1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32
33 #include <crypto/sha2.h>
34
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42
43 #include "internal.h"
44
45 struct ucode_patch {
46 struct list_head plist;
47 void *data;
48 unsigned int size;
49 u32 patch_id;
50 u16 equiv_cpu;
51 };
52
53 static LIST_HEAD(microcode_cache);
54
55 #define UCODE_MAGIC 0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000
57 #define UCODE_UCODE_TYPE 0x00000001
58
59 #define SECTION_HDR_SIZE 8
60 #define CONTAINER_HDR_SZ 12
61
62 struct equiv_cpu_entry {
63 u32 installed_cpu;
64 u32 fixed_errata_mask;
65 u32 fixed_errata_compare;
66 u16 equiv_cpu;
67 u16 res;
68 } __packed;
69
70 struct microcode_header_amd {
71 u32 data_code;
72 u32 patch_id;
73 u16 mc_patch_data_id;
74 u8 mc_patch_data_len;
75 u8 init_flag;
76 u32 mc_patch_data_checksum;
77 u32 nb_dev_id;
78 u32 sb_dev_id;
79 u16 processor_rev_id;
80 u8 nb_rev_id;
81 u8 sb_rev_id;
82 u8 bios_api_rev;
83 u8 reserved1[3];
84 u32 match_reg[8];
85 } __packed;
86
87 struct microcode_amd {
88 struct microcode_header_amd hdr;
89 unsigned int mpb[];
90 };
91
92 static struct equiv_cpu_table {
93 unsigned int num_entries;
94 struct equiv_cpu_entry *entry;
95 } equiv_table;
96
97 union zen_patch_rev {
98 struct {
99 __u32 rev : 8,
100 stepping : 4,
101 model : 4,
102 __reserved : 4,
103 ext_model : 4,
104 ext_fam : 8;
105 };
106 __u32 ucode_rev;
107 };
108
109 union cpuid_1_eax {
110 struct {
111 __u32 stepping : 4,
112 model : 4,
113 family : 4,
114 __reserved0 : 4,
115 ext_model : 4,
116 ext_fam : 8,
117 __reserved1 : 4;
118 };
119 __u32 full;
120 };
121
122 /*
123 * This points to the current valid container of microcode patches which we will
124 * save from the initrd/builtin before jettisoning its contents. @mc is the
125 * microcode patch we found to match.
126 */
127 struct cont_desc {
128 struct microcode_amd *mc;
129 u32 psize;
130 u8 *data;
131 size_t size;
132 };
133
134 /*
135 * Microcode patch container file is prepended to the initrd in cpio
136 * format. See Documentation/arch/x86/microcode.rst
137 */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140
141 /*
142 * This is CPUID(1).EAX on the BSP. It is used in two ways:
143 *
144 * 1. To ignore the equivalence table on Zen1 and newer.
145 *
146 * 2. To match which patches to load because the patch revision ID
147 * already contains the f/m/s for which the microcode is destined
148 * for.
149 */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151
152 static bool sha_check = true;
153
154 struct patch_digest {
155 u32 patch_id;
156 u8 sha256[SHA256_DIGEST_SIZE];
157 };
158
159 #include "amd_shas.c"
160
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 struct patch_digest *pd = (struct patch_digest *)elem;
164 u32 patch_id = *(u32 *)key;
165
166 if (patch_id == pd->patch_id)
167 return 0;
168 else if (patch_id < pd->patch_id)
169 return -1;
170 else
171 return 1;
172 }
173
cpuid_to_ucode_rev(unsigned int val)174 static u32 cpuid_to_ucode_rev(unsigned int val)
175 {
176 union zen_patch_rev p = {};
177 union cpuid_1_eax c;
178
179 c.full = val;
180
181 p.stepping = c.stepping;
182 p.model = c.model;
183 p.ext_model = c.ext_model;
184 p.ext_fam = c.ext_fam;
185
186 return p.ucode_rev;
187 }
188
need_sha_check(u32 cur_rev)189 static bool need_sha_check(u32 cur_rev)
190 {
191 if (!cur_rev) {
192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
194 }
195
196 switch (cur_rev >> 8) {
197 case 0x80012: return cur_rev <= 0x800126f; break;
198 case 0x80082: return cur_rev <= 0x800820f; break;
199 case 0x83010: return cur_rev <= 0x830107c; break;
200 case 0x86001: return cur_rev <= 0x860010e; break;
201 case 0x86081: return cur_rev <= 0x8608108; break;
202 case 0x87010: return cur_rev <= 0x8701034; break;
203 case 0x8a000: return cur_rev <= 0x8a0000a; break;
