xref: /linux/mm/userfaultfd.c (revision 4984d746c80e888a89342d03e2b1ef20f804dff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  mm/userfaultfd.c
4  *
5  *  Copyright (C) 2015  Red Hat, Inc.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/leafops.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/hugetlb.h>
17 #include <linux/shmem_fs.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include "internal.h"
21 #include "swap.h"
22 
23 static __always_inline
24 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end)
25 {
26 	/* Make sure that the dst range is fully within dst_vma. */
27 	if (dst_end > dst_vma->vm_end)
28 		return false;
29 
30 	/*
31 	 * Check the vma is registered in uffd, this is required to
32 	 * enforce the VM_MAYWRITE check done at uffd registration
33 	 * time.
34 	 */
35 	if (!dst_vma->vm_userfaultfd_ctx.ctx)
36 		return false;
37 
38 	return true;
39 }
40 
41 static __always_inline
42 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm,
43 						 unsigned long addr)
44 {
45 	struct vm_area_struct *vma;
46 
47 	mmap_assert_locked(mm);
48 	vma = vma_lookup(mm, addr);
49 	if (!vma)
50 		vma = ERR_PTR(-ENOENT);
51 	else if (!(vma->vm_flags & VM_SHARED) &&
52 		 unlikely(anon_vma_prepare(vma)))
53 		vma = ERR_PTR(-ENOMEM);
54 
55 	return vma;
56 }
57 
58 #ifdef CONFIG_PER_VMA_LOCK
59 /*
60  * uffd_lock_vma() - Lookup and lock vma corresponding to @address.
61  * @mm: mm to search vma in.
62  * @address: address that the vma should contain.
63  *
64  * Should be called without holding mmap_lock.
65  *
66  * Return: A locked vma containing @address, -ENOENT if no vma is found, or
67  * -ENOMEM if anon_vma couldn't be allocated.
68  */
69 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm,
70 				       unsigned long address)
71 {
72 	struct vm_area_struct *vma;
73 
74 	vma = lock_vma_under_rcu(mm, address);
75 	if (vma) {
76 		/*
77 		 * We know we're going to need to use anon_vma, so check
78 		 * that early.
79 		 */
80 		if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma))
81 			vma_end_read(vma);
82 		else
83 			return vma;
84 	}
85 
86 	mmap_read_lock(mm);
87 	vma = find_vma_and_prepare_anon(mm, address);
88 	if (!IS_ERR(vma)) {
89 		bool locked = vma_start_read_locked(vma);
90 
91 		if (!locked)
92 			vma = ERR_PTR(-EAGAIN);
93 	}
94 
95 	mmap_read_unlock(mm);
96 	return vma;
97 }
98 
99 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
100 					      unsigned long dst_start,
101 					      unsigned long len)
102 {
103 	struct vm_area_struct *dst_vma;
104 
105 	dst_vma = uffd_lock_vma(dst_mm, dst_start);
106 	if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len))
107 		return dst_vma;
108 
109 	vma_end_read(dst_vma);
110 	return ERR_PTR(-ENOENT);
111 }
112 
113 static void uffd_mfill_unlock(struct vm_area_struct *vma)
114 {
115 	vma_end_read(vma);
116 }
117 
118 #else
119 
120 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
121 					      unsigned long dst_start,
122 					      unsigned long len)
123 {
124 	struct vm_area_struct *dst_vma;
125 
126 	mmap_read_lock(dst_mm);
127 	dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start);
128 	if (IS_ERR(dst_vma))
129 		goto out_unlock;
130 
131 	if (validate_dst_vma(dst_vma, dst_start + len))
132 		return dst_vma;
133 
134 	dst_vma = ERR_PTR(-ENOENT);
135 out_unlock:
136 	mmap_read_unlock(dst_mm);
137 	return dst_vma;
138 }
139 
140 static void uffd_mfill_unlock(struct vm_area_struct *vma)
141 {
142 	mmap_read_unlock(vma->vm_mm);
143 }
144 #endif
145 
146 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */
147 static bool mfill_file_over_size(struct vm_area_struct *dst_vma,
148 				 unsigned long dst_addr)
149 {
150 	struct inode *inode;
151 	pgoff_t offset, max_off;
152 
153 	if (!dst_vma->vm_file)
154 		return false;
155 
156 	inode = dst_vma->vm_file->f_inode;
157 	offset = linear_page_index(dst_vma, dst_addr);
158 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
159 	return offset >= max_off;
160 }
161 
162 /*
163  * Install PTEs, to map dst_addr (within dst_vma) to page.
164  *
165  * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
166  * and anon, and for both shared and private VMAs.
167  */
168 int mfill_atomic_install_pte(pmd_t *dst_pmd,
169 			     struct vm_area_struct *dst_vma,
170 			     unsigned long dst_addr, struct page *page,
171 			     bool newly_allocated, uffd_flags_t flags)
172 {
173 	int ret;
174 	struct mm_struct *dst_mm = dst_vma->vm_mm;
175 	pte_t _dst_pte, *dst_pte;
176 	bool writable = dst_vma->vm_flags & VM_WRITE;
177 	bool vm_shared = dst_vma->vm_flags & VM_SHARED;
178 	spinlock_t *ptl;
179 	struct folio *folio = page_folio(page);
180 	bool page_in_cache = folio_mapping(folio);
181 	pte_t dst_ptep;
182 
183 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
184 	_dst_pte = pte_mkdirty(_dst_pte);
185 	if (page_in_cache && !vm_shared)
186 		writable = false;
187 	if (writable)
188 		_dst_pte = pte_mkwrite(_dst_pte, dst_vma);
189 	if (flags & MFILL_ATOMIC_WP)
190 		_dst_pte = pte_mkuffd_wp(_dst_pte);
191 
192 	ret = -EAGAIN;
193 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
194 	if (!dst_pte)
195 		goto out;
196 
197 	if (mfill_file_over_size(dst_vma, dst_addr)) {
198 		ret = -EFAULT;
199 		goto out_unlock;
200 	}
201 
202 	ret = -EEXIST;
203 
204 	dst_ptep = ptep_get(dst_pte);
205 
206 	/*
207 	 * We are allowed to overwrite a UFFD pte marker: consider when both
208 	 * MISSING|WP registered, we firstly wr-protect a none pte which has no
209 	 * page cache page backing it, then access the page.
210 	 */
211 	if (!pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep))
212 		goto out_unlock;
213 
214 	if (page_in_cache) {
215 		/* Usually, cache pages are already added to LRU */
216 		if (newly_allocated)
217 			folio_add_lru(folio);
218 		folio_add_file_rmap_pte(folio, page, dst_vma);
219 	} else {
220 		folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE);
221 		folio_add_lru_vma(folio, dst_vma);
222 	}
223 
224 	/*
225 	 * Must happen after rmap, as mm_counter() checks mapping (via
226 	 * PageAnon()), which is set by __page_set_anon_rmap().
227 	 */
228 	inc_mm_counter(dst_mm, mm_counter(folio));
229 
230 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
231 
232 	/* No need to invalidate - it was non-present before */
233 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
234 	ret = 0;
235 out_unlock:
236 	pte_unmap_unlock(dst_pte, ptl);
237 out:
238 	return ret;
239 }
240 
241 static int mfill_atomic_pte_copy(pmd_t *dst_pmd,
242 				 struct vm_area_struct *dst_vma,
243 				 unsigned long dst_addr,
244 				 unsigned long src_addr,
245 				 uffd_flags_t flags,
246 				 struct folio **foliop)
247 {
248 	void *kaddr;
249 	int ret;
250 	struct folio *folio;
251 
252 	if (!*foliop) {
253 		ret = -ENOMEM;
254 		folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma,
255 					dst_addr);
256 		if (!folio)
257 			goto out;
258 
259 		kaddr = kmap_local_folio(folio, 0);
260 		/*
261 		 * The read mmap_lock is held here.  Despite the
262 		 * mmap_lock being read recursive a deadlock is still
263 		 * possible if a writer has taken a lock.  For example:
264 		 *
265 		 * process A thread 1 takes read lock on own mmap_lock
266 		 * process A thread 2 calls mmap, blocks taking write lock
267 		 * process B thread 1 takes page fault, read lock on own mmap lock
268 		 * process B thread 2 calls mmap, blocks taking write lock
269 		 * process A thread 1 blocks taking read lock on process B
270 		 * process B thread 1 blocks taking read lock on process A
271 		 *
272 		 * Disable page faults to prevent potential deadlock
273 		 * and retry the copy outside the mmap_lock.
274 		 */
275 		pagefault_disable();
276 		ret = copy_from_user(kaddr, (const void __user *) src_addr,
277 				     PAGE_SIZE);
278 		pagefault_enable();
279 		kunmap_local(kaddr);
280 
281 		/* fallback to copy_from_user outside mmap_lock */
282 		if (unlikely(ret)) {
283 			ret = -ENOENT;
284 			*foliop = folio;
285 			/* don't free the page */
286 			goto out;
287 		}
288 
289 		flush_dcache_folio(folio);
290 	} else {
291 		folio = *foliop;
292 		*foliop = NULL;
293 	}
294 
295 	/*
296 	 * The memory barrier inside __folio_mark_uptodate makes sure that
297 	 * preceding stores to the page contents become visible before
298 	 * the set_pte_at() write.
