1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017 Free Electrons
4 * Copyright (C) 2017 NextThing Co
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 */
8
9 #include <linux/slab.h>
10
11 #include "internals.h"
12
13 /*
14 * Special Micron status bit 3 indicates that the block has been
15 * corrected by on-die ECC and should be rewritten.
16 */
17 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
18
19 /*
20 * On chips with 8-bit ECC and additional bit can be used to distinguish
21 * cases where a errors were corrected without needing a rewrite
22 *
23 * Bit 4 Bit 3 Bit 0 Description
24 * ----- ----- ----- -----------
25 * 0 0 0 No Errors
26 * 0 0 1 Multiple uncorrected errors
27 * 0 1 0 4 - 6 errors corrected, recommend rewrite
28 * 0 1 1 Reserved
29 * 1 0 0 1 - 3 errors corrected
30 * 1 0 1 Reserved
31 * 1 1 0 7 - 8 errors corrected, recommend rewrite
32 */
33 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
34 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
35 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
36 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
37 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
38
39 struct nand_onfi_vendor_micron {
40 u8 two_plane_read;
41 u8 read_cache;
42 u8 read_unique_id;
43 u8 dq_imped;
44 u8 dq_imped_num_settings;
45 u8 dq_imped_feat_addr;
46 u8 rb_pulldown_strength;
47 u8 rb_pulldown_strength_feat_addr;
48 u8 rb_pulldown_strength_num_settings;
49 u8 otp_mode;
50 u8 otp_page_start;
51 u8 otp_data_prot_addr;
52 u8 otp_num_pages;
53 u8 otp_feat_addr;
54 u8 read_retry_options;
55 u8 reserved[72];
56 u8 param_revision;
57 } __packed;
58
59 struct micron_on_die_ecc {
60 bool forced;
61 bool enabled;
62 void *rawbuf;
63 };
64
65 struct micron_nand {
66 struct micron_on_die_ecc ecc;
67 };
68
micron_nand_setup_read_retry(struct nand_chip * chip,int retry_mode)69 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
70 {
71 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
72
73 return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
74 }
75
76 /*
77 * Configure chip properties from Micron vendor-specific ONFI table
78 */
micron_nand_onfi_init(struct nand_chip * chip)79 static int micron_nand_onfi_init(struct nand_chip *chip)
80 {
81 struct nand_parameters *p = &chip->parameters;
82
83 if (p->onfi) {
84 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
85
86 chip->read_retries = micron->read_retry_options;
87 chip->ops.setup_read_retry = micron_nand_setup_read_retry;
88 }
89
90 if (p->supports_set_get_features) {
91 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
92 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
93 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
94 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
95 }
96
97 return 0;
98 }
99
micron_nand_on_die_4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)100 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
101 int section,
102 struct mtd_oob_region *oobregion)
103 {
104 if (section >= 4)
105 return -ERANGE;
106
107 oobregion->offset = (section * 16) + 8;
108 oobregion->length = 8;
109
110 return 0;
111 }
112
micron_nand_on_die_4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)113 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
114 int section,
115 struct mtd_oob_region *oobregion)
116 {
117 if (section >= 4)
118 return -ERANGE;
119
120 oobregion->offset = (section * 16) + 2;
121 oobregion->length = 6;
122
123 return 0;
124 }
125
126 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
127 .ecc = micron_nand_on_die_4_ooblayout_ecc,
128 .free = micron_nand_on_die_4_ooblayout_free,
129 };
130
micron_nand_on_die_8_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)131 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
132 int section,
133 struct mtd_oob_region *oobregion)
134 {
135 struct nand_chip *chip = mtd_to_nand(mtd);
136
137 if (section)
138 return -ERANGE;
139
140 oobregion->offset = mtd->oobsize - chip->ecc.total;
141 oobregion->length = chip->ecc.total;
142
143 return 0;
144 }
145
micron_nand_on_die_8_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)146 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
147 int section,
148 struct mtd_oob_region *oobregion)
149 {
150 struct nand_chip *chip = mtd_to_nand(mtd);
151
152 if (section)
153 return -ERANGE;
154
155 oobregion->offset = 2;
156 oobregion->length = mtd->oobsize - chip->ecc.total - 2;
157
158 return 0;
159 }
160
161 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
162 .ecc = micron_nand_on_die_8_ooblayout_ecc,
163 .free = micron_nand_on_die_8_ooblayout_free,
164 };
165
micron_nand_on_die_ecc_setup(struct nand_chip * chip,bool enable)166 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
167 {
168 struct micron_nand *micron = nand_get_manufacturer_data(chip);
169 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
170 int ret;
171
172 if (micron->ecc.forced)
173 return 0;
174
175 if (micron->ecc.enabled == enable)
176 return 0;
177
178 if (enable)
179 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
180
181 ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
182 if (!ret)
183 micron->ecc.enabled = enable;
184
185 return ret;
186 }
187
micron_nand_on_die_ecc_status_4(struct nand_chip * chip,u8 status,void * buf,int page,int oob_required)188 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
189 void *buf, int page,
190 int oob_required)
191 {
192 struct micron_nand *micron = nand_get_manufacturer_data(chip);
193 struct mtd_info *mtd = nand_to_mtd(chip);
194 unsigned int step, max_bitflips = 0;
195 bool use_datain = false;
196 int ret;
197
198 if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
199 if (status & NAND_STATUS_FAIL)
200 mtd->ecc_stats.failed++;
201
202 return 0;
203 }
204
205 /*
206 * The internal ECC doesn't tell us the number of bitflips that have
207 * been corrected, but tells us if it recommends to rewrite the block.