204 case 0xa0010: return cur_rev <= 0xa00107a; break;
205 case 0xa0011: return cur_rev <= 0xa0011da; break;
206 case 0xa0012: return cur_rev <= 0xa001243; break;
207 case 0xa0082: return cur_rev <= 0xa00820e; break;
208 case 0xa1011: return cur_rev <= 0xa101153; break;
209 case 0xa1012: return cur_rev <= 0xa10124e; break;
210 case 0xa1081: return cur_rev <= 0xa108109; break;
211 case 0xa2010: return cur_rev <= 0xa20102f; break;
212 case 0xa2012: return cur_rev <= 0xa201212; break;
213 case 0xa4041: return cur_rev <= 0xa404109; break;
214 case 0xa5000: return cur_rev <= 0xa500013; break;
215 case 0xa6012: return cur_rev <= 0xa60120a; break;
216 case 0xa7041: return cur_rev <= 0xa704109; break;
217 case 0xa7052: return cur_rev <= 0xa705208; break;
218 case 0xa7080: return cur_rev <= 0xa708009; break;
219 case 0xa70c0: return cur_rev <= 0xa70C009; break;
220 case 0xaa001: return cur_rev <= 0xaa00116; break;
221 case 0xaa002: return cur_rev <= 0xaa00218; break;
222 case 0xb0021: return cur_rev <= 0xb002146; break;
223 case 0xb1010: return cur_rev <= 0xb101046; break;
224 case 0xb2040: return cur_rev <= 0xb204031; break;
225 case 0xb4040: return cur_rev <= 0xb404031; break;
226 case 0xb6000: return cur_rev <= 0xb600031; break;
227 case 0xb7000: return cur_rev <= 0xb700031; break;
228 default: break;
229 }
230
231 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
232 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
233 return true;
234 }
235
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)236 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
237 {
238 struct patch_digest *pd = NULL;
239 u8 digest[SHA256_DIGEST_SIZE];
240 int i;
241
242 if (x86_family(bsp_cpuid_1_eax) < 0x17)
243 return true;
244
245 if (!need_sha_check(cur_rev))
246 return true;
247
248 if (!sha_check)
249 return true;
250
251 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
252 if (!pd) {
253 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
254 return false;
255 }
256
257 sha256(data, len, digest);
258
259 if (memcmp(digest, pd->sha256, sizeof(digest))) {
260 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
261
262 for (i = 0; i < SHA256_DIGEST_SIZE; i++)
263 pr_cont("0x%x ", digest[i]);
264 pr_info("\n");
265
266 return false;
267 }
268
269 return true;
270 }
271
ucode_rev_to_cpuid(unsigned int val)272 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
273 {
274 union zen_patch_rev p;
275 union cpuid_1_eax c;
276
277 p.ucode_rev = val;
278 c.full = 0;
279
280 c.stepping = p.stepping;
281 c.model = p.model;
282 c.ext_model = p.ext_model;
283 c.family = 0xf;
284 c.ext_fam = p.ext_fam;
285
286 return c;
287 }
288
get_patch_level(void)289 static u32 get_patch_level(void)
290 {
291 u32 rev, dummy __always_unused;
292
293 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) {
294 int cpu = smp_processor_id();
295
296 if (!microcode_rev[cpu]) {
297 if (!base_rev)
298 base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
299
300 microcode_rev[cpu] = base_rev;
301
302 ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev);
303 }
304
305 return microcode_rev[cpu];
306 }
307
308 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
309
310 return rev;
311 }
312
find_equiv_id(struct equiv_cpu_table * et,u32 sig)313 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
314 {
315 unsigned int i;
316
317 /* Zen and newer do not need an equivalence table. */
318 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
319 return 0;
320
321 if (!et || !et->num_entries)
322 return 0;
323
324 for (i = 0; i < et->num_entries; i++) {
325 struct equiv_cpu_entry *e = &et->entry[i];
326
327 if (sig == e->installed_cpu)
328 return e->equiv_cpu;
329 }
330 return 0;
331 }
332
333 /*
334 * Check whether there is a valid microcode container file at the beginning
335 * of @buf of size @buf_size.