299 	 */
300 	__folio_mark_uptodate(folio);
301 
302 	ret = -ENOMEM;
303 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
304 		goto out_release;
305 
306 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
307 				       &folio->page, true, flags);
308 	if (ret)
309 		goto out_release;
310 out:
311 	return ret;
312 out_release:
313 	folio_put(folio);
314 	goto out;
315 }
316 
317 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd,
318 					 struct vm_area_struct *dst_vma,
319 					 unsigned long dst_addr)
320 {
321 	struct folio *folio;
322 	int ret = -ENOMEM;
323 
324 	folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr);
325 	if (!folio)
326 		return ret;
327 
328 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
329 		goto out_put;
330 
331 	/*
332 	 * The memory barrier inside __folio_mark_uptodate makes sure that
333 	 * zeroing out the folio become visible before mapping the page
334 	 * using set_pte_at(). See do_anonymous_page().
335 	 */
336 	__folio_mark_uptodate(folio);
337 
338 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
339 				       &folio->page, true, 0);
340 	if (ret)
341 		goto out_put;
342 
343 	return 0;
344 out_put:
345 	folio_put(folio);
346 	return ret;
347 }
348 
349 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd,
350 				     struct vm_area_struct *dst_vma,
351 				     unsigned long dst_addr)
352 {
353 	pte_t _dst_pte, *dst_pte;
354 	spinlock_t *ptl;
355 	int ret;
356 
357 	if (mm_forbids_zeropage(dst_vma->vm_mm))
358 		return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr);
359 
360 	_dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
361 					 dst_vma->vm_page_prot));
362 	ret = -EAGAIN;
363 	dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl);
364 	if (!dst_pte)
365 		goto out;
366 	if (mfill_file_over_size(dst_vma, dst_addr)) {
367 		ret = -EFAULT;
368 		goto out_unlock;
369 	}
370 	ret = -EEXIST;
371 	if (!pte_none(ptep_get(dst_pte)))
372 		goto out_unlock;
373 	set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte);
374 	/* No need to invalidate - it was non-present before */
375 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
376 	ret = 0;
377 out_unlock:
378 	pte_unmap_unlock(dst_pte, ptl);
379 out:
380 	return ret;
381 }
382 
383 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
384 static int mfill_atomic_pte_continue(pmd_t *dst_pmd,
385 				     struct vm_area_struct *dst_vma,
386 				     unsigned long dst_addr,
387 				     uffd_flags_t flags)
388 {
389 	struct inode *inode = file_inode(dst_vma->vm_file);
390 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
391 	struct folio *folio;
392 	struct page *page;
393 	int ret;
394 
395 	ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC);
396 	/* Our caller expects us to return -EFAULT if we failed to find folio */
397 	if (ret == -ENOENT)
398 		ret = -EFAULT;
399 	if (ret)
400 		goto out;
401 	if (!folio) {
402 		ret = -EFAULT;
403 		goto out;
404 	}
405 
406 	page = folio_file_page(folio, pgoff);
407 	if (PageHWPoison(page)) {
408 		ret = -EIO;
409 		goto out_release;
410 	}
411 
412 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
413 				       page, false, flags);
414 	if (ret)
415 		goto out_release;
416 
417 	folio_unlock(folio);
418 	ret = 0;
419 out:
420 	return ret;
421 out_release:
422 	folio_unlock(folio);
423 	folio_put(folio);
424 	goto out;
425 }
426 
427 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */
428 static int mfill_atomic_pte_poison(pmd_t *dst_pmd,
429 				   struct vm_area_struct *dst_vma,
430 				   unsigned long dst_addr,
431 				   uffd_flags_t flags)
432 {
433 	int ret;
434 	struct mm_struct *dst_mm = dst_vma->vm_mm;
435 	pte_t _dst_pte, *dst_pte;
436 	spinlock_t *ptl;
437 
438 	_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
439 	ret = -EAGAIN;
440 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
441 	if (!dst_pte)
442 		goto out;
443 
444 	if (mfill_file_over_size(dst_vma, dst_addr)) {
445 		ret = -EFAULT;
446 		goto out_unlock;
447 	}
448 
449 	ret = -EEXIST;
450 	/* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */
451 	if (!pte_none(ptep_get(dst_pte)))
452 		goto out_unlock;
453 
454 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
455 
456 	/* No need to invalidate - it was non-present before */
457 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
458 	ret = 0;
459 out_unlock:
460 	pte_unmap_unlock(dst_pte, ptl);
461 out:
462 	return ret;
463 }
464 
465 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
466 {
467 	pgd_t *pgd;
468 	p4d_t *p4d;
469 	pud_t *pud;
470 
471 	pgd = pgd_offset(mm, address);
472 	p4d = p4d_alloc(mm, pgd, address);
473 	if (!p4d)
474 		return NULL;
475 	pud = pud_alloc(mm, p4d, address);
476 	if (!pud)
477 		return NULL;
478 	/*
479 	 * Note that we didn't run this because the pmd was
480 	 * missing, the *pmd may be already established and in
481 	 * turn it may also be a trans_huge_pmd.
482 	 */
483 	return pmd_alloc(mm, pud, address);
484 }
485 
486 #ifdef CONFIG_HUGETLB_PAGE
487 /*
488  * mfill_atomic processing for HUGETLB vmas.  Note that this routine is
489  * called with either vma-lock or mmap_lock held, it will release the lock
490  * before returning.
491  */
492 static __always_inline ssize_t mfill_atomic_hugetlb(
493 					      struct userfaultfd_ctx *ctx,
494 					      struct vm_area_struct *dst_vma,
495 					      unsigned long dst_start,
496 					      unsigned long src_start,
497 					      unsigned long len,
498 					      uffd_flags_t flags)
499 {
500 	struct mm_struct *dst_mm = dst_vma->vm_mm;
501 	ssize_t err;
502 	pte_t *dst_pte;
503 	unsigned long src_addr, dst_addr;
504 	long copied;
505 	struct folio *folio;
506 	unsigned long vma_hpagesize;
507 	pgoff_t idx;
508 	u32 hash;
509 	struct address_space *mapping;
510 
511 	/*
512 	 * There is no default zero huge page for all huge page sizes as
513 	 * supported by hugetlb.  A PMD_SIZE huge pages may exist as used
514 	 * by THP.  Since we can not reliably insert a zero page, this
515 	 * feature is not supported.
516 	 */
517 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) {
518 		up_read(&ctx->map_changing_lock);
519 		uffd_mfill_unlock(dst_vma);
520 		return -EINVAL;
521 	}
522 
523 	src_addr = src_start;
524 	dst_addr = dst_start;
525 	copied = 0;
526 	folio = NULL;
527 	vma_hpagesize = vma_kernel_pagesize(dst_vma);
528 
529 	/*
530 	 * Validate alignment based on huge page size
531 	 */
532 	err = -EINVAL;
533 	if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
534 		goto out_unlock;
535 
536 retry:
537 	/*
538 	 * On routine entry dst_vma is set.  If we had to drop mmap_lock and
539 	 * retry, dst_vma will be set to NULL and we must lookup again.
540 	 */
541 	if (!dst_vma) {
542 		dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
543 		if (IS_ERR(dst_vma)) {
544 			err = PTR_ERR(dst_vma);
545 			goto out;
546 		}
547 
548 		err = -ENOENT;
549 		if (!is_vm_hugetlb_page(dst_vma))
550 			goto out_unlock_vma;
551 
552 		err = -EINVAL;
553 		if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
554 			goto out_unlock_vma;
555 
556 		/*
557 		 * If memory mappings are changing because of non-cooperative
558 		 * operation (e.g. mremap) running in parallel, bail out and
559 		 * request the user to retry later
560 		 */
561 		down_read(&ctx->map_changing_lock);
562 		err = -EAGAIN;
563 		if (atomic_read(&ctx->mmap_changing))
564 			goto out_unlock;
565 	}
566 
567 	while (src_addr < src_start + len) {
568 		VM_WARN_ON_ONCE(dst_addr >= dst_start + len);
569 
570 		/*
571 		 * Serialize via vma_lock and hugetlb_fault_mutex.
572 		 * vma_lock ensures the dst_pte remains valid even
573 		 * in the case of shared pmds.  fault mutex prevents
574 		 * races with other faulting threads.
