1 // SPDX-License-Identifier: GPL-2.0-only
2 /*****************************************************************************
3 * *
4 * File: subr.c *
5 * $Revision: 1.27 $ *
6 * $Date: 2005/06/22 01:08:36 $ *
7 * Description: *
8 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
9 * part of the Chelsio 10Gb Ethernet Driver. *
10 * *
11 * *
12 * http://www.chelsio.com *
13 * *
14 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
15 * All rights reserved. *
16 * *
17 * Maintainers: maintainers@chelsio.com *
18 * *
19 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
20 * Tina Yang <tainay@chelsio.com> *
21 * Felix Marti <felix@chelsio.com> *
22 * Scott Bardone <sbardone@chelsio.com> *
23 * Kurt Ottaway <kottaway@chelsio.com> *
24 * Frank DiMambro <frank@chelsio.com> *
25 * *
26 * History: *
27 * *
28 ****************************************************************************/
29
30 #include "common.h"
31 #include "elmer0.h"
32 #include "regs.h"
33 #include "gmac.h"
34 #include "cphy.h"
35 #include "sge.h"
36 #include "tp.h"
37 #include "espi.h"
38
39 /**
40 * t1_wait_op_done - wait until an operation is completed
41 * @adapter: the adapter performing the operation
42 * @reg: the register to check for completion
43 * @mask: a single-bit field within @reg that indicates completion
44 * @polarity: the value of the field when the operation is completed
45 * @attempts: number of check iterations
46 * @delay: delay in usecs between iterations
47 *
48 * Wait until an operation is completed by checking a bit in a register
49 * up to @attempts times. Returns %0 if the operation completes and %1
50 * otherwise.
51 */
t1_wait_op_done(adapter_t * adapter,int reg,u32 mask,int polarity,int attempts,int delay)52 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
53 int attempts, int delay)
54 {
55 while (1) {
56 u32 val = readl(adapter->regs + reg) & mask;
57
58 if (!!val == polarity)
59 return 0;
60 if (--attempts == 0)
61 return 1;
62 if (delay)
63 udelay(delay);
64 }
65 }
66
67 #define TPI_ATTEMPTS 50
68
69 /*
70 * Write a register over the TPI interface (unlocked and locked versions).
71 */
__t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)72 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
73 {
74 int tpi_busy;
75
76 writel(addr, adapter->regs + A_TPI_ADDR);
77 writel(value, adapter->regs + A_TPI_WR_DATA);
78 writel(F_TPIWR, adapter->regs + A_TPI_CSR);
79
80 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
81 TPI_ATTEMPTS, 3);
82 if (tpi_busy)
83 pr_alert("%s: TPI write to 0x%x failed\n",
84 adapter->name, addr);
85 return tpi_busy;
86 }
87
t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)88 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
89 {
90 int ret;
91
92 spin_lock(&adapter->tpi_lock);
93 ret = __t1_tpi_write(adapter, addr, value);
94 spin_unlock(&adapter->tpi_lock);
95 return ret;
96 }
97
98 /*
99 * Read a register over the TPI interface (unlocked and locked versions).
100 */
__t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)101 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
102 {
103 int tpi_busy;
104
105 writel(addr, adapter->regs + A_TPI_ADDR);
106 writel(0, adapter->regs + A_TPI_CSR);
107
108 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
109 TPI_ATTEMPTS, 3);
110 if (tpi_busy)
111 pr_alert("%s: TPI read from 0x%x failed\n",
112 adapter->name, addr);
113 else
114 *valp = readl(adapter->regs + A_TPI_RD_DATA);
115 return tpi_busy;
116 }
117
t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)118 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
119 {
120 int ret;
121
122 spin_lock(&adapter->tpi_lock);
123 ret = __t1_tpi_read(adapter, addr, valp);
124 spin_unlock(&adapter->tpi_lock);
125 return ret;
126 }
127
128 /*
129 * Set a TPI parameter.
130 */
t1_tpi_par(adapter_t * adapter,u32 value)131 static void t1_tpi_par(adapter_t *adapter, u32 value)
132 {
133 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
134 }
135
136 /*
137 * Called when a port's link settings change to propagate the new values to the
138 * associated PHY and MAC. After performing the common tasks it invokes an
139 * OS-specific handler.