336 */
verify_container(const u8 * buf,size_t buf_size)337 static bool verify_container(const u8 *buf, size_t buf_size)
338 {
339 u32 cont_magic;
340
341 if (buf_size <= CONTAINER_HDR_SZ) {
342 ucode_dbg("Truncated microcode container header.\n");
343 return false;
344 }
345
346 cont_magic = *(const u32 *)buf;
347 if (cont_magic != UCODE_MAGIC) {
348 ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic);
349 return false;
350 }
351
352 return true;
353 }
354
355 /*
356 * Check whether there is a valid, non-truncated CPU equivalence table at the
357 * beginning of @buf of size @buf_size.
358 */
verify_equivalence_table(const u8 * buf,size_t buf_size)359 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
360 {
361 const u32 *hdr = (const u32 *)buf;
362 u32 cont_type, equiv_tbl_len;
363
364 if (!verify_container(buf, buf_size))
365 return false;
366
367 /* Zen and newer do not need an equivalence table. */
368 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
369 return true;
370
371 cont_type = hdr[1];
372 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
373 ucode_dbg("Wrong microcode container equivalence table type: %u.\n",
374 cont_type);
375 return false;
376 }
377
378 buf_size -= CONTAINER_HDR_SZ;
379
380 equiv_tbl_len = hdr[2];
381 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
382 buf_size < equiv_tbl_len) {
383 ucode_dbg("Truncated equivalence table.\n");
384 return false;
385 }
386
387 return true;
388 }
389
390 /*
391 * Check whether there is a valid, non-truncated microcode patch section at the
392 * beginning of @buf of size @buf_size.
393 *
394 * On success, @sh_psize returns the patch size according to the section header,
395 * to the caller.
396 */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)397 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
398 {
399 u32 p_type, p_size;
400 const u32 *hdr;
401
402 if (buf_size < SECTION_HDR_SIZE) {
403 ucode_dbg("Truncated patch section.\n");
404 return false;
405 }
406
407 hdr = (const u32 *)buf;
408 p_type = hdr[0];
409 p_size = hdr[1];
410
411 if (p_type != UCODE_UCODE_TYPE) {
412 ucode_dbg("Invalid type field (0x%x) in container file section header.\n",
413 p_type);
414 return false;
415 }
416
417 if (p_size < sizeof(struct microcode_header_amd)) {
418 ucode_dbg("Patch of size %u too short.\n", p_size);
419 return false;
420 }
421
422 *sh_psize = p_size;
423
424 return true;
425 }
426
427 /*
428 * Check whether the passed remaining file @buf_size is large enough to contain
429 * a patch of the indicated @sh_psize (and also whether this size does not
430 * exceed the per-family maximum). @sh_psize is the size read from the section
431 * header.
432 */
__verify_patch_size(u32 sh_psize,size_t buf_size)433 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
434 {
435 u8 family = x86_family(bsp_cpuid_1_eax);
436 u32 max_size;
437
438 if (family >= 0x15)
439 goto ret;
440
441 #define F1XH_MPB_MAX_SIZE 2048
442 #define F14H_MPB_MAX_SIZE 1824
443
444 switch (family) {
445 case 0x10 ... 0x12:
446 max_size = F1XH_MPB_MAX_SIZE;
447 break;
448 case 0x14:
449 max_size = F14H_MPB_MAX_SIZE;
450 break;
451 default:
452 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
453 return false;
454 }
455
456 if (sh_psize > max_size)
457 return false;
458
459 ret:
460 /* Working with the whole buffer so < is ok. */
461 return sh_psize <= buf_size;
462 }
463
464 /*
465 * Verify the patch in @buf.
466 *
467 * Returns:
468 * negative: on error
469 * positive: patch is not for this family, skip it
470 * 0: success
471 */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)472 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
473 {
474 u8 family = x86_family(bsp_cpuid_1_eax);
475 struct microcode_header_amd *mc_hdr;
476 u32 sh_psize;
477 u16 proc_id;
478 u8 patch_fam;
479
480 if (!__verify_patch_section(buf, buf_size, &sh_psize))
481 return -1;
482
483 /*
484 * The section header length is not included in this indicated size
485 * but is present in the leftover file length so we need to subtract
486 * it before passing this value to the function below.
