1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MHI Endpoint bus stack
4 *
5 * Copyright (C) 2022 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19
20 #define M0_WAIT_DELAY_MS 100
21 #define M0_WAIT_COUNT 100
22
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27
mhi_ep_send_event(struct mhi_ep_cntrl * mhi_cntrl,u32 ring_idx,struct mhi_ring_element * el,bool bei)28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 struct mhi_ring_element *el, bool bei)
30 {
31 struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 union mhi_ep_ring_ctx *ctx;
33 struct mhi_ep_ring *ring;
34 int ret;
35
36 mutex_lock(&mhi_cntrl->event_lock);
37 ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 if (!ring->started) {
40 ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 if (ret) {
42 dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 goto err_unlock;
44 }
45 }
46
47 /* Add element to the event ring */
48 ret = mhi_ep_ring_add_element(ring, el);
49 if (ret) {
50 dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 goto err_unlock;
52 }
53
54 mutex_unlock(&mhi_cntrl->event_lock);
55
56 /*
57 * As per the MHI specification, section 4.3, Interrupt moderation:
58 *
59 * 1. If BEI flag is not set, cancel any pending intmodt work if started
60 * for the event ring and raise IRQ immediately.
61 *
62 * 2. If both BEI and intmodt are set, and if no IRQ is pending for the
63 * same event ring, start the IRQ delayed work as per the value of
64 * intmodt. If previous IRQ is pending, then do nothing as the pending
65 * IRQ is enough for the host to process the current event ring element.
66 *
67 * 3. If BEI is set and intmodt is not set, no need to raise IRQ.
68 */
69 if (!bei) {
70 if (READ_ONCE(ring->irq_pending))
71 cancel_delayed_work(&ring->intmodt_work);
72
73 mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
74 } else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
75 WRITE_ONCE(ring->irq_pending, true);
76 schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
77 }
78
79 return 0;
80
81 err_unlock:
82 mutex_unlock(&mhi_cntrl->event_lock);
83
84 return ret;
85 }
86
mhi_ep_send_completion_event(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring,struct mhi_ring_element * tre,u32 len,enum mhi_ev_ccs code)87 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
88 struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
89 {
90 struct mhi_ring_element *event;
91 int ret;
92
93 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
94 if (!event)
95 return -ENOMEM;
96
97 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
98 event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
99 event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
100
101 ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
102 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
103
104 return ret;
105 }
106
mhi_ep_send_state_change_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)107 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
108 {
109 struct mhi_ring_element *event;
110 int ret;
111
112 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
113 if (!event)
114 return -ENOMEM;
115
116 event->dword[0] = MHI_SC_EV_DWORD0(state);
117 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
118
119 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
120 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
121
122 return ret;
123 }
124
mhi_ep_send_ee_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ee_type exec_env)125 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
126 {
127 struct mhi_ring_element *event;
128 int ret;
129
130 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
131 if (!event)
132 return -ENOMEM;
133
134 event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
135 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
136
137 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
138 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
139
140 return ret;
141 }
142
mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ev_ccs code)143 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
144 {
145 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
146 struct mhi_ring_element *event;
147 int ret;
148
149 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
150 if (!event)
151 return -ENOMEM;
152
153 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
154 event->dword[0] = MHI_CC_EV_DWORD0(code);
155 event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
156
157 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
158 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
159
160 return ret;
161 }
162
mhi_ep_process_cmd_ring(struct mhi_ep_ring * ring,struct mhi_ring_element * el)163 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
164 {
165 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
166 struct device *dev = &mhi_cntrl->mhi_dev->dev;
167 struct mhi_result result = {};
168 struct mhi_ep_chan *mhi_chan;
169 struct mhi_ep_ring *ch_ring;
170 u32 tmp, ch_id;
171 int ret;
172
173 ch_id = MHI_TRE_GET_CMD_CHID(el);
174
175 /* Check if the channel is supported by the controller */
176 if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
177 dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
178 return -ENODEV;
179 }
180
181 mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
182 ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
183
184 switch (MHI_TRE_GET_CMD_TYPE(el)) {
185 case MHI_PKT_TYPE_START_CHAN_CMD:
186 dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
187
188 mutex_lock(&mhi_chan->lock);
189 /* Initialize and configure the corresponding channel ring */
190 if (!ch_ring->started) {
191 ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
192 (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
193 if (ret) {
194 dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
195 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
196 MHI_EV_CC_UNDEFINED_ERR);
197 if (ret)
198 dev_err(dev, "Error sending completion event: %d\n", ret);
199
200 goto err_unlock;
201 }
202
203 mhi_chan->rd_offset = ch_ring->rd_offset;
204 }
205
206 /* Set channel state to RUNNING */
207 mhi_chan->state = MHI_CH_STATE_RUNNING;
208 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
209 tmp &= ~CHAN_CTX_CHSTATE_MASK;
210 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
211 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
212
213 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
214 if (ret) {
215 dev_err(dev, "Error sending command completion event (%u)\n",
216 MHI_EV_CC_SUCCESS);
217 goto err_unlock;
218 }
219
220 mutex_unlock(&mhi_chan->lock);
221
222 /*
223 * Create MHI device only during UL channel start. Since the MHI
224 * channels operate in a pair, we'll associate both UL and DL
225 * channels to the same device.
226 *
227 * We also need to check for mhi_dev != NULL because, the host
228 * will issue START_CHAN command during resume and we don't
229 * destroy the device during suspend.