140 */
t1_link_changed(adapter_t * adapter,int port_id)141 void t1_link_changed(adapter_t *adapter, int port_id)
142 {
143 int link_ok, speed, duplex, fc;
144 struct cphy *phy = adapter->port[port_id].phy;
145 struct link_config *lc = &adapter->port[port_id].link_config;
146
147 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
148
149 lc->speed = speed < 0 ? SPEED_INVALID : speed;
150 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
151 if (!(lc->requested_fc & PAUSE_AUTONEG))
152 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
153
154 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
155 /* Set MAC speed, duplex, and flow control to match PHY. */
156 struct cmac *mac = adapter->port[port_id].mac;
157
158 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
159 lc->fc = (unsigned char)fc;
160 }
161 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
162 }
163
t1_pci_intr_handler(adapter_t * adapter)164 static bool t1_pci_intr_handler(adapter_t *adapter)
165 {
166 u32 pcix_cause;
167
168 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
169
170 if (pcix_cause) {
171 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
172 pcix_cause);
173 /* PCI errors are fatal */
174 t1_interrupts_disable(adapter);
175 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
176 pr_alert("%s: PCI error encountered.\n", adapter->name);
177 return true;
178 }
179 return false;
180 }
181
182 #ifdef CONFIG_CHELSIO_T1_1G
183 #include "fpga_defs.h"
184
185 /*
186 * PHY interrupt handler for FPGA boards.
187 */
fpga_phy_intr_handler(adapter_t * adapter)188 static int fpga_phy_intr_handler(adapter_t *adapter)
189 {
190 int p;
191 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
192
193 for_each_port(adapter, p)
194 if (cause & (1 << p)) {
195 struct cphy *phy = adapter->port[p].phy;
196 int phy_cause = phy->ops->interrupt_handler(phy);
197
198 if (phy_cause & cphy_cause_link_change)
199 t1_link_changed(adapter, p);
200 }
201 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
202 return 0;
203 }
204
205 /*
206 * Slow path interrupt handler for FPGAs.
207 */
fpga_slow_intr(adapter_t * adapter)208 static irqreturn_t fpga_slow_intr(adapter_t *adapter)
209 {
210 u32 cause = readl(adapter->regs + A_PL_CAUSE);
211 irqreturn_t ret = IRQ_NONE;
212
213 cause &= ~F_PL_INTR_SGE_DATA;
214 if (cause & F_PL_INTR_SGE_ERR) {
215 if (t1_sge_intr_error_handler(adapter->sge))
216 ret = IRQ_WAKE_THREAD;
217 }
218
219 if (cause & FPGA_PCIX_INTERRUPT_GMAC)
220 fpga_phy_intr_handler(adapter);
221
222 if (cause & FPGA_PCIX_INTERRUPT_TP) {
223 /*
224 * FPGA doesn't support MC4 interrupts and it requires
225 * this odd layer of indirection for MC5.
226 */
227 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
228
229 /* Clear TP interrupt */
230 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
231 }
232 if (cause & FPGA_PCIX_INTERRUPT_PCIX) {
233 if (t1_pci_intr_handler(adapter))
234 ret = IRQ_WAKE_THREAD;
235 }
236
237 /* Clear the interrupts just processed. */
238 if (cause)
239 writel(cause, adapter->regs + A_PL_CAUSE);
240
241 if (ret != IRQ_NONE)
242 return ret;
243
244 return cause == 0 ? IRQ_NONE : IRQ_HANDLED;
245 }
246 #endif
247
248 /*
249 * Wait until Elmer's MI1 interface is ready for new operations.
250 */
mi1_wait_until_ready(adapter_t * adapter,int mi1_reg)251 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
252 {
253 int attempts = 100, busy;
254
255 do {
256 u32 val;
257
258 __t1_tpi_read(adapter, mi1_reg, &val);
259 busy = val & F_MI1_OP_BUSY;
260 if (busy)
261 udelay(10);
262 } while (busy && --attempts);
263 if (busy)
264 pr_alert("%s: MDIO operation timed out\n", adapter->name);
265 return busy;
266 }
267
268 /*
269 * MI1 MDIO initialization.
270 */
mi1_mdio_init(adapter_t * adapter,const struct board_info * bi)271 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
272 {
273 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
274 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
275 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
276
277 if (!(bi->caps & SUPPORTED_10000baseT_Full))
278 val |= V_MI1_SOF(1);
279 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
280 }
281
282 #if defined(CONFIG_CHELSIO_T1_1G)
283 /*
284 * Elmer MI1 MDIO read/write operations.