208 * If it's the case, we need to read the page in raw mode and compare
209 * its content to the corrected version to extract the actual number of
210 * bitflips.
211 * But before we do that, we must make sure we have all OOB bytes read
212 * in non-raw mode, even if the user did not request those bytes.
213 */
214 if (!oob_required) {
215 /*
216 * We first check which operation is supported by the controller
217 * before running it. This trick makes it possible to support
218 * all controllers, even the most constraints, without almost
219 * any performance hit.
220 *
221 * TODO: could be enhanced to avoid repeating the same check
222 * over and over in the fast path.
223 */
224 if (!nand_has_exec_op(chip) ||
225 !nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
226 true))
227 use_datain = true;
228
229 if (use_datain)
230 ret = nand_read_data_op(chip, chip->oob_poi,
231 mtd->oobsize, false, false);
232 else
233 ret = nand_change_read_column_op(chip, mtd->writesize,
234 chip->oob_poi,
235 mtd->oobsize, false);
236 if (ret)
237 return ret;
238 }
239
240 micron_nand_on_die_ecc_setup(chip, false);
241
242 ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
243 mtd->writesize + mtd->oobsize);
244 if (ret)
245 return ret;
246
247 for (step = 0; step < chip->ecc.steps; step++) {
248 unsigned int offs, i, nbitflips = 0;
249 u8 *rawbuf, *corrbuf;
250
251 offs = step * chip->ecc.size;
252 rawbuf = micron->ecc.rawbuf + offs;
253 corrbuf = buf + offs;
254
255 for (i = 0; i < chip->ecc.size; i++)
256 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
257
258 offs = (step * 16) + 4;
259 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
260 corrbuf = chip->oob_poi + offs;
261
262 for (i = 0; i < chip->ecc.bytes + 4; i++)
263 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
264
265 if (WARN_ON(nbitflips > chip->ecc.strength))
266 return -EINVAL;
267
268 max_bitflips = max(nbitflips, max_bitflips);
269 mtd->ecc_stats.corrected += nbitflips;
270 }
271
272 return max_bitflips;
273 }
274
micron_nand_on_die_ecc_status_8(struct nand_chip * chip,u8 status)275 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
276 {
277 struct mtd_info *mtd = nand_to_mtd(chip);
278
279 /*
280 * With 8/512 we have more information but still don't know precisely
281 * how many bit-flips were seen.
282 */
283 switch (status & NAND_ECC_STATUS_MASK) {
284 case NAND_ECC_STATUS_UNCORRECTABLE:
285 mtd->ecc_stats.failed++;
286 return 0;
287 case NAND_ECC_STATUS_1_3_CORRECTED:
288 mtd->ecc_stats.corrected += 3;
289 return 3;
290 case NAND_ECC_STATUS_4_6_CORRECTED:
291 mtd->ecc_stats.corrected += 6;
292 /* rewrite recommended */
293 return 6;
294 case NAND_ECC_STATUS_7_8_CORRECTED:
295 mtd->ecc_stats.corrected += 8;
296 /* rewrite recommended */
297 return 8;
298 default:
299 return 0;
300 }
301 }
302
303 static int
micron_nand_read_page_on_die_ecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)304 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
305 int oob_required, int page)
306 {
307 struct mtd_info *mtd = nand_to_mtd(chip);
308 bool use_datain = false;
309 u8 status;
310 int ret, max_bitflips = 0;
311
312 ret = micron_nand_on_die_ecc_setup(chip, true);
313 if (ret)
314 return ret;
315
316 ret = nand_read_page_op(chip, page, 0, NULL, 0);
317 if (ret)
318 goto out;
319
320 ret = nand_status_op(chip, &status);
321 if (ret)
322 goto out;
323
324 /*
325 * We first check which operation is supported by the controller before
326 * running it. This trick makes it possible to support all controllers,
327 * even the most constraints, without almost any performance hit.