487 */
488 buf_size -= SECTION_HDR_SIZE;
489
490 /*
491 * Check if the remaining buffer is big enough to contain a patch of
492 * size sh_psize, as the section claims.
493 */
494 if (buf_size < sh_psize) {
495 ucode_dbg("Patch of size %u truncated.\n", sh_psize);
496 return -1;
497 }
498
499 if (!__verify_patch_size(sh_psize, buf_size)) {
500 ucode_dbg("Per-family patch size mismatch.\n");
501 return -1;
502 }
503
504 *patch_size = sh_psize;
505
506 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
507 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
508 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
509 return -1;
510 }
511
512 proc_id = mc_hdr->processor_rev_id;
513 patch_fam = 0xf + (proc_id >> 12);
514
515 ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam);
516
517 if (patch_fam != family)
518 return 1;
519
520 return 0;
521 }
522
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)523 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
524 {
525 /* Zen and newer do not need an equivalence table. */
526 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
527 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
528 else
529 return eq_id == mc->hdr.processor_rev_id;
530 }
531
532 /*
533 * This scans the ucode blob for the proper container as we can have multiple
534 * containers glued together.
535 *
536 * Returns the amount of bytes consumed while scanning. @desc contains all the
537 * data we're going to use in later stages of the application.
538 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)539 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
540 {
541 struct equiv_cpu_table table;
542 size_t orig_size = size;
543 u32 *hdr = (u32 *)ucode;
544 u16 eq_id;
545 u8 *buf;
546
547 if (!verify_equivalence_table(ucode, size))
548 return 0;
549
550 buf = ucode;
551
552 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
553 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
554
555 /*
556 * Find the equivalence ID of our CPU in this table. Even if this table
557 * doesn't contain a patch for the CPU, scan through the whole container
558 * so that it can be skipped in case there are other containers appended.
559 */
560 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
561
562 buf += hdr[2] + CONTAINER_HDR_SZ;
563 size -= hdr[2] + CONTAINER_HDR_SZ;
564
565 /*
566 * Scan through the rest of the container to find where it ends. We do
567 * some basic sanity-checking too.
568 */
569 while (size > 0) {
570 struct microcode_amd *mc;
571 u32 patch_size;
572 int ret;
573
574 ret = verify_patch(buf, size, &patch_size);
575 if (ret < 0) {
576 /*
577 * Patch verification failed, skip to the next container, if
578 * there is one. Before exit, check whether that container has
579 * found a patch already. If so, use it.
580 */
581 goto out;
582 } else if (ret > 0) {
583 goto skip;
584 }
585
586 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
587
588 ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id);
589
590 if (mc_patch_matches(mc, eq_id)) {
591 desc->psize = patch_size;
592 desc->mc = mc;
593
594 ucode_dbg(" match: size: %d\n", patch_size);
595 }
596
597 skip:
598 /* Skip patch section header too: */
599 buf += patch_size + SECTION_HDR_SIZE;
600 size -= patch_size + SECTION_HDR_SIZE;
601 }
602
603 out:
604 /*
605 * If we have found a patch (desc->mc), it means we're looking at the
606 * container which has a patch for this CPU so return 0 to mean, @ucode
607 * already points to the proper container. Otherwise, we return the size
608 * we scanned so that we can advance to the next container in the
609 * buffer.
610 */
611 if (desc->mc) {
612 desc->data = ucode;
613 desc->size = orig_size - size;
614
615 return 0;
616 }
617
618 return orig_size - size;
619 }
620
621 /*
622 * Scan the ucode blob for the proper container as we can have multiple
623 * containers glued together.
624 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)625 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
626 {
627 while (size) {
628 size_t s = parse_container(ucode, size, desc);
629 if (!s)
630 return;
631
632 /* catch wraparound */
633 if (size >= s) {
634 ucode += s;
635 size -= s;
636 } else {
637 return;
638 }
639 }
640 }
641
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)642 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
643 unsigned int psize)
644 {
645 unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
646
647 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
648 return false;
649
650 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
651
652 if (x86_family(bsp_cpuid_1_eax) == 0x17) {
653 unsigned long p_addr_end = p_addr + psize - 1;
654
655 invlpg(p_addr);
656
657 /*
658 * Flush next page too if patch image is crossing a page
659 * boundary.
