod_is_shared(gpiod))
2754 		/*
2755 		 * The sharing of this GPIO pin is managed internally by
2756 		 * GPIOLIB. We don't need to keep track of its enable count.
2757 		 */
2758 		goto skip_compare;
2759 
2760 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2761 		if (gpiod_is_equal(pin->gpiod, gpiod)) {
2762 			rdev_dbg(rdev, "GPIO is already used\n");
2763 			goto update_ena_gpio_to_rdev;
2764 		}
2765 	}
2766 
2767 	if (new_pin == NULL) {
2768 		mutex_unlock(&regulator_list_mutex);
2769 		return -ENOMEM;
2770 	}
2771 
2772 skip_compare:
2773 	pin = new_pin;
2774 	new_pin = NULL;
2775 
2776 	pin->gpiod = gpiod;
2777 	list_add(&pin->list, &regulator_ena_gpio_list);
2778 
2779 update_ena_gpio_to_rdev:
2780 	pin->request_count++;
2781 	rdev->ena_pin = pin;
2782 
2783 	mutex_unlock(&regulator_list_mutex);
2784 	kfree(new_pin);
2785 
2786 	return 0;
2787 }
2788 
regulator_ena_gpio_free(struct regulator_dev * rdev)2789 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2790 {
2791 	struct regulator_enable_gpio *pin, *n;
2792 
2793 	if (!rdev->ena_pin)
2794 		return;
2795 
2796 	/* Free the GPIO only in case of no use */
2797 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2798 		if (pin != rdev->ena_pin)
2799 			continue;
2800 
2801 		if (--pin->request_count)
2802 			break;
2803 
2804 		gpiod_put(pin->gpiod);
2805 		list_del(&pin->list);
2806 		kfree(pin);
2807 		break;
2808 	}
2809 
2810 	rdev->ena_pin = NULL;
2811 }
2812 
2813 /**
2814  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2815  * @rdev: regulator_dev structure
2816  * @enable: enable GPIO at initial use?
2817  *
2818  * GPIO is enabled in case of initial use. (enable_count is 0)
2819  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2820  *
2821  * Return: 0 on success or a negative error number on failure.
2822  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2823 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2824 {
2825 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2826 	int ret;
2827 
2828 	if (!pin)
2829 		return -EINVAL;
2830 
2831 	if (enable) {
2832 		/* Enable GPIO at initial use */
2833 		if (pin->enable_count == 0) {
2834 			ret = gpiod_set_value_cansleep(pin->gpiod, 1);
2835 			if (ret)
2836 				return ret;
2837 		}
2838 
2839 		pin->enable_count++;
2840 	} else {
2841 		if (pin->enable_count > 1) {
2842 			pin->enable_count--;
2843 			return 0;
2844 		}
2845 
2846 		/* Disable GPIO if not used */
2847 		if (pin->enable_count <= 1) {
2848 			ret = gpiod_set_value_cansleep(pin->gpiod, 0);
2849 			if (ret)
2850 				return ret;
2851 
2852 			pin->enable_count = 0;
2853 		}
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 /**
2860  * _regulator_check_status_enabled - check if regulator status can be
2861  *				     interpreted as "regulator is enabled"
2862  * @rdev: the regulator device to check
2863  *
2864  * Return:
2865  * * 1			- if status shows regulator is in enabled state
2866  * * 0			- if not enabled state
2867  * * Error Value	- as received from ops->get_status()
2868  */
_regulator_check_status_enabled(struct regulator_dev * rdev)2869 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2870 {
2871 	int ret = rdev->desc->ops->get_status(rdev);
2872 
2873 	if (ret < 0) {
2874 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2875 		return ret;
2876 	}
2877 
2878 	switch (ret) {
2879 	case REGULATOR_STATUS_OFF:
2880 	case REGULATOR_STATUS_ERROR:
2881 	case REGULATOR_STATUS_UNDEFINED:
2882 		return 0;
2883 	default:
2884 		return 1;
2885 	}
2886 }
2887 
_regulator_do_enable(struct regulator_dev * rdev)2888 static int _regulator_do_enable(struct regulator_dev *rdev)
2889 {
2890 	int ret, delay;
2891 
2892 	/* Query before enabling in case configuration dependent.  */
2893 	ret = _regulator_get_enable_time(rdev);
2894 	if (ret >= 0) {
2895 		delay = ret;
2896 	} else {
2897 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2898 		delay = 0;
2899 	}
2900 
2901 	trace_regulator_enable(rdev_get_name(rdev));
2902 
2903 	if (rdev->desc->off_on_delay) {
2904 		/* if needed, keep a distance of off_on_delay from last time
2905 		 * this regulator was disabled.
2906 		 */
2907 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2908 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2909 
2910 		if (remaining > 0)
2911 			fsleep(remaining);
2912 	}
2913 
2914 	if (rdev->ena_pin) {
2915 		if (!rdev->ena_gpio_state) {
2916 			ret = regulator_ena_gpio_ctrl(rdev, true);
2917 			if (ret < 0)
2918 				return ret;
2919 			rdev->ena_gpio_state = 1;
2920 		}
2921 	} else if (rdev->desc->ops->enable) {
2922 		ret = rdev->desc->ops->enable(rdev);
2923 		if (ret < 0)
2924 			return ret;
2925 	} else {
2926 		return -EINVAL;
2927 	}
2928 
2929 	/* Allow the regulator to ramp; it would be useful to extend
2930 	 * this for bulk operations so that the regulators can ramp
2931 	 * together.
2932 	 */
2933 	trace_regulator_enable_delay(rdev_get_name(rdev));
2934 
2935 	/* If poll_enabled_time is set, poll upto the delay calculated
2936 	 * above, delaying poll_enabled_time uS to check if the regulator
2937 	 * actually got enabled.
2938 	 * If the regulator isn't enabled after our delay helper has expired,
2939 	 * return -ETIMEDOUT.
2940 	 */
2941 	if (rdev->desc->poll_enabled_time) {
2942 		int time_remaining = delay;
2943 
2944 		while (time_remaining > 0) {
2945 			fsleep(rdev->desc->poll_enabled_time);
2946 
2947 			if (rdev->desc->ops->get_status) {
2948 				ret = _regulator_check_status_enabled(rdev);
2949 				if (ret < 0)
2950 					return ret;
2951 				else if (ret)
2952 					break;
2953 			} else if (rdev->desc->ops->is_enabled(rdev))
2954 				break;
2955 
2956 			time_remaining -= rdev->desc->poll_enabled_time;
2957 		}
2958 
2959 		if (time_remaining <= 0) {
2960 			rdev_err(rdev, "Enabled check timed out\n");
2961 			return -ETIMEDOUT;
2962 		}
2963 	} else {
2964 		fsleep(delay);
2965 	}
2966 
2967 	trace_regulator_enable_complete(rdev_get_name(rdev));
2968 
2969 	return 0;
2970 }
2971 
2972 /**
2973  * _regulator_handle_consumer_enable - handle that a consumer enabled
2974  * @regulator: regulator source
2975  *
2976  * Some things on a regulator consumer (like the contribution towards total
2977  * load on the regulator) only have an effect when the consumer wants the
2978  * regulator enabled.  Explained in example with two consumers of the same
2979  * regulator:
2980  *   consumer A: set_load(100);       => total load = 0
2981  *   consumer A: regulator_enable();  => total load = 100
2982  *   consumer B: set_load(1000);      => total load = 100
2983  *   consumer B: regulator_enable();  => total load = 1100
2984  *   consumer A: regulator_disable(); => total_load = 1000
2985  *
2986  * This function (together with _regulator_handle_consumer_disable) is
2987  * responsible for keeping track of the refcount for a given regulator consumer
2988  * and applying / unapplying these things.
2989  *
2990  * Return: 0 on success or negative error number on failure.
2991  */
_regulator_handle_consumer_enable(struct regulator * regulator)2992 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2993 {
2994 	int ret;
2995 	struct regulator_dev *rdev = regulator->rdev;
2996 
2997 	lockdep_assert_held_once(&rdev->mutex.base);
2998 
2999 	regulator->enable_count++;
3000 	if (regulator->uA_load && regulator->enable_count == 1) {
3001 		ret = drms_uA_update(rdev);
3002 		if (ret)
3003 			regulator->enable_count--;
3004 		return ret;
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 /**
3011  * _regulator_handle_consumer_disable - handle that a consumer disabled
3012  * @regulator: regulator source
3013  *
3014  * The opposite of _regulator_handle_consumer_enable().
3015  *
3016  * Return: 0 on success or a negative error number on failure.
3017  */
_regulator_handle_consumer_disable(struct regulator * regulator)3018 static int _regulator_handle_consumer_disable(struct regulator *regulator)
3019 {
3020 	struct regulator_dev *rdev = regulator->rdev;
3021 
3022 	lockdep_assert_held_once(&rdev->mutex.base);
3023 
3024 	if (!regulator->enable_count) {
3025 		rdev_err(rdev, "Underflow of regulator enable count\n");
3026 		return -EINVAL;
3027 	}
3028 
3029 	regulator->enable_count--;
3030 	if (regulator->uA_load && regulator->enable_count == 0)
3031 		return drms_uA_update(rdev);
3032 
3033 	return 0;
3034 }
3035 
3036 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)3037 static int _regulator_enable(struct regulator *regulator)
3038 {
3039 	struct regulator_dev *rdev = regulator->rdev;
3040 	int ret;
3041 
3042 	lockdep_assert_held_once(&rdev->mutex.base);
3043 
3044 	if (rdev->use_count == 0 && rdev->supply) {
3045 		ret = _regulator_enable(rdev->supply);
3046 		if (ret < 0)
3047 			return ret;
3048 	}
3049 
3050 	/* balance only if there are regulators coupled */
3051 	if (rdev->coupling_desc.n_coupled > 1) {
3052 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3053 		if (ret < 0)
3054 			goto err_disable_supply;
3055 	}
3056 
3057 	ret = _regulator_handle_consumer_enable(regulator);
3058 	if (ret < 0)
3059 		goto err_disable_supply;
3060 
3061 	if (rdev->use_count == 0) {
3062 		/*
3063 		 * The regulator may already be enabled if it's not switchable
3064 		 * or was left on
3065 		 */
3066 		ret = _regulator_is_enabled(rdev);
3067 		if (ret == -EINVAL || ret == 0) {
3068 			if (!regulator_ops_is_valid(rdev,
3069 					REGULATOR_CHANGE_STATUS)) {
3070 				ret = -EPERM;
3071 				goto err_consumer_disable;
3072 			}
3073 
3074 			ret = _regulator_do_enable(rdev);
3075 			if (ret < 0)
3076 				goto err_consumer_disable;
3077 
3078 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
3079 					     NULL);
3080 		} else if (ret < 0) {
3081 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
3082 			goto err_consumer_disable;
3083 		}
3084 		/* Fallthrough on positive return values - already enabled */
3085 	}
3086 
3087 	if (regulator->enable_count == 1)
3088 		rdev->use_count++;
3089 
3090 	return 0;
3091 
3092 err_consumer_disable:
3093 	_regulator_handle_consumer_disable(regulator);
3094 
3095 err_disable_supply:
3096 	if (rdev->use_count == 0 && rdev->supply)
3097 		_regulator_disable(rdev->supply);
3098 
3099 	return ret;
3100 }
3101 
3102 /**
3103  * regulator_enable - enable regulator output
3104  * @regulator: regulator source
3105  *
3106  * Request that the regulator be enabled with the regulator output at
3107  * the predefined voltage or current value.  Calls to regulator_enable()
3108  * must be balanced with calls to regulator_disable().
3109  *
3110  * NOTE: the output value can be set by other drivers, boot loader or may be
3111  * hardwired in the regulator.
3112  *
3113  * Return: 0 on success or a negative error number on failure.
3114  */
regulator_enable(struct regulator * regulator)3115 int regulator_enable(struct regulator *regulator)
3116 {
3117 	struct regulator_dev *rdev = regulator->rdev;
3118 	struct ww_acquire_ctx ww_ctx;
3119 	int ret;
3120 
3121 	regulator_lock_dependent(rdev, &ww_ctx);
3122 	ret = _regulator_enable(regulator);
3123 	regulator_unlock_dependent(rdev, &ww_ctx);
3124 
3125 	return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(regulator_enable);
3128 
_regulator_do_disable(struct regulator_dev * rdev)3129 static int _regulator_do_disable(struct regulator_dev *rdev)
3130 {
3131 	int ret;
3132 
3133 	trace_regulator_disable(rdev_get_name(rdev));
3134 
3135 	if (rdev->ena_pin) {
3136 		if (rdev->ena_gpio_state) {
3137 			ret = regulator_ena_gpio_ctrl(rdev, false);
3138 			if (ret < 0)
3139 				return ret;
3140 			rdev->ena_gpio_state = 0;
3141 		}
3142 
3143 	} else if (rdev->desc->ops->disable) {
3144 		ret = rdev->desc->ops->disable(rdev);
3145 		if (ret != 0)
3146 			return ret;
3147 	}
3148 
3149 	if (rdev->desc->off_on_delay)
3150 		rdev->last_off = ktime_get_boottime();
3151 
3152 	trace_regulator_disable_complete(rdev_get_name(rdev));
3153 
3154 	return 0;
3155 }
3156 
3157 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)3158 static int _regulator_disable(struct regulator *regulator)
3159 {
3160 	struct regulator_dev *rdev = regulator->rdev;
3161 	int ret = 0;
3162 
3163 	lockdep_assert_held_once(&rdev->mutex.base);
3164 
3165 	if (WARN(regulator->enable_count == 0,
3166 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3167 		return -EIO;
3168 
3169 	if (regulator->enable_count == 1) {
3170 	/* disabling last enable_count from this regulator */
3171 		/* are we the last user and permitted to disable ? */
3172 		if (rdev->use_count == 1 &&
3173 		    (rdev->constraints && !rdev->constraints->always_on)) {
3174 
3175 			/* we are last user */
3176 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3177 				ret = _notifier_call_chain(rdev,
3178 							   REGULATOR_EVENT_PRE_DISABLE,
3179 							   NULL);
3180 				if (ret & NOTIFY_STOP_MASK)
3181 					return -EINVAL;
3182 
3183 				ret = _regulator_do_disable(rdev);
3184 				if (ret < 0) {
3185 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3186 					_notifier_call_chain(rdev,
3187 							REGULATOR_EVENT_ABORT_DISABLE,
3188 							NULL);
3189 					return ret;
3190 				}
3191 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3192 						NULL);
3193 			}
3194 
3195 			rdev->use_count = 0;
3196 		} else if (rdev->use_count > 1) {
3197 			rdev->use_count--;
3198 		}
3199 	}
3200 
3201 	if (ret == 0)
3202 		ret = _regulator_handle_consumer_disable(regulator);
3203 
3204 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3205 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3206 
3207 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3208 		ret = _regulator_disable(rdev->supply);
3209 
3210 	return ret;
3211 }
3212 
3213 /**
3214  * regulator_disable - disable regulator output
3215  * @regulator: regulator source
3216  *
3217  * Disable the regulator output voltage or current.  Calls to
3218  * regulator_enable() must be balanced with calls to
3219  * regulator_disable().
3220  *
3221  * NOTE: this will only disable the regulator output if no other consumer
3222  * devices have it enabled, the regulator device supports disabling and
3223  * machine constraints permit this operation.
3224  *
3225  * Return: 0 on success or a negative error number on failure.
3226  */
regulator_disable(struct regulator * regulator)3227 int regulator_disable(struct regulator *regulator)
3228 {
3229 	struct regulator_dev *rdev = regulator->rdev;
3230 	struct ww_acquire_ctx ww_ctx;
3231 	int ret;
3232 
3233 	regulator_lock_dependent(rdev, &ww_ctx);
3234 	ret = _regulator_disable(regulator);
3235 	regulator_unlock_dependent(rdev, &ww_ctx);
3236 
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_disable);
3240 
3241 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3242 static int _regulator_force_disable(struct regulator_dev *rdev)
3243 {
3244 	int ret = 0;
3245 
3246 	lockdep_assert_held_once(&rdev->mutex.base);
3247 
3248 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3249 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3250 	if (ret & NOTIFY_STOP_MASK)
3251 		return -EINVAL;
3252 
3253 	ret = _regulator_do_disable(rdev);
3254 	if (ret < 0) {
3255 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3256 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3257 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3258 		return ret;
3259 	}
3260 
3261 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3262 			REGULATOR_EVENT_DISABLE, NULL);
3263 
3264 	return 0;
3265 }
3266 
3267 /**
3268  * regulator_force_disable - force disable regulator output
3269  * @regulator: regulator source
3270  *
3271  * Forcibly disable the regulator output voltage or current.