575 		 */
576 		idx = linear_page_index(dst_vma, dst_addr);
577 		mapping = dst_vma->vm_file->f_mapping;
578 		hash = hugetlb_fault_mutex_hash(mapping, idx);
579 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
580 		hugetlb_vma_lock_read(dst_vma);
581 
582 		err = -ENOMEM;
583 		dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
584 		if (!dst_pte) {
585 			hugetlb_vma_unlock_read(dst_vma);
586 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
587 			goto out_unlock;
588 		}
589 
590 		if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
591 			const pte_t ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte);
592 
593 			if (!huge_pte_none(ptep) && !pte_is_uffd_marker(ptep)) {
594 				err = -EEXIST;
595 				hugetlb_vma_unlock_read(dst_vma);
596 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
597 				goto out_unlock;
598 			}
599 		}
600 
601 		err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr,
602 					       src_addr, flags, &folio);
603 
604 		hugetlb_vma_unlock_read(dst_vma);
605 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
606 
607 		cond_resched();
608 
609 		if (unlikely(err == -ENOENT)) {
610 			up_read(&ctx->map_changing_lock);
611 			uffd_mfill_unlock(dst_vma);
612 			VM_WARN_ON_ONCE(!folio);
613 
614 			err = copy_folio_from_user(folio,
615 						   (const void __user *)src_addr, true);
616 			if (unlikely(err)) {
617 				err = -EFAULT;
618 				goto out;
619 			}
620 
621 			dst_vma = NULL;
622 			goto retry;
623 		} else
624 			VM_WARN_ON_ONCE(folio);
625 
626 		if (!err) {
627 			dst_addr += vma_hpagesize;
628 			src_addr += vma_hpagesize;
629 			copied += vma_hpagesize;
630 
631 			if (fatal_signal_pending(current))
632 				err = -EINTR;
633 		}
634 		if (err)
635 			break;
636 	}
637 
638 out_unlock:
639 	up_read(&ctx->map_changing_lock);
640 out_unlock_vma:
641 	uffd_mfill_unlock(dst_vma);
642 out:
643 	if (folio)
644 		folio_put(folio);
645 	VM_WARN_ON_ONCE(copied < 0);
646 	VM_WARN_ON_ONCE(err > 0);
647 	VM_WARN_ON_ONCE(!copied && !err);
648 	return copied ? copied : err;
649 }
650 #else /* !CONFIG_HUGETLB_PAGE */
651 /* fail at build time if gcc attempts to use this */
652 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx,
653 				    struct vm_area_struct *dst_vma,
654 				    unsigned long dst_start,
655 				    unsigned long src_start,
656 				    unsigned long len,
657 				    uffd_flags_t flags);
658 #endif /* CONFIG_HUGETLB_PAGE */
659 
660 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd,
661 						struct vm_area_struct *dst_vma,
662 						unsigned long dst_addr,
663 						unsigned long src_addr,
664 						uffd_flags_t flags,
665 						struct folio **foliop)
666 {
667 	ssize_t err;
668 
669 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
670 		return mfill_atomic_pte_continue(dst_pmd, dst_vma,
671 						 dst_addr, flags);
672 	} else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
673 		return mfill_atomic_pte_poison(dst_pmd, dst_vma,
674 					       dst_addr, flags);
675 	}
676 
677 	/*
678 	 * The normal page fault path for a shmem will invoke the
679 	 * fault, fill the hole in the file and COW it right away. The
680 	 * result generates plain anonymous memory. So when we are
681 	 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
682 	 * generate anonymous memory directly without actually filling
683 	 * the hole. For the MAP_PRIVATE case the robustness check
684 	 * only happens in the pagetable (to verify it's still none)
685 	 * and not in the radix tree.
686 	 */
687 	if (!(dst_vma->vm_flags & VM_SHARED)) {
688 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY))
689 			err = mfill_atomic_pte_copy(dst_pmd, dst_vma,
690 						    dst_addr, src_addr,
691 						    flags, foliop);
692 		else
693 			err = mfill_atomic_pte_zeropage(dst_pmd,
694 						 dst_vma, dst_addr);
695 	} else {
696 		err = shmem_mfill_atomic_pte(dst_pmd, dst_vma,
697 					     dst_addr, src_addr,
698 					     flags, foliop);
699 	}
700 
701 	return err;
702 }
703 
704 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx,
705 					    unsigned long dst_start,
706 					    unsigned long src_start,
707 					    unsigned long len,
708 					    uffd_flags_t flags)
709 {
710 	struct mm_struct *dst_mm = ctx->mm;
711 	struct vm_area_struct *dst_vma;
712 	ssize_t err;
713 	pmd_t *dst_pmd;
714 	unsigned long src_addr, dst_addr;
715 	long copied;
716 	struct folio *folio;
717 
718 	/*
719 	 * Sanitize the command parameters:
720 	 */
721 	VM_WARN_ON_ONCE(dst_start & ~PAGE_MASK);
722 	VM_WARN_ON_ONCE(len & ~PAGE_MASK);
723 
724 	/* Does the address range wrap, or is the span zero-sized? */
725 	VM_WARN_ON_ONCE(src_start + len <= src_start);
726 	VM_WARN_ON_ONCE(dst_start + len <= dst_start);
727 
728 	src_addr = src_start;
729 	dst_addr = dst_start;
730 	copied = 0;
731 	folio = NULL;
732 retry:
733 	/*
734 	 * Make sure the vma is not shared, that the dst range is
735 	 * both valid and fully within a single existing vma.
736 	 */
737 	dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
738 	if (IS_ERR(dst_vma)) {
739 		err = PTR_ERR(dst_vma);
740 		goto out;
741 	}
742 
743 	/*
744 	 * If memory mappings are changing because of non-cooperative
745 	 * operation (e.g. mremap) running in parallel, bail out and
746 	 * request the user to retry later
747 	 */
748 	down_read(&ctx->map_changing_lock);
749 	err = -EAGAIN;
750 	if (atomic_read(&ctx->mmap_changing))
751 		goto out_unlock;
752 
753 	err = -EINVAL;
754 	/*
755 	 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
756 	 * it will overwrite vm_ops, so vma_is_anonymous must return false.
757 	 */
758 	if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
759 	    dst_vma->vm_flags & VM_SHARED))
760 		goto out_unlock;
761 
762 	/*
763 	 * validate 'mode' now that we know the dst_vma: don't allow
764 	 * a wrprotect copy if the userfaultfd didn't register as WP.
765 	 */
766 	if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP))
767 		goto out_unlock;
768 
769 	/*
770 	 * If this is a HUGETLB vma, pass off to appropriate routine
771 	 */
772 	if (is_vm_hugetlb_page(dst_vma))
773 		return  mfill_atomic_hugetlb(ctx, dst_vma, dst_start,
774 					     src_start, len, flags);
775 
776 	if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
777 		goto out_unlock;
778 	if (!vma_is_shmem(dst_vma) &&
779 	    uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE))
780 		goto out_unlock;
781 
782 	while (src_addr < src_start + len) {
783 		pmd_t dst_pmdval;
784 
785 		VM_WARN_ON_ONCE(dst_addr >= dst_start + len);
786 
787 		dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
788 		if (unlikely(!dst_pmd)) {
789 			err = -ENOMEM;
790 			break;
791 		}
792 
793 		dst_pmdval = pmdp_get_lockless(dst_pmd);
794 		if (unlikely(pmd_none(dst_pmdval)) &&
795 		    unlikely(__pte_alloc(dst_mm, dst_pmd))) {
796 			err = -ENOMEM;
797 			break;
798 		}
799 		dst_pmdval = pmdp_get_lockless(dst_pmd);
800 		/*
801 		 * If the dst_pmd is THP don't override it and just be strict.
802 		 * (This includes the case where the PMD used to be THP and
803 		 * changed back to none after __pte_alloc().)
804 		 */
805 		if (unlikely(!pmd_present(dst_pmdval) ||
806 				pmd_trans_huge(dst_pmdval))) {
807 			err = -EEXIST;
808 			break;
809 		}
810 		if (unlikely(pmd_bad(dst_pmdval))) {
811 			err = -EFAULT;
812 			break;
813 		}
814 		/*
815 		 * For shmem mappings, khugepaged is allowed to remove page
816 		 * tables under us; pte_offset_map_lock() will deal with that.
817 		 */
818 
819 		err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr,
820 				       src_addr, flags, &folio);
821 		cond_resched();
822 
823 		if (unlikely(err == -ENOENT)) {
824 			void *kaddr;
825 
826 			up_read(&ctx->map_changing_lock);
827 			uffd_mfill_unlock(dst_vma);
828 			VM_WARN_ON_ONCE(!folio);
829 
830 			kaddr = kmap_local_folio(folio, 0);
831 			err = copy_from_user(kaddr,
832 					     (const void __user *) src_addr,
833 					     PAGE_SIZE);
834 			kunmap_local(kaddr);
835 			if (unlikely(err)) {
836 				err = -EFAULT;
837 				goto out;
838 			}
839 			flush_dcache_folio(folio);
840 			goto retry;
841 		} else
842 			VM_WARN_ON_ONCE(folio);
843 
844 		if (!err) {
845 			dst_addr += PAGE_SIZE;
846 			src_addr += PAGE_SIZE;
847 			copied += PAGE_SIZE;
848 
849 			if (fatal_signal_pending(current))
850 				err = -EINTR;
851 		}
852 		if (err)
853 			break;
854 	}
855 
856 out_unlock:
857 	up_read(&ctx->map_changing_lock);
858 	uffd_mfill_unlock(dst_vma);
859 out:
860 	if (folio)
861 		folio_put(folio);
862 	VM_WARN_ON_ONCE(copied < 0);
863 	VM_WARN_ON_ONCE(err > 0);
864 	VM_WARN_ON_ONCE(!copied && !err);
865 	return copied ? copied : err;
866 }
867 
868 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start,
869 			  unsigned long src_start, unsigned long len,
870 			  uffd_flags_t flags)
871 {
872 	return mfill_atomic(ctx, dst_start, src_start, len,
873 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY));
874 }
875 
876 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx,
877 			      unsigned long start,
878 			      unsigned long len)
879 {
880 	return mfill_atomic(ctx, start, 0, len,
881 			    uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE));
882 }
883 
884 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start,
885 			      unsigned long len, uffd_flags_t flags)
886 {
887 
888 	/*
889 	 * A caller might reasonably assume that UFFDIO_CONTINUE contains an
890 	 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by
891 	 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to
892 	 * subsequent loads from the page through the newly mapped address range.