285 */
mi1_mdio_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)286 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
287 u16 reg_addr)
288 {
289 struct adapter *adapter = dev->ml_priv;
290 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
291 unsigned int val;
292
293 spin_lock(&adapter->tpi_lock);
294 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
295 __t1_tpi_write(adapter,
296 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
297 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
298 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
299 spin_unlock(&adapter->tpi_lock);
300 return val;
301 }
302
mi1_mdio_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)303 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
304 u16 reg_addr, u16 val)
305 {
306 struct adapter *adapter = dev->ml_priv;
307 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
308
309 spin_lock(&adapter->tpi_lock);
310 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
311 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
312 __t1_tpi_write(adapter,
313 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
314 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
315 spin_unlock(&adapter->tpi_lock);
316 return 0;
317 }
318
319 static const struct mdio_ops mi1_mdio_ops = {
320 .init = mi1_mdio_init,
321 .read = mi1_mdio_read,
322 .write = mi1_mdio_write,
323 .mode_support = MDIO_SUPPORTS_C22
324 };
325
326 #endif
327
mi1_mdio_ext_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)328 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
329 u16 reg_addr)
330 {
331 struct adapter *adapter = dev->ml_priv;
332 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
333 unsigned int val;
334
335 spin_lock(&adapter->tpi_lock);
336
337 /* Write the address we want. */
338 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
339 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
340 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
341 MI1_OP_INDIRECT_ADDRESS);
342 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
343
344 /* Write the operation we want. */
345 __t1_tpi_write(adapter,
346 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
347 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
348
349 /* Read the data. */
350 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
351 spin_unlock(&adapter->tpi_lock);
352 return val;
353 }
354
mi1_mdio_ext_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)355 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
356 int mmd_addr, u16 reg_addr, u16 val)
357 {
358 struct adapter *adapter = dev->ml_priv;
359 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
360
361 spin_lock(&adapter->tpi_lock);
362
363 /* Write the address we want. */
364 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
365 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
366 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
367 MI1_OP_INDIRECT_ADDRESS);
368 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
369
370 /* Write the data. */
371 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
372 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
373 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
374 spin_unlock(&adapter->tpi_lock);
375 return 0;
376 }
377
378 static const struct mdio_ops mi1_mdio_ext_ops = {
379 .init = mi1_mdio_init,
380 .read = mi1_mdio_ext_read,
381 .write = mi1_mdio_ext_write,
382 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
383 };
384
385 enum {
386 CH_BRD_T110_1CU,
387 CH_BRD_N110_1F,
388 CH_BRD_N210_1F,
389 CH_BRD_T210_1F,
390 CH_BRD_T210_1CU,
391 CH_BRD_N204_4CU,
392 };
393
394 static const struct board_info t1_board[] = {
395 {
396 .board = CHBT_BOARD_CHT110,
397 .port_number = 1,
398 .caps = SUPPORTED_10000baseT_Full,
399 .chip_term = CHBT_TERM_T1,
400 .chip_mac = CHBT_MAC_PM3393,
401 .chip_phy = CHBT_PHY_MY3126,
402 .clock_core = 125000000,
403 .clock_mc3 = 150000000,
404 .clock_mc4 = 125000000,
405 .espi_nports = 1,
406 .clock_elmer0 = 44,
407 .mdio_mdien = 1,
408 .mdio_mdiinv = 1,
409 .mdio_mdc = 1,
410 .mdio_phybaseaddr = 1,
411 .gmac = &t1_pm3393_ops,
412 .gphy = &t1_my3126_ops,