3272  * NOTE: this *will* disable the regulator output even if other consumer
3273  * devices have it enabled. This should be used for situations when device
3274  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3275  *
3276  * Return: 0 on success or a negative error number on failure.
3277  */
regulator_force_disable(struct regulator * regulator)3278 int regulator_force_disable(struct regulator *regulator)
3279 {
3280 	struct regulator_dev *rdev = regulator->rdev;
3281 	struct ww_acquire_ctx ww_ctx;
3282 	int ret;
3283 
3284 	regulator_lock_dependent(rdev, &ww_ctx);
3285 
3286 	ret = _regulator_force_disable(regulator->rdev);
3287 
3288 	if (rdev->coupling_desc.n_coupled > 1)
3289 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3290 
3291 	if (regulator->uA_load) {
3292 		regulator->uA_load = 0;
3293 		ret = drms_uA_update(rdev);
3294 	}
3295 
3296 	if (rdev->use_count != 0 && rdev->supply)
3297 		_regulator_disable(rdev->supply);
3298 
3299 	regulator_unlock_dependent(rdev, &ww_ctx);
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_force_disable);
3304 
regulator_disable_work(struct work_struct * work)3305 static void regulator_disable_work(struct work_struct *work)
3306 {
3307 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3308 						  disable_work.work);
3309 	struct ww_acquire_ctx ww_ctx;
3310 	int count, i, ret;
3311 	struct regulator *regulator;
3312 	int total_count = 0;
3313 
3314 	regulator_lock_dependent(rdev, &ww_ctx);
3315 
3316 	/*
3317 	 * Workqueue functions queue the new work instance while the previous
3318 	 * work instance is being processed. Cancel the queued work instance
3319 	 * as the work instance under processing does the job of the queued
3320 	 * work instance.
3321 	 */
3322 	cancel_delayed_work(&rdev->disable_work);
3323 
3324 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3325 		count = regulator->deferred_disables;
3326 
3327 		if (!count)
3328 			continue;
3329 
3330 		total_count += count;
3331 		regulator->deferred_disables = 0;
3332 
3333 		for (i = 0; i < count; i++) {
3334 			ret = _regulator_disable(regulator);
3335 			if (ret != 0)
3336 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3337 					 ERR_PTR(ret));
3338 		}
3339 	}
3340 	WARN_ON(!total_count);
3341 
3342 	if (rdev->coupling_desc.n_coupled > 1)
3343 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3344 
3345 	regulator_unlock_dependent(rdev, &ww_ctx);
3346 }
3347 
3348 /**
3349  * regulator_disable_deferred - disable regulator output with delay
3350  * @regulator: regulator source
3351  * @ms: milliseconds until the regulator is disabled
3352  *
3353  * Execute regulator_disable() on the regulator after a delay.  This
3354  * is intended for use with devices that require some time to quiesce.
3355  *
3356  * NOTE: this will only disable the regulator output if no other consumer
3357  * devices have it enabled, the regulator device supports disabling and
3358  * machine constraints permit this operation.
3359  *
3360  * Return: 0 on success or a negative error number on failure.
3361  */
regulator_disable_deferred(struct regulator * regulator,int ms)3362 int regulator_disable_deferred(struct regulator *regulator, int ms)
3363 {
3364 	struct regulator_dev *rdev = regulator->rdev;
3365 
3366 	if (!ms)
3367 		return regulator_disable(regulator);
3368 
3369 	regulator_lock(rdev);
3370 	regulator->deferred_disables++;
3371 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3372 			 msecs_to_jiffies(ms));
3373 	regulator_unlock(rdev);
3374 
3375 	return 0;
3376 }
3377 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3378 
_regulator_is_enabled(struct regulator_dev * rdev)3379 static int _regulator_is_enabled(struct regulator_dev *rdev)
3380 {
3381 	/* A GPIO control always takes precedence */
3382 	if (rdev->ena_pin)
3383 		return rdev->ena_gpio_state;
3384 
3385 	/* If we don't know then assume that the regulator is always on */
3386 	if (!rdev->desc->ops->is_enabled)
3387 		return 1;
3388 
3389 	return rdev->desc->ops->is_enabled(rdev);
3390 }
3391 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3392 static int _regulator_list_voltage(struct regulator_dev *rdev,
3393 				   unsigned selector, int lock)
3394 {
3395 	const struct regulator_ops *ops = rdev->desc->ops;
3396 	int ret;
3397 
3398 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3399 		return rdev->desc->fixed_uV;
3400 
3401 	if (ops->list_voltage) {
3402 		if (selector >= rdev->desc->n_voltages)
3403 			return -EINVAL;
3404 		if (selector < rdev->desc->linear_min_sel)
3405 			return 0;
3406 		if (lock)
3407 			regulator_lock(rdev);
3408 		ret = ops->list_voltage(rdev, selector);
3409 		if (lock)
3410 			regulator_unlock(rdev);
3411 	} else if (rdev->is_switch && rdev->supply) {
3412 		ret = _regulator_list_voltage(rdev->supply->rdev,
3413 					      selector, lock);
3414 	} else {
3415 		return -EINVAL;
3416 	}
3417 
3418 	if (ret > 0) {
3419 		if (ret < rdev->constraints->min_uV)
3420 			ret = 0;
3421 		else if (ret > rdev->constraints->max_uV)
3422 			ret = 0;
3423 	}
3424 
3425 	return ret;
3426 }
3427 
3428 /**
3429  * regulator_is_enabled - is the regulator output enabled
3430  * @regulator: regulator source
3431  *
3432  * Note that the device backing this regulator handle can have multiple
3433  * users, so it might be enabled even if regulator_enable() was never
3434  * called for this particular source.
3435  *
3436  * Return: Positive if the regulator driver backing the source/client
3437  *	   has requested that the device be enabled, zero if it hasn't,
3438  *	   else a negative error number.
3439  */
regulator_is_enabled(struct regulator * regulator)3440 int regulator_is_enabled(struct regulator *regulator)
3441 {
3442 	int ret;
3443 
3444 	if (regulator->always_on)
3445 		return 1;
3446 
3447 	regulator_lock(regulator->rdev);
3448 	ret = _regulator_is_enabled(regulator->rdev);
3449 	regulator_unlock(regulator->rdev);
3450 
3451 	return ret;
3452 }
3453 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3454 
3455 /**
3456  * regulator_count_voltages - count regulator_list_voltage() selectors
3457  * @regulator: regulator source
3458  *
3459  * Return: Number of selectors for @regulator, or negative error number.
3460  *
3461  * Selectors are numbered starting at zero, and typically correspond to
3462  * bitfields in hardware registers.
3463  */
regulator_count_voltages(struct regulator * regulator)3464 int regulator_count_voltages(struct regulator *regulator)
3465 {
3466 	struct regulator_dev	*rdev = regulator->rdev;
3467 
3468 	if (rdev->desc->n_voltages)
3469 		return rdev->desc->n_voltages;
3470 
3471 	if (!rdev->is_switch || !rdev->supply)
3472 		return -EINVAL;
3473 
3474 	return regulator_count_voltages(rdev->supply);
3475 }
3476 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3477 
3478 /**
3479  * regulator_list_voltage - enumerate supported voltages
3480  * @regulator: regulator source
3481  * @selector: identify voltage to list
3482  * Context: can sleep
3483  *
3484  * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3485  *	   0 if @selector can't be used on this system, or a negative error
3486  *	   number on failure.
3487  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3488 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3489 {
3490 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3491 }
3492 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3493 
3494 /**
3495  * regulator_get_regmap - get the regulator's register map
3496  * @regulator: regulator source
3497  *
3498  * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3499  *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3500  */
regulator_get_regmap(struct regulator * regulator)3501 struct regmap *regulator_get_regmap(struct regulator *regulator)
3502 {
3503 	struct regmap *map = regulator->rdev->regmap;
3504 
3505 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3506 }
3507 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3508 
3509 /**
3510  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3511  * @regulator: regulator source
3512  * @vsel_reg: voltage selector register, output parameter
3513  * @vsel_mask: mask for voltage selector bitfield, output parameter
3514  *
3515  * Returns the hardware register offset and bitmask used for setting the
3516  * regulator voltage. This might be useful when configuring voltage-scaling
3517  * hardware or firmware that can make I2C requests behind the kernel's back,
3518  * for example.
3519  *
3520  * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3521  *         voltage selectors.
3522  *
3523  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3524  * and 0 is returned, otherwise a negative error number is returned.
3525  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3526 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3527 					 unsigned *vsel_reg,
3528 					 unsigned *vsel_mask)
3529 {
3530 	struct regulator_dev *rdev = regulator->rdev;
3531 	const struct regulator_ops *ops = rdev->desc->ops;
3532 
3533 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3534 		return -EOPNOTSUPP;
3535 
3536 	*vsel_reg = rdev->desc->vsel_reg;
3537 	*vsel_mask = rdev->desc->vsel_mask;
3538 
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3542 
3543 /**
3544  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3545  * @regulator: regulator source
3546  * @selector: identify voltage to list
3547  *
3548  * Converts the selector to a hardware-specific voltage selector that can be
3549  * directly written to the regulator registers. The address of the voltage
3550  * register can be determined by calling @regulator_get_hardware_vsel_register.
3551  *
3552  * Return: 0 on success, -%EINVAL if the selector is outside the supported
3553  *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3554  *	   selectors.
3555  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3556 int regulator_list_hardware_vsel(struct regulator *regulator,
3557 				 unsigned selector)
3558 {
3559 	struct regulator_dev *rdev = regulator->rdev;
3560 	const struct regulator_ops *ops = rdev->desc->ops;
3561 
3562 	if (selector >= rdev->desc->n_voltages)
3563 		return -EINVAL;
3564 	if (selector < rdev->desc->linear_min_sel)
3565 		return 0;
3566 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3567 		return -EOPNOTSUPP;
3568 
3569 	return selector;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3572 
3573 /**
3574  * regulator_hardware_enable - access the HW for enable/disable regulator
3575  * @regulator: regulator source
3576  * @enable: true for enable, false for disable
3577  *
3578  * Request that the regulator be enabled/disabled with the regulator output at
3579  * the predefined voltage or current value.
3580  *
3581  * Return: 0 on success or a negative error number on failure.
3582  */
regulator_hardware_enable(struct regulator * regulator,bool enable)3583 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3584 {
3585 	struct regulator_dev *rdev = regulator->rdev;
3586 	const struct regulator_ops *ops = rdev->desc->ops;
3587 	int ret = -EOPNOTSUPP;
3588 
3589 	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3590 		return ret;
3591 
3592 	if (enable)
3593 		ret = ops->enable(rdev);
3594 	else
3595 		ret = ops->disable(rdev);
3596 
3597 	return ret;
3598 }
3599 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3600 
3601 /**
3602  * regulator_get_linear_step - return the voltage step size between VSEL values
3603  * @regulator: regulator source
3604  *
3605  * Return: The voltage step size between VSEL values for linear regulators,
3606  *	   or 0 if the regulator isn't a linear regulator.
3607  */
regulator_get_linear_step(struct regulator * regulator)3608 unsigned int regulator_get_linear_step(struct regulator *regulator)
3609 {
3610 	struct regulator_dev *rdev = regulator->rdev;
3611 
3612 	return rdev->desc->uV_step;
3613 }
3614 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3615 
3616 /**
3617  * regulator_is_supported_voltage - check if a voltage range can be supported
3618  *
3619  * @regulator: Regulator to check.
3620  * @min_uV: Minimum required voltage in uV.
3621  * @max_uV: Maximum required voltage in uV.
3622  *
3623  * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3624  *	   number if @regulator's voltage can't be changed and voltage readback
3625  *	   failed.
3626  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3627 int regulator_is_supported_voltage(struct regulator *regulator,
3628 				   int min_uV, int max_uV)
3629 {
3630 	struct regulator_dev *rdev = regulator->rdev;
3631 	int i, voltages, ret;
3632 
3633 	/* If we can't change voltage check the current voltage */
3634 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3635 		ret = regulator_get_voltage(regulator);
3636 		if (ret >= 0)
3637 			return min_uV <= ret && ret <= max_uV;
3638 		else
3639 			return ret;
3640 	}
3641 
3642 	/* Any voltage within constrains range is fine? */
3643 	if (rdev->desc->continuous_voltage_range)
3644 		return min_uV >= rdev->constraints->min_uV &&
3645 				max_uV <= rdev->constraints->max_uV;
3646 
3647 	ret = regulator_count_voltages(regulator);
3648 	if (ret < 0)
3649 		return 0;
3650 	voltages = ret;
3651 
3652 	for (i = 0; i < voltages; i++) {
3653 		ret = regulator_list_voltage(regulator, i);
3654 
3655 		if (ret >= min_uV && ret <= max_uV)
3656 			return 1;
3657 	}
3658 
3659 	return 0;
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3662 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3663 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3664 				 int max_uV)
3665 {
3666 	const struct regulator_desc *desc = rdev->desc;
3667 
3668 	if (desc->ops->map_voltage)
3669 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3670 
3671 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3672 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3673 
3674 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3675 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3676 
3677 	if (desc->ops->list_voltage ==
3678 		regulator_list_voltage_pickable_linear_range)
3679 		return regulator_map_voltage_pickable_linear_range(rdev,
3680 							min_uV, max_uV);
3681 
3682 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3683 }
3684 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3685 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3686 				       int min_uV, int max_uV,
3687 				       unsigned *selector)
3688 {
3689 	struct pre_voltage_change_data data;
3690 	int ret;
3691 
3692 	data.old_uV = regulator_get_voltage_rdev(rdev);
3693 	data.min_uV = min_uV;
3694 	data.max_uV = max_uV;
3695 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3696 				   &data);
3697 	if (ret & NOTIFY_STOP_MASK)
3698 		return -EINVAL;
3699 
3700 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3701 	if (ret >= 0)
3702 		return ret;
3703 
3704 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3705 			     (void *)data.old_uV);
3706 
3707 	return ret;
3708 }
3709 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3710 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3711 					   int uV, unsigned selector)
3712 {
3713 	struct pre_voltage_change_data data;
3714 	int ret;
3715 
3716 	data.old_uV = regulator_get_voltage_rdev(rdev);
3717 	data.min_uV = uV;
3718 	data.max_uV = uV;
3719 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3720 				   &data);
3721 	if (ret & NOTIFY_STOP_MASK)
3722 		return -EINVAL;
3723 
3724 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3725 	if (ret >= 0)
3726 		return ret;
3727 
3728 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3729 			     (void *)data.old_uV);
3730 
3731 	return ret;
3732 }
3733 
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3734 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3735 					   int uV, int new_selector)
3736 {
3737 	const struct regulator_ops *ops = rdev->desc->ops;
3738 	int diff, old_sel, curr_sel, ret;
3739 
3740 	/* Stepping is only needed if the regulator is enabled. */
3741 	if (!_regulator_is_enabled(rdev))
3742 		goto final_set;
3743 
3744 	if (!ops->get_voltage_sel)
3745 		return -EINVAL;
3746 
3747 	old_sel = ops->get_voltage_sel(rdev);
3748 	if (old_sel < 0)
3749 		return old_sel;
3750 
3751 	diff = new_selector - old_sel;
3752 	if (diff == 0)
3753 		return 0; /* No change needed. */
3754 
3755 	if (diff > 0) {
3756 		/* Stepping up. */
3757 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3758 		     curr_sel < new_selector;
3759 		     curr_sel += rdev->desc->vsel_step) {
3760 			/*
3761 			 * Call the callback directly instead of using
3762 			 * _regulator_call_set_voltage_sel() as we don't
3763 			 * want to notify anyone yet. Same in the branch
3764 			 * below.