230 */
231 if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
232 ret = mhi_ep_create_device(mhi_cntrl, ch_id);
233 if (ret) {
234 dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
235 mhi_ep_handle_syserr(mhi_cntrl);
236 return ret;
237 }
238 }
239
240 /* Finally, enable DB for the channel */
241 mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
242
243 break;
244 case MHI_PKT_TYPE_STOP_CHAN_CMD:
245 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
246 if (!ch_ring->started) {
247 dev_err(dev, "Channel (%u) not opened\n", ch_id);
248 return -ENODEV;
249 }
250
251 mutex_lock(&mhi_chan->lock);
252 /* Disable DB for the channel */
253 mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
254
255 /* Send channel disconnect status to client drivers */
256 if (mhi_chan->xfer_cb) {
257 result.transaction_status = -ENOTCONN;
258 result.bytes_xferd = 0;
259 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
260 }
261
262 /* Set channel state to STOP */
263 mhi_chan->state = MHI_CH_STATE_STOP;
264 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
265 tmp &= ~CHAN_CTX_CHSTATE_MASK;
266 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
267 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
268
269 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
270 if (ret) {
271 dev_err(dev, "Error sending command completion event (%u)\n",
272 MHI_EV_CC_SUCCESS);
273 goto err_unlock;
274 }
275
276 mutex_unlock(&mhi_chan->lock);
277 break;
278 case MHI_PKT_TYPE_RESET_CHAN_CMD:
279 dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
280 if (!ch_ring->started) {
281 dev_err(dev, "Channel (%u) not opened\n", ch_id);
282 return -ENODEV;
283 }
284
285 mutex_lock(&mhi_chan->lock);
286 /* Stop and reset the transfer ring */
287 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
288
289 /* Send channel disconnect status to client driver */
290 if (mhi_chan->xfer_cb) {
291 result.transaction_status = -ENOTCONN;
292 result.bytes_xferd = 0;
293 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
294 }
295
296 /* Set channel state to DISABLED */
297 mhi_chan->state = MHI_CH_STATE_DISABLED;
298 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
299 tmp &= ~CHAN_CTX_CHSTATE_MASK;
300 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
301 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
302
303 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
304 if (ret) {
305 dev_err(dev, "Error sending command completion event (%u)\n",
306 MHI_EV_CC_SUCCESS);
307 goto err_unlock;
308 }
309
310 mutex_unlock(&mhi_chan->lock);
311 break;
312 default:
313 dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
314 MHI_TRE_GET_CMD_TYPE(el), ch_id);
315 return -EINVAL;
316 }
317
318 return 0;
319
320 err_unlock:
321 mutex_unlock(&mhi_chan->lock);
322
323 return ret;
324 }
325
mhi_ep_queue_is_empty(struct mhi_ep_device * mhi_dev,enum dma_data_direction dir)326 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
327 {
328 struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
329 mhi_dev->ul_chan;
330 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
331 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
332
333 return !!(mhi_chan->rd_offset == ring->wr_offset);
334 }
335 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
336
mhi_ep_read_completion(struct mhi_ep_buf_info * buf_info)337 static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
338 {
339 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
340 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
341 struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
342 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
343 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
344 struct mhi_result result = {};
345 int ret;
346
347 if (mhi_chan->xfer_cb) {
348 result.buf_addr = buf_info->cb_buf;
349 result.dir = mhi_chan->dir;
350 result.bytes_xferd = buf_info->size;
351
352 mhi_chan->xfer_cb(mhi_dev, &result);
353 }
354
355 /*
356 * The host will split the data packet into multiple TREs if it can't fit
357 * the packet in a single TRE. In that case, CHAIN flag will be set by the
358 * host for all TREs except the last one.
359 */
360 if (buf_info->code != MHI_EV_CC_OVERFLOW) {
361 if (MHI_TRE_DATA_GET_CHAIN(el)) {
362 /*
363 * IEOB (Interrupt on End of Block) flag will be set by the host if
364 * it expects the completion event for all TREs of a TD.
365 */
366 if (MHI_TRE_DATA_GET_IEOB(el)) {
367 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368 MHI_TRE_DATA_GET_LEN(el),
369 MHI_EV_CC_EOB);
370 if (ret < 0) {
371 dev_err(&mhi_chan->mhi_dev->dev,
372 "Error sending transfer compl. event\n");
373 goto err_free_tre_buf;
374 }
375 }
376 } else {
377 /*
378 * IEOT (Interrupt on End of Transfer) flag will be set by the host
379 * for the last TRE of the TD and expects the completion event for
380 * the same.
381 */
382 if (MHI_TRE_DATA_GET_IEOT(el)) {
383 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
384 MHI_TRE_DATA_GET_LEN(el),
385 MHI_EV_CC_EOT);
386 if (ret < 0) {
387 dev_err(&mhi_chan->mhi_dev->dev,
388 "Error sending transfer compl. event\n");
389 goto err_free_tre_buf;
390 }
391 }
392 }
393 }
394
395 mhi_ep_ring_inc_index(ring);
396
397 err_free_tre_buf:
398 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
399 }
400
mhi_ep_read_channel(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring)401 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
402 struct mhi_ep_ring *ring)
403 {
404 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
405 struct device *dev = &mhi_cntrl->mhi_dev->dev;
406 size_t tr_len, read_offset;
407 struct mhi_ep_buf_info buf_info = {};
408 u32 len = MHI_EP_DEFAULT_MTU;
409 struct mhi_ring_element *el;
410 void *buf_addr;
411 int ret;
412
413 do {
414 /* Don't process the transfer ring if the channel is not in RUNNING state */
415 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
416 dev_err(dev, "Channel not available\n");
417 return -ENODEV;
418 }
419
420 el = &ring->ring_cache[mhi_chan->rd_offset];
421
422 /* Check if there is data pending to be read from previous read operation */
423 if (mhi_chan->tre_bytes_left) {
424 dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
425 tr_len = min(len, mhi_chan->tre_bytes_left);
426 } else {
427 mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
428 mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
429 mhi_chan->tre_bytes_left = mhi_chan->tre_size;
430
431 tr_len = min(len, mhi_chan->tre_size);
432 }
433
434 read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
435
436 buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
437 if (!buf_addr)
438 return -ENOMEM;
439
440 buf_info.host_addr = mhi_chan->tre_loc + read_offset;
441 buf_info.dev_addr = buf_addr;
442 buf_info.size = tr_len;
443 buf_info.cb = mhi_ep_read_completion;
444 buf_info.cb_buf = buf_addr;
445 buf_info.mhi_dev = mhi_chan->mhi_dev;
446
447 if (mhi_chan->tre_bytes_left - tr_len)
448 buf_info.code = MHI_EV_CC_OVERFLOW;
449
450 dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
451 ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
452 if (ret < 0) {
453 dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
454 goto err_free_buf_addr;
455 }
456
457 mhi_chan->tre_bytes_left -= tr_len;
458
459 if (!mhi_chan->tre_bytes_left)
460 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
461 /* Read until the some buffer is left or the ring becomes not empty */
462 } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
463
464 return 0;
465
466 err_free_buf_addr:
467 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
468
469 return ret;
470 }
471
mhi_ep_process_ch_ring(struct mhi_ep_ring * ring)472 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
473 {
474 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
475 struct mhi_result result = {};
476 struct mhi_ep_chan *mhi_chan;
477 int ret;
478
479 mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
480
481 /*
482 * Bail out if transfer callback is not registered for the channel.