893 	 */
894 	smp_wmb();
895 
896 	return mfill_atomic(ctx, start, 0, len,
897 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE));
898 }
899 
900 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start,
901 			    unsigned long len, uffd_flags_t flags)
902 {
903 	return mfill_atomic(ctx, start, 0, len,
904 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON));
905 }
906 
907 long uffd_wp_range(struct vm_area_struct *dst_vma,
908 		   unsigned long start, unsigned long len, bool enable_wp)
909 {
910 	unsigned int mm_cp_flags;
911 	struct mmu_gather tlb;
912 	long ret;
913 
914 	VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end,
915 			"The address range exceeds VMA boundary.\n");
916 	if (enable_wp)
917 		mm_cp_flags = MM_CP_UFFD_WP;
918 	else
919 		mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
920 
921 	/*
922 	 * vma->vm_page_prot already reflects that uffd-wp is enabled for this
923 	 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
924 	 * to be write-protected as default whenever protection changes.
925 	 * Try upgrading write permissions manually.
926 	 */
927 	if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
928 		mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
929 	tlb_gather_mmu(&tlb, dst_vma->vm_mm);
930 	ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
931 	tlb_finish_mmu(&tlb);
932 
933 	return ret;
934 }
935 
936 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start,
937 			unsigned long len, bool enable_wp)
938 {
939 	struct mm_struct *dst_mm = ctx->mm;
940 	unsigned long end = start + len;
941 	unsigned long _start, _end;
942 	struct vm_area_struct *dst_vma;
943 	unsigned long page_mask;
944 	long err;
945 	VMA_ITERATOR(vmi, dst_mm, start);
946 
947 	/*
948 	 * Sanitize the command parameters:
949 	 */
950 	VM_WARN_ON_ONCE(start & ~PAGE_MASK);
951 	VM_WARN_ON_ONCE(len & ~PAGE_MASK);
952 
953 	/* Does the address range wrap, or is the span zero-sized? */
954 	VM_WARN_ON_ONCE(start + len <= start);
955 
956 	mmap_read_lock(dst_mm);
957 
958 	/*
959 	 * If memory mappings are changing because of non-cooperative
960 	 * operation (e.g. mremap) running in parallel, bail out and
961 	 * request the user to retry later
962 	 */
963 	down_read(&ctx->map_changing_lock);
964 	err = -EAGAIN;
965 	if (atomic_read(&ctx->mmap_changing))
966 		goto out_unlock;
967 
968 	err = -ENOENT;
969 	for_each_vma_range(vmi, dst_vma, end) {
970 
971 		if (!userfaultfd_wp(dst_vma)) {
972 			err = -ENOENT;
973 			break;
974 		}
975 
976 		if (is_vm_hugetlb_page(dst_vma)) {
977 			err = -EINVAL;
978 			page_mask = vma_kernel_pagesize(dst_vma) - 1;
979 			if ((start & page_mask) || (len & page_mask))
980 				break;
981 		}
982 
983 		_start = max(dst_vma->vm_start, start);
984 		_end = min(dst_vma->vm_end, end);
985 
986 		err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp);
987 
988 		/* Return 0 on success, <0 on failures */
989 		if (err < 0)
990 			break;
991 		err = 0;
992 	}
993 out_unlock:
994 	up_read(&ctx->map_changing_lock);
995 	mmap_read_unlock(dst_mm);
996 	return err;
997 }
998 
999 
1000 void double_pt_lock(spinlock_t *ptl1,
1001 		    spinlock_t *ptl2)
1002 	__acquires(ptl1)
1003 	__acquires(ptl2)
1004 {
1005 	if (ptl1 > ptl2)
1006 		swap(ptl1, ptl2);
1007 	/* lock in virtual address order to avoid lock inversion */
1008 	spin_lock(ptl1);
1009 	if (ptl1 != ptl2)
1010 		spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
1011 	else
1012 		__acquire(ptl2);
1013 }
1014 
1015 void double_pt_unlock(spinlock_t *ptl1,
1016 		      spinlock_t *ptl2)
1017 	__releases(ptl1)
1018 	__releases(ptl2)
1019 {
1020 	spin_unlock(ptl1);
1021 	if (ptl1 != ptl2)
1022 		spin_unlock(ptl2);
1023 	else
1024 		__release(ptl2);
1025 }
1026 
1027 static inline bool is_pte_pages_stable(pte_t *dst_pte, pte_t *src_pte,
1028 				       pte_t orig_dst_pte, pte_t orig_src_pte,
1029 				       pmd_t *dst_pmd, pmd_t dst_pmdval)
1030 {
1031 	return pte_same(ptep_get(src_pte), orig_src_pte) &&
1032 	       pte_same(ptep_get(dst_pte), orig_dst_pte) &&
1033 	       pmd_same(dst_pmdval, pmdp_get_lockless(dst_pmd));
1034 }
1035 
1036 /*
1037  * Checks if the two ptes and the corresponding folio are eligible for batched
1038  * move. If so, then returns pointer to the locked folio. Otherwise, returns NULL.
1039  *
1040  * NOTE: folio's reference is not required as the whole operation is within
1041  * PTL's critical section.
1042  */
1043 static struct folio *check_ptes_for_batched_move(struct vm_area_struct *src_vma,
1044 						 unsigned long src_addr,
1045 						 pte_t *src_pte, pte_t *dst_pte)
1046 {
1047 	pte_t orig_dst_pte, orig_src_pte;
1048 	struct folio *folio;
1049 
1050 	orig_dst_pte = ptep_get(dst_pte);
1051 	if (!pte_none(orig_dst_pte))
1052 		return NULL;
1053 
1054 	orig_src_pte = ptep_get(src_pte);
1055 	if (!pte_present(orig_src_pte) || is_zero_pfn(pte_pfn(orig_src_pte)))
1056 		return NULL;
1057 
1058 	folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
1059 	if (!folio || !folio_trylock(folio))
1060 		return NULL;
1061 	if (!PageAnonExclusive(&folio->page) || folio_test_large(folio)) {
1062 		folio_unlock(folio);
1063 		return NULL;
1064 	}
1065 	return folio;
1066 }
1067 
1068 /*
1069  * Moves src folios to dst in a batch as long as they are not large, and can
1070  * successfully take the lock via folio_trylock().
1071  */
1072 static long move_present_ptes(struct mm_struct *mm,
1073 			      struct vm_area_struct *dst_vma,
1074 			      struct vm_area_struct *src_vma,
1075 			      unsigned long dst_addr, unsigned long src_addr,
1076 			      pte_t *dst_pte, pte_t *src_pte,
1077 			      pte_t orig_dst_pte, pte_t orig_src_pte,
1078 			      pmd_t *dst_pmd, pmd_t dst_pmdval,
1079 			      spinlock_t *dst_ptl, spinlock_t *src_ptl,
1080 			      struct folio **first_src_folio, unsigned long len)
1081 {
1082 	int err = 0;
1083 	struct folio *src_folio = *first_src_folio;
1084 	unsigned long src_start = src_addr;
1085 	unsigned long src_end;
1086 
1087 	len = pmd_addr_end(dst_addr, dst_addr + len) - dst_addr;
1088 	src_end = pmd_addr_end(src_addr, src_addr + len);
1089 	flush_cache_range(src_vma, src_addr, src_end);
1090 	double_pt_lock(dst_ptl, src_ptl);
1091 
1092 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1093 				 dst_pmd, dst_pmdval)) {
1094 		err = -EAGAIN;
1095 		goto out;
1096 	}
1097 	if (folio_test_large(src_folio) ||
1098 	    folio_maybe_dma_pinned(src_folio) ||
1099 	    !PageAnonExclusive(&src_folio->page)) {
1100 		err = -EBUSY;
1101 		goto out;
1102 	}
1103 	/* It's safe to drop the reference now as the page-table is holding one. */
1104 	folio_put(*first_src_folio);
1105 	*first_src_folio = NULL;
1106 	lazy_mmu_mode_enable();
1107 
1108 	while (true) {
1109 		orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
1110 		/* Folio got pinned from under us. Put it back and fail the move. */
1111 		if (folio_maybe_dma_pinned(src_folio)) {
1112 			set_pte_at(mm, src_addr, src_pte, orig_src_pte);
1113 			err = -EBUSY;
1114 			break;
1115 		}
1116 
1117 		folio_move_anon_rmap(src_folio, dst_vma);
1118 		src_folio->index = linear_page_index(dst_vma, dst_addr);
1119 
1120 		orig_dst_pte = folio_mk_pte(src_folio, dst_vma->vm_page_prot);
1121 		/* Set soft dirty bit so userspace can notice the pte was moved */
1122 		if (pgtable_supports_soft_dirty())
1123 			orig_dst_pte = pte_mksoft_dirty(orig_dst_pte);
1124 		if (pte_dirty(orig_src_pte))
1125 			orig_dst_pte = pte_mkdirty(orig_dst_pte);
1126 		orig_dst_pte = pte_mkwrite(orig_dst_pte, dst_vma);
1127 		set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte);
1128 
1129 		src_addr += PAGE_SIZE;
1130 		if (src_addr == src_end)
1131 			break;
1132 		dst_addr += PAGE_SIZE;
1133 		dst_pte++;
1134 		src_pte++;
1135 
1136 		folio_unlock(src_folio);
1137 		src_folio = check_ptes_for_batched_move(src_vma, src_addr,
1138 							src_pte, dst_pte);
1139 		if (!src_folio)
1140 			break;
1141 	}
1142 
1143 	lazy_mmu_mode_disable();
1144 	if (src_addr > src_start)
1145 		flush_tlb_range(src_vma, src_start, src_addr);
1146 
1147 	if (src_folio)
1148 		folio_unlock(src_folio);
1149 out:
1150 	double_pt_unlock(dst_ptl, src_ptl);
1151 	return src_addr > src_start ? src_addr - src_start : err;
1152 }
1153 
1154 static int move_swap_pte(struct mm_struct *mm, struct vm_area_struct *dst_vma,
1155 			 unsigned long dst_addr, unsigned long src_addr,
1156 			 pte_t *dst_pte, pte_t *src_pte,
1157 			 pte_t orig_dst_pte, pte_t orig_src_pte,
1158 			 pmd_t *dst_pmd, pmd_t dst_pmdval,
1159 			 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1160 			 struct folio *src_folio,
1161 			 struct swap_info_struct *si, swp_entry_t entry)
1162 {
1163 	/*
1164 	 * Check if the folio still belongs to the target swap entry after
1165 	 * acquiring the lock. Folio can be freed in the swap cache while
1166 	 * not locked.