3765 			 */
3766 			ret = ops->set_voltage_sel(rdev, curr_sel);
3767 			if (ret)
3768 				goto try_revert;
3769 		}
3770 	} else {
3771 		/* Stepping down. */
3772 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3773 		     curr_sel > new_selector;
3774 		     curr_sel -= rdev->desc->vsel_step) {
3775 			ret = ops->set_voltage_sel(rdev, curr_sel);
3776 			if (ret)
3777 				goto try_revert;
3778 		}
3779 	}
3780 
3781 final_set:
3782 	/* The final selector will trigger the notifiers. */
3783 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3784 
3785 try_revert:
3786 	/*
3787 	 * At least try to return to the previous voltage if setting a new
3788 	 * one failed.
3789 	 */
3790 	(void)ops->set_voltage_sel(rdev, old_sel);
3791 	return ret;
3792 }
3793 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3794 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3795 				       int old_uV, int new_uV)
3796 {
3797 	unsigned int ramp_delay = 0;
3798 
3799 	if (rdev->constraints->ramp_delay)
3800 		ramp_delay = rdev->constraints->ramp_delay;
3801 	else if (rdev->desc->ramp_delay)
3802 		ramp_delay = rdev->desc->ramp_delay;
3803 	else if (rdev->constraints->settling_time)
3804 		return rdev->constraints->settling_time;
3805 	else if (rdev->constraints->settling_time_up &&
3806 		 (new_uV > old_uV))
3807 		return rdev->constraints->settling_time_up;
3808 	else if (rdev->constraints->settling_time_down &&
3809 		 (new_uV < old_uV))
3810 		return rdev->constraints->settling_time_down;
3811 
3812 	if (ramp_delay == 0)
3813 		return 0;
3814 
3815 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3816 }
3817 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3818 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3819 				     int min_uV, int max_uV)
3820 {
3821 	int ret;
3822 	int delay = 0;
3823 	int best_val = 0;
3824 	unsigned int selector;
3825 	int old_selector = -1;
3826 	const struct regulator_ops *ops = rdev->desc->ops;
3827 	int old_uV = regulator_get_voltage_rdev(rdev);
3828 
3829 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3830 
3831 	min_uV += rdev->constraints->uV_offset;
3832 	max_uV += rdev->constraints->uV_offset;
3833 
3834 	/*
3835 	 * If we can't obtain the old selector there is not enough
3836 	 * info to call set_voltage_time_sel().
3837 	 */
3838 	if (_regulator_is_enabled(rdev) &&
3839 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3840 		old_selector = ops->get_voltage_sel(rdev);
3841 		if (old_selector < 0)
3842 			return old_selector;
3843 	}
3844 
3845 	if (ops->set_voltage) {
3846 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3847 						  &selector);
3848 
3849 		if (ret >= 0) {
3850 			if (ops->list_voltage)
3851 				best_val = ops->list_voltage(rdev,
3852 							     selector);
3853 			else
3854 				best_val = regulator_get_voltage_rdev(rdev);
3855 		}
3856 
3857 	} else if (ops->set_voltage_sel) {
3858 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3859 		if (ret >= 0) {
3860 			best_val = ops->list_voltage(rdev, ret);
3861 			if (min_uV <= best_val && max_uV >= best_val) {
3862 				selector = ret;
3863 				if (old_selector == selector)
3864 					ret = 0;
3865 				else if (rdev->desc->vsel_step)
3866 					ret = _regulator_set_voltage_sel_step(
3867 						rdev, best_val, selector);
3868 				else
3869 					ret = _regulator_call_set_voltage_sel(
3870 						rdev, best_val, selector);
3871 			} else {
3872 				ret = -EINVAL;
3873 			}
3874 		}
3875 	} else {
3876 		ret = -EINVAL;
3877 	}
3878 
3879 	if (ret)
3880 		goto out;
3881 
3882 	if (ops->set_voltage_time_sel) {
3883 		/*
3884 		 * Call set_voltage_time_sel if successfully obtained
3885 		 * old_selector
3886 		 */
3887 		if (old_selector >= 0 && old_selector != selector)
3888 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3889 							  selector);
3890 	} else {
3891 		if (old_uV != best_val) {
3892 			if (ops->set_voltage_time)
3893 				delay = ops->set_voltage_time(rdev, old_uV,
3894 							      best_val);
3895 			else
3896 				delay = _regulator_set_voltage_time(rdev,
3897 								    old_uV,
3898 								    best_val);
3899 		}
3900 	}
3901 
3902 	if (delay < 0) {
3903 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3904 		delay = 0;
3905 	}
3906 
3907 	/* Insert any necessary delays */
3908 	fsleep(delay);
3909 
3910 	if (best_val >= 0) {
3911 		unsigned long data = best_val;
3912 
3913 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3914 				     (void *)data);
3915 	}
3916 
3917 out:
3918 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3919 
3920 	return ret;
3921 }
3922 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3923 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3924 				  int min_uV, int max_uV, suspend_state_t state)
3925 {
3926 	struct regulator_state *rstate;
3927 	int uV, sel;
3928 
3929 	rstate = regulator_get_suspend_state(rdev, state);
3930 	if (rstate == NULL)
3931 		return -EINVAL;
3932 
3933 	if (min_uV < rstate->min_uV)
3934 		min_uV = rstate->min_uV;
3935 	if (max_uV > rstate->max_uV)
3936 		max_uV = rstate->max_uV;
3937 
3938 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3939 	if (sel < 0)
3940 		return sel;
3941 
3942 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3943 	if (uV >= min_uV && uV <= max_uV)
3944 		rstate->uV = uV;
3945 
3946 	return 0;
3947 }
3948 
regulator_get_voltage_delta(struct regulator_dev * rdev,int uV)3949 static int regulator_get_voltage_delta(struct regulator_dev *rdev, int uV)
3950 {
3951 	int current_uV = regulator_get_voltage_rdev(rdev);
3952 
3953 	if (current_uV < 0)
3954 		return current_uV;
3955 
3956 	return abs(current_uV - uV);
3957 }
3958 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3959 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3960 					  int min_uV, int max_uV,
3961 					  suspend_state_t state)
3962 {
3963 	struct regulator_dev *rdev = regulator->rdev;
3964 	struct regulator_voltage *voltage = &regulator->voltage[state];
3965 	int ret = 0;
3966 	int current_uV, delta, new_delta;
3967 	int old_min_uV, old_max_uV;
3968 
3969 	/* If we're setting the same range as last time the change
3970 	 * should be a noop (some cpufreq implementations use the same
3971 	 * voltage for multiple frequencies, for example).
3972 	 */
3973 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3974 		goto out;
3975 
3976 	/* If we're trying to set a range that overlaps the current voltage,
3977 	 * return successfully even though the regulator does not support
3978 	 * changing the voltage.
3979 	 */
3980 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3981 		current_uV = regulator_get_voltage_rdev(rdev);
3982 		if (min_uV <= current_uV && current_uV <= max_uV) {
3983 			voltage->min_uV = min_uV;
3984 			voltage->max_uV = max_uV;
3985 			goto out;
3986 		}
3987 	}
3988 
3989 	/* sanity check */
3990 	if (!rdev->desc->ops->set_voltage &&
3991 	    !rdev->desc->ops->set_voltage_sel) {
3992 		ret = -EINVAL;
3993 		goto out;
3994 	}
3995 
3996 	/* constraints check */
3997 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3998 	if (ret < 0)
3999 		goto out;
4000 
4001 	/* restore original values in case of error */
4002 	old_min_uV = voltage->min_uV;
4003 	old_max_uV = voltage->max_uV;
4004 	voltage->min_uV = min_uV;
4005 	voltage->max_uV = max_uV;
4006 
4007 	/* for not coupled regulators this will just set the voltage */
4008 	ret = regulator_balance_voltage(rdev, state);
4009 	if (ret < 0) {
4010 		voltage->min_uV = old_min_uV;
4011 		voltage->max_uV = old_max_uV;
4012 	}
4013 
4014 	if (rdev->constraints->max_uV_step > 0) {
4015 		/* For regulators with a maximum voltage step, reaching the desired
4016 		 * voltage might take a few retries.
4017 		 */
4018 		ret = regulator_get_voltage_delta(rdev, min_uV);
4019 		if (ret < 0)
4020 			goto out;
4021 
4022 		delta = ret;
4023 
4024 		while (delta > 0) {
4025 			ret = regulator_balance_voltage(rdev, state);
4026 			if (ret < 0)
4027 				goto out;
4028 
4029 			ret = regulator_get_voltage_delta(rdev, min_uV);
4030 			if (ret < 0)
4031 				goto out;
4032 
4033 			new_delta = ret;
4034 
4035 			/* check that voltage is converging quickly enough */
4036 			if (delta - new_delta < rdev->constraints->max_uV_step) {
4037 				ret = -EWOULDBLOCK;
4038 				goto out;
4039 			}
4040 
4041 			delta = new_delta;
4042 		}
4043 	}
4044 
4045 out:
4046 	return ret;
4047 }
4048 
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)4049 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
4050 			       int max_uV, suspend_state_t state)
4051 {
4052 	int best_supply_uV = 0;
4053 	int supply_change_uV = 0;
4054 	int ret;
4055 
4056 	if (rdev->supply &&
4057 	    regulator_ops_is_valid(rdev->supply->rdev,
4058 				   REGULATOR_CHANGE_VOLTAGE) &&
4059 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
4060 					   rdev->desc->ops->get_voltage_sel))) {
4061 		int current_supply_uV;
4062 		int selector;
4063 
4064 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
4065 		if (selector < 0) {
4066 			ret = selector;
4067 			goto out;
4068 		}
4069 
4070 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
4071 		if (best_supply_uV < 0) {
4072 			ret = best_supply_uV;
4073 			goto out;
4074 		}
4075 
4076 		best_supply_uV += rdev->desc->min_dropout_uV;
4077 
4078 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
4079 		if (current_supply_uV < 0) {
4080 			ret = current_supply_uV;
4081 			goto out;
4082 		}
4083 
4084 		supply_change_uV = best_supply_uV - current_supply_uV;
4085 	}
4086 
4087 	if (supply_change_uV > 0) {
4088 		ret = regulator_set_voltage_unlocked(rdev->supply,
4089 				best_supply_uV, INT_MAX, state);
4090 		if (ret) {
4091 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
4092 				ERR_PTR(ret));
4093 			goto out;
4094 		}
4095 	}
4096 
4097 	if (state == PM_SUSPEND_ON)
4098 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4099 	else
4100 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
4101 							max_uV, state);
4102 	if (ret < 0)
4103 		goto out;
4104 
4105 	if (supply_change_uV < 0) {
4106 		ret = regulator_set_voltage_unlocked(rdev->supply,
4107 				best_supply_uV, INT_MAX, state);
4108 		if (ret)
4109 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
4110 				 ERR_PTR(ret));
4111 		/* No need to fail here */
4112 		ret = 0;
4113 	}
4114 
4115 out:
4116 	return ret;
4117 }
4118 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
4119 
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)4120 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
4121 					int *current_uV, int *min_uV)
4122 {
4123 	struct regulation_constraints *constraints = rdev->constraints;
4124 
4125 	/* Limit voltage change only if necessary */
4126 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
4127 		return 1;
4128 
4129 	if (*current_uV < 0) {
4130 		*current_uV = regulator_get_voltage_rdev(rdev);
4131 
4132 		if (*current_uV < 0)
4133 			return *current_uV;
4134 	}
4135 
4136 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
4137 		return 1;
4138 
4139 	/* Clamp target voltage within the given step */
4140 	if (*current_uV < *min_uV)
4141 		*min_uV = min(*current_uV + constraints->max_uV_step,
4142 			      *min_uV);
4143 	else
4144 		*min_uV = max(*current_uV - constraints->max_uV_step,
4145 			      *min_uV);
4146 
4147 	return 0;
4148 }
4149 
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)4150 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
4151 					 int *current_uV,
4152 					 int *min_uV, int *max_uV,
4153 					 suspend_state_t state,
4154 					 int n_coupled)
4155 {
4156 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4157 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
4158 	struct regulation_constraints *constraints = rdev->constraints;
4159 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
4160 	int max_current_uV = 0, min_current_uV = INT_MAX;
4161 	int highest_min_uV = 0, target_uV, possible_uV;
4162 	int i, ret, max_spread;
4163 	bool done;
4164 
4165 	*current_uV = -1;
4166 
4167 	/*
4168 	 * If there are no coupled regulators, simply set the voltage
4169 	 * demanded by consumers.
4170 	 */
4171 	if (n_coupled == 1) {
4172 		/*
4173 		 * If consumers don't provide any demands, set voltage
4174 		 * to min_uV
4175 		 */
4176 		desired_min_uV = constraints->min_uV;
4177 		desired_max_uV = constraints->max_uV;
4178 
4179 		ret = regulator_check_consumers(rdev,
4180 						&desired_min_uV,
4181 						&desired_max_uV, state);
4182 		if (ret < 0)
4183 			return ret;
4184 
4185 		done = true;
4186 
4187 		goto finish;
4188 	}
4189 
4190 	/* Find highest min desired voltage */
4191 	for (i = 0; i < n_coupled; i++) {
4192 		int tmp_min = 0;
4193 		int tmp_max = INT_MAX;
4194 
4195 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
4196 
4197 		ret = regulator_check_consumers(c_rdevs[i],
4198 						&tmp_min,
4199 						&tmp_max, state);
4200 		if (ret < 0)
4201 			return ret;
4202 
4203 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
4204 		if (ret < 0)
4205 			return ret;
4206 
4207 		highest_min_uV = max(highest_min_uV, tmp_min);
4208 
4209 		if (i == 0) {
4210 			desired_min_uV = tmp_min;
4211 			desired_max_uV = tmp_max;
4212 		}
4213 	}
4214 
4215 	max_spread = constraints->max_spread[0];
4216 
4217 	/*
4218 	 * Let target_uV be equal to the desired one if possible.
4219 	 * If not, set it to minimum voltage, allowed by other coupled
4220 	 * regulators.
4221 	 */
4222 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4223 
4224 	/*
4225 	 * Find min and max voltages, which currently aren't violating
4226 	 * max_spread.
4227 	 */
4228 	for (i = 1; i < n_coupled; i++) {
4229 		int tmp_act;
4230 
4231 		if (!_regulator_is_enabled(c_rdevs[i]))
4232 			continue;
4233 
4234 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4235 		if (tmp_act < 0)
4236 			return tmp_act;
4237 
4238 		min_current_uV = min(tmp_act, min_current_uV);
4239 		max_current_uV = max(tmp_act, max_current_uV);
4240 	}
4241 
4242 	/* There aren't any other regulators enabled */
4243 	if (max_current_uV == 0) {
4244 		possible_uV = target_uV;
4245 	} else {
4246 		/*
4247 		 * Correct target voltage, so as it currently isn't
4248 		 * violating max_spread
4249 		 */
4250 		possible_uV = max(target_uV, max_current_uV - max_spread);
4251 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4252 	}
4253 
4254 	if (possible_uV > desired_max_uV)
4255 		return -EINVAL;
4256 
4257 	done = (possible_uV == target_uV);
4258 	desired_min_uV = possible_uV;
4259 
4260 finish:
4261 	/* Apply max_uV_step constraint if necessary */
4262 	if (state == PM_SUSPEND_ON) {
4263 		ret = regulator_limit_voltage_step(rdev, current_uV,
4264 						   &desired_min_uV);
4265 		if (ret < 0)
4266 			return ret;
4267 
4268 		if (ret == 0)
4269 			done = false;
4270 	}
4271 
4272 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4273 	if (n_coupled > 1 && *current_uV == -1) {
4274 
4275 		if (_regulator_is_enabled(rdev)) {
4276 			ret = regulator_get_voltage_rdev(rdev);
4277 			if (ret < 0)
4278 				return ret;
4279 
4280 			*current_uV = ret;
4281 		} else {
4282 			*current_uV = desired_min_uV;
4283 		}
4284 	}
4285 
4286 	*min_uV = desired_min_uV;
4287 	*max_uV = desired_max_uV;
4288 
4289 	return done;
4290 }
4291 
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4292 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4293 				 suspend_state_t state, bool skip_coupled)
4294 {
4295 	struct regulator_dev **c_rdevs;
4296 	struct regulator_dev *best_rdev;
4297 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4298 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4299 	unsigned int delta, best_delta;
4300 	unsigned long c_rdev_done = 0;
4301 	bool best_c_rdev_done;
4302 
4303 	c_rdevs = c_desc->coupled_rdevs;
4304 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4305 
4306 	/*
4307 	 * Find the best possible voltage change on each loop. Leave the loop
4308 	 * if there isn't any possible change.