483 * This is most likely due to the client driver not loaded at this point.
484 */
485 if (!mhi_chan->xfer_cb) {
486 dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
487 return -ENODEV;
488 }
489
490 if (ring->ch_id % 2) {
491 /* DL channel */
492 result.dir = mhi_chan->dir;
493 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
494 } else {
495 /* UL channel */
496 ret = mhi_ep_read_channel(mhi_cntrl, ring);
497 if (ret < 0) {
498 dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
499 return ret;
500 }
501 }
502
503 return 0;
504 }
505
mhi_ep_skb_completion(struct mhi_ep_buf_info * buf_info)506 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
507 {
508 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
509 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
510 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
511 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
512 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
513 struct device *dev = &mhi_dev->dev;
514 struct mhi_result result = {};
515 int ret;
516
517 if (mhi_chan->xfer_cb) {
518 result.buf_addr = buf_info->cb_buf;
519 result.dir = mhi_chan->dir;
520 result.bytes_xferd = buf_info->size;
521
522 mhi_chan->xfer_cb(mhi_dev, &result);
523 }
524
525 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
526 buf_info->code);
527 if (ret) {
528 dev_err(dev, "Error sending transfer completion event\n");
529 return;
530 }
531
532 mhi_ep_ring_inc_index(ring);
533 }
534
535 /* TODO: Handle partially formed TDs */
mhi_ep_queue_skb(struct mhi_ep_device * mhi_dev,struct sk_buff * skb)536 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
537 {
538 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
539 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
540 struct device *dev = &mhi_chan->mhi_dev->dev;
541 struct mhi_ep_buf_info buf_info = {};
542 struct mhi_ring_element *el;
543 u32 buf_left, read_offset;
544 struct mhi_ep_ring *ring;
545 size_t tr_len;
546 u32 tre_len;
547 int ret;
548
549 buf_left = skb->len;
550 ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
551
552 mutex_lock(&mhi_chan->lock);
553
554 do {
555 /* Don't process the transfer ring if the channel is not in RUNNING state */
556 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
557 dev_err(dev, "Channel not available\n");
558 ret = -ENODEV;
559 goto err_exit;
560 }
561
562 if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
563 dev_err(dev, "TRE not available!\n");
564 ret = -ENOSPC;
565 goto err_exit;
566 }
567
568 el = &ring->ring_cache[mhi_chan->rd_offset];
569 tre_len = MHI_TRE_DATA_GET_LEN(el);
570
571 tr_len = min(buf_left, tre_len);
572 read_offset = skb->len - buf_left;
573
574 buf_info.dev_addr = skb->data + read_offset;
575 buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
576 buf_info.size = tr_len;
577 buf_info.cb = mhi_ep_skb_completion;
578 buf_info.cb_buf = skb;
579 buf_info.mhi_dev = mhi_dev;
580
581 /*
582 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
583 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
584 * the host so that the host can adjust the packet boundary to next TREs. Else send
585 * the EOT event to the host indicating the packet boundary.
586 */
587 if (buf_left - tr_len)
588 buf_info.code = MHI_EV_CC_OVERFLOW;
589 else
590 buf_info.code = MHI_EV_CC_EOT;
591
592 dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
593 ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
594 if (ret < 0) {
595 dev_err(dev, "Error writing to the channel\n");
596 goto err_exit;
597 }
598
599 buf_left -= tr_len;
600
601 /*
602 * Update the read offset cached in mhi_chan. Actual read offset
603 * will be updated by the completion handler.
604 */
605 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
606 } while (buf_left);
607
608 mutex_unlock(&mhi_chan->lock);
609
610 return 0;
611
612 err_exit:
613 mutex_unlock(&mhi_chan->lock);
614
615 return ret;
616 }
617 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
618
mhi_ep_cache_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)619 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
620 {
621 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
622 struct device *dev = &mhi_cntrl->mhi_dev->dev;
623 int ret;
624
625 /* Update the number of event rings (NER) programmed by the host */
626 mhi_ep_mmio_update_ner(mhi_cntrl);
627
628 dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
629 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
630
631 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
632 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
633 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
634
635 /* Get the channel context base pointer from host */
636 mhi_ep_mmio_get_chc_base(mhi_cntrl);
637
638 /* Allocate and map memory for caching host channel context */
639 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
640 &mhi_cntrl->ch_ctx_cache_phys,
641 (void __iomem **) &mhi_cntrl->ch_ctx_cache,
642 ch_ctx_host_size);
643 if (ret) {
644 dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
645 return ret;
646 }
647
648 /* Get the event context base pointer from host */
649 mhi_ep_mmio_get_erc_base(mhi_cntrl);
650
651 /* Allocate and map memory for caching host event context */
652 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
653 &mhi_cntrl->ev_ctx_cache_phys,
654 (void __iomem **) &mhi_cntrl->ev_ctx_cache,
655 ev_ctx_host_size);
656 if (ret) {
657 dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
658 goto err_ch_ctx;
659 }
660
661 /* Get the command context base pointer from host */
662 mhi_ep_mmio_get_crc_base(mhi_cntrl);
663
664 /* Allocate and map memory for caching host command context */
665 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
666 &mhi_cntrl->cmd_ctx_cache_phys,
667 (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
668 cmd_ctx_host_size);
669 if (ret) {
670 dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
671 goto err_ev_ctx;
672 }
673
674 /* Initialize command ring */
675 ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
676 (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
677 if (ret) {
678 dev_err(dev, "Failed to start the command ring\n");
679 goto err_cmd_ctx;
680 }
681
682 return ret;
683
684 err_cmd_ctx:
685 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
686 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
687
688 err_ev_ctx:
689 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
690 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
691
692 err_ch_ctx:
693 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
694 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
695
696 return ret;
697 }
698
mhi_ep_free_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)699 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
700 {
701 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
702
703 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
704 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
705 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
706
707 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
708 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
709
710 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
711 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
712
713 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
714 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
715 }
716
mhi_ep_enable_int(struct mhi_ep_cntrl * mhi_cntrl)717 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
718 {
719 /*
720 * Doorbell interrupts are enabled when the corresponding channel gets started.