1167 	 */
1168 	if (src_folio && unlikely(!folio_test_swapcache(src_folio) ||
1169 				  entry.val != src_folio->swap.val))
1170 		return -EAGAIN;
1171 
1172 	double_pt_lock(dst_ptl, src_ptl);
1173 
1174 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1175 				 dst_pmd, dst_pmdval)) {
1176 		double_pt_unlock(dst_ptl, src_ptl);
1177 		return -EAGAIN;
1178 	}
1179 
1180 	/*
1181 	 * The src_folio resides in the swapcache, requiring an update to its
1182 	 * index and mapping to align with the dst_vma, where a swap-in may
1183 	 * occur and hit the swapcache after moving the PTE.
1184 	 */
1185 	if (src_folio) {
1186 		folio_move_anon_rmap(src_folio, dst_vma);
1187 		src_folio->index = linear_page_index(dst_vma, dst_addr);
1188 	} else {
1189 		/*
1190 		 * Check if the swap entry is cached after acquiring the src_pte
1191 		 * lock. Otherwise, we might miss a newly loaded swap cache folio.
1192 		 *
1193 		 * We are trying to catch newly added swap cache, the only possible case is
1194 		 * when a folio is swapped in and out again staying in swap cache, using the
1195 		 * same entry before the PTE check above. The PTL is acquired and released
1196 		 * twice, each time after updating the swap table. So holding
1197 		 * the PTL here ensures we see the updated value.
1198 		 */
1199 		if (swap_cache_has_folio(entry)) {
1200 			double_pt_unlock(dst_ptl, src_ptl);
1201 			return -EAGAIN;
1202 		}
1203 	}
1204 
1205 	orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
1206 	if (pgtable_supports_soft_dirty())
1207 		orig_src_pte = pte_swp_mksoft_dirty(orig_src_pte);
1208 	set_pte_at(mm, dst_addr, dst_pte, orig_src_pte);
1209 	double_pt_unlock(dst_ptl, src_ptl);
1210 
1211 	return PAGE_SIZE;
1212 }
1213 
1214 static int move_zeropage_pte(struct mm_struct *mm,
1215 			     struct vm_area_struct *dst_vma,
1216 			     struct vm_area_struct *src_vma,
1217 			     unsigned long dst_addr, unsigned long src_addr,
1218 			     pte_t *dst_pte, pte_t *src_pte,
1219 			     pte_t orig_dst_pte, pte_t orig_src_pte,
1220 			     pmd_t *dst_pmd, pmd_t dst_pmdval,
1221 			     spinlock_t *dst_ptl, spinlock_t *src_ptl)
1222 {
1223 	pte_t zero_pte;
1224 
1225 	double_pt_lock(dst_ptl, src_ptl);
1226 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1227 				 dst_pmd, dst_pmdval)) {
1228 		double_pt_unlock(dst_ptl, src_ptl);
1229 		return -EAGAIN;
1230 	}
1231 
1232 	zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
1233 					 dst_vma->vm_page_prot));
1234 	ptep_clear_flush(src_vma, src_addr, src_pte);
1235 	set_pte_at(mm, dst_addr, dst_pte, zero_pte);
1236 	double_pt_unlock(dst_ptl, src_ptl);
1237 
1238 	return PAGE_SIZE;
1239 }
1240 
1241 
1242 /*
1243  * The mmap_lock for reading is held by the caller. Just move the page(s)
1244  * from src_pmd to dst_pmd if possible, and return number of bytes moved.
1245  * On failure, an error code is returned.
1246  */
1247 static long move_pages_ptes(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd,
1248 			    struct vm_area_struct *dst_vma,
1249 			    struct vm_area_struct *src_vma,
1250 			    unsigned long dst_addr, unsigned long src_addr,
1251 			    unsigned long len, __u64 mode)
1252 {
1253 	struct swap_info_struct *si = NULL;
1254 	pte_t orig_src_pte, orig_dst_pte;
1255 	pte_t src_folio_pte;
1256 	spinlock_t *src_ptl, *dst_ptl;
1257 	pte_t *src_pte = NULL;
1258 	pte_t *dst_pte = NULL;
1259 	pmd_t dummy_pmdval;
1260 	pmd_t dst_pmdval;
1261 	struct folio *src_folio = NULL;
1262 	struct mmu_notifier_range range;
1263 	long ret = 0;
1264 
1265 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1266 				src_addr, src_addr + len);
1267 	mmu_notifier_invalidate_range_start(&range);
1268 retry:
1269 	/*
1270 	 * Use the maywrite version to indicate that dst_pte will be modified,
1271 	 * since dst_pte needs to be none, the subsequent pte_same() check
1272 	 * cannot prevent the dst_pte page from being freed concurrently, so we
1273 	 * also need to obtain dst_pmdval and recheck pmd_same() later.
1274 	 */
1275 	dst_pte = pte_offset_map_rw_nolock(mm, dst_pmd, dst_addr, &dst_pmdval,
1276 					   &dst_ptl);
1277 
1278 	/* Retry if a huge pmd materialized from under us */
1279 	if (unlikely(!dst_pte)) {
1280 		ret = -EAGAIN;
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * Unlike dst_pte, the subsequent pte_same() check can ensure the
1286 	 * stability of the src_pte page, so there is no need to get pmdval,
1287 	 * just pass a dummy variable to it.
1288 	 */
1289 	src_pte = pte_offset_map_rw_nolock(mm, src_pmd, src_addr, &dummy_pmdval,
1290 					   &src_ptl);
1291 
1292 	/*
1293 	 * We held the mmap_lock for reading so MADV_DONTNEED
1294 	 * can zap transparent huge pages under us, or the
1295 	 * transparent huge page fault can establish new
1296 	 * transparent huge pages under us.
1297 	 */
1298 	if (unlikely(!src_pte)) {
1299 		ret = -EAGAIN;
1300 		goto out;
1301 	}
1302 
1303 	/* Sanity checks before the operation */
1304 	if (pmd_none(*dst_pmd) || pmd_none(*src_pmd) ||
1305 	    pmd_trans_huge(*dst_pmd) || pmd_trans_huge(*src_pmd)) {
1306 		ret = -EINVAL;
1307 		goto out;
1308 	}
1309 
1310 	spin_lock(dst_ptl);
1311 	orig_dst_pte = ptep_get(dst_pte);
1312 	spin_unlock(dst_ptl);
1313 	if (!pte_none(orig_dst_pte)) {
1314 		ret = -EEXIST;
1315 		goto out;
1316 	}
1317 
1318 	spin_lock(src_ptl);
1319 	orig_src_pte = ptep_get(src_pte);
1320 	spin_unlock(src_ptl);
1321 	if (pte_none(orig_src_pte)) {
1322 		if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES))
1323 			ret = -ENOENT;
1324 		else /* nothing to do to move a hole */
1325 			ret = PAGE_SIZE;
1326 		goto out;
1327 	}
1328 
1329 	/* If PTE changed after we locked the folio then start over */
1330 	if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) {
1331 		ret = -EAGAIN;
1332 		goto out;
1333 	}
1334 
1335 	if (pte_present(orig_src_pte)) {
1336 		if (is_zero_pfn(pte_pfn(orig_src_pte))) {
1337 			ret = move_zeropage_pte(mm, dst_vma, src_vma,
1338 					       dst_addr, src_addr, dst_pte, src_pte,
1339 					       orig_dst_pte, orig_src_pte,
1340 					       dst_pmd, dst_pmdval, dst_ptl, src_ptl);
1341 			goto out;
1342 		}
1343 
1344 		/*
1345 		 * Pin and lock source folio. Since we are in RCU read section,
1346 		 * we can't block, so on contention have to unmap the ptes,
1347 		 * obtain the lock and retry.
1348 		 */
1349 		if (!src_folio) {
1350 			struct folio *folio;
1351 			bool locked;
1352 
1353 			/*
1354 			 * Pin the page while holding the lock to be sure the
1355 			 * page isn't freed under us
1356 			 */
1357 			spin_lock(src_ptl);
1358 			if (!pte_same(orig_src_pte, ptep_get(src_pte))) {
1359 				spin_unlock(src_ptl);
1360 				ret = -EAGAIN;
1361 				goto out;
1362 			}
1363 
1364 			folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
1365 			if (!folio || !PageAnonExclusive(&folio->page)) {
1366 				spin_unlock(src_ptl);
1367 				ret = -EBUSY;
1368 				goto out;
1369 			}
1370 
1371 			locked = folio_trylock(folio);
1372 			/*
1373 			 * We avoid waiting for folio lock with a raised
1374 			 * refcount for large folios because extra refcounts
1375 			 * will result in split_folio() failing later and
1376 			 * retrying.  If multiple tasks are trying to move a
1377 			 * large folio we can end up livelocking.