4309 	 */
4310 	do {
4311 		best_c_rdev_done = false;
4312 		best_delta = 0;
4313 		best_min_uV = 0;
4314 		best_max_uV = 0;
4315 		best_c_rdev = 0;
4316 		best_rdev = NULL;
4317 
4318 		/*
4319 		 * Find highest difference between optimal voltage
4320 		 * and current voltage.
4321 		 */
4322 		for (i = 0; i < n_coupled; i++) {
4323 			/*
4324 			 * optimal_uV is the best voltage that can be set for
4325 			 * i-th regulator at the moment without violating
4326 			 * max_spread constraint in order to balance
4327 			 * the coupled voltages.
4328 			 */
4329 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4330 
4331 			if (test_bit(i, &c_rdev_done))
4332 				continue;
4333 
4334 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4335 							    &current_uV,
4336 							    &optimal_uV,
4337 							    &optimal_max_uV,
4338 							    state, n_coupled);
4339 			if (ret < 0)
4340 				goto out;
4341 
4342 			delta = abs(optimal_uV - current_uV);
4343 
4344 			if (delta && best_delta <= delta) {
4345 				best_c_rdev_done = ret;
4346 				best_delta = delta;
4347 				best_rdev = c_rdevs[i];
4348 				best_min_uV = optimal_uV;
4349 				best_max_uV = optimal_max_uV;
4350 				best_c_rdev = i;
4351 			}
4352 		}
4353 
4354 		/* Nothing to change, return successfully */
4355 		if (!best_rdev) {
4356 			ret = 0;
4357 			goto out;
4358 		}
4359 
4360 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4361 						 best_max_uV, state);
4362 
4363 		if (ret < 0)
4364 			goto out;
4365 
4366 		if (best_c_rdev_done)
4367 			set_bit(best_c_rdev, &c_rdev_done);
4368 
4369 	} while (n_coupled > 1);
4370 
4371 out:
4372 	return ret;
4373 }
4374 
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4375 static int regulator_balance_voltage(struct regulator_dev *rdev,
4376 				     suspend_state_t state)
4377 {
4378 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4379 	struct regulator_coupler *coupler = c_desc->coupler;
4380 	bool skip_coupled = false;
4381 
4382 	/*
4383 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4384 	 * other coupled regulators.
4385 	 */
4386 	if (state != PM_SUSPEND_ON)
4387 		skip_coupled = true;
4388 
4389 	if (c_desc->n_resolved < c_desc->n_coupled) {
4390 		rdev_err(rdev, "Not all coupled regulators registered\n");
4391 		return -EPERM;
4392 	}
4393 
4394 	/* Invoke custom balancer for customized couplers */
4395 	if (coupler && coupler->balance_voltage)
4396 		return coupler->balance_voltage(coupler, rdev, state);
4397 
4398 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4399 }
4400 
4401 /**
4402  * regulator_set_voltage - set regulator output voltage
4403  * @regulator: regulator source
4404  * @min_uV: Minimum required voltage in uV
4405  * @max_uV: Maximum acceptable voltage in uV
4406  *
4407  * Sets a voltage regulator to the desired output voltage. This can be set
4408  * during any regulator state. IOW, regulator can be disabled or enabled.
4409  *
4410  * If the regulator is enabled then the voltage will change to the new value
4411  * immediately otherwise if the regulator is disabled the regulator will
4412  * output at the new voltage when enabled.
4413  *
4414  * NOTE: If the regulator is shared between several devices then the lowest
4415  * request voltage that meets the system constraints will be used.
4416  * Regulator system constraints must be set for this regulator before
4417  * calling this function otherwise this call will fail.
4418  *
4419  * Return: 0 on success or a negative error number on failure.
4420  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4421 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4422 {
4423 	struct ww_acquire_ctx ww_ctx;
4424 	int ret;
4425 
4426 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4427 
4428 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4429 					     PM_SUSPEND_ON);
4430 
4431 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4432 
4433 	return ret;
4434 }
4435 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4436 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4437 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4438 					   suspend_state_t state, bool en)
4439 {
4440 	struct regulator_state *rstate;
4441 
4442 	rstate = regulator_get_suspend_state(rdev, state);
4443 	if (rstate == NULL)
4444 		return -EINVAL;
4445 
4446 	if (!rstate->changeable)
4447 		return -EPERM;
4448 
4449 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4450 
4451 	return 0;
4452 }
4453 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4454 int regulator_suspend_enable(struct regulator_dev *rdev,
4455 				    suspend_state_t state)
4456 {
4457 	return regulator_suspend_toggle(rdev, state, true);
4458 }
4459 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4460 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4461 int regulator_suspend_disable(struct regulator_dev *rdev,
4462 				     suspend_state_t state)
4463 {
4464 	struct regulator *regulator;
4465 	struct regulator_voltage *voltage;
4466 
4467 	/*
4468 	 * if any consumer wants this regulator device keeping on in
4469 	 * suspend states, don't set it as disabled.
4470 	 */
4471 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4472 		voltage = &regulator->voltage[state];
4473 		if (voltage->min_uV || voltage->max_uV)
4474 			return 0;
4475 	}
4476 
4477 	return regulator_suspend_toggle(rdev, state, false);
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4480 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4481 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4482 					  int min_uV, int max_uV,
4483 					  suspend_state_t state)
4484 {
4485 	struct regulator_dev *rdev = regulator->rdev;
4486 	struct regulator_state *rstate;
4487 
4488 	rstate = regulator_get_suspend_state(rdev, state);
4489 	if (rstate == NULL)
4490 		return -EINVAL;
4491 
4492 	if (rstate->min_uV == rstate->max_uV) {
4493 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4494 		return -EPERM;
4495 	}
4496 
4497 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4498 }
4499 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4500 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4501 				  int max_uV, suspend_state_t state)
4502 {
4503 	struct ww_acquire_ctx ww_ctx;
4504 	int ret;
4505 
4506 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4507 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4508 		return -EINVAL;
4509 
4510 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4511 
4512 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4513 					     max_uV, state);
4514 
4515 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4516 
4517 	return ret;
4518 }
4519 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4520 
4521 /**
4522  * regulator_set_voltage_time - get raise/fall time
4523  * @regulator: regulator source
4524  * @old_uV: starting voltage in microvolts
4525  * @new_uV: target voltage in microvolts
4526  *
4527  * Provided with the starting and ending voltage, this function attempts to
4528  * calculate the time in microseconds required to rise or fall to this new
4529  * voltage.
4530  *
4531  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4532  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4533 int regulator_set_voltage_time(struct regulator *regulator,
4534 			       int old_uV, int new_uV)
4535 {
4536 	struct regulator_dev *rdev = regulator->rdev;
4537 	const struct regulator_ops *ops = rdev->desc->ops;
4538 	int old_sel = -1;
4539 	int new_sel = -1;
4540 	int voltage;
4541 	int i;
4542 
4543 	if (ops->set_voltage_time)
4544 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4545 	else if (!ops->set_voltage_time_sel)
4546 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4547 
4548 	/* Currently requires operations to do this */
4549 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4550 		return -EINVAL;
4551 
4552 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4553 		/* We only look for exact voltage matches here */
4554 		if (i < rdev->desc->linear_min_sel)
4555 			continue;
4556 
4557 		if (old_sel >= 0 && new_sel >= 0)
4558 			break;
4559 
4560 		voltage = regulator_list_voltage(regulator, i);
4561 		if (voltage < 0)
4562 			return -EINVAL;
4563 		if (voltage == 0)
4564 			continue;
4565 		if (voltage == old_uV)
4566 			old_sel = i;
4567 		if (voltage == new_uV)
4568 			new_sel = i;
4569 	}
4570 
4571 	if (old_sel < 0 || new_sel < 0)
4572 		return -EINVAL;
4573 
4574 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4575 }
4576 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4577 
4578 /**
4579  * regulator_set_voltage_time_sel - get raise/fall time
4580  * @rdev: regulator source device
4581  * @old_selector: selector for starting voltage
4582  * @new_selector: selector for target voltage
4583  *
4584  * Provided with the starting and target voltage selectors, this function
4585  * returns time in microseconds required to rise or fall to this new voltage
4586  *
4587  * Drivers providing ramp_delay in regulation_constraints can use this as their
4588  * set_voltage_time_sel() operation.
4589  *
4590  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4591  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4592 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4593 				   unsigned int old_selector,
4594 				   unsigned int new_selector)
4595 {
4596 	int old_volt, new_volt;
4597 
4598 	/* sanity check */
4599 	if (!rdev->desc->ops->list_voltage)
4600 		return -EINVAL;
4601 
4602 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4603 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4604 
4605 	if (rdev->desc->ops->set_voltage_time)
4606 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4607 							 new_volt);
4608 	else
4609 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4612 
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4613 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4614 {
4615 	int ret;
4616 
4617 	regulator_lock(rdev);
4618 
4619 	if (!rdev->desc->ops->set_voltage &&
4620 	    !rdev->desc->ops->set_voltage_sel) {
4621 		ret = -EINVAL;
4622 		goto out;
4623 	}
4624 
4625 	/* balance only, if regulator is coupled */
4626 	if (rdev->coupling_desc.n_coupled > 1)
4627 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4628 	else
4629 		ret = -EOPNOTSUPP;
4630 
4631 out:
4632 	regulator_unlock(rdev);
4633 	return ret;
4634 }
4635 
4636 /**
4637  * regulator_sync_voltage - re-apply last regulator output voltage
4638  * @regulator: regulator source
4639  *
4640  * Re-apply the last configured voltage.  This is intended to be used
4641  * where some external control source the consumer is cooperating with
4642  * has caused the configured voltage to change.
4643  *
4644  * Return: 0 on success or a negative error number on failure.
4645  */
regulator_sync_voltage(struct regulator * regulator)4646 int regulator_sync_voltage(struct regulator *regulator)
4647 {
4648 	struct regulator_dev *rdev = regulator->rdev;
4649 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4650 	int ret, min_uV, max_uV;
4651 
4652 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4653 		return 0;
4654 
4655 	regulator_lock(rdev);
4656 
4657 	if (!rdev->desc->ops->set_voltage &&
4658 	    !rdev->desc->ops->set_voltage_sel) {
4659 		ret = -EINVAL;
4660 		goto out;
4661 	}
4662 
4663 	/* This is only going to work if we've had a voltage configured. */
4664 	if (!voltage->min_uV && !voltage->max_uV) {
4665 		ret = -EINVAL;
4666 		goto out;
4667 	}
4668 
4669 	min_uV = voltage->min_uV;
4670 	max_uV = voltage->max_uV;
4671 
4672 	/* This should be a paranoia check... */
4673 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4674 	if (ret < 0)
4675 		goto out;
4676 
4677 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4678 	if (ret < 0)
4679 		goto out;
4680 
4681 	/* balance only, if regulator is coupled */
4682 	if (rdev->coupling_desc.n_coupled > 1)
4683 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4684 	else
4685 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4686 
4687 out:
4688 	regulator_unlock(rdev);
4689 	return ret;
4690 }
4691 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4692 
regulator_get_voltage_rdev(struct regulator_dev * rdev)4693 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4694 {
4695 	int sel, ret;
4696 	bool bypassed;
4697 
4698 	if (rdev->desc->ops->get_bypass) {
4699 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4700 		if (ret < 0)
4701 			return ret;
4702 		if (bypassed) {
4703 			/* if bypassed the regulator must have a supply */
4704 			if (!rdev->supply) {
4705 				rdev_err(rdev,
4706 					 "bypassed regulator has no supply!\n");
4707 				return -EPROBE_DEFER;
4708 			}
4709 
4710 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4711 		}
4712 	}
4713 
4714 	if (rdev->desc->ops->get_voltage_sel) {
4715 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4716 		if (sel < 0)
4717 			return sel;
4718 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4719 	} else if (rdev->desc->ops->get_voltage) {
4720 		ret = rdev->desc->ops->get_voltage(rdev);
4721 	} else if (rdev->desc->ops->list_voltage) {
4722 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4723 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4724 		ret = rdev->desc->fixed_uV;
4725 	} else if (rdev->supply) {
4726 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4727 	} else if (rdev->supply_name) {
4728 		return -EPROBE_DEFER;
4729 	} else {
4730 		return -EINVAL;
4731 	}
4732 
4733 	if (ret < 0)
4734 		return ret;
4735 	return ret - rdev->constraints->uV_offset;
4736 }
4737 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4738 
4739 /**
4740  * regulator_get_voltage - get regulator output voltage
4741  * @regulator: regulator source
4742  *
4743  * Return: Current regulator voltage in uV, or a negative error number on failure.
4744  *
4745  * NOTE: If the regulator is disabled it will return the voltage value. This
4746  * function should not be used to determine regulator state.
4747  */
regulator_get_voltage(struct regulator * regulator)4748 int regulator_get_voltage(struct regulator *regulator)
4749 {
4750 	struct ww_acquire_ctx ww_ctx;
4751 	int ret;
4752 
4753 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4754 	ret = regulator_get_voltage_rdev(regulator->rdev);
4755 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4756 
4757 	return ret;
4758 }
4759 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4760 
4761 /**
4762  * regulator_set_current_limit - set regulator output current limit
4763  * @regulator: regulator source
4764  * @min_uA: Minimum supported current in uA
4765  * @max_uA: Maximum supported current in uA
4766  *
4767  * Sets current sink to the desired output current. This can be set during
4768  * any regulator state. IOW, regulator can be disabled or enabled.
4769  *
4770  * If the regulator is enabled then the current will change to the new value
4771  * immediately otherwise if the regulator is disabled the regulator will
4772  * output at the new current when enabled.
4773  *
4774  * NOTE: Regulator system constraints must be set for this regulator before
4775  * calling this function otherwise this call will fail.
4776  *
4777  * Return: 0 on success or a negative error number on failure.
4778  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4779 int regulator_set_current_limit(struct regulator *regulator,
4780 			       int min_uA, int max_uA)
4781 {
4782 	struct regulator_dev *rdev = regulator->rdev;
4783 	int ret;
4784 
4785 	regulator_lock(rdev);
4786 
4787 	/* sanity check */
4788 	if (!rdev->desc->ops->set_current_limit) {
4789 		ret = -EINVAL;
4790 		goto out;
4791 	}
4792 
4793 	/* constraints check */
4794 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4795 	if (ret < 0)
4796 		goto out;
4797 
4798 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4799 out:
4800 	regulator_unlock(rdev);
4801 	return ret;
4802 }
4803 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4804 
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4805 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4806 {
4807 	/* sanity check */
4808 	if (!rdev->desc->ops->get_current_limit)
4809 		return -EINVAL;
4810 
4811 	return rdev->desc->ops->get_current_limit(rdev);
4812 }
4813 
_regulator_get_current_limit(struct regulator_dev * rdev)4814 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4815 {
4816 	int ret;
4817 
4818 	regulator_lock(rdev);
4819 	ret = _regulator_get_current_limit_unlocked(rdev);
4820 	regulator_unlock(rdev);
4821 
4822 	return ret;
4823 }
4824 
4825 /**
4826  * regulator_get_current_limit - get regulator output current
4827  * @regulator: regulator source
4828  *
4829  * Return: Current supplied by the specified current sink in uA,
4830  *	   or a negative error number on failure.
4831  *
4832  * NOTE: If the regulator is disabled it will return the current value. This
4833  * function should not be used to determine regulator state.
4834  */
regulator_get_current_limit(struct regulator * regulator)4835 int regulator_get_current_limit(struct regulator *regulator)
4836 {
4837 	return _regulator_get_current_limit(regulator->rdev);
4838 }
4839 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4840 
4841 /**
4842  * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget
4843  * @regulator: regulator source
4844  *
4845  * Return: Unclaimed power budget of the regulator in mW.
4846  */
regulator_get_unclaimed_power_budget(struct regulator * regulator)4847 int regulator_get_unclaimed_power_budget(struct regulator *regulator)
4848 {
4849 	return regulator->rdev->constraints->pw_budget_mW -
4850 	       regulator->rdev->pw_requested_mW;
4851 }
4852 EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget);
4853 
4854 /**
4855  * regulator_request_power_budget - request power budget on a regulator
4856  * @regulator: regulator source
4857  * @pw_req: Power requested
4858  *
4859  * Return: 0 on success or a negative error number on failure.