721 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
722 * associated with hw channels always get triggered.
723 */
724 mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
725 mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
726 }
727
mhi_ep_enable(struct mhi_ep_cntrl * mhi_cntrl)728 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
729 {
730 struct device *dev = &mhi_cntrl->mhi_dev->dev;
731 enum mhi_state state;
732 bool mhi_reset;
733 u32 count = 0;
734 int ret;
735
736 /* Wait for Host to set the M0 state */
737 do {
738 msleep(M0_WAIT_DELAY_MS);
739 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
740 if (mhi_reset) {
741 /* Clear the MHI reset if host is in reset state */
742 mhi_ep_mmio_clear_reset(mhi_cntrl);
743 dev_info(dev, "Detected Host reset while waiting for M0\n");
744 }
745 count++;
746 } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
747
748 if (state != MHI_STATE_M0) {
749 dev_err(dev, "Host failed to enter M0\n");
750 return -ETIMEDOUT;
751 }
752
753 ret = mhi_ep_cache_host_cfg(mhi_cntrl);
754 if (ret) {
755 dev_err(dev, "Failed to cache host config\n");
756 return ret;
757 }
758
759 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
760
761 /* Enable all interrupts now */
762 mhi_ep_enable_int(mhi_cntrl);
763
764 return 0;
765 }
766
mhi_ep_cmd_ring_worker(struct work_struct * work)767 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
768 {
769 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
770 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
771 struct device *dev = &mhi_cntrl->mhi_dev->dev;
772 struct mhi_ring_element *el;
773 int ret;
774
775 /* Update the write offset for the ring */
776 ret = mhi_ep_update_wr_offset(ring);
777 if (ret) {
778 dev_err(dev, "Error updating write offset for ring\n");
779 return;
780 }
781
782 /* Sanity check to make sure there are elements in the ring */
783 if (ring->rd_offset == ring->wr_offset)
784 return;
785
786 /*
787 * Process command ring element till write offset. In case of an error, just try to
788 * process next element.
789 */
790 while (ring->rd_offset != ring->wr_offset) {
791 el = &ring->ring_cache[ring->rd_offset];
792
793 ret = mhi_ep_process_cmd_ring(ring, el);
794 if (ret && ret != -ENODEV)
795 dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
796
797 mhi_ep_ring_inc_index(ring);
798 }
799 }
800
mhi_ep_ch_ring_worker(struct work_struct * work)801 static void mhi_ep_ch_ring_worker(struct work_struct *work)
802 {
803 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
804 struct device *dev = &mhi_cntrl->mhi_dev->dev;
805 struct mhi_ep_ring_item *itr, *tmp;
806 struct mhi_ep_ring *ring;
807 struct mhi_ep_chan *chan;
808 unsigned long flags;
809 LIST_HEAD(head);
810 int ret;
811
812 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
813 list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
814 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
815
816 /* Process each queued channel ring. In case of an error, just process next element. */
817 list_for_each_entry_safe(itr, tmp, &head, node) {
818 list_del(&itr->node);
819 ring = itr->ring;
820
821 chan = &mhi_cntrl->mhi_chan[ring->ch_id];
822 mutex_lock(&chan->lock);
823
824 /*
825 * The ring could've stopped while we waited to grab the (chan->lock), so do
826 * a sanity check before going further.
827 */
828 if (!ring->started) {
829 mutex_unlock(&chan->lock);
830 kfree(itr);
831 continue;
832 }
833
834 /* Update the write offset for the ring */
835 ret = mhi_ep_update_wr_offset(ring);
836 if (ret) {
837 dev_err(dev, "Error updating write offset for ring\n");
838 mutex_unlock(&chan->lock);
839 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
840 continue;
841 }
842
843 /* Sanity check to make sure there are elements in the ring */
844 if (chan->rd_offset == ring->wr_offset) {
845 mutex_unlock(&chan->lock);
846 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
847 continue;
848 }
849
850 dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
851 ret = mhi_ep_process_ch_ring(ring);
852 if (ret) {
853 dev_err(dev, "Error processing ring for channel (%u): %d\n",
854 ring->ch_id, ret);
855 mutex_unlock(&chan->lock);
856 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
857 continue;
858 }
859
860 mutex_unlock(&chan->lock);
861 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
862 }
863 }
864
mhi_ep_state_worker(struct work_struct * work)865 static void mhi_ep_state_worker(struct work_struct *work)
866 {
867 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
868 struct device *dev = &mhi_cntrl->mhi_dev->dev;
869 struct mhi_ep_state_transition *itr, *tmp;
870 unsigned long flags;
871 LIST_HEAD(head);
872 int ret;
873
874 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
875 list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
876 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
877
878 list_for_each_entry_safe(itr, tmp, &head, node) {
879 list_del(&itr->node);
880 dev_dbg(dev, "Handling MHI state transition to %s\n",
881 mhi_state_str(itr->state));
882
883 switch (itr->state) {
884 case MHI_STATE_M0:
885 ret = mhi_ep_set_m0_state(mhi_cntrl);
886 if (ret)
887 dev_err(dev, "Failed to transition to M0 state\n");
888 break;
889 case MHI_STATE_M3:
890 ret = mhi_ep_set_m3_state(mhi_cntrl);
891 if (ret)
892 dev_err(dev, "Failed to transition to M3 state\n");
893 break;
894 default:
895 dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
896 break;
897 }
898 kfree(itr);
899 }
900 }
901
mhi_ep_queue_channel_db(struct mhi_ep_cntrl * mhi_cntrl,unsigned long ch_int,u32 ch_idx)902 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
903 u32 ch_idx)
904 {
905 struct mhi_ep_ring_item *item;
906 struct mhi_ep_ring *ring;
907 bool work = !!ch_int;
908 LIST_HEAD(head);
909 u32 i;
910
911 /* First add the ring items to a local list */
912 for_each_set_bit(i, &ch_int, 32) {
913 /* Channel index varies for each register: 0, 32, 64, 96 */
914 u32 ch_id = ch_idx + i;
915
916 ring = &mhi_cntrl->mhi_chan[ch_id].ring;
917 item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
918 if (!item)
919 return;
920
921 item->ring = ring;
922 list_add_tail(&item->node, &head);
923 }
924
925 /* Now, splice the local list into ch_db_list and queue the work item */
926 if (work) {
927 spin_lock(&mhi_cntrl->list_lock);
928 list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
929 spin_unlock(&mhi_cntrl->list_lock);
930
931 queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
932 }
933 }
934
935 /*
936 * Channel interrupt statuses are contained in 4 registers each of 32bit length.