413 .mdio_ops = &mi1_mdio_ext_ops,
414 .desc = "Chelsio T110 1x10GBase-CX4 TOE",
415 },
416
417 {
418 .board = CHBT_BOARD_N110,
419 .port_number = 1,
420 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
421 .chip_term = CHBT_TERM_T1,
422 .chip_mac = CHBT_MAC_PM3393,
423 .chip_phy = CHBT_PHY_88X2010,
424 .clock_core = 125000000,
425 .espi_nports = 1,
426 .clock_elmer0 = 44,
427 .mdio_mdien = 0,
428 .mdio_mdiinv = 0,
429 .mdio_mdc = 1,
430 .mdio_phybaseaddr = 0,
431 .gmac = &t1_pm3393_ops,
432 .gphy = &t1_mv88x201x_ops,
433 .mdio_ops = &mi1_mdio_ext_ops,
434 .desc = "Chelsio N110 1x10GBaseX NIC",
435 },
436
437 {
438 .board = CHBT_BOARD_N210,
439 .port_number = 1,
440 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
441 .chip_term = CHBT_TERM_T2,
442 .chip_mac = CHBT_MAC_PM3393,
443 .chip_phy = CHBT_PHY_88X2010,
444 .clock_core = 125000000,
445 .espi_nports = 1,
446 .clock_elmer0 = 44,
447 .mdio_mdien = 0,
448 .mdio_mdiinv = 0,
449 .mdio_mdc = 1,
450 .mdio_phybaseaddr = 0,
451 .gmac = &t1_pm3393_ops,
452 .gphy = &t1_mv88x201x_ops,
453 .mdio_ops = &mi1_mdio_ext_ops,
454 .desc = "Chelsio N210 1x10GBaseX NIC",
455 },
456
457 {
458 .board = CHBT_BOARD_CHT210,
459 .port_number = 1,
460 .caps = SUPPORTED_10000baseT_Full,
461 .chip_term = CHBT_TERM_T2,
462 .chip_mac = CHBT_MAC_PM3393,
463 .chip_phy = CHBT_PHY_88X2010,
464 .clock_core = 125000000,
465 .clock_mc3 = 133000000,
466 .clock_mc4 = 125000000,
467 .espi_nports = 1,
468 .clock_elmer0 = 44,
469 .mdio_mdien = 0,
470 .mdio_mdiinv = 0,
471 .mdio_mdc = 1,
472 .mdio_phybaseaddr = 0,
473 .gmac = &t1_pm3393_ops,
474 .gphy = &t1_mv88x201x_ops,
475 .mdio_ops = &mi1_mdio_ext_ops,
476 .desc = "Chelsio T210 1x10GBaseX TOE",
477 },
478
479 {
480 .board = CHBT_BOARD_CHT210,
481 .port_number = 1,
482 .caps = SUPPORTED_10000baseT_Full,
483 .chip_term = CHBT_TERM_T2,
484 .chip_mac = CHBT_MAC_PM3393,
485 .chip_phy = CHBT_PHY_MY3126,
486 .clock_core = 125000000,
487 .clock_mc3 = 133000000,
488 .clock_mc4 = 125000000,
489 .espi_nports = 1,
490 .clock_elmer0 = 44,
491 .mdio_mdien = 1,
492 .mdio_mdiinv = 1,
493 .mdio_mdc = 1,
494 .mdio_phybaseaddr = 1,
495 .gmac = &t1_pm3393_ops,
496 .gphy = &t1_my3126_ops,
497 .mdio_ops = &mi1_mdio_ext_ops,
498 .desc = "Chelsio T210 1x10GBase-CX4 TOE",
499 },
500
501 #ifdef CONFIG_CHELSIO_T1_1G
502 {
503 .board = CHBT_BOARD_CHN204,
504 .port_number = 4,
505 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
506 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
507 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
508 SUPPORTED_PAUSE | SUPPORTED_TP,
509 .chip_term = CHBT_TERM_T2,
510 .chip_mac = CHBT_MAC_VSC7321,
511 .chip_phy = CHBT_PHY_88E1111,
512 .clock_core = 100000000,
513 .espi_nports = 4,
514 .clock_elmer0 = 44,
515 .mdio_mdien = 0,
516 .mdio_mdiinv = 0,
517 .mdio_mdc = 0,
518 .mdio_phybaseaddr = 4,
519 .gmac = &t1_vsc7326_ops,
520 .gphy = &t1_mv88e1xxx_ops,
521 .mdio_ops = &mi1_mdio_ops,
522 .desc = "Chelsio N204 4x100/1000BaseT NIC",
523 },
524 #endif
525
526 };
527
528 const struct pci_device_id t1_pci_tbl[] = {
529 CH_DEVICE(8, 0, CH_BRD_T110_1CU),
530 CH_DEVICE(8, 1, CH_BRD_T110_1CU),
531 CH_DEVICE(7, 0, CH_BRD_N110_1F),
532 CH_DEVICE(10, 1, CH_BRD_N210_1F),
533 CH_DEVICE(11, 1, CH_BRD_T210_1F),
534 CH_DEVICE(14, 1, CH_BRD_T210_1CU),
535 CH_DEVICE(16, 1, CH_BRD_N204_4CU),
536 { 0 }
537 };
538
539 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
540
541 /*
542 * Return the board_info structure with a given index. Out-of-range indices
543 * return NULL.
544 */
t1_get_board_info(unsigned int board_id)545 const struct board_info *t1_get_board_info(unsigned int board_id)
546 {
547 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
548 }
549
550 struct chelsio_vpd_t {
551 u32 format_version;
552 u8 serial_number[16];
553 u8 mac_base_address[6];
554 u8 pad[2]; /* make multiple-of-4 size requirement explicit */
555 };
556
557 #define EEPROMSIZE (8 * 1024)
558 #define EEPROM_MAX_POLL 4
559
560 /*
561 * Read SEEPROM. A zero is written to the flag register when the address is
562 * written to the Control register. The hardware device will set the flag to a
563 * one when 4B have been transferred to the Data register.