4860  */
regulator_request_power_budget(struct regulator * regulator,unsigned int pw_req)4861 int regulator_request_power_budget(struct regulator *regulator,
4862 				   unsigned int pw_req)
4863 {
4864 	struct regulator_dev *rdev = regulator->rdev;
4865 	int ret = 0, pw_tot_req;
4866 
4867 	regulator_lock(rdev);
4868 	if (rdev->supply) {
4869 		ret = regulator_request_power_budget(rdev->supply, pw_req);
4870 		if (ret < 0)
4871 			goto out;
4872 	}
4873 
4874 	pw_tot_req = rdev->pw_requested_mW + pw_req;
4875 	if (pw_tot_req > rdev->constraints->pw_budget_mW) {
4876 		rdev_warn(rdev, "power requested %d mW out of budget %d mW",
4877 			  pw_req,
4878 			  rdev->constraints->pw_budget_mW - rdev->pw_requested_mW);
4879 		regulator_notifier_call_chain(rdev,
4880 					      REGULATOR_EVENT_OVER_CURRENT_WARN,
4881 					      NULL);
4882 		ret = -ERANGE;
4883 		goto out;
4884 	}
4885 
4886 	rdev->pw_requested_mW = pw_tot_req;
4887 out:
4888 	regulator_unlock(rdev);
4889 	return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(regulator_request_power_budget);
4892 
4893 /**
4894  * regulator_free_power_budget - free power budget on a regulator
4895  * @regulator: regulator source
4896  * @pw: Power to be released.
4897  *
4898  * Return: Power budget of the regulator in mW.
4899  */
regulator_free_power_budget(struct regulator * regulator,unsigned int pw)4900 void regulator_free_power_budget(struct regulator *regulator,
4901 				 unsigned int pw)
4902 {
4903 	struct regulator_dev *rdev = regulator->rdev;
4904 	int pw_tot_req;
4905 
4906 	regulator_lock(rdev);
4907 	if (rdev->supply)
4908 		regulator_free_power_budget(rdev->supply, pw);
4909 
4910 	pw_tot_req = rdev->pw_requested_mW - pw;
4911 	if (pw_tot_req >= 0)
4912 		rdev->pw_requested_mW = pw_tot_req;
4913 	else
4914 		rdev_warn(rdev,
4915 			  "too much power freed %d mW (already requested %d mW)",
4916 			  pw, rdev->pw_requested_mW);
4917 
4918 	regulator_unlock(rdev);
4919 }
4920 EXPORT_SYMBOL_GPL(regulator_free_power_budget);
4921 
4922 /**
4923  * regulator_set_mode - set regulator operating mode
4924  * @regulator: regulator source
4925  * @mode: operating mode - one of the REGULATOR_MODE constants
4926  *
4927  * Set regulator operating mode to increase regulator efficiency or improve
4928  * regulation performance.
4929  *
4930  * NOTE: Regulator system constraints must be set for this regulator before
4931  * calling this function otherwise this call will fail.
4932  *
4933  * Return: 0 on success or a negative error number on failure.
4934  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4935 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4936 {
4937 	struct regulator_dev *rdev = regulator->rdev;
4938 	int ret;
4939 	int regulator_curr_mode;
4940 
4941 	regulator_lock(rdev);
4942 
4943 	/* sanity check */
4944 	if (!rdev->desc->ops->set_mode) {
4945 		ret = -EINVAL;
4946 		goto out;
4947 	}
4948 
4949 	/* return if the same mode is requested */
4950 	if (rdev->desc->ops->get_mode) {
4951 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4952 		if (regulator_curr_mode == mode) {
4953 			ret = 0;
4954 			goto out;
4955 		}
4956 	}
4957 
4958 	/* constraints check */
4959 	ret = regulator_mode_constrain(rdev, &mode);
4960 	if (ret < 0)
4961 		goto out;
4962 
4963 	ret = rdev->desc->ops->set_mode(rdev, mode);
4964 out:
4965 	regulator_unlock(rdev);
4966 	return ret;
4967 }
4968 EXPORT_SYMBOL_GPL(regulator_set_mode);
4969 
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4970 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4971 {
4972 	/* sanity check */
4973 	if (!rdev->desc->ops->get_mode)
4974 		return -EINVAL;
4975 
4976 	return rdev->desc->ops->get_mode(rdev);
4977 }
4978 
_regulator_get_mode(struct regulator_dev * rdev)4979 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4980 {
4981 	int ret;
4982 
4983 	regulator_lock(rdev);
4984 	ret = _regulator_get_mode_unlocked(rdev);
4985 	regulator_unlock(rdev);
4986 
4987 	return ret;
4988 }
4989 
4990 /**
4991  * regulator_get_mode - get regulator operating mode
4992  * @regulator: regulator source
4993  *
4994  * Get the current regulator operating mode.
4995  *
4996  * Return: Current operating mode as %REGULATOR_MODE_* values,
4997  *	   or a negative error number on failure.
4998  */
regulator_get_mode(struct regulator * regulator)4999 unsigned int regulator_get_mode(struct regulator *regulator)
5000 {
5001 	return _regulator_get_mode(regulator->rdev);
5002 }
5003 EXPORT_SYMBOL_GPL(regulator_get_mode);
5004 
rdev_get_cached_err_flags(struct regulator_dev * rdev)5005 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
5006 {
5007 	int ret = 0;
5008 
5009 	if (rdev->use_cached_err) {
5010 		spin_lock(&rdev->err_lock);
5011 		ret = rdev->cached_err;
5012 		spin_unlock(&rdev->err_lock);
5013 	}
5014 	return ret;
5015 }
5016 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)5017 static int _regulator_get_error_flags(struct regulator_dev *rdev,
5018 					unsigned int *flags)
5019 {
5020 	int cached_flags, ret = 0;
5021 
5022 	regulator_lock(rdev);
5023 
5024 	cached_flags = rdev_get_cached_err_flags(rdev);
5025 
5026 	if (rdev->desc->ops->get_error_flags)
5027 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
5028 	else if (!rdev->use_cached_err)
5029 		ret = -EINVAL;
5030 
5031 	*flags |= cached_flags;
5032 
5033 	regulator_unlock(rdev);
5034 
5035 	return ret;
5036 }
5037 
5038 /**
5039  * regulator_get_error_flags - get regulator error information
5040  * @regulator: regulator source
5041  * @flags: pointer to store error flags
5042  *
5043  * Get the current regulator error information.
5044  *
5045  * Return: 0 on success or a negative error number on failure.
5046  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)5047 int regulator_get_error_flags(struct regulator *regulator,
5048 				unsigned int *flags)
5049 {
5050 	return _regulator_get_error_flags(regulator->rdev, flags);
5051 }
5052 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
5053 
5054 /**
5055  * regulator_set_load - set regulator load
5056  * @regulator: regulator source
5057  * @uA_load: load current
5058  *
5059  * Notifies the regulator core of a new device load. This is then used by
5060  * DRMS (if enabled by constraints) to set the most efficient regulator
5061  * operating mode for the new regulator loading.
5062  *
5063  * Consumer devices notify their supply regulator of the maximum power
5064  * they will require (can be taken from device datasheet in the power
5065  * consumption tables) when they change operational status and hence power
5066  * state. Examples of operational state changes that can affect power
5067  * consumption are :-
5068  *
5069  *    o Device is opened / closed.
5070  *    o Device I/O is about to begin or has just finished.
5071  *    o Device is idling in between work.
5072  *
5073  * This information is also exported via sysfs to userspace.
5074  *
5075  * DRMS will sum the total requested load on the regulator and change
5076  * to the most efficient operating mode if platform constraints allow.
5077  *
5078  * NOTE: when a regulator consumer requests to have a regulator
5079  * disabled then any load that consumer requested no longer counts
5080  * toward the total requested load.  If the regulator is re-enabled
5081  * then the previously requested load will start counting again.
5082  *
5083  * If a regulator is an always-on regulator then an individual consumer's
5084  * load will still be removed if that consumer is fully disabled.
5085  *
5086  * Return: 0 on success or a negative error number on failure.
5087  */
regulator_set_load(struct regulator * regulator,int uA_load)5088 int regulator_set_load(struct regulator *regulator, int uA_load)
5089 {
5090 	struct regulator_dev *rdev = regulator->rdev;
5091 	int old_uA_load;
5092 	int ret = 0;
5093 
5094 	regulator_lock(rdev);
5095 	old_uA_load = regulator->uA_load;
5096 	regulator->uA_load = uA_load;
5097 	if (regulator->enable_count && old_uA_load != uA_load) {
5098 		ret = drms_uA_update(rdev);
5099 		if (ret < 0)
5100 			regulator->uA_load = old_uA_load;
5101 	}
5102 	regulator_unlock(rdev);
5103 
5104 	return ret;
5105 }
5106 EXPORT_SYMBOL_GPL(regulator_set_load);
5107 
5108 /**
5109  * regulator_allow_bypass - allow the regulator to go into bypass mode
5110  *
5111  * @regulator: Regulator to configure
5112  * @enable: enable or disable bypass mode
5113  *
5114  * Allow the regulator to go into bypass mode if all other consumers
5115  * for the regulator also enable bypass mode and the machine
5116  * constraints allow this.  Bypass mode means that the regulator is
5117  * simply passing the input directly to the output with no regulation.
5118  *
5119  * Return: 0 on success or if changing bypass is not possible, or
5120  *	   a negative error number on failure.
5121  */
regulator_allow_bypass(struct regulator * regulator,bool enable)5122 int regulator_allow_bypass(struct regulator *regulator, bool enable)
5123 {
5124 	struct regulator_dev *rdev = regulator->rdev;
5125 	const char *name = rdev_get_name(rdev);
5126 	int ret = 0;
5127 
5128 	if (!rdev->desc->ops->set_bypass)
5129 		return 0;
5130 
5131 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
5132 		return 0;
5133 
5134 	regulator_lock(rdev);
5135 
5136 	if (enable && !regulator->bypass) {
5137 		rdev->bypass_count++;
5138 
5139 		if (rdev->bypass_count == rdev->open_count) {
5140 			trace_regulator_bypass_enable(name);
5141 
5142 			ret = rdev->desc->ops->set_bypass(rdev, enable);
5143 			if (ret != 0)
5144 				rdev->bypass_count--;
5145 			else
5146 				trace_regulator_bypass_enable_complete(name);
5147 		}
5148 
5149 	} else if (!enable && regulator->bypass) {
5150 		rdev->bypass_count--;
5151 
5152 		if (rdev->bypass_count != rdev->open_count) {
5153 			trace_regulator_bypass_disable(name);
5154 
5155 			ret = rdev->desc->ops->set_bypass(rdev, enable);
5156 			if (ret != 0)
5157 				rdev->bypass_count++;
5158 			else
5159 				trace_regulator_bypass_disable_complete(name);
5160 		}
5161 	}
5162 
5163 	if (ret == 0)
5164 		regulator->bypass = enable;
5165 
5166 	regulator_unlock(rdev);
5167 
5168 	return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
5171 
5172 /**
5173  * regulator_register_notifier - register regulator event notifier
5174  * @regulator: regulator source
5175  * @nb: notifier block
5176  *
5177  * Register notifier block to receive regulator events.
5178  *
5179  * Return: 0 on success or a negative error number on failure.
5180  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)5181 int regulator_register_notifier(struct regulator *regulator,
5182 			      struct notifier_block *nb)
5183 {
5184 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
5185 						nb);
5186 }
5187 EXPORT_SYMBOL_GPL(regulator_register_notifier);
5188 
5189 /**
5190  * regulator_unregister_notifier - unregister regulator event notifier
5191  * @regulator: regulator source
5192  * @nb: notifier block
5193  *
5194  * Unregister regulator event notifier block.
5195  *
5196  * Return: 0 on success or a negative error number on failure.
5197  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)5198 int regulator_unregister_notifier(struct regulator *regulator,
5199 				struct notifier_block *nb)
5200 {
5201 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
5202 						  nb);
5203 }
5204 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
5205 
5206 /* notify regulator consumers and downstream regulator consumers.
5207  * Note mutex must be held by caller.
5208  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5209 static int _notifier_call_chain(struct regulator_dev *rdev,
5210 				  unsigned long event, void *data)
5211 {
5212 	/* call rdev chain first */
5213 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
5214 
5215 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
5216 		struct device *parent = rdev->dev.parent;
5217 		const char *rname = rdev_get_name(rdev);
5218 		char name[32];
5219 
5220 		/* Avoid duplicate debugfs directory names */
5221 		if (parent && rname == rdev->desc->name) {
5222 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5223 				 rname);
5224 			rname = name;
5225 		}
5226 		reg_generate_netlink_event(rname, event);
5227 	}
5228 
5229 	return ret;
5230 }
5231 
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)5232 int _regulator_bulk_get(struct device *dev, int num_consumers,
5233 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
5234 {
5235 	int i;
5236 	int ret;
5237 
5238 	for (i = 0; i < num_consumers; i++)
5239 		consumers[i].consumer = NULL;
5240 
5241 	for (i = 0; i < num_consumers; i++) {
5242 		consumers[i].consumer = _regulator_get(dev,
5243 						       consumers[i].supply, get_type);
5244 		if (IS_ERR(consumers[i].consumer)) {
5245 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
5246 					    "Failed to get supply '%s'\n",
5247 					    consumers[i].supply);
5248 			consumers[i].consumer = NULL;
5249 			goto err;
5250 		}
5251 
5252 		if (consumers[i].init_load_uA > 0) {
5253 			ret = regulator_set_load(consumers[i].consumer,
5254 						 consumers[i].init_load_uA);
5255 			if (ret) {
5256 				i++;
5257 				goto err;
5258 			}
5259 		}
5260 	}
5261 
5262 	return 0;
5263 
5264 err:
5265 	while (--i >= 0)
5266 		regulator_put(consumers[i].consumer);
5267 
5268 	return ret;
5269 }
5270 
5271 /**
5272  * regulator_bulk_get - get multiple regulator consumers
5273  *
5274  * @dev:           Device to supply
5275  * @num_consumers: Number of consumers to register
5276  * @consumers:     Configuration of consumers; clients are stored here.
5277  *
5278  * This helper function allows drivers to get several regulator
5279  * consumers in one operation.  If any of the regulators cannot be
5280  * acquired then any regulators that were allocated will be freed
5281  * before returning to the caller.
5282  *
5283  * Return: 0 on success or a negative error number on failure.
5284  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)5285 int regulator_bulk_get(struct device *dev, int num_consumers,
5286 		       struct regulator_bulk_data *consumers)
5287 {
5288 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
5289 }
5290 EXPORT_SYMBOL_GPL(regulator_bulk_get);
5291 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)5292 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
5293 {
5294 	struct regulator_bulk_data *bulk = data;
5295 
5296 	bulk->ret = regulator_enable(bulk->consumer);
5297 }
5298 
5299 /**
5300  * regulator_bulk_enable - enable multiple regulator consumers
5301  *
5302  * @num_consumers: Number of consumers
5303  * @consumers:     Consumer data; clients are stored here.
5304  *
5305  * This convenience API allows consumers to enable multiple regulator
5306  * clients in a single API call.  If any consumers cannot be enabled
5307  * then any others that were enabled will be disabled again prior to
5308  * return.
5309  *
5310  * Return: 0 on success or a negative error number on failure.
5311  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5312 int regulator_bulk_enable(int num_consumers,
5313 			  struct regulator_bulk_data *consumers)
5314 {
5315 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5316 	int i;
5317 	int ret = 0;
5318 
5319 	for (i = 0; i < num_consumers; i++) {
5320 		async_schedule_domain(regulator_bulk_enable_async,
5321 				      &consumers[i], &async_domain);
5322 	}
5323 
5324 	async_synchronize_full_domain(&async_domain);
5325 
5326 	/* If any consumer failed we need to unwind any that succeeded */
5327 	for (i = 0; i < num_consumers; i++) {
5328 		if (consumers[i].ret != 0) {
5329 			ret = consumers[i].ret;
5330 			goto err;
5331 		}
5332 	}
5333 
5334 	return 0;
5335 
5336 err:
5337 	for (i = 0; i < num_consumers; i++) {
5338 		if (consumers[i].ret < 0)
5339 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5340 			       ERR_PTR(consumers[i].ret));
5341 		else
5342 			regulator_disable(consumers[i].consumer);
5343 	}
5344 
5345 	return ret;
5346 }
5347 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5348 
5349 /**
5350  * regulator_bulk_disable - disable multiple regulator consumers
5351  *
5352  * @num_consumers: Number of consumers
5353  * @consumers:     Consumer data; clients are stored here.