937 * For checking all interrupts, we need to loop through each registers and then
938 * check for bits set.
939 */
mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl * mhi_cntrl)940 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
941 {
942 u32 ch_int, ch_idx, i;
943
944 /* Bail out if there is no channel doorbell interrupt */
945 if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
946 return;
947
948 for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
949 ch_idx = i * MHI_MASK_CH_LEN;
950
951 /* Only process channel interrupt if the mask is enabled */
952 ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
953 if (ch_int) {
954 mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
955 mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
956 mhi_cntrl->chdb[i].status);
957 }
958 }
959 }
960
mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)961 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
962 enum mhi_state state)
963 {
964 struct mhi_ep_state_transition *item;
965
966 item = kzalloc(sizeof(*item), GFP_ATOMIC);
967 if (!item)
968 return;
969
970 item->state = state;
971 spin_lock(&mhi_cntrl->list_lock);
972 list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
973 spin_unlock(&mhi_cntrl->list_lock);
974
975 queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
976 }
977
978 /*
979 * Interrupt handler that services interrupts raised by the host writing to
980 * MHICTRL and Command ring doorbell (CRDB) registers for state change and
981 * channel interrupts.
982 */
mhi_ep_irq(int irq,void * data)983 static irqreturn_t mhi_ep_irq(int irq, void *data)
984 {
985 struct mhi_ep_cntrl *mhi_cntrl = data;
986 struct device *dev = &mhi_cntrl->mhi_dev->dev;
987 enum mhi_state state;
988 u32 int_value;
989 bool mhi_reset;
990
991 /* Acknowledge the ctrl interrupt */
992 int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
993 mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
994
995 /* Check for ctrl interrupt */
996 if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
997 dev_dbg(dev, "Processing ctrl interrupt\n");
998 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
999 if (mhi_reset) {
1000 dev_info(dev, "Host triggered MHI reset!\n");
1001 disable_irq_nosync(mhi_cntrl->irq);
1002 schedule_work(&mhi_cntrl->reset_work);
1003 return IRQ_HANDLED;
1004 }
1005
1006 mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1007 }
1008
1009 /* Check for command doorbell interrupt */
1010 if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1011 dev_dbg(dev, "Processing command doorbell interrupt\n");
1012 queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1013 }
1014
1015 /* Check for channel interrupts */
1016 mhi_ep_check_channel_interrupt(mhi_cntrl);
1017
1018 return IRQ_HANDLED;
1019 }
1020
mhi_ep_abort_transfer(struct mhi_ep_cntrl * mhi_cntrl)1021 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1022 {
1023 struct mhi_ep_ring *ch_ring, *ev_ring;
1024 struct mhi_result result = {};
1025 struct mhi_ep_chan *mhi_chan;
1026 int i;
1027
1028 /* Stop all the channels */
1029 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1030 mhi_chan = &mhi_cntrl->mhi_chan[i];
1031 if (!mhi_chan->ring.started)
1032 continue;
1033
1034 mutex_lock(&mhi_chan->lock);
1035 /* Send channel disconnect status to client drivers */
1036 if (mhi_chan->xfer_cb) {
1037 result.transaction_status = -ENOTCONN;
1038 result.bytes_xferd = 0;
1039 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1040 }
1041
1042 mhi_chan->state = MHI_CH_STATE_DISABLED;
1043 mutex_unlock(&mhi_chan->lock);
1044 }
1045
1046 flush_workqueue(mhi_cntrl->wq);
1047
1048 /* Destroy devices associated with all channels */
1049 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1050
1051 /* Stop and reset the transfer rings */
1052 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1053 mhi_chan = &mhi_cntrl->mhi_chan[i];
1054 if (!mhi_chan->ring.started)
1055 continue;
1056
1057 ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1058 mutex_lock(&mhi_chan->lock);
1059 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1060 mutex_unlock(&mhi_chan->lock);
1061 }
1062
1063 /* Stop and reset the event rings */
1064 for (i = 0; i < mhi_cntrl->event_rings; i++) {
1065 ev_ring = &mhi_cntrl->mhi_event[i].ring;
1066 if (!ev_ring->started)
1067 continue;
1068
1069 mutex_lock(&mhi_cntrl->event_lock);
1070 mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1071 mutex_unlock(&mhi_cntrl->event_lock);
1072 }
1073
1074 /* Stop and reset the command ring */
1075 mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1076
1077 mhi_ep_free_host_cfg(mhi_cntrl);
1078 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1079
1080 mhi_cntrl->enabled = false;
1081 }
1082
mhi_ep_reset_worker(struct work_struct * work)1083 static void mhi_ep_reset_worker(struct work_struct *work)
1084 {
1085 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1086 enum mhi_state cur_state;
1087
1088 mhi_ep_power_down(mhi_cntrl);
1089
1090 mutex_lock(&mhi_cntrl->state_lock);
1091
1092 /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1093 mhi_ep_mmio_reset(mhi_cntrl);
1094 cur_state = mhi_cntrl->mhi_state;
1095
1096 /*
1097 * Only proceed further if the reset is due to SYS_ERR. The host will
1098 * issue reset during shutdown also and we don't need to do re-init in
1099 * that case.
1100 */
1101 if (cur_state == MHI_STATE_SYS_ERR)
1102 mhi_ep_power_up(mhi_cntrl);
1103
1104 mutex_unlock(&mhi_cntrl->state_lock);
1105 }
1106
1107 /*
1108 * We don't need to do anything special other than setting the MHI SYS_ERR
1109 * state. The host will reset all contexts and issue MHI RESET so that we
1110 * could also recover from error state.