564 */
t1_seeprom_read(adapter_t * adapter,u32 addr,__le32 * data)565 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
566 {
567 int i = EEPROM_MAX_POLL;
568 u16 val;
569 u32 v;
570
571 if (addr >= EEPROMSIZE || (addr & 3))
572 return -EINVAL;
573
574 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
575 do {
576 udelay(50);
577 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
578 } while (!(val & F_VPD_OP_FLAG) && --i);
579
580 if (!(val & F_VPD_OP_FLAG)) {
581 pr_err("%s: reading EEPROM address 0x%x failed\n",
582 adapter->name, addr);
583 return -EIO;
584 }
585 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
586 *data = cpu_to_le32(v);
587 return 0;
588 }
589
t1_eeprom_vpd_get(adapter_t * adapter,struct chelsio_vpd_t * vpd)590 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
591 {
592 int addr, ret = 0;
593
594 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
595 ret = t1_seeprom_read(adapter, addr,
596 (__le32 *)((u8 *)vpd + addr));
597
598 return ret;
599 }
600
601 /*
602 * Read a port's MAC address from the VPD ROM.
603 */
vpd_macaddress_get(adapter_t * adapter,int index,u8 mac_addr[])604 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
605 {
606 struct chelsio_vpd_t vpd;
607
608 if (t1_eeprom_vpd_get(adapter, &vpd))
609 return 1;
610 memcpy(mac_addr, vpd.mac_base_address, 5);
611 mac_addr[5] = vpd.mac_base_address[5] + index;
612 return 0;
613 }
614
615 /*
616 * Set up the MAC/PHY according to the requested link settings.
617 *
618 * If the PHY can auto-negotiate first decide what to advertise, then
619 * enable/disable auto-negotiation as desired and reset.
620 *
621 * If the PHY does not auto-negotiate we just reset it.
622 *
623 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
624 * otherwise do it later based on the outcome of auto-negotiation.
625 */
t1_link_start(struct cphy * phy,struct cmac * mac,struct link_config * lc)626 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
627 {
628 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
629
630 if (lc->supported & SUPPORTED_Autoneg) {
631 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
632 if (fc) {
633 if (fc == ((PAUSE_RX | PAUSE_TX) &
634 (mac->adapter->params.nports < 2)))
635 lc->advertising |= ADVERTISED_PAUSE;
636 else {
637 lc->advertising |= ADVERTISED_ASYM_PAUSE;
638 if (fc == PAUSE_RX)
639 lc->advertising |= ADVERTISED_PAUSE;
640 }
641 }
642 phy->ops->advertise(phy, lc->advertising);
643
644 if (lc->autoneg == AUTONEG_DISABLE) {
645 lc->speed = lc->requested_speed;
646 lc->duplex = lc->requested_duplex;
647 lc->fc = (unsigned char)fc;
648 mac->ops->set_speed_duplex_fc(mac, lc->speed,
649 lc->duplex, fc);
650 /* Also disables autoneg */
651 phy->state = PHY_AUTONEG_RDY;
652 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
653 phy->ops->reset(phy, 0);
654 } else {
655 phy->state = PHY_AUTONEG_EN;
656 phy->ops->autoneg_enable(phy); /* also resets PHY */
657 }
658 } else {
659 phy->state = PHY_AUTONEG_RDY;
660 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
661 lc->fc = (unsigned char)fc;
662 phy->ops->reset(phy, 0);
663 }
664 return 0;
665 }
666
667 /*
668 * External interrupt handler for boards using elmer0.
669 */
t1_elmer0_ext_intr_handler(adapter_t * adapter)670 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
671 {
672 struct cphy *phy;
673 int phy_cause;
674 u32 cause;
675
676 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
677
678 switch (board_info(adapter)->board) {
679 #ifdef CONFIG_CHELSIO_T1_1G
680 case CHBT_BOARD_CHT204:
681 case CHBT_BOARD_CHT204E:
682 case CHBT_BOARD_CHN204:
683 case CHBT_BOARD_CHT204V: {
684 int i, port_bit;
685 for_each_port(adapter, i) {
686 port_bit = i + 1;
687 if (!(cause & (1 << port_bit)))
688 continue;
689
690 phy = adapter->port[i].phy;
691 phy_cause = phy->ops->interrupt_handler(phy);
692 if (phy_cause & cphy_cause_link_change)
693 t1_link_changed(adapter, i);
694 }
695 break;
696 }
697 case CHBT_BOARD_CHT101:
698 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
699 phy = adapter->port[0].phy;
700 phy_cause = phy->ops->interrupt_handler(phy);
701 if (phy_cause & cphy_cause_link_change)
702 t1_link_changed(adapter, 0);
703 }
704 break;
705 case CHBT_BOARD_7500: {
706 int p;
707 /*
708 * Elmer0's interrupt cause isn't useful here because there is
709 * only one bit that can be set for all 4 ports. This means
710 * we are forced to check every PHY's interrupt status
711 * register to see who initiated the interrupt.