660 */
661 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
662 invlpg(p_addr_end);
663 }
664
665 if (IS_ENABLED(CONFIG_MICROCODE_DBG))
666 microcode_rev[smp_processor_id()] = mc->hdr.patch_id;
667
668 /* verify patch application was successful */
669 *cur_rev = get_patch_level();
670
671 ucode_dbg("updated rev: 0x%x\n", *cur_rev);
672
673 if (*cur_rev != mc->hdr.patch_id)
674 return false;
675
676 return true;
677 }
678
get_builtin_microcode(struct cpio_data * cp)679 static bool get_builtin_microcode(struct cpio_data *cp)
680 {
681 char fw_name[36] = "amd-ucode/microcode_amd.bin";
682 u8 family = x86_family(bsp_cpuid_1_eax);
683 struct firmware fw;
684
685 if (IS_ENABLED(CONFIG_X86_32))
686 return false;
687
688 if (family >= 0x15)
689 snprintf(fw_name, sizeof(fw_name),
690 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
691
692 if (firmware_request_builtin(&fw, fw_name)) {
693 cp->size = fw.size;
694 cp->data = (void *)fw.data;
695 return true;
696 }
697
698 return false;
699 }
700
find_blobs_in_containers(struct cpio_data * ret)701 static bool __init find_blobs_in_containers(struct cpio_data *ret)
702 {
703 struct cpio_data cp;
704 bool found;
705
706 if (!get_builtin_microcode(&cp))
707 cp = find_microcode_in_initrd(ucode_path);
708
709 found = cp.data && cp.size;
710 if (found)
711 *ret = cp;
712
713 return found;
714 }
715
716 /*
717 * Early load occurs before we can vmalloc(). So we look for the microcode
718 * patch container file in initrd, traverse equivalent cpu table, look for a
719 * matching microcode patch, and update, all in initrd memory in place.
720 * When vmalloc() is available for use later -- on 64-bit during first AP load,
721 * and on 32-bit during save_microcode_in_initrd() -- we can call
722 * load_microcode_amd() to save equivalent cpu table and microcode patches in
723 * kernel heap memory.
724 */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)725 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
726 {
727 struct cont_desc desc = { };
728 struct microcode_amd *mc;
729 struct cpio_data cp = { };
730 char buf[4];
731 u32 rev;
732
733 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
734 if (!strncmp(buf, "off", 3)) {
735 sha_check = false;
736 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
737 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
738 }
739 }
740
741 bsp_cpuid_1_eax = cpuid_1_eax;
742
743 rev = get_patch_level();
744 ed->old_rev = rev;
745
746 /* Needed in load_microcode_amd() */
747 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
748
749 if (!find_blobs_in_containers(&cp))
750 return;
751
752 scan_containers(cp.data, cp.size, &desc);
753
754 mc = desc.mc;
755 if (!mc)
756 return;
757
758 /*
759 * Allow application of the same revision to pick up SMT-specific
760 * changes even if the revision of the other SMT thread is already
761 * up-to-date.
762 */
763 if (ed->old_rev > mc->hdr.patch_id)
764 return;
765
766 if (__apply_microcode_amd(mc, &rev, desc.psize))
767 ed->new_rev = rev;
768 }
769
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)770 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
771 struct ucode_patch *n,
772 bool ignore_stepping)
773 {
774 /* Zen and newer hardcode the f/m/s in the patch ID */
775 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
776 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
777 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
778
779 if (ignore_stepping) {
780 p_cid.stepping = 0;
781 n_cid.stepping = 0;
782 }
783
784 return p_cid.full == n_cid.full;
785 } else {
786 return p->equiv_cpu == n->equiv_cpu;
787 }
788 }
789
790 /*
791 * a small, trivial cache of per-family ucode patches
792 */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)793 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
794 {
795 struct ucode_patch *p;
796 struct ucode_patch n;
797
798 n.equiv_cpu = equiv_cpu;
799 n.patch_id = uci->cpu_sig.rev;
800