5354  *
5355  * This convenience API allows consumers to disable multiple regulator
5356  * clients in a single API call.  If any consumers cannot be disabled
5357  * then any others that were disabled will be enabled again prior to
5358  * return.
5359  *
5360  * Return: 0 on success or a negative error number on failure.
5361  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5362 int regulator_bulk_disable(int num_consumers,
5363 			   struct regulator_bulk_data *consumers)
5364 {
5365 	int i;
5366 	int ret, r;
5367 
5368 	for (i = num_consumers - 1; i >= 0; --i) {
5369 		ret = regulator_disable(consumers[i].consumer);
5370 		if (ret != 0)
5371 			goto err;
5372 	}
5373 
5374 	return 0;
5375 
5376 err:
5377 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5378 	for (++i; i < num_consumers; ++i) {
5379 		r = regulator_enable(consumers[i].consumer);
5380 		if (r != 0)
5381 			pr_err("Failed to re-enable %s: %pe\n",
5382 			       consumers[i].supply, ERR_PTR(r));
5383 	}
5384 
5385 	return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5388 
5389 /**
5390  * regulator_bulk_force_disable - force disable multiple regulator consumers
5391  *
5392  * @num_consumers: Number of consumers
5393  * @consumers:     Consumer data; clients are stored here.
5394  *
5395  * This convenience API allows consumers to forcibly disable multiple regulator
5396  * clients in a single API call.
5397  * NOTE: This should be used for situations when device damage will
5398  * likely occur if the regulators are not disabled (e.g. over temp).
5399  * Although regulator_force_disable function call for some consumers can
5400  * return error numbers, the function is called for all consumers.
5401  *
5402  * Return: 0 on success or a negative error number on failure.
5403  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5404 int regulator_bulk_force_disable(int num_consumers,
5405 			   struct regulator_bulk_data *consumers)
5406 {
5407 	int i;
5408 	int ret = 0;
5409 
5410 	for (i = 0; i < num_consumers; i++) {
5411 		consumers[i].ret =
5412 			    regulator_force_disable(consumers[i].consumer);
5413 
5414 		/* Store first error for reporting */
5415 		if (consumers[i].ret && !ret)
5416 			ret = consumers[i].ret;
5417 	}
5418 
5419 	return ret;
5420 }
5421 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5422 
5423 /**
5424  * regulator_bulk_free - free multiple regulator consumers
5425  *
5426  * @num_consumers: Number of consumers
5427  * @consumers:     Consumer data; clients are stored here.
5428  *
5429  * This convenience API allows consumers to free multiple regulator
5430  * clients in a single API call.
5431  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5432 void regulator_bulk_free(int num_consumers,
5433 			 struct regulator_bulk_data *consumers)
5434 {
5435 	int i;
5436 
5437 	for (i = 0; i < num_consumers; i++) {
5438 		regulator_put(consumers[i].consumer);
5439 		consumers[i].consumer = NULL;
5440 	}
5441 }
5442 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5443 
5444 /**
5445  * regulator_handle_critical - Handle events for system-critical regulators.
5446  * @rdev: The regulator device.
5447  * @event: The event being handled.
5448  *
5449  * This function handles critical events such as under-voltage, over-current,
5450  * and unknown errors for regulators deemed system-critical. On detecting such
5451  * events, it triggers a hardware protection shutdown with a defined timeout.
5452  */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5453 static void regulator_handle_critical(struct regulator_dev *rdev,
5454 				      unsigned long event)
5455 {
5456 	const char *reason = NULL;
5457 
5458 	if (!rdev->constraints->system_critical)
5459 		return;
5460 
5461 	switch (event) {
5462 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5463 		reason = "System critical regulator: voltage drop detected";
5464 		break;
5465 	case REGULATOR_EVENT_OVER_CURRENT:
5466 		reason = "System critical regulator: over-current detected";
5467 		break;
5468 	case REGULATOR_EVENT_FAIL:
5469 		reason = "System critical regulator: unknown error";
5470 	}
5471 
5472 	if (!reason)
5473 		return;
5474 
5475 	hw_protection_trigger(reason,
5476 			      rdev->constraints->uv_less_critical_window_ms);
5477 }
5478 
5479 /**
5480  * regulator_notifier_call_chain - call regulator event notifier
5481  * @rdev: regulator source
5482  * @event: notifier block
5483  * @data: callback-specific data.
5484  *
5485  * Called by regulator drivers to notify clients a regulator event has
5486  * occurred.
5487  *
5488  * Return: %NOTIFY_DONE.
5489  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5490 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5491 				  unsigned long event, void *data)
5492 {
5493 	regulator_handle_critical(rdev, event);
5494 
5495 	_notifier_call_chain(rdev, event, data);
5496 	return NOTIFY_DONE;
5497 
5498 }
5499 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5500 
5501 /**
5502  * regulator_mode_to_status - convert a regulator mode into a status
5503  *
5504  * @mode: Mode to convert
5505  *
5506  * Convert a regulator mode into a status.
5507  *
5508  * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5509  */
regulator_mode_to_status(unsigned int mode)5510 int regulator_mode_to_status(unsigned int mode)
5511 {
5512 	switch (mode) {
5513 	case REGULATOR_MODE_FAST:
5514 		return REGULATOR_STATUS_FAST;
5515 	case REGULATOR_MODE_NORMAL:
5516 		return REGULATOR_STATUS_NORMAL;
5517 	case REGULATOR_MODE_IDLE:
5518 		return REGULATOR_STATUS_IDLE;
5519 	case REGULATOR_MODE_STANDBY:
5520 		return REGULATOR_STATUS_STANDBY;
5521 	default:
5522 		return REGULATOR_STATUS_UNDEFINED;
5523 	}
5524 }
5525 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5526 
5527 static struct attribute *regulator_dev_attrs[] = {
5528 	&dev_attr_name.attr,
5529 	&dev_attr_num_users.attr,
5530 	&dev_attr_type.attr,
5531 	&dev_attr_microvolts.attr,
5532 	&dev_attr_microamps.attr,
5533 	&dev_attr_opmode.attr,
5534 	&dev_attr_state.attr,
5535 	&dev_attr_status.attr,
5536 	&dev_attr_bypass.attr,
5537 	&dev_attr_requested_microamps.attr,
5538 	&dev_attr_min_microvolts.attr,
5539 	&dev_attr_max_microvolts.attr,
5540 	&dev_attr_min_microamps.attr,
5541 	&dev_attr_max_microamps.attr,
5542 	&dev_attr_under_voltage.attr,
5543 	&dev_attr_over_current.attr,
5544 	&dev_attr_regulation_out.attr,
5545 	&dev_attr_fail.attr,
5546 	&dev_attr_over_temp.attr,
5547 	&dev_attr_under_voltage_warn.attr,
5548 	&dev_attr_over_current_warn.attr,
5549 	&dev_attr_over_voltage_warn.attr,
5550 	&dev_attr_over_temp_warn.attr,
5551 	&dev_attr_suspend_standby_state.attr,
5552 	&dev_attr_suspend_mem_state.attr,
5553 	&dev_attr_suspend_disk_state.attr,
5554 	&dev_attr_suspend_standby_microvolts.attr,
5555 	&dev_attr_suspend_mem_microvolts.attr,
5556 	&dev_attr_suspend_disk_microvolts.attr,
5557 	&dev_attr_suspend_standby_mode.attr,
5558 	&dev_attr_suspend_mem_mode.attr,
5559 	&dev_attr_suspend_disk_mode.attr,
5560 	&dev_attr_power_budget_milliwatt.attr,
5561 	&dev_attr_power_requested_milliwatt.attr,
5562 	NULL
5563 };
5564 
5565 /*
5566  * To avoid cluttering sysfs (and memory) with useless state, only
5567  * create attributes that can be meaningfully displayed.
5568  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5569 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5570 					 struct attribute *attr, int idx)
5571 {
5572 	struct device *dev = kobj_to_dev(kobj);
5573 	struct regulator_dev *rdev = dev_to_rdev(dev);
5574 	const struct regulator_ops *ops = rdev->desc->ops;
5575 	umode_t mode = attr->mode;
5576 
5577 	/* these three are always present */
5578 	if (attr == &dev_attr_name.attr ||
5579 	    attr == &dev_attr_num_users.attr ||
5580 	    attr == &dev_attr_type.attr)
5581 		return mode;
5582 
5583 	/* some attributes need specific methods to be displayed */
5584 	if (attr == &dev_attr_microvolts.attr) {
5585 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5586 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5587 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5588 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5589 			return mode;
5590 		return 0;
5591 	}
5592 
5593 	if (attr == &dev_attr_microamps.attr)
5594 		return ops->get_current_limit ? mode : 0;
5595 
5596 	if (attr == &dev_attr_opmode.attr)
5597 		return ops->get_mode ? mode : 0;
5598 
5599 	if (attr == &dev_attr_state.attr)
5600 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5601 
5602 	if (attr == &dev_attr_status.attr)
5603 		return ops->get_status ? mode : 0;
5604 
5605 	if (attr == &dev_attr_bypass.attr)
5606 		return ops->get_bypass ? mode : 0;
5607 
5608 	if (attr == &dev_attr_under_voltage.attr ||
5609 	    attr == &dev_attr_over_current.attr ||
5610 	    attr == &dev_attr_regulation_out.attr ||
5611 	    attr == &dev_attr_fail.attr ||
5612 	    attr == &dev_attr_over_temp.attr ||
5613 	    attr == &dev_attr_under_voltage_warn.attr ||
5614 	    attr == &dev_attr_over_current_warn.attr ||
5615 	    attr == &dev_attr_over_voltage_warn.attr ||
5616 	    attr == &dev_attr_over_temp_warn.attr)
5617 		return ops->get_error_flags ? mode : 0;
5618 
5619 	/* constraints need specific supporting methods */
5620 	if (attr == &dev_attr_min_microvolts.attr ||
5621 	    attr == &dev_attr_max_microvolts.attr)
5622 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5623 
5624 	if (attr == &dev_attr_min_microamps.attr ||
5625 	    attr == &dev_attr_max_microamps.attr)
5626 		return ops->set_current_limit ? mode : 0;
5627 
5628 	if (attr == &dev_attr_suspend_standby_state.attr ||
5629 	    attr == &dev_attr_suspend_mem_state.attr ||
5630 	    attr == &dev_attr_suspend_disk_state.attr)
5631 		return mode;
5632 
5633 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5634 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5635 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5636 		return ops->set_suspend_voltage ? mode : 0;
5637 
5638 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5639 	    attr == &dev_attr_suspend_mem_mode.attr ||
5640 	    attr == &dev_attr_suspend_disk_mode.attr)
5641 		return ops->set_suspend_mode ? mode : 0;
5642 
5643 	if (attr == &dev_attr_power_budget_milliwatt.attr ||
5644 	    attr == &dev_attr_power_requested_milliwatt.attr)
5645 		return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0;
5646 
5647 	return mode;
5648 }
5649 
5650 static const struct attribute_group regulator_dev_group = {
5651 	.attrs = regulator_dev_attrs,
5652 	.is_visible = regulator_attr_is_visible,
5653 };
5654 
5655 static const struct attribute_group *regulator_dev_groups[] = {
5656 	&regulator_dev_group,
5657 	NULL
5658 };
5659 
regulator_dev_release(struct device * dev)5660 static void regulator_dev_release(struct device *dev)
5661 {
5662 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5663 
5664 	debugfs_remove_recursive(rdev->debugfs);
5665 	kfree(rdev->constraints);
5666 	of_node_put(rdev->dev.of_node);
5667 	kfree(rdev);
5668 }
5669 
rdev_init_debugfs(struct regulator_dev * rdev)5670 static void rdev_init_debugfs(struct regulator_dev *rdev)
5671 {
5672 	struct device *parent = rdev->dev.parent;
5673 	const char *rname = rdev_get_name(rdev);
5674 	char name[NAME_MAX];
5675 
5676 	/* Avoid duplicate debugfs directory names */
5677 	if (parent && rname == rdev->desc->name) {
5678 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5679 			 rname);
5680 		rname = name;
5681 	}
5682 
5683 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5684 	if (IS_ERR(rdev->debugfs))
5685 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5686 
5687 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5688 			   &rdev->use_count);
5689 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5690 			   &rdev->open_count);
5691 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5692 			   &rdev->bypass_count);
5693 }
5694 
regulator_register_resolve_supply(struct device * dev,void * data)5695 static int regulator_register_resolve_supply(struct device *dev, void *data)
5696 {
5697 	struct regulator_dev *rdev = dev_to_rdev(dev);
5698 
5699 	if (regulator_resolve_supply(rdev))
5700 		rdev_dbg(rdev, "unable to resolve supply\n");
5701 
5702 	return 0;
5703 }
5704 
regulator_coupler_register(struct regulator_coupler * coupler)5705 int regulator_coupler_register(struct regulator_coupler *coupler)
5706 {
5707 	mutex_lock(&regulator_list_mutex);
5708 	list_add_tail(&coupler->list, &regulator_coupler_list);
5709 	mutex_unlock(&regulator_list_mutex);
5710 
5711 	return 0;
5712 }
5713 
5714 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5715 regulator_find_coupler(struct regulator_dev *rdev)
5716 {
5717 	struct regulator_coupler *coupler;
5718 	int err;
5719 
5720 	/*
5721 	 * Note that regulators are appended to the list and the generic
5722 	 * coupler is registered first, hence it will be attached at last
5723 	 * if nobody cared.
5724 	 */
5725 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5726 		err = coupler->attach_regulator(coupler, rdev);
5727 		if (!err) {
5728 			if (!coupler->balance_voltage &&
5729 			    rdev->coupling_desc.n_coupled > 2)
5730 				goto err_unsupported;
5731 
5732 			return coupler;
5733 		}
5734 
5735 		if (err < 0)
5736 			return ERR_PTR(err);
5737 
5738 		if (err == 1)
5739 			continue;
5740 
5741 		break;
5742 	}
5743 
5744 	return ERR_PTR(-EINVAL);
5745 
5746 err_unsupported:
5747 	if (coupler->detach_regulator)
5748 		coupler->detach_regulator(coupler, rdev);
5749 
5750 	rdev_err(rdev,
5751 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5752 
5753 	return ERR_PTR(-EPERM);
5754 }
5755 
regulator_resolve_coupling(struct regulator_dev * rdev)5756 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5757 {
5758 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5759 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5760 	int n_coupled = c_desc->n_coupled;
5761 	struct regulator_dev *c_rdev;
5762 	int i;
5763 
5764 	for (i = 1; i < n_coupled; i++) {
5765 		/* already resolved */
5766 		if (c_desc->coupled_rdevs[i])
5767 			continue;
5768 
5769 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5770 
5771 		if (!c_rdev)
5772 			continue;
5773 
5774 		if (c_rdev->coupling_desc.coupler != coupler) {
5775 			rdev_err(rdev, "coupler mismatch with %s\n",
5776 				 rdev_get_name(c_rdev));
5777 			return;
5778 		}
5779 
5780 		c_desc->coupled_rdevs[i] = c_rdev;
5781 		c_desc->n_resolved++;
5782 
5783 		regulator_resolve_coupling(c_rdev);
5784 	}
5785 }
5786 
regulator_remove_coupling(struct regulator_dev * rdev)5787 static void regulator_remove_coupling(struct regulator_dev *rdev)
5788 {
5789 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5790 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5791 	struct regulator_dev *__c_rdev, *c_rdev;
5792 	unsigned int __n_coupled, n_coupled;
5793 	int i, k;
5794 	int err;
5795 
5796 	n_coupled = c_desc->n_coupled;
5797 
5798 	for (i = 1; i < n_coupled; i++) {
5799 		c_rdev = c_desc->coupled_rdevs[i];
5800 
5801 		if (!c_rdev)
5802 			continue;
5803 
5804 		regulator_lock(c_rdev);
5805 
5806 		__c_desc = &c_rdev->coupling_desc;
5807 		__n_coupled = __c_desc->n_coupled;
5808 
5809 		for (k = 1; k < __n_coupled; k++) {
5810 			__c_rdev = __c_desc->coupled_rdevs[k];
5811 
5812 			if (__c_rdev == rdev) {
5813 				__c_desc->coupled_rdevs[k] = NULL;
5814 				__c_desc->n_resolved--;
5815 				break;
5816 			}
5817 		}
5818 
5819 		regulator_unlock(c_rdev);
5820 
5821 		c_desc->coupled_rdevs[i] = NULL;
5822 		c_desc->n_resolved--;
5823 	}
5824 
5825 	if (coupler && coupler->detach_regulator) {
5826 		err = coupler->detach_regulator(coupler, rdev);
5827 		if (err)
5828 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5829 				 ERR_PTR(err));
5830 	}
5831 
5832 	rdev->coupling_desc.n_coupled = 0;
5833 	kfree(rdev->coupling_desc.coupled_rdevs);
5834 	rdev->coupling_desc.coupled_rdevs = NULL;
5835 }
5836 
regulator_init_coupling(struct regulator_dev * rdev)5837 static int regulator_init_coupling(struct regulator_dev *rdev)
5838 {
5839 	struct regulator_dev **coupled;
5840 	int err, n_phandles;
5841 
5842 	if (!IS_ENABLED(CONFIG_OF))
5843 		n_phandles = 0;
5844 	else
5845 		n_phandles = of_get_n_coupled(rdev);
5846 
5847 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5848 	if (!coupled)
5849 		return -ENOMEM;
5850 
5851 	rdev->coupling_desc.coupled_rdevs = coupled;
5852 
5853 	/*
5854 	 * Every regulator should always have coupling descriptor filled with
5855 	 * at least pointer to itself.