328 *
329 * TODO: could be enhanced to avoid repeating the same check over and
330 * over in the fast path.
331 */
332 if (!nand_has_exec_op(chip) ||
333 !nand_read_data_op(chip, buf, mtd->writesize, false, true))
334 use_datain = true;
335
336 if (use_datain) {
337 ret = nand_exit_status_op(chip);
338 if (ret)
339 goto out;
340
341 ret = nand_read_data_op(chip, buf, mtd->writesize, false,
342 false);
343 if (!ret && oob_required)
344 ret = nand_read_data_op(chip, chip->oob_poi,
345 mtd->oobsize, false, false);
346 } else {
347 ret = nand_change_read_column_op(chip, 0, buf, mtd->writesize,
348 false);
349 if (!ret && oob_required)
350 ret = nand_change_read_column_op(chip, mtd->writesize,
351 chip->oob_poi,
352 mtd->oobsize, false);
353 }
354
355 if (chip->ecc.strength == 4)
356 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
357 buf, page,
358 oob_required);
359 else
360 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
361
362 out:
363 micron_nand_on_die_ecc_setup(chip, false);
364
365 return ret ? ret : max_bitflips;
366 }
367
368 static int
micron_nand_write_page_on_die_ecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)369 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
370 int oob_required, int page)
371 {
372 int ret;
373
374 ret = micron_nand_on_die_ecc_setup(chip, true);
375 if (ret)
376 return ret;
377
378 ret = nand_write_page_raw(chip, buf, oob_required, page);
379 micron_nand_on_die_ecc_setup(chip, false);
380
381 return ret;
382 }
383
384 enum {
385 /* The NAND flash doesn't support on-die ECC */
386 MICRON_ON_DIE_UNSUPPORTED,
387
388 /*
389 * The NAND flash supports on-die ECC and it can be
390 * enabled/disabled by a set features command.
391 */
392 MICRON_ON_DIE_SUPPORTED,
393
394 /*
395 * The NAND flash supports on-die ECC, and it cannot be
396 * disabled.
397 */
398 MICRON_ON_DIE_MANDATORY,
399 };
400
401 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
402 #define MICRON_ID_ECC_ENABLED BIT(7)
403
404 /*
405 * Try to detect if the NAND support on-die ECC. To do this, we enable
406 * the feature, and read back if it has been enabled as expected. We
407 * also check if it can be disabled, because some Micron NANDs do not
408 * allow disabling the on-die ECC and we don't support such NANDs for
409 * now.
410 *
411 * This function also has the side effect of disabling on-die ECC if
412 * it had been left enabled by the firmware/bootloader.
413 */
micron_supports_on_die_ecc(struct nand_chip * chip)414 static int micron_supports_on_die_ecc(struct nand_chip *chip)
415 {
416 const struct nand_ecc_props *requirements =
417 nanddev_get_ecc_requirements(&chip->base);
418 u8 id[5];
419 int ret;
420
421 if (!chip->parameters.onfi)
422 return MICRON_ON_DIE_UNSUPPORTED;
423
424 if (nanddev_bits_per_cell(&chip->base) != 1)
425 return MICRON_ON_DIE_UNSUPPORTED;
426
427 /*
428 * We only support on-die ECC of 4/512 or 8/512
429 */
430 if (requirements->strength != 4 && requirements->strength != 8)
431 return MICRON_ON_DIE_UNSUPPORTED;
432
433 /* 0x2 means on-die ECC is available. */
434 if (chip->id.len != 5 ||
435 (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
436 return MICRON_ON_DIE_UNSUPPORTED;
437
438 /*
439 * It seems that there are devices which do not support ECC officially.
440 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
441 * enabling the ECC feature but don't reflect that to the READ_ID table.
442 * So we have to guarantee that we disable the ECC feature directly
443 * after we did the READ_ID table command. Later we can evaluate the
444 * ECC_ENABLE support.