801 list_for_each_entry(p, µcode_cache, plist)
802 if (patch_cpus_equivalent(p, &n, false))
803 return p;
804
805 return NULL;
806 }
807
patch_newer(struct ucode_patch * p,struct ucode_patch * n)808 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
809 {
810 /* Zen and newer hardcode the f/m/s in the patch ID */
811 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
812 union zen_patch_rev zp, zn;
813
814 zp.ucode_rev = p->patch_id;
815 zn.ucode_rev = n->patch_id;
816
817 if (zn.stepping != zp.stepping)
818 return -1;
819
820 return zn.rev > zp.rev;
821 } else {
822 return n->patch_id > p->patch_id;
823 }
824 }
825
update_cache(struct ucode_patch * new_patch)826 static void update_cache(struct ucode_patch *new_patch)
827 {
828 struct ucode_patch *p;
829 int ret;
830
831 list_for_each_entry(p, µcode_cache, plist) {
832 if (patch_cpus_equivalent(p, new_patch, true)) {
833 ret = patch_newer(p, new_patch);
834 if (ret < 0)
835 continue;
836 else if (!ret) {
837 /* we already have the latest patch */
838 kfree(new_patch->data);
839 kfree(new_patch);
840 return;
841 }
842
843 list_replace(&p->plist, &new_patch->plist);
844 kfree(p->data);
845 kfree(p);
846 return;
847 }
848 }
849 /* no patch found, add it */
850 list_add_tail(&new_patch->plist, µcode_cache);
851 }
852
free_cache(void)853 static void free_cache(void)
854 {
855 struct ucode_patch *p, *tmp;
856
857 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
858 __list_del(p->plist.prev, p->plist.next);
859 kfree(p->data);
860 kfree(p);
861 }
862 }
863
find_patch(unsigned int cpu)864 static struct ucode_patch *find_patch(unsigned int cpu)
865 {
866 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
867 u16 equiv_id = 0;
868
869 uci->cpu_sig.rev = get_patch_level();
870
871 if (x86_family(bsp_cpuid_1_eax) < 0x17) {
872 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
873 if (!equiv_id)
874 return NULL;
875 }
876
877 return cache_find_patch(uci, equiv_id);
878 }
879
reload_ucode_amd(unsigned int cpu)880 void reload_ucode_amd(unsigned int cpu)
881 {
882 u32 rev, dummy __always_unused;
883 struct microcode_amd *mc;
884 struct ucode_patch *p;
885
886 p = find_patch(cpu);
887 if (!p)
888 return;
889
890 mc = p->data;
891
892 rev = get_patch_level();
893 if (rev < mc->hdr.patch_id) {
894 if (__apply_microcode_amd(mc, &rev, p->size))
895 pr_info_once("reload revision: 0x%08x\n", rev);
896 }
897 }
898
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)899 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
900 {
901 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
902 struct ucode_patch *p;
903
904 csig->sig = cpuid_eax(0x00000001);
905 csig->rev = get_patch_level();
906
907 /*
908 * a patch could have been loaded early, set uci->mc so that
909 * mc_bp_resume() can call apply_microcode()
910 */
911 p = find_patch(cpu);
912 if (p && (p->patch_id == csig->rev))
913 uci->mc = p->data;
914
915 return 0;
916 }
917
apply_microcode_amd(int cpu)918 static enum ucode_state apply_microcode_amd(int cpu)
919 {
920 struct cpuinfo_x86 *c = &cpu_data(cpu);
921 struct microcode_amd *mc_amd;
922 struct ucode_cpu_info *uci;
923 struct ucode_patch *p;
924 enum ucode_state ret;
925 u32 rev;
926
927 BUG_ON(raw_smp_processor_id() != cpu);
928
929 uci = ucode_cpu_info + cpu;
930
931 p = find_patch(cpu);
932 if (!p)
933 return UCODE_NFOUND;
934
935 rev = uci->cpu_sig.rev;
936
937 mc_amd = p->data;
938 uci->mc = p->data;
939
940 /* need to apply patch? */
941 if (rev > mc_amd->hdr.patch_id) {
942 ret = UCODE_OK;
943 goto out;
944 }
945
946 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
947 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
948 cpu, mc_amd->hdr.patch_id);
949 return UCODE_ERROR;
950 }
951
952 rev = mc_amd->hdr.patch_id;
953 ret = UCODE_UPDATED;
954
955 out:
956 uci->cpu_sig.rev = rev;
957 c->microcode = rev;
958
959 /* Update boot_cpu_data's revision too, if we're on the BSP: */
960 if (c->cpu_index == boot_cpu_data.cpu_index)