712 */
713 for_each_port(adapter, p) {
714 phy = adapter->port[p].phy;
715 phy_cause = phy->ops->interrupt_handler(phy);
716 if (phy_cause & cphy_cause_link_change)
717 t1_link_changed(adapter, p);
718 }
719 break;
720 }
721 #endif
722 case CHBT_BOARD_CHT210:
723 case CHBT_BOARD_N210:
724 case CHBT_BOARD_N110:
725 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
726 phy = adapter->port[0].phy;
727 phy_cause = phy->ops->interrupt_handler(phy);
728 if (phy_cause & cphy_cause_link_change)
729 t1_link_changed(adapter, 0);
730 }
731 break;
732 case CHBT_BOARD_8000:
733 case CHBT_BOARD_CHT110:
734 if (netif_msg_intr(adapter))
735 dev_dbg(&adapter->pdev->dev,
736 "External interrupt cause 0x%x\n", cause);
737 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */
738 struct cmac *mac = adapter->port[0].mac;
739
740 mac->ops->interrupt_handler(mac);
741 }
742 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
743 u32 mod_detect;
744
745 t1_tpi_read(adapter,
746 A_ELMER0_GPI_STAT, &mod_detect);
747 if (netif_msg_link(adapter))
748 dev_info(&adapter->pdev->dev, "XPAK %s\n",
749 mod_detect ? "removed" : "inserted");
750 }
751 break;
752 }
753 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
754 return 0;
755 }
756
757 /* Enables all interrupts. */
t1_interrupts_enable(adapter_t * adapter)758 void t1_interrupts_enable(adapter_t *adapter)
759 {
760 unsigned int i;
761
762 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
763
764 t1_sge_intr_enable(adapter->sge);
765 t1_tp_intr_enable(adapter->tp);
766 if (adapter->espi) {
767 adapter->slow_intr_mask |= F_PL_INTR_ESPI;
768 t1_espi_intr_enable(adapter->espi);
769 }
770
771 /* Enable MAC/PHY interrupts for each port. */
772 for_each_port(adapter, i) {
773 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
774 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
775 }
776
777 /* Enable PCIX & external chip interrupts on ASIC boards. */
778 if (t1_is_asic(adapter)) {
779 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
780
781 /* PCI-X interrupts */
782 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
783 0xffffffff);
784
785 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
786 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
787 writel(pl_intr, adapter->regs + A_PL_ENABLE);
788 }
789 }
790
791 /* Disables all interrupts. */
t1_interrupts_disable(adapter_t * adapter)792 void t1_interrupts_disable(adapter_t* adapter)
793 {
794 unsigned int i;
795
796 t1_sge_intr_disable(adapter->sge);
797 t1_tp_intr_disable(adapter->tp);
798 if (adapter->espi)
799 t1_espi_intr_disable(adapter->espi);
800
801 /* Disable MAC/PHY interrupts for each port. */
802 for_each_port(adapter, i) {
803 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
804 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
805 }
806
807 /* Disable PCIX & external chip interrupts. */
808 if (t1_is_asic(adapter))
809 writel(0, adapter->regs + A_PL_ENABLE);
810
811 /* PCI-X interrupts */
812 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
813
814 adapter->slow_intr_mask = 0;
815 }
816
817 /* Clears all interrupts */
t1_interrupts_clear(adapter_t * adapter)818 void t1_interrupts_clear(adapter_t* adapter)
819 {
820 unsigned int i;
821
822 t1_sge_intr_clear(adapter->sge);
823 t1_tp_intr_clear(adapter->tp);
824 if (adapter->espi)
825 t1_espi_intr_clear(adapter->espi);
826
827 /* Clear MAC/PHY interrupts for each port. */
828 for_each_port(adapter, i) {
829 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
830 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
831 }
832
833 /* Enable interrupts for external devices. */
834 if (t1_is_asic(adapter)) {
835 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
836
837 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
838 adapter->regs + A_PL_CAUSE);
839 }
840
841 /* PCI-X interrupts */
842 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
843 }
844
845 /*
846 * Slow path interrupt handler for ASICs.
847 */
asic_slow_intr(adapter_t * adapter)848 static irqreturn_t asic_slow_intr(adapter_t *adapter)
849 {
850 u32 cause = readl(adapter->regs + A_PL_CAUSE);
851 irqreturn_t ret = IRQ_HANDLED;
852
853 cause &= adapter->slow_intr_mask;
854 if (!cause)
855 return IRQ_NONE;
856 if (cause & F_PL_INTR_SGE_ERR) {
857 if (t1_sge_intr_error_handler(adapter->sge))
858 ret = IRQ_WAKE_THREAD;
859 }
860 if (cause & F_PL_INTR_TP)
861 t1_tp_intr_handler(adapter->tp);
862 if (cause & F_PL_INTR_ESPI)
863 t1_espi_intr_handler(adapter->espi);
864 if (cause & F_PL_INTR_PCIX) {
865 if (t1_pci_intr_handler(adapter))
866 ret = IRQ_WAKE_THREAD;
867 }
868 if (cause & F_PL_INTR_EXT) {
869 /* Wake the threaded interrupt to handle external interrupts as
870 * we require a process context. We disable EXT interrupts in
871 * the interim and let the thread reenable them when it's done.