445 */
446 ret = micron_nand_on_die_ecc_setup(chip, true);
447 if (ret)
448 return MICRON_ON_DIE_UNSUPPORTED;
449
450 ret = nand_readid_op(chip, 0, id, sizeof(id));
451 if (ret)
452 return MICRON_ON_DIE_UNSUPPORTED;
453
454 ret = micron_nand_on_die_ecc_setup(chip, false);
455 if (ret)
456 return MICRON_ON_DIE_UNSUPPORTED;
457
458 if (!(id[4] & MICRON_ID_ECC_ENABLED))
459 return MICRON_ON_DIE_UNSUPPORTED;
460
461 ret = nand_readid_op(chip, 0, id, sizeof(id));
462 if (ret)
463 return MICRON_ON_DIE_UNSUPPORTED;
464
465 if (id[4] & MICRON_ID_ECC_ENABLED)
466 return MICRON_ON_DIE_MANDATORY;
467
468 /*
469 * We only support on-die ECC of 4/512 or 8/512
470 */
471 if (requirements->strength != 4 && requirements->strength != 8)
472 return MICRON_ON_DIE_UNSUPPORTED;
473
474 return MICRON_ON_DIE_SUPPORTED;
475 }
476
micron_nand_init(struct nand_chip * chip)477 static int micron_nand_init(struct nand_chip *chip)
478 {
479 struct nand_device *base = &chip->base;
480 const struct nand_ecc_props *requirements =
481 nanddev_get_ecc_requirements(base);
482 struct mtd_info *mtd = nand_to_mtd(chip);
483 struct micron_nand *micron;
484 int ondie;
485 int ret;
486
487 micron = kzalloc(sizeof(*micron), GFP_KERNEL);
488 if (!micron)
489 return -ENOMEM;
490
491 nand_set_manufacturer_data(chip, micron);
492
493 ret = micron_nand_onfi_init(chip);
494 if (ret)
495 goto err_free_manuf_data;
496
497 chip->options |= NAND_BBM_FIRSTPAGE;
498
499 if (mtd->writesize == 2048)
500 chip->options |= NAND_BBM_SECONDPAGE;
501
502 ondie = micron_supports_on_die_ecc(chip);
503
504 if (ondie == MICRON_ON_DIE_MANDATORY &&
505 chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) {
506 pr_err("On-die ECC forcefully enabled, not supported\n");
507 ret = -EINVAL;
508 goto err_free_manuf_data;
509 }
510
511 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) {
512 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
513 pr_err("On-die ECC selected but not supported\n");
514 ret = -EINVAL;
515 goto err_free_manuf_data;
516 }
517
518 if (ondie == MICRON_ON_DIE_MANDATORY) {
519 micron->ecc.forced = true;
520 micron->ecc.enabled = true;
521 }
522
523 /*
524 * In case of 4bit on-die ECC, we need a buffer to store a
525 * page dumped in raw mode so that we can compare its content
526 * to the same page after ECC correction happened and extract
527 * the real number of bitflips from this comparison.
528 * That's not needed for 8-bit ECC, because the status expose
529 * a better approximation of the number of bitflips in a page.
530 */
531 if (requirements->strength == 4) {
532 micron->ecc.rawbuf = kmalloc(mtd->writesize +
533 mtd->oobsize,
534 GFP_KERNEL);
535 if (!micron->ecc.rawbuf) {
536 ret = -ENOMEM;
537 goto err_free_manuf_data;
538 }
539 }
540
541 if (requirements->strength == 4)
542 mtd_set_ooblayout(mtd,
543 µn_nand_on_die_4_ooblayout_ops);
544 else
545 mtd_set_ooblayout(mtd,
546 µn_nand_on_die_8_ooblayout_ops);
547
548 chip->ecc.bytes = requirements->strength * 2;
549 chip->ecc.size = 512;
550 chip->ecc.strength = requirements->strength;
551 chip->ecc.algo = NAND_ECC_ALGO_BCH;
552 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
553 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
554
555 if (ondie == MICRON_ON_DIE_MANDATORY) {
556 chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
557 chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
558 } else {
559 if (!chip->ecc.read_page_raw)
560 chip->ecc.read_page_raw = nand_read_page_raw;
561 if (!chip->ecc.write_page_raw)
562 chip->ecc.write_page_raw = nand_write_page_raw;
563 }
564 }
565
566 return 0;
567
568 err_free_manuf_data:
569 kfree(micron->ecc.rawbuf);
570 kfree(micron);
571
572 return ret;
573 }
574
micron_nand_cleanup(struct nand_chip * chip)575 static void micron_nand_cleanup(struct nand_chip *chip)
576 {
577 struct micron_nand *micron = nand_get_manufacturer_data(chip);
578
579 kfree(micron->ecc.rawbuf);
580 kfree(micron);
581 }
582
micron_fixup_onfi_param_page(struct nand_chip * chip,struct nand_onfi_params * p)583 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
584 struct nand_onfi_params *p)
585 {
586 /*
587 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
588 * revision number field of the ONFI parameter page. Assume ONFI
589 * version 1.0 if the revision number is 00 00.
590 */
591 if (le16_to_cpu(p->revision) == 0)
592 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
593 }
594
595 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
596 .init = micron_nand_init,
597 .cleanup = micron_nand_cleanup,
598 .fixup_onfi_param_page = micron_fixup_onfi_param_page,
599 };
600