1111 */
mhi_ep_handle_syserr(struct mhi_ep_cntrl * mhi_cntrl)1112 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1113 {
1114 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1115 int ret;
1116
1117 ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1118 if (ret)
1119 return;
1120
1121 /* Signal host that the device went to SYS_ERR state */
1122 ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1123 if (ret)
1124 dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1125 }
1126
mhi_ep_power_up(struct mhi_ep_cntrl * mhi_cntrl)1127 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1128 {
1129 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1130 int ret, i;
1131
1132 /*
1133 * Mask all interrupts until the state machine is ready. Interrupts will
1134 * be enabled later with mhi_ep_enable().
1135 */
1136 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1137 mhi_ep_mmio_init(mhi_cntrl);
1138
1139 mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
1140 sizeof(*mhi_cntrl->mhi_event),
1141 GFP_KERNEL);
1142 if (!mhi_cntrl->mhi_event)
1143 return -ENOMEM;
1144
1145 /* Initialize command, channel and event rings */
1146 mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1147 for (i = 0; i < mhi_cntrl->max_chan; i++)
1148 mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1149 for (i = 0; i < mhi_cntrl->event_rings; i++)
1150 mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1151
1152 mhi_cntrl->mhi_state = MHI_STATE_RESET;
1153
1154 /* Set AMSS EE before signaling ready state */
1155 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1156
1157 /* All set, notify the host that we are ready */
1158 ret = mhi_ep_set_ready_state(mhi_cntrl);
1159 if (ret)
1160 goto err_free_event;
1161
1162 dev_dbg(dev, "READY state notification sent to the host\n");
1163
1164 ret = mhi_ep_enable(mhi_cntrl);
1165 if (ret) {
1166 dev_err(dev, "Failed to enable MHI endpoint\n");
1167 goto err_free_event;
1168 }
1169
1170 enable_irq(mhi_cntrl->irq);
1171 mhi_cntrl->enabled = true;
1172
1173 return 0;
1174
1175 err_free_event:
1176 kfree(mhi_cntrl->mhi_event);
1177
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1181
mhi_ep_power_down(struct mhi_ep_cntrl * mhi_cntrl)1182 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1183 {
1184 if (mhi_cntrl->enabled) {
1185 mhi_ep_abort_transfer(mhi_cntrl);
1186 kfree(mhi_cntrl->mhi_event);
1187 disable_irq(mhi_cntrl->irq);
1188 }
1189 }
1190 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1191
mhi_ep_suspend_channels(struct mhi_ep_cntrl * mhi_cntrl)1192 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1193 {
1194 struct mhi_ep_chan *mhi_chan;
1195 u32 tmp;
1196 int i;
1197
1198 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1199 mhi_chan = &mhi_cntrl->mhi_chan[i];
1200
1201 if (!mhi_chan->mhi_dev)
1202 continue;
1203
1204 mutex_lock(&mhi_chan->lock);
1205 /* Skip if the channel is not currently running */
1206 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1207 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1208 mutex_unlock(&mhi_chan->lock);
1209 continue;
1210 }
1211
1212 dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1213 /* Set channel state to SUSPENDED */
1214 mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1215 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1216 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1217 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1218 mutex_unlock(&mhi_chan->lock);
1219 }
1220 }
1221
mhi_ep_resume_channels(struct mhi_ep_cntrl * mhi_cntrl)1222 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1223 {
1224 struct mhi_ep_chan *mhi_chan;
1225 u32 tmp;
1226 int i;
1227
1228 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1229 mhi_chan = &mhi_cntrl->mhi_chan[i];
1230
1231 if (!mhi_chan->mhi_dev)
1232 continue;
1233
1234 mutex_lock(&mhi_chan->lock);
1235 /* Skip if the channel is not currently suspended */
1236 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1237 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1238 mutex_unlock(&mhi_chan->lock);
1239 continue;
1240 }
1241
1242 dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1243 /* Set channel state to RUNNING */
1244 mhi_chan->state = MHI_CH_STATE_RUNNING;
1245 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1246 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1247 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1248 mutex_unlock(&mhi_chan->lock);
1249 }
1250 }
1251
mhi_ep_release_device(struct device * dev)1252 static void mhi_ep_release_device(struct device *dev)
1253 {
1254 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1255
1256 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1257 mhi_dev->mhi_cntrl->mhi_dev = NULL;
1258
1259 /*
1260 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1261 * devices for the channels will only get created in mhi_ep_create_device()
1262 * if the mhi_dev associated with it is NULL.
1263 */
1264 if (mhi_dev->ul_chan)
1265 mhi_dev->ul_chan->mhi_dev = NULL;
1266
1267 if (mhi_dev->dl_chan)
1268 mhi_dev->dl_chan->mhi_dev = NULL;
1269
1270 kfree(mhi_dev);
1271 }
1272
mhi_ep_alloc_device(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_device_type dev_type)1273 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1274 enum mhi_device_type dev_type)
1275 {
1276 struct mhi_ep_device *mhi_dev;
1277 struct device *dev;
1278
1279 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1280 if (!mhi_dev)
1281 return ERR_PTR(-ENOMEM);
1282
1283 dev = &mhi_dev->dev;
1284 device_initialize(dev);
1285 dev->bus = &mhi_ep_bus_type;
1286 dev->release = mhi_ep_release_device;
1287
1288 /* Controller device is always allocated first */
1289 if (dev_type == MHI_DEVICE_CONTROLLER)
1290 /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1291 dev->parent = mhi_cntrl->cntrl_dev;
1292 else
1293 /* for MHI client devices, parent is the MHI controller device */
1294 dev->parent = &mhi_cntrl->mhi_dev->dev;
1295
1296 mhi_dev->mhi_cntrl = mhi_cntrl;
1297 mhi_dev->dev_type = dev_type;
1298
1299 return mhi_dev;
1300 }
1301
1302 /*
1303 * MHI channels are always defined in pairs with UL as the even numbered
1304 * channel and DL as odd numbered one. This function gets UL channel (primary)
1305 * as the ch_id and always looks after the next entry in channel list for
1306 * the corresponding DL channel (secondary).