5856 	 */
5857 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5858 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5859 	rdev->coupling_desc.n_resolved++;
5860 
5861 	/* regulator isn't coupled */
5862 	if (n_phandles == 0)
5863 		return 0;
5864 
5865 	if (!of_check_coupling_data(rdev))
5866 		return -EPERM;
5867 
5868 	mutex_lock(&regulator_list_mutex);
5869 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5870 	mutex_unlock(&regulator_list_mutex);
5871 
5872 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5873 		err = PTR_ERR(rdev->coupling_desc.coupler);
5874 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5875 		return err;
5876 	}
5877 
5878 	return 0;
5879 }
5880 
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5881 static int generic_coupler_attach(struct regulator_coupler *coupler,
5882 				  struct regulator_dev *rdev)
5883 {
5884 	if (rdev->coupling_desc.n_coupled > 2) {
5885 		rdev_err(rdev,
5886 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5887 		return -EPERM;
5888 	}
5889 
5890 	if (!rdev->constraints->always_on) {
5891 		rdev_err(rdev,
5892 			 "Coupling of a non always-on regulator is unimplemented\n");
5893 		return -ENOTSUPP;
5894 	}
5895 
5896 	return 0;
5897 }
5898 
5899 static struct regulator_coupler generic_regulator_coupler = {
5900 	.attach_regulator = generic_coupler_attach,
5901 };
5902 
5903 /**
5904  * regulator_register - register regulator
5905  * @dev: the device that drive the regulator
5906  * @regulator_desc: regulator to register
5907  * @cfg: runtime configuration for regulator
5908  *
5909  * Called by regulator drivers to register a regulator.
5910  *
5911  * Return: Pointer to a valid &struct regulator_dev on success or
5912  *	   an ERR_PTR() encoded negative error number on failure.
5913  */
5914 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5915 regulator_register(struct device *dev,
5916 		   const struct regulator_desc *regulator_desc,
5917 		   const struct regulator_config *cfg)
5918 {
5919 	const struct regulator_init_data *init_data;
5920 	struct regulator_config *config = NULL;
5921 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5922 	struct regulator_dev *rdev;
5923 	bool dangling_cfg_gpiod = false;
5924 	bool dangling_of_gpiod = false;
5925 	int ret, i;
5926 	bool resolved_early = false;
5927 
5928 	if (cfg == NULL)
5929 		return ERR_PTR(-EINVAL);
5930 	if (cfg->ena_gpiod)
5931 		dangling_cfg_gpiod = true;
5932 	if (regulator_desc == NULL) {
5933 		ret = -EINVAL;
5934 		goto rinse;
5935 	}
5936 
5937 	WARN_ON(!dev || !cfg->dev);
5938 
5939 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5940 		ret = -EINVAL;
5941 		goto rinse;
5942 	}
5943 
5944 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5945 	    regulator_desc->type != REGULATOR_CURRENT) {
5946 		ret = -EINVAL;
5947 		goto rinse;
5948 	}
5949 
5950 	/* Only one of each should be implemented */
5951 	WARN_ON(regulator_desc->ops->get_voltage &&
5952 		regulator_desc->ops->get_voltage_sel);
5953 	WARN_ON(regulator_desc->ops->set_voltage &&
5954 		regulator_desc->ops->set_voltage_sel);
5955 
5956 	/* If we're using selectors we must implement list_voltage. */
5957 	if (regulator_desc->ops->get_voltage_sel &&
5958 	    !regulator_desc->ops->list_voltage) {
5959 		ret = -EINVAL;
5960 		goto rinse;
5961 	}
5962 	if (regulator_desc->ops->set_voltage_sel &&
5963 	    !regulator_desc->ops->list_voltage) {
5964 		ret = -EINVAL;
5965 		goto rinse;
5966 	}
5967 
5968 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5969 	if (rdev == NULL) {
5970 		ret = -ENOMEM;
5971 		goto rinse;
5972 	}
5973 	device_initialize(&rdev->dev);
5974 	dev_set_drvdata(&rdev->dev, rdev);
5975 	rdev->dev.class = &regulator_class;
5976 	spin_lock_init(&rdev->err_lock);
5977 
5978 	/*
5979 	 * Duplicate the config so the driver could override it after
5980 	 * parsing init data.
5981 	 */
5982 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5983 	if (config == NULL) {
5984 		ret = -ENOMEM;
5985 		goto clean;
5986 	}
5987 
5988 	/*
5989 	 * DT may override the config->init_data provided if the platform
5990 	 * needs to do so. If so, config->init_data is completely ignored.
5991 	 */
5992 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5993 					       &rdev->dev.of_node);
5994 
5995 	/*
5996 	 * Sometimes not all resources are probed already so we need to take
5997 	 * that into account. This happens most the time if the ena_gpiod comes
5998 	 * from a gpio extender or something else.
5999 	 */
6000 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
6001 		ret = -EPROBE_DEFER;
6002 		goto clean;
6003 	}
6004 
6005 	/*
6006 	 * We need to keep track of any GPIO descriptor coming from the
6007 	 * device tree until we have handled it over to the core. If the
6008 	 * config that was passed in to this function DOES NOT contain
6009 	 * a descriptor, and the config after this call DOES contain
6010 	 * a descriptor, we definitely got one from parsing the device
6011 	 * tree.
6012 	 */
6013 	if (!cfg->ena_gpiod && config->ena_gpiod)
6014 		dangling_of_gpiod = true;
6015 	if (!init_data) {
6016 		init_data = config->init_data;
6017 		rdev->dev.of_node = of_node_get(config->of_node);
6018 	}
6019 
6020 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
6021 	rdev->reg_data = config->driver_data;
6022 	rdev->owner = regulator_desc->owner;
6023 	rdev->desc = regulator_desc;
6024 	if (config->regmap)
6025 		rdev->regmap = config->regmap;
6026 	else if (dev_get_regmap(dev, NULL))
6027 		rdev->regmap = dev_get_regmap(dev, NULL);
6028 	else if (dev->parent)
6029 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
6030 	INIT_LIST_HEAD(&rdev->consumer_list);
6031 	INIT_LIST_HEAD(&rdev->list);
6032 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
6033 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
6034 
6035 	if (init_data && init_data->supply_regulator)
6036 		rdev->supply_name = init_data->supply_regulator;
6037 	else if (regulator_desc->supply_name)
6038 		rdev->supply_name = regulator_desc->supply_name;
6039 
6040 	/* register with sysfs */
6041 	rdev->dev.parent = config->dev;
6042 	dev_set_name(&rdev->dev, "regulator.%lu",
6043 		    (unsigned long) atomic_inc_return(&regulator_no));
6044 
6045 	/* set regulator constraints */
6046 	if (init_data)
6047 		rdev->constraints = kmemdup(&init_data->constraints,
6048 					    sizeof(*rdev->constraints),
6049 					    GFP_KERNEL);
6050 	else
6051 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
6052 					    GFP_KERNEL);
6053 	if (!rdev->constraints) {
6054 		ret = -ENOMEM;
6055 		goto wash;
6056 	}
6057 
6058 	if (regulator_desc->init_cb) {
6059 		ret = regulator_desc->init_cb(rdev, config);
6060 		if (ret < 0)
6061 			goto wash;
6062 	}
6063 
6064 	if ((rdev->supply_name && !rdev->supply) &&
6065 		(rdev->constraints->always_on ||
6066 		 rdev->constraints->boot_on)) {
6067 		ret = regulator_resolve_supply(rdev);
6068 		if (ret)
6069 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
6070 					 ERR_PTR(ret));
6071 
6072 		resolved_early = true;
6073 	}
6074 
6075 	if (config->ena_gpiod) {
6076 		ret = regulator_ena_gpio_request(rdev, config);
6077 		if (ret != 0) {
6078 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
6079 				 ERR_PTR(ret));
6080 			goto wash;
6081 		}
6082 		/* The regulator core took over the GPIO descriptor */
6083 		dangling_cfg_gpiod = false;
6084 		dangling_of_gpiod = false;
6085 	}
6086 
6087 	ret = set_machine_constraints(rdev);
6088 	if (ret == -EPROBE_DEFER && !resolved_early) {
6089 		/* Regulator might be in bypass mode and so needs its supply
6090 		 * to set the constraints
6091 		 */
6092 		/* FIXME: this currently triggers a chicken-and-egg problem
6093 		 * when creating -SUPPLY symlink in sysfs to a regulator
6094 		 * that is just being created
6095 		 */
6096 		rdev_dbg(rdev, "will resolve supply early: %s\n",
6097 			 rdev->supply_name);
6098 		ret = regulator_resolve_supply(rdev);
6099 		if (!ret)
6100 			ret = set_machine_constraints(rdev);
6101 		else
6102 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
6103 				 ERR_PTR(ret));
6104 	}
6105 	if (ret < 0)
6106 		goto wash;
6107 
6108 	ret = regulator_init_coupling(rdev);
6109 	if (ret < 0)
6110 		goto wash;
6111 
6112 	/* add consumers devices */
6113 	if (init_data) {
6114 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
6115 			ret = set_consumer_device_supply(rdev,
6116 				init_data->consumer_supplies[i].dev_name,
6117 				init_data->consumer_supplies[i].supply);
6118 			if (ret < 0) {
6119 				dev_err(dev, "Failed to set supply %s\n",
6120 					init_data->consumer_supplies[i].supply);
6121 				goto unset_supplies;
6122 			}
6123 		}
6124 	}
6125 
6126 	if (!rdev->desc->ops->get_voltage &&
6127 	    !rdev->desc->ops->list_voltage &&
6128 	    !rdev->desc->fixed_uV)
6129 		rdev->is_switch = true;
6130 
6131 	ret = device_add(&rdev->dev);
6132 	if (ret != 0)
6133 		goto unset_supplies;
6134 
6135 	rdev_init_debugfs(rdev);
6136 
6137 	/* try to resolve regulators coupling since a new one was registered */
6138 	mutex_lock(&regulator_list_mutex);
6139 	regulator_resolve_coupling(rdev);
6140 	mutex_unlock(&regulator_list_mutex);
6141 
6142 	/* try to resolve regulators supply since a new one was registered */
6143 	class_for_each_device(&regulator_class, NULL, NULL,
6144 			      regulator_register_resolve_supply);
6145 	kfree(config);
6146 	return rdev;
6147 
6148 unset_supplies:
6149 	mutex_lock(&regulator_list_mutex);
6150 	unset_regulator_supplies(rdev);
6151 	regulator_remove_coupling(rdev);
6152 	mutex_unlock(&regulator_list_mutex);
6153 wash:
6154 	regulator_put(rdev->supply);
6155 	kfree(rdev->coupling_desc.coupled_rdevs);
6156 	mutex_lock(&regulator_list_mutex);
6157 	regulator_ena_gpio_free(rdev);
6158 	mutex_unlock(&regulator_list_mutex);
6159 clean:
6160 	if (dangling_of_gpiod)
6161 		gpiod_put(config->ena_gpiod);
6162 	kfree(config);
6163 	put_device(&rdev->dev);
6164 rinse:
6165 	if (dangling_cfg_gpiod)
6166 		gpiod_put(cfg->ena_gpiod);
6167 	return ERR_PTR(ret);
6168 }
6169 EXPORT_SYMBOL_GPL(regulator_register);
6170 
6171 /**
6172  * regulator_unregister - unregister regulator
6173  * @rdev: regulator to unregister
6174  *
6175  * Called by regulator drivers to unregister a regulator.
6176  */
regulator_unregister(struct regulator_dev * rdev)6177 void regulator_unregister(struct regulator_dev *rdev)
6178 {
6179 	if (rdev == NULL)
6180 		return;
6181 
6182 	if (rdev->supply) {
6183 		regulator_unregister_notifier(rdev->supply,
6184 					      &rdev->supply_fwd_nb);
6185 
6186 		while (rdev->use_count--)
6187 			regulator_disable(rdev->supply);
6188 		regulator_put(rdev->supply);
6189 	}
6190 
6191 	flush_work(&rdev->disable_work.work);
6192 
6193 	mutex_lock(&regulator_list_mutex);
6194 
6195 	WARN_ON(rdev->open_count);
6196 	regulator_remove_coupling(rdev);
6197 	unset_regulator_supplies(rdev);
6198 	list_del(&rdev->list);
6199 	regulator_ena_gpio_free(rdev);
6200 	device_unregister(&rdev->dev);
6201 
6202 	mutex_unlock(&regulator_list_mutex);
6203 }
6204 EXPORT_SYMBOL_GPL(regulator_unregister);
6205 
6206 #ifdef CONFIG_SUSPEND
6207 /**
6208  * regulator_suspend - prepare regulators for system wide suspend
6209  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
6210  *
6211  * Configure each regulator with it's suspend operating parameters for state.
6212  *
6213  * Return: 0 on success or a negative error number on failure.
6214  */
regulator_suspend(struct device * dev)6215 static int regulator_suspend(struct device *dev)
6216 {
6217 	struct regulator_dev *rdev = dev_to_rdev(dev);
6218 	suspend_state_t state = pm_suspend_target_state;
6219 	int ret;
6220 	const struct regulator_state *rstate;
6221 
6222 	rstate = regulator_get_suspend_state_check(rdev, state);
6223 	if (!rstate)
6224 		return 0;
6225 
6226 	regulator_lock(rdev);
6227 	ret = __suspend_set_state(rdev, rstate);
6228 	regulator_unlock(rdev);
6229 
6230 	return ret;
6231 }
6232 
regulator_resume(struct device * dev)6233 static int regulator_resume(struct device *dev)
6234 {
6235 	suspend_state_t state = pm_suspend_target_state;
6236 	struct regulator_dev *rdev = dev_to_rdev(dev);
6237 	struct regulator_state *rstate;
6238 	int ret = 0;
6239 
6240 	rstate = regulator_get_suspend_state(rdev, state);
6241 	if (rstate == NULL)
6242 		return 0;
6243 
6244 	/* Avoid grabbing the lock if we don't need to */
6245 	if (!rdev->desc->ops->resume)
6246 		return 0;
6247 
6248 	regulator_lock(rdev);
6249 
6250 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
6251 	    rstate->enabled == DISABLE_IN_SUSPEND)
6252 		ret = rdev->desc->ops->resume(rdev);
6253 
6254 	regulator_unlock(rdev);
6255 
6256 	return ret;
6257 }
6258 #else /* !CONFIG_SUSPEND */
6259 
6260 #define regulator_suspend	NULL
6261 #define regulator_resume	NULL
6262 
6263 #endif /* !CONFIG_SUSPEND */
6264 
6265 #ifdef CONFIG_PM
6266 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
6267 	.suspend	= regulator_suspend,
6268 	.resume		= regulator_resume,
6269 };
6270 #endif
6271 
6272 const struct class regulator_class = {
6273 	.name = "regulator",
6274 	.dev_release = regulator_dev_release,
6275 	.dev_groups = regulator_dev_groups,
6276 #ifdef CONFIG_PM
6277 	.pm = &regulator_pm_ops,
6278 #endif
6279 };
6280 /**
6281  * regulator_has_full_constraints - the system has fully specified constraints
6282  *
6283  * Calling this function will cause the regulator API to disable all
6284  * regulators which have a zero use count and don't have an always_on
6285  * constraint in a late_initcall.