961 boot_cpu_data.microcode = rev;
962
963 return ret;
964 }
965
load_ucode_amd_ap(unsigned int cpuid_1_eax)966 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
967 {
968 unsigned int cpu = smp_processor_id();
969
970 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
971 apply_microcode_amd(cpu);
972 }
973
install_equiv_cpu_table(const u8 * buf,size_t buf_size)974 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
975 {
976 u32 equiv_tbl_len;
977 const u32 *hdr;
978
979 if (!verify_equivalence_table(buf, buf_size))
980 return 0;
981
982 hdr = (const u32 *)buf;
983 equiv_tbl_len = hdr[2];
984
985 /* Zen and newer do not need an equivalence table. */
986 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
987 goto out;
988
989 equiv_table.entry = vmalloc(equiv_tbl_len);
990 if (!equiv_table.entry) {
991 pr_err("failed to allocate equivalent CPU table\n");
992 return 0;
993 }
994
995 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
996 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
997
998 out:
999 /* add header length */
1000 return equiv_tbl_len + CONTAINER_HDR_SZ;
1001 }
1002
free_equiv_cpu_table(void)1003 static void free_equiv_cpu_table(void)
1004 {
1005 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1006 return;
1007
1008 vfree(equiv_table.entry);
1009 memset(&equiv_table, 0, sizeof(equiv_table));
1010 }
1011
cleanup(void)1012 static void cleanup(void)
1013 {
1014 free_equiv_cpu_table();
1015 free_cache();
1016 }
1017
1018 /*
1019 * Return a non-negative value even if some of the checks failed so that
1020 * we can skip over the next patch. If we return a negative value, we
1021 * signal a grave error like a memory allocation has failed and the
1022 * driver cannot continue functioning normally. In such cases, we tear
1023 * down everything we've used up so far and exit.
1024 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)1025 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
1026 unsigned int *patch_size)
1027 {
1028 struct microcode_header_amd *mc_hdr;
1029 struct ucode_patch *patch;
1030 u16 proc_id;
1031 int ret;
1032
1033 ret = verify_patch(fw, leftover, patch_size);
1034 if (ret)
1035 return ret;
1036
1037 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1038 if (!patch) {
1039 pr_err("Patch allocation failure.\n");
1040 return -EINVAL;
1041 }
1042
1043 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1044 if (!patch->data) {
1045 pr_err("Patch data allocation failure.\n");
1046 kfree(patch);
1047 return -EINVAL;
1048 }
1049 patch->size = *patch_size;
1050
1051 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1052 proc_id = mc_hdr->processor_rev_id;
1053
1054 INIT_LIST_HEAD(&patch->plist);
1055 patch->patch_id = mc_hdr->patch_id;
1056 patch->equiv_cpu = proc_id;
1057
1058 ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1059 __func__, patch->patch_id, proc_id);
1060
1061 /* ... and add to cache. */
1062 update_cache(patch);
1063
1064 return 0;
1065 }
1066
1067 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1068 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1069 {
1070 u8 *fw = (u8 *)data;
1071 size_t offset;
1072
1073 offset = install_equiv_cpu_table(data, size);
1074 if (!offset)
1075 return UCODE_ERROR;
1076
1077 fw += offset;
1078 size -= offset;
1079
1080 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1081 pr_err("invalid type field in container file section header\n");
1082 free_equiv_cpu_table();
1083 return UCODE_ERROR;
1084 }
1085
1086 while (size > 0) {
1087 unsigned int crnt_size = 0;
1088 int ret;
1089
1090 ret = verify_and_add_patch(family, fw, size, &crnt_size);
1091 if (ret < 0)
1092 return UCODE_ERROR;
1093
1094 fw += crnt_size + SECTION_HDR_SIZE;
1095 size -= (crnt_size + SECTION_HDR_SIZE);
1096 }
1097
1098 return UCODE_OK;
1099 }
1100
_load_microcode_amd(u8 family,const u8 * data,size_t size)1101 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1102 {