1307 */
mhi_ep_create_device(struct mhi_ep_cntrl * mhi_cntrl,u32 ch_id)1308 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1309 {
1310 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1311 struct device *dev = mhi_cntrl->cntrl_dev;
1312 struct mhi_ep_device *mhi_dev;
1313 int ret;
1314
1315 /* Check if the channel name is same for both UL and DL */
1316 if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1317 dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1318 mhi_chan->name, mhi_chan[1].name);
1319 return -EINVAL;
1320 }
1321
1322 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1323 if (IS_ERR(mhi_dev))
1324 return PTR_ERR(mhi_dev);
1325
1326 /* Configure primary channel */
1327 mhi_dev->ul_chan = mhi_chan;
1328 get_device(&mhi_dev->dev);
1329 mhi_chan->mhi_dev = mhi_dev;
1330
1331 /* Configure secondary channel as well */
1332 mhi_chan++;
1333 mhi_dev->dl_chan = mhi_chan;
1334 get_device(&mhi_dev->dev);
1335 mhi_chan->mhi_dev = mhi_dev;
1336
1337 /* Channel name is same for both UL and DL */
1338 mhi_dev->name = mhi_chan->name;
1339 ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1340 dev_name(&mhi_cntrl->mhi_dev->dev),
1341 mhi_dev->name);
1342 if (ret) {
1343 put_device(&mhi_dev->dev);
1344 return ret;
1345 }
1346
1347 ret = device_add(&mhi_dev->dev);
1348 if (ret)
1349 put_device(&mhi_dev->dev);
1350
1351 return ret;
1352 }
1353
mhi_ep_destroy_device(struct device * dev,void * data)1354 static int mhi_ep_destroy_device(struct device *dev, void *data)
1355 {
1356 struct mhi_ep_device *mhi_dev;
1357 struct mhi_ep_cntrl *mhi_cntrl;
1358 struct mhi_ep_chan *ul_chan, *dl_chan;
1359
1360 if (dev->bus != &mhi_ep_bus_type)
1361 return 0;
1362
1363 mhi_dev = to_mhi_ep_device(dev);
1364 mhi_cntrl = mhi_dev->mhi_cntrl;
1365
1366 /* Only destroy devices created for channels */
1367 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1368 return 0;
1369
1370 ul_chan = mhi_dev->ul_chan;
1371 dl_chan = mhi_dev->dl_chan;
1372
1373 if (ul_chan)
1374 put_device(&ul_chan->mhi_dev->dev);
1375
1376 if (dl_chan)
1377 put_device(&dl_chan->mhi_dev->dev);
1378
1379 dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1380 mhi_dev->name);
1381
1382 /* Notify the client and remove the device from MHI bus */
1383 device_del(dev);
1384 put_device(dev);
1385
1386 return 0;
1387 }
1388
mhi_ep_chan_init(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1389 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1390 const struct mhi_ep_cntrl_config *config)
1391 {
1392 const struct mhi_ep_channel_config *ch_cfg;
1393 struct device *dev = mhi_cntrl->cntrl_dev;
1394 u32 chan, i;
1395 int ret = -EINVAL;
1396
1397 mhi_cntrl->max_chan = config->max_channels;
1398
1399 /*
1400 * Allocate max_channels supported by the MHI endpoint and populate
1401 * only the defined channels
1402 */
1403 mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1404 GFP_KERNEL);
1405 if (!mhi_cntrl->mhi_chan)
1406 return -ENOMEM;
1407
1408 for (i = 0; i < config->num_channels; i++) {
1409 struct mhi_ep_chan *mhi_chan;
1410
1411 ch_cfg = &config->ch_cfg[i];
1412
1413 chan = ch_cfg->num;
1414 if (chan >= mhi_cntrl->max_chan) {
1415 dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1416 chan, mhi_cntrl->max_chan);
1417 goto error_chan_cfg;
1418 }
1419
1420 /* Bi-directional and direction less channels are not supported */
1421 if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1422 dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1423 ch_cfg->dir, chan);
1424 goto error_chan_cfg;
1425 }
1426
1427 mhi_chan = &mhi_cntrl->mhi_chan[chan];
1428 mhi_chan->name = ch_cfg->name;
1429 mhi_chan->chan = chan;
1430 mhi_chan->dir = ch_cfg->dir;
1431 mutex_init(&mhi_chan->lock);
1432 }
1433
1434 return 0;
1435
1436 error_chan_cfg:
1437 kfree(mhi_cntrl->mhi_chan);
1438
1439 return ret;
1440 }
1441
1442 /*
1443 * Allocate channel and command rings here. Event rings will be allocated
1444 * in mhi_ep_power_up() as the config comes from the host.
1445 */
mhi_ep_register_controller(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1446 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1447 const struct mhi_ep_cntrl_config *config)
1448 {
1449 struct mhi_ep_device *mhi_dev;
1450 int ret;
1451
1452 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1453 return -EINVAL;
1454
1455 if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
1456 !mhi_cntrl->read_async || !mhi_cntrl->write_async)
1457 return -EINVAL;
1458
1459 ret = mhi_ep_chan_init(mhi_cntrl, config);
1460 if (ret)
1461 return ret;
1462
1463 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1464 if (!mhi_cntrl->mhi_cmd) {
1465 ret = -ENOMEM;
1466 goto err_free_ch;
1467 }
1468
1469 mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1470 sizeof(struct mhi_ring_element), 0,
1471 0, NULL);
1472 if (!mhi_cntrl->ev_ring_el_cache) {
1473 ret = -ENOMEM;
1474 goto err_free_cmd;
1475 }
1476
1477 mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1478 0, NULL);
1479 if (!mhi_cntrl->tre_buf_cache) {
1480 ret = -ENOMEM;
1481 goto err_destroy_ev_ring_el_cache;
1482 }
1483
1484 mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1485 sizeof(struct mhi_ep_ring_item), 0,
1486 0, NULL);
1487 if (!mhi_cntrl->ring_item_cache) {
1488 ret = -ENOMEM;
1489 goto err_destroy_tre_buf_cache;
1490 }
1491
1492 INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1493 INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1494 INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1495 INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1496
1497 mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", WQ_PERCPU, 0);
1498 if (!mhi_cntrl->wq) {
1499 ret = -ENOMEM;
1500 goto err_destroy_ring_item_cache;
1501 }
1502
1503 INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1504 INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1505 spin_lock_init(&mhi_cntrl->list_lock);
1506 mutex_init(&mhi_cntrl->state_lock);
1507 mutex_init(&mhi_cntrl->event_lock);
1508
1509 /* Set MHI version and AMSS EE before enumeration */
1510 mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1511 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1512
1513 /* Set controller index */
1514 ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1515 if (ret < 0)
1516 goto err_destroy_wq;
1517
1518 mhi_cntrl->index = ret;
1519
1520 irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1521 ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1522 "doorbell_irq", mhi_cntrl);
1523 if (ret) {