872 */
873 adapter->pending_thread_intr |= F_PL_INTR_EXT;
874 adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
875 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
876 adapter->regs + A_PL_ENABLE);
877 ret = IRQ_WAKE_THREAD;
878 }
879
880 /* Clear the interrupts just processed. */
881 writel(cause, adapter->regs + A_PL_CAUSE);
882 readl(adapter->regs + A_PL_CAUSE); /* flush writes */
883 return ret;
884 }
885
t1_slow_intr_handler(adapter_t * adapter)886 irqreturn_t t1_slow_intr_handler(adapter_t *adapter)
887 {
888 #ifdef CONFIG_CHELSIO_T1_1G
889 if (!t1_is_asic(adapter))
890 return fpga_slow_intr(adapter);
891 #endif
892 return asic_slow_intr(adapter);
893 }
894
895 /* Power sequencing is a work-around for Intel's XPAKs. */
power_sequence_xpak(adapter_t * adapter)896 static void power_sequence_xpak(adapter_t* adapter)
897 {
898 u32 mod_detect;
899 u32 gpo;
900
901 /* Check for XPAK */
902 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
903 if (!(ELMER0_GP_BIT5 & mod_detect)) {
904 /* XPAK is present */
905 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
906 gpo |= ELMER0_GP_BIT18;
907 t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
908 }
909 }
910
t1_get_board_rev(adapter_t * adapter,const struct board_info * bi,struct adapter_params * p)911 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
912 struct adapter_params *p)
913 {
914 p->chip_version = bi->chip_term;
915 p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
916 if (p->chip_version == CHBT_TERM_T1 ||
917 p->chip_version == CHBT_TERM_T2 ||
918 p->chip_version == CHBT_TERM_FPGA) {
919 u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
920
921 val = G_TP_PC_REV(val);
922 if (val == 2)
923 p->chip_revision = TERM_T1B;
924 else if (val == 3)
925 p->chip_revision = TERM_T2;
926 else
927 return -1;
928 } else
929 return -1;
930 return 0;
931 }
932
933 /*
934 * Enable board components other than the Chelsio chip, such as external MAC
935 * and PHY.
936 */
board_init(adapter_t * adapter,const struct board_info * bi)937 static int board_init(adapter_t *adapter, const struct board_info *bi)
938 {
939 switch (bi->board) {
940 case CHBT_BOARD_8000:
941 case CHBT_BOARD_N110:
942 case CHBT_BOARD_N210:
943 case CHBT_BOARD_CHT210:
944 t1_tpi_par(adapter, 0xf);
945 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
946 break;
947 case CHBT_BOARD_CHT110:
948 t1_tpi_par(adapter, 0xf);
949 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
950
951 /* TBD XXX Might not need. This fixes a problem
952 * described in the Intel SR XPAK errata.
953 */
954 power_sequence_xpak(adapter);
955 break;
956 #ifdef CONFIG_CHELSIO_T1_1G
957 case CHBT_BOARD_CHT204E:
958 /* add config space write here */
959 case CHBT_BOARD_CHT204:
960 case CHBT_BOARD_CHT204V:
961 case CHBT_BOARD_CHN204:
962 t1_tpi_par(adapter, 0xf);
963 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
964 break;
965 case CHBT_BOARD_CHT101:
966 case CHBT_BOARD_7500:
967 t1_tpi_par(adapter, 0xf);
968 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
969 break;
970 #endif
971 }
972 return 0;
973 }
974
975 /*
976 * Initialize and configure the Terminator HW modules. Note that external
977 * MAC and PHYs are initialized separately.
978 */
t1_init_hw_modules(adapter_t * adapter)979 int t1_init_hw_modules(adapter_t *adapter)
980 {
981 int err = -EIO;
982 const struct board_info *bi = board_info(adapter);
983
984 if (!bi->clock_mc4) {
985 u32 val = readl(adapter->regs + A_MC4_CFG);
986
987 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
988 writel(F_M_BUS_ENABLE | F_TCAM_RESET,
989 adapter->regs + A_MC5_CONFIG);
990 }
991
992 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
993 bi->espi_nports))
994 goto out_err;
995
996 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
997 goto out_err;
998
999 err = t1_sge_configure(adapter->sge, &adapter->params.sge);
1000 if (err)
1001 goto out_err;
1002
1003 err = 0;
1004 out_err:
1005 return err;
1006 }
1007
1008 /*
1009 * Determine a card's PCI mode.