1378 			 */
1379 			if (!locked && folio_test_large(folio)) {
1380 				spin_unlock(src_ptl);
1381 				ret = -EAGAIN;
1382 				goto out;
1383 			}
1384 
1385 			folio_get(folio);
1386 			src_folio = folio;
1387 			src_folio_pte = orig_src_pte;
1388 			spin_unlock(src_ptl);
1389 
1390 			if (!locked) {
1391 				pte_unmap(src_pte);
1392 				pte_unmap(dst_pte);
1393 				src_pte = dst_pte = NULL;
1394 				/* now we can block and wait */
1395 				folio_lock(src_folio);
1396 				goto retry;
1397 			}
1398 
1399 			if (WARN_ON_ONCE(!folio_test_anon(src_folio))) {
1400 				ret = -EBUSY;
1401 				goto out;
1402 			}
1403 		}
1404 
1405 		/* at this point we have src_folio locked */
1406 		if (folio_test_large(src_folio)) {
1407 			/* split_folio() can block */
1408 			pte_unmap(src_pte);
1409 			pte_unmap(dst_pte);
1410 			src_pte = dst_pte = NULL;
1411 			ret = split_folio(src_folio);
1412 			if (ret)
1413 				goto out;
1414 			/* have to reacquire the folio after it got split */
1415 			folio_unlock(src_folio);
1416 			folio_put(src_folio);
1417 			src_folio = NULL;
1418 			goto retry;
1419 		}
1420 
1421 		ret = move_present_ptes(mm, dst_vma, src_vma,
1422 					dst_addr, src_addr, dst_pte, src_pte,
1423 					orig_dst_pte, orig_src_pte, dst_pmd,
1424 					dst_pmdval, dst_ptl, src_ptl, &src_folio,
1425 					len);
1426 	} else { /* !pte_present() */
1427 		struct folio *folio = NULL;
1428 		const softleaf_t entry = softleaf_from_pte(orig_src_pte);
1429 
1430 		if (softleaf_is_migration(entry)) {
1431 			pte_unmap(src_pte);
1432 			pte_unmap(dst_pte);
1433 			src_pte = dst_pte = NULL;
1434 			migration_entry_wait(mm, src_pmd, src_addr);
1435 
1436 			ret = -EAGAIN;
1437 			goto out;
1438 		} else if (!softleaf_is_swap(entry)) {
1439 			ret = -EFAULT;
1440 			goto out;
1441 		}
1442 
1443 		if (!pte_swp_exclusive(orig_src_pte)) {
1444 			ret = -EBUSY;
1445 			goto out;
1446 		}
1447 
1448 		si = get_swap_device(entry);
1449 		if (unlikely(!si)) {
1450 			ret = -EAGAIN;
1451 			goto out;
1452 		}
1453 		/*
1454 		 * Verify the existence of the swapcache. If present, the folio's
1455 		 * index and mapping must be updated even when the PTE is a swap
1456 		 * entry. The anon_vma lock is not taken during this process since
1457 		 * the folio has already been unmapped, and the swap entry is
1458 		 * exclusive, preventing rmap walks.
1459 		 *
1460 		 * For large folios, return -EBUSY immediately, as split_folio()
1461 		 * also returns -EBUSY when attempting to split unmapped large
1462 		 * folios in the swapcache. This issue needs to be resolved
1463 		 * separately to allow proper handling.
1464 		 */
1465 		if (!src_folio)
1466 			folio = swap_cache_get_folio(entry);
1467 		if (folio) {
1468 			if (folio_test_large(folio)) {
1469 				ret = -EBUSY;
1470 				folio_put(folio);
1471 				goto out;
1472 			}
1473 			src_folio = folio;
1474 			src_folio_pte = orig_src_pte;
1475 			if (!folio_trylock(src_folio)) {
1476 				pte_unmap(src_pte);
1477 				pte_unmap(dst_pte);
1478 				src_pte = dst_pte = NULL;
1479 				put_swap_device(si);
1480 				si = NULL;
1481 				/* now we can block and wait */
1482 				folio_lock(src_folio);
1483 				goto retry;
1484 			}
1485 		}
1486 		ret = move_swap_pte(mm, dst_vma, dst_addr, src_addr, dst_pte, src_pte,
1487 				orig_dst_pte, orig_src_pte, dst_pmd, dst_pmdval,
1488 				dst_ptl, src_ptl, src_folio, si, entry);
1489 	}
1490 
1491 out:
1492 	if (src_folio) {
1493 		folio_unlock(src_folio);
1494 		folio_put(src_folio);
1495 	}
1496 	/*
1497 	 * Unmap in reverse order (LIFO) to maintain proper kmap_local
1498 	 * index ordering when CONFIG_HIGHPTE is enabled. We mapped dst_pte
1499 	 * first, then src_pte, so we must unmap src_pte first, then dst_pte.
1500 	 */
1501 	if (src_pte)
1502 		pte_unmap(src_pte);
1503 	if (dst_pte)
1504 		pte_unmap(dst_pte);
1505 	mmu_notifier_invalidate_range_end(&range);
1506 	if (si)
1507 		put_swap_device(si);
1508 
1509 	return ret;
1510 }
1511 
1512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1513 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1514 					unsigned long src_addr,
1515 					unsigned long src_end)
1516 {
1517 	return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) ||
1518 		src_end - src_addr < HPAGE_PMD_SIZE;
1519 }
1520 #else
1521 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1522 					unsigned long src_addr,
1523 					unsigned long src_end)
1524 {
1525 	/* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */
1526 	return false;
1527 }
1528 #endif
1529 
1530 static inline bool vma_move_compatible(struct vm_area_struct *vma)
1531 {
1532 	return !(vma->vm_flags & (VM_PFNMAP | VM_IO |  VM_HUGETLB |
1533 				  VM_MIXEDMAP | VM_SHADOW_STACK));
1534 }
1535 
1536 static int validate_move_areas(struct userfaultfd_ctx *ctx,
1537 			       struct vm_area_struct *src_vma,
1538 			       struct vm_area_struct *dst_vma)
1539 {
1540 	/* Only allow moving if both have the same access and protection */
1541 	if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) ||
1542 	    pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot))
1543 		return -EINVAL;
1544 
1545 	/* Only allow moving if both are mlocked or both aren't */
1546 	if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED))
1547 		return -EINVAL;
1548 
1549 	/*
1550 	 * For now, we keep it simple and only move between writable VMAs.
1551 	 * Access flags are equal, therefore checking only the source is enough.
1552 	 */
1553 	if (!(src_vma->vm_flags & VM_WRITE))
1554 		return -EINVAL;
1555 
1556 	/* Check if vma flags indicate content which can be moved */
1557 	if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma))
1558 		return -EINVAL;
1559 
1560 	/* Ensure dst_vma is registered in uffd we are operating on */
1561 	if (!dst_vma->vm_userfaultfd_ctx.ctx ||
1562 	    dst_vma->vm_userfaultfd_ctx.ctx != ctx)
1563 		return -EINVAL;
1564 
1565 	/* Only allow moving across anonymous vmas */
1566 	if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma))
1567 		return -EINVAL;
1568 
1569 	return 0;
1570 }
1571 
1572 static __always_inline
1573 int find_vmas_mm_locked(struct mm_struct *mm,
1574 			unsigned long dst_start,
1575 			unsigned long src_start,
1576 			struct vm_area_struct **dst_vmap,
1577 			struct vm_area_struct **src_vmap)
1578 {
1579 	struct vm_area_struct *vma;
1580 
1581 	mmap_assert_locked(mm);
1582 	vma = find_vma_and_prepare_anon(mm, dst_start);
1583 	if (IS_ERR(vma))
1584 		return PTR_ERR(vma);
1585 
1586 	*dst_vmap = vma;
1587 	/* Skip finding src_vma if src_start is in dst_vma */
1588 	if (src_start >= vma->vm_start && src_start < vma->vm_end)
1589 		goto out_success;
1590 
1591 	vma = vma_lookup(mm, src_start);
1592 	if (!vma)
1593 		return -ENOENT;
1594 out_success:
1595 	*src_vmap = vma;
1596 	return 0;
1597 }
1598 
1599 #ifdef CONFIG_PER_VMA_LOCK
1600 static int uffd_move_lock(struct mm_struct *mm,
1601 			  unsigned long dst_start,
1602 			  unsigned long src_start,
1603 			  struct vm_area_struct **dst_vmap,
1604 			  struct vm_area_struct **src_vmap)
1605 {
1606 	struct vm_area_struct *vma;
1607 	int err;
1608 
1609 	vma = uffd_lock_vma(mm, dst_start);
1610 	if (IS_ERR(vma))
1611 		return PTR_ERR(vma);
1612 
1613 	*dst_vmap = vma;
1614 	/*
1615 	 * Skip finding src_vma if src_start is in dst_vma. This also ensures
1616 	 * that we don't lock the same vma twice.