1524 dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1525 goto err_ida_free;
1526 }
1527
1528 /* Allocate the controller device */
1529 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1530 if (IS_ERR(mhi_dev)) {
1531 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1532 ret = PTR_ERR(mhi_dev);
1533 goto err_free_irq;
1534 }
1535
1536 ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1537 if (ret)
1538 goto err_put_dev;
1539
1540 mhi_dev->name = dev_name(&mhi_dev->dev);
1541 mhi_cntrl->mhi_dev = mhi_dev;
1542
1543 ret = device_add(&mhi_dev->dev);
1544 if (ret)
1545 goto err_put_dev;
1546
1547 dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1548
1549 return 0;
1550
1551 err_put_dev:
1552 put_device(&mhi_dev->dev);
1553 err_free_irq:
1554 free_irq(mhi_cntrl->irq, mhi_cntrl);
1555 err_ida_free:
1556 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1557 err_destroy_wq:
1558 destroy_workqueue(mhi_cntrl->wq);
1559 err_destroy_ring_item_cache:
1560 kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1561 err_destroy_ev_ring_el_cache:
1562 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1563 err_destroy_tre_buf_cache:
1564 kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1565 err_free_cmd:
1566 kfree(mhi_cntrl->mhi_cmd);
1567 err_free_ch:
1568 kfree(mhi_cntrl->mhi_chan);
1569
1570 return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1573
1574 /*
1575 * It is expected that the controller drivers will power down the MHI EP stack
1576 * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1577 */
mhi_ep_unregister_controller(struct mhi_ep_cntrl * mhi_cntrl)1578 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1579 {
1580 struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1581
1582 destroy_workqueue(mhi_cntrl->wq);
1583
1584 free_irq(mhi_cntrl->irq, mhi_cntrl);
1585
1586 kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1587 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1588 kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1589 kfree(mhi_cntrl->mhi_cmd);
1590 kfree(mhi_cntrl->mhi_chan);
1591
1592 device_del(&mhi_dev->dev);
1593 put_device(&mhi_dev->dev);
1594
1595 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1596 }
1597 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1598
mhi_ep_driver_probe(struct device * dev)1599 static int mhi_ep_driver_probe(struct device *dev)
1600 {
1601 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1602 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1603 struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1604 struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1605
1606 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1607 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1608
1609 return mhi_drv->probe(mhi_dev, mhi_dev->id);
1610 }
1611
mhi_ep_driver_remove(struct device * dev)1612 static int mhi_ep_driver_remove(struct device *dev)
1613 {
1614 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1615 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1616 struct mhi_result result = {};
1617 struct mhi_ep_chan *mhi_chan;
1618 int dir;
1619
1620 /* Skip if it is a controller device */
1621 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1622 return 0;
1623
1624 /* Disconnect the channels associated with the driver */
1625 for (dir = 0; dir < 2; dir++) {
1626 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1627
1628 if (!mhi_chan)
1629 continue;
1630
1631 mutex_lock(&mhi_chan->lock);
1632 /* Send channel disconnect status to the client driver */
1633 if (mhi_chan->xfer_cb) {
1634 result.transaction_status = -ENOTCONN;
1635 result.bytes_xferd = 0;
1636 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1637 }
1638
1639 mhi_chan->state = MHI_CH_STATE_DISABLED;
1640 mhi_chan->xfer_cb = NULL;
1641 mutex_unlock(&mhi_chan->lock);
1642 }
1643
1644 /* Remove the client driver now */
1645 mhi_drv->remove(mhi_dev);
1646
1647 return 0;
1648 }
1649
__mhi_ep_driver_register(struct mhi_ep_driver * mhi_drv,struct module * owner)1650 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1651 {
1652 struct device_driver *driver = &mhi_drv->driver;
1653
1654 if (!mhi_drv->probe || !mhi_drv->remove)
1655 return -EINVAL;
1656
1657 /* Client drivers should have callbacks defined for both channels */
1658 if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1659 return -EINVAL;
1660
1661 driver->bus = &mhi_ep_bus_type;
1662 driver->owner = owner;
1663 driver->probe = mhi_ep_driver_probe;
1664 driver->remove = mhi_ep_driver_remove;
1665
1666 return driver_register(driver);
1667 }
1668 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1669
mhi_ep_driver_unregister(struct mhi_ep_driver * mhi_drv)1670 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1671 {
1672 driver_unregister(&mhi_drv->driver);
1673 }
1674 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1675
mhi_ep_uevent(const struct device * dev,struct kobj_uevent_env * env)1676 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1677 {
1678 const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1679
1680 return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1681 mhi_dev->name);
1682 }
1683
mhi_ep_match(struct device * dev,const struct device_driver * drv)1684 static int mhi_ep_match(struct device *dev, const struct device_driver *drv)
1685 {
1686 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1687 const struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1688 const struct mhi_device_id *id;
1689
1690 /*
1691 * If the device is a controller type then there is no client driver
1692 * associated with it
1693 */
1694 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1695 return 0;
1696
1697 for (id = mhi_drv->id_table; id->chan[0]; id++)
1698 if (!strcmp(mhi_dev->name, id->chan)) {
1699 mhi_dev->id = id;
1700 return 1;
1701 }
1702
1703 return 0;
1704 };
1705
1706 const struct bus_type mhi_ep_bus_type = {
1707 .name = "mhi_ep",
1708 .dev_name = "mhi_ep",
1709 .match = mhi_ep_match,
1710 .uevent = mhi_ep_uevent,
1711 };
1712
mhi_ep_init(void)1713 static int __init mhi_ep_init(void)
1714 {
1715 return bus_register(&mhi_ep_bus_type);
1716 }
1717
mhi_ep_exit(void)1718 static void __exit mhi_ep_exit(void)
1719 {
1720 bus_unregister(&mhi_ep_bus_type);
1721 }
1722
1723 postcore_initcall(mhi_ep_init);
1724 module_exit(mhi_ep_exit);
1725
1726 MODULE_LICENSE("GPL v2");
1727 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1728 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1729