6286  *
6287  * The intention is that this will become the default behaviour in a
6288  * future kernel release so users are encouraged to use this facility
6289  * now.
6290  */
regulator_has_full_constraints(void)6291 void regulator_has_full_constraints(void)
6292 {
6293 	has_full_constraints = 1;
6294 }
6295 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
6296 
6297 /**
6298  * rdev_get_drvdata - get rdev regulator driver data
6299  * @rdev: regulator
6300  *
6301  * Get rdev regulator driver private data. This call can be used in the
6302  * regulator driver context.
6303  *
6304  * Return: Pointer to regulator driver private data.
6305  */
rdev_get_drvdata(struct regulator_dev * rdev)6306 void *rdev_get_drvdata(struct regulator_dev *rdev)
6307 {
6308 	return rdev->reg_data;
6309 }
6310 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6311 
6312 /**
6313  * regulator_get_drvdata - get regulator driver data
6314  * @regulator: regulator
6315  *
6316  * Get regulator driver private data. This call can be used in the consumer
6317  * driver context when non API regulator specific functions need to be called.
6318  *
6319  * Return: Pointer to regulator driver private data.
6320  */
regulator_get_drvdata(struct regulator * regulator)6321 void *regulator_get_drvdata(struct regulator *regulator)
6322 {
6323 	return regulator->rdev->reg_data;
6324 }
6325 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6326 
6327 /**
6328  * regulator_set_drvdata - set regulator driver data
6329  * @regulator: regulator
6330  * @data: data
6331  */
regulator_set_drvdata(struct regulator * regulator,void * data)6332 void regulator_set_drvdata(struct regulator *regulator, void *data)
6333 {
6334 	regulator->rdev->reg_data = data;
6335 }
6336 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6337 
6338 /**
6339  * rdev_get_id - get regulator ID
6340  * @rdev: regulator
6341  *
6342  * Return: Regulator ID for @rdev.
6343  */
rdev_get_id(struct regulator_dev * rdev)6344 int rdev_get_id(struct regulator_dev *rdev)
6345 {
6346 	return rdev->desc->id;
6347 }
6348 EXPORT_SYMBOL_GPL(rdev_get_id);
6349 
rdev_get_dev(struct regulator_dev * rdev)6350 struct device *rdev_get_dev(struct regulator_dev *rdev)
6351 {
6352 	return &rdev->dev;
6353 }
6354 EXPORT_SYMBOL_GPL(rdev_get_dev);
6355 
rdev_get_regmap(struct regulator_dev * rdev)6356 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6357 {
6358 	return rdev->regmap;
6359 }
6360 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6361 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6362 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6363 {
6364 	return reg_init_data->driver_data;
6365 }
6366 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6367 
6368 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6369 static int supply_map_show(struct seq_file *sf, void *data)
6370 {
6371 	struct regulator_map *map;
6372 
6373 	list_for_each_entry(map, &regulator_map_list, list) {
6374 		seq_printf(sf, "%s -> %s.%s\n",
6375 				rdev_get_name(map->regulator), map->dev_name,
6376 				map->supply);
6377 	}
6378 
6379 	return 0;
6380 }
6381 DEFINE_SHOW_ATTRIBUTE(supply_map);
6382 
6383 struct summary_data {
6384 	struct seq_file *s;
6385 	struct regulator_dev *parent;
6386 	int level;
6387 };
6388 
6389 static void regulator_summary_show_subtree(struct seq_file *s,
6390 					   struct regulator_dev *rdev,
6391 					   int level);
6392 
regulator_summary_show_children(struct device * dev,void * data)6393 static int regulator_summary_show_children(struct device *dev, void *data)
6394 {
6395 	struct regulator_dev *rdev = dev_to_rdev(dev);
6396 	struct summary_data *summary_data = data;
6397 
6398 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6399 		regulator_summary_show_subtree(summary_data->s, rdev,
6400 					       summary_data->level + 1);
6401 
6402 	return 0;
6403 }
6404 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6405 static void regulator_summary_show_subtree(struct seq_file *s,
6406 					   struct regulator_dev *rdev,
6407 					   int level)
6408 {
6409 	struct regulation_constraints *c;
6410 	struct regulator *consumer;
6411 	struct summary_data summary_data;
6412 	unsigned int opmode;
6413 
6414 	if (!rdev)
6415 		return;
6416 
6417 	opmode = _regulator_get_mode_unlocked(rdev);
6418 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6419 		   level * 3 + 1, "",
6420 		   30 - level * 3, rdev_get_name(rdev),
6421 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6422 		   regulator_opmode_to_str(opmode));
6423 
6424 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6425 	seq_printf(s, "%5dmA ",
6426 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6427 
6428 	c = rdev->constraints;
6429 	if (c) {
6430 		switch (rdev->desc->type) {
6431 		case REGULATOR_VOLTAGE:
6432 			seq_printf(s, "%5dmV %5dmV ",
6433 				   c->min_uV / 1000, c->max_uV / 1000);
6434 			break;
6435 		case REGULATOR_CURRENT:
6436 			seq_printf(s, "%5dmA %5dmA ",
6437 				   c->min_uA / 1000, c->max_uA / 1000);
6438 			break;
6439 		}
6440 	}
6441 
6442 	seq_puts(s, "\n");
6443 
6444 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6445 		if (consumer->dev && consumer->dev->class == &regulator_class)
6446 			continue;
6447 
6448 		seq_printf(s, "%*s%-*s ",
6449 			   (level + 1) * 3 + 1, "",
6450 			   30 - (level + 1) * 3,
6451 			   consumer->supply_name ? consumer->supply_name :
6452 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6453 
6454 		switch (rdev->desc->type) {
6455 		case REGULATOR_VOLTAGE:
6456 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6457 				   consumer->enable_count,
6458 				   consumer->uA_load / 1000,
6459 				   consumer->uA_load && !consumer->enable_count ?
6460 				   '*' : ' ',
6461 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6462 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6463 			break;
6464 		case REGULATOR_CURRENT:
6465 			break;
6466 		}
6467 
6468 		seq_puts(s, "\n");
6469 	}
6470 
6471 	summary_data.s = s;
6472 	summary_data.level = level;
6473 	summary_data.parent = rdev;
6474 
6475 	class_for_each_device(&regulator_class, NULL, &summary_data,
6476 			      regulator_summary_show_children);
6477 }
6478 
6479 struct summary_lock_data {
6480 	struct ww_acquire_ctx *ww_ctx;
6481 	struct regulator_dev **new_contended_rdev;
6482 	struct regulator_dev **old_contended_rdev;
6483 };
6484 
regulator_summary_lock_one(struct device * dev,void * data)6485 static int regulator_summary_lock_one(struct device *dev, void *data)
6486 {
6487 	struct regulator_dev *rdev = dev_to_rdev(dev);
6488 	struct summary_lock_data *lock_data = data;
6489 	int ret = 0;
6490 
6491 	if (rdev != *lock_data->old_contended_rdev) {
6492 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6493 
6494 		if (ret == -EDEADLK)
6495 			*lock_data->new_contended_rdev = rdev;
6496 		else
6497 			WARN_ON_ONCE(ret);
6498 	} else {
6499 		*lock_data->old_contended_rdev = NULL;
6500 	}
6501 
6502 	return ret;
6503 }
6504 
regulator_summary_unlock_one(struct device * dev,void * data)6505 static int regulator_summary_unlock_one(struct device *dev, void *data)
6506 {
6507 	struct regulator_dev *rdev = dev_to_rdev(dev);
6508 	struct summary_lock_data *lock_data = data;
6509 
6510 	if (lock_data) {
6511 		if (rdev == *lock_data->new_contended_rdev)
6512 			return -EDEADLK;
6513 	}
6514 
6515 	regulator_unlock(rdev);
6516 
6517 	return 0;
6518 }
6519 
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6520 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6521 				      struct regulator_dev **new_contended_rdev,
6522 				      struct regulator_dev **old_contended_rdev)
6523 {
6524 	struct summary_lock_data lock_data;
6525 	int ret;
6526 
6527 	lock_data.ww_ctx = ww_ctx;
6528 	lock_data.new_contended_rdev = new_contended_rdev;
6529 	lock_data.old_contended_rdev = old_contended_rdev;
6530 
6531 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6532 				    regulator_summary_lock_one);
6533 	if (ret)
6534 		class_for_each_device(&regulator_class, NULL, &lock_data,
6535 				      regulator_summary_unlock_one);
6536 
6537 	return ret;
6538 }
6539 
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6540 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6541 {
6542 	struct regulator_dev *new_contended_rdev = NULL;
6543 	struct regulator_dev *old_contended_rdev = NULL;
6544 	int err;
6545 
6546 	mutex_lock(&regulator_list_mutex);
6547 
6548 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6549 
6550 	do {
6551 		if (new_contended_rdev) {
6552 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6553 			old_contended_rdev = new_contended_rdev;
6554 			old_contended_rdev->ref_cnt++;
6555 			old_contended_rdev->mutex_owner = current;
6556 		}
6557 
6558 		err = regulator_summary_lock_all(ww_ctx,
6559 						 &new_contended_rdev,
6560 						 &old_contended_rdev);
6561 
6562 		if (old_contended_rdev)
6563 			regulator_unlock(old_contended_rdev);
6564 
6565 	} while (err == -EDEADLK);
6566 
6567 	ww_acquire_done(ww_ctx);
6568 }
6569 
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6570 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6571 {
6572 	class_for_each_device(&regulator_class, NULL, NULL,
6573 			      regulator_summary_unlock_one);
6574 	ww_acquire_fini(ww_ctx);
6575 
6576 	mutex_unlock(&regulator_list_mutex);
6577 }
6578 
regulator_summary_show_roots(struct device * dev,void * data)6579 static int regulator_summary_show_roots(struct device *dev, void *data)
6580 {
6581 	struct regulator_dev *rdev = dev_to_rdev(dev);
6582 	struct seq_file *s = data;
6583 
6584 	if (!rdev->supply)
6585 		regulator_summary_show_subtree(s, rdev, 0);
6586 
6587 	return 0;
6588 }
6589 
regulator_summary_show(struct seq_file * s,void * data)6590 static int regulator_summary_show(struct seq_file *s, void *data)
6591 {
6592 	struct ww_acquire_ctx ww_ctx;
6593 
6594 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6595 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6596 
6597 	regulator_summary_lock(&ww_ctx);
6598 
6599 	class_for_each_device(&regulator_class, NULL, s,
6600 			      regulator_summary_show_roots);
6601 
6602 	regulator_summary_unlock(&ww_ctx);
6603 
6604 	return 0;
6605 }
6606 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6607 #endif /* CONFIG_DEBUG_FS */
6608 
regulator_init(void)6609 static int __init regulator_init(void)
6610 {
6611 	int ret;
6612 
6613 	ret = class_register(&regulator_class);
6614 
6615 	debugfs_root = debugfs_create_dir("regulator", NULL);
6616 	if (IS_ERR(debugfs_root))
6617 		pr_debug("regulator: Failed to create debugfs directory\n");
6618 
6619 #ifdef CONFIG_DEBUG_FS
6620 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6621 			    &supply_map_fops);
6622 
6623 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6624 			    NULL, &regulator_summary_fops);
6625 #endif
6626 	regulator_dummy_init();
6627 
6628 	regulator_coupler_register(&generic_regulator_coupler);
6629 
6630 	return ret;
6631 }
6632 
6633 /* init early to allow our consumers to complete system booting */
6634 core_initcall(regulator_init);
6635 
regulator_late_cleanup(struct device * dev,void * data)6636 static int regulator_late_cleanup(struct device *dev, void *data)
6637 {
6638 	struct regulator_dev *rdev = dev_to_rdev(dev);
6639 	struct regulation_constraints *c = rdev->constraints;
6640 	int ret;
6641 
6642 	if (c && c->always_on)
6643 		return 0;
6644 
6645 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6646 		return 0;
6647 
6648 	regulator_lock(rdev);
6649 
6650 	if (rdev->use_count)
6651 		goto unlock;
6652 
6653 	/* If reading the status failed, assume that it's off. */
6654 	if (_regulator_is_enabled(rdev) <= 0)
6655 		goto unlock;
6656 
6657 	if (have_full_constraints()) {
6658 		/* We log since this may kill the system if it goes
6659 		 * wrong.
6660 		 */
6661 		rdev_info(rdev, "disabling\n");
6662 		ret = _regulator_do_disable(rdev);
6663 		if (ret != 0)
6664 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6665 	} else {
6666 		/* The intention is that in future we will
6667 		 * assume that full constraints are provided
6668 		 * so warn even if we aren't going to do
6669 		 * anything here.
6670 		 */
6671 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6672 	}
6673 
6674 unlock:
6675 	regulator_unlock(rdev);
6676 
6677 	return 0;
6678 }
6679 
6680 static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6681 static int __init regulator_ignore_unused_setup(char *__unused)
6682 {
6683 	regulator_ignore_unused = true;
6684 	return 1;
6685 }
6686 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6687 
regulator_init_complete_work_function(struct work_struct * work)6688 static void regulator_init_complete_work_function(struct work_struct *work)
6689 {
6690 	/*
6691 	 * Regulators may had failed to resolve their input supplies
6692 	 * when were registered, either because the input supply was
6693 	 * not registered yet or because its parent device was not
6694 	 * bound yet. So attempt to resolve the input supplies for
6695 	 * pending regulators before trying to disable unused ones.
6696 	 */
6697 	class_for_each_device(&regulator_class, NULL, NULL,
6698 			      regulator_register_resolve_supply);
6699 
6700 	/*
6701 	 * For debugging purposes, it may be useful to prevent unused
6702 	 * regulators from being disabled.
6703 	 */
6704 	if (regulator_ignore_unused) {
6705 		pr_warn("regulator: Not disabling unused regulators\n");
6706 		return;
6707 	}
6708 
6709 	/* If we have a full configuration then disable any regulators
6710 	 * we have permission to change the status for and which are
6711 	 * not in use or always_on.  This is effectively the default
6712 	 * for DT and ACPI as they have full constraints.
6713 	 */
6714 	class_for_each_device(&regulator_class, NULL, NULL,
6715 			      regulator_late_cleanup);
6716 }
6717 
6718 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6719 			    regulator_init_complete_work_function);
6720 
regulator_init_complete(void)6721 static int __init regulator_init_complete(void)
6722 {
6723 	/*
6724 	 * Since DT doesn't provide an idiomatic mechanism for
6725 	 * enabling full constraints and since it's much more natural
6726 	 * with DT to provide them just assume that a DT enabled
6727 	 * system has full constraints.
6728 	 */
6729 	if (of_have_populated_dt())
6730 		has_full_constraints = true;
6731 
6732 	/*
6733 	 * We punt completion for an arbitrary amount of time since
6734 	 * systems like distros will load many drivers from userspace
6735 	 * so consumers might not always be ready yet, this is
6736 	 * particularly an issue with laptops where this might bounce
6737 	 * the display off then on.  Ideally we'd get a notification
6738 	 * from userspace when this happens but we don't so just wait
6739 	 * a bit and hope we waited long enough.  It'd be better if
6740 	 * we'd only do this on systems that need it, and a kernel
6741 	 * command line option might be useful.
6742 	 */
6743 	schedule_delayed_work(&regulator_init_complete_work,
6744 			      msecs_to_jiffies(30000));
6745 
6746 	return 0;
6747 }
6748 late_initcall_sync(regulator_init_complete);
6749