1617 	 */
1618 	if (src_start >= vma->vm_start && src_start < vma->vm_end) {
1619 		*src_vmap = vma;
1620 		return 0;
1621 	}
1622 
1623 	/*
1624 	 * Using uffd_lock_vma() to get src_vma can lead to following deadlock:
1625 	 *
1626 	 * Thread1				Thread2
1627 	 * -------				-------
1628 	 * vma_start_read(dst_vma)
1629 	 *					mmap_write_lock(mm)
1630 	 *					vma_start_write(src_vma)
1631 	 * vma_start_read(src_vma)
1632 	 * mmap_read_lock(mm)
1633 	 *					vma_start_write(dst_vma)
1634 	 */
1635 	*src_vmap = lock_vma_under_rcu(mm, src_start);
1636 	if (likely(*src_vmap))
1637 		return 0;
1638 
1639 	/* Undo any locking and retry in mmap_lock critical section */
1640 	vma_end_read(*dst_vmap);
1641 
1642 	mmap_read_lock(mm);
1643 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1644 	if (err)
1645 		goto out;
1646 
1647 	if (!vma_start_read_locked(*dst_vmap)) {
1648 		err = -EAGAIN;
1649 		goto out;
1650 	}
1651 
1652 	/* Nothing further to do if both vmas are locked. */
1653 	if (*dst_vmap == *src_vmap)
1654 		goto out;
1655 
1656 	if (!vma_start_read_locked_nested(*src_vmap, SINGLE_DEPTH_NESTING)) {
1657 		/* Undo dst_vmap locking if src_vmap failed to lock */
1658 		vma_end_read(*dst_vmap);
1659 		err = -EAGAIN;
1660 	}
1661 out:
1662 	mmap_read_unlock(mm);
1663 	return err;
1664 }
1665 
1666 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1667 			     struct vm_area_struct *src_vma)
1668 {
1669 	vma_end_read(src_vma);
1670 	if (src_vma != dst_vma)
1671 		vma_end_read(dst_vma);
1672 }
1673 
1674 #else
1675 
1676 static int uffd_move_lock(struct mm_struct *mm,
1677 			  unsigned long dst_start,
1678 			  unsigned long src_start,
1679 			  struct vm_area_struct **dst_vmap,
1680 			  struct vm_area_struct **src_vmap)
1681 {
1682 	int err;
1683 
1684 	mmap_read_lock(mm);
1685 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1686 	if (err)
1687 		mmap_read_unlock(mm);
1688 	return err;
1689 }
1690 
1691 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1692 			     struct vm_area_struct *src_vma)
1693 {
1694 	mmap_assert_locked(src_vma->vm_mm);
1695 	mmap_read_unlock(dst_vma->vm_mm);
1696 }
1697 #endif
1698 
1699 /**
1700  * move_pages - move arbitrary anonymous pages of an existing vma
1701  * @ctx: pointer to the userfaultfd context
1702  * @dst_start: start of the destination virtual memory range
1703  * @src_start: start of the source virtual memory range
1704  * @len: length of the virtual memory range
1705  * @mode: flags from uffdio_move.mode
1706  *
1707  * It will either use the mmap_lock in read mode or per-vma locks
1708  *
1709  * move_pages() remaps arbitrary anonymous pages atomically in zero
1710  * copy. It only works on non shared anonymous pages because those can
1711  * be relocated without generating non linear anon_vmas in the rmap
1712  * code.
1713  *
1714  * It provides a zero copy mechanism to handle userspace page faults.
1715  * The source vma pages should have mapcount == 1, which can be
1716  * enforced by using madvise(MADV_DONTFORK) on src vma.
1717  *
1718  * The thread receiving the page during the userland page fault
1719  * will receive the faulting page in the source vma through the network,
1720  * storage or any other I/O device (MADV_DONTFORK in the source vma
1721  * avoids move_pages() to fail with -EBUSY if the process forks before
1722  * move_pages() is called), then it will call move_pages() to map the
1723  * page in the faulting address in the destination vma.
1724  *
1725  * This userfaultfd command works purely via pagetables, so it's the
1726  * most efficient way to move physical non shared anonymous pages
1727  * across different virtual addresses. Unlike mremap()/mmap()/munmap()
1728  * it does not create any new vmas. The mapping in the destination
1729  * address is atomic.
1730  *
1731  * It only works if the vma protection bits are identical from the
1732  * source and destination vma.
1733  *
1734  * It can remap non shared anonymous pages within the same vma too.
1735  *
1736  * If the source virtual memory range has any unmapped holes, or if
1737  * the destination virtual memory range is not a whole unmapped hole,
1738  * move_pages() will fail respectively with -ENOENT or -EEXIST. This
1739  * provides a very strict behavior to avoid any chance of memory
1740  * corruption going unnoticed if there are userland race conditions.
1741  * Only one thread should resolve the userland page fault at any given
1742  * time for any given faulting address. This means that if two threads
1743  * try to both call move_pages() on the same destination address at the
1744  * same time, the second thread will get an explicit error from this
1745  * command.
1746  *
1747  * The command retval will return "len" is successful. The command
1748  * however can be interrupted by fatal signals or errors. If
1749  * interrupted it will return the number of bytes successfully
1750  * remapped before the interruption if any, or the negative error if
1751  * none. It will never return zero. Either it will return an error or
1752  * an amount of bytes successfully moved. If the retval reports a
1753  * "short" remap, the move_pages() command should be repeated by
1754  * userland with src+retval, dst+reval, len-retval if it wants to know
1755  * about the error that interrupted it.
1756  *
1757  * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to
1758  * prevent -ENOENT errors to materialize if there are holes in the
1759  * source virtual range that is being remapped. The holes will be
1760  * accounted as successfully remapped in the retval of the
1761  * command. This is mostly useful to remap hugepage naturally aligned
1762  * virtual regions without knowing if there are transparent hugepage
1763  * in the regions or not, but preventing the risk of having to split
1764  * the hugepmd during the remap.
1765  */
1766 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start,
1767 		   unsigned long src_start, unsigned long len, __u64 mode)
1768 {
1769 	struct mm_struct *mm = ctx->mm;
1770 	struct vm_area_struct *src_vma, *dst_vma;
1771 	unsigned long src_addr, dst_addr, src_end;
1772 	pmd_t *src_pmd, *dst_pmd;
1773 	long err = -EINVAL;
1774 	ssize_t moved = 0;
1775 
1776 	/* Sanitize the command parameters. */
1777 	VM_WARN_ON_ONCE(src_start & ~PAGE_MASK);
1778 	VM_WARN_ON_ONCE(dst_start & ~PAGE_MASK);
1779 	VM_WARN_ON_ONCE(len & ~PAGE_MASK);
1780 
1781 	/* Does the address range wrap, or is the span zero-sized? */
1782 	VM_WARN_ON_ONCE(src_start + len < src_start);
1783 	VM_WARN_ON_ONCE(dst_start + len < dst_start);
1784 
1785 	err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma);
1786 	if (err)
1787 		goto out;
1788 
1789 	/* Re-check after taking map_changing_lock */
1790 	err = -EAGAIN;
1791 	down_read(&ctx->map_changing_lock);
1792 	if (likely(atomic_read(&ctx->mmap_changing)))
1793 		goto out_unlock;
1794 	/*
1795 	 * Make sure the vma is not shared, that the src and dst remap
1796 	 * ranges are both valid and fully within a single existing
1797 	 * vma.
1798 	 */
1799 	err = -EINVAL;
1800 	if (src_vma->vm_flags & VM_SHARED)
1801 		goto out_unlock;
1802 	if (src_start + len > src_vma->vm_end)
1803 		goto out_unlock;
1804 
1805 	if (dst_vma->vm_flags & VM_SHARED)
1806 		goto out_unlock;
1807 	if (dst_start + len > dst_vma->vm_end)
1808 		goto out_unlock;
1809 
1810 	err = validate_move_areas(ctx, src_vma, dst_vma);
1811 	if (err)
1812 		goto out_unlock;
1813 
1814 	for (src_addr = src_start, dst_addr = dst_start, src_end = src_start + len;
1815 	     src_addr < src_end;) {
1816 		spinlock_t *ptl;
1817 		pmd_t dst_pmdval;
1818 		unsigned long step_size;
1819 
1820 		/*
1821 		 * Below works because anonymous area would not have a
1822 		 * transparent huge PUD. If file-backed support is added,
1823 		 * that case would need to be handled here.
1824 		 */
1825 		src_pmd = mm_find_pmd(mm, src_addr);
1826 		if (unlikely(!src_pmd)) {
1827 			if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1828 				err = -ENOENT;
1829 				break;
1830 			}
1831 			src_pmd = mm_alloc_pmd(mm, src_addr);
1832 			if (unlikely(!src_pmd)) {
1833 				err = -ENOMEM;
1834 				break;
1835 			}
1836 		}
1837 		dst_pmd = mm_alloc_pmd(mm, dst_addr);
1838 		if (unlikely(!dst_pmd)) {
1839 			err = -ENOMEM;
1840 			break;
1841 		}
1842 
1843 		dst_pmdval = pmdp_get_lockless(dst_pmd);
1844 		/*
1845 		 * If the dst_pmd is mapped as THP don't override it and just
1846 		 * be strict. If dst_pmd changes into TPH after this check, the
1847 		 * move_pages_huge_pmd() will detect the change and retry
1848 		 * while move_pages_pte() will detect the change and fail.