1103 enum ucode_state ret;
1104
1105 /* free old equiv table */
1106 free_equiv_cpu_table();
1107
1108 ret = __load_microcode_amd(family, data, size);
1109 if (ret != UCODE_OK)
1110 cleanup();
1111
1112 return ret;
1113 }
1114
load_microcode_amd(u8 family,const u8 * data,size_t size)1115 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1116 {
1117 struct cpuinfo_x86 *c;
1118 unsigned int nid, cpu;
1119 struct ucode_patch *p;
1120 enum ucode_state ret;
1121
1122 ret = _load_microcode_amd(family, data, size);
1123 if (ret != UCODE_OK)
1124 return ret;
1125
1126 for_each_node_with_cpus(nid) {
1127 cpu = cpumask_first(cpumask_of_node(nid));
1128 c = &cpu_data(cpu);
1129
1130 p = find_patch(cpu);
1131 if (!p)
1132 continue;
1133
1134 if (c->microcode >= p->patch_id)
1135 continue;
1136
1137 ret = UCODE_NEW;
1138 }
1139
1140 return ret;
1141 }
1142
save_microcode_in_initrd(void)1143 static int __init save_microcode_in_initrd(void)
1144 {
1145 struct cpuinfo_x86 *c = &boot_cpu_data;
1146 struct cont_desc desc = { 0 };
1147 unsigned int cpuid_1_eax;
1148 enum ucode_state ret;
1149 struct cpio_data cp;
1150
1151 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1152 return 0;
1153
1154 cpuid_1_eax = native_cpuid_eax(1);
1155
1156 if (!find_blobs_in_containers(&cp))
1157 return -EINVAL;
1158
1159 scan_containers(cp.data, cp.size, &desc);
1160 if (!desc.mc)
1161 return -EINVAL;
1162
1163 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1164 if (ret > UCODE_UPDATED)
1165 return -EINVAL;
1166
1167 return 0;
1168 }
1169 early_initcall(save_microcode_in_initrd);
1170
1171 /*
1172 * AMD microcode firmware naming convention, up to family 15h they are in
1173 * the legacy file:
1174 *
1175 * amd-ucode/microcode_amd.bin
1176 *
1177 * This legacy file is always smaller than 2K in size.
1178 *
1179 * Beginning with family 15h, they are in family-specific firmware files:
1180 *
1181 * amd-ucode/microcode_amd_fam15h.bin
1182 * amd-ucode/microcode_amd_fam16h.bin
1183 * ...
1184 *
1185 * These might be larger than 2K.
1186 */
request_microcode_amd(int cpu,struct device * device)1187 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1188 {
1189 char fw_name[36] = "amd-ucode/microcode_amd.bin";
1190 struct cpuinfo_x86 *c = &cpu_data(cpu);
1191 enum ucode_state ret = UCODE_NFOUND;
1192 const struct firmware *fw;
1193
1194 if (force_minrev)
1195 return UCODE_NFOUND;
1196
1197 if (c->x86 >= 0x15)
1198 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1199
1200 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1201 ucode_dbg("failed to load file %s\n", fw_name);
1202 goto out;
1203 }
1204
1205 ret = UCODE_ERROR;
1206 if (!verify_container(fw->data, fw->size))
1207 goto fw_release;
1208
1209 ret = load_microcode_amd(c->x86, fw->data, fw->size);
1210
1211 fw_release:
1212 release_firmware(fw);
1213
1214 out:
1215 return ret;
1216 }
1217
microcode_fini_cpu_amd(int cpu)1218 static void microcode_fini_cpu_amd(int cpu)
1219 {
1220 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1221
1222 uci->mc = NULL;
1223 }
1224
finalize_late_load_amd(int result)1225 static void finalize_late_load_amd(int result)
1226 {
1227 if (result)
1228 cleanup();
1229 }
1230
1231 static struct microcode_ops microcode_amd_ops = {
1232 .request_microcode_fw = request_microcode_amd,
1233 .collect_cpu_info = collect_cpu_info_amd,
1234 .apply_microcode = apply_microcode_amd,
1235 .microcode_fini_cpu = microcode_fini_cpu_amd,
1236 .finalize_late_load = finalize_late_load_amd,
1237 .nmi_safe = true,
1238 };
1239
init_amd_microcode(void)1240 struct microcode_ops * __init init_amd_microcode(void)
1241 {
1242 struct cpuinfo_x86 *c = &boot_cpu_data;
1243
1244 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1245 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1246 return NULL;
1247 }
1248 return µcode_amd_ops;
1249 }
1250
exit_amd_microcode(void)1251 void __exit exit_amd_microcode(void)
1252 {
1253 cleanup();
1254 }
1255