1010 */
get_pci_mode(adapter_t * adapter,struct chelsio_pci_params * p)1011 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
1012 {
1013 static const unsigned short speed_map[] = { 33, 66, 100, 133 };
1014 u32 pci_mode;
1015
1016 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1017 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1018 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1019 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1020 }
1021
1022 /*
1023 * Release the structures holding the SW per-Terminator-HW-module state.
1024 */
t1_free_sw_modules(adapter_t * adapter)1025 void t1_free_sw_modules(adapter_t *adapter)
1026 {
1027 unsigned int i;
1028
1029 for_each_port(adapter, i) {
1030 struct cmac *mac = adapter->port[i].mac;
1031 struct cphy *phy = adapter->port[i].phy;
1032
1033 if (mac)
1034 mac->ops->destroy(mac);
1035 if (phy)
1036 phy->ops->destroy(phy);
1037 }
1038
1039 if (adapter->sge)
1040 t1_sge_destroy(adapter->sge);
1041 if (adapter->tp)
1042 t1_tp_destroy(adapter->tp);
1043 if (adapter->espi)
1044 t1_espi_destroy(adapter->espi);
1045 }
1046
init_link_config(struct link_config * lc,const struct board_info * bi)1047 static void init_link_config(struct link_config *lc,
1048 const struct board_info *bi)
1049 {
1050 lc->supported = bi->caps;
1051 lc->requested_speed = lc->speed = SPEED_INVALID;
1052 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1053 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1054 if (lc->supported & SUPPORTED_Autoneg) {
1055 lc->advertising = lc->supported;
1056 lc->autoneg = AUTONEG_ENABLE;
1057 lc->requested_fc |= PAUSE_AUTONEG;
1058 } else {
1059 lc->advertising = 0;
1060 lc->autoneg = AUTONEG_DISABLE;
1061 }
1062 }
1063
1064 /*
1065 * Allocate and initialize the data structures that hold the SW state of
1066 * the Terminator HW modules.
1067 */
t1_init_sw_modules(adapter_t * adapter,const struct board_info * bi)1068 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
1069 {
1070 unsigned int i;
1071
1072 adapter->params.brd_info = bi;
1073 adapter->params.nports = bi->port_number;
1074 adapter->params.stats_update_period = bi->gmac->stats_update_period;
1075
1076 adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1077 if (!adapter->sge) {
1078 pr_err("%s: SGE initialization failed\n",
1079 adapter->name);
1080 goto error;
1081 }
1082
1083 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1084 pr_err("%s: ESPI initialization failed\n",
1085 adapter->name);
1086 goto error;
1087 }
1088
1089 adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1090 if (!adapter->tp) {
1091 pr_err("%s: TP initialization failed\n",
1092 adapter->name);
1093 goto error;
1094 }
1095
1096 board_init(adapter, bi);
1097 bi->mdio_ops->init(adapter, bi);
1098 if (bi->gphy->reset)
1099 bi->gphy->reset(adapter);
1100 if (bi->gmac->reset)
1101 bi->gmac->reset(adapter);
1102
1103 for_each_port(adapter, i) {
1104 u8 hw_addr[6];
1105 struct cmac *mac;
1106 int phy_addr = bi->mdio_phybaseaddr + i;
1107
1108 adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1109 phy_addr, bi->mdio_ops);
1110 if (!adapter->port[i].phy) {
1111 pr_err("%s: PHY %d initialization failed\n",
1112 adapter->name, i);
1113 goto error;
1114 }
1115
1116 adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1117 if (!mac) {
1118 pr_err("%s: MAC %d initialization failed\n",
1119 adapter->name, i);
1120 goto error;
1121 }
1122
1123 /*
1124 * Get the port's MAC addresses either from the EEPROM if one
1125 * exists or the one hardcoded in the MAC.
1126 */
1127 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1128 mac->ops->macaddress_get(mac, hw_addr);
1129 else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1130 pr_err("%s: could not read MAC address from VPD ROM\n",
1131 adapter->port[i].dev->name);
1132 goto error;
1133 }
1134 eth_hw_addr_set(adapter->port[i].dev, hw_addr);
1135 init_link_config(&adapter->port[i].link_config, bi);
1136 }
1137
1138 get_pci_mode(adapter, &adapter->params.pci);
1139 t1_interrupts_clear(adapter);
1140 return 0;
1141
1142 error:
1143 t1_free_sw_modules(adapter);
1144 return -1;
1145 }
1146