1849 		 */
1850 		if (unlikely(pmd_trans_huge(dst_pmdval))) {
1851 			err = -EEXIST;
1852 			break;
1853 		}
1854 
1855 		ptl = pmd_trans_huge_lock(src_pmd, src_vma);
1856 		if (ptl) {
1857 			/* Check if we can move the pmd without splitting it. */
1858 			if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) ||
1859 			    !pmd_none(dst_pmdval)) {
1860 				/* Can be a migration entry */
1861 				if (pmd_present(*src_pmd)) {
1862 					struct folio *folio = pmd_folio(*src_pmd);
1863 
1864 					if (!is_huge_zero_folio(folio) &&
1865 					    !PageAnonExclusive(&folio->page)) {
1866 						spin_unlock(ptl);
1867 						err = -EBUSY;
1868 						break;
1869 					}
1870 				}
1871 
1872 				spin_unlock(ptl);
1873 				split_huge_pmd(src_vma, src_pmd, src_addr);
1874 				/* The folio will be split by move_pages_pte() */
1875 				continue;
1876 			}
1877 
1878 			err = move_pages_huge_pmd(mm, dst_pmd, src_pmd,
1879 						  dst_pmdval, dst_vma, src_vma,
1880 						  dst_addr, src_addr);
1881 			step_size = HPAGE_PMD_SIZE;
1882 		} else {
1883 			long ret;
1884 
1885 			if (pmd_none(*src_pmd)) {
1886 				if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1887 					err = -ENOENT;
1888 					break;
1889 				}
1890 				if (unlikely(__pte_alloc(mm, src_pmd))) {
1891 					err = -ENOMEM;
1892 					break;
1893 				}
1894 			}
1895 
1896 			if (unlikely(pte_alloc(mm, dst_pmd))) {
1897 				err = -ENOMEM;
1898 				break;
1899 			}
1900 
1901 			ret = move_pages_ptes(mm, dst_pmd, src_pmd,
1902 					      dst_vma, src_vma, dst_addr,
1903 					      src_addr, src_end - src_addr, mode);
1904 			if (ret < 0)
1905 				err = ret;
1906 			else
1907 				step_size = ret;
1908 		}
1909 
1910 		cond_resched();
1911 
1912 		if (fatal_signal_pending(current)) {
1913 			/* Do not override an error */
1914 			if (!err || err == -EAGAIN)
1915 				err = -EINTR;
1916 			break;
1917 		}
1918 
1919 		if (err) {
1920 			if (err == -EAGAIN)
1921 				continue;
1922 			break;
1923 		}
1924 
1925 		/* Proceed to the next page */
1926 		dst_addr += step_size;
1927 		src_addr += step_size;
1928 		moved += step_size;
1929 	}
1930 
1931 out_unlock:
1932 	up_read(&ctx->map_changing_lock);
1933 	uffd_move_unlock(dst_vma, src_vma);
1934 out:
1935 	VM_WARN_ON_ONCE(moved < 0);
1936 	VM_WARN_ON_ONCE(err > 0);
1937 	VM_WARN_ON_ONCE(!moved && !err);
1938 	return moved ? moved : err;
1939 }
1940 
1941 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
1942 				     vm_flags_t vm_flags)
1943 {
1944 	const bool uffd_wp_changed = (vma->vm_flags ^ vm_flags) & VM_UFFD_WP;
1945 
1946 	vm_flags_reset(vma, vm_flags);
1947 	/*
1948 	 * For shared mappings, we want to enable writenotify while
1949 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
1950 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
1951 	 */
1952 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
1953 		vma_set_page_prot(vma);
1954 }
1955 
1956 static void userfaultfd_set_ctx(struct vm_area_struct *vma,
1957 				struct userfaultfd_ctx *ctx,
1958 				vm_flags_t vm_flags)
1959 {
1960 	vma_start_write(vma);
1961 	vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx};
1962 	userfaultfd_set_vm_flags(vma,
1963 				 (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags);
1964 }
1965 
1966 void userfaultfd_reset_ctx(struct vm_area_struct *vma)
1967 {
1968 	userfaultfd_set_ctx(vma, NULL, 0);
1969 }
1970 
1971 struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi,
1972 					     struct vm_area_struct *prev,
1973 					     struct vm_area_struct *vma,
1974 					     unsigned long start,
1975 					     unsigned long end)
1976 {
1977 	struct vm_area_struct *ret;
1978 	bool give_up_on_oom = false;
1979 
1980 	/*
1981 	 * If we are modifying only and not splitting, just give up on the merge
1982 	 * if OOM prevents us from merging successfully.
1983 	 */
1984 	if (start == vma->vm_start && end == vma->vm_end)
1985 		give_up_on_oom = true;
1986 
1987 	/* Reset ptes for the whole vma range if wr-protected */
1988 	if (userfaultfd_wp(vma))
1989 		uffd_wp_range(vma, start, end - start, false);
1990 
1991 	ret = vma_modify_flags_uffd(vmi, prev, vma, start, end,
1992 				    vma->vm_flags & ~__VM_UFFD_FLAGS,
1993 				    NULL_VM_UFFD_CTX, give_up_on_oom);
1994 
1995 	/*
1996 	 * In the vma_merge() successful mprotect-like case 8:
1997 	 * the next vma was merged into the current one and
1998 	 * the current one has not been updated yet.
1999 	 */
2000 	if (!IS_ERR(ret))
2001 		userfaultfd_reset_ctx(ret);
2002 
2003 	return ret;
2004 }
2005 
2006 /* Assumes mmap write lock taken, and mm_struct pinned. */
2007 int userfaultfd_register_range(struct userfaultfd_ctx *ctx,
2008 			       struct vm_area_struct *vma,
2009 			       vm_flags_t vm_flags,
2010 			       unsigned long start, unsigned long end,
2011 			       bool wp_async)
2012 {
2013 	VMA_ITERATOR(vmi, ctx->mm, start);
2014 	struct vm_area_struct *prev = vma_prev(&vmi);
2015 	unsigned long vma_end;
2016 	vm_flags_t new_flags;
2017 
2018 	if (vma->vm_start < start)
2019 		prev = vma;
2020 
2021 	for_each_vma_range(vmi, vma, end) {
2022 		cond_resched();
2023 
2024 		VM_WARN_ON_ONCE(!vma_can_userfault(vma, vm_flags, wp_async));
2025 		VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx &&
2026 				vma->vm_userfaultfd_ctx.ctx != ctx);
2027 		VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE));
2028 
2029 		/*
2030 		 * Nothing to do: this vma is already registered into this
2031 		 * userfaultfd and with the right tracking mode too.
2032 		 */
2033 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
2034 		    (vma->vm_flags & vm_flags) == vm_flags)
2035 			goto skip;
2036 
2037 		if (vma->vm_start > start)
2038 			start = vma->vm_start;
2039 		vma_end = min(end, vma->vm_end);
2040 
2041 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
2042 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
2043 					    new_flags,
2044 					    (struct vm_userfaultfd_ctx){ctx},
2045 					    /* give_up_on_oom = */false);
2046 		if (IS_ERR(vma))
2047 			return PTR_ERR(vma);
2048 
2049 		/*
2050 		 * In the vma_merge() successful mprotect-like case 8:
2051 		 * the next vma was merged into the current one and
2052 		 * the current one has not been updated yet.
2053 		 */
2054 		userfaultfd_set_ctx(vma, ctx, vm_flags);
2055 
2056 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
2057 			hugetlb_unshare_all_pmds(vma);
2058 
2059 skip:
2060 		prev = vma;
2061 		start = vma->vm_end;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 void userfaultfd_release_new(struct userfaultfd_ctx *ctx)
2068 {
2069 	struct mm_struct *mm = ctx->mm;
2070 	struct vm_area_struct *vma;
2071 	VMA_ITERATOR(vmi, mm, 0);
2072 
2073 	/* the various vma->vm_userfaultfd_ctx still points to it */
2074 	mmap_write_lock(mm);
2075 	for_each_vma(vmi, vma) {
2076 		if (vma->vm_userfaultfd_ctx.ctx == ctx)
2077 			userfaultfd_reset_ctx(vma);
2078 	}
2079 	mmap_write_unlock(mm);
2080 }
2081 
2082 void userfaultfd_release_all(struct mm_struct *mm,
2083 			     struct userfaultfd_ctx *ctx)
2084 {
2085 	struct vm_area_struct *vma, *prev;
2086 	VMA_ITERATOR(vmi, mm, 0);
2087 
2088 	if (!mmget_not_zero(mm))
2089 		return;
2090 
2091 	/*
2092 	 * Flush page faults out of all CPUs. NOTE: all page faults
2093 	 * must be retried without returning VM_FAULT_SIGBUS if
2094 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
2095 	 * changes while handle_userfault released the mmap_lock. So
2096 	 * it's critical that released is set to true (above), before
2097 	 * taking the mmap_lock for writing.
2098 	 */
2099 	mmap_write_lock(mm);
2100 	prev = NULL;
2101 	for_each_vma(vmi, vma) {
2102 		cond_resched();
2103 		VM_WARN_ON_ONCE(!!vma->vm_userfaultfd_ctx.ctx ^
2104 				!!(vma->vm_flags & __VM_UFFD_FLAGS));
2105 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
2106 			prev = vma;
2107 			continue;
2108 		}
2109 
2110 		vma = userfaultfd_clear_vma(&vmi, prev, vma,
2111 					    vma->vm_start, vma->vm_end);
2112 		prev = vma;
2113 	}
2114 	mmap_write_unlock(mm);
2115 	mmput(mm);
2116 }
2117